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Abstract

The main goal of the work we are presenting is the exploration of some sectors of the
space of the supersymmetric solutions of supergravity theories with 8 supercharges, in
4, 5 and 6 dimensions, which led to the new solutions originally presented in [1–3].

We are firstly reviewing the supergravity theories of our interest, paying attention
to their geometrical structure and to their possible gaugings. While discussing the 4-
dimensional case, we are also introducing a couple of solutions generating techniques,
originally developed in [4] and [5].

We then introduce the idea of dimensionally reducing a theory and its solutions on
a circle, as the necessary tool to relate 4, 5 and 6-dimensional ungauged supergravity
theories among themselves. An interesting feature emerges from this treatment: there
are two classes of 6-dimensional theories that lead, when compactified, to the same 5-
dimensional model; the two 6-dimensional theories are therefore dual. In the present
context, the main reason to treat dimensional reduction is given by the possibility of
generating new solutions, reducing or uplifting known ones.

Finally, we apply these techniques to generate the first 4-dimensional solution of
U(1)-Fayet-Iliopoulos gauged supergravity coupled to vector multiplets, whose scalars
parametrize a non-homogeneous Kähler manifold. It is a black hole solution, with AdS4

asymptotes [1]. We then explore the SU(2)-Fayet-Iliopoulos gauged sector, in 4 dimen-
sions. Once a simple model -known as CP3

- is chosen, some solutions for this setting
are found [3]. More solutions for the same theory are obtained through dimensional
reduction -that has been generalized to relate gauged theories- of a couple of known so-
lutions for the 6-dimensional, FI-gauged theory. 5-dimensional solutions are obtained in
the procedure, as well. Finally, a known 5-dimensional solution, an extremal black hole
sourced by a BPST instanton, is uplifted to 6 dimensions [2].
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Introduction

Among the most studied but still unsolved problems that modern physics is facing, a
relevant role is surely taken by the existing gap between the two fundamental theories
that build up modern physics itself: general relativity and quantum mechanics.
The first of them describes to high accuracy the gravitational phenomena as the behav-
ior of space and time, while the second one, especially in its relativistic formulation
-quantum field theory and the standard model- provides an excellent, extremely predic-
tive description of particles and their interactions. This is true at least up to the scale that
are nowadays experimentally accessible, i.e. in a realm where the effects of gravity are
definitely negligible with respect to the other forces.
There are, however, situations where this distinction breaks down and gravitational phe-
nomena are as important as quantum effects. Black holes and the primordial, inflation-
ary universe are well known examples thereof. In particular, black holes emerged as
classical, macroscopic solutions in general relativity, but the singularity in their interior
signals the breakdown of the classical theory. It is widely believed that a more profound,
universal, quantum theory of gravitation will resolve these singularities, possibly pro-
viding a precise, finite description of the black hole interior and of the quantum phe-
nomena occuring in this regime.
Moreover, Hawking [6] showed how these objects possess some quantum properties as
well -they have a temperature, an entropy and can evaporate-, leading to inconsistencies
and paradoxes which seem to be unsolvable within the standard picture developed so
far by modern physics.

Many attempts have been made to develop a unified theory, but the problem has not
been solved yet. The most widely studied approach is surely represented by string the-
ory, whose low energy limit is a field theory called supergravity. There are five versions
of perturbative string theory, related by dualities: a given physical situation may admit
more than one theoretical formulation and it can turn out that the respective levels of
difficulty in analyzing these distinct, dual, formulations can be wildly different. Hard
questions to answer from one perspective can turn into far easier questions to answer
in another [7]. The existence of these dualities led to the conjecture of a non perturba-
tive 11-dimensional theory that unifies all the consistent versions of superstring theory,
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named M-theory, whose low energy sector should be described by 11-dimensional su-
pergravity. In the same way, the low energy limit of type IIA and type IIB superstring
theories are 10-dimensional supergravity theories, called N = 2A and N = 2B. When
compactified on a circle, these theories give rise to the same 9-dimensional supergravity:
they are, in this sense, related by T-duality, reflecting the connection between the respec-
tive complete string theories. Moreover, when the 10-dimensional supergravity theories
are compactified on 6-dimensional Calabi-Yau manifolds, the resulting 4-dimensional
supergravities are not maximally symmetric anymore: they are exactly the N = 2 theo-
ries we will discuss in the present thesis. If the 10-dimensional theories are compactified
on mirror Calabi-Yau manifolds, a manifestation of duality appears at the 4-dimensional
level, too, where it is called mirror symmetry and relates theories with an interchanged
number of vector multiplets and hypermultiplets. Another manifestation of duality, at
the level of supergravity theories, will be discussed in chapter 2.

As low energy limit of superstring theory, supergravity is a field theory of supersym-
metric matter coupled to gravity. This theory is invariant under local supersymmetry
transformations, whose local parameters must be understood as diffeomorphisms; this
means that local supersymmetry automatically requires the inclusion of gravity. On the
other hand, if we are interested in constructing a theory of gravity enjoying supersym-
metry, the latter should be realized locally.

The possible theories of supergravity are classified in terms of the dimension of the
spacetime on which they are defined and of the amount of supersymmetry under which
they are invariant. These two parameters determine the field content of each theory. The
so called minimal supergravities are theories whose field content only consists of the
multiplet in which the graviton is included, together with its superpartner, a fermion
called gravitino. Supersymmetric matter multiplets, whose nature again depends on the
mentioned parameters, can be coupled to this basic setting. The more supersymmetry
the theory is respecting, the more the matter couplings are constrained. On the other
hand, symmetries turn out to be really helpful in simplifying the equations that need to
be solved in order to find solutions of a given theory.

In this context, the theories we are going to deal with in the present thesis, character-
ized by 8 supercharges, are considered to be a good compromise: they still admit many
different matter couplings, but they have enough supersymmetry to provide solvable
equations.
In fact, many solutions of these theories are known (see, for example [8–10]) and in some
cases, a classification of the solutions has been obtained [11–13].

Another interesting feature is the possibility of deforming these theories, introduc-
ing a gauge group. Vector fields must be present and matter is charged under them. An
intriguing outcome of this gauging procedure is the appearance, in some of the so called
gauged supergravity theories, of AdS vacua and asymptotically AdS solutions, includ-
ing AdS black holes.
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These latter deserve to be studied in particular from a gauge/gravity duality point of
view. The motivation is twofold: it has been discovered that these solutions represent
the gravity dual of certain strongly coupled field theories, describing relevant condensed
matter systems such as, for example, the quark gluon plasma or the high-temperature
superconductors [14, 15]. Thus, providing new gravity solutions of this kind could help
in understanding the behavior of their dual systems. On the other hand, exact compu-
tations can be performed on the field theory side, which could provide an insight into
the fundamental and still unknown properties of black holes, as the microscopic origin
of their entropy [16].

Many solutions of the gauged theories are known as well [1,3,5,17–31] and solutions
in 4 and 5 dimensions have been classified [4, 32–35].

Another way of interpreting the interest that the search for new solutions raises, con-
siders that the solutions of supergravity theories can always be understood as solutions
of general relativity coupled to matter, neglecting their supersymmetric behavior and
exploiting supersymmetry as a solution generating technique.

The main goal of this thesis is the exploration of some sectors of the space of the su-
persymmetric solutions of supergravity theories which had not been explored before, as
one of the most elementary steps that can be taken to get a more complete understand-
ing of its structure.
New solutions ofN = 2 supergravities, some of which represent black objects and some
are asymptotically AdS, have been presented in [1, 3]. This thesis is mostly based on
these works, together with [2], where the connection between the theories in 5 and 6
dimensions has been studied.

The present thesis is organized as follows: after a brief general introduction, the first
chapter is devoted to a review of the supergravity theories with 8 supercharges in 4,
5 and 6 dimensions. Special attention will be paid to their geometrical structure and
to the related topic of their possible gaugings. As far as the 4-dimensional theory is
concerned, we are also detailing some example of these geometries, characterizing well
known models.
While discussing the 4-dimensional case, we are also introducing a couple of solutions
generating techniques, originally developed in [4] and [5]; the first one, in particular,
classifies all the time-like supersymmetric solutions of the 4-dimensional theory.
Although similar treatments exists in the 5-dimensional case [34, 36], we decided not to
present them here, since they are very similar and we are not going to use them explicitly.
The solutions of the 6-dimensional theory have been only partially classified in [37, 38].

The second chapter introduces the idea of dimensionally reducing a theory and its
solutions on a circle, following the method developed in [39].
After a general discussion, the well known example of how 5-dimensional ungauged
supergravity can be reduced to certain models of the 4-dimensional ungauged theory
is presented. The relations between the fields in the two theories is explicitly given, so
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that reducing a solution with one isometry is just a matter of applying the general rules.
Analogously, solutions can be uplifted from 4 to 5 dimensions.
The original result we are presenting concerns a similar procedure relating 5 to 6-dimensional
supergravity theories; the problem is slightly more involved, due to the absence of a
general covariant action for the 6-dimensional theories, which involves chiral 2-form
fields. An interesting feature emerges from this treatment: there are two classes of 6-
dimensional theories that lead, when compactified, to the same 5-dimensional model.
This property has been interpreted as the manifestation of a duality between the two 6-
dimensional theories, analogous to the one connecting the two maximal 10-dimensional
supergravities, N = 2A and N = 2B: when compactified on a circle, they give rise to
the same 9-dimensional maximal supergravity, which is unique.
In the present context, the main reason to treat dimensional reduction is given by the
possibility of generating new solutions, once one is known in a certain theory. We have
constructed all the instruments we need to reduce solutions with isometries from 6 to 5
and to 4 dimensions, and to uplift 4 and 5-dimensional solutions to solutions of two dif-
ferent 6-dimensional theories. Although only ungauged theories have been considered
so far, the relations are still applicable as long as the gauge group does not change in the
process of dimensional reduction, as detailed in chapter 3.

Chapter 3 is finally devoted to the application of these techniques to generate new
solutions. In particular, we are presenting the first 4-dimensional solution of U(1)-Fayet-
Iliopoulos gauged supergravity coupled to vector multiplets, whose scalars parametrize
a non-homogeneous Kähler manifold. It is a black hole solution, with AdS4 asymp-
totes [1].
Another sector that had not been explored before is the SU(2)-Fayet-Iliopoulos gauged
one, in 4 dimensions. Once a simple model, CP3

, is chosen, some solutions in this pecu-
liar setting are found [3].
More solutions for the same theory are obtained through dimensional reduction of a cou-
ple of known solutions for the 6-dimensional, FI-gauged theory. As outlined previously,
the reduction proceeds by steps, so that 5-dimensional solutions are originated in the
procedure, as well.
Finally, a known 5-dimensional solution involving non-Abelian fields, an extremal black
hole sourced by a BPST instanton, is uplifted to the two possible 6-dimensional theo-
ries [2]. The solutions that emerge in this way represent a superposition of a dyonic
string and a wave, with an additional BPST instanton, and a superposition of a selfd-
ual string and a pp-wave, with a non-Abelian contribution that can be interpreted as an
instanton.







CHAPTER 1

N = 2 gauged supergravity in 4, 5 and 6 dimensions

The supergravity theories with 8 real supercharges provide a very interesting arena for
the construction and study of supersymmetric solutions, because they have enough sym-
metry to be tractable and exhibit interesting properties such as the attractor mechanism
of their black-hole and black-string solutions [8, 40–43] but not so much symmetry that
only a few models are permitted. They can also be coupled to matter, which is the case
we are interested in. Matter comes in multiplets, containing the same number of bosonic
and fermionic degrees of freedom, whose field content varies with the dimension of the
theory. The presence of vector fields give rise to the possibility of gauging the theory,
charging the matter fields under Abelian and non-Abelian gauge groups.

Most of the work in these theories has been devoted to the 4-and 5-dimensional ones
for different reasons: for a given matter content, many models are possible; they are
the effective theories of type II superstrings and of the conjectured M-theory, respec-
tively, compactified on Calabi-Yau 3-folds (moreover, the compactification of all the 5-
dimensional theories in a circle gives rise to 4-dimensional supergravities); they have
rich geometrical structures known as Special Geometry (Kähler in d = 4, real in d = 5);
they admit supersymmetric black-hole solutions and some of them are asymptotically
AdS, gaining interest from a gauge/gravity duality perspective.
In fact, most of those supersymmetric solutions have been classified in [4, 11, 24, 32, 33,
44, 45] and [12, 13, 34, 35, 46–49] respectively.

Much less work has been done in the 6-dimensional theories (often called N =

(2, 0), d = 6 supergravities because they have chiral fermions), whose structure is not
as rich. However, it has been shown [50,51] that compactifications of F-theory on elliptic
Calabi-Yau 3-folds generate a large class of 6-dimensional theories and it has been con-
jectured that all UV-consistent 6-dimensional chiral supergravity theories can be realized
in string theory.

The present chapter is devoted to a brief introduction to these theories, which is not
aimed to be complete, but should provide useful definitions and a general overview to
contextualize the original results that are presented in the rest of this thesis. A general
and deep review of all these theories can be found in [52] and for the 4-dimensional case
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2 1.1 General features

only, in [53]. The 4- and 5-dimensional ones are also reviewed in [54], with emphasis on
the supersymmetric bosonic solutions.

The rest of this chapter is organized as follows: in section 1.1 we present some feature
that are common to all the theories we are interested in, N = 2 supergravity in 4 and 5
dimensions and the 6-dimensional N = (2, 0) theory; we will describe the matter mul-
tiplets to which they can be coupled and introduce the concepts of R-symmetry group,
gauged supergravity, scalar geometry and of the amount of supersymmetry preserved
by a solution.
In section 1.2 we will give a detailed description of the 4-dimensional theory, with a
particular emphasis on the geometries defined by the scalars in its vector and hypermul-
tiplets, the special and quaternionic Kähler manifolds and of the isometries that can be
gauged. We will explicitly give the action, the equations of motion and the supersym-
metry transformations for these theories and we will present two techniques to generate
solutions, both based on the requirement that the solutions preserve a certain amount
of supersymmetry: solving the full set of the equations of motion is really difficult, due
to the presence of the non linear Einstein equations, while the constraints imposed by
supersymmetry greatly simplify the problem. These techniques go under the name of
“bilinear method” and “squaring of the action”. We will finally give some examples of
models involving different special Kähler manifolds, to illustrate how the quantities that
enter the Lagrangian can be obtained once the scalar geometry is known, and to pave
the way for the specific situations that will be considered in chapter 3.
Similarly, in the remaining sections 1.3-1.4, we will give an overview of the 5 and 6-
dimensional theories, involving the description of the possible matter multiplets, of the
scalar geometries (real Kähler in 5 dimensions) and of the possible gaugings. In the
context of the present work, these theories are mostly relevant because of their relation,
through dimensional reduction, with the 4-dimensional one. As explained in chapter 2,
this means that solutions of one of these theories can be, under certain conditions, di-
mensionally uplifted of reduced, to give rise to new solutions for the other theories. This
mechanism will be exploited as a solution generating technique in chapter 3.

1.1 General features

Supergravity theories are theories with gauged, or local, supersymmetry; the action of
these theories is invariant under supersymmetry transformations in which the spinor
parameters are arbitrary functions of the spacetime coordinates. The supersymmetry
algebra is then involving local translation parameters, which must be viewed as diffeo-
morphisms. Therefore, we can say that local supersymmetry requires gravity. On the
other hand, in any supersymmetric theory which includes gravity, supersymmetry must
be realized locally. A minimal supergravity theory is an interacting field theory involv-
ing the gravity multiplet only. Eventually, other matter multiplets of the underlying
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d=4 N = 2 SU(2)×U(1)

d=5 N = 2 SU(2)

d=6 N = (2, 0) SU(2)

Table 1.1: R-symmetry automorphism group

global supersymmetry algebra can be coupled to minimal supergravity, giving rise to
matter coupled supergravity theories, still respecting the invariance under local super-
symmetry transformation.

Supergravity theories that are symmetric under more than one supersymmetry trans-
formation are called extended supergravities; this is the case we are interested in, specif-
ically in theories including two spinor supercharges -8 supercharges in total-, which are
denoted asN = 2 supergravities in 4 and 5 dimensions, or asN = (2, 0) in 6 dimensions,
where both supercharges have the same chirality.1

In the gauging of the theory that we are going to perform, a relevant role will be
played by the R-symmetry. The main characteristic of this symmetry is that it commutes
with Lorentz and translation generators, but it does not commute with the supercharges.
This distinguishes it from the gauge symmetries of the theory, which do commute with
supersymmetry. Upon investigation of the commutation rules, it turns out that the R-
symmetry groups of the theories we are dealing with are those listed in table 1.1.

The field content of these theories is determined by the massless particle representa-
tion of the corresponding superalgebra.
The supergravity multiplet, in which the graviton gµν and its superpartners, the graviti-
nos ψiµ are included, is always present and can be coupled to different kinds of matter
multiplets: vector multiplets, hypermultiplets and, as far as the 6-dimensional theory is
concerned, tensor multiplets. The field content of these multiplets, in each dimension, is
given in table 1.2.
When present, the vector field in the supergravity multiplet A0

µ is dubbed graviphoton.
In chapter 2, we are discussing how the theories in different dimensions are related by
dimensional reduction; this topic is going to clarify the origin of the scalars in the vector
multiplets, which are absent in 6 dimensions, real φ in 5 and complex Z in 4. Vector
multiplets always involve vector fields Aµ and gauginos λi.
Since dimensional reduction for scalars and spin- 1

2 fermions leads to the same type of
particles in lower dimensions, the hypermultiplets are always including real scalars (q)
and spinors (ξi) and their properties do not depend crucially on dimension.
In 6 dimensions, an antisymmetric tensor can have (anti)selfdual properties and a (anti)
selfdual field-strength; these fields appear in the so called antisymmetric tensor multi-
plets as B+

µν -whose field strength is selfdual- and in the supergravity multiplet as B−µν
1In literature, the 5-dimensional theory is sometimes denoted as d = 5, N = 1 supergavity, while the

6-dimensional one is also known asN = (1, 0).



4 1.1 General features

d supergravity tensor vector hyper
4 gµν , ψ

i
µ, A

0
µ - Aµ, λ

i, Z ξi, q

5 gµν , ψ
i
µ, A

0
µ - Aµ, λ

i, φ ξi, q

6 gµν , ψ
i
µ, B

−
µν B+

µν , χ
i, ϕ Aµ, λ

i ξi, q

Table 1.2: Multiplets

4 special Kähler × quaternionic Kähler
5 special real × quaternionic Kähler

6 O(1,nT )
O(nT ) × quaternionic Kähler

Table 1.3: Scalar manifolds

-whose field strength is anti-selfdual-. The tensor multiplets involve, in addition to the
2-form B+

µν , a scalar ϕ and a tensorino χi.
For a given matter content, i.e. once the number of vector nV , tensor nT and hyper-

multiplets nH has been fixed, the kinetic terms of these theories still depend on one or
more arbitrary functions. These latter determine the metric of the non-linear σ-models
that characterize the kinetic term for the scalars. These metrics are part of the data that
define a particular theory, they fix the geometry of the scalar manifold.
The total scalar manifold of a theory has always the form of a direct product of the man-
ifold of the scalars in the hypermultiplets (quaternionic Kähler manifolds) and those of
tensor multiplets in 6 dimensions or vector multiplets in 5 (special real manifolds) and
4 dimensions (special Kähler manifolds), as summarized in table 1.3. The involved ge-
ometries belong to a class called special geometries, which are of particular interest. We
are discussing them in what follows.

We are now going to introduce deformations of the basic theories which are obtained
introducing a gauge group. A gauged supergravity is a theory in which vector fields
gauge a subgroup of the global symmetries. The number of generators of the gauge
group cannot exceed the number of vector fields that are present in the theory, including
vectors in the vector multiplets and eventually those in the supergravity multiplet. In
fact, the kinetic terms of these vectors are generally mixed together in the action. Matter
fields are charged under the gauge group.
The deformed theory differs in various ways from the original one:

• the supersymmetry transformations of the fermions acquire new terms, called fermion
shifts;

• covariant derivatives appear instead of ordinary ones;

• the field strengths are redefined properly;
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• a scalar potential is generated, which can be expressed as sums of squares of the
fermion shifts;

• there are new terms in the action, such as fermion masses.

Gauged supergravities can also be approached from the point of view of the isometry
group of the scalar sector: the manifold, which is defined by the metric of the kinetic
term for the scalars, has isometries that are global symmetries and nearly always extend
to global symmetries of the full supergravity action. The gauged supergravity is then
obtained by gauging a subgroup of these global symmetries.

Once the action of a specific supergravity theory has been given, we will be look-
ing for solutions of the classical equations of motion. In particular, we are interested in
solutions that can be interpreted as classical backgrounds, or vacua, above which fluctu-
ations can be treated quantum mechanically. The backgrounds we are considering have
vanishing values for every fermionic fields and are determined by configurations of the
bosonic fields only. Therefore, from now on, we are only dealing with the bosonic sector
of each theory.
The solution should possibly be invariant under global supersymmetries that are a sub-
set of the local supersymmetries of the supergravity action, i.e. it should preserve some
supersymmetry. Preserved supersymmetries of a solution are determined by the van-
ishing of the supersymmetry transformations of the fermions.
The other way around, supersymmetry can be considered as a solution generating tech-
nique, since the constraints that its preservation imposes, the vanishing of the super-
symmetry transformations for the fermions, allows to greatly simplify the equations of
motion that have to be solved to find new solutions. An example is given in section 1.2.5.

We are now ready to enter the details of the bosonic sector of the 4, 5 and 6-dimensional
theories, separately, while in chapter 2 we are examining the relations among them and
their solutions.

1.2 The 4-dimensional theory

N = 2, d = 4 supergravity is the simplest theory of extended supergravity. Even though
it has no direct phenomenological relevance to particle physics due to the impossibility
of reproducing the chiral structure of the standard model, it is a very interesting theory
on its own.
Among the reasons for this interest, there is the origin of many of the models in this
theory, that arise from the compactification of type-II theories in Calabi–Yau 3-folds,
which means that many of the results and solutions obtained in this framework can
be embedded in full superstring theory.

As already stated, there are many possible matter couplings, even for the same matter
content. All of them are different realizations of a common and very rich mathematical
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structure, known as special Kähler geometry, that governs the couplings of the vector
multiplets and the supergravity one and of another structure, known as quaternionic
Kähler geometry, that governs the coupling of the hypermultiplets. In particular, special
Kähler geometry contains information on the symplectic structure present in the cou-
plings between scalars and vector fields.

We quickly recall that the supergravity multiplet includes the following fields,

{
eaµ, ψ

I
µ, A

0
µ

}
(1.1)

and it is coupled to nV vector multiplets and nH hypermultiplets. The field content of
each of the nV vector multiplets, labeled by the index i = 1, . . . nV , is

{
Aiµ, λ

iI , Zi
}
, (1.2)

where λiI is a pair of gauginos and Zi is a complex scalar which, in the coupled the-
ory, will be interpreted as a complex coordinate in a special Kähler manifold. Since
duality rotations will mix the graviphoton field with the matter vector fields, we conve-
niently use a common notation for all of them: the index Λ = (0, i), which takes values
Λ = 0, . . . , nV .
Each hypermultiplet consists of 4 real hyperscalars and 2 hyperinos. If nH hypermul-
tiplets are involved, their fields can collectively be labeled by u = 1, . . . , 4nH and α =

1, . . . , 2nH

{qu, ξα} . (1.3)

The hyperscalars parametrize a quaternionic Kähler manifold.
Specifying the choice for the 2 involved geometries is enough to fully determine the
ungauged model. We are now presenting its bosonic action, which involves many geo-
metrical quantities; they are defined in sections 1.2.1 and 1.2.2, where the properties of
the special Kähler and quaternionic Kähler manifolds, respectively, are depicted.

S =

∫
d4x
√
|g|
[
R+ 2Gij∗∂µZi∂µZ∗ j

∗
+ 2Huv∂µq

u∂µqv

+2=mNΛΣF
ΛµνFΣ

µν − 2<eNΛΣF
Λµν ? FΣ

µν

]
.

(1.4)

In the previous expression, Gij∗ is the metric of the special Kähler manifold, parametrized
by the complex scalars Zi, while Huv is the metric of the quaternionic Kähler space,
parametrized by the hyperscalars qu. The period matrix NΛΣ is a function of the Zi and
is determined by the choice of special Kähler geometry.
It can be noticed that the hyperscalars are decoupled from the vector supermultiplets, so
that in the ungauged theory the hypermultiplets can always be consistently truncated.

We are now reporting the Lagrangian of the most general gauged theory,
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S =

∫
d4x
√
|g|
[
R+ 2Gij∗DµZ

iDµZ∗ j
∗

+ 2HuvDµq
uDµqv

+2=mNΛΣF
ΛµνFΣ

µν − 2<eNΛΣF
Λµν ? FΣ

µν −V(Z,Z∗, q)
]
,

(1.5)

where the scalar potential V(Z,Z∗, q) is given by

V(Z,Z∗, q) = − 1
4g

2(=mN )−1|ΛΣPΛPΣ

+ 2g2HuvkΛ
ukvΣL∗ΛLΣ + 1

2g
2
(
Gij
∗
fΛ

if
∗Σ

j∗ − 3L∗ΛLΣ
)

PΛ
xPΣ

x .
(1.6)

PΛ are known as holomorphic momentum maps, while PΣ
x are the triholomorphic mo-

mentum maps. The definition and the origin of these objects, together with the form of
the covariant derivatives appearing in the action, will be clarified in section 1.2.3, where
we are discussing all the possible gaugings of the ungauged theories and depicting how
the Lagrangian (1.5) was obtained. LΛ and fΛ

i are instead geometrical quantities, whose
definition is given in section 1.2.1.

1.2.1 Special Kähler geometries

Special Kähler geometry is the structure that dictates the couplings between the fields in
the vector multiplets and in the supergravity multiplet. These couplings are encoded in
several functions of the complex scalars appearing in the action (1.4). Supersymmetry
requires that all these objects are related in a very specific way. These relations are the
essential content of special Kähler geometry that we are now presenting.

We are considering a complex manifold2 with an Hermitian metric Gij∗ ,

ds2 = Gij∗dZidZ∗j
∗
. (1.7)

We can define the fundamental 2-form

J = iGij∗dZi ∧ dZ∗j
∗
. (1.8)

If J is closed, dJ = 0, it is called a Kähler form and the manifold is a Kähler manifold.
This condition implies the existence in every coordinate patch of a real functionK(Z,Z∗),
the Kähler potential, such that the metric is locally given by

Gij∗ = ∂i∂j∗K . (1.9)

The Kähler potential is not uniquely defined, since a Kähler transformation

K(Z,Z∗)→ K(Z,Z∗) + λ(Z) + λ∗(Z∗) , (1.10)

2In this section and in the next one we are using the notation of [54].
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where λ is an holomorphic function, leaves the metric (1.9) invariant.
The Kähler connection 1-form is defined as

A =
1

2i
(∂ − ∂∗)K (1.11)

and is not invariant under Kähler transformations.
In general, an object Ψ is said to have Kähler weight (p, q) if, under Kähler transforma-
tions (1.10), it behaves as

Ψ→ e−
1
2 (pλ+qλ∗)Ψ . (1.12)

The Kähler covariant derivative is given by

Di = ∇i +
1

2
p∂iK , Di∗ = ∇i∗ +

1

2
q∂i∗K (1.13)

where ∇ is the standard covariant derivative associated to the Hermitian connection,
due to the tensorial nature of Ψ.

If p = −q = 1, the Kähler transformations for the field Ψ are U(1), Z dependent
transformations

Ψ→ e−i=mλ(Z)Ψ . (1.14)

The structure that supports these fields is an U(1) bundle, associated to a complex line
bundle L1 → M over the Kähler manifold M. This construction is consistent only if
the first Chern class of the bundle equals the Kähler class, i.e. the cohomology class
defined by J . Kähler manifolds satisfying this requirement are known as Kähler–Hodge
manifolds.

Consider now a Kähler-Hodge manifoldMKH of complex dimension nV and a flat
2(nV + 1) vector bundle E →MKH , with structure group Sp(2(nV + 1);R).
MKH is a special Kähler manifold if there is a covariantly holomorphic symplectic sec-
tion V of the product bundle E ⊗ L1 →MKH satisfying certain properties.
The section V has Kähler weight p = −q = 1. Its holomorphic Kähler-covariant deriva-
tive Ui is given by

Ui = DiV =

(
∂i +

1

2
∂iK

)
V , (1.15)

in terms of which the properties that guarantees the special Kähler nature of the base of
the symplectic bundle are written as

〈V|V∗〉 = −i , (1.16)

Di∗V = 0 , (1.17)

〈Ui|V〉 = 0 . (1.18)
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As we will see, the symplectic section V describes the scalars Zi, but encodes also all
the information about the geometry of the model under consideration. In particular, the
objects that are needed to determine the Lagrangian (1.4) can be obtained from V ; let us
start with its components and those of its covariant derivative, carrying a Λ = 0, . . . , nV

index, which can be in upper or lower position,

V =

(
LΛ

MΛ

)
, Ui =

(
fΛ

i

hΛi

)
. (1.19)

The symplectic inner product, in terms of these components, is given by

〈A|B〉 = BΛAΛ − BΛAΛ . (1.20)

From the basic definitions (1.16-1.18) and the properties of the covariant derivatives,
the following identities can be obtained,

〈Ui| U∗j∗〉 = iGij∗ ,

〈Ui|V∗〉 = 0 ,

〈Ui| Uj〉 = 0 .

(1.21)

These identities tell us that the sections V , Ui and their complex conjugates are linearly
independent and allow us to write the completeness relation for a generic symplectic
section A as

A = i 〈A|V∗〉 V − i 〈A|V〉 V∗ + i 〈A| Ui〉 Gij
∗
U∗j∗ − i 〈A| U∗j∗〉 Gij

∗
Ui . (1.22)

The period matrix NΛΣ, that appears in the Lagrangian (1.4) and determines the ki-
netic term of the vector fields -including the graviphoton-, is a function of the scalars
Zi, Z∗i and it is defined in special Kähler geometry by the following identities, involv-
ing the quantities we mentioned in (1.19),

MΛ = NΛΣ LΣ , hΛi = N ∗ΛΣ f
Σ
i . (1.23)

This definition guarantees some interesting properties toNΛΣ, which make it suitable to
appear in a kinetic term: it is symmetric and its imaginary part =mNΛΣ is invertible and
negative definite.

Another symplectic section can be introduced,

Ω = e−
K
2 V , (1.24)

that is holomorphic and has Kähler weight (2, 0). The defining properties (1.16-1.18) take
then the form
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〈Ω|Ω∗〉 = −ie−K , 〈Ω|DiΩ〉 = 〈Ω|∂iΩ〉 = 0 (1.25)

providing a way to evaluate the Kähler potential.
The section Ω(Z) is locally represented by a symplectic vector of the form

Ω(Z) =

(
XΛ(Z)

FΛ(Z)

)
(1.26)

If we assume that the components FΛ depend on Zi only through XΛ(Z), the second
equation in (1.25) becomes

∂iXΛ
(
2FΛ − ∂Λ

(
XΣFΣ

))
= 0 , (1.27)

which is satisfied if there is a holomorphic homogeneous function of second degree
F (X ), called a prepotential, such that FΛ = ∂ΛF .
In general a prepotential may not exist, but it is always possible, once a special Kähler
manifold is given, to do a symplectic transformation to a frame in which it exists [55].
The prepotential provides an alternative way to characterize a given special Kähler ge-
ometry. All we need is a choice of the coordinates Zi to express the XΛ as holomorphic
functions of them. A common choice is given by

Zi =
XΛ

X 0
, X 0 = 1 . (1.28)

We can then evaluate all the relevant geometrical quantities in terms of the prepotential
only: FΛ in Ω are given by its derivatives, the Kähler potential is obtained as in (1.25),
and the period matrix is

NΛΣ = F ∗ΛΣ + 2i
=mFΛΓXΓ=mFΣΩXΩ

=mF∆ΨX∆XΨ
, (1.29)

where FΛΣ = ∂Λ∂ΣF .

1.2.2 Quaternionic Kähler geometries

A quaternionic Kähler manifold is a 4nH -dimensional Riemannian manifold whose holon-
omy group is a subgroup of USp(2nH)×SU(2).

An equivalent characterization defines a quaternionic Kähler manifold as a 4nH di-
mensional Riemannian manifold satisfying the following properties:

• it admits a triplet Jx, x = 1, 2, 3, of almost complex structures satisfying the quater-
nion relation

J1J2 = J3 (and cyclic permutations) ; (1.30)
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• the Riemmanian metric Huv is Hermitian with respect to each of the complex struc-
tures

Huv = Jxu
wJxv

tHwt (no sum over x) . (1.31)

As in any Hermitian manifold, a Kähler 2-form can be defined for each complex
structure as

Kxuv = Jxuv ≡ HuvJxu
w . (1.32)

The triplet of Kähler 2-forms is known as hyper-Kähler 2-form;

• the hyper-Kähler 2-form should satisfy

∇uKxvw + εxyzAyuKzvw = 0 , (1.33)

where ∇u is the covariant derivative with Levi-Civita connection and Ax is the
SU(2) connection 1-form.

A quaternionic-Kähler manifold (nH > 1) is necessarily Einstein and the SU(2) cur-
vature is proportional to the complex structures,

Ruv =
1

4nH
HuvR (1.34)

Fx ≡ dAx +
1

2
εxyzAy ∧ Az = κ Kx , (1.35)

κ ≡ R

4nH(nH + 2)
. (1.36)

The quaternionic Kähler manifolds that appear in supergravity must have a negative
constant κ in (1.36), which implies that they have negative scalar curvature.

It is customary to decompose the tangent indexes with respect to the holonomy group
and to introduce frame fields UuαI(q) connecting the scalar fields qu, that are coordinates
on the quaternionic Kähler manifold, to the fermions ζα. The index α runs from 1 to 2nH ,
while I = 1, 2, so that the UuαI(q) can be seen as 4nH × 4nH invertible matrices when
(αI) is considered as a single index. The inverse is written as UαIu(q),

UαIuUvαI = δvu , UαIuUuβJ = δIJδ
α
β . (1.37)

The reality condition

UαIu ≡
(
UαIu

)∗
= εIJ Cαβ UβJu , UuαI ≡ (UuαI)

∗
= εIJ Cαβ UuβJ , (1.38)
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must be satisfied, where Cαβ is a non-degenerate tensor satisfying

Cαβ = −Cβα , Cαβ Cβγ = −δγα , Cαβ = (Cαβ)
∗
. (1.39)

The metric is given by

Huv = UαIu εIJ Cαβ UβJv , (1.40)

so that εIJ Cαβ can be interpreted as a metric in tangent space.

1.2.3 Possible gaugings

The global symmetries of a theory of N = 2, d = 4 supergravity coupled to vector su-
permultiplets are the holomorphic isometries of the Kähler metric that also preserve the
rest of the special Kähler structure; in particular, they must act as transformations of the
symplectic group Sp(2n + 2,R) on the symplectic section and, as a consequence, on the
period matrix. Moreover, there is the R-symmetry group U(2) which only acts on the
fermion fields in the fundamental representation.
If hypermultiplets are present, the global symmetries include also the isometry group of
the quaternionic Kähler manifold parametrized by the real scalars. Only isometries that
respect the quaternionic Kähler structure are global symmetries of the theory and can be
gauged.

Therefore, N = 2, d = 4 supergravities admit several kinds of gaugings:3

1. a non-Abelian subgroup of the isometry group of the special Kähler manifold of
the complex scalars belonging to the vector multiplets4 can simply be gauged. This
is the simplest possibility: it does not involve the hypermultiplets and trying to
gauge an Abelian isometry only would have no effect since all the terms that would
have to be added (proportional, for instance, to the Killing vector) vanish identi-
cally. In absence of hypermultiplets, these theories have been called N = 2, d = 4

Super-Einstein-Yang-Mills (SEYM) [23, 24], because they are the simplest N = 2

supersymmetrization of the Einstein-Yang-Mills theories;

2. a general subgroup of the isometry group of the quaternionic Kähler manifold of
the scalars belonging to the hypermultiplets can be gauged. Since this requires the
coupling to a set of gauge vector fields transforming in the adjoint of the gauge
group, and since the available vectors come in supermultiplets that also contain
scalars in a special Kähler manifold, the gauge group must also be a subgroup of
the isometry group of the special Kähler manifold and must necessarily act on the
hypermultiplets and the vector multiplets simultaneously. It must act in the ad-
joint representation on the latter.

3See, for instance, [52–54] for a general review on these theories with references to the original literature.
4Only isometries that respect the complete Special Geometry structure are global symmetries of the theory

and can be gauged.
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This case can be considered as an extension of the previous one, in which the hyper-
multiplets are not mere spectators. There is, however, a very important difference:
in this setting, where the quaternionic Kähler sector is involved as well, Abelian
gaugings are not trivial any more;

3. in absence of hypermultiplets, the complete SU(2) factor of the R-symmetry group,
or just a U(1) subgroup of that SU(2) factor, can be gauged by introducing what
would be constant triholomorphic momentum maps if there were hypermultiplets.
These constants are usually called, respectively, SU(2) or U(1) Fayet–Iliopoulos
(FI) terms and the theories that are obtained in this way are called SU(2) or U(1)-FI
gauged N = 2, d = 4 supergravities, respectively.

In particular:

(a) we are dealing with the U(1)-FI gauged theory to present a new solution in
section 3.1.
Please note that there is no contradiction with the impossibility of gauging
Abelian isometries of the special Kähler manifold stated above because, in
this case, the global symmetry being gauged is a U(1) subgroup of the SU(2)

factor of the R-symmetry group U(2) =U(1)×SU(2);5

(b) the SU(2)-FI-gauged theories can be seen as deformations of theN = 2, d = 4

SEYM theories in which the SU(2) factor of the R-symmetry group is gauged
simultaneously with an SU(2) subgroup of the isometry group of the special
Kähler manifold. Gauging this latter is necessary for gauging the SU(2) factor
of the R-symmetry group because the global symmetry to be gauged has to
act on the gauge fields in the adjoint representation and, for the gauging to
respect supersymmetry, it must act on the complete vector supermultiplets,
including the scalars. This action must then be an isometry of their metric. As
far as we known, no solutions of these theories where found before [3], whose
results are reported in sections 3.2.1 and 3.4.

Super Einstein-Yang-Mills theories

We are now describing in some more detail the first of the situations listed above.
Assume that the metric Gij∗ admits a set of Killing vectors {KΛ = kΛ

i∂i + k∗Λ
i∗∂i∗}

satisfying the Lie algebra

[KΛ,KΣ] = −fΛΣ
ΩKΩ , (1.41)

of the group that we want to gauge. Hermiticity and the ij, i∗j∗ components of the
Killing equation imply that the components kΛ

i and k∗Λ
i∗ are respectively holomorphic

and anti-holomorphic and satisfy the above Lie algebra separately. In this notation the

5As explained in a while, the U(1) factor cannot be gauged if the special Kähler structure is preserved.
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generators of the gauge group carry the same indexes as the fundamental vector fields
Λ. It is understood that the generators, Killing vectors, structure constants etc. vanish in
the directions which remain ungauged.

To gauge the theory, the scalar and vector field strengths are modified in the standard
way, to make them covariant under the local transformations

DµZ
i = ∂µZ

i + gAΛ
µkΛ

i , (1.42)

FΛ
µν = 2∂[µA

Λ
ν] + gfΣΩ

ΛAΣ
[µA

Ω
ν] . (1.43)

Here g is the gauge coupling constant.
The replacement of partial with covariant derivatives makes the σ-model, describing the
kinetic term of the scalars in the action, gauge invariant. Furthermore, supersymme-
try requires the addition of the scalar potential (1.6); in absence of hypermultiplets, it is
expressed in terms of the quantities PΛ, which arise when imposing that the transforma-
tions generated by the Killing vectors preserve the Kähler 2-form,

0 = £ΛJ = (ıkΛ
d+ dıkΛ

)J = dıkΛ
J = −id

(
kΛidZ

i − kΛi∗dZ
∗i∗
)

(1.44)

where we exploited the closedness of J and ıkΛ
is the interior derivative with respect to

kΛ. Since ıkΛ
J is a closed form, a real function PΛ(Z,Z∗) exists, called a momentum map,

such that locally,

ıkΛ
J = −dPΛ . (1.45)

This means that a holomorphic Killing vector is given by

kΛ
i = iGij

∗
∂j∗PΛ , (1.46)

from which the momentum maps can be determined as

PΛ = − i
2

(
kΛ

i∂iK − kΛ
i∗∂i∗K

)
− i

2
(λΛ(Z)− λ∗Λ(Z∗)) , (1.47)

where the holomorphic functions λΛ generate the Kähler transformations.
Moreover, on a special Kähler manifold, the isometries should also conserve the spe-

cial structure, i.e. they should be embedded in the symplectic group. Therefore, the
invariant section V , with Kähler weight (1,−1), should respect

KΛV =

(
SΛ −

1

2
(λΛ − λ∗Λ)

)
V , (1.48)

where the constant matrices SΛ =

(
aΛ bΛ

cΛ −aΛ
T

)
, bΛ = bΛ

T , cΛ = cΛ
T generate the

transformations of the Sp(2n + 2,R) group and they must provide a representation of
the Lie algebra of the symmetry group we are gauging, [SΛ,SΣ] = fΛΣ

ΩSΩ.
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We are considering only those elements such that bΛ = 0, otherwise the symplectic trans-
formation is not a symmetry of the action, and cΛ = 0, to avoid complicated Chern-
Simons terms, so aΛ

Ω
Σ = fΛΣ

Ω.
On the other hand, V is covariantly holomorphic,

KΛV = kΛ
iUi −

1

2
kΛ

i∂iKV +
1

2
kΛ

i∗∂i∗KV

= kΛ
iUi − iPΛV −

1

2
(λΛ − λ∗Λ)V ,

(1.49)

where we made use of (1.47). Comparing (1.48) and 1.49), we obtain a new expression
for the momentum maps and the holomorphic Killing vectors

PΛ = 〈V∗|SΛV〉 (1.50)

kΛ
i = i∂iPΛ = i

〈
V|SΛU∗i

〉
= ifΛΣ

Ω
(
f∗iΣMΩ + LΣhiΩ

)
. (1.51)

As stated above, an Abelian gauging will not produce any effect on the theory. More-
over, (1.51) shows that the Killing vectors are completely determined, with no arbitrary
constants and motivates the impossibility of gauging through Fayet-Iliopoulos terms
the U(1) factor of the R-symmetry group. A U(1) subgroup of the SU(2) factor in the
R-symmetry group, or the entire SU(2) can instead be FI-gauged, as illustrated in the
next section.

The result of the gauging of a subgroup of the isometries of the Kähler manifold
which respect all the conditions mentioned so far is the minimal N = 2 supersym-
metrization of the bosonic Einstein-Yang-Mills theory for that gauge group. These theo-
ries were called N = 2 Super-Einstein-Yang-Mills (SEYM) theories and their action is

S =

∫
d4x
√
|g|
[
R+ 2Gij∗DµZ

iDµZ∗ j
∗

+ 2=mNΛΣF
ΛµνFΣ

µν

−2<eNΛΣF
Λµν ? FΣ

µν − 1
4g

2(=mN )−1|ΛΣPΛPΣ

]
,

(1.52)

where the covariant derivatives and the field strength were defined in (1.42) and (1.43)
and we assumed to have no hypermultiplets.
The time-like supersymmetric solutions of these theories were characterized in [24] and
studied in [17, 23, 29, 30].

R-symmetry gauging through Fayet-Iliopoulos terms

Gauging a subgroup of the R-symmetry group seems to be a different choice, and, in-
deed it is if the subgroup is Abelian (as in case 2.a), because, as we mentioned above,
Abelian holomorphic isometries of the Kähler manifold cannot be gauged. In absence of
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hypermultiplets, the gauging is done via Fayet-Iliopoulos (FI) terms. The supersymmet-
ric solutions of these theories have been classified and studied in [32, 33].

However, when the subgroup of the R-symmetry to be gauged is non-Abelian (SU(2)

is the only possibility, case 2.b), it turns out that that choice is actually not so different
from the SEYM setting: to gauge it we need gauge vector fields transforming in the ad-
joint representation of the gauge group. This implies that the whole supermultiplets,
and, in particular the complex scalars, must transform in the adjoint representation leav-
ing the whole special Kähler structure (and, in particular, the Kähler metric) invariant.
Thus, if we gauge an SU(2) subgroup of the R-symmetry group we have to gauge at the
same time an SU(2) isometry subgroup of the global symmetry group and the resulting
theory can be seen as a deformation, via FI terms, of aN = 2 SEYM theory with a gauge
group that includes a SU(2) factor. Therefore, for a subset of the vector indexes Λ,Σ, . . .

that we are going to denote with the indexes x, y, . . ., that only take 3 possible values,
the structure constants are those of SU(2),

fxy
z = −εxyz . (1.53)

The time-like supersymmetric solutions of these theories were characterized as part
of the general case in [4].

To understand the origin of the Fayet-Iliopoulos gauging, we have to enter into the
Quaternionic Kähler geometry in some more detail. They indeed arise from the quater-
nionic sector, although the theories we are interested in contain no hypermultiplets.
To be gauged, the isometries of the quaternionic Kähler manifold should preserve the
quaternionic Kähler structure, i.e. they should preserve the complex structures Kx up to
rotations,

£kΛ
Kx = (ıkΛ

d+ dıkΛ
) Kx = −εxyzWΛ

yKz , (1.54)

where kΛ are the quaternionic Killing vectors generating the isometries and

WΛ
x = kΛ

uAxu − PΛ
x (1.55)

introduces the triholomorphic momentum maps PΛ
x. The defining property of Kx guar-

antees that dKx = −εxyzAy ∧ Kz , so

dıkΛKx + εxyzAy ∧ ıkΛKz = εxyzPΛ
yKz . (1.56)

Taking the external derivative of (1.56) leads to

εxyz (dPΛ
y + εyvwAvPΛ

w + κ ıkΛ
Ky) ∧ Kz = 0 (1.57)

and to
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∂uPΛ
x + εxyzAyuPΛ

z = κKxuvkΛ
v . (1.58)

The latter equation, which is the analogous of (1.46) for the quaternionic Kähler man-
ifold, clarifies how non-vanishing triholomorphic momentum maps can exist even if no
hypermultiplets are present and there are no isometries to be generated by the Killing
vectors6. This is the way in which Fayet-Iliopoulos gaugings arise, for constant momen-
tum maps.

The Killing vectors satisfy the Lie algebra of the group we are gauging, [kΛ, kΣ] =

−fΛΣ
ΩkΩ, and the Lie derivatives should respect [£Λ,£Σ] = £[kΛ,kΣ]. When applied to

(1.54), the following relation is found for the field WΛ
x,

2£[Λ W Σ]
x + εxyzWΛ

yWΣ
z = −fΛΣ

ΩWΩ
x , (1.59)

which, exploiting (1.55) and (1.58) gives rise to the equivariance relation for the momentum
maps

εxyzPΛ
yPΣ

z − κkΛ
uKxuvkΣ

v = fΛΣ
ΩPΩ

x . (1.60)

In what follows, we are solving (1.60) for constant momentum maps, considering
the two possible Fayet-Iliopoulos gaugings: a U(1) subgroup of the SU(2) factor in the
R-symmetry group and the entire SU(2) factor.

The U(1)-Fayet-Iliopoulos gauged theory

If no hypermultiplets are present, nH = 0, there are still two possibilities of solving the
equivariance condition (1.60) for the momentum maps PΛ

x. The first one leads to the
Fayet-Iliopoulos gauging of a U(1) subgroup of the R-symmetry group.
In this situation, where fΛΣ

Ω = 0, the equation (1.60) becomes εxyzPΛ
yPΣ

z = 0, whose
solution is

PxΛ = exξΛ . (1.61)

Here ~e is a vector in the SU(2) space and ξΛ are constants7. Without loss of generality,
we can make the choice ex = δx3 , that can always be achieved by a global SU(2) rotation,
since SU(2) is a global symmetry of the theory.
We are interested in models where no further gaugings are performed, i.e. the isometries
of the special Kähler manifold are not gauged, kΛ

i = 0 ,PΛ = 0. The resulting theory has

6Although we are not interested in the case in which hypermultiplets are present, we recall that the quater-
nionic Killing vectors kΛ

u we just introduced are present in the generic Lagrangian (1.5) in the covariant
derivatives

Dµq
u = ∂µq

u + gAΛ
µkΛ

u

and in the potential (1.6).
7In what follows, we are often denoting gΛ = gξΛ as gauging parameters, since the momentum maps

appear in the action multiplied by the coupling constant g.
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a gauged U(1) subgroup of the SU(2) factor in the R-symmetry group, with gauge field
ξΛA

Λ. Its action is explicitly given by

S =

∫
d4x
√
|g|
[
R+ 2Gij∗∂µZi∂µZ∗ j

∗
+ 2=mNΛΣF

ΛµνFΣ
µν − 2<eNΛΣF

Λµν ? FΣ
µν

− 1
2g

2
(
Gij
∗
fΛ

if
∗Σ

j∗ − 3L∗ΛLΣ
)
ξΛξΣ

]
.

(1.62)

These theories have been studied in [33], where their time-like supersymmetric solu-
tions where classified using the Killing spinor techniques. Various explicit examples of
black hole solutions arose from this classification, for many different models and prepo-
tentials [5,18–22,25,26,28,31]. All of them involve models in which the Kähler manifold
is homogeneous. The only exception is given by the solution presented in [1], as dis-
cussed in section 3.1.

Some of the solutions listed above are obtained in a symplectic covariant framework,
where the gauging parameters ξΛ are extended to a symplectic vector

G = g(ξΛ, ξΛ) = (gΛ, gΛ) , (1.63)

introducing a set of dual gauging parameters ξΛ in addition to the ξΛ. It is possible, then,
using the duality-complete vector of gauging parameters G, to give a duality invariant
definition of the scalar potential as

V = |DL|2 − 3 |L|2 , (1.64)

by means of the new symplectic invariant quantity, L = 〈G,V〉.

The SU(2)-Fayet-Iliopoulos gauged theory

The other possibility we have, in absence of hypermultiplets, is to gauge the entire SU(2)

factor in the R-symmetry group through FI terms. This choice is more involved than the
previous one and not every model admits this setting. In fact, it involves both a Fayet-
Iliopoulos term and the gauging of an SU(2) subgroup of the isometries of the special
Kähler manifold, as we explained earlier.
The triholomorphic momentum maps PΛ

x, x, y, . . . = 1, 2, 3, are assumed to be of the
form

PΛ
x = eΛ

xξ , (1.65)

where8 ξ = 0, 1 and eΛ
x is a constant tensor, which differs from zero when Λ is in the

range of the SU(2) factor and satisfies the equivariance condition

8The role of this unphysical parameter is to underline which terms are specifically due to the FI terms, while
theN = 2, d = 4 SEYM theories are recovered setting it to zero.
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εxyzeΛ
yeΣ

z = fΛΣ
ΩeΩ

x , (1.66)

or, taking (1.53) into account,

εxy′z′ey
y′ez

z′ = −εxyz′ez′x . (1.67)

With no loss of generality we will choose the simplest solution

ex
x′ = −δxx

′
. (1.68)

With this choice, the scalar potential (1.6) takes the simple form

V(Z,Z∗) = − 1
4g

2(=mN )−1|ΛΣPΛPΣ + 1
2ξ

2g2
(
Gij
∗
fxif

∗ x
j∗ − 3L∗ xLx

)
. (1.69)

Observe that the first term may contain the contribution of other, necessarily non-Abelian,
gauge factors apart from the SU(2) one labeled by x, y, . . . In the examples that we are
considering, that possibility is not included and, therefore, the sum over indexes Λ,Σ, . . .

is restricted to a sum over the SU(2) induces x, y, . . .
The action is then

S =

∫
d4x
√
|g|
[
R+ 2Gij∗DµZ

iDµZ∗ j
∗

+ 2=mNΛΣF
ΛµνFΣ

µν

−2<eNΛΣF
Λµν ? FΣ

µν −V(Z,Z∗)
]
,

(1.70)

where

DµZ
x = ∂µZ

x − gεxyzAyµZz ,

FΛ
µν = 2∂[µA

0
ν] if Λ 6= x , (1.71)

F xµν = 2∂[µA
x
ν] − gεxyzAy [µA

z
ν] .

The time-like supersymmetric solutions of the most generalN = 2, d = 4 supergrav-
ities, with the most general matter content and the most general gauging, were charac-
terized in [4], whose content is summarized in what follows, section 1.2.5. That work is
built on previous results about the supersymmetric solutions of the generalN = 2, d = 4

ungauged theories with vector multiplets and hypermultiplets [11, 44, 45], the U(1)-
FI-gauged N = 2, d = 4 theories with no hypermultiplets [32, 33, 56, 57] and on the
N = 2, d = 4 SEYM theories [23, 24].

Many solutions of the ungauged, U(1)-FI-gauged and SU(2) SEYM theories have
been constructed in the literature. In the present work, we are giving some new ex-
amples: a black hole solution of the U(1)-FI-gauged theory is presented in section 3.1,
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which is the first one involving a non-homogeneous special Kähler manifold, and a so-
lution for the 6-dimensional SU(2) SEYM theory is obtained by dimensional uplifting a
well known 5-dimensional one (see section 3.3), that in turn had been obtained in [30]
exploiting the relation between the 4 and 5-dimensional theories.
So far, no supersymmetric solution of SU(2)-FI-gauged theories with no hypermulti-
plets was explicitly known. This was due to the complexity of the theories and of the
equations that need to be solved to construct supersymmetric solutions. We are here
presenting the first examples of such solutions; some of them are obtained considering
the simplest model that can be SU(2) gauged, the CP

3
model (section 3.2), while others

come from dimensional reduction of known 6-dimensional solutions (section 3.4).

Maximally supersymmetric vacua

The SU(2)-FI gauged theory has a peculiarity concerning its maximally supersymmetric
solutions. As we will show in what follows, they do not exist, due to the specific form of
the triholomorphic moment maps.

According to the results of [58], the supersymmetric solutions of these theories, if any,
must be of the same kind as those of the corresponding ungauged theories: in absence
of electromagnetic fluxes, Minkowski spacetime M4 or anti-de Sitter spacetime AdS4

and, in presence of fluxes, Bertotti-Robinson spacetimes AdS2×S2 [59, 60] or Kowalski-
Glikman homogeneous pp-wave spacetimes KG4 [61]. Furthermore, maximally super-
symmetric solutions in gauged supergravities are characterized by the vanishing of all
the fermion shifts and of the R-symmetry connection [58].

For the N = 2, d = 4 theories, the different possibilities were analyzed in detail
in [62]. The maximally supersymmetric solutions with zero curvature (M4, AdS2×S2

and KG4) must have identically vanishing triholomorphic momentum maps PΛ
x = 0,

which is not possible in the case we are considering. The remaining possibility is the only
maximally supersymmetric solution with negative curvature, i.e. AdS4. The following
conditions have to be satisfied in this case

PΛ
xPΣ

∗ xLΛL∗Σ 6= 0 ,

kΛ
iL∗Λ = 0 ,

PΛ
xfΛ

i = 0 ,

εxyzPΛ
yPΣ

∗ zLΛL∗Σ = 0 .

(1.72)

With our choice of FI terms (1.65),(1.68) these conditions take the form

LxL∗ x 6= 0 , (1.73)

kx
iL∗ x = 0 , (1.74)

fxi = 0 , (1.75)
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εxyzLyL∗ z = 0 . (1.76)

Choosing the coordinates as Zi = X i/X 0 and the gauge X 0 = 1, it is not difficult to
see, from the definition fΛ

i = e
K
2 DiXΛ that it is not possible to satisfy all the equations

(1.75) at the same time.
We conclude that these theories do not admit maximally supersymmetric vacua.

1.2.4 Equations of motion and supersymmetry variations

For later convenience, we are reporting here, following [4], the bosonic equations of
motion obtained from the action (1.5),

Eaµ ≡ −
1

2
√
|g|

δS

δeaµ
= 0 ,

Ei ≡ −
1

2
√
|g|

δS

δZi
= 0 ,

EΛµ ≡
1

8
√
|g|

δS

δAΛ
µ

= 0 ,

Eu ≡ − 1

4
√
|g|

Huv
δS

δqv
= 0 ,

(1.77)

and the Bianchi identities for the vector field strengths,

BΛµ ≡ Dν ? F
Λ νµ , (1.78)

where

Eµν =Gµν + 8=mNΛΣF
Λ +

µ
ρFΣ−

νρ + 2Gij∗ [D(µZ
iDν)Z

∗j∗ − 1

2
gµνDρZ

iDρZ∗j
∗
]

+ 2Huv [Dµq
uDνq

v − 1

2
gµνDρq

uDρq
v] +

1

2
gµνV(Z,Z∗, q) ,

EΛµ =Dν ? FΛ
νµ +

1

4
g(kΛ i∗D

µZ∗j
∗

+ k∗Λ iD
µZi) +

1

2
gkΛuD

µqu ,

E i =D2Zi + ∂iFΛ
µν ? FΛ

µν +
1

2
∂iV(Z,Z∗, q) ,

Eu =D2qu +
1

4
∂uV(Z,Z∗, q) ,

and the dual field strengths FΛ are defined as

FΛµν ≡ −
1

4
√
|g|

δS

δ ? FΛ
µν

= <eNΛΣF
Σ
µν + =mNΛΣ ? FΣ

µν . (1.79)

The supersymmetry transformation rules for the bosons are the same in the un-
gauged case and in the gauged one,
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δεe
a
µ = − i

4
ψ̄I µγ

aεI + c.c. ,

δεA
Λ
µ =

1

4
L∗ΛεIJ ψ̄I µεJ +

i

8
fΛ

iεIJ λ̄
Iiγµε

J + c.c. ,

δεZ
i =

1

4
λ̄IiεI ,

δεq
u =

1

4
UαI

uζ̄αεI + c.c. ,

(1.80)

while for the fermions, when the fermionic fields are vanishing, we have

δεψI µ =DµεI +

[
T+

µνεIJ −
1

2
SxηµνεIK(σx)KJ

]
γνεJ ,

δελ
Ii = i /DZiεI +

[(
/G
i+

+W i
)
εIJ +

i

2
W i x (σx)IKε

KJ

]
εJ ,

δεζα = iUαI u /Dq
uεI +Nα

IεI ,

(1.81)

where the covariant derivative acts on spinors as

DµεI =

[
∇µ +

i

2

(
Aµ + gAΛ

µPΛ

)]
εI +

i

2

(
Axu∂µq

u + gAΛ
µPΛ

x
)
σxI

JεJ , (1.82)

and Aµ is the pullback to spacetime of the Kähler connection (1.11), while σx are the
Pauli matrices.
The quantities Sx,W i,W i x and Nα

I are the fermion shifts, originated by the gauging.
They are defined as

Sx =
1

2
gLΛPΛ

x ,

W i =
1

2
gL∗ΛkΛ

i = − i
2
g Gij

∗
f∗Λj∗PΛ ,

W i x = g Gij
∗
f∗Λj∗PΛ

x ,

Nα
I = gUα

I
uL∗ΛkΛ

u ,

(1.83)

while Tµν and Giµν are respectively the graviphoton and matter vector field strengths,
defined by

Tµν ≡ 2iLΣ=mNΣΛF
Λ
µν ,

Giµν ≡ −Gij
∗
f∗Σj∗=mNΣΛF

Λ
µν .

(1.84)

1.2.5 Characterization of supersymmetric solutions

To find supersymmetric solutions of a supergravity theory, a set of first order differential
equations, called Killing spinor equations, has to be solved. This is typically easier than
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directly solving the equations of motion, which include the second order Einstein equa-
tions. In this sense, supersymmetry can be regarded as a solution generating technique,
since the increased amount of symmetry provides a simplified system of equations to be
solved and therefore an easier way to find new solutions.
The time-like bosonic supersymmetric solutions of the N = 2, d = 4 theories have been
characterized in [4], where the most general coupling -involving both vector multiplets
and hypermultiplets- and gauging of these theories was considered. This purpose was
achieved with the so called bilinear method [12].
We are going to summarize here the results obtained in [4], while in section 3.2 we are
using this work, after specifying it to a particular case of interest, to obtain the minimal
system of equations that has to be solved in order to find new solutions.

In what follows, we are going to introduce the Killing spinor identities for N = 2 4-
dimensional supergravity, obtaining the minimal set of equations of motion that must be
imposed on a supersymmetric configuration to ensure that all the equations of motion
are satisfied.
The Killing spinor equations are then going to provide us with the equations character-
izing every supersymmetric field configurations.
Once the minimal set of equations of motion is imposed, the complete set of equations
that the fields of a supersymmetric solution have to satisfy is found.

We are finally specifying these results to the case of an SU(2)-FI gauged theory and
we are explicitly giving the equations that will be solved in section 3.2.

Let us consider a generic supersymmetric action S = S[φb, φf ], involving bosonic
(φb) and fermionic (φf ) fields, and its bosonic supersymmetric field configurations, i.e.
bosonic configurations satisfying δεKφ

f |φf=0 = 0 for some supersymmetry parameter
εK , called a Killing spinor9. It can then be proven that the following Killing spinor
identities hold,

δ(δεKS)

δφf

∣∣∣∣
φf=0

=
∑
b

δS

δφb
δ(δεKφ

b)

δφf

∣∣∣∣∣
φf=0

= 0 , (1.85)

relating the bosonic equations of motion through the variation with respect to the fermionic
fields of the supersymmetry variation of the bosonic fields. This means, in general, that
only a subset of the equations of motion has to be imposed on a bosonic supersymmetric
configuration, in order to ensure that all the equations of motion are satisfied.

As far as N = 2, d = 4 supergravity is concerned, the conditions δεKφ
f |φf=0 = 0

take the form

9In what follows, the supersymmetry parameter εK -that will be involved in the construction of the spinor
bilinears- will be treated as a commuting spinor.
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DµεI +

[
T+

µνεIJ −
1

2
SxηµνεIK(σx)KJ

]
γνεJ = 0 ,

i /DZiεI +

[(
/G
i+

+W i
)
εIJ +

i

2
W i x (σx)IKε

KJ

]
εJ = 0 ,

iUαI u /Dq
uεI +Nα

IεI = 0 ,

(1.86)

as can be inferred from the supersymmetry transformations (1.81). Exploiting the ex-
plicit equations of motion (1.77,1.79) we gave in the previous section, the Killing spinor
identities are summarized as

EaµγaεI − 4i εIJLΛEΛµεJ = 0 , (1.87)

E iεI − 2iεIJ f̄ iΛ/EΛεJ = 0 , (1.88)

Eu UαIuεI = 0 , (1.89)

or, in their formally electric-magnetic duality-covariant version, as

EaµγaεI − 4i〈 Eµ| V 〉εIJεJ = 0 , (1.90)

E iεI + 2i〈 /E | Ūi 〉εIJεJ = 0 , (1.91)

Eu UαIuεI = 0 , (1.92)

where the Maxwell equations and Bianchi identities have been collected in the symplec-
tic vector Eµ,

Eµ ≡

(
BΛµ

EΛµ

)
. (1.93)

The vector bilinear V a ≡ iε̄IγaεI , constructed with the Killing vectors, can be either
a null or a time-like vector. We are only considering the time-like class of configurations.
In this case we can choose an orthonormal frame, whose time component e0 is given by
V/|V |. Acting on the identities (1.90–1.92) with gamma matrices and conjugate spinors,
they can be set in the form

E0m = Emn = 0 , (1.94)

〈 V/X| E0 〉 =
1

4
|X|−1E00 , (1.95)

〈 V/X| Em 〉 = 0 , (1.96)

〈 U∗i∗ | E0 〉 =
1

2
e−iαEi∗ , (1.97)

〈 U∗i∗ | Em 〉 = 0 , (1.98)

Eu = 0 , (1.99)
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where X ≡ eiα|X| ≡ 1
2ε
IJ ε̄IεJ is the scalar bilinear.

Using the special geometry completeness relation (1.22), these identities imply that
every time-like supersymmetric configuration automatically satisfies all the equations of
motion except E00 = 0, E i = 0 and E0 = 0. They also imply that, in order to guarantee
that all the equations of motion are satisfied, we only have to impose the vanishing of
the time components of the Maxwell equations and Bianchi identities, E0 = 0.

Before imposing these Maxwell and Bianchi equations of motion, we should require
that the field configurations are supersymmetric, i.e. that the supersymmetry variations
of the fermionic fields vanish: the equations δεψI µ = δελ

Ii = δεζα = 0, which are
first order differential equations for the supersymmetry parameters, have to admit at
least one solution εI . These equations are known as Killing Spinor Equations and their
solutions as Killing spinors.

We are for the moment considering the field strengths FΛ and the vector potentials
AΛ as independent fields; they will become related once the Bianchi identities is im-
posed.

In terms of the bilinears

X =
1

2
εIJ ε̄IεJ , Va = iε̄IγaεI , V xa = iσxI

J ε̄IγaεJ , Φxab = iσxIJ ε̄IγabεJ , (1.100)

constructed out of Killing spinors, the gravitino supersymmetry transformation rule
gives rise to the independent equations

DµX = iV νT+
νµ +

i√
2
SxV xµ , (1.101)

∇(µVν) = 0 , (1.102)

dV = 4iXT̄− −
√

2S̄xΦx + c.c. , (1.103)

D(µV
x
ν) = T̄−(µ|ρΦ

x
|ν)
ρ +

i√
2
XS̄xgµν + c.c. , (1.104)

DV x = −iεxyzS̄yΦz + c.c. , (1.105)

where V , V x and Φx are the differential forms associated to the corresponding bilinears,
and the SU(2)-covariant derivative is given by

DV x = dV x + εxyzAy ∧ V z . (1.106)

From the gauginos transformation, we get the equation

iX̄εKIDµZi + iΦKI µνDνZ
i − 4iεIJGi+µ

νV
K
J
ν

− iW iεIJV KJ
µ − iW i IJV KJ µ = 0 ,

(1.107)
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while the rule for the hyperinos gives

V IK
µDµq

u−iKxuvσxJIV JKµDµq
v+gXδIKL̄ΛkΛ

u+
i

2
gXL̄ΛDuPΛ

xσx IK = 0 . (1.108)

V µ, which was assumed to be time-like, is a Killing vector (1.102), as usual in super-
gravity, while V x are not in general, due to (1.104).

Consistency of equation (1.101) requires

V µDµX = 0 . (1.109)

The antisymmetric part of equation (1.107) gives

V νGi+
νµ =

1

2
X̄DµZ

i +
1

4
W iVµ −

i

4
√

2
W ixV xµ , (1.110)

which implies

V µDµZ
i + 2XW i = 0 . (1.111)

Thanks to special geometry identities,

FΛ + = iL̄ΛT+ + 2fΛ
iG

i+ , (1.112)

and substituting equations (1.101) and (1.110) in (1.112), the following relation can be
obtained

V νFΛ +
νµ = L̄ΛDµX + X̄DµLΛ +

i

8
g=m(N )−1|ΛΣ(PΣVµ +

√
2 PΣ

xV xµ) , (1.113)

which leads to the following expression for the field strengths FΛ

FΛ = − 1

2
D[RΛV ]

− 1

2
?

{
V ∧

[
DIΛ +

√
2g

(
RΛRΣPxΣ −

1

8|X|2
=m(N )−1|ΛΣPxΣ

)
V x
]}

,
(1.114)

in terms of the zero Kähler weight sections

VM

X
= RM + iIM . (1.115)

For any model of N = 2, d = 4 supergravity, the components10 RM can, in principle,
be expressed entirely in terms of the components IM , although, in practice, this can be
very hard to do for certain models. This is often referred to as “solving the stabilization

10The indexM can take 2(nV +1) values, running on the possible values of both the upper and lower index
Λ.
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equations” or as “solving the Freudenthal duality equations”. We shall simply assume
that this has been done. Then, the symplectic product RMIM = 〈R | I 〉 = RΛIΛ −
RΛIΛ is a function of the IM only. It is homogeneous of degree two in the I-s and it is
called the Hesse potential,

W (I) ≡ RM (I)IM . (1.116)

The trace of equation (1.108) is

V µDµq
u − i

√
2KxuvV

xµDµq
v + 2gXL∗ΛkΛ

u = 0 , (1.117)

whose real and imaginary parts are

V µDµq
u + 2g|X|2RΛkΛ

u = 0 , (1.118)

KxuvV
xµDµq

v +
√

2g|X|2IΛkΛ
u = 0 . (1.119)

To proceed further, we introduce a time coordinate t associated to the time-like Killing
vector V ,

V µ∂µ ≡
√

2∂t . (1.120)

The gauge choice

V µAΛ
µ =
√

2AΛ
t = −2|X|2RΛ . (1.121)

is then always possible. In this gauge, equations (1.109), (1.111) and (1.118) reduce to the
requirement of time-independence for all the scalar fields and the bilinear X ,

∂tZ
i = ∂tX = ∂tq

u = 0 , (1.122)

which of course also implies the time-independence of theR and I sections.
The definition (1.120) and the Fierz identity V 2 = 4|X|2 imply that the 1-form V takes

the form

V = 2
√

2|X|2(dt+ ω) , (1.123)

where ω is a time-independent spatial 1-form, since V is Killing, satisfying by definition

dω =
1

2
√

2
d

(
V

|X|2

)
, (1.124)

or, exploiting (1.101) and (1.103),

dω = − i

2
√

2
?

[(
XDX̄ − X̄DX + ig

√
2|X|2RΛPΛ

xV x
)
∧ V

|X|4

]
. (1.125)
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The V̂ x are mutually orthogonal and also orthogonal to V̂ , which means that they
can be used as a Dreibein for a 3-dimensional Euclidean metric

δxyV̂
x ⊗ V̂ y ≡ γmndx

mdxn , (1.126)

where we introduced the remaining 3 spatial coordinates xm (m = 1, 2, 3). The 4-
dimensional metric takes the coordinate-form

ds2 = 2|X|2(dt+ ω̂)2 − 1

2|X|2
γmndx

mdxn . (1.127)

In what follows we will use the Vierbein basis

e0 =
1

2|X|
V̂ , ex =

1√
2|X|

V̂ x , (1.128)

that is

(eaµ) =


√

2|X|
√

2|X|ωm

0 1√
2|X|V

x
m

 , (eµa) =


1√

2|X| −
√

2|X|ωx

0
√

2|X|Vxm

 , (1.129)

where Vxm is the inverse Dreibein Vx
mV ym = δyx and ωx = Vx

mωm. Observe that we
can raise and lower flat 3-dimensional indexes with δxy and δxy , whence their position is
rather irrelevant. We shall also adopt the convention that, from now on, all objects with
flat or curved 3-dimensional indexes refer to the above Dreibein and the corresponding
metric.

The 3-dimensional form of (1.125) is then

(dω)xy = 2 εxyz

{
〈I|D̃zI〉 −

g

2
√

2|X|2
RΛPzΛ

}
, (1.130)

where D̃ is the covariant derivative with respect to the effective 3-dimensional gauge
connection

ÃΛ
m ≡ AΛ

m − ωmAΛ
t = AΛ

m +
√

2|X|2RΛωm . (1.131)

The spatial 3-dimensional metric is further constrained by (1.105). Its purely spatial
part takes the form

dV x + εxyz ˜̃Ay ∧ V z + T x = 0 , (1.132)

with

˜̃Axm ≡ Axm − g ÃΛ
mPxΛ ,

T x = − g√
2
IΛPyΛ V

y ∧ V x .
(1.133)
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Equation (1.132) can be interpreted as Maurer-Cartan’s first structure equation for the
Dreibein V x.

So far we have shown that a time-like bosonic supersymmetric field configuration,
with the gauge choice (1.121), necessarily satisfies equations (1.127), (1.130), (1.132),
(1.122), (1.114) and (1.119). At this stage, R, I and consequently the complex scalars
Zi, are only constrained to be t-independent.

These necessary conditions are also sufficient to guarantee supersymmetry, as proven
in [4]. In fact, for any such configuration, there is always a Killing spinor of the form

εI = X1/2ηI , (1.134)

where ηI is a constant spinor satisfying

ηI + iγ0 εIJηJ = 0 and ηI + γ0(x)σ(x)J
IηJ = 0 (no sum over x) . (1.135)

Each of the four compatible constraints in (1.135) is able to project out half of the
components of ηI . However only three of the constraints are independent, so that one
of the eight real components always survives. The configurations are then preserving at
least 1

8 of the original supersymmetry.
We still have to impose that the configuration fulfills the equations of motion which

are not identically satisfied, i.e. the time components of the Maxwell equations and of
the Bianchi identities.

The time component of the Hodge dual of the Bianchi identities is just the Bianchi
identity of the effective 3-dimensional field strength F̃Λ, which has the following 3-
dimensional expression,

F̃Λ
xy ≡ −

1√
2
εxyz{D̃zIΛ + gBΛ

z} , (1.136)

where

BΛ
z ≡
√

2

[
RΛRΣ +

1

8|X|2
=m(N )ΛΣ

]
PΣ

z . (1.137)

Given ÃΛ
m, IΛ and BΛ

x solving that equation, then we find a ÃΛ
m that gives rise to the

field strength F̃Λ
mn with the form prescribed by supersymmetry and the 3-dimensional

Bianchi identity and, therefore, the 0-th component of the 4-dimensional one, are auto-
matically satisfied.

The integrability equation of (1.136) takes the form of a generalized gauge covariant
Laplace equation for the IΛ,

D̃2IΛ + gD̃xBΛ
x = 0 , (1.138)



30 1.2 The 4-dimensional theory

where the covariant derivatives include both the gauge connection and the spin con-
nection for the 3-dimensional base space with metric γmn.

The time component of the Maxwell equations takes the form of a sort of Bianchi
identity for the dual field strengths FΛ, which can be written as

− 1√
2
εxyzD̃xF̃Λ yz =

1√
2
g〈I|D̃xI〉PxΛ +

1

2
g2fΛ(Ω

Γf∆)Γ
Σ IΩI∆IΣ

+
g2

4|X|2
RΣ [kΛukΣ

u − PΛ
xPΣ

x ] ,

(1.139)

where F̃Λ is defined -there are no dual 1-forms AΛ in this formulation- by

F̃Λ xy ≡ −
1√
2
εxyz{D̃zIΛ + gBΛ z} , (1.140)

with

BΛ x ≡
√

2

[
RΛRΣ +

1

8|X|2
<eNΛΓ=m(N )−1|ΓΣ

]
PxΣ . (1.141)

A summary of this analysis is given in the following paragraph, restricted to the
absence of hypermultiplets and to a SU(2)-FI gauging, which is the case we are interested
in.

Equations in the SU(2)-Fayet-Iliopoulos gauged case

In this section we are going to particularize the results of [4] to the case presenting an
SU(2) gauge group and a Fayet-Iliopoulos term given by (1.65) and (1.68).
We are here summarizing the form that the fields of the time-like supersymmetric solu-
tions, {gµν , AΛ

µ, Z
i}, should take in the case under study:

• the metric can always be written in the conformastationary form

ds2 = e2U (dt+ ω̂)2 − e−2Uγmndx
mdxn , (1.142)

where

– the metric function e−2U is given by the Hesse potential

e−2U = W (I) =
1

2|X|2
; (1.143)

– the 3-dimensional metric γmn can be expressed in terms of Dreibein V̂ x, x =

1, 2, 3

γmn = V xmV
y
nδxy , (1.144)
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that must satisfy the equation

dV̂ x − ξgεxyz ˆ̃Ay ∧ V̂ z + T̂ x = 0 , (1.145)

where ˆ̃AΛ is the effective 3-dimensional gauge connection

ÃΛ
m ≡ AΛ

m + 1√
2
e2URΛωm , (1.146)

and

T̂ x = 1√
2
ξgIyV̂ y ∧ V̂ x ; (1.147)

– the 1-form ω̂ satisfies the equation (in tangent 3-dimensional space)

(dω̂)xy = 2εxyz

{
IM D̃zIM + 1√

2
ξe−2URz

}
, (1.148)

where D̃ is the covariant derivative w.r.t. the effective 3-dimensional gauge
connection

D̃zIx = ∂zIx − gεywxÃyzIw , (1.149)

D̃zIx = ∂zIx − gεxywÃyzIw , (1.150)

D̃zIM = ∂zIM , when M 6= x , (ungauged directions); (1.151)

• the time-component of the vector fields has been gauge-fixed to

AΛ
t = − 1√

2
e2URΛ , (1.152)

and the space components AΛ
x together with the functions IM are determined by

F̃Λ
xy = − 1√

2
εxyz

{
D̃zIΛ −

√
2ξg

[
RΛRz + 1

4e
−2U (=mN )−1|Λ z

]}
, (1.153)

and

− 1√
2
εxyzD̃xF̃Λ yz = 1

2gδΛ
x
[
g (IxIyIy − IxIyIy)− 1√

2
ξεxyz(dω̂)yz

]
, (1.154)

where we have defined

F̃Λ xy ≡ − 1√
2
εxyz

{
D̃zIΛ −

√
2gξ

[
RΛRz + 1

4e
−2U<eNΛΓ(=mN )−1|Γ z

]}
; (1.155)

• finally, the scalars are given by

Zi =
Ri + iIi

R0 + iI0
. (1.156)
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1.2.6 BPS rewriting of the action

In [5], the 4-dimensional N = 2 supergravity theories with U(1) Fayet-Iliopoulos gaug-
ing, involving vector multiplets only, were considered and a completely covariant ap-
proach was developed, where magnetic gauges of the form (1.63) are allowed. The pur-
pose was to seek dyonic black hole solutions and [5] provides a powerful effective pro-
cedure to obtain them, which was further exploited in [1] to derive the solution we are
presenting in section 3.1. Since a fully duality covariant action has not been built yet,
certain simplifying assumptions have been done, to get to a set of first order flow equa-
tions, driven by a superpotential W , whose solutions can be proven to be solutions of
the equations of motions and of the Killing spinor equations.

The potential should be written in the covariant form (1.64) and, since we are inter-
ested in static black holes with radial symmetry, the metric Ansatz

ds2 = −e2U(r)dt2 + e−2U(r)(dr2 + e2ψ(r)dΩ2
κ) , (1.157)

will be employed, where dΩ2
κ = dθ2 + f2

κ(θ) dφ2 is the metric on the two-surfaces Σ =

{S2,E2,H2} of constant scalar curvature R = 2κ, with κ = {1, 0,−1} respectively. Here
the function fκ(θ) is given by

fκ(θ) =


sin θ , κ = 1 ,

θ , κ = 0 ,

sinh θ , κ = −1 .

(1.158)

The scalars are assumed to depend on the radial coordinate r only, Zi = Zi(r), while
the gauge fields should have an appropriate profile to satisfy

pΛ =
1

vol(Σ)

∫
Σ

FΛ , qΛ =
1

vol(Σ)

∫
Σ

GΛ , (1.159)

with pΛ and qΛ being the magnetic and electric charges associated to the black hole and
GΛ denoting the dual field strength,

GΛ =
δL

δFΛ
. (1.160)

The symplectic invariant central charge is given by

Z = 〈Q,V〉 , (1.161)

where we introduced the vector of magnetic and electric charges, Q = (pΛ, qΛ).
Following the procedure outlined in [5], the previous Ansätze are plugged into the

action and give rise to an effective 1-dimensional action involving the scalar fields and
the warp functions U(r), ψ(r),
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S1d =

∫
dr
{
e2ψ

[
(U ′ − ψ′)2 + 2ψ′2 + Gij∗Zi′Z∗j

∗ ′ + e2U−4ψVBH + e−2UVg

+2ψ′′ − U ′′]− 1} ,
(1.162)

which, after an integration by parts, can be written as

S1d =

∫
dr
{
e2ψ

[
U ′2 − ψ′2 + Gij∗Zi′Z∗j

∗ ′ + e2U−4ψVBH + e−2UVg

]
− 1
}

+

∫
dr

d

dr

[
e2ψ(2ψ′ − U ′)

]
.

(1.163)

Here VBH denotes the so-called black hole potential [43], defined as

VBH = |DZ|2 + |Z|2 (1.164)

or equivalently as

VBH = −1

2
QTMQ , (1.165)

where

M =

(
=mN + <eN (=mN )−1<eN −<eN (=mN )−1

−(=mN )−1<eN (=mN )−1

)
, (1.166)

and N is the period matrix.
The effective 1-dimensional action (1.163) can be rewritten as a sum of squares of

first order differential expressions and a constraint. Setting each of these terms to zero
provides the same equations that emerge from the direct analysis of the supersymmetry
transformations, as we are showing in a while.
The rewriting is obtained by means of many special geometry identities, which descend
from the following basic ones

V∗TMV = iV∗TΩV = i 〈V∗,V〉 = −1 ,

UTi MU∗j∗ = iUTi ΩU∗j∗ = i
〈
Ui,U∗j∗

〉
= −Gij∗ ,

VT ′MV∗′ = Gij∗Zi′Z∗j
∗ ′ +A2

r ,

(1.167)

where

Aµ = =m(∂µZ
i(∂iK)) (1.168)

is the connection associated to the Kähler transformations (1.11). We are also defining

e2iα =
Z − ie2(ψ−U)L

Z∗ + ie2(ψ−U)L∗
. (1.169)
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The effective action (1.163) becomes then

S1d =

∫
dr

{
−1

2
e2(U−ψ)ETME − e2ψ

[
(α′ +Ar) + 2e−U <e(e−iαL)

]2
− e2ψ

[
ψ′ − 2e−U =m(e−iαL)

]2 − (κ+ 〈G,Q〉)

−2
d

dr

[
e2ψ−U =m(e−iαL) + eU <e(e−iαZ)

]}
,

(1.170)

where

ET = 2e2ψ
(
e−U=m

(
e−iαV

))′ T − e2(ψ−U)GTΩM−1

+ 4e−U (α′ +Ar)<e
(
e−iαV

)T
+QT .

(1.171)

If the charges satisfy the condition

〈G,Q〉 = −κ , (1.172)

the effective action (1.163) has been rewritten as a sum of squares of first order differ-
ential conditions and a boundary term. Setting to zero each of these terms, a system of
first order equations is obtained,

2e2ψ
(
e−U Im(e−iαV)

)′
+ e2(ψ−U)ΩMG+ 4e−U (α′ +Ar)Re(e−iαV) +Q = 0 ,

ψ′ = 2e−U Im(e−iαL) , (1.173)

α′ +Ar = −2e−URe(e−iαL) .

These equations are all symplectic covariant and so every solution, obtained for a
specific choice of charges and Fayet-Iliopoulos terms, can be mapped to a different solu-
tion, with new Q and G, by a duality transformation.

Superpotential and BPS flow

A simple rewriting of the equations (1.173) leads to the identification of a superpotential
functionW driving the BPS flow. Projecting the equation E = 0 on V and Ui, and defining

W = eU
∣∣∣Z − ie2(ψ−U)L

∣∣∣ , (1.174)

the BPS conditions (1.173) can be expressed as flow equations for the physical degrees of
freedom, the warp factors ψ and U and the scalar fields Zi,

U ′ = −gUU∂UW ,

ψ′ = −gψψ∂ψW , (1.175)
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Zi′ = −2gij
∗
∂j∗W ,

where gUU = −gψψ = e2ψ and gij∗ = e2ψGij∗ .

Supersymmetry equations

In order to be able to claim that the solutions of the equations (1.173) provide supersym-
metric configurations, the supersymmetry variations have been analyzed in [5]. It has
been proven that, when two independent projector conditions are imposed, the vanish-
ing of the supersymmetry variations reproduces the flow equations (1.175).

The variations that should vanish are those in (1.81), which in the U(1) Fayet-Iliopoulos
gauged theory reduce to

δψµI = DµεI − 2iεIJ=mNΛΣLΣF−Λ
µνγ

νεJ − i

2
LδIJγ

νηµνε
J ,

δλiI = i/∂ZiεI − Gij
∗
f∗Σj∗=mNΛΣF

−Λ
µνγ

µνεIJεJ +D∗iLδIJεJ ,
(1.176)

where F−Λ
µν = 1

2

(
FΛ

µν − i
2εµνρσF

Λρσ
)
.

The Ansatz on the metric, on the radial dependence of the scalars and on the gauge
fields

FΛ
tr =

e2(U−ψ)

2

(
=mN−1

)ΛΣ (<eNΣΩp
Ω − qΣ

)
,

FΛ
θφ = −1

2
pΛ sin θ ,

(1.177)

have to be employed to conclude that the vanishing of (1.176) reproduces the flow equa-
tions (1.173) for a Killing spinor of the form

εI = e
U
2 + i

2

∫ {Ar+[eU−2ψ=m(e−iαZ)+e−U<e(e−iα)]}drχI (1.178)

where χI is a constant spinor subject to the following constraints,

γ0χI = iεIJχ
J , γ1χI = δIJχ

J . (1.179)

Two independent conditions have been imposed on the Killing spinor, each halving
the number of preserved supersymmetries. The solutions of (1.173) are therefore 1/4-
BPS.

1.2.7 Some well known models

The aim of this paragraph is to present some examples of widely studied models of
N = 2, d = 4 supegravity coupled to vector multiplets. The kinetic term of the scalars
in the vector multiplets is a σ-model, whose target manifold is a special Kähler one. The
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cases we are presenting involve simple and interesting geometries, although they are not
necessarily trivial. In particular, one of the cases under study has the peculiarity of being
a non-homogeneous manifold, i.e. it cannot be described as a coset.

These examples are going to be relevant in what follows, since they have been used to
find the explicit solutions we are constructing in the last chapter. We are here discussing
the prepotential from which they arise and reporting some relevant features of their
geometry.

Cubic models

A broad class of widely studied models are those giving rise to the so-called very special
Kähler manifolds, that can be obtained by dimensional reduction from the vector multi-
plets’ scalar geometries coupled to minimal supergravity in d = 5, known as special real
manifolds.

All the models originating from this kind of geometry are described (cf. e.g. [63, 64])
by a cubic prepotential of the form

F = dijk
X iX jX k

X 0
, (1.180)

where dijk is a real and symmetric tensor and the corresponding special Kähler space is
usually dubbed a d-space [64]. This class of models is very rich and interesting because
d-geometries naturally arise in the compactification of type-II superstring theories on
complex 3-dimensional Calabi–Yau manifolds.

Among the models in this class, those that have been studied in more depth are the
homogeneous ones. For a homogeneous manifold, the isometry group acts transitively,
which means that any two points of the manifold are related by an isometry transforma-
tion. The orbit swept out by the action of the isometry group G from any given point is
locally isomorphic to the coset space G/H , where H is the isotropy group of that point.
After [64] and [65], homogeneous special Kähler d-spaces, either symmetric or non-
symmetric, have been classified in terms of the corresponding d-tensor, which uniquely
determines their geometry. For the non-symmetric spaces the isometry group G is not
semisimple and the isotropy group H is always its maximal compact subgroup.
No homogeneous, non-symmetric, special Kähler (non-compact, Riemannian) spaces
which are not based on cubic prepotentials (1.180) are known, although there is no proof
that they do not exist, as far as we know.

As stated in [54], a property that characterizes the d-tensors of symmetric cubic mod-
els is

dm(ijdkl)ndmnp =
4

3
δ(i
p d

jkl) (1.181)

or, alternatively [22], the fact that the contraction dijkyk with some object yk defines an
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invertible matrix. Another peculiarity is the constancy of the tensor

d̂lmn =
GilGjmGkn

(dpqrλpλqλr)2
dijk . (1.182)

where Zi = xi + iλi are the special coordinates defined by XΛ =

(
1

Zi

)
. Once these

coordinates have been chosen, in the notation given by (1.200), the relevant geometrical
quantities are given by

Ω =


1

Zi

−F (Z)

3dZ,i

 , e−K = 8dλ , Gij = −3

2

dλ,ij
dλ

+
9

4

dλ,idλ,j
d2
λ

. (1.183)

Two of the following examples are symmetric cubic models, the stu model and the
family of ST [2, n] models. Moreover, we are entering a detailed description of a cubic
non-homogeneous and non-symmetric Kähler manifold, giving rise to what we have
called nh-stu model.

The stu model

The stu model provides a particularly manageable framework and has therefore been
used in many cases when seeking solutions, as in the pioneer paper [28]. It involves
3 vector multiplets, whose scalar Zi are usually named s, t and u, accounting for the
name of the model. The cubic prepotential is defined by the tensor dijk = 1

6 |εijk| and is
explicitly given by

F =
X 1X 2X 3

X 0
. (1.184)

As can be directly obtained from the previous, general formulation, the relevant ge-
ometrical quantities are

Ω =



1

s

t

u

−stu
tu

su

st


, e−K = 8=ms=mt=mu , Gij∗ =

δij∗

4(=mZi)2
, (1.185)
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where there is no sum over the index i in the last expression. The Kähler metric is the
product of the metrics of three SL(2,R)/SO(2) coset spaces. The reality of the Kähler po-
tential, together with the symmetry between the three scalars, implies that the imaginary
parts =mZi are positive.

Two truncations of the stu model are also very well known: the one with t = u

and prepotential F = X 1(X 2)2

X 0 and the simplest, one modulus model, where s = t =

u and the prepotential is F = (X 1)3

X 0 , in which the scalar parametrizes the coset space
SL(2,R)/SO(2).

The nh-stu model

We are here treating the special Kähler 3-moduli model based on the holomorphic pre-
potential11

F =
X 1X 2X 3

X 0
− A

3

(
X 3
)3

X 0
, (1.186)

where A is an arbitrary real constant. For A = −1, the prepotential reads

F =
X 1X 2X 3

X 0
+

1

3

(
X 3
)3

X 0
, (1.187)

which has been constructed in the context of Type IIA string theory compactified on
Calabi-Yau manifolds in [68]. In particular, analyzing string vacua with three complex
moduli (section 3.2 therein), different bases for the toric construction of such a model
have been considered; (1.187) corresponds to the basis F0 of [68], while other toric con-
structions determine the same model in different symplectic frames. The prepotential
(1.187) can also be obtained as the c = 0 limit of the heterotic prepotential appearing
in [69] and the corresponding one-loop prepotential VGS is given by considering its c = 0

limit.
In absence of gauging, the BPS attractor equations for this model have been discussed

in [69]; a solution for a generic supporting black hole charge configuration was obtained
in this context and, as a consequence, the BPS black hole entropy was determined as a
function of the charges.

A full-fledged, explicit determination of the BPS black hole entropy of the model
based on (1.187) was later given by Shmakova in the investigation of BPS attractor equa-
tions for black holes based on Calabi-Yau cubic prepotentials [70]. We report here the
expression of the ungauged BPS black hole entropy, for later convenience:

SBH

π
=

√
f (Q)

3p0
, (1.188)

11Black holes of type IIA Calabi-Yau compactifications in the presence of perturbative quantum corrections,
leading to a prepotential of the form F = dijkX iX jXk/X 0 + ic(X 0)2 (for some constant c), were constructed
and studied in [66, 67].
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where

f (Q) :=

2

{(
p1p2 +

(
p3
)2 − p0q3

)[(
p1p2 +

(
p3
)2 − p0q3

)2

+ 12
(
p2p3 − p0q1

) (
p1p3 − p0q2

)]
+

[(
p1p2 +

(
p3
)2 − p0q3

)2

− 4
(
p2p3 − p0q1

) (
p1p3 − p0q2

)]3/2
}

− 9

[
p0
(
p0q0 + p1q1 + p2q2 + p3q3

)
− 2p1p2p3 − 2

3

(
p3
)3]2

,

(1.189)

and the conditions f (Q) > 0 and p0 > 0 define the BPS-supporting black hole charge
vector Q. It is immediate to check that (1.188) and (1.189) imply the entropy SBH to be
homogeneous of degree two in the charges, as it must be in four dimensions for 0-branes.

The model (1.186) under consideration, where A has to be considered a parameter,
belongs to the class of the very special Kähler manifolds. In particular, the model (1.186)
is defined by d123 = 1/6 and d333 = −A/3.

It is worth pointing out that the d-space corresponding to (1.186) is neither symmetric
nor homogeneous [65, 71]. In particular, it does not fall within the class of symmetric
models examined in [22], that are characterized by a constant tensor12 d̂ijk defined in
(1.182).

In fact, it can be easily checked that the prepotential (1.186) implies a non-constant
d̂lmn. For this reason, we will henceforth dub the cubic model (1.186) as a non-homogeneous
deformation of the homogeneous and symmetric stu model (shortly, nh-stu), to which it
reduces when A = 0.

The vector multiplets’ scalar manifold of the nh-stu model is neither symmetric nor
homogeneous; namely, the non-compact Riemannian space endowed with the special
Kähler geometry specified by the cubic holomorphic prepotential (1.186) (with non-
vanishing A) cannot be described as a coset G/H , where H is a local, compact isotropy
group (linearly realized on the scalar fields, which generally sit in its representations)
and G is a global, non-compact symmetry group (non-linearly realized by the scalar
fields, but linearly realized by the vectors).

In theories of Abelian Maxwell fields, the groupG describes the electric-magnetic du-
ality symmetry, and its non-compactness in presence of scalar fields was firstly discussed
by Gaillard and Zumino in [73].

Linearly realized electric-magnetic duality (U -duality13) plays a key role in Einstein-

12For some considerations on the completely contravariant d-tensor in generic d-spaces (and the correspond-
ing definition of the so-called E-tensor for non-symmetric special Kähler spaces), cf. e.g. [72], and references
therein.

13Here, U -duality is referred to as the ‘continuous’ symmetries of [74]. Their discrete versions are the U -
duality non-perturbative string theory symmetries introduced by Hull and Townsend [75].



40 1.2 The 4-dimensional theory

Maxwell theories coupled to scalar fields in presence of local supersymmetry, and conse-
quently in their regular solutions, such as the dyonic black holes we are going to discuss.
Even if the scalar manifold is not a coset G/H , a global U -duality symmetry group G al-
ways exists, even if it may be non-reductive or also discrete in generic, (semi-)realistic
models of string compactifications.

A general feature of Einstein-Maxwell theories coupled to non-linear sigma models
of scalar fields in four dimensions is the symplectic structure of the field strength 2-forms
and of their duals, which in turn allows to define the symplectic inner scalar product. It
results in the maximal, generally non-symmetric embedding [73]

G ⊂ Sp(2n,R) (1.190)

R = 2n , (1.191)

where n is the number of vector fields, 2n is the fundamental representation of Sp(2n,R)

and R is the representation of G, not necessarily irreducible.
Thus, it is interesting to determine the (continuous, Lie component of the) U -duality
algebra gnh-stu of the nh-stu model of N = 2, d = 4 supergravity. In this case we have
n = 4, since one graviphoton and three vectors from the vector multiplets are present.
We aim to explicitly find the realization of the maximal, non-symmetric embedding

gnh-stu ⊂ sp(8,R) . (1.192)

This is worth also in view of the fact that Gnh-stu, the Lie group generated by gnh-stu,
does not have a transitive action on the non-linear sigma model described by the N = 2

holomorphic prepotential (1.186).
Since in the ungauged theory the semiclassical Bekenstein-Hawking entropy is gen-

erally invariant under linearly realized global symmetries, gnh-stu can be determined by
finding all infinitesimal symplectic transformations which leave the BPS black hole en-
tropy SBH (1.188)-(1.189) invariant.
Let us choose A = −1. From (1.188)-(1.189), the infinitesimal invariance condition reads

δSBH =
1

2SBH
δS2

BH

=
1

2SBH

[(
−2f

p0
+
∂f

∂p0

)
δp0 +

∂f

∂pi
δpi +

∂f

∂q0
δq0 +

∂f

∂qi
δqi

]
= 0 , (1.193)

or equivalently

−6fδp0 + p0δf = 0, (1.194)

where δf = ∂f
∂QδQ and
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δQ =
(
δp0, δpi, δq0, δqi

)T
= SQ, (1.195)

with S belonging to the symplectic Lie algebra. It is an 8×8 matrix which can generically
be written in blocks as

sp (8,R) 3 S =

(
A B

C D

)
, AT = −D , BT = B , CT = C , (1.196)

where each block is a 4× 4 matrix. Thus, S depends on ten real parameters.
By solving (1.194) for a BPS-supporting configuration with generic charges Q satis-

fying f (Q) > 0 and p0 > 0, the symplectic embedding of the U -duality Lie algebra
gnh-stu of the nh-stu model into sp(8,R) is realized by the following 4-dimensional, lower
triangular matrix subalgebra (cf. (1.192); a, b, c ∈ R, φ ∈ R+

0 )

Snh-stu(a, b, c, φ) =



−3φ 0 0 0 0 0 0 0

a −φ 0 0 0 0 0 0

b 0 −φ 0 0 0 0 0

c 0 0 −φ 0 0 0 0

0 0 0 0 3φ −a −b −c
0 0 c b 0 φ 0 0

0 c 0 a 0 0 φ 0

0 b a 2c 0 0 0 φ


∈ gnh-stu ⊂ sp(8,R) .

(1.197)
For a generic A, this can be generalized as follows:

Snh-stu(a, b, c, φ;A) =



−3φ 0 0 0 0 0 0 0

a −φ 0 0 0 0 0 0

b 0 −φ 0 0 0 0 0

c 0 0 −φ 0 0 0 0

0 0 0 0 3φ −a −b −c
0 0 c b 0 φ 0 0

0 c 0 a 0 0 φ 0

0 b a −2Ac 0 0 0 φ


∈ gnh-stu ⊂ sp(8,R) .

(1.198)
It should be noticed that (1.198) (which reduces to (1.197) for A = −1) determines a

maximal Abelian subalgebra of sp(8,R), whose four generators commute. Moreover, the
generators corresponding to a, b, c in (1.197) span an axionic Peccei-Quinn translational
3-dimensional algebra, which is nilpotent of degree four. Indeed, the part of (1.197)
generated by a, b, c can be recast in the following generic, d-parametrized form [76]
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S =


0 0 0 0

aj 0 0 0

0 0 0 −ai

0 da,ij 0 0

 ⊂ sp(2n,R) , (1.199)

where (i = 1, ..., n− 1)

da,ij := dijka
k , da,i := dijka

jak , da := dijka
iajak ,

a1 := 6a , a2 := 6b , a3 := 6c .
(1.200)

S in (1.199) can be easily checked to be nilpotent of degree four14,

S4 = 0⇒ exp (S) = I2n + S +
1

2
S2 +

1

3!
S3, (1.201)

yielding, at group level [77, 78],

exp (S) =


1 0 0 0

aj In−1 0 0

− 1
6da − 1

2da,i 1 −ai
1
2da,j da,ij 0 In−1

 ⊂ Sp(2n,R) . (1.202)

Such an (n− 1)-dimensional Abelian global symmetry algebra/group, as discussed
in [78] (see also references therein, in particular [79]), characterizes every model of d = 4

supergravity based on a cubic scalar geometry, even not of special Kähler type (i.e. the
scalar geometries of N = 4, 6 and 8 supergravity theories, dubbed ‘generalized d-
geometries’ in [78]): the representation of axions in d = 4 is always nilpotent of degree
four.
Besides the (n− 1)-dimensional axionic Peccei-Quinn translational algebra, the univer-
sal sector of the electric-magnetic duality algebra of every (generalized) d-geometry (also
cf. [80]) is given by the 2n×2n generalization of the φ-parametrized part of (1.198), where
φ can be thus regarded as the Kaluza-Klein radius/real dilaton of the Kaluza-Klein (KK)
soKK(1, 1),

K(φ) =


−3φ 0 0 0

0 −φIn−1 0 0

0 0 3φ 0

0 0 0 φIn−1

 ∈ soKK(1, 1) ⊂ sp(2n,R) . (1.203)

Therefore, the 2n× 2n matrix realization of the universal sector of the global electric-
magnetic duality symmetry of an Einstein-Maxwell theory whose scalar manifold is en-
dowed with a ‘generalized d-geometry’ can be written at the Lie algebra level as [77, 78]

14Id denotes the d× d identity matrix throughout.
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S(a) +K(φ) =


−3φ 0 0 0

aj −φδji 0 0

0 0 3φ −ai

0 da,ij 0 φδij

 ⊂ sp(2n,R) , (1.204)

and at the Lie group level as [77, 78]

exp(S(a)) exp(K(φ)) =


e−3φ 0 0 0

aj e−φδji 0 0

− 1
6da − 1

2da,i e3φ −ai
1
2da,j da,ij 0 eφδij

 ⊂ Sp(2n,R) . (1.205)

Consistently, forA = 0 the expression (1.205) enhances to an 8-dimensionalU -duality
group, given by the SL(2,R)⊗3 group of the stu model.

When considering N = 2, d = 4 theories, this result for special Kähler d-geometries
was known since [64]. In [78], (1.205) was shown also to pertain to the universal sector
of axionic and KK coordinates in the scalar manifolds of d = 4 theories based on ‘gener-
alized d-geometries’ (for non-homogeneous N = 2 very special Kähler geometries, the
same parametrization provides a general description of the generic element of the flat
symplectic bundle over the vector multiplets’ scalar manifold [78, 79]).
Thus, in this sense, one can conclude that the nh-stu model has the smallest possible
electric-magnetic duality algebra, consistent with its cubic nature (and thus with its up-
liftability to N = 2, d = 5 supergravity).

When obtaining a solution (see section 3.1), we have only considered the axion-free
case, thus parameterizing the purely imaginary scalar fields as Zi = −iλi, with λi real
and positive (i = 1, 2, 3); we have also chosen the projective coordinates as

X 1

X 0
= −iλ1 ,

X 2

X 0
= −iλ2 ,

X 3

X 0
= −iλ3 . (1.206)

Thus, the symplectic sections V become (Λ = 0, 1, 2, 3)

LΛ = eK/2
(
1,−iλ1,−iλ2,−iλ3

)T
,

MΛ = eK/2
(
−i
(
λ1λ2λ3 − A

3
(λ3)3

)
,−λ2λ3,−λ1λ3,−λ1λ2 +A(λ3)2

)T
,

(1.207)

while the Kähler potential reads

e−K = 8

(
λ1λ2λ3 − A

3
(λ3)3

)
. (1.208)

For vanishing axions, the special Kähler metric takes the form
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Gij∗ =
1

4
(
λ1λ2λ3 − A

3 (λ3)3
)2


(λ2)2(λ3)2 A
3 (λ3)4 − 2

3Aλ
2(λ3)3

A
3 (λ3)4 (λ1)2(λ3)2 − 2

3Aλ
1(λ3)3

− 2
3Aλ

2(λ3)3 − 2
3Aλ

1(λ3)3 (λ1)2(λ2)2 + A2

3 (λ3)4

 .

(1.209)
The symplectic matrix NΛΣ has, in the axion-free case under consideration, vanishing
real part, while =mNΛΣ is given by

=mNΛΣ = −1

8
e−K

(
1 0

0 4Gij∗

)
, (1.210)

which is thus consistently negative definite.

The ST [2, nV ] models

The ST [2, nV ] models are cubic models involving nV = n + 1 vector multiplets. In the
next chapter we are showing how they arise when dimensionally reducing along a circle
the 6-dimensional theory of supergravity to 5 and then to 4 dimensions.
It admits an SU(2) gauging if n ≥ 4, so we have been dealing with it when uplifting
or reducing solutions of the SEYM theories with SU(2) gauging (section 3.3) and of the
SU(2)-FI gauged theory (section 3.4).

The ST [2, nV ] model is described by the prepotential

F = −1

2
ηαβ
X 1XαX β

X 0
, (1.211)

where ηαβ = diag(+−· · ·−) and α, β take n values from 2 to nV . The first scalar Z1 = X 1

X 0

plays a different role with respect to the other scalars in the model, and parametrizes a
SL(2,R)/SO(2) coset space. The remaining n scalars Zα = Xα

X 0 parametrize instead a
SO(2, n)/(SO(2)×SO(n)) coset space. The metric is the product of that of the two spaces.
In the usual X 0 = 1 gauging, the symplectic section, the Kähler potential and the metric
are given by

Ω =



1

Z1

Zα

1
2Z

1ηαβZ
αZβ

− 1
2ηαβZ

αZβ

−Z1ηαβZ
β


, e−K = 4=mZ1ηαβ=mZα=mZβ ,

G11∗ =
1

4(=mZ1)2
, Gαβ∗ =

ηαγ=mZγηβδ=mZδ

(ηεφ=mZε=mZφ)2
− ηαβ

2ηεφ=mZε=mZφ
.

(1.212)
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The reality of the Kähler potential has to be required, giving rise to two different
branches

=mZ1 > 0 , ηαβ=mZα=mZβ > 0 and =mZ1 < 0 , ηαβ=mZα=mZβ < 0 . (1.213)

The group SO(2, n) does not act linearly on the special coordinates Zα; with a sym-
plectic transformation another formulation can be obtained, in which the invariance is
evident. This formulation cannot, however, be derived from any prepotential.

When dealing with theories involving an SU(2) gauged subgroup of the isometries
of the special Kähler manifold, we should note that the group SO(3) acts in the adjoint
on the coordinates α = 3, 4, 5, if n ≥ 4.

The CPn
models

The CPn family contains models with nV = n vector multiplets. We are particularly
interested in the CP3

case, because it provides the simplest example of a model admitting
a SU(2) gauging.

The CPn models do not belong to the class of the cubic models. Their prepotential is
in fact quadratic,

F = − i
4ηΛΣXΛXΣ, (ηΛΣ) = diag(+− · · ·−) . (1.214)

We can define the n complex scalars, which parametrize a U(1, n)/(U(1)×U(n)) coset
space, by

Zi ≡ X i/X 0 . (1.215)

It is advantageous to add to these Z0 ≡ 1 and to use ZΛ and ZΛ

(ZΛ) ≡
(
XΛ/X 0

)
= (1, Zi) , (ZΛ) ≡ (ηΛΣZ

Σ) = (1, Zi) = (1,−Zi) . (1.216)

The Kähler potential, the Kähler metric (which is the standard Bergman metric for the
symmetric space U(1, n)/(U(1)×U(n)) [81]) and its inverse in the X 0 = 1 gauge are
given by

K = − log (Z∗ΛZΛ) ,

Gij∗ = eK
(
δij∗ + eKZ∗i Zj∗

)
, (1.217)

Gij
∗

= e−K
(
δij
∗
− ZiZ∗ j

∗
)
,

which implies that the complex scalars are constrained to the region
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0 ≤
∑
i

|Zi|2 < 1 . (1.218)

The covariantly holomorphic symplectic section V , its Kähler-covariant derivative
Ui = DiV and the period matrix are given by

V = eK/2

 ZΛ

− i
2ZΛ

 , Ui = eK/2

 −eKZ∗i ZΛ + δi
Λ

i
2 (eKZ∗i ZΛ − ηiΛ)

 , NΛΣ = i
2

[
ηΛΣ − 2

ZΛZΣ

ZΓZΓ

]
.

(1.219)
For later use we also quote

=mNΛΣ = 1
2

[
ηΛΣ −

(
ZΛZΣ

ZΓZΓ
+ c.c

)]
,

(=mN )−1|ΛΣ = 2

[
ηΛΣ −

(
ZΛZ∗Σ

ZΓZ∗Γ
+ c.c

)]
,

(1.220)

and the Hesse potential

W(I) = 1
2ηΛΣIΛIΣ + 2ηΛΣIΛIΣ , (1.221)

where IΛ were defined in (1.115).
When n = 3, the metric is invariant under U(1, 3) = U(1) × SU(1, 3), admitting the

gauging of the subgroup SO(3) ∈ SU(1, 3).

1.3 The 5-dimensional theory

In the context of the present thesis, we are mostly interested in higher dimensional super-
gravity theories because their compactification gives rise to the 4-dimensional theories
we presented so far. Since our purpose is to find new supersymmetric solutions of these
latter, the technique of dimensional reduction (see chapter 2) will allow us to generate
new 4-dimensional solutions exploiting known higher dimensional ones.
However, the inverse procedure is also possible, and new higher dimensional solu-
tions can be obtained from known 4-dimensional ones -an example is given in sec-
tion 3.3-. In fact, 4-dimensional solutions are better understood and widely studied
[17, 23, 24, 29, 82, 83].
Moreover, the higher dimensional theories we are interested in naturally arise in super-
string or M-theory compactifications and deserve therefore interest on their ones. Many
of them can be obtained from compactifications of 11-dimensional supergravity on Cal-
abi–Yau 3-folds.

The supersymmetry parameter and the fermions are given in this theory by just one
minimal spinor with eight real components and the theory is in this sense minimal.
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However, the spinors are usually taken to be pairs of symplectic Majorana spinors, with
symplectic index i = 1, 2, therefore the theory deserves the name of N = 2, d = 5 super-
gravity. It involves 8 supercharges, as the N = 2, d = 4 theory to which it is related by
compactification on a circle.
More details about this theory can be found in [54, 84, 85].

We begin by recalling that the supergravity multiplet consists of the graviton ea
µ ,

the graviphoton vector fields A0
µ and the gravitino ψiµ. We can couple to it nV vector

supermultiplets, labeled by x = 1, . . . , nV ; each of them includes a vector field Axµ, a
gaugino λxi and a real scalar φx.
The most general symmetry of the equations of motion is a subgroup of GL(nV +1), rotat-
ing the graviphoton into the matter vector fields. It is therefore convenient to introduce
an index I = 0, . . . , nV , to treat all the vector fields on equal footing asAIµ = (A0

µ, A
x
µ).

The hypermultiplets are exactly the same as in the 4-dimensional theory, see section 1.2.2.
The peculiarity of the 5-dimensionalN = 2 supergravity theories is that, if no hyper-

multiplets are present, the entire Lagrangian for a certain model can be determined once
the constant and completely symmetric tensor CIJK is known. As will be detailed in the
next chapter, when the 5-dimensional theory is compactified on a circle, a 4-dimensional
cubic model is obtained, whose characteristic dijk tensor is determined (2.40) by the
CIJK tensor we just introduced.

In the 5-dimensional theory, the scalars φx parametrize a real special manifold with
σ-model metric gxy(φ), but they transform non-linearly under the symmetries of the
theory; therefore, a redundant parametrization is preferred, in terms of nV + 1 functions
of the scalars, hI(φ), transforming in the vector representation. These functions can be
seen as coordinates of an nV + 1-dimensional Riemannian space with a metric aIJ(φ),
while the scalar manifold is the nV -dimensional hypersurface in RnV +1 defined by the
cubic equation

CIJKh
I(φ)hJ(φ)hK(φ) = 1, (1.222)

where CIJK is the fully symmetric real constant tensor we mentioned before: once it
has been fixed, the σ-model metric gxy(φ) is given by

gxy ≡ 3aIJ
∂hI

∂φx
∂hJ

∂φy
= −2CIJK

∂hI

∂φx
∂hJ

∂φy
hK , (1.223)

while the metric on the Riemannian space, aIJ , which occurs in the theory as the kinetic
matrix of the vector fields is given by

aIJ = −2CIJKh
K + 3hIhJ , (1.224)

where the hI(φ) are defined by

hI ≡ CIJKhJhK . (1.225)
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The tensor CIJK itself determines the Chern–Simons terms in the supergravity action.6
The bosonic action of the ungauged theory coupled to nV vector multiplets and nH

hypermultiplets is entirely determined by the tensor CIJK and by the metric of the
quaternionic Kähler manifold Huv . It is given by

S =

∫
d5x
√
|g|

{
R+ 1

2gxy∂µφ
x∂µφy +

1

2
Huv∂µq

u∂µqv

− 1
4aIJF

IF J +
ε

12
√

3
√
|g|
CIJKF

IF JAK

}
.

(1.226)

1.3.1 Real special geometry

Real special geometry arises from the need to integrate in a single structure the Rieman-
nian metric of the σ-model parametrized by the nV real scalars φx with the GL(nV + 1)

structure that controls their coupling to the vector fields, via the kinetic matrix aIJ .
To this purpose, the redundant description of the scalars in terms of the functions hI

-constrained by (1.222)- is introduced. Another possible set of variables is given by hI in
(1.225), such that hIhI = 1. The sets are related by the metric aIJ , that raises and lowers
the I indexes

hI ≡ aIJhJ , hI ≡ aIJhJ , aIJa
JK = δIK . (1.227)

The metric of the hypersurface CIJKhIhJhK = 1, on which the physical scalars live,
is given by gxy in (1.223) and it is the pullback of aIJ . It can be used to raise and lower
the x indexes.

1.3.2 The gauged theory

The analysis of the possible gaugings of the 5-dimensional theory is quite similar to that
of the 4-dimensional case, developed in section 1.2.3. The symmetries of the action are in
fact the isometries of the real special manifold and of the quaternionic Kähler manifold
preserving the geometrical structure, and a SU(2) R-symmetry group.

• To gauge the isometries of the real special manifold, we have to require that the
Killing vectors of the σ-model metric gxy(φ), kAx(φ), respect the real special struc-
ture. To realize it, two conditions have to be met. Firstly, the functions hI must
be invariant under the isometries we are considering up to GL(nV + 1) rotations.
Their covariant Lie derivative should vanish,

LAhI ≡ (LA − TA)hI = kA
x∂xh

I − (TA)IJh
J = 0 , (1.228)
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where TA are a matrix representation of the Lie algebra isometry group

[kA, kB ] = −fABCkC , [TA, TB ] = fAB
CTC . (1.229)

It can be demonstrated, on the base of special geometrical identities, that this im-
plies that the Killing vectors are given by

kA
x = −

√
3(TA)IJg

xy∂yhIh
J . (1.230)

The second condition imposes that the tensor CIJK must be invariant under the
compensating GL(nV + 1) transformations

LACIJK = 3(TA)L(ICJK)L = 0 . (1.231)

The two conditions imply that the kinetic matrix aIJ is also invariant,

LAaIJ = (LA − TA)aIJ = kA
x∂xaIJ + 2(TA)K (IaJ)K = 0 . (1.232)

• Since the hypermultiplets are the same as in the 4-dimensional theory, the gauging
of the isometries of the quaternionic Kähler manifold proceeds as already reviewed
in section 1.2.3. Again, even if no hypermultiplets are present, non-vanishing
constant triholomorphic moment maps lead to the appearance of Fayet-Iliopoulos
terms, that gauge the whole SU(2) R-symmetry group or a U(1) subgroup only.

The gauge covariant derivatives of the scalars and the vector field strengths are given
by the standard expressions

Dµφ
x = ∂µφ

x + gAIµkI
x ,

Dµq
u = ∂µq

u + gAIµkI
u ,

F Iµν = 2∂[µA
I
ν] + gfJK

IAJ [µA
K
ν] .

(1.233)

The generic Lagrangian of the gauged theory is then given by

S =

∫
d5x
√
g

{
R+

1

2
gxyDµφ

xDµφy +
1

2
HuvDµq

uDµqv −V(φ, q)− 1

4
aIJF

IF J

+
1

12
√

3
CIJK

ε
√
g

(
F IF JAK − 1

2
gfLM

IF JAKALAM

+
1

10
g2fLM

IfNP
JAKALAMANAP

)}
,

(1.234)
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where

V(φ, q) = − g2
((

4hIhJ − 2gxy∂xh
I∂yh

J
)
~PI~PJ

−3

2
hIhJ (kI

xkJ
ygxy + kI

ukJ
vHuv)

)
.

(1.235)

The main difference with respect to the 4-dimensional case is due to the presence of the
Chern-Simons term, containing not only the vector field strengths, but also the vector
fields themselves. The gauge covariantization of this term provides more terms to the
Lagrangian of the gauged theory.

The supersymmetric solutions of general models of gauged N = 2, d = 5 supergrav-
ity were classified in [34, 35], but the construction of explicit examples in the theories
with non-Abelian gaugings has only been successfully completed recently in [30, 86].
These theories are the simplest supersymmetrization of the Einstein-Yang-Mills (EYM)
theory and have been called N = 2, d = 5 Super-Einstein-Yang-Mills (SEYM) theories
in [30].

1.4 The 6-dimensional theory

The minimal supergravity theory, first constructed in [87] by dimensional reduction from
11-dimensional supergravity [88], contains the graviton ea

µ, the gravitino ψiµ and a 2-
form B−µν with anti-selfdual 3-form field strength H−µνρ and it does not admit a co-
variant action, which makes it more complicated to work with.

This theory can be coupled to different matter multiplets:

• nV vector multiplets, which have no scalars. Each multiplet includes a vector field
Aiµ and a gaugino λαi, where i = 1, . . . , nV ;

• nT tensor multiplets, which have real scalars ϕr , r = 1, . . . nT , always parameter-
izing the symmetric space SO(1, nT )/SO(nT ), tensorinos χαr and 2-forms B+ r

µν

whose 3-form field strengths Hr
µνρ are selfdual;

• nH hypermultiplets, whose scalars parametrize arbitrary quaternionic-Kähler man-
ifolds, as in lower dimensional theories.

The scalar fields ϕr can be seen as coordinates in the coset space SO(1, nT )/SO(nT ).
In describing the couplings of the tensor multiplets, it is useful to introduce the coset
representatives Lr and Lr

R, which together form an (nT + 1) × (nT + 1) matrix obey-
ing the properties of an SO(nT , 1) group element. The index r = 0, . . . , nT labels the
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fundamental representation of SO(nT , 1) while the index R = 1, · · · , nT labels the fun-
damental representation of SO(nT ). Denoting the components of the inverse matrix by
Lr and LRr , they obey the relations

LrL
r = 1 , LR

rLr = 0 , Lr
RLr = 0 . (1.236)

The SO(nT , 1) invariant constant metric

ηrs = LrLs − LrRLsR , ηrs = diag(1,−1, . . . ,−1) , (1.237)

can be used to raise and lower the SO(nT , 1) vector indexes,

Lr = ηrsL
s , LrR = −ηrsLRs . (1.238)

Another useful quantity is the symmetric SO(1, nT ) matrixMrs, defined by

Mrs = LrLs + Lr
RLsR = 2LrLs − ηrs , (1.239)

that depends on the coordinates ϕr.
An SO(1, nT )-symmetric σ-model for the scalars ϕr can be constructed as

Ls
r∂aL

s
tLu

t∂aLur = −∂aLr∂aLr , (1.240)

where we have used the above properties of the coset representative and Lr = Lr
0.

A simple parametrization of the functions Lr in terms of the physical scalars is provided
by

L0 = (1− ϕrϕr)−1/2 , Lr = ϕr(1− ϕsϕs)−1/2 ⇒ ϕr =
Lr

L0
. (1.241)

The matter and supergravity 2-forms are combined into a single SO(1, nT ) vector
(Br) = (B0, Br), with 3-form field strengths Hr = 1

3!H
r
µνρ dx

µ ∧ dxν ∧ dxρ defined by

Hr = dBr + 1
2c
r
ijF

i ∧Aj , (1.242)

where crij is an array of constant positive-definite matrices. They have to satisfy the
(anti)selfduality constraint

MrsH
s = −ηrs ? Hs . (1.243)

Using this constraint in the Bianchi identity of the 3-form field strengths

dHr − 1
2c
r
ijF

i ∧ F j = 0 , (1.244)

the equation of motion for the 2-forms is obtained,
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d (Mrs ? H
s) + 1

2cr ijF
i ∧ F j = 0 . (1.245)

Although a general covariant action does not exists, the bosonic equations of motion
can be derived from the pseudoaction

Ŝ =

∫
d6x
√
|g|
{
R− ∂aLr∂aLr + 1

3MrsH
r
abcH

s abc +
1

2
Huv∂µq

u∂µqv

− LrcrijF iabF j ab − 1
4cr ijε

abcdefBrabF
i
cdF

j
ef

}
.

(1.246)

once the (anti)selfduality constraint (1.243) has been imposed.
One way to avoid the complications of having to deal with chiral 2-forms15 is to

consider supergravity theories coupled to just one tensor multiplet so the two chiral 2-
forms of opposite chiralities combine into one unconstrained 2-form. In what follows,
we have been calling them N = 2A , d = 6 supergravity theories. They can describe the
effective theory of the truncated, toroidally compactified Heterotic String, whose field
content consists of the metric, a Kalb-Ramond 2-form and a dilaton. These theories,
coupled to vector multiplets and hypermultiplets were constructed in [89–91].
The N = 2A, d = 6 theories can be gauged in essentially two ways:

• We could just gauge a subgroup of the SO(nV ) group that rotates the vector fields
among themselves. The only fermion fields this global symmetry acts on are the
gaugini, which carry the same indexes as the vector fields and an Sp(1) ∼ SU(2)

R-symmetry index which remains inert under these transformations. Observe that
the only scalar of the theory, the dilaton, is also inert.

• We can gauge the whole R-symmetry group, SO(3) or a SO(2) subgroup of it using
Fayet-Iliopoulos terms, as in [38]. Observe that vectors transforming in the same
fashion are needed. Thus, in this case one would be gauging SO(3) or a SO(2)

subgroup of SO(nV ) which, on top of acting on some the SO(nV ) indexes of the
vectors and gaugini, would also act on the R-symmetry indexes of all the fermions
of the theory, which would now be charged.

The theories we are calling N = 2B are instead coupled to an arbitrary number of
tensor multiplets. They were described in [92] and have attracted much less attention
because they have not been identified as the effective field theory of some string or M-
theory compactification yet and they cannot be gauged, at least in any conventional
sense, because they do not have vectors that can be used as gauge fields. A meaning
for the “gauged” N = 2B theory will however emerge from dimensional reduction, as
explained in section 3.3.2. The coupling to tensors, vectors and hypermultiplets with
some gaugings was described in [93].

15That is: 2-form potentials with selfdual or anti-selfdual 3-form field strengths.
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The supersymmetric solutions of most of N = (2, 0), d = 6 supergravity theories
have not been classified yet. The only ones that have been considered are the pure su-
pergravity theory in [37,94] and a theory with one tensor multiplet and a triplet of vector
multiplets with SU(2) and U(1) gaugings via Fayet-Iliopoulos terms in [38].





CHAPTER 2

Dimensional reduction

The present chapter is devoted to the presentation of the technique of dimensional re-
duction on a circle and to its application to the theories we have presented so far, the
6, 5 and 4-dimensional N = 2 supergravities without hypermultiplets. The underlying
idea is that certain appropriate models in these theories are related among themselves
by dimensional reduction and, when admitting isometries, so are their solutions.
We are initially developing this technique to connect ungauged theories, but we are
later explaining how certain gaugings do not affect the treatment we are presenting.
In particular, if the gauge group does not change in the procedure of dimensional reduc-
tion, Super-Einstein-Yang-Mills theories can be reduced or uplifted exploiting exactly
the same rules we have obtained in the ungauged case, giving rise to the same kind of
theory in different dimensions. Analogously, a Fayet-Iliopoulos term only produces a
potential in the action, which can be independently reduced to produce the potential
due to the same FI-gauging in one dimension less.

In the framework of the present thesis, the interest for this procedure is determined
by the possibility of generating new solutions in diverse dimensions, once a certain so-
lution is known. In general, the supersymmetric solutions of theories related by dimen-
sional reduction are also related: all the solutions of the lower dimensional theory can be
uplifted to supersymmetric solutions of the higher dimensional theory while all the su-
persymmetric solutions of the higher dimensional theory admitting translational isome-
tries [95] can be reduced along the associated directions to supersymmetric solutions of
the lower dimensional theories1. Thus, one can get new supersymmetric solutions of
one of the theories from known supersymmetric solutions of the other one. Of course,
the same can be done with non-supersymmetric solutions.

Two conditions have to be met in order to apply this simple solution-generating tech-
nique:

1In the case of toroidal compactification. The general condition is that the Killing spinors of the higher
dimensional solutions can also be understood as spinors of the lower dimensional theory. This requires the
spinors to have a particular dependence (or independence) on the coordinates of the compactification manifold
which, in turn, requires the solution to meet certain conditions. In toroidal compactifications the isometries
associated to the circles must act without fixed points (be translational isometries). In more general cases the
conditions have not been studied. Dimensional reduction can, in general, break symmetries.

55
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1. We need to know which theories are related by dimensional reduction.

2. The detailed relation (“dictionary”) between the fields of the higher and lower di-
mensional theories must also be known.

This way of obtaining new solutions discloses its power when other methods, as
those presented in the previous chapter, fail; this can happen if no classification of the
solutions is available, as for the 6-dimensional theory, or if the equations are particularly
involved. In the 4-dimensional SU(2)-FI-gauged theory, for example, few solutions were
found through direct methods and we have been able to handle the simplest model
only (see section 3.2). However, thanks to the method that we are presenting here, new
solutions were generated from previously known 6-dimensional ones [38], for the 5 and
4-dimensional theories, in section 3.4.

The rest of the present chapter is dedicated to summarize the general principles of
the dimensional reduction on a circle (section 2.1), followed by the explicit derivation of
the rules that relate the 5-dimensional N = 2 supergravity theory to the 4-dimensional
cubic models (section 2.2). The results in the remaining sections were presented in [2]:
the purpose is to dimensionally reduce the 6-dimensional theory to 5-dimensions and
to identify which models in the lower dimensional case can be obtained in this way.
Of course, the absence of a general covariant action in 6-dimensions has to be taken
into account, and the reduction has to be performed on the pseudo-action and on the
(anti)selfduality constraints, as is going to be explained in full detail in section 2.3. A
peculiarity that emerges in this analysis is the existence of two different 6-dimensional
models related to the same 5-dimensional one. This fact has been interpreted as the
existence of a duality between the two theories, analogous to the one connecting the two
maximal 10-dimensional supergravities, N = 2A and N = 2B: when compactified on a
circle, they give rise to the same 9-dimensional maximal supergravity, which is unique.
Through the lower dimensional theory, we can give the rules transforming a solution of
one of the 6-dimensional theories admitting one isometry into another solution of the
other theory, also admitting one isometry (section 2.5).

2.1 Compactification on a circle

The present paragraph is devoted to the description of the formalism developed by
Scherk and Schwarz in [39] to perform the dimensional reduction of the gravitational
field from d̂ to d = d̂ − 1 dimensions. The first condition that has to be met, in order to
proceed with this program, is that the dynamics of the problem under study is irrelevant
in at least one direction, that we are denoting as2 z.
One of the reasons that raised interest in theories involving extra dimensions is the pos-
sibility of interpreting gauge symmetries in the lower dimensional theories as spacetime

2 All d̂-dimensional objects carry a hat, whereas d = (d̂ − 1)-dimensional ones do not. The d̂-dimensional
curved indexes split into µ̂ = (µ, z), while the tangent space ones are â = (a, z).
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symmetries in the extra dimensions, unifying in this way all the symmetries. In the orig-
inal theory of compactification by Kaluza and Klein, the extra dimensions are curled up
in a small compact manifold, the simplest example of which is a circle, and the motion
of particles along it is not observable.
In the full theory of compactification, all modes of the involved field -the initial and the
reduced ones- should be taken into account, both massless and massive. However, the
effective theory describing the low-energy behavior of the full theory is obtained when
all massive modes are ignored and only the massless spectrum is kept. This is equivalent
to ignoring all dynamics in the internal dimensions and is called dimensional reduction.
This is the only consistent truncation of the full theory.
We would like to point out that, as a general rule, a truncation cannot follow from set-
ting some field to a constant value at the level of the action, since not all the truncated
equations of motion can be inferred from a truncated action.

A guiding principle for this technique is that the number of degrees of freedom, or
helicity states, should be conserved by dimensional reduction. Thus, for example, a
massless mode of the graviton in 5 dimensions ĝµ̂ν̂ , that has 5 helicity states, gives rise
in 4 dimensions to a massless graviton gµν with 2 helicity states, a massless vector Aµ
carrying 2 helicity states and a massless scalar k with 1 helicity state. The massless spec-
trum of the reduced theory is then given by {gµν , Aµ, k}; the vector and the scalar are
often dubbed Kaluza-Klein (KK) vector and scalar, respectively.
In a more general case, a d̂-dimensional massless graviton has d̂(d̂−3)

2 helicity states,

while a (p + 1)-form has (d̂−2)!

(p+1)!(d̂−p−3)!
helicity states. In particular, a massless vector

(p = 0) has d̂ − 2 degrees of freedom and a scalar particle (p = −1) always has one.
Therefore, a d̂-dimensional massless graviton is decomposed, in d dimensions, into a
massless graviton, a massless vector field and a scalar; a massless d̂-dimensional (p+ 1)-
form in a d-dimensional (p+ 1)-form and in a p-form; scalars are essentially unaffected.

We are now reducing the massless mode of the d̂-dimensional graviton field to d =

d̂ − 1 dimensions following [39]. It cannot depend on the compact coordinate z. We are
also identifying the d-dimensional fields in which the graviton has split.
We start from a z-independent metric ĝµν , which admits a Killing vector k̂µ̂,

∇̂(µ̂k̂ν̂) = 0 . (2.1)

The d-dimensional spacetime for the lower dimensional theory is defined by those hy-
persurfaces that are orthogonal to the Killing vector. The induced metric on them is

Π̂µ̂ν̂ = ĝµ̂ν̂ −
(
k̂λ̂k̂λ̂

)−1

k̂µ̂k̂ν̂ . (2.2)

In adapted coordinates, where k̂µ̂ = δµ̂z , and keeping in mind that Π̂ and k̂ are orthogo-
nal, we have
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k =
∣∣∣k̂λ̂k̂λ̂∣∣∣ 1

2

=
∣∣ĝzz∣∣ 1

2 , Π̂µ̂z = 0 , gµν ≡ Π̂µν . (2.3)

Taking into account that the fields should have the right transformation properties,
the lower dimensional fields are given by the following natural combinations of higher
dimensional components of the metric

gµν = ĝµν −
ĝµz ĝνz
ĝzz

,

Aµ =
ĝµz
ĝzz

, (2.4)

k =
∣∣ĝzz∣∣ 1

2 .

The inverse transformations, that express the higher dimensional fields in terms of the
lower dimensional ones, can immediately be obtained

ĝµν = gµν − k2AµAν ,

ĝµz = −k2Aµ , (2.5)

ĝzz = −k2 ,

or, equivalently

dŝ2 = ds2 − k2 (dz +A)
2
. (2.6)

In general, after dimensional reductions, global internal transformations give rise
to global symmetries of the lower dimensional theory, which rescale and/or rotate the
fields among themselves. In particular, these symmetries act on the scalar fields and
thus scalars naturally parametrize a σ-model. In the case under study, the scalar k
parametrizes a σ-model with target space R+ .

The relations (2.4) and (2.5) provide the first example of what we have been calling
a dictionary, a complete set of rules relating the fields of two different theories, which
allows mapping the equations of motion of one theory to the equations of motion of
the other one. The procedure we followed automatically ensures that any field config-
uration that solves the lower dimensional equations of motion also solves the higher
dimensional equations of motion, once the relations for the fields are used.
However, performing the dimensional reduction on the equations of motion is in gen-
eral a quite lengthy calculation. To avoid it, Scherk and Schwarz proposed in [39] a
systematic procedure to dimensional reduce the action. Moreover, this procedure em-
ploys the Vielbein formalism, so it can also be applied to fermions. In what follows we
will summarize their procedure.

The relations (2.4, 2.5) we found are conveniently translated to the Vielbein formalism
as
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(
êµ̂
â
)

=

(
eµ
a kAµ

0 k

)
,

(
êâ
µ̂
)

=

(
ea
µ −Aa

0 k−1

)
. (2.7)

We use d-dimensional tangent space indexes for d-dimensional fields that have been
contracted with the d-dimensional Vielbeins, as in Aa = ea

µAµ.
Local Lorentz rotations assures the generality of the upper triangular form, which is
however preserved by a d-dimensional Lorentz subgroup only. In presence of other
symmetries, we would have to add compensating Lorentz transformations to preserve
this choice for the Vielbein.

In order to reduce the action

Ŝ =

∫
dd̂x̂
√
|ĝ|R̂ , (2.8)

we first eliminate the derivatives of the spin connection in

R̂ = 2êâ
µ̂êb̂

ν̂∂[µ̂ω̂ν̂]
âb̂ + ω̂â

âĉω̂b̂
b̂
ĉ + ω̂b̂

âĉω̂âĉ
b̂ (2.9)

by integrating by parts, to obtain the Palatini identity

∫
dd̂x̂
√
|ĝ|KR̂ =

∫
dd̂x̂
√
|ĝ|K

(
− 2∂[µ̂|

(
êâ
µ̂êb̂

ν̂
)
ω̂|ν̂]

âb̂ + 2ω̂â
âb̂
(
∂b̂ lnK

)
+2êb̂

µ̂∂ĉêµ̂
ĉω̂â

âb̂ − ω̂b̂
b̂âω̂ĉ

ĉ
â − ω̂âb̂ĉω̂ĉb̂

â
)
.

(2.10)

We evaluate the non-vanishing components of Ω̂âb̂ĉ = êµ̂âê
ν̂
b̂∂[µ̂êν̂]ĉ exploiting the form

of the Vielbein (2.7)

Ω̂abc = Ωabc , Ω̂abz = −1

2
kFab , Ω̂azz = −1

2
∂a ln k , (2.11)

where Fab = ea
µeb

νFµν and Fµν = 2∂[µAν], and of the spin connection

ω̂abc = ωabc , ω̂abz =
1

2
kFab ,

ω̂zbc = −1

2
kFbc , ω̂zbz = −∂b ln k .

(2.12)

Moreover

√
|ĝ| =

√
|g|k . (2.13)

When all these results are plugged into (2.10), with K = 1, the d̂-dimensional action
is expressed in terms of the d-dimensional quantities as

Ŝ =

∫
dd̂x̂
√
|ĝ|R̂ =∫
dz

∫
ddx
√
|g|k

(
−ωbbaωcca − ωabcωbca + 2ωb

ba∂a ln k − 1

4
k2F 2

)
.

(2.14)
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Nothing depends on the z coordinate and we can integrate over it, obtaining a constant
factor that will be ignored. Using the Palatini identity (2.10) in d dimensions, withK = k,
the d-dimensional action takes a simpler form

S =

∫
ddx
√
|g|k

(
R− 1

4
k2F 2

)
. (2.15)

The result is correct up to total derivatives, that have been ignored when deriving (2.10).

Even if the way in which the KK scalar appears in this action may look unconven-
tional, since no kinetic term is present, its equation of motion is the standard one and is
implicit in the Einstein’s equations.
Another way to see that the KK scalar is dynamical is to rescale the metric to the so-called
Einstein conformal frame. By definition, this frame is the one in which the Einstein-
Hilbert action has the standard form, with no k factors appearing in front of the Ricci
scalar. The metric gµν is related to the Einstein metric gEµν by the conformal factor Ω as

gµν = Ω2gEµν , (2.16)

while for the Ricci scalars we can exploit the identity

R = Ω−2
(
RE + (d− 1)(d− 2) (∂ ln Ω)

2
+ 2(d− 1)∇2

E ln Ω
)
. (2.17)

If the choice Ω = k−
1
d−2 is made, the action in the Einstein frame takes the conven-

tional form

SE =

∫
ddx
√
|gE |

(
RE +

d− 1

d− 2
k−2 (∂k)

2 − 1

4
k2 d−1

d−2F 2

)
. (2.18)

To deal with a scalar presenting the standard kinetic term, the change of variables

k = e
±
√

2 d−2
d−1φ (2.19)

can be performed, to give the following action

SE =

∫
ddx
√
|gE |

(
RE + 2 (∂φ)

2 − 1

4
e
±2

√
2 d−1
d−2φF 2

)
. (2.20)

In the following sections we are showing how the bosonic actions of 6-dimensional
N = (2, 0) and the 5 and 4-dimensionalN = 2 supergravity theories are related through
dimensional reduction on circle. Thanks to these examples, we are clarifying how the
reduction proceeds when fields other than the gravitational one are involved. In fact
scalars, vector fields and 2 and 3-form potentials will be present.
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2.2 From 5 to 4 dimensions

In the present section3, our purpose is to dimensionally reduce the ungauged N = 2

5-dimensional supergravity theory coupled to an arbitrary number nV of vector mul-
tiplets, to 4 dimensions. The first step consists in dimensionally reducing the bosonic
action; as far as the Einstein-Hilbert term is concerned, we are relying on the analysis
that we have already performed, while we are here detailing how the remaining terms,
involving scalars and vector fields, are reduced. Once a 4-dimensional action has been
obtained, we have to identify in it the physical fields of 4-dimensionalN = 2 supergrav-
ity, in presence of vector multiplets. This rewriting of the action in terms of the appro-
priate degrees of freedom will let us notice that only certain models of 4-dimensional
supergravity can be obtained by dimensional reduction, the cubic ones. In particular,
the outlined procedure is providing us with a precise relation between the CIJK ten-
sor defining the 5-dimensional model and the dijk tensor (1.180) in the prepotential of a
cubic 4-dimensional model.

As already stated, the dimensional reduction accounts for a compactification and a
truncation. If the massless sector only is kept, the 5-dimensional graviton ĝµ̂ν̂ will give
rise to a 4-dimensional graviton gµν , a KK vector fieldAµ and a KK scalar k ; every vector
field ÂIµ̂ is going to be reduced in the same way, independently on whether they pertain
to the gravity multiplet, Â0

µ̂, or to one out of the nV5
vector multiplets, providing a vector

and a scalar to the lower dimensional theory. Scalars are substantially unaffected. Upon
combining these fields to recover the action of a 4-dimensional supergravity, we are left
with the set

{
gµν , A

Λ
µ , Z

i
}

, where Λ = {0, i} = {0, I + 1} takes nV5
+ 2 values. In other

words, the resulting theory has the field content of a 4-dimensional N = 2 supergravity
coupled to nV4

= nV5
+ 1 vector multiplets.

2.2.1 Reduction of the fields

We start from the action (1.226)

Ŝ =

∫
d5x
√
|ĝ|

{
R̂+

1

2
ĝxy∂µ̂φ̂

x∂µ̂φ̂y − 1

4
âIJ F̂

I F̂ J +
ε

12
√

3
√
|ĝ|
CIJK F̂

I F̂ J ÂK

}
,

(2.21)
and we assume that the fields do not depend on z. We keep in mind the results for the
Einstein-Hilbert term (2.4,2.5).

We now turn our attention to the term involving the non-linear σ-model; exploiting
the properties of real special geometry, we can introduce the functions ĥI(φ̂), where
I = 0, . . . , nV5

while x = 1, . . . , nV5
, with the constraint

CIJK ĥ
I ĥJ ĥK = 1 (2.22)

3We are here following [54]
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in order to rewrite the kinetic term for the scalars as

1

2
ĝxy∂µ̂φ̂

x∂µ̂φ̂y =
3

2
âIJ∂µ̂ĥ

I∂µ̂ĥJ , (2.23)

where âIJ is the same scalar-dependent kinetic matrix of the vector fields. We recall that
the curved indexes are denoted by Greek letters, and split in µ̂ = {µ, z}, while the flat
indexes are â = {a, z}.
Every ĥI gives rise to a 4-dimensional scalar hI , such that

ĥI = hI , âIJ = aIJ , ∂zĥ
I = 0 , ∂âĥ

I = ∂aĥ
I = ∂ah

I , (2.24)

and the kinetic term in the action is dimensionally reduced to

âIJ∂µ̂ĥ
I∂µ̂ĥJ = aIJ∂µh

I∂µhJ . (2.25)

As far as the vector fields are concerned, in accord with the Scherk-Schwarz formal-
ism, we use flat indexes to identify the lower dimensional field AIa = ÂIa, which is given
by

ea
µAIµ ≡ êaµ̂ÂIµ̂ = ea

µ
(
ÂIµ − ÂIzAµ

)
, (2.26)

while the ÂIz components become d-dimensional massless scalars lI . If (2.4,2.5) are ex-
ploited, the dictionary to reduce and oxidize vector fields is given by

ÂIµ = AIµ + lIAµ , ÂIz = lI ,

AIµ = ÂIµ − ÂIz
ĝµz
ĝzz

, lI = ÂIz .
(2.27)

The d-dimensional field strengths are obtained as

F̂ Iab = êa
µ̂êb

ν̂ F̂ Iµ̂ν̂

= 2êa
µ̂êb

ν̂∂[µ̂Â
I
ν̂] = 2ea

µeb
ν∂[µ

(
AIν] + lIAν]

)
− 2ea

µeb
νAIν∂µl

I

= F Iab + lIFab ,

(2.28)

where (2.7) has been used. In the same way

F̂ Iaz = k−1∂al
I (2.29)

is found and the kinetic term for the vector fields in the action can be written in terms of
4-dimensional quantities only,

âIJ F̂
I
µ̂ν̂ F̂

Jµ̂ν̂ = aIJ
(
F I + lIF

)
µν

(
F J + lJF

)µν − 2k−2aIJ∂µl
I∂µlJ , (2.30)
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where we made use of (2.24).
To reduce the Chern-Simons term, it is convenient to convert it to an expression in-

volving flat indexes only,

CIJK ε̂
µ̂ν̂ρ̂σ̂τ̂ F̂ I µ̂ν̂ F̂

J
ρ̂σ̂Â

K
τ̂ =

√
|ĝ|ε̂âb̂ĉd̂êF̂ I âb̂F̂

J
ĉd̂Â

K
ê , (2.31)

and to relate the 5 and 4-dimensional Levi-Civita symbols via

ε̂abcdz ≡ εabcd . (2.32)

After performing several integrations by parts, the Chern-Simons term becomes

CIJK ε̂F̂
I F̂ J ÂK = CIJKε

(
3lIF JFK + 3lI lJFKF + lI lJ lKFF

)
. (2.33)

Collecting all the partial results, rescaling the action to the Einstein frame and defin-
ing the Hodge dual field strengths as

?Fµν =
1

2
√
|g|
εµνρσFρσ , (2.34)

the following 4-dimensional action is obtained

S =

∫
d4x
√
|g|
{
R+

1

2

(
3k−2 (∂k)

2
+ 3aIJ∂h

I∂hJ + k−2aIJ∂l
I∂lJ

)
− 1

4
kaIJ

(
F I + lIF

) (
F J + lJF

)
− 1

4
k3F 2

+
1

2
√

3
CIJK

(
lIF J ? FK + lI lJFK ? F +

1

3
lI lJ lKF ? F

)}
.

(2.35)

2.2.2 Identification with 4-dimensional supergravity

We now have to rewrite the action we just found as the bosonic action of N = 2 4-
dimensional supergravity

S =

∫
d4x
√
|g|
{
R+ 2Gij∗∂µZi∂µZ∗ j

∗

+ 2=mNΛΣF
ΛµνFΣ

µν − 2<eNΛΣF
Λµν ? FΣ

µν

}
,

(2.36)

identifying the fields, the metric Gij∗ and the period matrixNΛΣ, that have to correspond
to those of some special Kähler geometry. The kinetic term for the scalars in (2.35) can
be rewritten as

3

2
k−2aIJ

(
1√
3
lI + ikhI

)(
1√
3
lJ − ikhJ

)
, (2.37)
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where the role of the scalarZi is played by the combination in brackets
(

1√
3
li−1 + ikhi−1

)
and the Kähler metric Gij∗ ≡ 3

4k
−2ai−1j∗−1 is that of a cubic model (1.183) characterized

by dijk = Ci−1,j−1,k−1, while the Kähler potential is

e−K = 8dIJK=mZi=mZj=mZk = 8k3CIJKh
IhJhK = 8k3 . (2.38)

There are different symplectic equivalent choices for the vector fields. We identify

AΛ =

(
1

2
√

2
A ,− 1

2
√

6
AI=i−1

)
(2.39)

whereAΛ are the fields in (2.36), whileA andAI are those of (2.35). It can be checked [54]
that the period matrix that appears in the action is exactly the expected one, for a cubic
model with the given prepotential.

We are finally summarizing the “dictionary” that allows to reduce 5-dimensional
solutions with one isometry to solution of 4-dimensional supergravity

gµν =
∣∣ĝzz∣∣ 1

2

(
ĝµν −

ĝµz ĝνz
ĝzz

)
,

A0 =
1

2
√

2

ĝµz
ĝzz

,

Ai = − 1

2
√

6

(
Âi−1
µ − Âi−1

z

ĝµz
ĝzz

)
, (2.40)

Zi =
1√
3
Âi−1
z + i

∣∣ĝzz∣∣ 1
2 ĥi−1 ,

dijk = Ci−1j−1k−1 ,

and the inverse one, to uplift to 5-dimension the 4-dimensional solutions

ĝzz = −k2 ,

ĝµz = −2
√

2k2A0
µ ,

ĝµν = k−1gµν − 8kA0
µA

0
ν ,

ÂIz =
√

3<eZI+1 ,

ÂIµ = −2
√

6
(
AI+1
µ −<eZI+1A0

µ

)
,

ĥI = k−1=mZI+1 .

(2.41)

2.3 From 6 to 5 dimensions

We are now going to study the often disregardedN = (2, 0), d = 6 supergravity theories
that have several tensor multiplets with or without vector multiplets. We are particu-
larly interested in how its solutions are related to the supersymmetric solutions of the
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N = 2, d = 5 theories by dimensional reduction on a circle. In fact, in absence of a
classification, uplifting the known, lower dimensional solutions provide a method to
construct new supersymmetric solutions of the N = (2, 0), d = 6 supergravity.

In the case under study, it does not actually seem to be widely known which models
of N = 2, d = 5 supergravity are related by dimensional reduction to which models of
N = (2, 0), d = 6 supergravity theories. Thus, our first task is to perform the dimen-
sional reduction of a general, ungauged, N = (2, 0), d = 6 supergravity theory with an
arbitrary number of tensor and vector multiplets to d = 5 and to identify to which model
ofN = 2, d = 5 supergravity it gives rise. Since the hypermultiplets do not couple to the
vector and tensor multiplets, their reduction clearly leads to 5-dimensional hypermulti-
plets with exactly the same quaternionic-Kähler geometry.
A careful identification of the 5-dimensional fields will provide us with the dictionary
we need to reduce and uplift solutions.

As we are going to demonstrate, the identification of the 5-dimensional models leads
to a surprise: there are two different families of N = (2, 0), d = 6 supergravity models
related to the same family of N = 2, d = 5 supergravity models: the one with 1 tensor
multiplet and nV 6 vector multiplets (that we have been calling N = 2A, d = 6 theories)
and those with only nT = nV 6 + 1 tensor multiplets (that we are going to call N =

2B, d = 6 theories) give exactly the same family of models of N = 2, d = 5 supergravity
coupled to nV 5 = nV 6 + 2 vector multiplets characterized by a symmetric tensor CIJK
with non-vanishing components C0 r+1 s+1 = 1

3!ηrs, where r, s = 0, · · · , nV 6 + 1 and
ηrs = diag(1,−1, . . . ,−1).
TheN = 2A, d = 6 theories are related to the toroidal compactification and truncation of
the Heterotic String. We also consider the 6-dimensional theories obtained by dualizing
the 3-form field strength, related to the compactification of the type IIA superstring on
K3. We call them N = 2A∗, d = 6 theories.

As already stated, this situation is analogous to what happens when we dimension-
ally reduce the two maximal 10-dimensional supergravities, N = 2A and N = 2B, on a
circle and we find the same 9-dimensional maximal supergravity [96], which is unique.
In that case, this coincidence is interpreted as a manifestation -at the effective field the-
ory level- of the T-duality existing between the two type II superstrings [97–99]. The
relation between the fields of the two 10-dimensional supergravities and those of the
9-dimensional one leads to a direct relation between the 10-dimensional fields of the
two theories: the type II generalization of the Buscher T-duality rules [100–102] that
transform a solution of one of the 10-dimensional theories admitting one isometry into
another solution of the other theory (also admitting one isometry) [96].

In the present case it is not clear which is the superstring theory associated to theN =

2B, d = 6 theories (if any), but the relation we have found leads to a new generalization
of the Buscher rules for 6-dimensional solutions of these theories admitting one isometry.

It is normally convenient to work with the action of a theory but, in general, these
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theories do not have a covariant action, due to (anti-) selfduality constraints satisfied by
the 3-forms [87]. Nevertheless, it is sometimes possible to construct pseudoactions [103]
which give the correct equations of motion of the theory upon use of the (anti-) selfdual-
ity constraints in the Euler-Lagrange equations that follow from them. The action of the
dimensionally reduced theory can then be derived performing the following steps:

• Dimensionally reduce the pseudoaction and the (anti-) selfduality constraints in
the standard way.

• Poincaré-dualize the highest-rank potentials arising from the (anti-) selfdual po-
tentials in the dimensionally-reduced pseudoaction.

• Identify the resulting potentials with the lowest-rank potentials arising from the
(anti-) selfdual potentials. This identification should be completely equivalent to
the use of the dimensionally reduced (anti-) selfduality constraint in the action.

A well-known example of this procedure is the dimensional reduction to d = 9 of the
N = 2B, d = 10 supergravity theory [104–106] carried out in [107]: in this case there is
a RR 4-form potential Ĉ(4) whose 5-form field strength Ĝ(5) is selfdual Ĝ(5) = ?10Ĝ

(5)

and the equations of motion can be derived from the pseudoaction constructed in [103]
by imposing a selfduality constraint. The dimensional reduction of the 4-form poten-
tial Ĉ(4) gives rise to a 4- and a 3-form C(4), C(3) potentials whose 5- and 4-form field
strengths G(5) and G(4) are related by the dimensionally reduced selfduality constraint
G(5) ∼ ?G(4). Following the above recipe, in [107] the pseudoaction and selfduality con-
straint were reduced to d = 9 first. Then, the 9-dimensional 4-form potential C(4) was
Poincaré-dualized into a 9-dimensional 3-form potential C̃(3) in the pseudoaction. At
this point the theory has two different 3-form potentials C̃(3) and C(3) and the selfdu-
ality constraint takes the form G̃(4) = G(4) indicating that the two 3-forms are one and
the same C̃(3) = C(3). Making this identification in the pseudoaction gives the correct
9-dimensional action.

In the case at hands, the bosonic equations of motion can be found by varying the
pseudoaction (1.246) with no hypermultiplets

Ŝ =

∫
d6x̂
√
|ĝ|
{
R̂− ∂âL̂r∂âL̂r + 1

3MrsĤ
r
âb̂ĉĤ

s âb̂ĉ

− L̂rcrijF̂ iâb̂F̂
j âb̂ − 1

4cr ij ε̂
âb̂ĉd̂êf̂ B̂râb̂F̂

i
ĉd̂F̂

j
êf̂

}
.

(2.42)

and imposing on the resulting equations of motion the (anti-) selfduality conditions
(1.243). However, due to the Chern-Simons term, this action is gauge invariant if and
only if the following condition holds [108]

ηrsc
r
i(jc

s
kl) = 0 . (2.43)

We are assuming it to hold throughout. Only in this way, consistent 5-dimensional the-
ories can be obtained.
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2.3.1 Reduction of the fields

Having described the bosonic sector of the theories we want to study, we are now ready
to reduce them to d = 5.

We are going to follow the standard procedure proposed in [39] with the particular
conventions of [54] we have been using so far. Thus, we assume that none of the fields
depend explicitly on the compact coordinate z. We split the world and tangent-space
indexes as we have done in the previous sections,

µ̂ = (µ, z) , â = (a, z) , (2.44)

and we decompose the components of the Sechsbein basis êâµ̂, which we have chosen to
be upper-triangular, into those of a Fünfbein eaµ, a Kaluza-Klein (KK) vector Aµ and a
KK scalar k as in (2.7).

The scalars are the same z-independent functions in both dimensions. In particular,
L̂r = Lr.

The vector fields Âi decompose into vector fields Ai and scalar fields li as

Âia ≡ Aia ⇔ Âiµ = Aiµ + liAµ , (2.45)

Âiz ≡ k−1li ⇔ Âiz = li . (2.46)

This leads to the following decomposition of the vector field strengths

F̂ iab = F iab = F iab + liFab , (2.47)

F̂ iaz = k−1∂al
i , (2.48)

where F i and F are the 5-dimensional field strengths

F i ≡ dAi , F ≡ dA . (2.49)

Each 2-form B̂r produces a 2- and 1-form in five dimensions (Br andAr respectively);
they will be related by the (anti-) selfduality constraints. It turns out that the following
definitions give potentials with good gauge transformation properties

B̂rµz ≡ Arµ + 1
2c
r
ij l
iAjµ , (2.50)

B̂rµν ≡ Brµν −A[µA
r
ν] − crijA[µA

i
ν]l
j . (2.51)

The 3-form field strengths Ĥr decompose in

Ĥr
abc ≡ Hr

abc , (2.52)
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Ĥr
abz ≡ k−1Frab ≡ k−1

[
F r + crij l

iF j + 1
2c
r
ij l
iljF

]
, (2.53)

where

Hr = dBr − 1
2F ∧A

r − 1
2F

r ∧A+ 1
2c
r
ijF

i ∧Aj , (2.54)

F r = dAr . (2.55)

This completely fixes the reduction of fields and field strengths. Plugging these de-
compositions in the pseudoaction (2.42) together with the decomposition of the Levi-
Civita symbol

ε̂abcdez ≡ εabcde , (2.56)

we get the 5-dimensional pseudoaction

S =

∫
d5x
√
|g|k

{
R− 1

4k
2F 2 − ∂µLr∂µLr + 2k−2Lrc

r
ij∂µl

i∂µlj

+ 1
3MrsH

rHs − k−2MrsFrFs − LrcrijF iF j

+
k−1ε

6
√
|g|
cr ij

[
Hr(F ilj − 2∂liAj)− 3FrF iAj

] }
,

(2.57)

where the indexes are assumed to be contracted in the obvious way: FrFs ≡ FrµνFs µν ,
εHrcr ij(F ilj − 2∂liAj) = εµνρκσHr

µνρcr ij(F iκσlj − 2∂[κl
iAjσ]), etc.

Finally, we perform a rescaling of the metric in order to express the action in the
Einstein frame, with metric gE µν

gµν = k−2/3gE µν , (2.58)

and redefine the KK scalar k in order to give it a kinetic term with standard normaliza-
tion

k = e
√

3/8φ . (2.59)

The result, up to total derivatives, is the pseudoaction

S =

∫
d5x
√
|gE |

{
RE + 1

2 (∂φ)2 − ∂µLr∂µLr + 2e−
√

3/2φLrc
r
ij∂µl

i∂µlj − 1
4e
√

8/3φF 2

− e−
√

2/3φMrsFrFs − Lrcrijeφ/
√

6F iF j + 1
3e
√

2/3φMrsH
rHs

+
ε

6
√
|gE |

cr ij
[
Hr(F ilj − 2∂liAj)− 3FrF iAj

] }
.

(2.60)
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The reduction of the (anti-) selfduality constraints offers no problems and becomes a
duality relation between the 2- and 1-form potentials Br, Ar

MrsH
s = −e−

√
2/3φηrs ? Fs . (2.61)

The equations of motion of the 5-dimensional theory can be obtained by varying the
above pseudoaction and imposing the duality constraints. However, in order to identify
the resulting 5-dimensional theories with known models of N = 2, d = 5 supergravity
coupled to vector multiplets, it is convenient to eliminate this constraint. We are accom-
plishing this task thanks to the procedure we outlined previously.

2.3.2 Dualization

As already explained, we are going to Poincaré dualize the 2-forms Br into 1-forms Ãr.
First, we are going replace the 2-forms Br by their 3-form field strengths Hr as vari-
ables of the pseudoaction (2.60). This is possible because the pseudoaction only depends
on the 2-forms through their field strengths. However, we have to add a Lagrange-
multiplier term to enforce the Bianchi identities of the Hr, which have the form

4∂[µH
r
νρσ] + 6F r [µνFρσ] − 3crijF

i
[µνF

j
ρσ] = 0 . (2.62)

The term to be added takes the form

ε√
|gE |

Ãr

(
∂Hr + 3

2F
rF − 3

4c
r
ijF

iF j
)
, (2.63)

where the Lagrange multiplier is the 1-form field Ãr.
Adding this term to the pseudoaction and integrating it by parts, we get

S =

∫
d5x
√
|gE |

{
RE + 1

2 (∂φ)2 − ∂µLr∂µLr + 2e−
√

3/2φLrc
r
ij∂µl

i∂µlj − 1
4e
√

8/3φF 2

− e−
√

2/3φMrsFrFs − Lrcrijeφ/
√

6F iF j + 1
3e
√

2/3φMrsH
rHs

+
ε

6
√
|gE |

[
cr ijH

r(F ilj − 2∂liAj)− 3cr ijFrF iAj

+3F̃r(H
r + 3

2FA
r + 3

2F
rA− 3

2c
r
ijF

iAj)
]}

,

(2.64)

where

F̃r ≡ dÃr . (2.65)

Since in this pseudoaction Hr is an independent field, we can compute its field equa-
tion, which relates it to F̃r. It is given by
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MrsH
s = − 1

2e
−
√

2/3φ ?
[
cr ij(F ilj − 2∂liAj) + 3F̃r

]
. (2.66)

We are using this equation to eliminate Hr completely from the pseudoaction and from
the duality relation (2.61). After this operation, the 2-forms Br will disappear from both,
having been replaced by the dual 1-forms Ãr. After this replacement, the constraint
reads

F̃r = 2
3

(
ηrsF

s + cr ij∂(liAj)
)
, (2.67)

which implies the following algebraic relation between potentials

Ãr = 2
3ηrsA

s + 1
3cr ij l

iAj , (2.68)

that can be used in the pseudoaction to eliminate Ãr completely. In this way, the only
fields remaining from the reduction of the 2-forms Br are the 1-forms Ar. Furthermore,
there are no constraints to be imposed, so that the pseudoaction has become a standard
action

S =

∫
d5x
√
|gE |

{
RE + 1

2 (∂φ)2 − ∂µLr∂µLr + 2e−
√

3/2φLrc
r
ij∂µl

i∂µlj

− 1
4e
√

8/3φF 2 − 2e−
√

2/3φMrsFrFs − Lrcrijeφ/
√

6F iF j

+
ε√
|gE |

(
ηrsF

rF sA− cr ijF iF jAr
)}

.

(2.69)

2.3.3 Identification with 5-dimensional supergravity

The next step is to identify the previous theory as a model of N = 2, d = 5 supergravity
coupled to nV 5 vector multiplets. As already explained in section 1.3, these theories
contain nV 5 + 1 1-form fields AI , I, J, . . . = 0, 1, · · · , nV 5 and nV 5 scalars φx, x, y, . . . =

1, · · · , nV 5.

In order to identify the models corresponding to the theories we have obtained by
dimensional reduction, we start by rescaling the vector fields

A→ 1√
12
A , Ar → 1√

12
Ar , Ai → 1√

12
Ai , (2.70)

so that the action becomes
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S =

∫
d5x
√
|gE |

{
RE + 1

2 (∂φ)2 − ∂µLr∂µLr + 2e−
√

3/2φLrc
r
ij∂µl

i∂µlj

− 1
48e
√

8/3φF 2 − 1
12Lrc

r
ije

φ/
√

6(F iµν + liFµν)(F jµν + ljFµν)

− 1
6e
−
√

2/3φMrs

(
F rµν + crij l

iF jµν + 1
2c
r
ij l
iljFµν

)(
F sµν + csij l

iF jµν + 1
2c
s
ij l
iljFµν

)
+

ε

12
√

3
√
|gE |

(
1
2ηrsF

rF sA− 1
2cr ijF

iF jAr
)}

.

(2.71)

Comparing this theory to (1.226), we immediately notice that there is a total of nT +

nV + 2 1-forms, therefore we are in presence of a theory coupled to nV 5 = nT + nV + 1

vector multiplets. We can decompose the 5-dimensional index I as I = {0, r+1, i+nT+1}
where the indexes take the values r = 0, . . . , nT , i = 1, . . . , nV , and we identify

A0 = A , AI=r+1 = Ar , AI=i+nT+1 = Ai , (2.72)

where the fields in the l.h.s.’s are those of (1.226), while the fields in the r.h.s.’s are those
of (2.71).

We can also identify the components of the CIJK tensor that characterizes the model
of N = 2, d = 5 supergravity

C0 r+1 s+1 = 1
3!ηrs , Cr+1 i+nT+1 j+nT+1 = − 1

3!cr ij . (2.73)

We are discussing the properties of these models later on, focusing on two particular
subfamilies. Since the tensor CIJK has been given, the expected forms of aIJ and gxy are
known, so that we are able to identify the scalar fields of (2.71) with the scalar functions
hI and with the physical scalars φx.

The components of aIJ in (2.71) are

a00 = 1
12

[
e2φ/

√
6 + 2Lrξ

re−φ/
√

6
]2
,

a0 r+1 = 1
3Mrsξ

se−
√

2/3φ,

a0 i+nT+1 = 1
3Lrc

r
ij l
je−φ/

√
6
(
e2φ/

√
6 + 2Lsξ

se−φ/
√

6
)
,

ar+1 s+1 = 2
3e
−
√

2/3φMrs,

ar+1 i+nT+1 = 2
3e
−
√

2/3φMrsc
s
ij l
j ,

ai+nT+1 j+nT+1 = 2
3e
−
√

2/3φMrsc
r
ikc

s
jll
kll + 1

3e
φ/
√

6Lrc
r
ij ,

(2.74)

where ξr ≡ crij l
ilj and we have made some simplifications by using the properties

LrLr = 1, ξrξr = 0, ξrcr ij li = 0 andMrs = 2LrLs − ηrs. Finally, when the set (φx) =



72 2.3 From 6 to 5 dimensions

(φ1, · · · , φnV +nT+1) = (φ, ϕα, li) is identified as the set of the physical scalar fields, we
deduce from (2.71) that the block-diagonal components of gxy only are non-vanishing,

g11 = 1 ,

gα+1 β+1 = −2∂αL
r∂βLr,

gi+nT+1 j+nT+1 = 4e−
√

3/2φLrc
r
ij .

(2.75)

Comparing these expressions with the formulas (1.224) and (1.223) for the theories
with symmetric tensor given by (2.73) we conclude that the scalar functions hI are given
by

h0 = 2e−2φ/
√

6 , hr = Lreφ/
√

6 + ξre−2φ/
√

6 , hi = −2e−2φ/
√

6li . (2.76)

For the sake of convenience we also give the hI , defined as in (1.225)

h0 = 1
6

(
e2φ/

√
6+2ξrL

re−φ/
√

6
)
, hr = 2

3Lre
−φ/
√

6 , hi = 2
3e
−φ/
√

6cr ijL
rlj . (2.77)

In what follows, we will be interested in two particular cases, which correspond to
models of the same family with all the scalars in symmetric spaces SO(1, n)/SO(n) for
some value of n:

• nV = 0, which has SO(1, nT + 1)/SO(nT + 1);

• nT = 1, which has SO(1, nV + 2)/SO(nV + 2).

The next paragraphs consist of a close review of these models.

Case nV = 0

If the starting point is a 6-dimensional theory with an arbitrary number nT of tensor
multiplets and no vector multiplets, the 5-dimensional model that is obtained when go-
ing through the procedure outlined so far presents nV 5 = nT + 1 vector multiplets and
is characterized by

C0rs = 1
3!ηrs . (2.78)

We are using the parametrization

h0 = 2e−2φ1/
√

6 , hr = eφ
1/
√

6Lr , (2.79)

where Lr = Lr(φ2, · · · , φnT+1).
The nV 5 = nT+1 scalars of these models parametrize the coset SO(1, nT+1)/SO(nT+

1).
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Upon further dimensional reduction, the ST [2, nT +2] model ofN = 2, d = 4 supergrav-
ity is obtained. It is coupled to nV 4 = nV 5 +1 = nT +2 vector multiplets, parameterizing
the coset space SL(2,R)

SO(2) ×
SO(2,nT+1)

SO(2)×SO(nT+1) .

Case nT = 1

If we start instead from a 6-dimensional theory with nT = 1, an arbitrary number of
vector multiplets nV and choose the coefficients cr ij to be

c0 ij = c1 ij = δij , (2.80)

which is a particularly simple solution of the constraint (2.43), we are then dealing with
theories containing two 2-forms of opposite selfduality that can be combined into a sin-
gle, unconstrained, 2-form that can be identified with the Kalb-Ramond field, a single
scalar that can be identified with the dilaton field and a set of Abelian vector fields.
These theories can be obtained by toroidal compactification of the Heterotic String the-
ory to 6 dimensions and subsequent truncation, assuming that the number of Abelian
vectors does not exceed 16.

We are now showing how, upon dimensional reduction, these theories end up be-
longing to the same family as those of the previous nV = 0 case.

With the above choice of coefficients, the parametrization of h̃i is given by4

h̃0 = 2e−2φ/
√

6 , h̃1 = L̃0eφ/
√

6 + l2e−2φ/
√

6 ,

h̃2 = L̃1eφ/
√

6 − l2e−2φ/
√

6 , h̃i = −2e−2φ/
√

6li .
(2.81)

These functions satisfy the equation

1 = C̃IJK h̃
I h̃J h̃K = 1

2 h̃
0
[
(h̃1)2 − (h̃2)2

]
− 1

2 (h̃1 + h̃2)h̃ih̃i . (2.82)

However, we are free to make linear transformations of the h̃I and AI in order to
obtain equivalent theories. In particular, if we perform the following transformation
(h̃0, h̃1, h̃2, h̃i)→ (h0, hr), with r = 1, 2, i+ 2,

h̃0 = h1 + h2,

h̃1 = 1
2 (h0 + h1 − h2),

h̃2 = 1
2 (h0 − h1 + h2),

h̃i = hi+2 ,

(2.83)

the new variables still satisfy

1 = 1
2h

0
(
(h1)2 − (h2)2 − hi+2hi+2

)
= 1

2h
0hrhsηrs ≡ CIJKhIhJhK , (2.84)

4We are going to denote the objects of these theories with tildes.
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so these models are equivalent to those with C0rs = 1
3!ηrs.

We conclude that N = (2, 0), d = 6 supergravity coupled to nT tensor multiplets
gives the same 5-dimensional supergravity model asN = (2, 0), d = 6 supergravity cou-
pled to just 1 tensor multiplet and and nV = nT − 1 vector multiplets. Furthermore, the
5-dimensional theory that is obtained by dimensional reducing these two 6-dimensional
theories can be embedded in Heterotic String theory.

These two 6-dimensional supergravity theories, dimensionally reduced on a circle,
are dual in the same sense in which the 10-dimensionalN = 2A andN = 2B supergrav-
ity theories are T-dual [96], a fact related to the T-duality of the type IIA and IIB super-
string theories compactified on circles of dual radii [97–99]. Before interpreting this du-
ality between supergravity theories in the context of superstring theory as a large-small
radii or coupling constant duality, we need to find the dictionary that relates the fields of
both 6-dimensional theories. This dictionary will be the analogous of the Buscher rules
for T-duality [96, 100–102, 109] and it will allow us to transform any solution of one of
these theories admitting one isometry into a solution of the dual theory.

The initial step to derive this dictionary consists in finding out how each solution of
the 5-dimensional theory can be oxidized to two different solutions of the two different 6-
dimensional theories: one which only contains chiral 2-forms and one with a non-chiral
2-form and vector fields.

We recall that, in what follows, we are going to rename asN = 2A the 6-dimensional
supergravity theories with just one tensor multiplet, nV vector multiplets and c0 ij =

c1 ij = δij , while the dual theories with nT = nV + 1 tensor multiplets and no vector
multiplets are going to be called N = 2B theories.

We are now focusing on the 5-dimensional theories with nV 5 = nV + 2 vector multi-
plets which have these two possible 6-dimensional origins.

2.4 Uplifting solutions to 6 dimensions

Let us consider the family of N = 2, d = 5 theories coupled to nV 5 = nV + 2 vector
multiplets and characterized by a tensor CIJK , I = 0, · · · , nV + 2 of the form C0rs =
1
3!ηr+1 s+1, r, s, . . . = 0, · · · , nV + 1.
The scalar functions hI can be parametrized in terms of the physical scalars as

h0 = 2e−2φ1/
√

6 , hr+1 = Lreφ
1/
√

6 , (2.85)

where the functions Lr only depend on the scalars φ2, · · · , φnV +2, and satisfy

LrLsηrs = 1 . (2.86)
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The action can be written in terms of these functions plus the scalar φ1. It takes the
form

S =

∫
d5x
√
|g|

{
R+ 1

2 (∂φ1)2 − ∂µLr∂µLr − 1
48e

4φ1/
√

6F 0F 0

− 1
6e
−2φ1/

√
6MrsF

r+1F s+1 +
ε

24
√

3
√
|g|
ηrsF

r+1F s+1A0

}
,

(2.87)

where we denoted

Lr = ηrsL
s and Mrs = 2LrLs − ηrs . (2.88)

For our purposes, though, it is convenient to express everything in terms of the aux-
iliary functions hI , so that

Lr = hr+1
√
h0/2 , Lr = hr+1/

√
h0/2 , Mrs = 4

hr+1hs+1

h0
− ηrs. (2.89)

According to our previous discussion, this theory can be uplifted to two different
6-dimensional theories. The explicit form it takes is presented in the following sections.

2.4.1 Uplift toN = 2B, d = 6 supergravity

N = 2B, d = 6 supergravity is the name we have given to the theories ofN = (2, 0), d =

6 supergravity coupled to nT = nV + 1 tensor multiplets only. The equations of motion
of this theory can be obtained form the pseudoaction

Ŝ =

∫
d6x̂
√
|ĝ|
{
R̂− ∂âL̂r∂âL̂r + 1

3M̂rsĤ
r
âb̂ĉĤ

s âb̂ĉ
}
, (2.90)

supplemented by the (anti-) selfduality conditions

M̂rsĤ
r = −ηrs ? Ĥs . (2.91)

Then, according to our previous results, the 6-dimensional fields of this theory can
be expressed in terms of those of the 5-dimensional theory (2.90) as follows.

Scalars

The physical scalars ϕ̂α and the functions L̂r, whereα = 1, · · · , nV +1 and r = 0, · · · , nV +

1, are given by

ϕ̂α = φα+1 ,

L̂r(ϕα) = hr+1

(
h0

2

)1/2

.
(2.92)
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Metric

The 6-dimensional metric components are

ĝzz = −
(
h0

2

)−3/2

,

ĝµz = − 1√
12

(
h0

2

)−3/2

A0
µ ,

ĝµν =

(
h0

2

)1/2

gµν − 1
12

(
h0

2

)−3/2

A0
µA

0
ν ,

(2.93)

or, equivalently

dŝ2 = −
(
h0

2

)−3/2 [
dz + 1√

12
A0
]2

+

(
h0

2

)1/2

ds2 . (2.94)

2-forms

We only need the B̂rµz components of the 2-forms, because the rest of them are deter-
mined through the duality relations (2.91). We have

B̂rµz = 1√
12
Ar+1

µ . (2.95)

The expression of the 3-form field strengths in the Vielbein basis could also be useful

Ĥr
abz = 1√

12

(
h0

2

)2

F r+1
ab ,

Ĥr
abc = − 1

2
√

12

(
h0

2

)
Mr

sεabcdeF
s+1 de ,

(2.96)

where F s+1 de and εabcde are 5-dimensional quantities.

2.4.2 Uplift toN = 2A, d = 6 supergravity

N = 2A, d = 6 supergravity is the name we have given to the theories of N = (2, 0), d =

6 supergravity coupled to nT = 1 tensor multiplets and nV vector multiplets, with c0 ij =

c1 ij = δij , i = 1, · · · , nV . Since in this case the two 2-forms have opposite chiralities, they
can be combined into a single, unrestricted, 2-form that we are going to denote by B̃ (no
indexes) and a standard covariant action exists, from which the equations of motion can
be directly derived. It takes the form

S̃ =

∫
d6x̃
√
|g̃|
{
R̃+ 1

2 (∂ϕ̃)2 + 1
3e
√

2ϕ̃H̃2 − eϕ̃/
√

2F̃ iF̃ i
}
, (2.97)
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where we are now using tildes instead of hats in order to distinguish these fields from
those in the N = 2B theory and from the 5-dimensional ones. In this action, i =

1, · · · , nV and the 3-form field strength is defined as

H̃ = dB̃ + F̃ i ∧ Ãi . (2.98)

This theory is obtained when the functions L̃r, r = 0, 1 are parametrized as

L̃0 = cosh

(
ϕ̃√
2

)
, L̃1 = sinh

(
ϕ̃√
2

)
, (2.99)

and H̃ and B̃ are related to the fields H̃r and B̃r appearing in (2.42) by

B̃ = B̃0 − B̃1 , H̃ = H̃0 − H̃1 . (2.100)

Such a theory is obtained from the compactification of N = 1, d = 10 supergravity
coupled to vector multiplets (the effective field theory of the Heterotic String) on T 4

followed by a truncation. In particular, the scalar ϕ̃ is related to the dilaton field of the
Heterotic String by

ϕ̃ = −
√

2φhet . (2.101)

As we have already pointed out, this theory gives (2.87) when reduced to five dimen-
sions, exactly as in the N = 2B case.
To express the 6-dimensional fields in terms of the 5-dimensional ones, the linear trans-
formation (2.83) have to be taken into account. In this way, the transformation rules for
the vector fields are straightforwardly obtained. The relations among the scalar fields
arise once the parameterizations (2.85) and (2.81) are considered. The outcome is given
by the following expressions.

Scalar

The dilaton is related to the 5-dimensional scalars by

eϕ̃/
√

2 = 2−1/2h0(h1 + h2)1/2 . (2.102)

Metric

The KK scalar φ and the KK vector Aµ are given by

e−2φ/
√

6 = 1
2 (h1 + h2) , Aµ = 1√

12
(A1

µ +A2
µ) , (2.103)

and, therefore, the metric can be expressed as
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g̃zz = −23/2(h1 + h2)−3/2 ,

g̃µz = −
√

2/3(h1 + h2)−3/2(A1
µ +A2

µ) ,

g̃µν = 1√
2
(h1 + h2)1/2gµν − 1

3
√

2
(h1 + h2)−3/2(A1 +A2)µ(A1 +A2)ν ,

(2.104)

or equivalently, as

ds̃2 = −23/2(h1 + h2)−3/2
[
dz + 1√

12
(A1 +A2)

]2
+ 2−1/2(h1 + h2)1/2ds2 . (2.105)

Vectors

The 1-form potentials are given by

Ãiz = − hi+2

h1 + h2
,

Ãiµ = 1√
12

[
Ai+2

µ + Ãiz(A
1
µ +A2

µ)
]
,

(2.106)

or equivalently, by

Ãi = 1√
12
Ai+2 − hi+2

h1 + h2

[
dz + 1√

12
(A1 +A2)

]
. (2.107)

2-form

The components B̃µz can be easily found to be

B̃µz = 1√
12

(A1
µ −A2

µ) . (2.108)

The other components, B̃µν , are independent and have to be explicitly given. They
do not have a simple expression, though, and we must content ourselves with the field
strength components instead

H̃µνz = 1√
3
(h1 + h2)−1

{[
h1 − [h0(h1 + h2)]−1

]
F 1

µν

−
[
h2 + [h0(h1 + h2)]−1

]
F 2

µν + hiF iµν

}
, i ≥ 3 ,

H̃µνρ = − 1
4
√

3
(h0)−2 εµνραβ√

|g|
F 0αβ +

√
3

2 (A1
[ρ +A2

[ρ)H̃µν]z .

(2.109)

2.4.3 Uplift toN = 2A∗, d = 6 supergravity

The theory that we have been calling N = 2A, d = 6 supergravity is not uniquely de-
fined. Another theory can be obtained, that we are going to dub N = 2A∗, d = 6 super-
gravity, when the field strength H̃ is dualized into H̆ ,



Dimensional reduction 79

H̆ = −e
√

2ϕ̃ ? H̃ . (2.110)

In the Einstein frame, the 2-form field strength is the only field which varies due to this
transformation. However, we are denoting all the fields in this theory with a ˘ accent. It
turns out that this new field strength is an exact 3-form,

H̆ = dB̆ , (2.111)

where H̆ and B̆ are related to Ĥr and B̂r in the theory (2.42) with nT = 1, arbitrary nV
and c0 ij = c1 ij = δij by

H̆ = Ĥ0 + Ĥ1 , B̆ = B̂0 + B̂1 . (2.112)

We would like to point out that the absence of a Chern-Simons term in H̆ is due to the
cancellation among those in Ĥ0 and Ĥ1 and not to the vanishing of the constants crij .

The action is

S̆ =

∫
d6x̆
√
|ğ|

{
R̆+ 1

2 (∂ϕ̆)2 + 1
3e
−
√

2ϕ̆H̆2 − eϕ̆/
√

2F̆ iF̆ i − ε

3
√
|g|
H̆F̆ iĂi

}
. (2.113)

This theory can be obtained from the effective field theory of the type IIA superstrings
compactified on K3 [75, 99, 110–112] followed by a truncation. In particular, the scalar ϕ̆
(which coincides with ϕ̃), is related to the dilaton of that superstring theory by

ϕ̆ =
√

2φIIA . (2.114)

The different coupling of the dilaton field to the vector fields, with respect to the
N = 2A case, is mainly due to the fact that RR fields are now present, instead of NSNS
ones.

All the fields can be expressed in terms of the 5-dimensional ones as in the previous
case (2.102,2.105,2.107), except for the 2-form B̆, whose components µz now are given
by

B̆µz = 1√
12
A0

µ . (2.115)

The 3-form field strength is

H̆µνz = 1√
12
F 0

µν ,

H̆µνρ = − 1
8
√

3
(h0)2(h1 + h2)

εµνραβ√
|g|

{[
h1 − [h0(h1 + h2)]−1

]
F 1αβ

−
[
h2 + [h0(h1 + h2)]−1

]
F 2αβ + hiF i αβ

}
+
√

3
2 (A1

[ρ +A2
[ρ)H̆µν]z ,

i ≥ 3 .

(2.116)
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2.5 Maps between 6-dimensional theories

All the results we presented so far are necessary to generalize the Buscher rules, connect-
ing directly the N = 2A, 2A∗ and 2B theories. In what follows, we are summarizing the
rules to express the fields of one theory in terms of those of another one.

FromN = 2B toN = 2A

e
√

2ϕ̃ = −2
L̂0 + L̂1

ĝzz
,

g̃zz = −23/2(L̂0 + L̂1)−3/2|ĝzz|−1/2 ,

g̃µz = −23/2(L̂0 + L̂1)−3/2|ĝzz|−1/2(B̂0 + B̂1)µz ,

g̃µν = 2−1/2(L̂0 + L̂1)1/2
[
|ĝzz|1/2ĝµν + |ĝzz|−1/2ĝµz ĝνz

]
− 23/2(L̂0 + L̂1)−3/2|ĝzz|−1/2(B̂0 + B̂1)µz(B̂

0 + B̂1)νz ,

Ãiz = − L̂i+1

L̂0 + L̂1
,

Ãiµ = B̂i+1
µz −

L̂i+1

L̂0 + L̂1
(B̂0 + B̂1)µz ,

B̃µz = (B̂0 − B̂1)µz .

(2.117)

FromN = 2A toN = 2B

∣∣ĝzz∣∣ = 2
3
2 e
− 3

2
√

2
ϕ̃ ∣∣g̃zz∣∣− 1

2 ,

ĝµz = −2
3
2 e
− 3

2
√

2
ϕ̃ ∣∣g̃zz∣∣− 1

2 (B̃0 + B̃1)µz ,

ĝµν = 2−
1
2

∣∣g̃zz∣∣ 1
2 e

ϕ̃

2
√

2

(
g̃µν −

g̃µz g̃νz
g̃zz

)
+ 2

3
2 e
− 3

2
√

2
ϕ̃ ∣∣g̃zz∣∣− 1

2 (B̃0 + B̃1)µz(B̃
0 + B̃1)νz ,

L̂0 = 2−
3
2 e
− ϕ̃

2
√

2

∣∣g̃zz∣∣ 1
2 + 2−

1
2 e

ϕ̃

2
√

2

∣∣g̃zz∣∣− 1
2

(
1 + ÃrzÃ

r
z

)
, r > 1 ,

L̂1 = −2−
3
2 e
− ϕ̃

2
√

2

∣∣g̃zz∣∣ 1
2 + 2−

1
2 e

ϕ̃

2
√

2

∣∣g̃zz∣∣− 1
2

(
1− ÃrzÃrz

)
, r > 1 ,

L̂r = −
√

2
∣∣g̃zz∣∣− 1

2 e
ϕ̃

2
√

2 Ãr−1
z , r ≥ 2 ,

B̂0
µz = 1

2

(
B̃µz +

g̃µz
g̃zz

)
,

B̂1
µz = 1

2

(
−B̃µz +

g̃µz
g̃zz

)
,

B̂rµz = Ãr−1
µ − Ãr−1

z
g̃µz
g̃zz

, r ≥ 2 .

(2.118)
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FromN = 2B toN = 2A∗

e
√

2ϕ̆ = −2
L̂0 + L̂1

ĝzz
,

ğzz = −23/2(L̂0 + L̂1)−3/2|ĝzz|−1/2 ,

ğµz = −23/2(L̂0 + L̂1)−3/2|ĝzz|−1/2(B̂0 + B̂1)µz ,

ğµν = 2−1/2(L̂0 + L̂1)1/2
[
|ĝzz|1/2ĝµν + |ĝzz|−1/2ĝµz ĝνz

]
− 23/2(L̂0 + L̂1)−3/2|ĝzz|−1/2(B̂0 + B̂1)µz(B̂

0 + B̂1)νz ,

Ăiz = − L̂i+1

L̂0 + L̂1
,

Ăiµ = B̂i+1
µz −

L̂i+1

L̂0 + L̂1
(B̂0 + B̂1)µz ,

B̆µz =
ĝµz
ĝzz

.

(2.119)

FromN = 2A∗ toN = 2B∣∣ĝzz∣∣ = 2
3
2 e
− 3

2
√

2
ϕ̆ ∣∣ğzz∣∣− 1

2 ,

ĝµz = −2
3
2 e
− 3

2
√

2
ϕ̆ ∣∣ğzz∣∣− 1

2 B̆µz ,

ĝµν = 2−
1
2

∣∣ğzz∣∣ 1
2 e

ϕ̆

2
√

2

(
ğµν −

ğµz ğνz
ğzz

)
+ 2

3
2 e
− 3

2
√

2
ϕ̆ ∣∣ğzz∣∣− 1

2 B̆µzB̆νz ,

L̂0 = 2−
3
2 e
− ϕ̆

2
√

2

∣∣ğzz∣∣ 1
2 + 2−

1
2 e

ϕ̆

2
√

2

∣∣ğzz∣∣− 1
2

(
1 + ĂrzĂ

r
z

)
, r > 1 ,

L̂1 = −2−
3
2 e
− ϕ̆

2
√

2

∣∣ğzz∣∣ 1
2 + 2−

1
2 e

ϕ̆

2
√

2

∣∣ğzz∣∣− 1
2

(
1− ĂrzĂrz

)
, r > 1 ,

L̂r = −
√

2
∣∣ğzz∣∣− 1

2 e
ϕ̆

2
√

2 Ăr−1
z , r ≥ 2 ,

B̂0
µz = 1

2

(
B̃µz +

ğµz
ğzz

)
,

B̂1
µz = 1

2

(
−B̃µz +

ğµz
ğzz

)
,

B̂rµz = Ăr−1
µ − Ăr−1

z
ğµz
ğzz

, r ≥ 2 .

(2.120)





CHAPTER 3

Solutions: some examples

So far, we have been presenting in some detail three techniques to generate solutions of
N = 2 gauged supergravities.
In 4 dimensions, the classification presented in [4], which we reported in section 1.2.5,
is available. Exploiting the existence of Killing spinors, it provides first order equations
that have to be solved in order to find supersymmetric solutions. This approach is very
general and has been applied to a number of different models, but the resulting equa-
tions can, under certain circumstances, be really involved and difficult to be solved.
Therefore, we have also mentioned a less general way to obtain first order equations,
under specific assumptions, called the “squaring” of the action (section 1.2.6). It turned
out to be a powerful tool to find new solutions, an example of which is given in section
3.1.
We finally explained how some models of N = 2 supergravity in 4 and 5 dimensions
andN = (2, 0) supergravity in 6 dimensions are related through dimensional reduction,
and so are their solution, under certain assumptions. It is therefore evident that, once
a solution for one of these theories is known, the connection to the other theories can
be exploited to generate new solutions. In particular, this techniques has been used to
uplift solutions of the well known 4-dimensional gauged supergravity, producing new
solutions in 5 and in 6 dimensions, where a general classification is missing. On the
other hand, it provided the dictionary to reduce some 6-dimensional solutions to those
of the SU(2)-FI gauged 4-dimensional theory. In this latter case, the “direct” method
of solving the equations coming from the general classification [4] was hardly tractable,
and dimensional reduction constituted an interesting alternative.

The present chapter is entirely devoted to the presentation of some new solutions we
found in [1], [2] and [3] and to their physical properties.

The first solution we mentioned has been obtained with the method of the “squar-
ing of the action”. We considered N = 2, 4-dimensional supergravity coupled to vector
multiplets only, with a U(1) Fayet-Iliopoulos gauging. Black hole solutions in this theory
had already been widely studied, for example in [5,18–22,25,26,28,31]. However, all the
known solutions involved models in which the Kähler manifold parametrized by the
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scalars is symmetric and homogeneous, such as the stu model and its truncations. As
far as we know, the solution that we found in [1] and that we are presenting in section
3.1, has been the first one involving a non-homogeneous special Kähler manifold. As
already mentioned, we named the model nh-stu, since the prepotential by which it is
defined is a deformation of the one giving rise to the stu model and it produces a non-
homogeneous geometry. The interest for the nh-stu model is motivated by its stringy
origin, as explained for example in [68]. The FI gauging constitutes another reason of
interest, in fact it leads to a scalar potential with two critical points corresponding to
AdS vacua. One of these extremizes also the superpotential and is thus supersymmetric,
while the other vacuum breaks supersymmetry.
Moreover, the solution we found is asymptotically AdS4 and therefore suitable for be-
ing studied from a AdS/CFT perspective. This program has been accomplished in [113],
where fluid/gravity correspondence has been used to study the dual holographic super-
conductor.

In section 3.2 we are turning our attention to the 4-dimensional theory with an SU(2)-
FI gauging. This theory had not been studied before, and the cause has probably to be
found in the difficulty of considering at the same time the potential originated by the
Fayet-Iliopoulos term and the non-Abelian gauge fields that are necessarily present, as
we have already explained. We considered the simplest model that admits this kind
of gauging, the CP3

model, specified the equations given in [4] and solved them. The
results were presented in [3] and they include an exact AdS2×S2 solution which is 1

8 -BPS
and a R×H3 geometry, supported by a 2-form field strength.

More solutions were found for the same theory and a different, cubic model, thanks
to the results in [2]. They allowed us to dimensionally reduce to 4 dimensions the 6-
dimensional solutions of [38], which presented an SU(2)-FI gauging. The results can be
found in section 3.4, where solutions to the 5-dimensional theory have also been pre-
sented, since they constitute a necessary step in the reduction procedure.

Finally, section 3.3 presents an explicit example for the procedure we outlined in
chapter 2: in [30], some solutions of the 5-dimensional SEYM theory were obtained,
thanks to the existence of a general classification [34, 35] and to the simplification that
was achieved by considering the correlation to 4-dimensional SEYM theories. We up-
lifted the simplest of those solutions to 6 dimensions, finding a new solution for every
theory that -as we have demonstrated in the previous chapter- can be reduced to the
same 5-dimensional model, N = 2A, N = 2A∗ and N = 2B.
With respect to the treatment we have given in the previous chapter 2, a peculiarity has
here been added: the non-Abelian gauge fields characterizing Super-Einstein-Yang-Mills
theories. As far as the N = 2A and N = 2A∗ theories are concerned, a general classi-
fication for this kind of 6-dimensional solutions is not known and our procedure gives
rise to otherwise unknown solutions. The N = 2B theory cannot be gauged, at least not
in a conventional way; comments concerning the meaning of a gauged N = 2B, d = 6
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theory can be found in section 3.3.2.

3.1 A non-homogeneous deformation of the stu model

We are now presenting a black hole solution for the nh-stu model in 4-dimensional,
N = 2 supergravity with a U(1) Fayet-Iliopoulos gauging. It has been obtained thanks
to the squaring procedure described in section 1.2.6, i.e. solving the equations

2e2ψ
(
e−U=m(e−iαV)

)′
+ e2(ψ−U)ΩMG+ 4e−U (α′ +Ar)<e(e−iαV) +Q = 0 ,

ψ′ = 2e−U=m(e−iαL) , (3.1)

α′ +Ar = −2e−U<e(e−iαL) ,

where the metric has been chosen of the form

ds2 = −e2U(r)dt2 + e−2U(r)(dr2 + e2ψ(r)dΩ2
κ) , (3.2)

and we remind that α is defined as

e2iα =
Z − ie2(ψ−U)L

Z∗ + ie2(ψ−U)L∗
. (3.3)

As is the case for many other known solutions [22, 28, 71, 114], we shall assume van-
ishing axions. This is realized by purely imaginary scalars (with λi > 0),

Zi = xi − iλi , xi = 0 . (3.4)

The advantage of this choice will become evident in what follows: for some values of
the FI parameters G, it indeed simplifies the equations of motion (3.1), setting α to a
constant.

3.1.1 Dyonic Fayet-Iliopoulos gaugings and near-horizon analysis

To proceed further, we shall assume a specific form for the FI parameters G. The choice

GT = (0, g1, g2, g3, g0, 0, 0, 0)T , (3.5)

together with the vanishing axion condition (3.4), fixes the phase α in (3.1) to the constant
value1 α = ±π/2. This can be checked from the explicit expressions of the symplectic
invariants Z and L,

1Another possible choice yielding the same constant value for α is GT = (g0, 0, 0, 0, 0, g1, g2, g3)T , which
would in turn requireQ to assume the (magnetic) formQT = (0, p1, p2, p3, q0, 0, 0, 0)T .
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Z = ieK/2
(
p0

(
λ1λ2λ3 − A

3
λ3

)
− q1λ

1 − q2λ
2 − q3λ

3

)
,

L = eK/2
(
g0 + g1λ2λ3 + g2λ1λ3 + g3(λ1λ2 −A(λ3)2)

)
.

(3.6)

As can be inferred from the BPS equations (3.1), the choice (3.5) requires some charges
to vanish, so that the vector Q takes the form

QT = (p0, 0, 0, 0, 0, q1, q2, q3)T . (3.7)

With the choice (3.5), the scalar potential becomes

V = −g2g3λ1 − g1g3λ2 −
(
g1g2 −A(g3)2

)
λ3

− g0

λ1λ2λ3 − A
3 (λ3)3

(
g2λ1λ3 + g1λ2λ3 + g3

(
λ1λ2 −A(λ3)2

))
, (3.8)

which,forA = 0, matches the known expression for the stu model [9,28]. In what follows
we shall assume that all gauge coupling constants g0, g

i are positive. Then the potential
(3.8) has two critical points, namely one for

λ1 =
g1

g3
λ3 , λ2 =

g2

g3
λ3 , λ3 =

√
g0g3

g1g2 − A
3 (g3)2

, (3.9)

and the other for

λ1 =
g1

g3
λ3 , λ2 = − 1

g1g3

(
g1g2 − 2

3
A(g3)2

)
λ3 , λ3 =

√
g0g3

g1g2 − A
3 (g3)2

. (3.10)

The first has V = −3`−2, and the second V = −`−2, with ` defined in (3.33), so both
correspond to AdS vacua. It can easily be shown that (3.9) is also a critical point of the
superpotential L, while (3.10) is not. The vacuum (3.9) is thus supersymmetric, whereas
(3.10) breaks supersymmetry. Moreover, reality and positivity of the scalars λi imply
that the second vacuum exists only in the range

3

2

g1g2

(g3)2
< A < 3

g1g2

(g3)2
, (3.11)

in particular it is not present for zero deformation parameter A.
Owing to the constancy of α, the equations of motion (3.1) boil down to

2e2ψ
(
e−U<eV

)′
+ e2(ψ−U)ΩMG+Q = 0 ,

(eψ)′ = 2eψ−U<eL .
(3.12)

The near-horizon geometry is required to be AdS2 × Σ, i.e., the metric functions in (3.2)
should take the form
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eU =
r

R1
, eψ = r

R2

R1
, (3.13)

while the scalar fields Zi(r) = −iλi(r) assume a constant value on the horizon. Under
this assumption, the BPS equations (3.12) simplify to

Q+R2
2ΩMG = −4=m (Z∗V) ,

Z = i
R2

2

2R1
.

(3.14)

In addition, the constraint

〈G,Q〉 = −κ . (3.15)

has to be imposed.
Following the procedure described in [115]2, the BPS equations in the near-horizon limit
(3.14) provide a set of equations for the variables {R1, R2, λ

i} as functions of the gaug-
ings g0, g

i and the charges p0, qi.
In particular, since R2 is directly related to the black hole entropy S, this yields an ex-
pression for S in terms of the gaugings and charges. In the model described above, the
attractor equations (3.14) are implicitly solved by

R4
2 dg,i +

1

3

(
κ+

1

2

)
p0qi =

1

36

(
d−1
λ

)ij
qj qi −

1

4

(
p0
)2
dλ,i ,

λi
(

1− κ

2

)
=

κ

p0

(
−R2

2 g
i +

1

6

(
d−1
λ

)ij
qj

)
,

R2
2

R1
=

(
p0e−

K
2

(
κ− 3

4

)
− 2 e

K
2 λjqj

)
,

R6
2 dg +

1

2
R2

2 p
0
(
p0g0 + κgiqi

)
=

1

216

(
d−1
λ

)k (
d−1
λ

)ij
qi qj qk

+
1

64
p0qi qj

((
d−1
λ

)j
λi + 2

(
d−1
λ

)ij)
+

1

8

(
p0
)2 (

λiqi + p0dλ
)
,

(3.16)

where the contractions of the tensor dijk are defined as in (1.200). Note that the non-
homogeneity enters through (d−1

λ )ij , that depends on the special Kähler metric, since

Gij = −2

3
dλ(d−1

λ )ij + 2λiλj ,

cf. equation (A.6) of [115].
An explicit solution to (3.16) cannot be obtained by applying the analysis developed
in [115] for the case of symmetric special Kähler manifolds, because the model under
consideration is neither symmetric nor homogeneous, as explained in section 1.2.7.

2The equations (3.16) are based on [115], with some misprints corrected.
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3.1.2 A black hole solution

In this paragraph, we are presenting an exact black hole solution for the nh-stu model.
In order to simplify the BPS equations (3.12), we introduce the functions3

H0 =
e−U√

2

(
λ1λ2λ3 − A

3
(λ3)3

)− 1
2

,

H1 = λ2λ3H0 , H2 = λ1λ3H0 , H3 = (λ3)2H0 .

(3.17)

In terms of these latter, equations (3.12) become

(H0)′ + 2g0(H0)2 = −e−2ψp0 ,

H ′11 H
2
1 +

2

3
Ag2H2

3 −
4

3
Ag3H1H3 = e−2ψq1 ,

H ′22 H
2
2 +

2

3
Ag1H2

3 −
4

3
Ag3H2H3 = e−2ψq2 ,

H ′3 + 2H3(g1H1 + g2H2)− 2g3

(
H1H2 +

A

3
H2

3

)
=

= e−2ψ H3

H1H2 +AH2
3

(q1H2 + q2H1 − q3H3) ,

ψ′ = g0H
0 + g1H1 + g2H2 + g3

(
H1H2

H3
−AH3

)
.

(3.18)

A remarkable feature of the nh-stu model is that, contrary to e.g. the case considered
in [28], the equations (3.18) cannot be decoupled, due to the non-diagonal terms in the
metric (1.209). Following the strategy of [28], we introduce the Ansatz

ψ = log
(
a r2 + c

)
,

H0 = e−ψ
(
α0r + β0

)
,

Hi = e−ψ (αir + βi) , i = 1, 2, 3 .

(3.19)

The solution for the fields is then expressed in terms of the functionsH0, Hi by inverting
the relations (3.17). This yields

e2U =
1

2

(
H3

H0

) 1
2
(
H1H2 −

A

3
H2

3

)−1

, (3.20)

and

3A common choice for the functions Hi is to make them coincide with the components of the symplectic
sections. For the present situation, we preferred to choose H3 in a different way, in order to simplify the
structure of the equations.
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λ1 = H2

(
H3H

0
)− 1

2 , λ2 = H1

(
H3H

0
)− 1

2 , λ3 =

(
H3

H0

) 1
2

, (3.21)

for the warp factor and the scalars respectively.
By means of the Ansatz (3.19), the differential equations (3.12) boil down to a system

of algebraic conditions on the parameters and the charges characterizing the solution,
i.e. {α0, αi, β

0, βi, a, c, p
0, qi}. The set of equations obtained in this way reduces, after

some algebraic manipulations, to

α0 =
a

2g0
, α1 =

g2

g3
α3 , α2 =

g1

g3
α3 , α3 =

a g3

2
(
g1g2 − A

3 (g3)
2
) ,

β1 =
g2

g3
β3 , β2 = −1

2
β3

(
g1

g3
−Ag

3

g2

)
− 1

2
β0 g0

g2
,

q1 = 2β2
3

g2

(g3)
2

(
g1g2 − A

3

(
g3
)2)

+ g2 ac

2
(
g1g2 − A

3 (g3)
2
) ,

q2 =
1

2g2

(
β0g0 + β3

g1g2

g3

)2

+ g1 ac

2
(
g1g2 − A

3 (g3)
2
)

+
A

3
β3
g3

g2

(
β3
g1g2

g3
− β0g0 −

A

2
β3g

3

)
,

q3 =
g2

g3
q2 −A

g3

g2
q1 , p0 = − ac

2g0
− 2g0

(
β0
)2
.

(3.22)

The solution for the scalars is obtained by plugging the parameters (3.22) into the ex-
pressions (3.21). In this way, the scalars assume the explicit form

λ1 =
a g

1

g3

(
λ3
∞
)2
r − g0 β3

(
g1

g3 −A g3

g2

)
− β0 g2

0

g2√
(2g0 β0 + a r)

(
2g0 β3 + a r (λ3

∞)
2
) ,

λ2 =
g2

g3
λ3 , λ3 = λ3

∞

√
ar + 2 g0

(λ3
∞)2 β3

ar + 2g0β0
,

(3.23)

where λ3
∞ is the asymptotic value of λ3,

λ3
∞ =

√
g0g3

g1g2 − A
3 (g3)2

. (3.24)

The warp factor in the metric reads
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e2U =
2g0g

3(ar2 + c)2

λ3
∞

(
ar − g0β0 − g0

(λ3
∞)2 β3

)√
(ar + 2g0β0)

(
ar + 2g0

(λ3
∞)2 β3

) . (3.25)

This solution represents a black hole, with a horizon at the largest zero of e2U , i.e., at
rh =

√
−c/a, where we assumed a > 0 and c < 0. The curvature invariants diverge

where the angular component of the metric e2ψ−2U vanishes. Note that all the scalar
fields λi should be well-defined and positive outside the horizon. Moreover, we still
have to impose the condition (3.15), i.e.,

g0p
0 − giqi = −κ (3.26)

on the solution (3.22). We checked that these requirements are compatible with all of the
three possible choices for κ = 0 ,±1, i.e. the horizon topology can be either spherical,
flat or hyperbolic.

The Dirac quantization condition (3.26) fixes one of the four parameters {a, c, β0, β3}
that determine the solution, for example c . Furthermore, it is easily seen that the solution
enjoys the scaling symmetry

(t, r, θ, φ, a, c, β0, β3, κ) 7→ (t/s, sr, θ, φ, a/s, sc, β0, β3, κ) , s ∈ R , (3.27)

that can be used to set a = 1 without loss of generality. Consequently, there are only two
physical parameters left, on which the solution depends, β0 and β3.
Notice that the solution (3.22) is characterized by the proportionality between the scalars
λ2 and λ3, as is evident from (3.23). However, it is worth stressing that this fact does not
trivialize our results, since the locus λ2 = g2

g3λ
3 in the scalar manifold does not yield a

consistent two-moduli truncation for the model (1.186). In other words, the Kähler ge-
ometry that can be derived from the truncated model F

(
X 1,X 2,X 3)

∣∣
λ2∝λ3 is not equiv-

alent to the 2-dimensional one characterized by the prepotential

F =
X̃ 1
(
X 3
)2

X 0
, with X̃ 1 = X 1 − A

3
X 3 , (3.28)

which is homogeneous and symmetric (the so-called st2 model, cf. e.g. [116] and refer-
ences therein). This difference is evident, for example, in terms of the Kähler metric, that
turns out to be

G(3)
ij dλ

idλj |λ2∝λ3 6= G
(2)
MNdλ

MdλN , i, j = 1, 2, 3 , M,N = 1, 2 , (3.29)

where the left-hand side is the line element obtained with the metric (1.209) when the
condition λ2 ∝ λ3 is imposed, while the right-hand side describes the geometry associ-
ated to the prepotential (3.28).
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We conclude with a comment on the behavior of the solution for A = 0. Due to the
particular definition of H3 we have chosen (with respect to the more common one used
for example in [5, 22, 28]), setting A = 0 and λ2 = g2

g3λ
3 is not sufficient to match exactly

the stu black hole solution with two independent parameters, known as st2 solution, that
can be derived from [28]. However, the parameters in (3.19) can be redefined as

α′3 =
α1α2

α3
− A

3
α3 , β′3 =

β1β2

β3
− A

3
β3 , (3.30)

in terms of which the solution (3.22) matches explicitly the known one when A = 0.
This redefinition of the parameters is a way to recover the choice for the functions that
is usually made when solving the BPS equations (3.1), whose analogue for the present
case would have been

H ′3 =
(
λ1λ2 −A(λ3)2

)
H0 or H ′3 = e−ψ(α′3r + β′3) . (3.31)

3.1.3 Physical properties

We are here going to investigate some properties of our solution, like the near-horizon
limit, the entropy and the area-product formula.

In the asymptotic limit r →∞, the metric (3.25) becomes AdS4, i.e., at leading order,

ds2 → −r
2

`2
dt2 + `2

dr2

r2
+ r2dΩ2

κ , (3.32)

where we defined the asymptotic AdS4 curvature radius ` by

`2 =
λ3
∞

2g0g3
, (3.33)

and we rescaled the coordinates according to t→ `t, r → r/`. Notice that the asymptotic
value of the cosmological constant is

Λ = − 3

`2
= −6g0g

3

λ3
∞

. (3.34)

On the other hand, when r approaches the horizon rh, the functions U and ψ assume,
after shifting r → r + rh, the form (3.13), with R1 and R2 given by

R2
1 = −λ

3
∞f(rh)

8g0g3c
, R2

2 =
λ3
∞f(rh)

2g0g3
, (3.35)

where

f(rh) ≡
(
rh − g0β

0 − g0

(λ3
∞)2

β3

)√
(rh + 2g0β0)

(
rh +

2g0

(λ3
∞)2

β3

)
.

In this limit, the spacetime becomes AdS2 × Σ, with metric



92 3.2 The CP3
model with SU(2) Fayet-Iliopoulos gauging

ds2 = − r
2

R2
1

dt2 +
R2

1

r2
dr2 +R2

2dΩ2
κ . (3.36)

The Bekenstein-Hawking entropy is given by

SBH =
Ah

4
=
R2

2 vol(Σ)

4
. (3.37)

This expression can be written in terms of the charges p0, qi and the gaugings g0, g
i only.

To this aim, the equations (3.22) need to be inverted, in order to use the charges p0, q1, q2

as parameters. This result sustains the presence of an attractor mechanism also in the case
under consideration, which is a non-trivial statement, due to the non-homogeneity of
the model we have been discussing.
Finally, the product of the areas of all the horizons r = rI , I = 1, . . . , 4 (i.e., all the roots
of e2U ) assumes the remarkably simple form

4∏
I=1

A(rI) = − 36

Λ2

vol(Σ)4g2

g3
p0q1q̃

2
2 , (3.38)

where we have defined

q̃2 ≡ q2 −
A

3

(
g3

g2

)2

q1 . (3.39)

Note that (3.38) depends only on the charges and the gauge parameters. Similar formu-
las have been proven to be true in a number of examples (see for instance [10, 21, 27, 31,
72, 117, 118]), a fact that calls for an underlying microscopic interpretation.

3.2 The CP3
model with SU(2) Fayet-Iliopoulos gauging

We are now turning our attention to theN = 2, 4-dimensional supergravity theory with
a Fayet-Iliopoulos gauging of the entire SU(2) subgroup of the R-symmetry group. As
we have already explained, this kind of gauging should be associated with the gaug-
ing of an SU(2) subgroup of the isometries of the Kähler manifold. The action of the
theory is then (1.70). In this paragraph, we are going to present some solutions for it,
which have been obtained by explicitly solving the equations that arise from the general
classification [4], see section 1.2.5.

We consider the simplest model with enough symmetry to admit the necessary SU(2)

gauging of the isometries of the Kähler manifold, the CP3
model. In what follows, we are

specifying all the quantities entering the Lagrangian (1.70) for this specific configuration.
The equations that have to be solved are (1.142-1.156), which are here rewritten for the
model under consideration.

Since the scalars of the CP3
model parametrize the symmetric space U(1, 3)/(U(1)×U(3)),

the metric (and, indeed, the whole model) is invariant under global U(1, 3) transforma-
tions. We are interested in the SU(1, 3) ⊂ U(1, 3) subgroup whose SO(3) subgroup is
going to be gauged.
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The special coordinates XΛ transform in the fundamental representation of SU(1, 3)

X ′Λ = ΛΛ
ΣXΣ , Λ∗Γ

Λ ηΓ∆ Λ∆
Σ = ηΛΣ , (3.40)

and, according to their definition, the complex scalars transform non-linearly, as

Z ′Λ =
ΛΛ

ΣZ
Σ

Λ0
ΣZΣ

, Z ′Λ =
ΛΛ

ΣZΣ

Λ0
ΣZΣ

, where ΛΛ
Σ ≡ ηΛΓΛΓ

Ωη
ΩΣ . (3.41)

The indexes of the SU(1, 3) transformations ΛΛ
Σ are lowered and raised by the metric

ηΛΓ and its inverse.
These transformations leave the Kähler potential invariant up to Kähler transforma-

tions K′ = K + f + f∗ with

f(Z) = log
(
Λ0

ΣZ
Σ
)
, (3.42)

which implies the exact invariance of the Kähler metric.
The symplectic section V is also left invariant by the combined action of the sym-

plectic transformation that gives the embedding of the group SU(1, 3) in the symplectic
group Sp(8,R)

(SMN ) =

 <eΛΛ
Σ −2=mΛΛΣ

1
2=mΛΛΣ <eΛΛ

Σ

 , (3.43)

and a Kähler transformation with the parameter f(Z) given in (3.42). This proves the
invariance of the whole model of N = 2, d = 4 supergravity.

The 15 generators TmΛ
Σ of su(1, 3), defined by

ΛΛ
Σ ∼ δΛ

Σ + αm Tm
Λ

Σ, (3.44)

are traceless and such that TmΛΣ ≡ ηΛΓ Tm
Γ

Σ is anti-Hermitian. Then, the correspond-
ing su(1, 3) generators, whose exponentiation gives the matrix (3.43), are given by

(TmMN ) =

 <eTmΛ
Σ −2=mTmΛΣ

1
2=mTmΛΣ <eTmΛ

Σ

 . (3.45)

The holomorphic Killing vectors that generate the transformations of the scalars (3.41)
can be written in the form

Z ′Λ = ZΛ + αmkm
Λ(Z) , km

Λ(Z) = Tm
Λ

Σ ZΣ − Tm0
Ω ZΩZΛ , (3.46)
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which allows us to show easily that, if the matrices Tm have the commutation relations
[Tm, Tn] = fmn

p Tp, where fmnp are the su(1, 3) structure constants, then the commu-
tation relations of the symplectic generators and the Lie brackets of the holomorphic
Killing vectors are given by

[Tm, Tn] = fmn
p Tp , [km, kn] = −fmnp kp . (3.47)

The holomorphic functions λm(Z) defined through

LKmK = λm + λ∗m , where Km = km(Z) + k∗m(Z∗) , (3.48)

are given by

λm = Tm
0
ΣZ

Σ , (3.49)

and the holomorphic momentum maps Pm, defined through the relation

iPm = km
i∂iK − λm , (3.50)

are given by

Pm = ieKηΛΩTm
Λ

ΣZ
ΣZ∗Ω . (3.51)

The SU(2) subgroup that we are going to gauge acts in the adjoint representation on
the special coordinates X i and on the physical scalars Zi, leaving X 0 exactly invariant,
as well as the prepotential and the Kähler potential (so f = λ = 0). We are going to use
the indexes x, y, z, · · · = 1, 2, 3 to denote the scalars of the gauged directions, instead of
i, j, · · · . Thus, the vector fields AΛ split into A0 and Ax, the physical scalars are Zx, the
non-vanishing structure constants and the generators are4

fxy
z = −εxyz , Tx

y
z = εx

y
z , (TxMN ) =

 εx
y
z 0

0 εxy
z

 , (3.52)

the holomorphic momentum maps and Killing vectors are given by

Px = ieKεxyzZ
yZ∗ z , kx

y = εx
y
zZ

z . (3.53)

The SU(2) FI terms are obtained once (1.65) and (1.68) have been taken into account.
The gauge-covariant derivatives, the vector field strengths and the scalar potential of the
model can be read from (1.69) and (1.71), and take the form

4The indexes x, y, · · · are raised and lowered with δxy , δxy and, therefore, their actual position is immate-
rial.
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DµZ
x = ∂µZ

x − gεxyzAyµZz , (3.54)

F 0
µν = 2∂[µA

0
ν] , (3.55)

F xµν = 2∂[µA
x
ν] − gεxyzAy [µA

z
ν] , (3.56)

V(Z,Z∗) = 2g2e2K(<eZx<eZx)(=mZy=mZy) sin2 α+ 1
2g

2ξ2
(
5− 2eK

)
, (3.57)

where α is the angle between the 3-vectors <eZx and =mZy . Observe that the first term
in the potential is non-negative but also bounded from above due to the constraint (1.218)

0 ≤ 2g2(<eZx<eZx)(=mZy=mZy) sin2 α ≤ 2g2 , (3.58)

but the second, which is associated to the FI terms, is unbounded from below (eK ∈
(1,∞))

−∞ ≤ 1
2g

2ξ2
(
5− eK

)
≤ 2g2 . (3.59)

We have explored the minima of this potential and we have found that there is a
minimum when all the scalar fields vanish, when one of them vanishes, when two of
them are equal or when two of them are real, but the potential is not negative for any
of these minima and, therefore, we have not been able to find any (necessarily non-
maximally supersymmetric, see section 1.2.3) AdS4 vacuum in this theory.

As we have already mentioned, the choice of this specific model is due to its simplic-
ity; in particular, its Freudenthal duality equations can easily be solved,

RΛ = 1
2ηΛΣIΣ , RΛ = −2ηΛΣIΣ . (3.60)

3.2.1 Time-like supersymmetric solutions

We just have to adapt the equations of the general recipe reviewed in section 1.2.5 to
the gauged model described in the previous section. In particular, we use the imaginary
part of period matrix (1.220) expressed in terms of the real symplectic vectors RM and
IM and the solution of the Freudenthal duality equations (3.60) to eliminate RM from
the equations. We are also going to impose

IΛ = 0 , (3.61)

(so that RΛ = 0) in order to simplify the problem. In particular, with this choice, the
form ω is closed, and we set it to zero. The equations that remain to be solved are

F 0
xy = − 1√

2
εxyz

{
∂zI0 + 1√

2
gξI0Iz

}
, (3.62)

F zxy = − 1√
2
εxyw

{
DwIz + 1√

2
gξ
[
e−2Uδzw + IwIz

]}
, (3.63)

DξV̂
x = − 1√

2
gξIyV̂ y ∧ V̂ x , (3.64)
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where

DξV̂
x ≡ dV̂ x − gξεxyzÂy ∧ V̂ z . (3.65)

Observe that, for ξ = 1, DξV̂
x = DV̂ x and that for ξ = 0, when the FI terms vanish,

DξV̂
x = dV̂ x; this last equation would be solved by choosing coordinates V̂ x = dxx.

The integrability condition of the last equation can be obtained by acting with D on
both sides and using the Ricci identity (ξ 6= 0)

DDξV̂
x = −gξεxyzF̂ y ∧ V̂ z . (3.66)

We find, up to the overall factor gξ

F yxy + 1√
2
εxyzDzIy = 0 , (3.67)

which is satisfied if (3.63) holds.

Hedgehog Ansatz

The first attempt that has been made to solve these equations, was naturally looking
for spherically-symmetric solutions. We have adopted the hedgehog Ansatz for the gauge
field Axm and the corresponding5 “Higgs field” Φx, which has proven to be fruitful in
the SEYM case,

− 1√
2
Ix = Φx(r) = −xxf(r) , Axm = εxmnx

nh(r) . (3.68)

We have also assumed that the 3-dimensional metric γmn is conformally flat and chosen
Dreibeins of the form

V xm = δxmV (r) . (3.69)

We can also safely assume that

− 1√
2
I0 = Φ0(r) . (3.70)

The Ansatz for the Abelian vector field A0
m cannot be spherically symmetric: we know

that the potential of the Dirac monopole is not spherically symmetric even though its
field strength is. If the unit vector sm indicates the direction of the Dirac string, the Dirac
monopole potential can be written in the form

A0
m = 1

2pεmnp
snxp

r
k(w) , where w ≡ smxm

r
, and k(w) = (1− w)−1 . (3.71)

5The signs have been chosen so that the equations originally obtained by Protogenov in [119] coincide with
those studied and used in [17, 29, 30, 82].
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In this case, we have tried and generalized the previous form for the gauge fields with
the Ansatz

A0
m = εmnp

snxp

r2
k(r, w) , (3.72)

where the function k can have an additional dependence on r, not only through w.
Substituting this Ansatz into (3.62,3.64) we get the following differential equations,

V −1[2h+ rh′]− f [1 + gr2h]− 1
2gξV

[
(Φ0)2 − r2f2

]
= 0 , (3.73)

V −1[rh′ − gr2h2]− gr2hf + rf ′ + gξV r2f2 = 0 , (3.74)

(V −1)′ + gξr[hV −1 − f ] = 0 , (3.75)

xm∂mk = 0 , (3.76)

Φ0 ′ + V −1sm
(
∂mk

r
− 2xmk

r3

)
+ gξrV Φ0f = 0 , (3.77)

where primes indicate differentiation with respect to r, which is the only argument of
the functions Φ0, f, h, V .

The above equation (3.76) implies that k is a function of w only and we are left with

∂mk = k′
(
sm

r
− wxm

r2

)
, (3.78)

and

sm
(
∂mk −

2xmk

r2

)
=

1

r

d

dw
[(1− w2)k] . (3.79)

This is the only term in (3.77) that depends on sm and that dependence must disap-
pear because the corresponding equation is spherically symmetric. Therefore, we must
require that

d

dw
[(1− w2)k] = C , (3.80)

for some constant C. This equation can be integrated, to give

k =
Cw +D

1− w2
, (3.81)

for some other integration constant D. The standard form of the Dirac monopole is
recovered when C = D = p/2. Exploiting these results in (3.77), we obtained

Φ0 ′ + C
V −1

r2
+ gξrΦ0f = 0 , (3.82)

and we are left with a non-autonomous system of 4 ordinary differential equations for 4
variables f, h, V,Φ0 that generalizes Protogenov’s [119].
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The next step consists in trying and rewriting this system as an autonomous system
by a change of variables. In the original, Protogenov system, this task is achieved as
in [29]. Actually, the same change of variables works here. Defining

gr2 ≡ e2η , 1 + gr2h ≡ N , gr2f ≡ I , gr2(Φ0)2 ≡ K2 , C ′ = g1/2C , (3.83)

and combining the differential equations, we arrived to the autonomous system

∂ηN = V
[
IN − 1

2ξV I
2 + 1

2gξV K
2
]
, (3.84)

∂ηI = (N2 − 1)V −1 + I − 1
2ξV I

2 − 1
2gξV K

2 , (3.85)

∂ηV
−1 = −ξ(N − 1)V −1 + ξI , (3.86)

∂ηK = K − C ′V −1 − ξV KI . (3.87)

When ξ = 0, the third equation is solved by a constant V and, setting that constant
to 1, the first two equations become those of the Protogenov system and involve only
two variables: N and I . When ξ = 1 the four equations are coupled in a non-trivial way
and we had to make additional assumptions in order to simplify the system and find
solutions.

Observe that there are no solutions with vanishing scalars, that is, with I = 0. In
fact, setting I = 0 in (3.84) and (3.85) and combining them to eliminate K, a differential
equation that only involves N is obtained. It can be integrated to give N = − tanh η + α

where α is some integration constant. However, in this way (3.85) cannot be satisfied for
any real V or K.

A further change of variables, I = V I and K = V K, allowed us to rewrite the system
in a simpler way:

∂ηN = NI− 1
2I

2 + 1
2gK

2 , (3.88)

∂ηI = N2 − 1 +NI− 3
2I

2 − 1
2gK

2 , (3.89)

∂ηK = KN − C ′ − 2KI , (3.90)

∂η log V = N − I− 1 . (3.91)

This system admits a solution in which N , I and K are constants: the first three
equations are algebraic and the fourth is trivially solved. This allowed us to obtain the
first solution of this theory.

Solution 1: AdS2× S2

With no loss of generality we can assume I to be positive. The solution depends on two
constants, I and v, and is given by
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C ′ = ±

√
I

g

(
3I +

√
3I2 + 1

)(
3I + 2

√
3I2 + 1

) 1
2

,

N = −I−
√

3I2 + 1 ,

K = ∓√g
(

3I2 + 2I
√

3I2 + 1
) 1

2

,

V = vg−I−
1
2−

1
2

√
3I2+1r−2I−1−

√
3I2+1 .

(3.92)

The physical fields are then recovered, and turn out to be

ds2 =
v2

2I
g−2I+1−

√
3I2+1

(
I +

√
3I2 + 1

)−1

r−4I−2
√

3I2+1dt2

− 2I
(
I +

√
3I2 + 1

) 1

g2r2

(
dr2 + r2dΩ2

(2)

)
,

Zx = ± xx

gr
I
(

3I2 + 2I
√

3I2 + 1
) 1

2

,

Φ0 =
1

v
gI+ 1

2 + 1
2

√
3I2+1

(
3I2 + 2I

√
3I2 + 1

) 1
2

r2I+
√

3I2+1 ,

Axm = εxmn
xn

gr2

(
−I− 1−

√
3I2 + 1

)
.

(3.93)

This metric is exactly AdS2× S2 (with different radii), independently of the value of
I, as becomes evident performing the following change of variables,

ρ = r−2I−
√

3I2+1 ,

τ = v
(

7I2 + 1 + 4I
√

3I2 + 1
)−1

g−2I−1−
√

3I2+1 t ,
(3.94)

which leads to

ds2 =
1

2I

7I2 + 1 + 4I
√

3I2 + 1

I +
√

3I2 + 1
g2ρ2dτ2 − 2I

I +
√

3I2 + 1

7I2 + 1 + 4I
√

3I2 + 1
g−2 dρ

2

ρ2

− 2I
(
I +

√
3I2 + 1

)
g−2dΩ2

(2) ,

Zi = ± xi

g
I
(

3I2 + 2I
√

3I2 + 1
) 1

2

ρ
1

2I+
√

3I2+1 ,

Φ0 =
1

vρ
gI+ 1

2 + 1
2

√
3I2+1

(
3I2 + 2I

√
3I2 + 1

) 1
2

,

Axm = εxmn
xn

g

(
−I− 1−

√
3I2 + 1

)
ρ

2

2I+
√

3I2+1 .

(3.95)

The potential (3.57) assumes in this situation a constant value, which can be negative
for certain values of the parameter I
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V < 0 , ⇔ I2
(

3I2 + 2I
√

3I2 + 1
)
< g2 < 5

3I
2
(

3I2 + 2I
√

3I2 + 1
)
. (3.96)

By construction this solution is supersymmetric. In order to determine which fraction
of the total supersymmetry it preserves (the minimal amount is 1

8 ), we take advantage
of the analysis performed in [4]: the gaugini Killing Spinor Equation is solved impos-
ing three projection operators, each of which projects out half of the components of the
Killing spinor. However, if some gaugini’s shifts

W ix = gGij
∗
f∗Λj∗PΛ

x , (3.97)

vanish identically for the configuration we are examining, the corresponding projector
does not need to be imposed, and the preserved supersymmetry can be larger. From
(1.217) and (1.219) we get, for the model we are dealing with,

W ix = 0 ⇔ ZiZ∗ x − 1
2δ
ix = 0 , (3.98)

which can never be satisfied for the solution we are presenting, where Zx ∝ xx. This
solution is therefore only 1

8 -BPS.

Another Ansatz

In order to generalize the Ansatz we exploited so far, we are going to relax the require-
ment (3.69): in the new Ansatz, the Dreibein is going to have the same form,

V xm = δxmV , (3.99)

but now V can be an arbitrary, not necessarily spherically-symmetric, function of the
coordinates xm.

With this choice, (3.64) is solved by

Axm = εxmnh
n , (3.100)

∂mV = gV (hm + V Φm) (3.101)

for some triplet of arbitrary functions hm that, in particular, can vanish identically. We
consider this possibility first.

Solution 2: hm = 0

The Ansatz (3.100,3.101) is here considered, and some further assumptions are made:
the hm are chosen to vanish identically and all the functions involved depend on a single
direction, say x1, so that

Axm = 0 , ∂1V
−1 = −gΦ1 , Φ2 = Φ3 = 0 . (3.102)
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This Ansatz is adequate to find domain-wall-type solutions.
Under these assumptions, equation (3.62) implies that the only non-trivial compo-

nent of F 0
mn is F 0

23. However, by assumption, the components A0
2,3 are functions of

the coordinate x1 only, so they have to be constants and the purely spatial components
of the field strength F 0

mn should vanish identically.
The equations in (3.62) and (3.63) that remain to be solved are

∂1V
−1 = −gΦ1 , (3.103)

∂1Φ1 = 1
2gV

[
(Φ0)2 + (Φ1)2

]
, (3.104)

∂1Φ0 = gΦ0Φ1V , (3.105)

that can be rewritten as

∂V −1Φ0 = −Φ0V , (3.106)

∂V −1Φ1 = − 1
2

V

Φ1

[
(Φ0)2 + (Φ1)2

]
, (3.107)

∂1V
−1 = −gΦ1 . (3.108)

The system can be immediately integrated, giving

Φ0 = p0V ,

Φ1 = ±
√

(p0)
2
V 2 + p1V ,

V = − 2
5
3 (p0)2(p1)2

{
(p1)3

[
16(p0)2 − 9(p1)4

(
−gx1 + v

)2]2
+3

√
(p1)10 (−gx1 + v)

2
[
−16(p0)2 + 9(p1)4 (−gx1 + v)

2
]3}− 1

3

− 2
1
3

{
(p1)3

[
16(p0)2 − 9(p1)4

(
−gx1 + v

)2]2
+3

√
(p1)10 (−gx1 + v)

2
[
−16(p0)2 + 9(p1)4 (−gx1 + v)

2
]3} 1

3

·

[
16(p0)2 − 9(p1)4

(
−gx1 + v

)2]−1

(3.109)

where p0, p1 and v are integration constants.
The metric function for these solutions is

e−2U = (Φ0)2 − (Φ1)2 = −p1V (x1) , (3.110)

while the complete metric takes the form
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ds2 = − 1

p1V
dt2 + p1V 3[(dx1)2 + (dx2)2 + (dx3)2] . (3.111)

The constant p0 should differ from zero, otherwise Φ0 = 0 and the metric function would
always be negative. We must require p1V < 0 in order to have e−2U > 0. The profile
of e−2U changes dramatically with the integration constants and it is not easy to find
physically meaningful solutions.
One of the few simple examples that we have found corresponds to the choice p0 = −1,
p1 = 1, v = 0. In this case e−2U (x1) is positive in an interval of the real line, as shown in
the figure.

- 4 - 2 2 4
x

- 5

- 4

- 3

- 2

- 1

1

ⅇ
2 U

Figure 3.1: The inverse of the metric function, e2U , as a function of the coordinate x1,
with the choice p0 = −1, p1 = 1, v = 0, g = 1.

At the boundary of that region, e−2U and V blow up and so does the scalar potential,
which in this case is given by

V = 1
2g

2

(
5− 2(p0)2V

p1

)
. (3.112)

On the other hand, the condition W ix = 0 cannot be satisfied for any x, meaning that
the solution is 1

8 -BPS.

Solution 3: hm 6= 0, an open Einstein universe

If, in the context of the Ansatz (3.100,3.101), where all the involved functions only de-
pend on x1, the vanishing of hm is not assumed, then the non-trivial components of
equation (3.64) take the form

∂1V = gV
(
h1 − V Φ1

)
, (3.113)

h2,3 = −V Φ2,3 , (3.114)
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those of equation (3.63) are

∂1A
0
2 = −gV Φ0Φ3 , (3.115)

∂1A
0
3 = gV Φ0Φ2 , (3.116)

∂1Φ0 = gV Φ0Φ1 , (3.117)

and finally, those of equation (3.62) can be written as

∂1Φ2,3 = gh1Φ2,3 , (3.118)

Φ2Φ3 = 0 , (3.119)

∂1h
1 = −gV h1Φ1 + 1

2gV
2
[
(Φ0)2 − (Φ1)2 − (Φ2)2 + (Φ3)2

]
, (3.120)

∂1h
1 = −gV h1Φ1 + 1

2gV
2
[
(Φ0)2 − (Φ1)2 + (Φ2)2 − (Φ3)2

]
, (3.121)

∂1Φ1 = − g
V

(h1)2 + 2gV Φ2Φ3 + 1
2gV

[
(Φ0)2 + (Φ1)2 − (Φ2)2 − (Φ3)2

]
. (3.122)

It is immediate to conclude that

Φ2 = Φ3 = 0 , A0
2 , 3 = const. , A2 = h1dx3 , A3 = −h1dx2 , (3.123)

and the equations that remain to be solved are

∂1V = gV
(
h1 − V Φ1

)
, (3.124)

∂1h
1 = −gV h1Φ1 + 1

2gV
2
[
(Φ0)2 − (Φ1)2

]
, (3.125)

∂1Φ0 = gV Φ0Φ1 , (3.126)

∂1Φ1 = − g
V

(h1)2 + 1
2gV

[
(Φ0)2 + (Φ1)2

]
. (3.127)

This system of equations can be simplified by setting Φ1 = 0; in this way, the resulting
equations

Φ0 = ±
√

2
h1

V
= const. , (3.128)

∂1V = gV h1 , (3.129)

∂1h
1 = g(h1)2 , (3.130)

are easily solved and the solution is determined by the following non-vanishing fields

Φ0 = ±
√

2

b
, (3.131)
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A3
2 = −A2

3 =
1

gx1
, (3.132)

ds2 =
2

b2
dt2 − b4

2g2(x1)2
dxmdxm , (3.133)

where b is an integration constant.
The spatial part of the metric is that of a 3-dimensional hyperboloid.

This becomes evident when using coordinates that are analogous to the Poincaré coor-
dinates of AdS3: the hyperboloid is defined as the hypersurface

(X1)2 + (X2)2 + (X3)2 − (X4)2 = −1 , (3.134)

in R4 endowed with the metric

ds2 = (dX1)2 + (dX2)2 + (dX3)2 − (dX4)2 ; (3.135)

If we parametrize it with coordinates x1, x2, x3

X1 +X4 ≡ − 1

x1
, X2,3 ≡ x2,3

x1
, (3.136)

the induced metric is

ds2 =
1

(x1)2
dxmdxm . (3.137)

Therefore, the complete metric (3.133) has the geometry of an open Einstein universe,
R × H3, and it is supported by a non-Abelian field only, whose field strength is related
to the volume form of H3 by

F xyz = −gεxyz . (3.138)

Usually, p-form field strengths support p- of (d − p)-dimensional symmetric spaces.
For instance, 2-form field strengths support AdS2×S2 solutions in 4 dimensions and
AdS2×S3 or AdS3×S2 solutions in 5 dimensions. In this sense, this solution is excep-
tional and the exceptionality is related to the rank of the form and to the dimension of
the gauge group.

The potential is again equal to a positive constant when this configuration is consid-
ered, and the amount of supersymmetry preserved by the solution is 1

8 .

3.3 Solutions via dimensional uplifting: the SU(2)-SEYM theory

We are now going to exploit the results of section 2.4 to construct new supersymmetric
solutions of the 6-dimensional theories we have been dealing with (N = 2A, 2A∗, 2B) by
uplifting solutions of the N = 2, d = 5 theories they all reduce to. We are going to add a
new twist to this story, though. The relations between the fields of two ungauged super-
gravity theories related by standard dimensional reduction do not change if we gauge
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both of them in the same way. Thus, we can use the uplifting formulas of section 2.4 to
uplift supersymmetric solutions of the same models of N = 2, d = 5 supergravity but,
now, with non-Abelian gaugings.

We are interested in the simplest supersymmetrization of the Einstein-Yang-Mills
(EYM) theory, called N = 2, d = 5 Super-Einstein-Yang-Mills (SEYM) theories in [30].
The starting point is a recently found solution [30] of these theories. The method that
has been used there is essentially the same we are going to use here: the uplifting of
solutions of the 4-dimensional non-Abelian gauged theories, which are better under-
stood [17,23,24,29,82,83]. We have considered only the simplest solution in [30], but this
turned out to be enough to produce interesting 6-dimensional solutions.

While the uplifting of non-Abelian solutions to the N = 2A, 2A∗ theories is well jus-
tified, the meaning in the N = 2B case is less evident. In fact, these theories cannot be
gauged. However, we believe that a gaugedN = 2B, d = 6 theory can be defined at least
when the theory is compactified on a circle. The situation is analogous to that of several
coincident M5-branes which, at least when wrapped on a circle, must be described by
a non-Abelian theory of chiral 2-forms. We do not know how such a theory should be
written down, but we know that, at the massless level, it is effectively described by a
standard non-Abelian theory of vector fields in one dimension less, the theory of coinci-
dent D4-branes.
Analogously, we do not know how to describe the non-Abelian N = 2B, d = 6 super-
gravity theory, which only has chiral 2-forms, but we know that, when compactified on
a circle and at the massless level, the theory is described by a standard gauged theory of
N = 2, d = 5 supergravity with 1-forms as gauge fields. It is in this limited sense that
the non-Abelian solutions of N = 2B, d = 6 supergravity that we are going to construct
should be interpreted.

3.3.1 The original solution

We are first of all reviewing the original result of [30]. Let us consider the N = 2, d = 5

SEYM theory with nV 5 = 5 vectors labeled by x = 1, · · · , 5 or x = 1, 2, A where
A,B, . . ., label the three directions that have been gauged with the group SO(3). The non-
vanishing components of CIJK are given by C0xy = 1

3!ηxy , ηxy = diag(1,−1,−1,−1,−1).
The solution that we are going to uplift was obtained in a model with one vector multi-
plet less but here, for a reason that will be explained in what follows, we cannot gauge
the first vector multiplet and so we add one more (x = 2), whose fields will vanish
identically.

The metric of the solution we are interested in is static and spherically symmetric

ds2 = f2dt2 − f−1(dρ2 + ρ2dΩ2
(3)) , (3.139)

where dΩ2
(3) is given in (3.154), the metric function f is
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f−1 = 3 · 2−1/3

{
L2

1

[
L0 −

9

2g2

(
ρ+

λ2

4
ρ3

)−2
]}1/3

, (3.140)

L0 and L1 are two spherically symmetric harmonic functions on R4

L0,1 = a0,1 + q0,1/ρ
2 , (3.141)

a0,1 being integration constants and q0,1 being electric charges. The integration constants
are constrained by the normalization of the metric at infinity, but we are are not going to
impose this condition in 5 dimensions.

There is only one non-trivial scalar that can be expressed as h1/h0. In terms of the
scalar functions hI we have

h0 = 2−1/3

 L1

L0 − 9
2g2

(
ρ+ λ2

4 ρ
3
)−2

2/3

, (3.142)

h1 = 22/3

 L1

L0 − 9
2g2

(
ρ+ λ2

4 ρ
3
)−2

−1/3

, (3.143)

h2 = hA = 0 , (3.144)

and

φ1 = 2
L0 − 9

2g2

(
ρ+ λ2

4 ρ
3
)−2

L1
. (3.145)

Finally, the vector fields of the solution are given by

A0 = − 1√
3

[
L0 −

9

2g2

(
ρ+

λ2

4
ρ3

)−2
]−1

dt ,

A1 = − 2√
3
L−1

1 dt ,

A2 = 0 ,

AA = −1

g

(
1 +

λ2

4
ρ2

)−1

vAL ,

(3.146)

where the vAL are the left-invariant Maurer-Cartan 1-forms of the Lie group SU(2), given
in our conventions by

v1
L = sinψ dθ − sin θ cosψ dφ ,

v2
L = − cosψ dθ − sin θ sinψ dφ , (3.147)
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v3
L = −dψ − cos θ dφ .

AA is the potential of the BPST instanton and g is the 5-dimensional gauge coupling
constant.

3.3.2 From 5 to 6 dimensions

We are now going to exploit the relations between 5- and 6-dimensional theories that
we have uncovered. As already mentioned, we are adding one more twist observing
that, if we had dimensionally reduced the gauged N = 2A, d = 6 theory we would
have obtained a gauged N = 2, d = 5 supergravity theory and the relation between the
physical fields of these two gauged theories would be exactly the same we have obtained
in the ungauged case. This is true as long as the gauge group does not change in the
process of dimensional reduction (as in the case of generalized dimensional reduction
[39]). We can therefore use the formulas we have obtained to uplift solutions of the 5-
dimensional gauged theories to solutions of the 6-dimensional gauged theories and vice
versa.

The dimensional reduction of these gauged 6-dimensional theories would be the
models of N = 2, d = 5 supergravity that we have found, characterized by the CIJK
tensor with non-vanishing indexes C0rs = 1

3!ηrs, with exactly the same kind of gaug-
ing (with or without Fayet-Iliopoulos terms). The main difference with respect to the
6-dimensional theories is that, in the non-Abelian case, the gauge group acts on the
scalars that originate in the 6th component of the 6-dimensional vector fields and these
transformations are isometries of the σ-model metric. The relations between 5- and 6-
dimensional fields are still valid in the gauged case, but we have to keep in mind that,
in order to get the CIJK tensor exactly in the form C0rs = 1

3!ηrs, we performed a linear
transformation mixing several different vector fields (2.83). In the gauged case, this can
safely be done only if the vector fields have the same transformation properties under
the gauge group. Thus, we are only allowed to gauge vector fields that are not involved
in these redefinitions, and this is the reason for adding an identically vanishing vector
multiplet to the original solution.

The N = 2B, d = 6 theories cannot be gauged, at least not in a conventional way.
However, as we have already mentioned, it is believed that there are 6-dimensional
gauge theories based on chiral 2-forms associated to coincident M5-branes. The main
reason is that, when compactified on a circle, M5-branes behave as D4-branes and the
Born-Infeld fields of coincident D4-branes are non-Abelian. This means that, at least, the
non-Abelian theory of 2-forms exists when one of the 6 dimensions is compactified on
a circle and, under these conditions, the massless modes are essentially non-Abelian 1-
forms. There have been, actually, several proposals for non-Abelian theories of 2-forms
in 6 dimensions [120–122] and they mainly consider a compactified dimension.

The situation we are facing here is similar and probably directly related to the world
volume theories of the M5-branes. It is clear that, when these theories are compactified
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on a circle, at least the massless part of the spectrum (1-forms in d = 5) can be gauged.
We do not know how to formulate the gauging using chiral 2-forms directly in 6 uncom-
pactified dimensions but we do known that, at lowest order, the relation between the
6- and 5-dimensional non-Abelian fields is the same as between the Abelian ones. We
can therefore use the uplifting formulas to construct non-Abelian solutions of a “SO(3)-
gauged”N = 2B, d = 6 theory whose exact 6-dimensional formulation we do not know.
Actually, we can use this relation as a lowest-order formulation of that theory which
probably only exists when one of the 6 dimensions is compactified on a circle.

3.3.3 Solutions of the SO(3)-gaugedN = 2A∗, d = 6 theory

We are here constructing supersymmetric solutions of the SO(3)-gauged N = 2A∗, d =

6 theory without FI terms by uplifting the supersymmetric solutions of the similarly
gauged (no FI terms) N = 2, d = 5 supergravity with no hypermultiplets we have pre-
sented in section 3.3.1. In particular, we are going to uplift an extremal black hole sourced
by a BPST instanton [123].

We are going to find a solution of the N = 2A∗, d = 6 theory with nT = 1 and
nV = nV 5 − 2 = 3. One of the six 5-dimensional vectors is the KK vector and the other
two come from the non-chiral 2-form, while the 3 remaining vectors are the gauge fields
of the SO(3) gauge group6.

Using the equations (2.102,2.105,2.107,2.109), we straightforwardly obtain the follow-
ing 6-dimensional fields

ds̆2 = 2f̆du
[
dv′ − 3

2 (L1 − a1)du
]
− f̆−1(dρ2 + ρ2dΩ2

(3)) , (3.148)

f̆ =
√

2
3

{
L1

[
L0 −

2

9g2

(
ρ+

λ2

4
ρ3

)−2
]}−1/2

, (3.149)

e
√

2ϕ̆ = 1
2L1

[
L0 −

2

9g2

(
ρ+

λ2

4
ρ3

)−2
]−1

, (3.150)

ĂA = − 1√
12g

(
1 +

λ2

4
ρ2

)−1

vAL , (3.151)

H̆ = − 1
6dv
′ ∧ du ∧ d

[
L0 −

2

9g2

(
ρ+

λ2

4
ρ3

)−2
]−1

+ 3
2q1ω3 . (3.152)

We have renamed the coordinates z and t as u and v, respectively, since they are conju-
gate null coordinates in 6 dimensions. Then, we have shifted one of them v = v′ + 3

2a1u.
The null coordinates u and v′ can be expressed in terms of time (τ ) and space (y) coordi-
nate as

6Globally, the instanton solution requires the group to be SU(2).



Solutions: some examples 109

u = 1√
2
(τ + y) , v = 1√

2
(τ − y) . (3.153)

ω3 is the volume form of the round 3-sphere of unit radius whose metric is dΩ2
(3). If, for

instance, we use the Euler coordinates (θ, φ, ψ) such that

dΩ2
(3) = 1

4

[
(dψ + cos θdφ)2 + dθ2 + sin2 θdφ2

]
, (3.154)

then ω3 = 1
8 sin θdθ ∧ dφ ∧ dψ, and the 2-form B̆ can be written in this coordinate patch,

up to gauge transformations, as

B̆ = − 1
6

[
L0 − 2

9g2

(
ρ+

λ2

4
ρ3

)−2
]−1

dv′ ∧ du+ 3
16q1 cos θdψ ∧ dφ . (3.155)

Observe that now ĂA carries a factor of 1/
√

12 with respect to the potential of the
BPST instanton. The reason behind this apparent inconsistency is that the rescaling of
the potentials is harmless in the Abelian case but brings the non-Abelian 2-form field
strength to an unconventional form. To bring it back to the standard form we just have
to rescale the coupling constant. Thus, the 6-dimensional coupling constant is given in
terms of the 5-dimensional one by

ğ =
√

12g . (3.156)

The metric ds̆2 is that of a typical superposition of a string lying in the z direction and
a wave with momentum ∼ q1 in the same direction. The 3-form field strength H̆ indi-
cates that the string is dyonic, with electric and magnetic charges ∼ q0, q1, respectively.
This kind of solutions are very well known as they are particular cases of 3-charge config-
urations dual to the D1D6W one.7 The additional ingredient here is the BPST instanton
that modifies the metric function f̆ . The string part of this solution is also clearly related
to the “gauge dyonic string” solution of the Heterotic string effective action compactified
to 6 dimensions constructed in [124] by adding Yang-Mills instantons in the transverse
directions to the dyonic string found in [125] (see also [126]).

We have left the integration constants a0, a1 intentionally undetermined, because dif-
ferent choices for them can lead, as we are going to see, to physically inequivalent solu-
tions, depending on whether we demand asymptotic flatness or not.

Asymptotic limit

Let us first consider the ρ→∞ limit. There are two possibilities:

1. If we choose the two integration constants in the harmonic functions L0,1 to be
non-vanishing, a0a1 > 0, then

7Only two out of the three different charges are independent in this solution. This is necessary to have a
consistent truncation to minimal supergravity.
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f̆ ∼
√

2/3
√
a0a1

, e
√

2ϕ̆∞ =
a1

2a0
, H̆ρv′u ∼ −

q0

3a2
0

1

ρ3
. (3.157)

First of all, we notice that the metric is asymptotically flat. The normalization f̆ = 1

fixes the integration constants in terms of ϕ̆∞ only,

a0 = 1
3e
−ϕ̆
√

2 , a1 = 2
3e

+ϕ̆
√

2 . (3.158)

This solution describes the superposition of the dyonic string and pp-wave men-
tioned above. The charges of the string can be easily computed and are given by

Q ≡ 1
2π2

∫
S3
∞

e−
√

2ϕ̆ ? H̆ = −3q0 , P ≡ 1
2π2

∫
S3
∞

H̆ = 3
2q1 . (3.159)

The instanton field falls off too fast at infinity to give any contributions to charges,
masses or momenta.

2. If only one of the integration constants vanishes, the dilaton would not be well
defined. If both of them vanish a0 = a1 = 0, as long as q1

(
q0 − 8

3ğ2

)
> 0, f̆

remains finite, strictly real and positive for all finite values of ρ and the whole
metric is regular. In the ρ→∞ limit the fields behave as

f̆ ∼ ρ2

R2
∞
, e

√
2ϕ̆∞ =

q1

2q0
, H̆ρv′u ∼

1

3q0
ρ , (3.160)

where we have defined the constant

R2
∞ ≡

√
9q0q1

2
, (3.161)

which depends on the charges but not on the modulus ϕ̆∞. The metric takes a
direct product form

ds̆2
∞ = R2

∞

(
2du′dv′′ρ2 − 3q1du

′ 2 − dρ2

ρ2

)
−R2

∞dΩ2
(3) , (3.162)

where u = R2
∞u
′ and v′ = R2

∞v
′′.

The transverse part of the metric is that of a round 3-sphere of radius R∞. The rest
turns out to be the metric of an AdS3 space of the same radius R∞, as becomes
evident when computing its Riemann tensor

R(3)
µνρσ = − 2

R2
∞
g

(3)
µ[ρg

(3)
σ]ν . (3.163)
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Thus, the second choice of integration constants gives a solutions which is asymp-
totically AdS3×S3 with radii equal toR∞. Observe that in the Abelian case, which
can always be recovered by eliminating the instanton field, the solution would be
globally, and not just asymptotically, AdS3 × S3. In the ρ → ∞ limit we recover
essentially this Abelian solution because the instanton field vanishes and, in par-
ticular, the 3-form field strength H̆ takes the form

H̆ = 3
2q1 [−π3 + ω3] , (3.164)

where π3 and ω3 are the volume forms of unit-radii AdS3 and S3, respectively. In
the coordinates we are using, the first is given by

π3 = ρdρ ∧ dv′′ ∧ du′ . (3.165)

Near-horizon limit

For any value of the integration constants a0, a1 (i.e., for any of the two different solutions
identified above), the ρ → 0 limit guarantees finite values for the Ricci scalar and the
Kretschmann invariant of the full metric. Thus, we expect to have a well-defined ρ → 0

metric, which in the asymptotically-flat case will be interpreted as a near-horizon metric.
In both cases we have the the following asymptotic expansions:

L0,1 ∼
q0,1

ρ2
+O(1), f̆ = ρ2/R2

h +O(ρ4) , (3.166)

where

R2
h ≡

√
9q1(q0 − 8/(3ğ2))

2
, (3.167)

which is well defined as long as q1(q0 − 8/(3ğ2)) > 0 (in particular, q1 6= 0). We will
assume that this condition holds. Then, rescaling the null coordinates as u = R2

hu
′,

v′ = R2
hv
′′ the metric takes the same form we found above

ds̆2
h = R2

h

(
2ρ2du′dv′′ − 3q1du

′ 2 − dρ2

ρ2

)
−R2

hdΩ2
(3) , (3.168)

which is that of AdS3 × S3 with radii equal to Rh. The fact that this near-horizon limit
is the same as in the case of the pure dyonic string solutions, with no pp-wave [127] is
somewhat surprising.

In this limit the dilaton takes a constant and finite value,

e
√

2ϕ̆ =
q1

2(q0 − 8
3ğ2 )

, (3.169)
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while the vectors are simply proportional to the left-invariant Maurer-Cartan 1-forms
ĂA = − 1

ğ v
A
L. Recalling the definition of the left-invariant Maurer-Cartan forms V =

vATA = −u−1du for the SU(2) group representative u and the su(2) generators TA, we
conclude that the gauge fields are proportional to a pure gauge configuration, i.e. they
describe a meron8 field, analogous to the one found in [38]. Finally, in the ρ → 0 limit
the 3-form field strength H̆ takes exactly the same form as in the ρ→∞ limit (3.164), but
we should notice that the coordinates we are using in the AdS3 are different.

Summarizing, we have found two solutions:

1. The first solution, which is asymptotically flat and has a regular horizon. Asymp-
totically it cannot be distinguished from the well-known dyonic string solution
(plus pp-wave) that can be obtained by eliminating the instanton field. This be-
havior is similar to that of the colored black holes constructed in [29, 30, 83]. In the
near-horizon limit it has an AdS3 × S3 metric with radius Rh whose value, given
in (3.167), does have a contribution from the instanton field.

2. The second solution is a globally regular metric that interpolates between two
AdS3×S3 solutions with radiiR∞ andRh given, respectively, in (3.161) and (3.167).

3.3.4 Solutions of the SO(3)N = 2A, d = 6 theory

Dualizing the 3-form field strength of the N = 2A∗, d = 6 theory solutions we just
obtained according to equation (2.110), we can obtain very similar solutions of the N =

2A, d = 6 theory which will however present very different string-frame metrics9 and
possibly Kalb-Ramond field. We have

H̃ = − 1
3dv ∧ du ∧ dL

−1
1 − 3

2ρ
3∂ρ

[
L0 − 2

9g2

(
ρ+

λ2

4
ρ3

)−2
]
ω3 . (3.170)

Since, in this case, the 3- and 2-form field strengths are defined as

H̃ = dB̃ + F̃A ∧ ÃA + 1
3! g̃εABCÃ

A ∧ ÃB ∧ ÃC , (3.171)

F̃A = dÃA − 1
2 g̃ε

A
BCÃ

B ∧ ÃC , (3.172)

and the gauge fields are those of the BPS instanton

ÃA = −1

g̃

1

1 + λ2

4 ρ
2
vAL , (3.173)

we find that

8A meron is an Euclidean spacetime solution of the Yang-Mills field equations. It is a singular, localized, non
selfdual solution with half unit of topological charge, concentrated at the point where the solution is singular.

9In the Einstein frame, the metric is clearly the same as in theN = 2A theory (3.148).
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dB̃ = − 1
3dv ∧ du ∧ dL

−1
1 + 3q0ω3 , (3.174)

and using the Euler coordinates as in (3.155), we obtain the 2-form field

B̃ = − 1
3L
−1
1 dv ∧ du+ 3

8q0 cos θdψ ∧ dφ , (3.175)

which has no non-Abelian contributions.

3.3.5 Solutions of the “SO(3)-gauged”N = 2B, d = 6 theory

As we have already mentioned, there is no possible gauging in any conventional sense of
theN = 2B, d = 6 supergravity theory because it has no vector fields. However, it can be
argued that, at least when the theory is compactified in a circle, a gaugedN = 2B, d = 6

supergravity theory exists, whose massless (in the 5-dimensional sense) sector is given
by a gauged N = 2, d = 5 theory related to the former by dimensional reduction in the
Abelian case.

We have also stressed that the relation between the fields of two gauged supergrav-
ities is the same as in the ungauged case, as long as their gauge groups are identical.
Then, we can use the formulas obtained in the dimensional reduction of the standard
N = 2B, d = 6 theory to ungauged N = 2, d = 5 supergravity in order to uplift
solutions of the SO(3)-gauged 5-dimensional theory to this conjectured SO(3)-gauged
N = 2B, d = 6 supergravity. We are going to apply this idea to the non-Abelian black-
hole solution we have considered so far. Eliminating the BPST instanton from the solu-
tion, we obtain a solution of the standard, ungauged N = 2B, d = 6 theory.

Thus, using equations (2.92,2.94,2.95), calling u and v the coordinates z and t and
shifting v′ = v + 3a0u, we get the following solution

dŝ2 =

(
2

3L1

)
2du

{
dv′ − 3

[
(L0 − a0)− 2

9g2

(
ρ+

λ2

4
ρ3

)−2
]
du

}

−
(

2

3L1

)−1 (
dρ2 + ρ2dΩ2

(3)

)
,

L̂r = δr1 ,

B̂1
uv′ = 1

3L
−1
1 ,

B̂Aµudx
µ = − 1

2
√

6g
vAL .

(3.176)

This solution has the typical form of a solution describing the superposition of a
selfdual string with charge ∼ q1 and a pp-wave with momentum ∼ q0, but there is a
non-conventional non-Abelian contribution to this wave which can be interpreted as
an instanton expressed in 2-form variables. This non-Abelian contribution, as in the
previous cases, falls off too fast at infinity to give a contribution to the wave’s momentum
and, therefore, the solution has the same asymptotic behavior as the standard solution
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with no non-Abelian contribution. It also seems to be regular everywhere as long as
L1 6= 0.

In this solution the string charge and the pp-wave momentum are independent and
can be set to zero independently. If both are set to zero, a non-standard, purely non-
Abelian pp-wave solution is found.

Asymptotic limit

There are two possible choices of the integration constant a1 which give physically in-
equivalent solutions, while a0 has disappeared from the solution:

1. a1 = 1 gives an asymptotically (ρ→∞ limit) flat metric with the string-plus-wave
interpretation mentioned above;

2. a1 = 0 gives a metric that, with the usual rescaling of u and v′, takes the form

dŝ2 = R2

{[
2du′dv′′ρ2 − 3

(
q0 − 2

9g2 (1 + λ2

4 ρ
2)−2

)
du′ − dρ2

ρ2

]
− dΩ2

(3)

}
. (3.177)

In the ρ→∞ limit this metric is that of AdS3×S3 with radii

R2 = 3q1/2 , (3.178)

although, for all finite values of ρ, it differs from it, unless the non-Abelian contri-
bution is eliminated.

Near-horizon limit

For both the solutions a1 = 1, 0, the same metric in the ρ → 0 (near-horizon) limit is
obtained: an AdS3×S3 whose radii R are again given by (3.178). The difference between
this metric and the one obtained in the ρ→∞ limit for the second solution is that in the
near-horizon limit there is a non-Abelian contribution in the guu component, although
this does not affect the value of the radii of the factor spaces.

3.4 Solutions via dimensional reduction: the SU(2) FI-gauged theory

As mentioned previously in section 3.3.2, the supersymmetric solutions of the gauged
N = 2A, d = 6 theory with Fayet-Iliopoulos (FI) terms were classified in [38], and some
interesting examples were constructed. The results of chapter 2 can be exploited to di-
mensionally reduce them to 5 and 4 dimensions.
This procedure provides an alternative way to construct solutions of a given theory,
when there are theories related to the one we are interested in by these mechanisms
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and there are known solutions of them which, if they are to be dimensionally reduced,
have enough isometries. It turned out to be particularly fruitful for the SU(2) Fayet-
Iliopoulos gauged theory, whose equations of motion (see section 3.2) have proven to be
complicated.

As already explained in chapter 2, N = 2, d = 4 supergravity theories are directly
related by dimensional reduction or oxidation to other supergravity theories with 8 su-
percharges.10 These only exist in d ≤ 6 and, to the best of our knowledge, theories with
SU(2) FI gaugings have only been studied in N = (2, 0), d = 6 supergravity coupled
to one tensor multiplet and a triplet of vector multiplets in [38]. This theory is unique
and describes a truncation of the Heterotic String compactified on T 4. We named it
N = 2A, d = 6 in chapter 2, and it includes the metric g̃µ̃ν̃ , a complete (Kalb-Ramond)
2-form B̃µ̃ν̃ , a real scalar (dilaton) ϕ̃ and the three vector fields ÃAµ̃ , A = 1, 2, 3. The FI
term induces a simple potential for the dilaton, and the action takes the form [2, 38]

S̃ =

∫
d6x̃
√
|g̃|
{
R̃+ 1

2 (∂ϕ̃)2 + 1
3e
√

2ϕ̃H̃2 − eϕ̃/
√

2F̃ iF̃ i − 3
2 g

2
6 e
−ϕ̃/
√

2
}
, (3.179)

where g6 is the 6-dimensional coupling constant.
The results in chapter 2 can be exploited to dimensionally reduce the 6-dimensional

solutions found in [38] to solutions of SU(2) FI-gauged N = 2, d = 5 supergravity since
the relation between the 6- and 5-dimensional fields of the gauged theories is the same
as in the ungauged case, as long as the gauge groups are the same in both theories.

The 5-dimensional model obtained by dimensional reduction is completely charac-
terized by the symmetric tensor C0rs = 1

3!ηrs, r, s = 1, . . . , 5. The bosonic fields in this
theory are the metric ĝµ̂ν̂ , the 6 gauge fields ÂI µ̂, I = 0, · · · , 5, 5 of which, Ârµ̂, cor-
respond to 5 vector multiplets11, and 5 scalar fields. Due to the reduction procedure,
Â0,1,2

µ̂ are Abelian fields, while ÂA+2
µ̂ are the three SU(2) gauge fields. The physical

scalars φ̂r are encoded in the scalar functions ĥI , constrained by the fundamental rela-
tion of real special geometry, which in this case reads

CIJK ĥ
I ĥJ ĥK = 1

2 ĥ
0ηrsĥ

rĥs = 1 . (3.180)

A convenient parametrization is φ̂r = ĥr so ĥ0 = 2/(φηφ) ≡ φ̂0, where φηφ ≡
φ̂rηrsφ̂

s. In this parametrization, the last 3 scalars φ̂A+2 transform in the adjoint rep-
resentation of SU(2) and the action of the theory can be written in the compact form

Ŝ =

∫
d5x̂
√
ĝ

{
R̂+ 3

2 âIJD̂µ̂φ̂
ID̂µ̂φ̂J − 1

4 âIJ F̂
I µ̂ν̂ F̂ J µ̂ν̂ − 18 g2

5

(
φ̂0
)−1

+ 1
24
√

3
ηrs

ε̂µ̂ν̂ρ̂σ̂α̂√
ĝ

Â0
µ̂F̂

r
ν̂ρ̂F̂

s
σ̂α̂

}
,

(3.181)

10The relation with theories with different number of supercharges must necessarily involve truncations and
constraints on the solutions and we will not consider them here.

11The reduction of the KR 2-form gives just 2 vector fields.
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where

D̂µ̂φ̂
0,1,2 = ∂µ̂φ̂

0,1,2 , D̂µ̂φ̂
A+2 = ∂µ̂φ̂

A+2 − g5ε
A
BCÂ

B
µ̂φ̂

C+2 . (3.182)

The non-vanishing components of the metric aIJ are

a00 = 1
12 (φηφ) , ars =

−2ηrs(φηφ) + 4ηrr′ φ̂
rηss′ φ̂

r

3(φηφ)2
. (3.183)

Observe that, as in (3.156), the 6- and 5-dimensional gauge coupling constants are
related by

g5 =
1√
12
g6 . (3.184)

As explained in section 2.2, the model that arises in the dimensional reduction of the
above 5-dimensional model is the ST[2, 6] model, which is characterized by the prepo-
tential

F = − 1
3!

dijkX iX jX k

X 0
, (3.185)

where i = 1, 2 · · · , 6 labels the 6 vector multiplets and where the fully symmetric tensor
dijk has as only non-vanishing components,

d1αβ = ηαβ , where ηαβ = diag(1,−1, . . . ,−1) and α, β = 2, · · · , 6 . (3.186)

The 6 complex scalars parametrize the coset space

SL(2,R)

SO(2)
× SO(2, 5)

SO(2)× SO(5)
, (3.187)

and the group SO(3) acts in the adjoint on the coordinates α = 4, 5, 6 that we are denoting
with A,B, . . . indexes; these are the directions which are gauged. With our conventions,
the SL(2,R)

SO(2) factor is parametrized by the scalar Z1 which is often called the axidilaton
field since its real and imaginary parts are, respectively, an axion and a dilaton field.

The scalar potential can be computed using the general formula (1.6), but we ob-
tained it easily by dimensional reduction, using the relation between 5- and 4-dimensional
fields that we reported in section 2.2. It takes the extremely simple form

V(Z,Z∗) = − 3
4 g

2
4

1

=mZ1
, (3.188)

where now the 5- and 4- coupling constants are related by

g4 = −
√

24 g5 = −
√

2g6 , (3.189)

where we used (3.184). It is proportional to the exponential of the dilaton field and,
therefore, negative definite.
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3.4.1 Rules for dimensional reduction

In the present section no new results are introduced. We are just reporting and summa-
rizing the results we proposed in chapter 2, specifying them to the case under study.

6→ 5

Equations (2.102,2.105,2.107,2.109) are the result of the procedure of dimensional oxida-
tion from the ST [2, n] 5-dimensional model to N = 2A 6-dimensional theory. We are
here reporting the inverse of these rules, specified for the model we are considering.
They have been used to reduce the solutions presented in [38].

If we perform the dimensional reduction along the coordinate z, the 5-dimensional
fields of can be expressed in terms of the 6-dimensional fields ones as follows:

ĝµ̂ν̂ = g̃µ̂ν̂
∣∣g̃zz∣∣ 1

3 + g̃µ̂z g̃ν̂z
∣∣g̃zz∣∣− 2

3 ,

ĥ0 = e
ϕ̃√
2

∣∣g̃zz∣∣ 1
3 ,

ĥ1 =
∣∣g̃zz∣∣− 2

3

(
1 + ÃizÃ

i
z

)
+

1

2
e
− ϕ̃√

2

∣∣g̃zz∣∣ 1
3 ,

ĥ2 =
∣∣g̃zz∣∣− 2

3

(
1− ÃizÃiz

)
− 1

2
e
− ϕ̃√

2

∣∣g̃zz∣∣ 1
3 ,

ĥi+2 = −2
∣∣g̃zz∣∣− 2

3 Ãiz ,

F̂ 0
âb̂ = −4

√
3
∣∣g̃zz∣∣ 2

3 e
√

2ϕ̃ εâb̂ĉd̂ê H̃
ĉd̂ê ,

F̂ 1
µ̂ν̂ =

√
3 H̃µ̂ν̂z + 4

√
3 Ãiz F̃

i
µ̂ν̂ + 2

√
3 ∂[µ̂

[
g̃ν̂]z

g̃zz

(
ÃizÃ

i
z + 1

)]
,

F̂ 2
µ̂ν̂ = −

√
3 H̃µ̂ν̂z − 4

√
3 Ãiz F̃

i
µ̂ν̂ − 2

√
3 ∂[µ̂

[
g̃ν̂]z

g̃zz

(
ÃizÃ

i
z − 1

)]
,

Âi+2
µ̂ =
√

12 Ãiµ̂ + 2
√

3
g̃µ̂z
g̃zz

Ãiz .

(3.190)

5→ 4

Analogously, we are here reporting the results of [30] and making them ready to be used
in this case.

If we perform the dimensional reduction along the coordinate y, the 4-dimensional
fields can be expressed in terms of the 5-dimensional ones as follows:
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gµν =
∣∣∣ĝyy∣∣∣ 1

2

[
ĝµν −

ĝµy ĝνy

ĝyy

]
,

Zi =
1√
3
Âi−1

y + i
∣∣∣ĝyy∣∣∣ 1

2

ĥi−1 ,

A0
µ =

1

2
√

2

ĝµy

ĝyy
,

Aiµ = − 1

2
√

6

[
Âi−1

µ − Âi−1
y

ĝµy

ĝyy

]
.

(3.191)

3.4.2 An Einstein universe

The first solution proposed in [38] that we are going to reduce is, perhaps, the simplest:
it is a generalization of the solution with geometry M4×S2 found by Salam in Sezgin
in [128] that has M3×S3 metric, a constant dilaton field whose value is proportional to
the square of the radius of the S3 and to the square of the coupling constant, a meronic
gauge field and vanishing 2-form. The non-vanishing field are given by

ds̃2 = dt2 − dz2 − dy2 − a2dΩ2
(3) ,

e
ϕ̃√
2 =

a2 g2
6

2
,

ÃA = − 1

2g6
σA ,

(3.192)

where the σA are the left-invariant Maurer-Cartan 1-forms satisfying dσA = 1
2ε
A
BCσ

B ∧
σC , dΩ2

(3) = 1
4σ

AσA and a is a constant parameter.
Reducing along the z coordinate using (3.190), we get a solution of the 5-dimensional

theory with the following non-vanishing fields,

dŝ2 = dt2 − dy2 − a2dΩ2
(3) ,

ĥ0 = 6a2g2
5 ,

ĥ1 = 1 +
1

12a2g2
5

,

ĥ2 = 1− 1

12a2g2
5

,

ÂA+2 = − 1

2g5
σA .

(3.193)

This solution belongs to the same class as its 6-dimensional parent: it has constant
scalars and a meronic gauge field that support a M2×S3 geometry.

Reducing further along the y coordinate thanks to (3.191), we obtain a 4-dimensional
solution of the same kind with non-vanishing fields
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ds2 = dt2 − a2dΩ2
(3) ,

Z1 =
i

4
a2g2

4 ,

Z2 = i

(
1 +

2

a2g2
4

)
,

Z3 = i

(
1− 2

a2g2
4

)
,

AA+3 = − 1

2 g4
σA .

(3.194)

The metric of this solution describes a static Einstein universe.

3.4.3 AdSn×Sm solutions

The second solution we have considered is the dyomeronic black string of [38], which cor-
responds to a black string lying along the z direction with electric and magnetic 3-form
and a meronic gauge field in the 4-dimensional transverse space. Its non-vanishing fields
are given by

ds̃2 =
r√

Q1 + Q2

r2

(
dt2 − dz2

)
−

√
Q1 + Q2

r2

r

(
dr2 + a2r2 dΩ2

(3)

)
,

e
√

2ϕ̃ =
a4g4

6

4 (1− a2)
2 r

2

(
Q1 +

Q2

r2

)
,

Ãi = −1− a2

2g6
σi ,

H̃ =
1− a2

g2
6

a
4
r σ1 ∧ σ2 ∧ σ3 +

2Q2

a2

1

r3
(
Q1 + Q2

r2

)2 dt ∧ dr ∧ dz

 ,

(3.195)

where the parameter a satisfies a2 < 1. This solution is not asymptotically AdS (nor
some other known vacuum solution) but has a horizon at r = 0 and in the near-horizon
limit r → 0 the metric is of the form AdS3×S3 where the two factors have different
radii. Since this limit is equivalent to setting Q1 = 0, the AdS3×S3 near-horizon limit is
a supersymmetric solution as well.

If we reduce along the z direction, the following 5-dimensional solution is obtained

dŝ2 = r
4
3

(
Q1 +

Q2

r2

)− 2
3

dt2 − r− 2
3

(
Q1 +

Q2

r2

) 1
3 (
dr2 + a2r2dΩ2

(3)

)
,

ĥ0 =
6 a2g2

5

1− a2
r

4
3

(
Q1 +

Q2

r2

) 1
3

,

(3.196)
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ĥ1 = r−
2
3

(
Q1 +

Q2

r2

) 1
3

1 +
1− a2

12 a2g2
5

(
Q1 + Q2

r2

)
 ,

ĥ2 = r−
2
3

(
Q1 +

Q2
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) 1
3

1− 1− a2

12 a2g2
5

(
Q1 + Q2

r2

)
 ,

F̂ 0 = 122
√

3 g2
5

a2

1− a2
r

5
2

(
Q1 +

Q2

r2

)− 1
4

dt ∧ dr ,

F̂ 1 = −F̂ 2 =
1− a2

2
√

3 a2g2
5

Q2

r3

(
Q1 +

Q2

r2

)−2

dt ∧ dr ,

ÂA+2 = −1− a2

2 g5
σA .

This solution is singular at r = 0 and it is not asymptotically AdS (nor some other
known vacuum solution). If we reduce it again along the coordinate φ, defined by
dΩ2

(3) = 1
4

[
(dφ+ cos θ dψ)

2
+ dθ2 + sin2 θ dψ2

]
, we get a 4-dimensional solution which

we will refrain from writing explicitly because it has the same problems as the 5-dimensional
one.

Of course, we could have performed the reduction from 6 to 5 dimensions with this
coordinate φ. In this way, we obtain a 5-dimensional solution which presents similar
properties to the 6-dimensional case, namely

dŝ2 =
(a

2

) 2
3

r
4
3

(
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Q2
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2
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(3.197)
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F̂ 0 =
3

5
2 a6g2

5

1− a2
Q2 r

3
2

(
Q1 +

Q2

r2

)− 1
4

cos θ dθ ∧ dψ ,

F̂ 1 = − F̂ 2 =

[(
1− a2

)
a

16
√

3 g2
5

r − 2
√

3

]
sin θ dθ ∧ dψ ,

Â3 =
1− a2

2 g5
(− sinψ dθ + cos θ sin θ cosψ dψ) ,

Â4 =
1− a2

2 g5
(cosψ dθ + cos θ sin θ sinψ dψ) ,

Â5 =−1− a2

2 g5
cos θ (1 + cos θ) dψ ,

where we have introduced 3 Cartesian coordinates xA related to the spherical coordi-
nates r, θ, ψ in the standard way.

This solution is regular in the r → 0 limit, where the metric becomes that of the
product AdS3× S2 with different radii:

dŝ2 →
(a

2

)2/3 Q
2/3
2

ρ2

(
dt2 − dz2 − dρ2

)
−
(a

2

)8/3

Q
2
3
2 dΩ2

2 . (3.198)

where ρ ≡ Q1/2
2 /r. Again, it is not asymptotically AdS.

The r → 0 limit of the complete solution coincides with the solution that one gets
by setting Q1 = 0. Thus, there is a globally regular AdS3× S2 solution in this theory.
It could have been obtained directly by dimensional reduction from the 6-dimensional
AdS3× S3 solution.

Further reduction along the z coordinate would lead to the same problematic 4-
dimensional solution mentioned above.

There is, however, another possibility inspired by the results of [129], where the re-
lation between AdSn× Sm vacua of the 4-, 5- and 6-dimensional theories with 8 super-
charges was studied.

The main point resides in the observation that, just as S3 can be seen as a U(1) fibra-
tion over S2, so that S2 can be obtained by dimensional reduction along that fiber12, AdS3

can be seen as a U(1) fibration over AdS2 and, by dimensional reduction along that fiber,
AdS2 arises.
Thus, if we had used the U(1) fiber of the AdS3 in the AdS3× S3 solution -instead of
using the coordinate z along which the 6-dimensional string lies- to perform the dimen-
sional reduction, we would have obtained an AdS2× S3 solution in 5 dimensions and
similarly an AdS2× S2 solution in 4 dimensions.

An even more general path is possible: the two U(1) fibers of the 6-dimensional solu-
tion can be rotated among themselves and the dimensional reduction can proceed along
one of the rotated fibers. As in the ungauged case studied in [129], the result would be

12This is what we have done in section 3.4.3 to go from the AdS3× S3 to the AdS3× S2 solution.
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a solution describing the near-horizon geometry of the BMPV black hole, where the re-
maining U(1) would be non-trivially fibered over AdS2×S2. This latter space is obtained
in 4 dimensions after dimensional reduction along the remaining fiber.

The main difference with the ungauged case, apart from the presence of non-trivial
SU(2) gauge field, is the difference between the radii of the two factors of these metrics.

Carrying out these alternative dimensional reductions is straightforward, albeit quite
lengthy and involved, due to the necessity to rewrite the 6-dimensional solution in dif-
ferent coordinates. We don’t report it here explicitly, because its main features have
already been pointed out.







Conclusions

Exploring the space of the supersymmetric solutions of a supergravity theory is one
of the most elementary steps one can take to get a more complete understanding of
its structure, providing information about the possible vacua and some of the solitonic
objects that can exist on it.

In this thesis, we have been exploring some so far disregarded sectors of the space of
solutions of N = 2 gauged supergravity theory, in 4 and 5 dimensions and of N = (2, 0)

in 613. In particular,

• we considered a non-homogeneous deformation of the stu model of 4-dimensional
supergravity and computed the symplectic embedding of the electric-magnetic du-
ality algebra. We then focused on a particular FI gauging of this model, that leads
to a scalar potential with two AdS critical points, a supersymmetric one, and an-
other that breaks supersymmetry and that exists only when the deformation pa-
rameter lies within a specific range. We wrote down the attractor equations for
this model, and constructed an explicit BPS black hole solution that interpolates
between this attractor geometry and the supersymmetric AdS vacuum at infinity.
Various physical properties of this solution were also discussed;

• we applied the method developed in [4] to the SU(2)-FI gauged theory in 4 dimen-
sions, for which no solutions were known. We discussed how this kind of gauging
must be associated with an SU(2) gauging of the special Kähler manifold. We
showed that no maximally supersymmetric solutions exist in these theories. We
chose a particularly simple model, the CP3

model, that admits an SU(2) gauging
and implemented various Ansätze to solve the equations; among the new solutions
we found, interesting examples present an AdS2×S2 and a R×H3 geometry;

13In none of these theories we have considered hypermultiplets. Only vector multiplets and, in 6 dimen-
sions, tensor multiplets are involved in the models we have treated.
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• we have found a very interesting relation between two families of models of N =

(2, 0), d = 6 supergravity that can be used to transform solutions of one of them
admitting one isometry into solutions of the other. The relation is based on the fact
that they reduce to the same family of models of N = 2, d = 5 supergravity, a fact
that we have used to construct new 6-dimensional supersymmetric non-Abelian
solutions by uplifting a known 5-dimensional non-Abelian black hole solution [30].
As in the 5 and 4-dimensional cases, the non-Abelian fields do not contribute to any
of the quantities that can be measured at infinity, like the mass, but they do modify
the near-horizon geometry, with a negative contribution to the entropy. This means
that, for the same asymptotic data there are several black-body configurations with
different entropies and the non-Abelian one, having the least entropy, should be
unstable.

• we exploited the relation between 6, 5 and 4-dimensional theories to find more so-
lutions of the SU(2)-FI gauged model, in 4 and 5 dimensions, upon reducing a cou-
ple of known 6-dimensional solution [38]. We have found solutions whose geome-
try is of the form Mm×S3 in 4 and 5 dimensions, descending from a 6-dimensional
metric of the same kind and an AdS3×S2 solution in 5 dimensions. We proposed
a method to originate AdSm×Sn geometries in 4 and 5 dimensions, reducing the
same 6-dimensional solution in a different way.

We are still far from understanding the underlying general structure of the solutions
of gauged supergravity (if there is any). It is therefore useful to provide new examples,
possibly in different and unexplored models. There are still many sectors of the space of
supersymmetric solutions ofN = 2 supergravity theories for which no, or few, solutions
are known.

A natural question is whether there also exist black holes in this theories that asymp-
totically yield the non-BPS vacuum. A step in this direction has been taken in [36]. It
would also be interesting to investigate solutions of FI-gauged supergravity coupled to
hypermultiplets, since there is only one known example, in [130].

Non-Abelian gaugings of the vector multiplets’ sector are very little known, espe-
cially in relation to the existence and properties of regular black hole solutions, of the
related attractor mechanism, of their supersymmetry-preserving features. Moreover, a
long-standing problem that remains unsolved as yet is the microscopical interpretation
of the entropy of all the black objects with non-Abelian field. We believe that the work
presented here will help to find the embedding of these solutions in a string theory, pro-
viding the first step to solve it.

As far as the SU(2)-FI gauged theory is concerned, we found a non-maximally su-
persymmetric solution that can be interpreted as a deformation of the maximally super-
symmetric vacua of the ungauged theory, the AdS2×S2 solution with its 5-dimensional
origin. The existence of deformed versions of the rest of the maximally supersymmet-
ric vacua of N = 2, d = 5 supergravity (Hpp-waves and Gödel spacetimes) seems very
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likely. It may be possible to obtain them from the above-mentioned solutions by dif-
ferent limiting procedures. On the other hand, it would be interesting to find complete
black-hole and black-string solutions whose near-horizon geometries were precisely the
AdSm×Sn solutions we have discussed.

Finally, another still unexplored sector of N = 2, d = 4 supergravity is the one com-
bining an U(1)-FI gauging to non-Abelian fields and to the gauging of a non-Abelian
subgroup of the isometry group of the special Kähler manifold. This setting should pro-
vide asymptotic AdS solutions involving non-Abelian fields.
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