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Introduction  
  



Abstract 
The main focus of my Ph.D. research is to study a new way to supply natural antioxidant molecules 

within a specific substrate using biocompatible polymers, the latter being either synthetic or natural.   

Collins Dictionary defines the word “antioxidant” as: 

1. any substance that inhibits oxidation, as a substance that inhibits oxidative deterioration of 

gasoline, rubbers, plastics, soaps, etc. 

 

2. an enzyme or other organic substance, as vitamin E or beta carotene, that is capable of 

counteracting the damaging effects of oxidation in animal tissues and food.   

 

The first definition is closer to the field of polymers used for the production of goods that are 

commonly used. If the antioxidant protects the material during its processing (that usually occurs at 

high temperatures), it is identified as secondary antioxidant: on the other side, an antioxidant used 

to prevent goods degradation (i.e. weathering) is defined as primary antioxidant. The common 

practice consists in a proper combination of primary and secondary antioxidant in order to obtain a 

final material that is able to be processed and to resist for the entire life of the products. The choice 

of the proper antioxidant depends on the polymer and therefore on the technological field of use and 

must be done according to three important parameters: 

1. The temperature required for the process (i.e. melt extrusion, mold injection etc.): the 

higher the processing temperature, the higher must be the degradation temperature of the 

antioxidant. 

2. The time required for the transformation: the kinetic of decomposition must be considered 

as a crucial parameter because, even if the antioxidants are stable in a range of 

temperatures and can prevent degradation, a prolonged thermal stress, occurring at 

temperature close to the decomposition temperature, can promote the reaction and consume 

all the antioxidant leaving the polymeric material without protection against oxidation. 

3. The external stress exposure during goods life: UV light (indoor or outdoor applications), 

thermal stress (oxidation kinetic is dramatically dependent to temperature), moisture 

(antioxidants can be soluble in water therefore continuous washings can promote migration 

of antioxidant leaving polymer without protection).    

Radical attack is the most common route of polymeric material degradation; active radicals can be 

generated by thermal stress and ultraviolet irradiation and in both cases an active radical can attack 



the polymeric chain modifying the structure and changing material properties. A general scheme of 

the reaction is reported in figure 1. The role of antioxidant is to interrupt the cycle preventing the 

degradation of the material. 

 

Figure 1: general scheme of radical attack on organic substrate 

The second definition, more familiar with biochemical field, defines another kind of antioxidant, or 

better, another kind of role that antioxidant should have in a process. Oxygen radicals can attack, 

with the same mechanism shown in figure 1, a lot of biological substrate leading to degradation. If 

the attack occurs in non-living animal substrate (i.e. food) the degradation leads a low-quality or 

even a non-comestible product. If the degradation occurs at a cellular level, an “oxidative stress” is 

present: this can promote a lot of diseases, and even lead to cancer in living tissues.  

The use of active substances, i.e. of substances that can have active functions beyond the inert 

passive containment and protection of the product to preserve packaged food is a novel approach 

used in packaging that lies beneath the field of the so-called “active packaging”. Food companies, 

and also the academic world, have a great interest in this field. Economists have estimated that 

active packaging is a business worth 2.8$ billion 2014 that will reach 4.0$ billion in 2019 only in 

the US.  In the academic field, the interest around active packaging is steadily growing: indeed, the 

key words “active packaging” give almost 15000 results related to papers and patents (SciFinder® - 

2016) with a trend that dramatically increases in the latest 10 years. Up to 1996 the total amount of 

publications in the field was 1886 whether in 2016 year only, there are more than 1000 publications.  

The framework here presented is the background of the present research, active packaging is 

defined as the field related to “packaging having active functions beyond the inert passive 

containment and protection of the product”: it is one of the most promising novel strategies in the 



field of food packaging. Some active packaging solutions are already present in the market, and 

examples are: devices for moisture control, oxygen scavengers, CO2 emitter, antibacterial coating 

and also radical scavengers. Active packaging solutions rely on two main techniques, one involving 

the use of external devices put in the package (i.e. silica small bags to absorb moisture or iron 

sachets as oxygen scavengers) – this solution is not appealing for consumers in food packaging – 

the other involving the use of additives compounded with the polymers used for packaging. One of 

the most relevant issue of the latter is related to the migration of active substances into food over 

time that causes food contamination and alteration. The PhD project is dedicated to the 

development of a new approach for active packaging, capable of potentially solving (or at least 

dramatically limit) the problems evidenced: such approach relies on the “in situ” synthesis of 

intrinsically active polymers – antioxidant being the preferred ones – with the potential of becoming 

materials used to produce films for packaging having intrinsic active features. Another issue related 

to packaging (and food packaging in particular) is the huge environmental impact (waste food 

packed with standard PE, PP or PET is disposed as general waste, thus raising two ethical issues, 

one related to food waste and the other related to health concerns related to traditional plastics end-

life in the last years the use of biopolymers as packaging materials has rapidly grown, even if they 

are still a niche market. The PhD project was therefore focused on the synthesis of intrinsically 

active biopolymers, to combine both the environmental sustainability of such biopolymers and the 

new approach related to active packaging solutions: some natural antioxidant molecules (or their 

simple derivatives) were chosen according to their potential reaction in “in situ” polymerization of 

lactide to give poly lactic acid (PLA). Lactide reacts giving PLA via Ring Opening Polymerization 

(ROP) that can be initiated by an aliphatic alcoholic moiety whereas aromatic ones do not react with 

lactide. Benzyl alcohols bearing a phenolic moiety can act as polymer initiator leaving unreacted 

the phenol groups, responsible for antioxidant features. 

The first step was to synthesize intrinsic antioxidant polymers using bulk polymerization of lactide. 

Different antioxidant compounds were found as possible active molecule, namely: 

Tyrosol (Tyr), Vanillyl Alcohol (VA), Methyl Ascorbic Acid (AA), Pyridoxine (Pyr) and dihydroxy 

benzyl alcohol (DBA).  

The criterion of choice was based on the presence of at least an aliphatic alcoholic moiety allowing 

potential reaction with lactide. 

The second criterion used was the resistance at high temperatures, since PLA bulk polymerization 

involves the use of high temperatures of about 190°C.  The study of thermal properties (performed 

via TGA) revealed that only VA and Tyr have the required long-term thermal stability at 190°C.  



Thanks to these two criteria, VA and Tyr were chosen as the molecules that could be added in the 

feed used for the bulk polymerization of lactide. Given the presence of a phenolic and of a –CH2-

OH moiety in both molecules, they could act as bi-functional comonomer in the polymerization. 

Nevertheless, the phenolic moiety is too acid to form a stable bond with lactide: this means that VA 

and Tyr act as mono-functional initiators in the ring opening polymerization (ROP) of lactide.  They 

were therefore used in low concentration in the polymerization feed (0,1% mol/mol on lactide) to 

allow having polymers with high molecular weight, necessary to obtain films via solution casting. 

To evaluate “in vitro” antioxidant features of such polymers, DPPH assay were used to assess the 

antioxidant power of the new polymers. 

Despite VA and Tyr were used in low concentration, PLA bearing VA resulted having 8.3% of 

radical scavenging (whereas pure PLA has no radical scavenging activity, as expected), where the 

scavenging ability of pure VA is 94%. Besides, the relatively high molecular weight (comparable to 

the one of Natureworks PLA Ingeo® 4043D, commonly used in food packaging) of this polymer 

allowed the production of films via solution casting: this indicates that the polymer, in a future, 

could be used also for film production via melt extrusion. The research project was then devoted to 

the research of further improvements to the antioxidant power of PLA+VA and to find a way to 

widen possible application fields of this new class of intrinsically antioxidant polymers. 

Polymerizations were performed with increasing VA content (up to 0.2%); this strategy revealed 

some problems:  

 1) The antioxidant molecule acts as chain initiator therefore as its concentration increase, the 

average degree of polymerization (DPn) decreases, jeopardizing the possibility to process the 

polymers (i.e. to obtain homogeneous films via solution casting).  

 2) The Vanillyl alcohol has an intrinsic high reactivity due to its antioxidant moiety that 

leads to unexpected side reactions.  

Regarding point 1, the theoretical approach relies on the studies about the degree of polymerization 

(DPn). DPn at full conversion (i.e. 100%) can be determined with the following equation: 

��� =
������	
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nmonomer are the moles of monomer, ninitiatior are the moles of initiator and f is the number of 

functionalities of active molecules able to react with the monomer. Equation 1 shows that the 

increase of chain initiator concentration decreases DPn value. For instance, a 0,1% mol/mol 

concentration leads to a polymer with maximum DPn = 1.000 (real DPn is lower) while 0.5% 



mol/mol decreases maximum DPn to 200. Since melt viscosity strongly depends upon molecular 

weight, and therefore DPn, low DPn leads to low melt viscosity, that doesn’t allow for melt 

extrusion of films: DPn of industrial PLA used for film production is higher than 600. This 

consideration led us to choose a maximum concentration of VA lower than 0.2% mol/mol.  

Regarding point 2, VA has an intrinsic high reactivity. If its concentration is higher than 0,5 mol%, 

at 190°C and in the presence of a catalyst, side reactions occur.  

Due to what described about the above points 1 and 2, the experiments were conducted on PLA 

containing 0,1% mol/mol of VA. 

The very promising DPPH results on this sample allowed to perform shelf life test with a real 

industrial food matrix: an industrial salami was chosen due to its high fat content that makes it a 

critical food in terms of shelf life requirements. The test required a long preparation time since, to 

perform reliable tests, a minimum of 160 salami slices must be tested: PLA films were used as 

interlayer between two salami slices. For  each packaging of two salami slices, a film of about 

100cm2 is required. It means that for a reliable shelf life test at least 8000cm2 of active PLA (the 

surface of 12 A4 sheets) was required; solvent casting deposition permits to produce only one A4 

sheet of PLA film every 15h, therefore the production of all polymer sheets for the test took more 

than 180h.         

The results obtained were very good: 

1. PLA+VA enhances the stability of food matrix decreasing the oxidation kinetic: the 

degradation begins after 15d whereas, in non-active packaged salami, the degradation starts 

after few days. 

2. DPPH value does not decrease during the test (i.e. no migration of VA occurs over time) 

Therefore, at the end of the work, a new class of polymeric materials with intrinsic antioxidant 

properties was developed, tested with “in vitro” assay and also with “in vivo” shelf life test. 

CONCLUSION 

During the Ph.D project, several issues related to intrinsically antioxidant polymers were addressed: 

• The possibility to obtain intrinsic antioxidant environmentally friendly polymers via ROP of 

lactide was verified: antioxidant molecule such as Tyr and VA can react with lactide using 

the same approach used for industrial process of PLA synthesis.  



• The possibility to increase the quantity of VA in lactide bulk ROP was tested: the maximum 

quantity of VA should be below 0,2% mol/mol and therefore no real change in antioxidant 

feature could probably be achieved in comparison to the polymers with 0,1% of VA.  

• The polymers obtained were tested in-vitro confirming that the antioxidant moiety (phenolic 

moiety) still remain active after the polymerization leading to an “active” material. 

Afterwards, the PLA containing VA was tested in-vivo using a standard procedure for shelf-

life studies: the in-vitro results were confirmed by these assays, since the material reduces 

the oxidation rate of packaged food enhancing the shelf-life of the products. 

   

The second part of the Ph.D. project was devoted to the use of natural antioxidants for biomedical 

application. Oxidative stress, as was previously mentioned, is one of the main causes of a series of 

degenerative diseases (like cancer, heart failure, infections), including those pathologies affecting 

the Central Nervous System like Parkinson’s disease, Alzheimer’s disease, and also depression.  

The presence of free radical, as reactive oxygen species (ROS) in mitochondrial ambient, can 

disturb the normal redox cellular equilibrium leading to damage the cellular ambient, including 

lipids, protein and also DNA; however, reactive oxygen species can be beneficial as they are used 

by the immune system as a way to attack and kill pathogens. Short-term oxidative stress may also 

be important in prevention of aging by induction of a process named mitohormesis, an adaption of 

human body of stress caused by the presence of endogenous ROS. Not only the endogenous ROS 

uncontrolled production can cause diseases but also an external trauma, for instance a fracture of 

bone or muscle sprain, can modify the cellular redox equilibrium leading to an exceeded production 

of radical. The administration of antioxidant in the damaged area can restore the normal redox 

equilibrium enhancing the healing process.  

A possible way to prevent, or at list to reduce, the effect of oxidative stress is the consumption of 

antioxidants, that are abundant in vegetable and fruits; the most famous are Vitamin C, Vitamin E, 

natural flavonoids, carotenoids. Even if a well-balanced diet can provide many nutrients, sometimes 

it could not be enough for many causes (for instance exceeded stress due to the life style, high 

intensity training, unhealthy habits, smoke etc.): to complete the daily supply of antioxidants with 

supplements can be a good solution. Antioxidant supplements represent a 23$ billion/year industry 

(n.d.r. 2015) that continue to spread its market. 

One of the relevant issue of antioxidant supplement, and also for antioxidant molecules present in 

foods, is related to the “real” availability of the active molecule inside the human body. In other 

terms, the effects of antioxidant are not only dependent on their concentration in food or 



supplements but especially on the so-called “bioavailability” and “bioaccessibility”. Bioavailability 

is defined as the proportion of an antioxidant that is digested, absorbed, and utilized in normal 

metabolism; measurement of bioavailability heavily relies upon estimates of amounts of antioxidant 

absorbed. On the other hand, bioaccessibility is a commonly used term defined as the amount of an 

ingested nutrient that is available for absorption in the gut after digestion. In these terms, the 

bioavailability strictly depends on the bioaccessibility. Bioaccessibility rapidly decreases over time: 

in fact, the concentration of antioxidant dramatically decreases 2h after digestion: therefore, in the 

human body the concentration of antioxidants rapidly increases after the assumption of food and 

supplements and, with the same velocity, decreases. 

A system that is able to protect and to release an antioxidant under specific conditions could be a 

solution to overcome these problems. Scientists have developed a lot of systems for controlled 

release of substances: dendrimers, nano and micro particles, brush polymer, hierarchical scaffolds 

etc., Even if the structure and therefore the production methods are different, the key concept is 

almost the same: the active principle molecule is entrapped in a system which can create weak 

reversible interactions and, with a specific variation of pH or solvent solubility (the active principle 

should be more soluble in water than in the macromolecular chains of the scaffolds), the release 

occurs. A controlled release has great advantages in comparison to “standard” method: 

• The release occurs in the target substrate reducing dramatically the loss of activity and 

preventing the eventually side effects. 

• The active principle concentration can be kept constant obtaining better results in terms of 

performance and efficacy. 

• The concentration of active substances in supplements could be decreased reducing the 

costs of production. 

Two different release systems were investigated during this Ph.D. thesis:  

• High porous scaffolds 

• Release system for ingestion 

Biomedical scaffolds are defined as a “solid framework able to hold cells or tissue together” 

therefore they required specific features: thermal stability (Tg > human body’s Temperature), 

resistance to standard sterilization procedure (i.e. thermal treatment, UV irradiation, cryo-treatment 

etc.), biocompatibility (reduced inflammatory response due to chemical structure of material in 

contact with tissues),  and maybe bioresorbable properties tuned for specific scopes (decomposition 

time, due to enzymatic and chemical attack has to be tailored on the time required for medical 



treatment). A lot of materials can be used for scaffolds production, for instance metals and ceramic 

materials present a lot of advantages in terms of resistance to sterilization treatment and resistance 

to human body ambient; however, they promote inflammatory process and cannot be absorbed by 

human body requiring a surgery at the end of treatment. Polymer-based scaffolds can overcome 

these problems; polymers can be tailored for specific purpose avoiding problem related to 

inflammatory process and bioresorbable property that can be finely tuned (for instance the ambient 

in gastrointestinal tract is widely different than ambient presents in broken bone). Differently, 

polymers present a less stable structure (i.e. low thermal stability in comparison to metals or 

ceramics) that leads to a low resistance to sterilization treatments. 

A lot of polymers with high biocompatibility for this purpose were developed: polyacrilates (PA), 

polyurethanes (PU), polyvinylpyrrolidone (PVP), polyglicolide (PLGA),poly (lactic acid) (PLA) 

etc., Another possibility is the use of natural polymers, extracted from natural sources, for the 

formation of scaffolds, the most common being collagen and chitosan (from animal sources) and 

pectin and alginate (from vegetable sources). Synthetic polymers have the great advantage that they 

can be synthetized with the same features and controlling impurities: the reproducibility of the 

release in terms of kinetic and released quantities is higher than in other systems. On the other hand, 

natural polymers are completely biocompatible with human body, in particular with the digestive 

system, even if they have an intrinsically variability in their structure (ex. the quantity of methyl 

ester in pectin or the molecular weight or the percentage of acetylation in chitosan).  

During the Ph.D. project, different polymeric systems were studied for the delivery of antioxidants 

in human body. Two different approaches were pursued:  

• The first approach consists in the use of a standard industrial poly (lactic acid) for the 

delivery of a modified natural antioxidant: oligotyrosol (oligoTyr).  

• The second approach considers the use of natural polymers (i.e. pectin and alginate) for the 

delivery of Ellagic Acid. 

Oligotyrosol was obtained by horseradish peroxidase coupling of Tyrosol, a natural phenol obtained 

from olive and also green tea. Tyrosol does not present exceptional properties, having a radical 

scavenging power of 24% whether oligoTyr has a radical scavenging power of 48% (these values 

were obtained via DPPH analysis in standard conditions). The increased antioxidant power of 

oligoTyr leads to obtain new properties, since oligoTyr promote the ossification process in human 

osteoblast cells. The healing process of broken bone takes at least 8 weeks and a continuous 

administering of oligoTyr could promote the healing process. To have a continuous administering 

of oligoTyr, two approaches can be used:  



• periodical targeted injection in the damaged zone. 

• Insertion of a scaffold loaded with oligoTyr that is able to release the active principle and 

that, at the end of the process, can spontaneously degrade. 

The second option presents two great advantages: first of all, a patient can avoid continuous 

annoying injections and moreover a constant rate of active substance release avoids toxicity issues 

due to high concentrations. From this regard, PLA seems a good candidate for this purpose: it is 

biocompatible and can be digested via enzymatic attack of proteinase K.  

The first step of the work was dedicated to the study of a reliable procedure to obtain a hierarchical 

scaffold (high porous scaffolds promote the adhesion of bone cells and, increasing the surface area, 

can promote the release). Two different methods were used: 

•Method A. PLA was dissolved in THF in a 100 mL glass flask. Methanol was added at room 

temperature under mechanical stirring up to 95/5 v/v THF/methanol ratio. The solution was frozen 

by immersion of the flask into liquid nitrogen and was then poured in warm water. The solid PLA 

scaffolds that separated were recovered after removal of the solvent by filtration. 

•Method B. PLA was dispersed in 1,4-dioxane in a 100 mL glass flask at room temperature and 

taken under mechanical stirring overnight. The resulting homogeneous solution was frozen by 

immersion of the flask into liquid nitrogen and the solvent was removed by sublimation at room 

temperature under vacuum (2.5 × 10-3 Bar).  

Both methods were used for the preparation of scaffolds loaded with Gallic Acid (GA), used as a 

model molecule, Tyrosol (Tyr) and oligoTyrosol (oligoTyr). 

SEM images of samples prepared with the two methods showed that different structures can be 

obtained, revealing differences in superficial area and in pores dimensions. The first method leads 

to obtain scaffolds with very small pores (minimum measured dimension = 300nm) whereas 

scaffolds prepared with the method B have larger pores (minimum measured dimension = 2µm); 

method B also allows to obtain scaffolds with a smooth surface. The first important result achieved 

is that a method that allows to control the morphology of the scaffold that can be tailored for each 

application was developed. Once a method to control the morphology was obtained, another 

important parameter was to verify how the active molecules affect the formation of crystalline 

domains and of the amorphous phase. Gallic Acid was chosen for this purpose. It was also verified 

if the concentration of GA decreases during the scaffold preparation: UV quantitative analyses 

revealed a decrease of GA concentration due to migration in water promoted by melted THF during 

the solvent elimination phase. On the other hand, method B intrinsically prevents the leakage of 



substances, therefore this method was used for the preparation of scaffolds loaded with Tyr and 

oligoTyr.  

The following step was the preparation of scaffolds loaded with oligoTyr and Tyr: given their 

antioxidant features, Tyr and OligoTyr are able to reduce oxidative stress and promote osteoblastic 

cell growth. The aim was to obtain a scaffold able to constantly release oligoTyr in a period of 

about 2 months. In collaboration with the group of Prof. A. Napolitano from University of Naples 

Federico II, the release kinetics of oligoTyr and Tyr in phosphate buffer were investigated, in order 

to simulate human body condition. The group of Professor B. Burlando of University of Piemonte 

Orientale studied the biological effect of pure oligoTyr, Tyr and PLA and also verified the effect of 

osteoblastic cells growth, expressed as alkaline phosphatase (in particular ALP) activities. It was 

verified that PLA, Tyr and oligoTyr are not toxic for human osteosarcoma cells and Tyr and also 

oligoTyr promote cells growth. 

Besides the use of a synthetic polymer as bulk material for the production of scaffolds, natural 

polymers were also tested for the vehiculation of antioxidant molecules. Pectin and Alginate were 

chosen due to their easy availability and processability. Both polymers are water soluble 

polysaccharides that can be extracted from plants; in particular, alginates are widely extracted from 

brown seaweeds whereas pectin is refined from citrus peel but also from apple, apricot and carrots. 

Both polymers present carboxylic groups along the polysaccharides chain which can be used to 

coordinate metals; the coordination of bivalent ion leads to obtain a gel-like structure. Such 

structure permits to use the alginate and pectin as a material for the encapsulation of an active 

principle. Even if both materials are able to form gels, the different macromolecular structure 

between pectin and alginate (for each repeating unit alginate has a carboxylic moiety while the 

concentration of carboxylic moiety in pectin depends on the amount of galacturonic acid and on the 

percentage of its deacetylation) leads to different mechanical properties of the gel. Pectin-Ca(II) gel 

is reversible and stiffer than the gel obtained with Ca(II) coordinated to Alginate. These differences 

could be used to obtain different materials able to use different substrates.  

The first part of the work was devoted to the study of the material that can be obtained through 

calcium complexation with pectin: the materials obtained were characterized in terms of rheological 

properties, analyzing the gel obtained with different concentration of pectin in water. Also the 

rheological properties of the alginate gels were assessed; these analyses were performed in order to 

assess which are the best materials (in terms of rheological properties and gel stability) that should 

be used for the encapsulation of active molecules. 



The further step was to individuate an active molecule with the potential to be exploited in the 

future also in scale-up processes; one of the most appealing substances for that purpose was Ellagic 

Acid, an aromatic polyphenol present in many fruits especially berries and pomegranate.  One of 

the great advantages of using such polymers is the possibility to work using water as a solvent, 

therefore the antioxidants that will be encapsulated should be soluble in water. Ellagic acid is 

almost insoluble in water (10 µg/ml) therefore a method to enhance such solubility was studied: the 

easiest way is to obtain a salt. Strong bases, such as NaOH or ammonia lead to deprotonation of 

ellagic acid and promote the decomposition via quinon formation. Weak and medium bases, such as 

substituted amine, are able to deprotonate the ellagic acid avoiding the degradation. The weak bases 

chosen for this purpose is the L-lysine: an essential amino acid, bearing an extra amine group, is the 

best possible solution due to its intrinsic biocompatibility and low cost. The use of L-lysine allowed 

to increase the solubility of ellagic acid up to 400.000 times obtaining a solubility of 40mg/ml.  

The last step was to encapsulate the ellagic acid-lysine salt in pectin and alginate gels and to study 

the kinetic of the release. The kinetics were studied in different conditions modifying the 

environment (water and phosphate buffer at pH 7,4). The results were very good: both pectin and 

alginate can control the release of ellagic acid-lysine salt. Moreover, modifying the production 

process, the release can be tailored: the release can be accelerated or decelerated reaching well-

defined concentrations of ellagic acid. It is possible to obtain very low release rate (5% of loaded 

feed in 72h) or, modifying the environment and the structure, to reach very high release rate (25% 

of loaded feed in 2h). 

CONCLUSION 

During the Ph.D. project, several issues were addressed: 

• High porous scaffolds based on synthetic industrial polymer (PLA) able to release active 

substances were produced; the structure of scaffolds can be tailored modifying the method 

of preparation. 

• Two natural polymers, pectin and alginate, were used for the production of scaffolds with 

elevated biocompatibility able to control the release of an active principle. The release can 

be modulated modifying the composition of scaffolds. 
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1. Introduction 
The most common processes of degradation that occur in nature involve oxygen. The formation of 

oxygen radical can be promoted by ultraviolet radiation (1), thermal stress (2), metals (3), pollution 

(4) or by a combination of these factors. Many examples of the effect of oxidation are provided in 

literature and concern very different fields, from the oxidative stress in life organisms to the 

oxidation of organic products during synthesis (5) (6) (7) (8). In all of these cases, the aim of 

research is to reduce the impact of oxidation using specific substances called antioxidants. An 

antioxidant is a molecule that inhibits the oxidation of other molecules allowing the degradation of 

specific moieties on its structure and avoiding the propagation of radical reactions; in this way, 

radical reactions are terminated preventing the damage of a high value substrate. Most common 

antioxidants are phenolic compounds, secondary arylamines, organo-phosphites, and thioesters (9). 

Two different branches of “antioxidant chemistry” could be defined:  

• Antioxidants used for preventing material and goods degradation 

• Antioxidant used for preventing degradation of animal and vegetable substrate both in 

processed products and life organisms.  

1.1 Antioxidants in Polymers 

The first definition is most related to plastics world: plastics are organic substances which can be 

degraded both during the processing, that normally require high temperature, and during the life of 

goods. The protection of materials against oxidation, during the processing or during the life of 

products, requires different kind of substances with different reactivity; it is a common practice to 

divide antioxidants in two families: primary antioxidant and secondary antioxidant. A primary 

antioxidant has the important role to prevent the degradation of plastics during the life of goods: 

atmospheric agents, such as the light irradiation and high temperature, can promote the oxidation of 

polymers jeopardizing the properties of the material: molecular weights decrease and therefore the 

loss of mechanical properties (10) and the variation of optical properties can occur (11). Secondary 

antioxidants are used to prevent polymer degradation during the processing of the materials: melt 

extrusion (12), injection molding (13), blown processing (14). All of these techniques require high 

temperature (the temperature should be higher than melting temperature or glass transition 

temperature) that promotes the oxidation of polymers. 

The structure of the antioxidant needs to be varied in relation of its application: time and 

temperature required for the processing. A proper combination of primary and secondary 



antioxidant leads to obtain a material that can be processed avoiding degradation and can resist for 

the entire life of goods that is used for.  A generic scheme of antioxidants structures related to their 

possible applications is shown in figure 1. 

 

Figure 1.1: scheme antioxidant molecules and their application related to processing temperature 

1.2 Antioxidants in food 

The most serious cause of food degradation is related to the attack of free radical species: in 

particular researchers have individuated a group of oxygen radicals defined “reactive oxygen 

species” (R.O.S.). The mechanism of food degradation is practically the same described above: a 

radical attack the food leading to the development of off-flavors, color and flavor changes, besides 

nutritional losses (15). The presence of an antioxidant can block, or at list decelerate, the kinetic of 

degradation increasing the shelf-life of a product; with the term shelf-life it is intended the period in 

which a food, conserved in proper conditions, maintains its nutrition characteristics in term of taste, 

flavor and nutritional facts after packaging. The shelf-life enhancement of a product has a great 

economic impact: the product can be exposed in shelves for a longer time reducing the production 

of wastes. Antioxidant can be provided to food in two ways: mixing with food during the 

transformation process or adding to the packaging. 



The first approach is the most consolidated and older: in fact, the use of spices for the curing of 

meet is a practice that was normally used since the 20th century B.C., for instance the use of 

cinnamon and black pepper is widely reported in historical documents (16). Even though since 20th 

century B.C. the food conservation industry has been evolved, adding preservative to food normally 

occurs; citric acid, phosphoric acid, vitamin C are very few examples of a long list which includes 

the additives used as food preservative.  On the other hand, customers’ concern towards additives in 

food has dramatically increased, in particular during the last years when a lot of researches have 

been published demonstrating the negative effects of some additives on human health. The 

awareness of customers’ concern pulls up the industrial and academic research to discover a new 

way to prevent food degradation leading to the developing of “active packaging”. Even though the 

first concept of active packaging was originally used up to late 60s with the work of ethylene 

scavenging insert in banana packs (17) the widening of the study, and therefore the interest of 

academic world in this field, began during the 90s.  

Active packaging has an active role in food preservation whereas the normal concept of packaging 

is related to a passive physical barrier against external environment. Packaging industries have 

developed a lot of devices able to enhance the shelf-life of foods: oxygen scavenger, moisture 

control, ethanol releaser, radical scavenger, antimicrobial scavenger etc., The role of antioxidant, in 

the active packaging field, is circumscribed to the radical scavenger devices which present the 

ability to inhibit the reaction of R.O.S. The common approach consists in mixing the polymeric 

matrix with active substances that will gradually migrate into food controlling the activity of food. 

This approach requires edible substances that minimally affect the food in terms of taste and aspect; 

most diffused additives (according to the European Union legislation, Directive 2006/52/EC) are 

synthetic antioxidants whose use is authorized only in processed food; few examples are: Butylated 

hydroxytoluene (BHT), Butylated hydroxyanisole (BHA), tertbutylhydroquinone and propyl 

gallate. 

Besides the use of synthetic antioxidants, the possibility to use natural antioxidant were investigated 

during the last years: a lot of active packaging prepared by adding α-tocopherol, caffeic acid, 

catechin, quercetin or carvacrol (natural substances extracted from cinnamon, oregano and in 

general from plants) in polymers are reported in literature. The use of these substances has many 

advantages, first of all their intrinsic biocompatibility and also the appeal on customers’ feeling: it is 

a common idea that “natural” is synonymous of “healthy” and “non-toxic” hence the choice of 

customers will be oriented on these products. 



The concept of food packaging and active packaging will be fully explained in the chapter 

dedicated to the packaging. 

1.3 Antioxidants for human diet  

During the 50s, Denham Harman conceived the free radical theory of aging (FRTA) assuming that 

the free radical of oxygen (ROS), produced during cellular respiration, can cause cumulative 

damage leading to loss of functionality and actually death (18). This concept was further spread by 

Harman himself, including not only aging as a cause of ROS exposure but also a lot of diseases 

such as cancer, arthritis, atherosclerosis, Alzheimer's disease, and diabetes. At the beginning of 70s, 

the theory was modified again: the exposure to radicals remains the cause of aging and disease but 

Harman changed the site where the reaction occurs. In fact, he supposed that the reaction of cellular 

breathing, that normally occur in mitochondria, promotes the production of ROS which can react 

with protein and lipids and most important with mitochondrial DNA (mDNA). (19) 

Free radicals can react with many substrates in order to pair their electron shells, the most relevant 

issue is related to the radical transfer to biological molecules which loss, or worst change, their 

activity. For instance, the reaction ROS with DNA can induce DNA cross-linking that could 

promote cancer growth; another reaction of ROS can promote reaction of coupling of protein with 

lipid that is the cause of wrinkles (20).  

The first approach, in order to overcome these problems, was to administrate high quantity of 

natural antioxidant, such as vitamins A, C, D, beta-carotene and superoxide dismustase (an enzyme 

able to regulate the dismutation of superoxide radical O2
-⸱) in order to tackle and reduce the effect 

of ROS reaction. Many evidences reported how this approach did not have effects, rather, in many 

cases the use of antioxidants promoted the aging effect. Even if theoretically the assumption of 

antioxidant should reduce the effects of ROS, the results reported shown opposite results: scientists 

discovered that a high quantity of exogenous antioxidant could reduce the capability of cells to 

auto-regulate ROS. This process, normally called hormesis, is a spontaneous adaption to external 

stress induced in human body: it auto-reacts in order to restore the normal condition “training” the 

organism to tackle future stress. In the case of disequilibrium of redox ambient in mitochondria, a 

spontaneous reduction of ROS can occur with enzyme dismutase but, if the antioxidant species are 

introduced with supplements, the temporary ROS excess were overcome but the spontaneous 

adaption is inhibited. Hence, the organism will not be able to manage future radical attacks and the 

effect of aging are, indirectly, promoted. On the other hand, a low concentration of antioxidants can 

avoid the inhibition of hormesis helping the organism to restore the perfect condition.  Mechanism 



of antioxidant action can include suppressing reactive oxygen species (ROS) formation, either by 

inhibition of enzymes or by chelating trace elements involved in free-radical generation, scavenging 

reactive species, and up regulating or protecting antioxidant defenses. (21) (22) 

Many antioxidants are presents in fruits and vegetable such as vitamin E (tocopherol), vitamin C 

(ascorbic acid), β – carotenoids, polyphenols etc., but in many cases, the diet cannot supply the need 

of antioxidant required for correct redox equilibrium. Elevate stress due to the life style (i.e. high 

intensity training, smoke, unhealthy habits etc.) can modify the standard request of antioxidant and 

the use of supplements filled with extract from natural sources could be a great solution.  

The academic world has a great interest in this field: in fact, the key words “antioxidant 

supplements” give almost 50000 results related to publications on scientific journals and patents; 

the great interest the antioxidant supplements receive from the academic research, is related to the 

high economic impact that the supplements industry have: economists have estimated that the 

industry of antioxidant supplements is a business of 23$ billion (n.d.r. 2015) (23).  

 

  



2. Food Packaging 
Food conservation has always been one of the most important goals for humanity; since the 

prehistoric era, men always tried to find a way to enhance the time duration of a food avoiding 

problems related to the food taste and to health safety. The first approach to food conservation 

concerned the use of preservatives: salt and spices were the first preservative for meat, fish and 

vegetables. Also the curing process, that is already used for the production of hams and cured meats 

in general, required the use of salt and spices:  

• salt, reducing the amount of water, permits a prolonged “shelf-life” avoiding the bacterial 

growth (24) 

• spices, which contain a lot of antioxidant substances, give new flavors changing the taste 

and sometimes covering the off-flavors of rotten food, in particular of meat (25).  

During the centuries, the technology of food preservative has evolved a lot: in particular, the food 

conservation was revolutionized during the ‘40s when the diffusion of fridges allowed a great part 

of population to conserve, for a longer period, foods in their houses. Besides the development of 

this technology, another need was spreading among people: since with fridge it is possible to 

conserve foods for many days, customers needed devices for goods transport. The modern concept 

of packaging was born.  

Although the developing of food packaging started in the ancient era with use of paper as wrapping 

for spices dates back to 1035, it was only in the 18th century, when tinplate cans were firstly used to 

package snuff, that the modern concept of food packaging was developed. The most used materials 

were metals, paper and glass. During the 19th century, corrugated paper was invented and patented 

and the first pre-cut paper box was produced. The great improvement in packaging technologies 

occurred during the 20th century, when plastic was invented: plastic has great advantages in 

comparison to the other materials, for instance plastic is water resistant, it has low weight and it can 

be coupled with other materials (paper, metals, wood, pottery etc.) enhancing their properties.  

After this brief historical overlook on packaging world, it is time to define the packaging concept: it 

can be described as a coordinated system of preparing goods for transport, warehousing, logistics, 

sale, and end use. The meaning of this definition leads to define at least three different levels of 

packaging: 

1. Primary packaging: it is the material that first wraps and holds the product and it is normally 

the smallest unit. 



2. Secondary packaging: it is the material that holds and groups the primary packaging. It 

normally helps the customer to transport goods unit to home. 

3. Tertiary packaging: it is the latest packaging unit and its purpose is to facilitate the transport 

for the big distribution. 

An example of these three units is: a can is the primary packaging, the polyethylene film that wrap 

cans is the secondary packaging and the pallets used for the big distribution are considered as the 

tertiary packaging. According to the scopes, materials features must be changed; in particular 

primary packaging material should be tailored in order to obtain a material able to be in contact 

with the goods: in the specific case of food packaging, the material cannot contain substances that 

could modify nutritional facts, taste, or worse, to jeopardize consumers’ health in general.  

Packaging industry has an estimated business worth up to 797$ billion in 2013 and economists have 

forecasted that it will reach 975$ billion by 2018. This huge amount of money leads to a great 

interest in this field; in particular, companies and academic have great interest in developing new 

materials able to improve the preservation of goods. If at the beginning the aim of primary 

packaging was to passively protect goods against external ambient effects, the current trend is a 

packaging system able to interact with external environment (radical, oxygen, lights etc.) preventing 

degradation: this is the latest step of the evolution of packaging technique. This new packaging 

approach, developed during the latest 30 years, is called “intelligent packaging” or “smart 

packaging”.  

2.1 Smart Packaging 

The smart packaging is the newest approach in packaging field; in particular, it was developed for 

food and pharmaceutical products that have an elevated instability and, in many cases, requires 

specific condition for conservation. The active packaging acts not only as an inert barrier, as all 

packaging devices do, but it also has an active role in food and drug preservation (26). This is one 

of the most promising strategies for food preservation and there are many devices that are already 

used: oxygen scavenger bags, ethanol emitter, antibacterial coating, moisture control, radical 

scavenging etc. 

2.1.1 Oxygen scavenger 

Oxygen scavenger devices are commonly used in food packaging; they are able to reduce the 

amount of oxygen in packed food preventing the oxidation of products. The first example of oxygen 

scavenger devices, patented in 1869, was an alkaline solution of pyrogallic acid in an air-tight 



vessel (27); even if this device could be a good solution it cannot be used in modern food vessel 

therefore, scientists have studied and developed new solutions. Modern oxygen scavengers are 

metal powder-filled sachets able to react with atmospheric oxygen. The trigger of the reaction is 

moisture: in anhydrous condition the oxidation of metal powder does not occur whereas in wet 

ambient the reaction begins. The most used metal is iron, due to its low toxicity, that is able to 

reduce the concentration of oxygen below to 0.01% (the complete oxidation of 1g of iron powder 

can remove up to 300cm3 of oxygen). Other metal powder can be used for this purpose, for instance 

Cobalt, and other organic substances like ascorbic acid derivate. (28) 

 2.1.2 Moisture Control 

The presence of water is the fundamental requisite for bacterial and fungal growth, therefore a 

control on moisture level can enhance the shelf life of many products. Moisture control devices are 

probably the most diffused and famous active packaging devices. In fact, it is possible to see this 

kind of device in a lot of packed products not only in food packaging, electronic devices require low 

quantity of humidity therefore the need of a system able to reduce, or at least to control, the 

humidity. The most diffused substance, used for this purpose, is silica gel [formula (SiO2)n], an 

inorganic polymer obtained by acid dehydration of sodium silicate.   

2.1.3 Ethanol Emitter 

The bactericide power of ethanol is well known and, for many years, it was used as a disinfectant in 

a lot of processes; ethanol is normally used as preservative in many foods in particular it is widely 

used for sliced bread (the high level of moisture permits the microbial growth, moreover sliced 

bread cannot be packed using modified atmosphere due to its intrinsic high porosity that keeps 

inside the slices a lot of oxygen). Ethanol can be directly sprayed on products obtaining a 

concentration of 0.5-1.5% but the use of devices, able to release ethanol, could be a great solution. 

Ethanol is normally encapsulated in polymeric film; for instance, the most produced ethanol emitter 

film (Ethicap®) is a composed material made of food grade alcohol (55%) and water (10%) 

adsorbed onto silicon dioxide powder (35%) and contained in a sachet made of a paper and ethyl 

vinylacetate (EVA) copolymer laminate. 

2.1.4 Antimicrobial coating 

The coating with edible polymer containing antimicrobial agents is one of the most promising 

techniques in this field: for instance, nisin (polycyclic antibacterial peptide) has a great impact on 

the growth of Staphylococcus aureus and Listeria Monocytogenes (29) and, when it is encapsulated 

in methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC), nisin can be released 



reducing bacterial growth. Nisin is only an example, many substances (also natural extract of 

cinnamon, oregano etc.) can be encapsulated reducing the possibility of microbial food attack. 

2.1.5 Antiradical packaging 

Natural based (ascorbic acid, ferulic acid, quercetin, and green tea extract, tocopherol etc.) or 

synthetic based (BHA, BHT etc.) antioxidants can be incorporated in polymeric film. Using the 

same mechanism explained for antimicrobial coating, antioxidant can be released during the shelf-

life time avoiding the oxidation of foods (30) (31) (32) (33) (34) (35).  

2.2 Active packaging Limits 

Even if active packaging seems to be a great solution for the enhancement of food shelf life, it has 

its own limits. In all the cases previously mentioned, the active part of the packaging is a 

component that is added during the production of the material and therefore can migrate into food. 

Although the migration is the trigger that allows active packaging to work, the leakage of active 

substances has tremendous impact on treatment duration: the release has its kinetic and, when the 

active substances are completely released, the activity decreases leaving the products free of 

protection. The other problem related to the migration of active substances is related to the variation 

of mechanical properties of the material: the active substances, generally low molecular weights 

species, act as plasticizer and their migration can modify the mechanical properties of the material 

(31) (36). Even though all technical problems are fixed, the most relevant limit of active packaging 

is the perception of customers about the “invasion” of chemistry in their products; in other words, 

the common idea is that the additives can modify and alter packaged products leading to a low 

quality product or worse to non-safe products. In order to limit these phenomena, two different 

strategies have been pursued: 

• use of natural substances, that are easily well accepted by customers. 

• development of materials that are intrinsically active, bonding to the polymer backbone the 

active moiety. 

These two points are the focus of this Ph.D. work that aims to obtain  new materials intrinsically 

active bonding to polymer chains the active substances deriving from natural sources. 

2.2 Biodegradable packaging 

Market researches have estimated that every year industry produces 78 million metric tons of plastic 

for all packaging: 40% of that are landfilled and 32% are leaked into the environment. Another 



interesting datum is related to the amount of plastic recovered for further application: the recycled 

plastic is only the 28% (37). These dramatic data promote the development of a new environmental-

friendly conscience among people, clarifying the need of low environmental impact materials. The 

idea, firstly developed at the end of 80s, was to find new materials based on removable sources able 

to replace the conventional oil-based materials (PET, PE, PP, PVC etc.). During these years, several 

scientific publications have been produced and many materials have been also industrially 

produced; one the most successful biodegradable polymers is poly(lactic acid) but there are other 

examples of biodegradable industrial plastics: MaterBi®, Ecoflex®, Ecovio® etc., Although the 

results were impressive – all of these plastics are completely or partially bio-based and can be 

rapidly decomposed – all of such materials have a lot of disadvantages that limit their applications. 

The mechanical properties, in comparison with other industrial material like PE, PP, PET, PAs, do 

not allow biopolymer to substitute the common oil-based materials; Young’s modulus of PLA is 

approximately 3500MPa whereas the same modulus, registered for PET is in the range of (200 to 

4100) MPa (38); also gas permeability is higher in bio-polymers. For instance, PLA has an oxygen 

permeability, measured as cm3mm/(m2 day atm), in the range of 3.5–15 whereas PET value is in the 

range of 1–5 and polyamide value is 0.1–1 (39). Nevertheless, environmental-friendly conscience 

pushes on towards the biopolymer research leading to the development of materials able to compete 

with oil-based polymer in some fields. It is possible to find biodegradable material used for the 

production of shoppers, disposables and primary food packaging. Every day a high quantity of food 

is wasted and it should be disposed separately from packaging material or disposables; the 

separation process requires a lot of energy and therefore costs. Biodegradable packaging can help to 

overcome the problem: packaging material and disposable could be disposed together with food. 

This approach is already used for biodegradable shoppers used for food-waste collection: they are 

made with MaterBi®, a bio-based and biodegradable plastic produced by Novamont S.P.A., The 

shoppers are directly composted with wasted food avoiding all the problem concerned to the 

separation of polyethylene shoppers and increasing the yield of compost plants.  

2.3 Shelf Life Study 

Shelf life is defined as the time that a food can be stored without becoming unfit for use, 

consumption, or sale. The shelf-life of a food begins from the time the food is produced and/or 

packed (40).  The main objective of food packaging is to protect food products, particularly from 

oxidative and microbial spoilage and to extend its shelf-life; the standard concept of food packaging 

involves a passive barrier whereas the latest development in this field aims to produce packaging 

with an active role on shelf-life (31).  



The shelf-life is affected by multiple factors: exposure to light, heat, moisture, transmission of 

gases, mechanical stresses, and contamination by micro-organisms. The study of a combination of 

these factors permits to determine the best preservative conditions, in terms of health safety and 

food and beverage taste and properties. The main result of a shelf-life study is the “expiry date” but 

it is not the only one. Shelf-life is a fundamental tool for customers and sellers to obtain an 

overarching knowledge of food characteristics and how processing, storing and transport can affect 

them.  

Shelf-life study strictly depends on food characteristic (quantity of fats, moisture content, food 

processing etc.) therefore it is not possible to develop a unique general protocol applicable for all 

kind of foods. Nevertheless, a general systematic procedure can be created to approach to shelf-life 

study; an example of a flow chart is reported in figure 2.1: this flow chart was written by “Food 

Safety Authority of Ireland”. 



 

 Figure 2.1: flow chart of shelf-life assay procedure 

Active packaging, as was previously explained, aims to enhance the shelf-life of a product therefore 

shelf-life study can be performed in order to evaluate how a new packaging method can modify it. 

Active material or devices are targeted for specific features therefore (antioxidant, oxygen 

scavenger, antimicrobial etc.), choosing an appropriate food as a standard, is possible to determine 

how the active packaging works. The previously protocol include several aspects that, for 

preliminary studies on  new packaging methods, can be neglected. For instance, the shelf-life study, 

for the development of new antioxidant materials, can neglect the microbiological assays focusing 

on the study of the oxidation level; in this case the choice of “standard food” will be targeted on 



high fatty matrix since fat is the easy oxidizable substratum in food; on the other hand, the shelf-life 

study for the developing antimicrobial devices, can ignore the oxidation aspects focusing on the 

aspects which affect the bacteria and mildew formation.  



 

3. Antioxidants 
As explained in chapter 1, the antioxidants have a multipurpose role: they can act as radical 

scavenger for packaging application and, with the same mechanism, they can act as radical 

scavenger in human body in order to restore the normal redox equilibrium.  

The radical scavenging mechanism of phenols (the mechanism is shown in figure 1) is widely 

studied and there are many literature examples. The aromatic hydroxyl moiety is able to react with 

radicals due to its relatively high acidity, this reaction leads to the formation of a new radical 

stabilized by the aromatic ring resonance. The new radicals can react with water obtaining new 

stable species. (41) (42) (43) (44) The scheme proposed in figure 3.1 is specific for phenols but it 

can be assumed as a general radical reaction mechanism also valid for substituted phenols. The 

substitution of phenols can seriously modify the activity against radicals; for instance, the presence 

of an electro attractive moiety like RO- can increase the radical scavenging of a phenol a lot. This is 

the case of vanillyl alcohol (VA) and tyrosol (Tyr): the radical scavenging, measured with DPPH 

assay, is 24% (45) for Tyr, which not presents electro attractive moiety, whereas the radical 

scavenging obtained for VA is significantly higher reaching 96%. 

 

Figure 3.1: general scheme of phenols oxidation via radical attack 

The phenols used in this work are: tyrsol (Tyr), vanillyl alcohol, oligo-tyrosol (oligo-Tyr) and 

Ellagic Acid (EA). The structure and the properties will be plenary explained further in the 

paragraph. 



3.1 Tyrosol 

Tyrosol, or 4-(2-Hydroxyethyl) phenol according to IUPAC, is a low molecular weight phenol 

present in a lot of natural sources, mainly in olive and olive oil: its structure is shown in figure 3.2. 

In many cases, tyrosol, or its derivates such as hydroxy tyrosol, is extracted as acetylated form: the 

increased lipophilicity, due to the acetyl moieties, enhances the activity thanks to the higher 

permeability through cell barrier. (46)  

 

Figure 3.2: molecular structure of Tyrosol 

Antioxidant properties of tyrosol are well-known (47) and a lot of studies were conducted in order 

to investigate how these properties can enhance its biological activity. Tyrosol was investigated as 

histamine suppressor in allergenic disorder treatments (48), also tyrosol anticancer properties were 

investigated in particular as olive oil extract (49). Tyrosol antimicrobial properties were also 

reported: it can act as biofilm suppressor in human oral cavity. (50) 

Oxidative enzyme mediated reaction of phenols permits to obtain a more or less homogenous 

mixture of oligomeric species with enhanced properties regard to the original molecule. Phenols 

coupling can be achieved with other oxidant reactives (for instance ferricyanide and persulfate) but 

the enzymatic catalysis works with high efficiency both with phenols and substituted phenols under 

biomimetic condition []; moreover, the enzymatic process obtained the attention of researchers due 

to its high biocompatibility and environmental friendly process. 

Oligomer of Tyrosol (OligoTyr) were firstly obtained in 2015 by the group of Prof. Napolitano 

using horseradish peroxidase and H2O2. The structure has been determined via CP - MS NMR and 

via size exclusion chromatography: the oligomer, whose structure is shown in figure 3.3, has a 

polydispersity index (D) of 1.28 and a weight average molecular weight of 2861 Da; the narrow D 

indicates that the molecular weights of oligomers are homogenous. 



 

Figure 3.3: molecular structure of oligo-Tyrsol determined via CP-MS-NMR 

The antioxidant properties of oligomers of Tyrosol (OligoTyr) were assessed using different tests: 

2-Diphenyl-1-picrylhydrazyl (DPPH) assay, Ferric reducing/antioxidant power (FRAP) assay and 

Hydroxyl radical scavenging assay. Results reveal how the oligomerization can increase the 

antioxidant properties of the new synthetic polyphenol: DPPH and Hydroxyl radical scavenging 

increase to 100% whereas FRAP index practically does not change. As was previously mentioned 

in this paragraph, Tyrosol has shown many properties related to its antioxidant skills: for instance, 

tyrosol can promote the human ossification process reducing the free radicals that are normally 

produced in a damaged part. Due to their similar structures, it has been supposed that oligoTyr 

could have at least the same properties of Tyrosol: the results shown the alkaline phosphatase is 

mainly promoted by the oligomeric species than the Tyrosol.  

3.2 Vanillyl Alcohol 

Vanillyl Alcohol, or 4-(Hydroxymethyl)-2-methoxyphenol according to IUPAC.  

Lignin is one of the most abundant waste products and it represents the 20% of total biomass 

nevertheless almost the 98% is burned. One of the most abundant building blocks of lignin is 

identified as the β-O-4 linkage block (51), the structure of the block is shown in figure 3.4. The 

oxidative extraction, this technique represents one of the goal of the bio-refinery, permits to obtain 

vanillin and many others chemicals. Vanillin is the aroma of vanilla that is widely used in food 

industries as flavor for sweets (ice cream, chocolate, bakery products etc.) and represents a great 

substrate for pharmaceutical synthesis (52). 



 

Figure 3.4: structure of lignin repeating units (51) 

Nowadays the 85% of vanillin supply is obtained via chemical oxidation of petroleum-derived 

guaicol transformation and, the other 15%, is obtained by biotechnological extraction from lignin. 

The synthesis from guaicol was firstly proposed by Karl Reimer in 1876 using the Reimer–Tiemann 

reaction that permits to obtain ortho-formyl derivate of phenols. The scheme proposed in figure 3.5 

explains the Reimer-Tiemann reaction applied to guaicol that gives 2 different products: vanillin 

and the o-vanillin (53). 

 

Figure 3.5: Reimer-Tiemann synthesis of vanillin via guaiacol oxydation 

Besides this technique, the biotechnological synthesis of vanillin from lignin was developed in 

order to valorize the great amount of biomass. Lignin has a high concentration of aromatic 

compounds and its conversion into fine chemicals is one of the most important goals of the bio-



refineries. (54) (55) Many techniques have been developed but one of the most studied 

biotransformation is from ferulic acid, the structure is shown if figure 3.6. 

 

Figure 3.6: biotransformation of ferulic acid to vanillin (51) 

In this complex scheme four different reaction pathways are explained: 

• Path A: Decarboxylation: the phenolic acid decarboxylases enzyme begins the reaction 

removing the carboxylic moiety from the ferulic acid. 

• Path B, C, D: reduction of ferulic acid mediated by microorganism. 

Although the reaction pathways are biotransformation, the extraction of ferulic acid from lignin can 

be achieved only by alkaline hydrolysis therefore this ferulic acid cannot be considered “natural”. 

There are many studies concerning the enzyme-catalyzed extraction of ferulic acid from lignin 

avoiding the problem related to the use of strong alkali (potassium hydroxide or sodium hydroxide) 

and obtaining a green process. (51) 

Another substrate used for the Vanillin synthesis is Eugenol (scheme is proposed in figure 3.6) that 

is the main constituent of Syzygium aromaticum essential oil and with a market price about US$5 

kg–1. It is a cheap, commercially available raw material for biotransformation processes. The first 

process was proposed in 1977 by Tasada using Corynebacterium for biotransformation of Eguenol 

passing through the ferulic acid and then vanillic acid. A fed-batch bioconversion process from 



eugenol to coniferyl alcohol using resting cells of the fungus Byssochlamys fulva V107 was 

reported to yield 123 mM (21.9 g l–1) coniferyl alcohol within 36 h, with a molar yield of 94.6%. 

(56)   

 

Figure 3.6: Eugenol biotransformation reactions scheme to vanillin (51) 

Vanillin can be reduced in order to obtain Vanillyl Alcohol. Many literature works reports a rapid 

easy reduction using NaBH4 or using Zn(BH4)2. (57) (58) (59) 

Vanillyl alcohol is widely use as model molecule for lignin extraction model development: as was 

previously described, VA can be easily synthetized from vanillin reducing its cost, therefore it 

represents a good solution for the studies related to the development of lignin digestion model. 

Moreover, VA represents a valid phenolic building block for a lot of chemicals and many examples 

have been reported in literature: VA can be modified in order to obtain substituted bisphenol used 

for the synthesis of epoxy resins (60). Antioxidant properties of Vanillyl Alcohol have been already 

reported in literature: there are many examples about the use of VA as antioxidant for biomedical 

application. (61) (62) (63) 



3.3 Ellagic acid 

Ellagic acid, or 2,3,7,8-Tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione according to 

IUPAC, is a metabolite of natural phenols that are present in a large variety of fruits and vegetables, 

the structure is reported in figure 3.7. It was discovered by Henri Braconnot in 1831. Pomegranate 

juice has the highest concentration of ellagitannins, which are bioactive polyphenols, and contains 

the unique ellagitannin: punicalagin. (64) Pomegranate ellagitannins, and punicalagin in particular, 

are not absorbed intact into the blood stream but are hydrolyzed to EA over several hours in the 

intestine. Ellagitannins are also metabolized into urolithins by GUT flora, which are conjugated in 

the liver and excreted in the urine (65) (see scheme reported in figure 3.8). 

  

 

Fig 3.7: Ellagic Acid Structure 

The highest levels of EA precursors polyphenols are found in blackberries, cranberries, pecans, 

pomegranates, raspberries, strawberries, walnuts, wolfberries, grapes, peaches and EA is also found 

in oaks species and in the medicinal mushroom Phellinus linteus (65). Commercial EA is obtained 

by chemical extraction using acid-methanol mixtures as solvents to hydrolyze the rich-ellagitannin 

plant materials. However, during the last years, fermentation technology has been the most used 

technique for the production of EA (66).  

EA is one of the most active compounds derived from pomegranate and it exhibits both antioxidant 

effects and apoptosis-inducing activity against certain types of cancer cells in “in-vitro” tests (65) 

(67). In addition, epidemiological studies indicate that intake of EA-rich foods may be protective 

against certain chronic diseases (65). EA shows antiproliferative and antioxidant properties that 

have prompted several researches both in the academic and pharmaceutical world. The 

antiproliferative properties of EA may be due to its ability to directly inhibit the DNA binding of 

certain carcinogens, such as nitrosamines and polycyclic aromatic hydrocarbons (68). In addition, 

EA also shows antifungal properties and can be used in agriculture as agrochemical. (69) Thanks to 



these anticancer and preventing-cancer effects, EA has been marketed as dietary supplement to 

prevent medical problems. In addition, intestinal metabolites of EA, like urolithins, are under study 

as anti-cancer agents and are known to effectively inhibit cancer cell proliferation like HepG2 

hepatic carcinomas cells. Some studies suggest that consuming a diet rich in urolithins-precursors 

foods could benefit individuals undergoing liver cancer chemotherapy. (70) 

 

Scheme 1- Methabolic pathways of EA 

In addition, In vitro studies have shown that pomegranate extracts inhibit the growth of prostate, 

breast, colon and lung cancer cells. (71) (72) 

To sum up EA has not been proven to treat or prevent cancer in humans, but it has no side effects 

and several researches about EA and its metabolites health benefits have been published during the 

recent years (more than 400 during 2016 and more than 550 during 2015, source SciFinder). 

Epidemiological evidences indicate that EA and its metabolites may be protective against certain 

chronic diseases, like heart diseases and cancer, but discrepancies are observed between in vivo and 

in vitro experiments. This could be explained by their low bioavailability. In fact, in vitro studies 

operate in ideal conditions and absorption, metabolism and detoxification pathways are not 

considered in this type of experiments. One of the most relevant issues related to food intake of EA 



is its low absorption in gastrointestinal tract. In addition, some studies reported the EA detection in 

human plasma post-ingestion of pomegranate juice but it is rapidly eliminated in few hours (71). 

Moreover, EA is metabolized to urolithins, which have been reported as a less potent antioxidant if 

compared to EA. 

Antioxidant and cancer-preventing effects of EA are strongly inhibited by the above mentioned 

absorption and excretion issues. Consequently, EA-rich supplements are needed to obtain its 

potential health benefits, but a high concentration can dangerously involve the detoxifying systems, 

obtaining a harmful result.  



4 Polymers 
The general trend of the latest years has moved on developing bio-based material, or at least 

biocompatible material, in order to substitute the “conventional” oil-based material: the first 

dreamlike approach was to obtain natural biodegradable materials overcoming the use of oil-

deriving polymers. Nevertheless, it was clear that the bio-based materials cannot completely 

substitute the “conventional” polymers, therefore the research was also focused on the developing 

of new methods to obtain either monomers from natural sources or to obtain biodegradable 

polymers from oil-based monomers. One of the most impressive case is the development in very 

few years of MaterBi® (polyester based on starch derivatives) produced by Novamont S.p.a.: the 

production started at the beginning of 90s with only 4000tons/year in 1997 reaching the production 

of 120000 tons/year in 2015 becoming, in Italy, the most diffused biodegradable material. (73) The 

Novamont’s case is only an example cited in order to explain how the interest in bioplastic and 

biomaterial is a very topical issue. Many big companies, all around the world (BASF, Cargill, Dow 

Chemicals, DuPont etc.) have made huge efforts in this direction investing many economical 

resources in research and development of new bio-materials. Economists have estimated that the 

worth of bioplastic market in 2015 was approximately 4.5$ billion and a growth is expected to  

reach the worth of 5.1$ billion in 2021 (74). The bar chart in figure 4.1 shows the amount in metric 

tons of the global production of bio plastic.  



 

Figure 4.1: Global production of bioplastics since 2008 to 2015 and forecast from 2016 to 2019 production (75) 

Besides the efforts made by private companies, also the academic world has focused its attention on 

bioplastic development and applications: the key-words “biodegradable polymer” generate an 

impressive long list of 40055 references with at least 14000 patents (the aim of these researches still 

be high industrially oriented).  

The data provided in pie chart in figure 4.2 show that, without considering bio-PE and bio-PET that 

are not biodegradable polymers but materials obtained via polymerization of bio-based monomers, 

poly(lactic acid) (PLA) is the most produced and diffused biodegradable polymer.  



 

Figure 4.2: pie chart of global quantities (metric tons per year) of bio-based plastics (75) 

The high interest in PLA, due to its biodegradable and biocompatible properties, has generated a 

market of 4.3$ billion with multidisciplinary interests in many fields: packaging, agriculture, 

commodities, disposable and medicine. PLA can be considered the forefather of industrial bio 

plastics. 

The following paragraphs explain the synthesis and features of polymers used in the present work, 

highlighting the aspects related to this research.  



 

4.1 Poly (lactic Acid) 

Poly(lactic acid) or poly(lactide) (PLA) is one of the most produced biocompatible and 

biodegradable polymers. Since it was synthetized for the first time, it has been considered one of the 

most promising biomaterials and several researches have been made to enhance its properties in 

order to obtain an efficient alternative for oil-based polymers. (76) (77) (78) (79) (80) (81) (82) (83) 

The general structure of PLA is shown in figure 4.3. 

 

Figure 4.3: poly(lactic acid) molecular structure 

PLA is a thermoplastic biodegradable semi-crystalline polymer obtained via polycondesation of 

lactic acid or via ring opening polymerization (ROP) of lactide, the cyclic dimer of lactic acid (the 

structures of lactic acid and lactide are shown in figure 4.4). 

 

Figure 4.4: structure of lactic acid and lactide 

PLA thermal and mechanical behavior strictly depends on the tacticity of polymer chains: lactic 

acid has a stereogenic carbon therefore it is possible to obtain atactic, syndiotactic and isotactic 

chains; since the polycondesnsation does not affect the stereocenter (side reaction promoted by 
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temperature and acidity promotes the racemization) the tacticity of polymer only depends on 

monomer stereochemistry. Lactic acid exists in L and D form, therefore, it is possible to obtain the 

LL, DD and DL lactide; the reaction of DL lactide permits to obtain syndiotactic polymer whereas 

the reaction of LL and DD lactide leads to isotactic polymers. Lactic acid, obtained via bacteria 

fermentation, is in the L form therefore the bio-based lactide has the LL configuration. Poly(L-lactic 

acid) (PLLA) is the standard commercial PLA.  

Commercial PLA presents a glass transition temperature (Tg) between 55°C and 60°C and a melting 

temperature (Tm) between 160°C and 180°C. (84) The crystal structure consists of spherulitess 

composed of lamellae separated by amorphous regions. (85) Stereo defects dramatically affect the 

thermal properties lowering the Tm even to 130°C and, above certain concentration of atactic 

portion, the crystalline structure disappears leading to an amorphous polymer. (83)  

4.1.1 PLA synthesis 

The mechanical properties are affected by crystallinity, induced by tacticity of polymer: crystalline 

PLLA has higher elasticity values, strength, impact, low gas permeability and thermal stability in 

comparison to an atactic amorphous PLA.  

The first reported synthesis of PLA dates back to 1932: poly(lactic acid), obtained heating under 

vacuum lactic acid, were synthesized in DuPont laboratories by Carothers (86). The synthesis 

developed by Carothers permitted to obtain only low molecular weight polymers: lactic acid, heated 

under vacuum, can simultaneously react in two ways: 

• Polymerization  

• Cyclization  

The first way leads to obtain polymer chains and can be interpreted with the model developed by 

Flory and Carothers for the polycondensation of monomer AB, whereas the second way leads to the 

formation of lactide, the cyclic dimer of lactic acid. (87) (88) 



 

Figure 4.4: PLA polymerization process  

Lactide, as well as low molecular species, is volatile in the reaction condition (i.e. heat and reduced 

pressure) therefore its production, and consequently sublimation, leads to promote the reaction of 

cyclization instead of polymerization. (89) To overcome this problem, it is necessary to provide the 

reactor with a reflux system in order to keep the lactide and low molecular weight species inside the 

reactor shifting the equilibrium by the side of polymerization. Another way to prevent lactide 

formation, promoting polymerization reaction, is to work using high boiling point organic solvent 

performing the reaction with a Dean-Stark apparatus. (90) This approach has two relevant issues: 

• The use of organic solvents has a high environmental impact although they can be recovered 

at the end of the reaction; moreover, the use of organic solvents intrinsically increases the 

costs for the production decreasing the commercial appeal for the polymer. 

• High boiling temperature solvents, together with acidity of reaction ambient, promote the 

racemization of monomer compromising the properties of the polymer: racemization leads 

to obtain atactic chains that are unable to crystalize. 

These issues have promoted research to focus its attention on the development of another way for 

PLA synthesis based on the ring opening polymerization (ROP). ROP is widely used for the 

synthesis of aliphatic polyesters allowing a high control of molecular weights and macromolecular 

structures, the reaction steps are shown in figure 4.4. The ROP of lactide can be performed using 

metal catalysts (Sn(II), Zn(II), Ti(IV) etc.) both by organic solvent solution polymerization (THF, 

CH3Cl, Toluene etc.) and by bulk polymerization. (91) Solution polymerization is normally 

performed for academic purpose: the proper choice of solvents, and therefore reaction temperature, 

permit to finely control the molecular weight and the macromolecular architecture; in this way it is 

possible to predict how a co-monomer can react with lactide in order to develop a model for further 

bulk polymerization. (92) (93) On the other hand, lactide bulk polymerization (industrial plant 



conditions: inert atmosphere, 130°C<T<200°C; 90min<t<240min), even if it proceeds with the 

same steps of ROP in organic solvent, presents some differences: 

• The higher temperature promotes backbiting reactions which affect the polydispersity of 

the polymer; lactide R.O.P. proceed as a multi-steps reaction that can be interpreted using 

the polyaddition model: polydispersity, without chain regulator, should be equal to 1. 

Backbiting reactions (transesterification of growing chains promoted by catalyst and T) 

increase the polydispersity obtaining values ≈ 1.6 or higher. (94) 

•  The thermal properties (boiling temperature and decomposition) of co-monomers are a 

crucial parameter: the evaporation of monomer modifies the feed of reaction changing the 

material properties; moreover, side reactions, promoted by catalyst, affect the properties of 

co-monomer leading to a loss of properties. For instance, anti-UV monomers have high 

reactivity and can degrade during the reaction, preventing the transfer of anti-UV 

properties to polymeric chains. 

 

Figure 4.5: ROP reaction mechanism: coordination with Tin and further nucleophilic attack by alcohol 

Lactide ROP requires a nucleophilic chain initiator and a metal catalyst to begin the reaction; figure 

4.5 shows the first three steps of lactide reaction (95). Among catalysts used in ROP, compounds 

based on Tin(II) and Tin(IV) oxides and carboxylate, especially tin 2-ethylhexanoate [Sn(Oct)2], are 

those that are more frequently used in the polymerization of lactide due to their versatility, ease of 

use and excellent solubility in melted lactide; furthermore, FDA agency approved the use of 

Sn(Oct)2 as food additive, that can be used in substances for food contact. The catalyst required to 

be activated using a species with mobile hydrogen: a large amount of compounds with hydroxyl 

moieties have been already investigated in literature (96) (97) (98).  

The molecular weight of PLA can be easily controlled varying the amount of hydroxyl moiety in 

the reaction feed. Several works were made to explain the complex mechanism of lactide 

polymerization; the most accredited mechanism involves the activation of monomer through the 

coordination with Sn(II), then the polymerization can proceed through the nucleophilic attack of 

hydroxyl moiety of the initiator. The coordination of Sn(II) with the hydroxyl functionality of open 

lactide keeps the catalyst active for the propagation of the reaction. The reaction ends after the 



cleavage of tin-polymer bond forming a hydroxyl end group. The use of tin as catalyst permits to 

obtain high molecular weight polymer with conversion higher than 90% and racemization lower 

than 1%. (99) 

The reaction proceeds with a first order kinetics with respect to the lactide and the catalyst; the 

nucleophilic attack of the complex tin-alcohol to the carbonyl carbon of lactide is the rate-

determining step of the ROP reaction. The kinetic can be also affected by the presence of octanoic 

acid which is obtained from the hydrolysis of Sn(Oct)2 that occurs at higher temperature: the 

presence of an acid promote the cleavage of metal-growing chain bonds slowing down the kinetic, 

or worst, interrupting the chain-growth process.  

Two possible paths can be pursued in order to accelerate the kinetics: 

• Increase the amount of initiator; increasing the concentration of hydroxyl reactive moieties 

the kinetic speeds up, however, the molecular weight of polymer depends on the ratio 

[monomer]/[-OH] therefore high concentration of alcohol leads to a steeply decrease of 

molecular weight. 

• Increase the amount of catalyst; two relevant issues coming from this approach: first, the 

high concentration of catalyst enhances side reaction as backbiting and coloring. The latter, 

is that FDA imposes 300ppm of tin as the highest concentration admitted for food contact 

material therefore high concentration of catalyst dramatically reduce application fields. 

PLA, obtained via ROP of lactide, can be further polymerized using the solid state polymerization 

(SSP). (100) (101) (102)This approach aims to increase the molecular weight of polymers and to 

eliminate the byproducts that may be present; SSP is industrially used for other polyesters in 

particular for PET or for polyamides. PLA SSP is normally used not only for the synthesis of PLA 

from oligomers but also for the increase of molecular weights and the removal of residual 

monomers and low molecular weight species (monomers and low molecular weight species act as 

plasticizer altering the rheological and mechanical properties of materials). 

SSP is a very simple process that involves three key parameters: mobility of chains in amorphous 

phase, kinetic of the reaction and removal of volatile compounds to shift the equilibrium of the 

process. The polymer is heated at temperature above the Tg but below Tm in order to increase the 

mobility of the chains and promote the reaction among the end-groups of chains in the amorphous 

phase. Moreover, the removal of volatile products (monomer and other reaction products) is 

enhanced by vacuum or high inert gas flow. Since the SSP reaction is performed at temperature 

lower than bulk polymerization and considering the reduced mobility of polymeric chains, the time 



required to obtain high molecular weight is very long. This technique is widely used to increase the 

molecular weight of polymers obtained via polycondesation of lactic acid whereas, in the case of 

polymer synthesized via ROP, SSP is normally used to remove the residual lactide. (102)   

4.1.2 PLA application 

The high cost of lactide production has limited for several years PLA use only to biomedical 

applications, in particular, PLA was used for the production of wound suture yarns and stent 

applications, drug delivery system-based PLA, orthopedic and fixation devices, tissue engineering 

and regenerative medicine. (103) (104) (105) (106) (107) The reducing costs of lactide production, 

together with the technological improvements of synthesis and processing, has opened the 

possibility to employ PLA in other fields:  disposable, food and beverage packaging, textiles, 

“durables” such as engineering components for automotive and electronics, and so on. (108) 

PLA has attracted the attention of food packaging world due to its biodegradability and 

biocompatibility; every day tons of packaged food are wasted and the common waste processing 

requires a separation of food and plastics which have a different disposal process (food is addressed 

to compost plants whereas packaging to recycling plants). The use of PLA, substituting non-

biodegradable plastics, can avoid this step, dramatically reducing costs of waste disposal. Tenova 

(Sweden) was the first company introducing PLA for packaging application: they delivered 

biodegradable shops made in PLA/Ecolex®. Tenova was then followed by a lot of companies spread 

all around the world: Biota (USA), which introduced biodegradable water bottle; Wal-Mart (USA), 

which introduced the PLA clamshells for strawberries and brussel sprouts; Hypermarket chain 

Auchan (France), which introduced PLA packaged salads; Sant’Anna (Italy), introduced the “bio-

bottle” made in PLA; Shiseido-Urara (China), which developed a shampoo bottle made with 

composite material 50 wt.% PLA and 50 wt.% HDPE; Polenghi LAS (Italy), which developed a 

PLA bottle for lemon juice (acid liquid); Ceramis® (Switzerland), which developed high oxygen 

barrier PLA film for snacks, bread and fruits packaging and so on. One of the most hilarious case 

happened when Frito Lay introduced a compostable PLA bag for their Sunchips® brand in 2010: 

the production was ended in 2014 because this bag underwent major public scrutiny over the loud 

crinkling sounds during bag handling. (109) 

PLA has also found application in agriculture field: PLA is used for the production of mulching 

films, substituting the widely used PE: films degrade and can be absorbed by the ground after the 

use. On the other hand, the relatively high Tg of PLA (≈60°C) together with less amorphous region 

(polymeric phase edible by microorganism) dramatically reduces the low-temperature degradation 



rate of PLA. In order to overcome this issue, PLA is blended with other materials as poly(hydroxy 

alcanoate), starch or poly(butylene adipate-co-terephthalate). (110) 

PLA has found many applications also in different fields, moreover, research continues to work in 

order to improve PLA properties and to identify new possible applications. It could be interesting to 

know the trend (the bar chart provided in figure 4.5 shows the number of scientific publications per 

year) of research reports since 1990 based on the Web of Science search using keywords “PLA”, 

“PLLA”, “PDLA”, “polylactic acid”, “polylactide”, and “poly(lactic acid)”: scientific interest in 

PLA has always had a positive trend meaning that the interest to find and to develop alternative 

materials is one of the most relevant issue of these years. (109) 

 

Figure 4.5: number of scientific publications per year concerning the key-words “PLA”, “PLLA”, “PDLA”, “polylactic acid”, 

“polylactide”, and “poly(lactic acid)” (109) 

  



4.2 Pectin 

Pectin is a hetero-polysaccharide, isolated and described for the first time in 1825 by Henri 

Braconnot, contained in the cell walls of plants especially in the non-woody parts. Its amount, 

structure and chemical composition differs among plant species; during the ripening process of fruit 

pectin is broken down by specific enzymes, called pectinase and pectinesterase and the fruit 

becomes softer. 

Pectin structure includes several types of saccharides, as D-Xylose, D-apiose and D-galactose, and 

galacturonic acid that is the most abundant. In other terms, pectin could be identified as a multi-

block copolymer where monosaccharide (units of D-Xylose or D-Apiose) units bond together 

blocks of homogalacturonan, i.e. near chains of α-(1–4)-linked D-galacturonic acid; the structure  is 

shown in figure 4.6. 

 

Figure 4.6: α-(1–4)-linked poly (D-galacturonic acid) 

Although the pectin structure previously described is the most abundant, other categories of pectin 

can be extracted from fruits,: Rhamnogalacturonan I pectins (RG-I), which contain a backbone 

made of disaccharide 4-α-D-galacturonic acid-(1,2)-α-L-rhamnose that is branched by various 

neutral sugars, like D-galactose, L-arabinose and D-xylose. The average molecular weight of pectin 

is usually in the range between 50000 and 150000 g/mol (111); these data were obtained through 

GPC analysis made after GPC calibration with monodisperse pectin samples. The broad range 

depends on pectin source and extraction conditions: for example, a study regarding the extraction 

conditions used to obtain pectin from peach pomace have shown that harsh conditions of 

temperature and pH increase the overall yield whereas milder conditions can lead to samples with 

better gelling characteristics, since the molecular weight of obtained pectin is higher. The structural 

properties of pectin are related to their structure:  

• Level of branching 

• Molecular weight of homogalacturonan chains  



• Amount of free carboxylic moieties along the chain 

A part of -COOH groups of galacturonic acid is naturally esterified forming the low polar and 

hydrophilic methyl-galacturonan derivative. The ratio of esterified units on the total amount of 

galacturonic acid units defined the degree of esterification (D.E.); the solubility of pectin and its 

gelling property seriously depend on D.E.; for instance high D.E. leads to shorter setting time of the 

gel whereas low D.E. leads to a stronger gel, since a higher number of crosslinking interactions are 

formed between carboxyl groups and divalent cations (see “Gel formation” paragraph below). In 

conclusion, the D.E. depends on the origin of the plant source, harvesting and processing 

conditions, such as storage, extraction, isolation, and purification (112). 

According to D.E. pectin are classified as: 

• High Methoxylated (HM), in which the D.E. is higher than 50% 

• Low Methoxylated (LM), in which the D.E. is lower than 50% 

Also pH has a serious influence on pectin behaviour: the carboxylic moiety of galacturonic acid has 

a pKa ≈ 4; by neutralizing pectin with sodium hydroxide or potassium hydroxide, it is possible to 

obtain the sodium or potassium salt, stable at pH higher than 6. On the other hand, pH higher than 8 

leads to the hydrolysis of esterified galacturonic acid and the α bond between the saccharide units 

modifying the structure, and therefore, the properties of the polymer. 

4.2.1 Extraction Process 

Pears, apples, guavas, quince, plums, gooseberries, oranges and other citrus fruits contain large 

amounts of pectin. The most used raw materials for production are dried citrus peel or apple 

pomace, both by-products of juices production. In 2009 the worldwide production of pectin was 

about 42000 tons and considering that the extraction yield of pectin from citrus peel is equal to 3%, 

1,4 million tons of waste materials have to be processed to supply the world demand of this 

polymer. 

Pectins are extracted with a multi-step process: 

hot dilute acid solution (usually HCl or H2SO4) at pH from 1.5 to 3.5 is added to raw materials in 

order to promote the hydrolysis of cross-linked structure permitting its solubilisation; this step takes 

several hours (minimum 2h).  



The acid solution is then filtered in order to remove insoluble part of raw material that cannot be 

hydrolyzed. The solution is finally concentrated and, in order to promote the precipitation of pectin, 

ethanol or isopropanol is added to the acid solution. 

The result is a white, or slightly light brown, solid that after fine grounding process is dried and sell. 

4.2.2 Applications 

Pectin is classified as soluble dietary fiber and is a natural part of the human diet; its daily intake 

from fruits and vegetables can be estimated in 5 g (assuming consumption of approximately 500 g 

fruits and vegetables per day). In the gastrointestinal tract, pectin binds to cholesterol and traps 

carbohydrates inducing a slower absorption of glucose. Its consumption has been shown to reduce 

blood cholesterol levels by increasing the viscosity of the gastro intestinal fluids. This leads to a 

reduced absorption of cholesterol from bile and food since the fluid mobility is reduced, by the 

viscosity increment, and consequently the contact time between intestinal content and villi is 

lowered (113).  

One of the most relevant issues related to the use of natural polymer, is connected to their intrinsic 

variability that can limit the reproducibility of the results of the extraction batches.  On the other 

hand, their non-toxicity - FAO (Food and Agriculture Organization of the United Nations) and 

WHO (World Health Organization) have not set any acceptable daily intake (ADI) - and low cost 

(pectins are mainly produced from food industry waste material) made pectin a widely used natural 

polymer for many applications.  

Pectin is widely used in food industries (food additive E440 according to International Numbering 

System for Food Additives “INS”) as gelling agent, thickening agent, in sweets production and as 

stabilizer in fruit juices and milk drinks; one of the most diffused use is as gelling agent for the 

production of marmalades. As food additive, pectin is typically used in the range between 0.5 and 

1.0% on weight, which is about the same amount present in fresh fruit. In addition, pharmaceutical 

industry has a great interest in pectin use; it is used as bulking agent in drugs production, it is sold 

as supplement of dietary fiber, it is used in wound healing preparations and medical adhesives, such 

as colostomy devices and it could be used for oral drug delivery formulations (e.g., controlled 

release systems, gastro-retentive systems, colon-specific delivery systems and mucoadhesive 

delivery systems) (114).  

4.2.3 Gel formation 

Pectin can form a stable reversible gel that normally is created at temperatures depending on the 

chemical composition of pectin chains. On the other hand, gelation can be also achieved via 



complexation of bivalent cations (in particular alkaline earth metal cations). The next two 

paragraphs will explain how temperature and complexation affect the toughness of pectin’s gel. 

Thermal gelation 

Temperature is one of the key parameter of pectin gel: it is possible to identify a specific 

temperature, called Gelation Temperature, that activates the formation, or the demolition, of gel. 

Gelation temperature is the switcher from the liquid viscous form of pectin solution to the frozen 

solid structure. Thermal gelation normally occurs during the process of marmalade production: 

pectin is added to the boiling fruits mixture and, when the mixture is cooled below gelation 

temperature, the gel structure starts to form.  

The beginning of gel formation depends on the temperature which is influenced by the degree of 

esterification: gelation is a complex process that involves the formation of aggregates due to 

hydrogen bonds formation and non-polar interactions. The amount of polar and non-polar 

interactions dramatically depends on the degree of esterification: the higher the D.E. the higher the 

gelling rate. On the other hand, the toughness of the gel (a crucial parameter that influence the 

texture of foods) is affected by different parameters: 

• Concentration of pectin in water solution 

• Concentration of sugars as sucrose, glucose and fructose 

• pH 

High concentration of pectin leads to a tough gel; nevertheless, the toughness of gel is also 

influenced by the concentration of a co-solute (usually sugars like sucrose) that reduce water 

activity promoting hydrophobic interactions between methoxy groups; literature data report that a 

concentration of sucrose higher than 55% w/wgel is required for gel obtaining and a changing of 

sugars (glucose or fructose) widely affects the mechanical properties of the gel.  

Also the pH affects the formation of the gel: the lower is the pH the lower is the dissociation of 

carboxylic moieties along the polymer backbone, therefore, the non-polar interactions are promoted. 

A pH lower than 3,5 enhance the formation of HM pectin gels whereas pH higher than this value 

promotes the formation of LM pectin gels. 

The combination of these factors influence the texture of the final product: in particular, when 

pectin is used as gelling agent (for instance in marmalade production), tough gel  can lead to a final 

syneresis (the expulsion of a liquid from the gel) or a granular texture whereas a weak gel leads to 

excessively soft material (115).  



Bivalent Cations Complexation 

Besides temperature, that still remains a trigger parameter for the formation of pectin gels, gelling 

can be achieved also through complexation of divalent cations (usually earth alkaline metals) by 

non-esterified carboxylic moieties along the polymer backbone. Linear blocks of homo-

galacturonan modify their spatial disposition, orienting the galacturonic acid ring in order to bind a 

bivalent cation: the self-assembly idealized structure, called “egg-box model”, is shown in figure 

4.7.   

  

 

Figure 4.7: “Egg-box” complexation model of Ca2+ by pectin 

Calcium is the most used divalent ion to form gels due to its high biocompatibility and non-toxicity; 

normally a pH range between 2.6 and 7.0 is used to increase the quantity of deprotonated carboxylic 

groups to form a higher amount of ionic bridges. The lower is the D.E. of pectin the higher is the 

number of crosslinking points increasing the toughness of gel. (116) 

4.2.4 Pectin methoxylated: degree of esterification  

The binding of Ca(II) by carboxylic moieties along pectin chains promotes the formation of “ionic 

bridges” through the polymeric chains leading to gel structure.  

The determination of D.E. is fundamental in order to determine the stoichiometry quantity of 

calcium required for the gel formation: low quantity of calcium cannot promote ion bridges from 

pectin chains reducing toughness of the gel whereas a high concentration of calcium promotes the 

complete gelation of polymeric, but the non-bonded calcium affects the rheological properties of the 

material. 

In order to understand how the chemical properties of pectin can affect the release, two types of 

pectin with different D.E. were purchased from Sigma-Aldrich: 

• pectin from apple (Poly-D-galacturonic acid methyl ester), having a D.E. between 50 and 

75%; 



• pectin from citrus peel, having a degree of esterification higher than 6,7 percent; 

The data about the degree of esterification provided by the supplier are not sufficient to properly 

calculate the amount of CaCl2 needed to obtain stoichiometric gels, i.e. gels with the highest amount 

possible of ionic bridges between the polymer chains or, in other words, the strongest possible gels. 

An IR based methodology (117) was used to determine the degree of esterification (DE) of pectins. 

The bands used for DE determination are those at ≈1610 and ≈1740cm−1 as reported in litterature. 

The first one corresponds to the symmetrical stretching vibration of carboxylate moiety whereas the 

second is assigned to stretching of carbonyl groups both from carboxylic acid moiety and methyl-

ester derivate. Considering that in partially methoxylated pectin at pH 6, the carboxylic groups are 

completely deprotonated, the 1740 cm−1 band can be attributed exclusively to the carboxymethyl 

groups. The ratio between the absorbance of 1740 cm−1 band divided by the sum of those at 1610 

and 1740 cm−1 is proportional to DE. The equation found by Manrique et al. that correlates DE to 

absorbance parameters was used for DE determination of the purchased pectins and it is reported in 

figure 4.8.  

 

Figure 4.8: Equations used for DE determination reported by Manrique et al. (117)  



 

4.3 Alginate 

Alginic acid, also called alginate, is an anionic natural polysaccharide and is one of the major 

components of cell walls of brown algae. It is sold in filamentous, granular or powdered forms and 

its colour ranges from white to yellowish-brown. It is a linear copolymer constituted by 

homopolymeric blocks of (1-4)-linked β-D-mannuronate (M) and its C-5 epimer α-L-guluronate 

(G) residues, covalently linked together in different sequences (118). Alginic acid structure is 

reported in figure 4.9. 

 

Figure 4.9: Alginate chemical structure 

The monomers can appear in homopolymeric blocks of consecutive G-residues (G-blocks), 

consecutive M-residues (M-blocks) or alternating M and G-residues (MG-blocks) (119). As 

mentioned, it is an important component of algae and is also an exopolysaccharide constituent of 

bacteria including Pseudomonas aeruginosa (119). 

Commercially available alginate is typically extracted from brown algae by treatment with aqueous 

alkali solutions, usually with NaOH (118). Sodium alginate has a wide use in food, textile printing 

and pharmaceutical industries. An example of widely diffused application is dental impression that 

utilizes alginate. (120).  

4.3.1 Commercial sources 

Industrial processes used to make sodium alginate from brown seaweeds are relatively simple and 

they fall into two categories. In the first one, the principal intermediates are calcium alginate and 

alginic acid, while in the second no calcium alginate is formed but only alginic acid. The two 

processes are illustrated in figure 4.10. 



  

Figure 4.10: Industrial processes for alginate production (121) 

The advantage of the first process, called “calcium alginate” process, is that calcium alginate can be 

precipitated in a fibrous form which is easy to separate; subsequently it can be converted into 

alginic acid by using an acidic treatment. An advantage of this process is that some calcium alginate 

can be allowed to remain in the final product. The presence of low concentrated calcium ions in an 

alginate solution increases its viscosity while larger amounts will cause the formation of a gel. The 

addition of Ca2+ is therefore a way of increasing the viscosity of an alginate solution without 

increasing the amount of alginate dissolved or its molecular weight. 

The second process, called “alginic acid process”, does not need the step of the formation of 

calcium alginate, nevertheless it presents some disadvantages. In fact, when alginic acid is 

precipitated, it forms a colloidal material that is very difficult to separate and this implies a high loss 

of alginic acid. The removal of liquid from within the gel structure, after the treatment with 

Na2CO3 or NaOH to form the soluble alginic acid sodium salt, the so called “dewatering” step, also 

presents difficulties. In fact, the water content in alginic acid sodium salt is very high, close to 98%, 

and squeezing or centrifuging step is needed to remove the greatest part of the water. However, it is 

not removed completely and a mixing with alcohol step is used, usually methanol or ethanol, for the 

conversion to sodium alginate in solid form. This last treatment makes the process more expensive, 

since an alcoholic solvent is used, if compared to the calcium alginate process. 

One of the most relevant issue of alginate production is related to the physical separations: the 

filtration of residues from viscous solutions or the separation of gelatinous precipitates, which hold 

large amounts of liquid within their structure, are crucial steps of the extraction of alginate from 

algae; these steps acts an important role in the economy of the process (121). 



4.3.2 Gel formation 

The mechanism of pectin gelation has been described in paragraph 4.2.3 and pectin gels are defined 

as reversible gel: temperature, also in presence of Ca2+, promotes the breaking process of 

intermolecular bonds destroying the gel structure. Alginate acts in a very similar way: they are 

soluble natural polymers which can react with divalent cations (Alginate can create stable structure 

also with trivalent cations) forming stable gels at room temperature. The Alginate-Ca(II) gel, 

contrary to what happen with pectin, is stable and neither the temperature leads to its 

disaggregation. Alginate solutions can also form gels if they are carefully acidified; these gels are 

generally softer than gels obtained by calcium complexation giving a different texture profile and 

melt with temperature arise (approximately T>30°C) making such gels interesting for food 

application.  

4.3.3 Bivalent Cations Complexation 

Alginate carboxylic moieties can bind bivalent cations leading to a non-reversible gel. One of the 

most used bivalent cations is Ca(II) due to its high biocompatibility and low cost; on the other hand, 

the complexation of bivalent cations is not limited to Ca(II) but it is reported how alginates can 

form stable gels, even though with different mechanical and texture properties, with different 

metals: alkaline earth metals, Iron, Copper etc., Ca(II) concentration has a key role in gel toughness: 

high concentration of Ca(II) leads to obtain very tough gel in very short time, whereas low 

concentration of Ca(II) – obtained using low soluble salt such as calcium citrate – leads to obtain 

soft in long time (118). 

The standard procedure for Alginate-Ca(II) gel preparation consists in dropping a high viscosity 

water solution of CaCl2, at 1.3% w/w, and a water soluble thickening agent (the most diffused are 

carboxymethyl cellulose and dextran) in a water solution of alginic acid sodium salt, with a 

concentration 0.5-4% w/w. When a drop of Ca(II) solution sinks into the alginate solution, the gel 

structure sets immediately obtaining an Alginate sphere. Retarding agents can also be used, such as 

sequestrants (e.g. EDTA), to complex calcium ions and make them unavailable and slowly released. 

The gel strength depends on the source of the alginate, i.e. the algal species, its concentration, its 

degree of polymerization and the calcium concentration. Alginates from different seaweeds can 

have differing ratios of mannuronic acid, guluronic acid and different proportions of M, G and MG 

blocks. This ratio, and the way in which the acids are distributed in the polymer chains, have a 

marked effect on gel formation and gel strength. Alginates with a high proportion of G blocks form 

rigid gels while alginates with mainly M blocks form gradually, softer and more elastic gels. Gel 



formation occurs since calcium ions substitute hydrogen ions, H+, on the carboxylic acid groups 

and form ionic bridges between chains. This three-dimensional model is called "egg-box model". 

While calcium holds the molecules together via ionic bridges, their polymeric nature and their 

aggregation bind the calcium more firmly forming chain entanglements; this phenomenon has been 

named "cooperative binding" (121).  

4.3.4 Acid Gels 

The variation of pH affects the properties of alginate modifying the ratio between protonated and 

non-protonated carboxylic moieties: increasing the number of protonated carboxyl groups the 

electrostatic repulsion between chains is increased promoting hydrogen bond formation and 

increasing viscosity. For equivalent alginate concentrations, acid gels have approximately half 

strength of calcium gels. Soft behaviour is useful in some food applications since acid gels can 

mimic the effect of gelatine; on the other hand, acid gels are less stable than Alginate-Ca(II) gels: 

when they are heated they melt and, in acid condition, depolymerizes (121). 

4.3.5 Applications 

The uses of alginates are based on three main properties: first their ability, when dissolved in water, 

to thicken the solution, second their ability to form gels when a calcium salt is added to a water 

solution of sodium alginate, and third the ability to form films of sodium or calcium alginate and 

fibres of calcium alginates. 

In textile printing, alginates are used as thickeners for the paste containing the dye. Alginates do not 

react with the dyes and they are easily washed out of the finished products. Textile printing 

accounts for about 50% of the global alginate market. 

The thickening property of alginate is used in food industries for the preparation of sauces, syrups 

and toppings. In addition, it is used to stabilize water-in-oil emulsions, such as mayonnaise and 

salad dressings, and to improve the texture, body and sheen of yoghurt and fruit drinks. It is used as 

a binder and thickening agent for pet-food. Another application for alginates is not related to their 

viscosity or gel properties, but to their stabilizer behaviour. In facts, they act as stabilizers in ice 

cream, since addition of alginate reduces the formation of ice crystals during freezing, giving to the 

final product a smooth texture. As food additive it is labelled as E400 on food packaging as 

disposed by the International Numbering System for Food Additives (INS) (122). 

4.3.5.1 Pharmaceutical and medical uses 



Thanks to total biocompatibility alginate has been widely used for pharmaceutical and medical 

purposes. For example, stable fibres have been produced from mixed salts of sodium and calcium 

alginate and used in wound dressings. They have very good wound healing and haemostatic 

properties and can be absorbed by body fluids since the calcium in the fibre is exchanged with 

sodium from the body to give a soluble sodium alginate (123). Thanks to swelling behaviour of 

alginate, it has been used as a tablet disintegrant. In addition, it finds applications in products such 

as Gaviscon® tablets, which are designed to relieve heartburn and acid indigestion; since the 

swollen, alginic acid helps to keep the gastric contents in place and so reduce the likelihood of 

reflux irritating the lining of the oesophagus. Alginate is used in the controlled release of drugs and 

other bioactive chemicals. The active ingredient is generally placed in a calcium alginate bead and 

slowly released as the bead is exposed to the appropriate environment. In addition, oral controlled-

release systems involving alginate microspheres, sometimes coated with chitosan to improve the 

mechanical properties, have been tested as a way of delivering various drugs (124).  



 

4.5 Polyvinylpyrrolidone 

Polyvinylpyrrolidone, or Polyvidone or povidone, (PVP) is a synthetic polymer obtained by free 

radical polymerization of 1-vinyl-2-pyrrolidone (NVP). The polymerization does not modify the 

structure of lactone rings that maintain their chemical-physical properties in terms of reactivity, 

solubility in solvents etc., PVP chemical formula is shown in figure 4.11. 

 

Figure 4.11: PVP chemical structure 

4.5.1 PVP synthesis  

PVP was firstly obtained in 1938 by Walter Reppe in BASF’s laboratories (125). The radical 

polymerization of NVP can be performed either in bulk or in solution or in suspension, and the 

resulting polymer has a degree of polymerization between 10 and 105. Changing the reaction 

conditions, a wide range of molecular weights can be achieved, extending from low values of a few 

thousand Daltons to approximately 2.2 million Daltons. In particular, higher molecular weight 

PVPs are obtained in aqueous solutions, whereas lower molecular weight polymers are obtained 

doing the polymerization reaction in organic solvents, since these may act as chain transfer agents 

(126).  

PVP molecular weight dramatically affects the thermal properties of the material: the glass 

transition temperature (Tg) can range from 100°C (for Mw=2500Da) to 175°C (for 

Mw≈1000000Da). On the other hand, the Tg values is seriously affected by the amounts of water 

absorbed into the polymer: small quantities of water even lead to a steeply decrease of Tg values. 



PVP is a high hygroscopic polymer therefore moisture can dramatically affect its thermal 

properties. (127) (128) (129) 

Industrially NVP polymerization is usually performed in water between 50°C and 80°C using 

hydrogen peroxide as radical initiator. The reaction is performed in water at 20-60% of NVP 

concentration depending upon the desired viscosity range. The polymer may be spray dried in order 

to obtain a solid product or directly used as water solution. Besides hydrogen peroxide also 

azobisisobutyronitrile (AIBN) can be used as radical initiator in the temperature range 50-60°C. 

(130)  The global PVP market size was 161.8 kilo tons in 2015 (131). 

4.5.2 Applications 

PVP has both hydrophilic and hydrophobic moieties therefore it can interact with a lot of solvents; 

in fact, it is soluble in cold water and in many organic solvents too, such as alcohols, chloroform, 

methylene chloride, ethylene dichloride, nitroparaffins and amines. (132) 

Its physical and chemical properties, such as biocompatibility, non-toxicity, chemical stability, good 

solubility, affinity to both hydrophobic and hydrophilic substances, made it suitable as a biomaterial 

in a lot of applications, in pharmaceutical industry and medicine, optical and electrical applications, 

membranes, adhesives, ceramics, paper, coatings and inks, lithography and photography, 

household, fibers and textiles and environmental applications. (132) 

Pharmaceutical industry is the first field that has benefited from the use of PVP, due to its excellent 

biocompatibility and ability to form stable association complexes with many active substances. The 

global PVP demand for pharmaceutical application accounted for over 58.0% of its volume shared 

in 2015. Growing demand for PVP in pharmaceutical application as drug solubilizer, co-solvent, 

sterilization disinfectant and dispersion stabilizer is expected to boost the market growth in the next 

years. Starting as blood plasma expander, now PVP is a common component of drug manufacture, 

presents into all kinds of formulations such as tablets, granules, pellets, capsules, gels, films, 

coatings, injectable solutions and contact lenses. (133) For example, iodine added to PVP forms a 

complex called povidone-iodine that has disinfectant properties, which is used in various products 

like solutions, ointment, liquid soaps and surgical scrubs. It is known under the commercial names 

Pyodine® and Betadine® (133). PVP, thanks to its amphiphilic behavior, is used to solubilize in 

water either lipophilic or low water soluble substances; several examples of solubilization of drugs 

and polyphenol have been reported in literature. Increasing the water solubility is an easy way to 

enhance the bioavailability of an active substance. 



Besides the pharmaceutical field, PVP displays good electrical properties and it is used in various 

electrical and optical applications, such as screens, printed circuit boards, cathode ray tubes and 

energy storage devices. PVP is an additive and a pore-former agent in membrane fabrication for 

water purification, wastewater treatment, desalination, food processing (e.g. beer and wine 

filtration) and gas separation. Adhesive properties of PVP have been exploited for many years for 

different uses as skin adhesives, hot-melt adhesives and glue sticks. A wide range of paper products 

(copying paper, printing paper, electric insulating paper, thermal paper,etc.) and office supplies 

have been reported to use this polymer. PVP has been applied in coatings for photo-quality ink-jet 

papers and in inks for printers thanks to its high polar behavior that allows PVP to bind 

exceptionally well to polar molecules. PVP is also used in personal care products, such as 

shampoos, toothpastes and in formulas for hair sprays and hair gels (132). It has also been used in 

contact lens solutions and in steel-quenching solutions. PVP finds applications in paints and 

adhesives that must be moistened, such as old-style postage stamps and envelopes. 

Food industry is another important field in which PVP finds applications. In particular, the market 

of beverage manufacturing is increasing the use of PVP especially as clarifying agent in wine 

production. It has wide application in manufacturing non-alcoholic beverages such as juices, tea 

drinks, soy sauce and vinegar and for improving solid food texture and flavour. Food and beverage 

field of application is expected to growing at over 8.0 percent rate over the period from 2016 to 

2024 (131). As food additive, PVP act as stabilizer and it is labelled as E1201 on food packaging as 

disposed by the International Numbering System for Food Additives (INS). 

  



5. Biomedical Delivery System 
The aim of biomedical delivery system is to delivery for a certain time in a specific target tissue an 

active substance. A controlled delivery permits, in comparison to the standard drugs assumption, to 

reduce premature degradation, to improve drug uptake, to sustain drug concentrations within the 

therapeutic window, and reduces side effects (134). 

In figure 5.1 the curves related to the release of active molecules during the time are shown: 

• The yellow line represents the pulsatile release that normally occurs with traditional drugs 

intake: the concentration of active principle burst arise after the intake and then decrease. 

• The red line (first order release) represents the release rate that normally occurs in drug 

release device: the concentration of active principle rapidly increases and gradually 

decreases after the intake. 

• The blue line (zero order release) represents the release rate of advanced drug release 

device: the concentration of active principle is kept for a long time in the therapeutic 

concentration range. 

The zero order release is the goal of the modern controlled release devices: in this way it is 

possible avoid the problems related to the toxicity of active molecules in high concentrations 

and, maintaining the concentration in the therapeutic window, improving the efficiency of the 

therapy. (135) 

 

Figure 5.1: active principle release rate during the time of therapy (136) 



 Many drug delivery systems are commonly used every day: therapeutic patch for local 

inflammatory treatment, vaginal ring for female hormones delivery for contraceptive therapies, 

insulin deliverer for type 1 diabetes etc.  

Even though the drug delivery is a young discipline, it is considered that this field is only 40 years 

old; many works have been done. The continuous attention on the development of new materials 

and technology allow the development of different devices shifting the scale from macro- to nano-. 

The release of small drugs molecules is only one of the aim of release devices, many examples are 

reported of release of other therapeutic factors as proteins (137) and genes (138). 

The need of extremely versatile and tailor-made material makes polymers as the main used 

materials for the production of drug delivery devices but also inorganic devices as ceramic scaffolds 

(139) or metal-based material (140) are used as drug carrier. On the other hand, this work is focused 

on the use of polymers as release matrix therefore this chapter aims to explain the main 

characteristics, issues and advantages of the use of polymer-based drug delivery systems. 

5.1 Mechanism of Release 

The mechanisms involved in the control of the release through a polymer matrix are 4: diffusion, 

swellings systems, erosion or by an external stimulus. (141) (142) (143) (144) 

The first mechanism studied was the diffusion that leads to obtain a concentration gradient of drug 

during the time: the Fick’s low of diffusion regulates the release, resulting in nonlinear Fickian 

release profiles.  

The release in swelling-controlled systems is controlled by the water swelling in the delivery 

system: the swelling improves the polymer flexibility and therefore pores dimensions, enhancing 

the drug molecules mobility. The profile of drug release kinetic is linear for first period but, in a 

second time, the release will have a Fickian release profile (a combination of release due to polymer 

disentanglement for the linear part and Fickian-shape kinetic for the non-linear part). 

The erosion-controlled devices are produced using bio-erodible polymers; the mechanism of release 

is complicated and involves mass transport and chemical reactions: drug dissolution, polymer 

degradation, porosity creation, micro-environmental changes in pH, diffusion in polymer matrix, 

and autocatalytic effects. The kinetics of the release is a multi-step process depending on the 

polymer and its interaction with the body. 

Stimulus-controlled release systems control the release of drug upon an external stimulus able to 

modify the structure of the polymer that permits a release of the active molecules. External stimuli 



can be pH variation, temperature arising, ionic strength or water composition (i.e. glucose 

concentration). (143) (144)   

The four release mechanisms are graphically summarized in figure 5.2.  

 

Figure 5.2: mechanisms involved in drug released from polymer-based devices. (145) 

The released mechanisms are analyzed excluding the interactions (physical and chemical) among 

polymeric matrix (moieties born along the chain) and the moieties of the active molecules 

delivered. Wang and Von Recum introduced in their review the concept of affinity-based drug 

delivery: affinity can be defined as the tendency of a molecule to associate with another molecule. 

The interactions among active molecules and polymeric matrix (i.e. ionic interaction, van der Waals 

forces, hydrogen bond, hydrophobic interaction and their combinations) are able to affect the 

release modifying the shape of the kinetics release curves. Three examples, of how the interaction 

among active molecules and release device affects the release, are shown in figure 5.3: it is 

important to notice how the release can be tuned modifying tailoring the molecular properties of the 

release device. (145) 



 

Figure 5.3: kinetic release curves with different interaction among active molecules and polymer  

5.2 Molecular Imprinting 

Besides conventional methods for the release previously explained, the molecular imprinting play 

an important role: it is a very high specific method able to fine control the release of an active 

molecule that is called imprinted molecule. (145) 

The creation of an active site, compatible only with a specific active molecule that is defined 

imprinted molecule, is called molecular imprinting. Polymer is synthetized using functional 

monomers able to modify the features of the macromolecular network improving interactions with 

active molecules. Both covalent and non-covalent interactions can be achieved but the latter is 

preferred due to many reasons: slow kinetic covalent bond cleavage, readily adaptable and rapid 

synthesis, close resemblance to molecular recognition and availability of functional monomer 

libraries. The non-covalent interactions include hydrogen bonding, hydrophobic interactions, ionic, 

and van der Waals forces and obviously their combinations. (146) 

The synthesis of polymer is performed with the active molecules already bond to the active 

monomer: after the polymerization the active molecules are removed leaving cavities, compatible 

only with their, along the polymer network. This technique mimes the activity of enzymes that are 

able to interact only with specific substrates; this mechanism can be explained with the analogy of 

the lock and the key where the key is the substrate and the lock the enzyme: the lock can be opened 

only by its key. The figure 5.4 shows an example of this mechanism. (147) (148) 



 

Figure 5.4: lock and key activity mechanism (149) 

The first example of this kind of release system was obtained by Vlatkis e all.: they synthesized a 

cross linked polymer using as functional monomer the methacrylic acid (MAA) and ethylene glycol 

dimethacrylate (EGDMA) as cross-linker. The methacrylic acid is able to perform ionic interaction 

with amines and hydrogen bonds with polar group of active molecule. Even in the presence of 

molecular similar molecule, the selectivity of the polymers for the imprinted molecules is 

exceptionally high. (150) 

The ratio of cross-linker, monomer and active molecules dramatically affects the kinetics release. 

Increasing the quantity of active molecule, even though the drug load cavities are formed, the 

release occur immediately due to low amount of monomers that consist the cavities: too weak 

interactions occurs and the release is rapidly achieved. On the other hand, increasing the amount of 

monomer multiple cavities are formed in polymer network leading to a decreased release kinetic. 

(151) 
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6. Lactide polymerization 
 

Vanillyl alcohol (VA) and Tyrosol (Tyr) were identified as potential antioxidants able to react with 

lactide acting as chain initiator for the ROP reaction: both molecules have an aliphatic alcoholic 

moiety (fundamental for polymerization with lactide) and a phenolic moiety (this moiety acts as 

radical scavenger). The focus of the work is produce antioxidant material using the industrial 

condition in order to rapidly scale up the process; Tyrosol was chosen a model molecule in fact, the 

non-substituted phenols do not show interesting antioxidant activity. On contrary, VA is a 

substituted phenol activated by the -OCH3 that slightly increase the acidity of the phenol (VA pka 

9.75 and Tyr pka 10.17) increasing the activity against radicals. Other molecules could be used, for 

instance 3,5-Dihydroxybenzyl alcohol or dihydroxy Tyrosol, but they are too instable at 

polymerization temperature. Moreover, the increased acidity due to aromatic ring substitution 

deactivates the complex Lactide-Tin-initiator blocking the chain growth process. (152) 

As was already explained in paragraph 4.1.1, the polymerization of lactide via ROP requires a 

nucleophilic chain initiator; even though primary amines have a better nucleophilic feature and give 

more stable reaction products, aliphatic alcohols are the most widely used chain initiators for lactide 

polymerization and their reactivity with lactide is extensively reported in literature. (153) (154) 

The structure of vanillyl alcohol and tyrosol is reported in figure 7.1; both molecules present both 

an aliphatic primary alcohol and a phenolic moiety. According to the scheme proposed in paragraph 

4.1.1, both moieties can react forming the complex Tin-Lactide-Alcohol for the beginning of ROP 

reaction. On the other hand, the phenolic moiety does not react with lactide whereas the aliphatic 

alcoholic moiety does; previously literature examples reported the bulk polymerization of Lactide 

with Tyr, showing that the authors obtain only linear mono functionalized polymeric chains (155). 

Furthermore, the higher steric hindrance (in particular in VA), together with the high stability of 

aliphatic ester bonds, disadvantages the reaction of lactide with phenolic moiety promoting the 

reaction with primary aliphatic alcohol.  

The relatively high acidity of phenolic moiety can promote the hydrolysis of the metal complex 

Tin-Polymer-Alcohol required for chain growth. In order to overcome this problem, Sn(Oct)2 was 

used in higher concentration (3000ppm) in comparison to the limits indicated for material for food 

contact (300ppm).  



6.1 Solution Polymerization 

Solution polymerization of lactide were performed as model synthesis in order to assess the 

reactivity of VA with lactide for PLA synthesis. The reactions were performed in anhydrous 

tetrahydrofuran as was previously reported by Basilissi in his Ph.D. thesis. (156) The reactions were 

conducted at 67°C for 165h: the kinetics of the reaction at such temperature is very low therefore 

very long reaction time is required in order to obtain high monomer conversion.  

Three samples were synthesized; feed, degree of polymerization (DPn), monomer conversion (p) 

and percentage of VA bonded to polymer are provided in table 6.1. DPn was calculated via 1H-

NMR (spectra are shown in figure 6.1 and 6.1) using equation 1 whereas p is calculated using 

equation 2. 

 

Figure 6.1 :1H-NMR of PLA with 0.5% of VA  



 

Figure 6.1: zoom in the region between 3.7-6.5 ppm of 1H-NMR of PLA with 0.5% of VA 
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Where ∫CH is the value of the NMR integral of multiplet at (5.19, 5.17, 5.15, 5.13), ∫CHend is the 

value of the NMR integral of multiplet at (4.38, 4.36, 4.34,4.33) 

Sample PLA+0.1%mol/molAV PLA+0.5%mol/molAV PLA+10%mol/molAV 

Feed (%mol/mol) 0.1%* 0.1% 0.5%* 0.5% 10% 

DPn  68 55 52 64 6 

p (%) 98.5 98.2 98.1 98.4 83.3 

Molar percentage AV (%mol/mol) 0.096 0.102 0.456 0.470 5.228 

 

Table 6.1: data of PLA solution synthesis; * sample was analyzed before solution pouring in methanol. 



The VA reaction proceed with high conversion (p > 98%) for concentration lower than 0.5%mol/mol 

whereas high concentration of VA (10%) dramatically affects the reaction lowering the conversion 

to 83%. As previously stated, the acidity of phenolic moiety deactivates the complex Tin-Lactide-

Initiator inhibiting the polymerization. Moreover, VA acts as chain initiator since the quantity of 

VA, measured via 1H-NMR, slightly increase after the pouring process in methanol: VA, lactide 

and low molecular weight PLA chains have high solubility in methanol whereas high molecular 

PLA fraction has not; therefore, the non-bonded VA should be solubilized by methanol while the 

bonded VA should not.  

Number average molecular weight (Mn), Weight average molecular weight (Mw) and poly 

dispersity index (D) are provided in table 6.2 (the curves are reported in figure 6.2). It is possible to 

observe how the molecular weights, and therefore the hydrodynamic volume, decrease increasing 

the amount of VA in the feed. Moreover, the polydispersity index, obtained via GPC, is slightly 

higher than 1 for samples PLA+0.1%mol/molAV and PLA+0.5%mol/molAV whereas it seriously 

increases for sample PLA+10%mol/molAV: the high amount of VA, which deactivates the complex 

among lactide, catalyst and initiator, does not allow the formation of polymeric chains but only 

oligomeric species. 

SAMPLE Mn (Da) Mw (Da) D  

PLA+0.1%mol/mol AV 10872 13632 1,25 

PLA+0,5%mol/mol AV 7781 9236 1,19 

PLA+10%mol/mol AV 632 1014 1,61 

 

Table 6.2: GPC results 

 



 

Figure 6.2: GPC curves of PLAs obtained via solution polymerization of lactide with VA as chain initiator. 

 

The preliminary studies permit to conclude: 

• VA is able to react with lactide acting as chain initiator; moreover, VA does not negatively 

affect lactide polymerization for concentration lower than 0,5% 

• VA conversion is higher than 90% for concentration lower than 0,5%mol/mol 

6.2 Bulk polymerization 

The aim of the project is to obtain intrinsic antioxidant polymers using the standard industrial 

condition used for PLA synthesis. Therefore, the further step was the setup of the reaction of lactide 

with VA via bulk polymerization conditions. The reaction was performed under N2 atmosphere at 

190°C: at this temperature the lactide is melted and the kinetics of reaction steeply increase leading 

to a polymerization time of about 1.5h. On the other hand, the high temperature, together with the 

presence of tin as catalyst, can promote side reactions of VA. Tin is used for degradation of 

phenolic compounds in water treatment and enzyme catalyzed oxidative coupling reaction of VA 

was already reported in literature. (157) (158) Nevertheless, the low concentration of tin in the 

reaction feed together with the absence of oxygen should prevent degradation of VA. 

Besides the VA, which has high antioxidant power, Tyrosol (Tyr) was identified as potential model 

molecule for bulk polymerization: tyrosol has higher thermal stability in comparison to VA 

therefore the temperature should not lead to degradation during the polymerization, permitting to 

determine how the bulk polymerization proceeds in presence of phenolic compounds. 



The molecular weight of the resulting polymer can be controlled changing the feed of reaction, the 

DPn of the polymer depends on the ratio [M]/([Initiator] x f) where the [M] is the molar 

concentration of monomer, [Initiator] is the molar concentration of initiator and f is the number of 

active moieties (in this case f=1). As for any other thermoplastic polymers, the mechanical 

properties of a PLA depend on its DPn: the entanglements molecular weight was reported as 

9000Da (159), that means a DPn value of approximately 125 (standard industrial PLAs have DPn 

higher than 500). Using a concentration of initiator equals to 0,5%mol/mol, limit DPn is 200 therefore 

the polymer cannot have the same performance of industrial materials. The maximum concentration 

of chain initiators allowed is 0,2%mol/mol (DPn =500 for conversion equals to 1). 

Sample Mn (Da) Mw (Da) D 

PLA+0.1%Tyr 73456 124742 1,71 

PLA+0.25%Tyr 16977 43304 2,55 

PLA+0.5%Tyr 13055 34166 2,62 

 

Table 6.3: GPC results of bulk polymerization reactions with Tyr as chain initiators 

 

Bulk polymerization of PLA was performed using Tyr concentration of 0,1%mol/mol, 0.25%mol/mol and 

0.50%mol/mol (maximum theoretical DPn are respectively: DPn=1000; DPn=400; DPn=200): 

experimental results confirm that Tyr reacts with lactide as chain initiators since increasing the 

concentration of Try, the values of Mn and Mw decrease; results are provided in table 6.3. It is 

important to notice that, for concentration of 0.25%mol/mol and 0.5%mol/mol, an unexpected decrease of 

molecular weight is registered and also the D values distance themselves from the ideal value of 

1.6: the presence of relatively high concentration of phenolic moiety affects the polymerization 

process.  

Nevertheless, the molecular weights of PLA+0.25%Tyr and PLA+0.50%Tyr are unexpectedly 

similar: for concentration of Tyr higher than 0.1%mol/mol, Tyr seems to negatively affect the 

polymerization reaction blocking the propagation step. Probably the acidity of tyrosol inhibits the 

formation of complex among lactide-Tin-chain initiator blocking the propagation of the reaction; 

moreover, the acid ambient, together with the high temperature, catalyzes the backbiting reactions 

that increase the polydispersity (160). Thus results permit to understand how a phenolic compounds 

affects the polymerization of lactide and to proceed with the reaction of VA with lactide. 



Using the same Tyr concentration, polymerization reaction was then repeated for the synthesis of 

VA modified PLA. GPC results are provided in table 6.4 

Sample Mn (Da) Mw (Da) D 

PLA+0.1%VA 70781 114003 1,61 

PLA+0.25%VA 25809 118632 4,61 

PLA+0.5%VA 10799 31842 2,95 

Nature Works 4043D 90702 171573 1,89 

 

Table 6.4: GPC results of lactide bulk polymerization reaction with VA at different molar concentration 

As in the case of Tyr, only 0.1%mol/mol of VA leads to high molecular weight polymer whereas 

concentrations of 0.25%mol/mol and 0.50%mol/mol affects the polymerization reactions. The presence 

of a phenol compounds, in concentration higher than 0.1%mol/mol, inhibits the Lactide 

polymerization reaction affecting not only the molecular weights and polydisperisity index but also 

the aspect of polymers: PLA with 0.25%mol/mol and 0.50%mol/mol of VA have different colors related 

to the degradation phenomena: the bulk polymerization conditions promotes side reaction of VA, 

which are disadvantaged in high diluted sample, leading to light brown polymers. 

Coupling reaction of phenols compounds, in presence of enzyme and oxidative ambient (O2 or 

H2O2) are widely reported in literature. Similar reaction was described for the the preparation of 

oligoTyr (161) (162) (163) (164). Even though the polymerization reaction was performed in inert 

atmosphere (N2 flux) the presence of metal catalyst can promote degradation reactions of phenolic 

compounds. Tin is reported to be used as catalyst for phenolic compounds degradation in polluted 

water: very low concentration of phenolic compounds (concentration lower than 0.2%mol/mol) 

disadvantage the side reaction of VA and Tyr whereas for concentration higher than 0.2%mol/mol the 

side reactions start to occur.    

The attention was therefore focused on 0,1%mol/mol VA and Tyr modified PLAs samples. GPC 

results of these polymers are provided in table 6.5. NatureWorks 4043D is an industrial PLA used 

as a standard industrial material: it is produced and sold for flexible pakcaging.  

 

 



Sample Mn (Da) Mw (Da) D 

PLA+0.1%Tyr 73456 124742 1,71 

PLA+0.1%VA 70781 114003 1,61 

Nature Works 4043D 90702 171573 1,89 

 

Table 6.5: GPC results of lactide bulk polymerization reactions with VA and Tyr  

The effects of VA and Tyr on molecular weights are practically the same: the molecular weight of 

PLA+0.1%VA and PLA+0,1%Tyr is very similar as the polydispersity of the material. The presence 

of low concentration of phenols does not affect the polymerization process even in bulk 

polymerization. 

Polymers having higher VA concentration were synthetized in order to check the highest level of 

phenols that is possible to load in the feed without compromising the polymer properties. Samples 

with 0.25%mol/mol and 0.50%mol/mol were synthetized and Mn, Mw and D data, obtained via GPC 

analysis, are provided in table 6.4. 

 

6.2.1 Thermal properties  

Thermal properties of polymers were assessed using differential scanning calorimetric (DSC), Glass 

transition temperature (Tg), cold crystallization temperature (Tcc), cold crystallization heat (ΔHcc), 

melting temperature (Tm), melting heat (ΔHm) and crystallinity (Xc) data are provided in table 6.6; 

all the data reported are referred to the second heating cycle. 

Sample Tg Tcc(°C) ΔHcc(J K-1 g-1) Tm(°C) ΔHm(J K-1 g-1) Xc 

PLA+0,1%Tyr 53,00 107,25 69,12 168,34 72,07 3,17 

PLA+0,1%VA 52,74 108,34 55,34 167,39 58,34 3,23 

Nature Works 4043D 59,08 124,29 14,23 155,26 15,28 1,13 

 

Table 6.6: thermal properties of synthetized polymers in comparison to Ingeo NatureWorks 4043D 

All samples shown a clear glass transition temperature, an exothermic peak related to the cold 

crystallization and melting peak. DSC show that all samples have a marked tendency to have a cold 

crystallization but PLA+0.1%VAand PLA+0,1%Tyr, that have very similar behavior, show a lower 



crystallization temperature (about 15°C lower than the temperature registered for PLA 4043D) but a 

higher cold crystallization enthalpy. On contrary, the Tm measured for PLA+0.1%VAand 

PLA+0,1%Tyr is higher than the Tm obtained for PLA 4043D (about 11°C) also the melting 

enthalpy of PLA+0.1%VAand PLA+0,1%Tyr are higher than PLA 4043D. The Ingeo 4043D 

behaviour indicates a lower crystallinity content in comparison to PLA+0.1%VAand PLA+0,1%Tyr; 

Xc values show that PLA+0.1%VA and PLA+0,1%Tyr have a crystallinity content three time higher 

than the one of Ingeo 4043D. The lower crystallinity of PLA Ingeo 4043D is due to its D 

stereisomer content: the producer has declared that the total amount of D isomer is approximately 

4,3% whereas in the lactide, used for the synthesis of PLA+0.1%VAand PLA+0,1%Tyr, the D 

isomer content is lower than 1% as declared by producers. 

Sample T1% (°C) T5% (°C) T50% (°C) T95% (°C) ΔT1%-95% (°C) 

PLA+0,1%Tyr 270 301 346 370 100 

PLA+0,1%VA 274 302 353 381 107 

Nature Works 4043D 351 351 380 395 44 

 

Table 6.7: degradation temperature determined via thermo gravimetrical analysis (TGA) 

Thermal stability of PLA+0.1%VAand PLA+0,1%Tyr were also assessed in comparison to PLA 

Ingeo 4043D via TGA analysis checking the temperature of 1%, 5%, 50% and 95% of weight loss 

(T1%, T5%, T50%, and T95%). Data, provided in table 6.7, show that PLA+0.1%VA and 

PLA+0,1%Tyr have a lower thermal stability compared with PLA Ingeo 4043D: the later has a 

temperature of degradation T1% of approximately 351°C, almost 80°C higher than PLA+0.1%VA 

and PLA0,1%Tyr. Comparable degradation temperatures were previously reported by Basilissi et 

al.: they synthetized in bulk, with the same method reported in this work, PLA nanocomposites and 

measuring a T1% for a non-modified PLA 248°C, a temperature 26°C lower than the one measured 

in this work for PLA+0.1%VA and 22°C for PLA+0,1%Tyr. The presence of antioxidant linked to 

the chain enhance the thermal stability of the new polymers, in addition it is important to notice that 

the producer supplies processing stabilizer into PLA Ingeo 4043D is  (165). Anyway, although the 

degradation of PLA+0.1%VA and PLA+0,1%Tyr starts at low temperature, the processability of the 

material is not affected since PLA is commonly processed at temperature about 200°C that is 

widely lower than the temperature of degradation beginning. TGA curves are shown in figure 6.3. 



 

Figure 6.3: TGA curves of PLA+0,1%VA, PLA+0,1%Tyr and NaturWorks 4043D 

 

6.2.2 Antioxidant features 

The evaluation of antioxidant features of the polymers is one of the aim of the project, therefore it 

was necessary to find a way to determine if the polymerization reaction could affect the phenolic 

moiety responsible for such property. The antioxidant power was assessed using 2,2-diphenyl-1-

picrylhydrazyl (DPPH) assay. DPPH is a stable organic radical with high solubility in organic 

solvents such as methanol, THF, dichloro methane etc.; the UV-vis spectra of the unpaired 

molecule presents two absorbance maxima one at 350nm (yellow solution) and one at 515nm (dark 

purple solution) whereas the reduced form presents only one absorbance maximum at 350nm 

(yellow solution); the UV-Vis spectra of both forms and their structure are reported in figure 6.4. 

An antioxidant, such as VA or Tyr, is able to reduce the DPPH molecule leading to solution color 

change: the dark purple solution turns into a pale yellow solution and the absorbance decrease, 

measured at 515nm, is used to determine the antioxidant power.  



 

Figure 6.4: DPPH and DPPH reduced form UV-vis spectra 

The assay is normally performed using methanolic antioxidant solution; nevertheless, in this case 

the antioxidant molecule is bond to a polymeric chain that makes it insoluble in methanol. The 

standard methodology was modified for this purpose: a polymeric film was cut in small portions 

that were left in contact for 30 minutes with DPPH solution; then the absorbance was measured 

obtaining the antioxidant power of polymeric films. DPPH assay results are provided in table 6.7. 

Sample Antioxidant Power (%) 

VA 91 ± 1,4 

Tyr 7.6 ± 0.2 

PLA+0.1%Tyr 4.3 ± 4,5 

PLA+0.1%VA 12.4 ± 1.5 

Nature Works 4043D 1.0 ± 0,2 

 

Table 6.7: antioxidant power of pure substances and polymers 



The PLA 4043D having no additives, and PLA+0.1%Tyr, does not show any antioxidant features 

whereas the PLA+0.1% VA shows an interesting activity. The antioxidant power of VA has been 

therefore successfully transferred to polymeric chains.  

6.3 Conclusion 

With one-pot synthesis is possible to obtain intrinsic antioxidant material with properties, in terms 

of thermal stability and molecular weight, comparable to standard PLAs. Moreover, interesting 

antioxidant properties have been achieved even using very low concentration of VA 

(0.1%mol/mol), which is covalently bond to the polymeric chains: the VA cannot migrate into food 

therefore the antioxidant properties of polymer cannot decrease during the time.  

 

 

 

  



7. Shelf-life Study 
Even though in literature are reported higher value radical scavenging activity for antioxidant films 

(31), the very promising DPPH results on PLA+0.1%VA sample allowed to perform shelf life test 

with a real industrial food matrix. The test was performed in I.R.T.A. laboratories (Monells, 

Catalunya, Spain) in collaboration with Dr. Marcos B.M.,  

The shelf life test aims to discover how a packaging method affects food or beverage properties. In 

this case, the aim of shelf life test is to verify the antioxidant properties of the VA modified PLA, 

therefore it is important to individuate an easily oxidizable food in order to rapidly asses how the 

VA modified PLA affects the oxidation kinetics. Cured meat products are ideal candidates due to 

their high level of fat and due to the low pH value of meat:  

• Fats are easily oxidizable by radical attack: ROS react with lipids promoting the formation 

of byproducts (i.e. malondialdehyde) that rapidly change the aspect, taste and flavor of food 

• Low pH obtained in cured meet products is fundamental to avoid bacterial growth: pH lower 

than 5 disadvantage microbial activity therefore the degradation of food is only due to 

radical exposure. 

A 1m long industrial salami was chosen as standard food, this kind of products are normally used 

for industrial preparations. Even though preservatives are widely used in industrial foods, the use of 

handcrafted products will be avoided the effects of preservatives highlighting the effects of VA 

modified PLA but, at the same time, it does not allow to obtain reliable results due to the intrinsic 

variability in food production.  

Salami was sliced and the VA modified PLA was used as interlayer between two slices; then the 

slices were packed into a low density polyethylene bags. The air inside the PE bags was removed 

and then the packaged salami was thermo-sealed. The package was exposed to standard shelf-

conditions of light exposure (12h of lights and 12h of darkness) and temperature (4°C ±2°C). 

The test required a long preparation time since, to perform reliable tests, a minimum of 160 salami 

slices must be tested: PLA films were used as interlayer between two salami slices. For an each 

packaging of two salami slices, a film of about 100cm2 is required. It means that for a reliable shelf 

life test at least 8000cm2 of active PLA (the surface of 12 A4 sheets) was required; solvent casting 

deposition permits to produce only one A4 sheet of PLA film every 15h, therefore the production of 

all polymer sheets for the test took more than 180h.  



During the shelf life assay, properties of food and material were checked: water activity (aw), pH, 

color, thiobarbituric acid reactive substances (TBARS) and DPPH of PLA+0.1%AV. aw and pH are 

standard parameters correlated to the microbial growth; they are normally controlled during a shelf 

life test whereas color is a crucial parameter used to assess how the light exposition affects the 

aspect of packaged food.  

7.1 pH and Water Activity  

Water activity (aw) and pH were assessed during the shelf-life process. These parameters are 

normally used to control the microbial growth.  

Low pH value, obtained during curing process of meat, dramatically disadvantage the microbial 

growth even in products with high quantity of water. Normally pH lower than 5 inhibits microbial 

growth, for instance: the growth of E. Coli occurs at 5.6<pH<6.8 at 15°C as was reported by the 

study of Gibson and Roberts (166). During this test the pH was constant between the range 4.63 to 

4.75 therefore the E. Coli growth is inhibited. Figure 7.1 shows the trend of pH during the shelf life 

test.  

 

Figure 7.1 pH trend measured during the shelf life test 

Also aw is checked in order to verify the microbial growth, W. J. Scott correlated in 1953 the aw to 

the bacterial growth. (167) (168). Sperber reported in his study that E. Coli does not survive for aw 

lower than 0,95 and also Penicillium survive for aw higher than 0,92 (169) (170). The trend of aw 

during the shelf life test is reported in figure 7.2. 



 

Figure 7.2: aw trend during the shelf life study 

7.2 Color 

The PLA films were used as interlayer between two salami slices whereas the external wrapping 

was made with PE/PA. The light exposure normally affects the aspect of food therefore the color 

was measured only on the surface of slice exposed to the cabinet light. Even though the 

PLA+0.1%VA does not interact with the light it is important to control this parameter. The 

parameters a*(yellowness), b* (redness) and L* (lightness) were registered; in figure 7.3 is the 

spectrum of visible light related to the value a* and b* is given. 

 

Figure 7.3: colors spectrum of visible light  

As it possible to see from the graph reported in figure 7.4 and 7.5, L* trend and a*, during the assay 

slightly change. On the other hand, most interesting results were obtained analyzing the b* 

parameters: during the assay, the value of b* decrease moving from the pale grey to grey. At the 
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beginning of the test the b* value was approximately 9 whereas at the end was almost 4. This 

decrease in b* value indicates a surface color modification of salami slice that changed their color 

during the test. The surface exposed to the cabinet light appeared grey whereas the side, which is 

not exposed, does not present color modification. Only slight difference can be observed between 

control and PLA+0.1%VA 

 

Figure 7.4: L* trend during shelf life study 

 

Figure 7.5: a* trend during shelf life study 



 

Figure 7.6: b* trend during shelf life test 

7.3 TBARS 

Thiobarbituric acid(TBA) reactive substances (TBARS) is a typical assay used to determine the 

oxidation level in meat products. It is a colorimetric system and measures the concentration of 

malondialdehyde (MDA), which is one of the most important by-products of meat oxidation (171).  

The reaction between MDA and TBA is shown in figure 7.7: the reaction leads to the formation of a 

product detectable via UV-Vis analysis. In this study, TBARS determination was performed since 

this parameter is one of the most widely used tests for evaluating the extension of secondary lipid 

oxidation that can limit quality and acceptability of meats products.   

 

 

Figure 7.7: reaction of TBA with MDA used for the determination of TBARS  



Measuring the TBARS it is possible to determine the threshold of oxidation and how the 

PLA+0.1%VA affects the kinetic of oxidation of food. The TBARS trend (see figure 7.8) shows that 

the oxidation of salami immediately starts for “control” products whereas for samples prepared 

using PLA+0.1%VA as interlayer the oxidation begins later, i.e. after 20 days.  

 

Figure 7.8: TBARS trend during shelf life test 

The presence of VA, bond to PLA, freezes the oxidation of lipids for the first 20 days but, after this 

time, the kinetics increase. In any case, when the oxidation begins in samples with PLA+0.1%VA, 

the concentration of MDA never reaches the concentration of MDA registered for control samples.    

 

7.4 DPPH  

Besides the test performed on food, also the PLA used as interlayer was analyzed. Radical 

scavenging power of the films was assessed during the shelf life test: PLA+0.1%VA films, taken 

from the salami slice, were washed with n-hexane in order to remove the residual lipids form the 

surface and then they were analyzed following the same procedure used for original films.    

Normally the DPPH values decrease during the time; the active molecules, used as additives 

migrate into food (31). In this case, as it is possible to see from the DPPH trend shown in figure 7.9, 

the radical scavenging power remains constant during the all test.  



 

Figure 7.9: radical scavenging activity trend measured via DPPH 

Constant values of antioxidant power could be addressed both to the non-migration of of VA to 

food matrix or to a negligible consumption of VA for food stabilization. On the other hand, the 

covalent bond of the antioxidant molecule was previously assessed (GPC analysis do not show low 

molecular weight peaks addressing to unreacted VA of Tyr) therefore, a constant value of radical 

scavenging power indicates a high performing material. The contact with radicals, since the 

degradation of salami indicates the presence of radicals species, does not affect the activity of the 

PLA+0.1%VA: it means that with very low quantity of antioxidant bonded to the polymer [i.e. 

0.1%, in other works the quantity are approximately 5% (31)] it is possible to obtain a material with 

very high activity able to prevent oxidation and maintaining constant its radical scavenging power.  

7.5 Conclusion 

Intrinsically antioxidant biobased materials were obtained. The study conducted allows to 

understand how aromatic hydroxyl moieties, in VA and Tyr, affect the bulk polymerization of 

lactide: concentration lower than 0,2%mol/mol of phenolic compounds permits the polymerization 

whereas high concentration dramatically affects the chain growth process; the acidity of phenolic 

compounds promotes backbiting reaction and deactivates the complex metal-lactide-chain initiator.  

Vanillyl Alcohol and Tyrosol have an aliphatic alcoholic moiety that can react with lactide acting as 

chain initiator transferring their radical scavenging activity to the polymeric chains. The radical 

scavenging powers of polymers were assessed: PLA+0,1%Tyr and pure PLA do not show 

antioxidant effect whereas PLA+0.1%VA shows interesting antioxidant features.  



The shelf life assay demonstrated how the VA modified PLA is able to counteract the oxidation in 

salami samples packaged using PLA+0.1%VAas interlayer between two salami slices. The 

oxidation begins after 20 days in the samples in contact with PLA+0.1%VA whereas in control 

samples the oxidation starts since the first day. 

  



This second part of the project is to develop biomaterials to be used for the delivery of bioactive 

antioxidants. The idea is to investigate and to tailor the proper morphology of delivery systems 

using commercial materials already approved for human body contact.  

Focus directly on a future industrial development systems here studied.  

The antioxidants identified for our scopes are the oligomers of the Tyrosol (oligoTyr), which is 

obtained via enzymatic coupling of Tyrosol, and Ellagic Acid (EA) that is one of the most abundant 

and active compounds in pomegranate. Even though these antioxidants have different activity, the 

method used for the development of the delivery system was the same: 

1. Identify a polymer compatible both with active molecules and with target tissue. 

2. Identify the best morphology for the release systems in order to enhance the interaction with 

target tissue. 

3. Set up a method for preparation of a release system. 

4. Verify the release properties and understand the parameters that affect the release. 

  



8. OligoTyr Release System 

8.1 OligoTyr properties 

OligoTyr is the oligomer of Tyrosol and it can be obtained by horseradish peroxidase, in presence 

of H2O2, catalyzed coupling reaction (45). This is a new product therefore it was necessary to assess 

its properties in terms of antioxidant features and biological activity. Prof. Burlando’s group 

performed the biological assays in order to determine the toxicity and the activity for ossification.  

8.1.1 OligoTyr Structure 

OligoTyr structure was determined via CP MAS NMR, ESI (-) MS analysis and GPC analysis. The 

combination of the data obtained permits to determine that the oligoTyr is mainly linear oligomeric 

molecules with some branching point, the hydroxyethyl chain is not involved in the polymerization 

process (the signals are visible in CP-MS 13C-NMR). The structure proposed is shown in figure 8.1, 

the narrow molecular weight distribution, obtained via GPC analysis, confirms the non-branched 

structure. 

 

Figure 8.1: oligoTyr structure proposed 

8.1.2 OligoTyr Properties 

The lowering of pka of oligoTyr, in comparison of Tyr, [ pka(Tyr) = 10.3; pka(oligoTyr) = 7.3] 

suggests that the aromatic rings (coupled each other) resonance promotes the phenolic activity. The 

antioxidant features were determined as DPPH radical scavenging, Trolox and hydroxy radical 

scavenging results are provided in table 8.1 

 

 

2< n < 8 



Sample DPPH reduction (%) 0.06mg ml-1 Trolox eqs  

(FRAP assay) 

OH radical scavenging assay  

(IC50, mg ml-1) 

Tyrosol 24 ± 1 0.054 ± 0.002 0.73 ± 0.01 

OligoTyr 48 ± 2 0.072 ± 0.002 1.16 ± 0.02 

 

Table 8.1: antioxidant assay results of Tyrosol and oligoTyr 

The increased activity of oligoTyr as radical scavenger was assessed. In the DDPH assay, OligoTyr 

was found to exert a modest but significant antioxidant effect as compared to trolox (97 ± 1% 

reduction), superior to that of the parent compound tyrosol. The hydroxy radical scavenging, 

measured as salicylate reduction, the oligoTyr shows a reduction capacity 60% higher than tyrosol 

and even higher than ascorbic acid [ IC50 (0.81 ± 0.02) mg ml-1]. 

Antioxidant compounds have recently been exploited in tissue engineering as promoters of 

osteoblast differentiation, since they can counteract the inhibitory effects of reactive oxygen species 

(ROS) on the process of bone formation by osteoblastic cells. The oligoTyr shows enhanced 

antioxidant features due to the conjunction of the aromatic rings in ortho- position; therefore, it was 

studied as ossification process promoter.  

Firstly, the biocompatibility of oligoTyr was studied in comparison with Tyr by determining the 

calcein-AM cell. (172) The value obtained (IC50 > 500 mg ml-1) indicated a very low cytotoxicity 

of OligoTyr, as well as of tyrosol.  

In a further step the ability to improve the ossification in human osteosarcoma cells (SaOS-2) was 

assessed: the activity of oligoTyr and tyrosol were determined in a range of 7 days as Alkaline 

Phosphatase (ALP) (173); Data are expressed as mean SD (n ¼ 8–16) of p-nitrophenol optical 

density (OD) at 405 nm, standardized as percent of control. *p < 0.01 with respect to control, 

according to multiple t test with Bonferroni correction. The results are shown in figure 8.2.   



 

Figure 8.2: ALP activity of oligoTyr, tyrosol and control in 7 days on human osteosarcoma cells 

Tyrosol and OligoTyr have a significant effect on ALP activity in respect of untreated cells 

(control). These results, together with the low cytotoxicity, demonstrated that the oligoTyr and Tyr 

are able to promote the ossification of human cells. The activity of oligoTyr (enhanced antioxidant 

features, ALP activity, low cytotoxicity) permits to focus the attention on its delivery. 

8.2 Scaffolds 

PLA was chosen for the production of scaffolds: it is already used for production of scaffolds and, 

in human body environment, its biodegradation time is higher than 24 months (174). Industrial 

PLA NatureWorks Ingeo 4043D (≈4.3%of D-lactic content) was used. Primary and secondary 

antioxidants, which are added by the producer to the polymer during its synthesis, have to be 

removed in order to avoid any influence on oligoTyr and Tyr activity in biomedical assays. 

The active molecule (i.e. Tyr and OligoTyr) has to be soluble both in extractive media (in this case 

phosphate buffer solution) and in polymer amorphous phase. PLA4043D was therefore chosen due 

to its very low fraction of crystalline phase: according to DSC, only 0,4%w/w of polymer is 

crystalline. Moreover, PLA is relatively hydrophobic: its static water contact angle is 67°C, 

between hydrophobic of 90° and hydrophilic of 0°. These characteristics of PLA (high 

biocompatibility, low crystalline phase, lipophilic behavior) make it a good candidate as material 

for the delivery of oligoTyr.  

The poor water solubility of oligoTyr requires a high water contact to allow its extraction from the 

polymeric matrix, therefore the scaffolds must have the highest possible surface in order to promote 

the release. A sponge-like morphology was chosen for this purpose: other systems, such as 

nanoparticles can satisfy this request but, although a lot of work regarding the use of nanoparticles 

as release system have been done in these years, many doubts about their safety have to be clarified 



and, due to the aim to focus the attention on the immediately scale-up of these devices for practical 

application, the use of nanoparticles was avoided. Scaffolds with sponge-like morphology are 

properly called Hierarchical Scaffolds: the structure of the scaffolds presents very high surface area 

and they are widely used for bone regeneration: since the porous structure is bone-like structure and 

supports the cells growth. (175) (176) (177) (178) 

8.2.1 Scaffold Preparation 

In paragraph 6.11, two methodologies for scaffolds preparation are reported. PLA scaffolds were 

first prepared solubilizing both PLA and oligoTyr and Tyrosol (oligoTyr in concentration of 5% w/w; 

4.5% w/w and 3% w/w, Tyrosol in concentration of 5%w/w) in a 95:5 THF : Methanol solution (the 

latter permits the completely solubilization of oligoTyr). The solution was then frozen and the 

porous material was recovered after pouring in warm water in order to remove solvents. The dried 

materials were analyzed with scanning electron microscopy (SEM).   

    

Figure 8.3 A and B: SEM photographs of PLA scaffolds prepared without active molecules loaded 

Figure 8.3 A and B shows, with different magnification, the micro-morphology of the scaffolds: 

high surface area was obtained with dimension of pores are approximately of 600nm. The 

morphology of scaffolds prepared loading oligoTyr were also studied: figure 8.4 A and B shows the 

morphology of PLA scaffolds loaded with 5%w/w of oligoTyr. The structure is more compact and 

the dimensions of pore smaller: moreover, highlighted by the red circle in figure 8.4B, crystal of 

oligoTyr are identified. 
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Figure 8.4 A and B: SEM photographs of PLA scaffolds prepared loaded with 5% of OigoTyr 

The amount of OligoTyr actually loaded in the scaffold was evaluated by UV/vis 

spectrophotometry. OligoTyr concentration was found to vary significantly within the scaffold 

depending on the sampling site, and in all cases was lower (4–4.5%) than the theoretical one based 

on a 5% w/w loading. This indicated that the dispersion of OligoTyr in PLA was non-homogenous 

and that some leakage of OligoTyr occurred during scaffolds preparation: melted solvents promote 

the extraction of OligoTyr in water reducing the load inside the scaffolds. 

The loss of oligoTyr, together with the variability of the morphology and non-homogenous 

dispersion of oligoTyr, does not permit to use this methodology for preparation of scaffolds due to 

the poor reproducibility of the results. 

In order to avoid these problems, another methodology was set up: method B (see paragraph 6.11). 

PLA and active molecules were solubilized in 1,4-dioxane and then the solution was frozen. The 

solvent was removed under vacuum avoiding the contact with water.  

As a first advantage 1,4-dioxane shows a sublimation temperature (284.1 K) far higher than that of 

THF (164.8 K), allowing for a convenient removal of the solvent from the bulk material under 

reduced pressure (179) (180). In addition, 1,4-dioxane has already been reported to afford PLA 

hierarchical scaffolds (181) (182) (183). 

This method, in comparison with method A, presents two advantages: 

1. Avoiding the contact with other solvents, the concentration of Tyrosol and oligoTyr fed 

remains constant 

2. The morphology of the scaffolds is determined by the concentration of PLA in solvents and 

no significant variability between different batches were highlighted. 
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Figure 8.5 A and B: SEM micrographs of PLA scaffolds obtained with method B without oligoTyr 

   

Figure 8.6 A and B: SEM micrographs of PLA scaffolds obtained with method B loaded with 5% of oligoTyr 

Figure 8.5 A and B and figure 8.6 A and B show that the morphology of scaffolds does not change 

between two different batches. Furthermore, no crystals of oligoTyr are identified on the surface of 

the polymer surface.  

Method B permits a fine control and reproducibility of the scaffolds therefore this method was 

chosen for the production of scaffold utilized for delivery test and for biological assays. 

8.2.3 Porosity and Wettability 

The porosity of the PLA scaffolds prepared according to method B was determined using two 

different gravimetric methods. In the first one, relative porosity was calculated by eqn (1) using the 

density of the dry scaffold (ρs) and the density of raw PLA (ρPLA), determined as the ratio between 

the dry mass and the volume of the scaffolds: 

Porosity (%) = [1 - (ρs/ρPLA)] x 100 (1) 

In the second method, the porosity was evaluated using eqn (2): 
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Porosity (%) = {(mw - mD)/[(mD/ρPLA) + mw]} x 100 (2) 

where mw is the wet weight of the scaffold after 96 h contact with water and mD is the dry mass. In 

this case the porosity is determined as the total amount of water absorbed by the scaffold. 

The most important difference between the two methods is that with equation 1, which determines 

the apparent porosity, the connection among pores are not considered. In fact, porosity is 

determined as a ratio between two densities. On the other hand, equation 2, which determines the 

porosity using the absorbed water, considers the connection among pores. The results are very 

different: the porosity obtained with equation 1 is 86.7% whereas the porosity measured with 

equation 2 is 54.5%.  

The other parameter, tested to determine how the water solution interacts with scaffold during the 

release of oligoTyr, is the swelling that was evaluated according equation 3. 

swelling (%) = [(mw-mD)/mD] ×100 (3) 

Where mw is the wet weight of scaffold and mD is the dry weight of the scaffold. The swelling of 

PLA, measured after 96h is 120.1% and it does not change even after 120h. The lower value 

obtained with eqn 2 indicates that, even though there are high quantity of pores, most of them are 

not linked together. The reduced accessibility to the most internal pores counteracts the extraction a 

portion of oligoTyr that is homogenously solubilized in polymer. The kinetics of swelling and 

porosity (obtained with eqn. 2) are reported in figure 8.7. 

 

Figure 8.7: swelling and porosity measured in time interval of 120h 

Porosity and swelling where measured only on PLA scaffold without oligoTyr; it is reasonable to 

assume that the low quantity of oligoTyr loaded should not affect swelling and porosity. Moreover, 



SEM micrographs shows that the morphology (pores number and dimension) is not influenced by 

the presence of oligoTyr.  

8.3 Release Test 

The aim of the project is to develop a method for the release of oligoTyr to be used in order to 

promote ossification in human bone tissue. The release was assessed using samples prepared 

loading 5% of tyrosol (reference), 5%, 4.5% and 3% of oligoTyr and 5% of oligoTyr and β-

tricalcium phosphate (β-TCP). It was chosen to prepare the composite since this biomaterial has 

been widely used in view of its osteoconductive properties and cellular activities for regenerating 

bone tissues (184) (185). 

The punctual release kinetic, obtained in PBS solution at pH 7.4, is shown in figure 8.8 whereas the 

cumulative release kinetic, also obtained in the same conditions, is shown in figure 8.9.   

 

Figure 8.8: punctual release kinetic of PLA scaffolds loaded with Tyr, OligoTyr and Calcium 

● oligoTyr 3% 

● oligoTyr 5%+ β-TCP 

● oligoTyr 5% 

● oligoTyr 4.5% 

● Tyr 5% 



 

Figure 8.9: cumulative release kinetic of PLA scaffolds loaded with Tyr, OligoTyr and Calcium 

The amount of oligoTyr loaded in the scaffold does not affect the release; the poor solubility of 

oligoTyr determines the concentration available in PBS solution and the concentration achieved 

during the release study is always the higher concentration obtainable for oligoTyr in water. Neither 

the calcium phosphate affects the release since the quantity of oligoTyr released is the same 

measured in the sample without calcium. On the other hand, the quantity of tyrosol released is 

significantly higher in comparison with oligoTyr: the higher molecular weight of oligoTyr decrease 

its water solubility reducing the release speed. In all cases the scaffolds release very low quantity of 

tyrosol and oligoTyr. 

The last step was to assess the release of calcium; the kinetics of the release was performed in a 

prolonged time (28 days) in comparison with oligoTyr release. The aim of this assay is to determine 

how the presence of oligoTyr affects the release of β-TCP. 

● oligoTyr 3% 

● oligoTyr 5%+ β-TCP 

● oligoTyr 5% 

● oligoTyr 4.5% 

● Tyr 5% 



 

Figure 8.10: β-TCP release in PBS from scaffold loaded with oligoTyr and not 

PLA scaffolds loaded with 5% of oligoTyr reaches almost 70% of calcium release in 28 days, 

whereas the sample prepared only loading β-TCP in PLA achieved the release of 60%. 

Interestingly, oligoTyr not only does not interfere with calcium release but also can actually 

promote its release: this can be explained considering a lack of chelating action, which is critical to 

permit a continuous flux of cationic nutrients throughout the damaged area. 

8.4 Biological Assay 

Understood the activity of oligoTyr and developed a reliable methodology for scaffolds preparation, 

the composite containing 5% oligoTyr prepared with method B was tested on human osteosarcoma 

cells SaOS-2. The aim of this assay was to investigate if the PLA scaffolds affects cells growth and 

how the release of oligoTyr can promote the ossification process measured as ALP.  

Three scaffolds were tested: PLA, PLA loaded with 5% of Tyrosol and PLA loaded with 5% of 

oligoTyr. Results are provided in figure 8.11.  

■ PLA +5%β-TCP 

▲PLA+5%OligoTyr +5%β-TCP 



 

Figure 8.11: ALP activity measured on pure PLA scaffold, PLA with 5% of Tyrosol and PLA with 5% of oligoTyr 

Cells were left growing for 7 days on finely ground composites. Data reported in figure 8.11 show 

that PLA and PLA with tyrosol do not affect the ossification whereas, even the difference is small, 

the PLA with OligoTyr significantly enhances the ALP for human osteosarcoma cells. Moreover, it 

was confirmed that PLA has not toxic effect. Also, the Tyrosol loaded scaffolds does not show 

activity even if, in previous analysis, tyrosol displayed interesting activity.  

This assay was conducted for only 7 days; according to the results obtained with release assay, very 

low quantity of oligoTyr was provided to the osteosarcoma cells. This consideration allows to 

predict better results for prolonged exposure time.   

8.5 Conclusion 

A method for the production of PLA scaffolds, which permits a fine control of morphology and of 

the loading of active molecules (tyrosol and oligoTyr) was developed: the method permits a control 

on pore dimensions and, moreover, fair dispersion of active molecules avoiding problems related to 

the presence of high concentration in some areas of the scaffolds.  

OligoTyr was synthetized with a relatively simple green enzymatic reaction and its properties and 

structure were assessed (biocompatibility due to low cytotoxicity). OligoTyr displays interesting 

antioxidant properties higher than tyrosol and even better than ascorbic acid. Moreover, the 

oligoTyr behaves as ossification promoter significantly increasing the ALP activity in human 

osteosarcoma cells SaOS-2. 

The scaffolds display very low release kinetics: ossification process requires several days therefore 

a very slow release of ossification enhancer is required in order to supply a continuous dosage of 



oligoTyr: moreover, PLA does not affect the activity of oligoTyr even though it does not display 

any kind of activity. The tyrosol released, although it has interesting effects on ALP activity if used 

as pure molecule, is not able to improve the ossification process. 

  



9. Ellagic Acid Release System 
Diet and nutrition are fundamentals factors in the promotion and maintenance of good health 

conditions. They occupy a prominent role in the prevention of chronic diseases like obesity, 

diabetes, cardiovascular diseases, cancer and osteoporosis (186). In the Western world, 

cardiovascular diseases and many types of cancer are a major problem leading to high mortality. 

Nevertheless, medical research has uncovered the causes of these chronic diseases: virtually, the 

underlying mechanisms of all of these diseases depend on oxidative processes which lead to 

products that display high reactivity and are able to affect specific molecular targets in the body, 

like cellular DNA (187). FAO and WHO established the Codex Alimentarius or "Food Code" in 

1963 to develop harmonised international food standards to protect consumer health. In addition, in 

2003 they published the report “Diet, nutrition and the prevention of chronic diseases” after an 

international meeting in Geneva, focused on the prevention of chronic diseases through diet, in 

which they suggest diet changes (186). Epidemiological studies have revealed a lower incidence of 

many chronic diseases in areas and populations that regularly consume vegetables, fruits and anti-

oxidant rich foods, like tea and spices. Many of these foods are sources of antioxidants, like 

polyphenols, carotenoids, and vitamins. Among them, ellagic acid (EA), a natural polyphenol 

mainly presents in pomegranates, berries and grapes, is one of the most studied bioactive 

compounds in both academic and pharmaceutical worlds, since it displays apoptosis-inducing 

activity against certain types of cancer cells and antioxidant effects. 

9.1 Ellagic Acid solubility enhancing  

One of the most relevant issues related to food intake of EA is its low absorption in the 

gastrointestinal tract. In fact, EA is poorly soluble either in water (about 10 μg/mL) or in 

hydrophobic solvents and it is difficult to be incorporated in a formulation. In order to overcome the 

problems related to intake of EA; in the present work, a water soluble form was obtained 

simplifying the incorporation process and modifying the bioavailability of EA. 

9.1.1 Water Solubility 

As reported in the experimental part (see paragraph 14.3), different ratios of polyphenol/base were 

tested and a soluble salt (EALYS) of EA was obtained using 4 equivalents of L-lysine on EA, 

displaying considerable water solubility (approximately 13 mg ml-1). According to literature, the 

water solubility of EA is 8.7 μg ml-1 (188)], therefore considering that EA is 34%w/w of EALYS, the 

water solubility of EA has been increased more than 400 times. 



Solubility studies were also conducted using a CaCl2 water solution, since the polysaccharide gels 

production procedures, used for the incorporation of EALYS, require the use of CaCl2 as gelling 

agent both for pectin and alginate gels. The solubility in CaCl2 solution was assessed via UV-Vis 

analysis fixing the wavelength at 280 nm: the solubility of EALYS dramatically decreases when the 

calcium is added to the water solution, reaching values lower than 5% (results are provided in table 

5.1). 

Sample EALYS weight (mg) CaCl2 weight (mg) Water (ml) EALYS quantity in solution (%) 

W1 18.5 0.0 30 100.83 

W2 18.2 0.0 30 98.48 

W3 18.7 0.0 30 99.39 

CaCl21 11.2 8.0 50 2.31 

CaCl22 11.7 8.7 50 2.51 

CaCl23 11.6 8.9 50 2.44 

 

Table 9.1:  Results of solubilization tests in water and in CaCl2 solution 

Examples of limited solubility of calcium salts of phenols were already studied (189) therefore the 

formation of a very low water soluble Calcium-EA salt explains the reduction of EALYS in water 

solution. 

Nevertheless, Ca2+ is fundamental to obtain pectin and alginate gels; rheological studies were 

performed in order to quantify how the presence of EALYS affects gel structures in terms of 

mechanical stability and toughness.  

9.1.2 Thermal Analysis 

Differential scanning calorimetry (DCS) analyses were performed on ellagic acid L-lysine salts with 

different ration between EA and L-lysine: EA: L-Lys 1:4 (water soluble salt), 1:3, 1:2 and 1:1. DSC 

thermographs and results are reported in figure 10.1 and table 10.2. 



 

Figure 9.1:  DSC curves of EA-lysine salts  

Salt EA-lys molar ratio Tcc (°C) Tm(°C) 

1:1 ---  266 

1:2 202  296; 298 

1:3 --- 291 

1:4 (EALYS) --- 242 

 

Table 9.2: DSC signals of EA-lysine salts 

According to literature, EA melts and immediately degrades at temperature higher than 360°C (190) 

(191).The crystal structure gives great stability and prevents degradation but, when the crystal 

melts, the shield effect due to the crystal disappears and degradation phenomena start to occur. The 

formation of salts modifies the crystalline structure, dramatically affecting the thermal behaviour: in 

the range of 160°C-320°C, all samples present endothermic signals related to melting processes. 

Sample prepared with 1:1 molar ratio presents weak signals that cannot be ascribed whereas the 

sample with 1:2 molar ration present clear and well-defined signals:  



• Exothermic signal at 210°C 

• Endothermic signal at 298°C 

The first signal is ascribed to a cold crystallization phenomenon whereas the second signal is 

ascribed to a melting process. The double melting peak indicates the presence of two crystalline 

phases: one is formed during evaporation process whereas the second is formed during the heating 

process. In addition, the sample does not exhibit degradation signals after melting point. The other 

two samples, 1:3 and 1:4, present an interesting behavior: 

• The sample 1:3 presents a broad melting phenomenon with a peak approximately at 291°C 

ascribable to melting process of Ellagic Acid L-lysine salt (1:2); on the other hand, 

endothermic signals were registered approximately at 257°C attributable to L-lysine melting 

and degradation [Tm(L-Lysine) =215°C]. 

• The sample 1:4 presents only a broad melting phenomenon with a peak approximately at 

242°C ascribable to melting process of L-Lysine. 

Electrochemical studies conducted by Verbić et al. (192) together with these data lead to conclude 

that the EA acts as a diprotic acid; in fact the salt obtained with 1:2 molar ratio shows a clear 

melting point and high thermal stability. The sample obtained with 1:3 molar ratio, even if the 

melting signal of 1:2 salt is recorded, presents the signals of non-bonded L-lysine degradation 

which is also present in sample 1:4. In this case the excess of lysine does not permit to register the 

melting point of 1:2 salt. 

9.1.3 1H-NMR 

EALYS was characterized via 1H NMR (400 MHz, D2O): δ 7.13(1H, s), 3.58 (2H, t, J= 6Hz), 2.90 

(4H, t, J= 8Hz), 1.75 (4H, m), 1.60 (4H, q, J= 8 Hz), 1.35 (4H, m). Integration values are consistent 

with weighted amounts of EA and lysine used to perform the salification. 

9.1.4 Conclusion 

In conclusion, the excess of L-lysine permits the solubilization of EALYS acting as a compatibilizer 

between the phase water and the phase EA-lysine diprotic salt. Lysine is an essential amino acid 

and therefore its excess does not present toxic issues. EALYS can be used therefore as water 

soluble form of EA. 

 

 



 

10. Pectin 
Pectin was chosen as biocompatible polymer for the incorporation of EALYS; but it needs to 

undergo gelification process to be able to release the active principle in a controlled way. As 

reported in the materials and methods part, pectin gel can be classified as weak gel, since CaCl2 can 

diffuse out of the pectin matrix leading the solubilization of pectin in water. Experiments were 

made in order to determine the Degree of Esterification (D.E.) and the concentration of pectin and 

CaCl2 needed to obtain suitable materials for EALYS incorporation.   

10.1 Pectin Degree of Esterification evaluation  

D.E. of pectin was determined using the method developed by Manrique et al. (117): the 

concentration of esterified carboxylic moieties and carboxylate moieties were determined using IR 

absorbances, as reported in paragraph “Pectin methoxylated degree” in the Materials and Methods 

part. The IR spectra of LM and HM pectin sample are reported in figures 5.2 and 5.3 and DE results 

are provided in table 5.3. 

 

Figure 10.1: IR spectrum of pectin from citrus peel (LM) 



 

Figure 10.2: IR spectrum of pectin from apple (HM) 

Type of pectin Degree of Esterification 

LM pectin from citrus peel 49.53% 

HM pectin from apple 70.87% 

 

Table 10.1 – D.E. of purchased pectin 

10.2 Rheological studies 

4 pectin gels were prepared in NaCl solution using LM pectin with a concentration of 3 g/l, 5 g/l, 

7.5 g/l and 10 g/l. Rheological studies were performed in order to determine the lowest 

concentration required to obtain a gel. The amount of CaCl2, which was used for gel preparation, 

was calculated using equation 1. R is a constant parameter (R=0.58), [Ca2+] is the molar 

concentration of calcium and [COO-] is the concentration of non-esterified carboxylic moieties 

determined by D.E., 
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Figure 10.3: Rheological measurement of 3 (blue lines), 5 (green lines), 7.5 (solid red lines) and 10 (hollow red lines) g/l LM pectin 

samples 

Figure 10.3 shows the rheological behavior of LM pectin gels obtained using a concentration of 3, 

5, 7.5 and 10 g/l: the very low concentration does not permit to obtain a compact gel structure, and 

this results in a very low viscosity, even lower than the detection limit of the instrument. A correct 

interpretation of the analysis is not possible. Although the values obtained cannot be used due to 

their intrinsic inaccuracy, it is clear how higher concentrations are required in order to obtain tough 

gels: three more samples were prepared using pectin concentration of 20 g/l, 30 g/l and 40 g/l. 

 

● Pectin LM 3g/l 

● Pectin LM 5g/l 

●Pectin LM 7.5g/l 

●Pectin LM 10g/l 



 

Figure 10.4: Rheological measurement of 20 (green lines), 30 (blue lines) and 40 (red lines) g/l LM pectin samples 

The trends of storage modulus (G’), elastic modulus (G’’ ) and complex viscosity (│η*│) are 

provided in figure 10.4. If G’>G’’  the solid component dominates and the material acts 

predominately as a solid whereas if G’<G’’  the liquid component dominates and the material acts 

as a liquid. It can be noticed how the storage modulus (G’) of pectin gels analyzed is always higher 

than the loss modulus (G’’ ): this is the experimental evidence of gels formation in all samples. 

The samples with 20 g/l and 30 g/l do not show great difference in terms of viscosity and moduli , 

in particular at shear rate higher than 0.1Hz, whereas the sample 40 g/l shows a significant arise in 

viscosity and moduli values. In figure 10.5, a general trend of viscosity, related to concentration, is 

reported; this is obtained using a thickening agent. It is possible to identify a specific concentration, 

called “entanglement concentration” (EC), which determines a dramatically change in rheology 

behavior: at concentration lower than EC the fluid has a viscosity that linearly increases with 

concentration, otherwise, at concentration higher than EC, the shear thickening effects takes place 

leading to a pronounced arising in viscosity with a variation of slope due to the increasing number 

of entanglements among polymeric chains. The 20 g/l samples have not a sufficient concentration to 

arise the critical amount of entanglements, while 30 g/l and 40 g/l sample have a concentration high 

enough to obtain interactions among polymeric chains, explaining the great difference in 

rheological behavior among these three samples. Moreover, 20 g/l sample shows a non-linear 

decrease in viscosity for shear rate lower than 0.1Hz, which is a typical behavior of pseudo plastic 

fluids and not of gels: these observation leads to conclude that this concentration is not enough to 

form a gel whereas 30 g/l sample shows a typical behavior of a lattice. 30 g/l was assumed as the 

lower concentration required for the formation of a stabile gel with LM pectin in water solution. 

Pectin LM 40g/l 

■ G’’ Loss Modulus 

● G’ Storage Modulus 

▼ η* complex viscosity 

Pectin LM 30g/l 

■ G’’ Loss Modulus 

● G’ Storage Modulus 

▼ η* complex viscosity 

Pectin LM 20g/l 

■ G’’ Loss Modulus 

● G’ Storage Modulus 

▼ η* complex viscosity 



 

Figure 10.5: Viscosity vs. Concentration trend for thickeners 

The mechanical stability of the gel was assed undergoing the 30 g/l gel to an opposite frequency 

sweep test: the sample, previously analyzed in the frequency interval 0.01 to 20 Hz, was analyzed in 

the interval 20 to 0.01 Hz. Using these analysis parameters, it is possible to evaluate how fast the 

polymer chains are able to form entanglements and therefore the reversibility of the phenomenon.  

 

Figure 10.6: Rheological measurement of 30 g/l LM pectin samples from 0.01 to 20 Hz (green lines) and vice versa (blue lines) 

The curves shown in figure 10.6 show that the viscosity does not change significantly by reversing 

the frequency. This behavior can be observed in materials having a high amount of entanglements 

and it is possible to conclude that a concentration of 30 g/l of LM pectin is enough to obtain a 

Pectin LM 30g/l first  

■ G’’ Loss Modulus 

● G’ Storage Modulus 

▼ η* complex viscosity 

Pectin LM 30g/l second 

■ G’’ Loss Modulus 

● G’ Storage Modulus 

▼ η* complex viscosity 

 



material with sufficient interactions between polymer chains or, in other terms, a gel with good 

strength and stability. 

As reported in literature, pectin gels display degradation phenomena over time due to 

depolymerization of pectin chains (193). The rheological analysis was performed on the same 

sample of LM pectin at concentration of 30 g/l also after a week to evaluate if some rheological 

changes had occurred. 

 

Figure 10.7: Rheological measurement of 30 g/l LM pectin samples after 48 h (green lines) and after a week (blue lines) 

Figure 10.7 shows that there are no evidences about viscosity changes in the sample when stored at 

room temperature for one week. This result permits to conclude that no changes in the material 

behavior had occurred during the time required to perform the controlled release tests. 

The data collected on pectin gels are necessary to set up the material for the incorporation of 

EALYS. According to the results previously shown, 30g/l is the best condition for the formation of 

a pectin gel stable in water and stable over the time, required for the release assays.  

The same rheological analysis was performed also on sample LM_10%EALYS_30g/l in which 

EALYS salt was added at 10% on pectin weight. 

Pectin LM 30g/l 48h 

■ G’’ Loss Modulus 

● G’ Storage Modulus 

▼ η* complex viscosity 

Pectin LM 30g/l 168h 

■ G’’ Loss Modulus 

● G’ Storage Modulus 

▼ η* complex viscosity 

 



 

Figure 10.8: Rheological measurement of 30 g/l LM pectin with EALYS samples after 48h (blue lines) and after a week (green lines) 

It is possible to notice from figure 10.8, that after 48h from the end of the preparation, the viscosity 

linearly decreases by increasing the shear rate. After a week, at low shear rate the viscosity displays 

an anomalous decreasing trend. EALYS is a water soluble salt, but in the presence of Ca(II) ions it 

shows a decreased solubility leading to a formation of EALYS-Ca(II) salt. Probably, the reaction of 

EA with calcium ions subtracts the Ca(II) from the pectin gel reducing the ionic bridges among 

polymeric chains and leading to a material with lower gel features.  

Pectin gels are known to be used as culture medium for incubation of molds and bacteria (194).  In 

order to prevent their formation, the materials were freeze-dried to remove the water present 

avoiding the possibility of microbial growth. The dehydrated gel is able to swell water and return to 

the hydrated gel form. However, the right amount of water has to be used to re-obtain the hydrated 

gel form with the same mechanical properties. Rheological tests were performed in order to verify if 

the rheological properties of the rehydrated material do not change after the freeze-drying process. 

Curves have been reported in figure 10.9.  

Pectin LM 30g/l EALYS 
48h  

■ G’’ Loss Modulus 

● G’ Storage Modulus 

▼ η* complex viscosity 

Pectin LM 30g/l EALYS 
168h 

■ G’’ Loss Modulus 

● G’ Storage Modulus 

▼ η* complex viscosity 



 

Figure 10.9 - Rheological measurement of 30g/l LM pectin with EALYS samples before (blue lines) and after submitted to freeze-

drying and rehydration process (green lines) 

The complex viscosity is higher in re-hydrated sample as both moduli G’ and G’’ . The differences 

can be attributed to the amount of water used to rehydrate the material: even small differences of 

water amount inside the gel can largely affects the rheological properties.  

Rheological behavior of HM pectin was assessed using the same approach described above for LM 

pectin. The structural differences between HM and LM pectins (hydrogen interactions and non-

polar interactions) affect the rheological behavior.   
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▼ η* complex viscosity 

Pectin LM 30g/l EALYS 
freeze-drying 

■ G’’ Loss Modulus 

● G’ Storage Modulus 

▼ η* complex viscosity 



 

Figure 10.10: Rheological measurement of 30 (blue lines) and 40 (green lines) g/l HM pectin samples 

The EC of HM pectin was assessed and rheological curves of 30 g/l and 40 g/l are provided in 

figure 10.10: it is possible to observe that the 30 g/l sample presents a decreasing in viscosity due to 

the non-complete formation of pectin lattice whereas 40 g/l sample presents the behavior of a cross-

linked material. This can be attributed to the fact that HM pectin has lower physical crosslinking 

points due to the lower concentration of carboxylate groups, which can interact with Ca2+. Higher 

concentration of HM pectin is required to obtain the chain entanglements concentration if compared 

to the LM pectin. 

Rheological changes due to the introduction of EALYS were also investigated for HM pectin gel, 

on the sample HM_10%EALYS_40g/l, and the results are reported in the next paragraph. 
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Figure 10.11: Rheological measurement of 40 g/l HM pectin with EALYS (green lines) and without it (blue lines) 

The presence of EALYS in HM pectin affects the stability of the gel: EALYS reacts with Ca(II) 

reducing the ionic bridges among pectin chains compromising the stability of lattice. Rheological 

curves are reported in figure 10.11. Although a decreasing in viscosity for shear rate lower than 

0.01Hz was registered, G’ modulus is still higher than G’’  modulus therefore the solid structure of 

pectin gel is not compromised yet. 

In conclusion, of this rheological study, the best concentrations of pectin were identified in order to 

develop a formulation for the incorporation of EALYS. The concentration of 30 g/l in water was 

selected to compare HM and LM pectin, although a higher concentration is needed for HM pectin to 

obtain a strong gel. Since the goal is to compare the release properties of the two formulations, the 

use of the same concentration for both pectin can allow us to understand how the interaction among 

pectin chains can affect the release. 

The rheological properties, and therefore the mechanical behavior of pectin gels, can be related to 

the release properties of the materials. A complete knowledge of pectin gels behaviour is necessary 

in order to tailor the materials for the purposes.  

10.2 Pectin release studies 

Once pectin matrices were selected, EALYS was incorporated. In order to evaluate their release 

abilities, materials were submitted to release tests, as described in the “Formulations release 

studies” paragraph of the experimental part. 
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Since the media in which the tests were conducted was a phosphate buffer at pH 7,4 (PBS) 

preliminary solubility studies of EALYS in PBS were made and the percentages of EALYS present 

in solution were determined via UV-Vis analysis. Results are provided in table 10.2. 

Percentage of EALYS in water (%) Average (%)  σ (%) 

100.83  

99.56 

 

1.19 98.48 

99.39 

Percentage of 10% EALYS in PBS (%) Average (%)  σ (%) 

66.18 

68.88 4.13 73.64 

66.82 

Percentage of 2% EALYS in PBS (%) Average (%)  σ (%) 

60.46 

61.42 1.13 62.66 

61.14 

 

Table 10.2: UV-Vis solubility tests results 

As it is possible to observe, PBS reduces the solubility of EALYS if compared to water, in which 

EALYS is 100% soluble. This can be explained considering that phosphate ions interfere with 

lysine and leads to EA partial precipitation. However, PBS was used for further release tests to 

mimic the intestinal environment. 

In order to evaluate the release properties of pectin gels, three parameters were modified: 

• the degree of esterification using two different types of pectin, LM and HM 

• the quantity of EALYS present 

• the amount of CaCl2 used to obtain the gel 

Each pectin sample, used in the release studies, was produced in film formulation, using the 

procedure described in the experimental part. 



First HM and LM pectin samples containing 10%w/w of EALYS were compared in order to identify 

if there are any differences, due to the D.E., on the release properties. Results are reported in figure 

10.12 and table 10.3. The reported percentages were calculated based on the detected amounts of 

EALYS in PBS used to perform the release tests. The total amount of EALYS present in the 

materials was taken as 100% reference value. 

 

Figure 10.12: Comparison of LM_10%_100 and HM_10%_100 

 

Sample 15’ σ 30’ σ 60’ σ 120’ σ 

LM_10%_100 8.6% 2.3 13.0% 0.6 14.1% 0.5 12.2% 0.8 

HM_10%_100 7.2% 2.3 10.8% 2.7 15.9% 1.4 16.5% 1.3 

 

Table 10.3: Release data of LM_10%_100 and HM_10%_100 

An increase trend of released EALYS over time can be observed for both pectin formulations. In 

principle, HM pectin should release higher amounts of EALYS, since a lower amount of CaCl2 is 

required to produce HM pectin gels if compared to LM pectin gels. CaCl2 seems to reduce the 

solubility of EALYS, as stated in the “synthesis of soluble formulation” paragraph above, the higher 

the amount of CaCl2 in the formulation, the less EALYS should be present in solution. However, 

from the release experiments, the two types of pectin seem to behave in the same way and no great 

differences in the release profile were founded. 

EA presents biological activity in concentrations of 1–100 μM (195), therefore formulation with 

lower concentration of EALYS were prepared (2%w/w of EALSY loaded in HM and LM pectin). A 



high concentration of EALYS can dangerously involve the detoxifying systems, obtaining a 

harmful result. The rheological studies were not performed on these samples because it was 

previously demonstrated how the gels still maintain good mechanical stability with higher 

concentration of EALYS, therefore it is reasonable to assume that lower concentrations do not 

affects their mechanical properties. The aim is to obtain a delivery system able to better control the 

release efficiency (measured as quantity of EALYS released) and time of release (low concentration 

of EALYS has reduced interactions with gel structure avoiding its properties variation). The release 

studies were performed on these materials and the results are reported in figure 10.13 and table 

10.4. 

 

Figure 10.13 - Comparison of LM_2%_100 and HM_2%_100 

 

Sample 15’ σ 30’ σ 60’ σ 120’ σ 

LM_2%_100 17.6% 1.6 22.5% 3.0 26.1% 2.3 28.8% 1.5 

HM_2%_100 22.1% 4.8 25.1% 2.8 27.9% 8.5 30.0% 3.0 

 

Table 10.4: Release data of LM_2%_100 and HM_2%_100 

Again, these formulations were able to control the release of EALYS during time; also in this case 

the two pectins (HM and LM) do not show strong differences on kinetic release: however, some 

differences between the 2% EALYS loaded pectin and 10% EALYS loaded pectin gels can be 

observed: 



• 2% EALYS loaded gels are able to release faster in comparison to 10% EALYS loaded gels; 

in only 15 minutes the formulation can release 22% of EALYS while the 10% EALYS 

loaded gels require 120 minutes to obtain lower releases. 

• The efficiency of release is higher in formulation obtained with 2% of EALYS loaded in 

pectin; almost 30% of loaded EALYS was released while the 10% EALYS formulation can 

release only the 15%. Nevertheless, the total amounts of EALYS released from 10% 

EALYS materials are higher in absolute values. In fact, the 2% EALYS loaded formulation 

releases 0.6 g in 120 minutes whereas the same quantity of pectin gel loaded with 10% of 

EALYS is able to release 1.5 g in 120 minutes. 

Sungthongjeen et al. reported that the calcium amount in the pectin based materials could modify 

the drug release behaviour from the formulations (196). In order to verify how the concentration of 

calcium affects the release, 4 samples were produced modifying the R parameter of equation 5.1: 

HM and LM films were obtained setting R=0.29 and R=0. EALYS was incorporated in all these 

films using a concentration of 10% w/w on pectin weight. Results of release tests of these materials 

are reported in figure 10.14; 10.15 and table 10.5; 10.6. 

 

Figure 10.14: Comparison of HM_10%_100, HM_10%_50 and HM_10%_0  

 

 

 

 

 



Sample 15’ σ 30’ σ 60’ σ 120’ σ 

HM_10%_100 7.2% 2.3 10.8% 2.7 15.9% 1.4 16.5% 1.3 

HM_10%_50 3.3% 0.38 3.8% 0.1 3.8% 0.1 4.3% 0.6 

HM_10%_0 2.7% 0.16 2.5% 0.1 2.8% 0.2 2.5% 0.3 

 

Table 10.5: Release data of HM_10%_100, HM_10%_50 and HM_10%_0 

 

Figure 10.16: Comparison of LM_10%_100, LM_10%_50 and LM_10%_0 

 

Sample 15’ σ 30’ σ 60’ σ 120’ σ 

LM_10%_100 8.63% 2.3 12.97% 0.6 14.11% 0.5 12.17% 0.8 

LM_10%_50 2.55% 0.3 3.48% 0.5 4.82% 0.2 5.04% 0.1 

LM_10%_0 3.90% 0.3 4.23% 0.2 3.97% 0.3 4.23% 0.1 

 

Table 10.6: Release data of LM_10%_100, LM_10%_50 and LM_10%_0 

A lower calcium chloride concentration dramatically affects the release of EALYS in PBS solution 

obtaining values lower than 5% in both cases. Furthermore, the pectin films obtained with R=0.29 

and R=0 have very similar behaviour leading to conclude that the correct ratio between carboxylic 

moieties and Ca(II) is fundamental to obtain release. The presence of free carboxylic moieties 

steeply increases the local ionic strength reducing the availability of EALYS (it was previously 

demonstrated that PBS at pH 7.4 leads to precipitation of EA from EALYS).  



Conclusions 

In conclusion it is possible to assess that: 

• Since no strong differences in the release profile of EALYS were found by changing the 

pectin type, i.e. LM or HM, the choice of the pectin matrix should be based on the market 

availability and on costs especially with a view on future industrial scale up. 

• Pectin release properties are closely related to CaCl2 concentration which also leads to 

obtain a very tough gel. 

To summarize, pectin gels are able to control the release of EALYS during time of two hours 

(average time required for digestion). However, since the release of EALYS should occur at colon 

level in the GUT, pectin formulations must be protected against strong acidic conditions due to 

stomach ambient, which can lead to EALYS protonation and therefore precipitation of EA. In fact, 

pectin is reported to be able to surpass the upper gastrointestinal tract without being degraded, since 

it is stable in acidic environment, while it is attacked and degraded by the colonic microflora [49]. 

However, the use of coating materials is suggested to protect pectin-based formulations in the 

stomach and allows the release of EALYS in the colon only. 

  



11. Alginate 
Alginate gels are widely used as biocompatible polysaccharides for the incorporation of active 

molecules (118). As reported in the materials and methods part, alginate gels are classified as strong 

gel, since CaCl2 cannot diffuse out of the matrix in water. Although alginate has a structure similar 

to pectin (polysaccharides with carboxylic moieties along polymeric chains) it presents different 

gelling process, therefore it was chosen in order to evaluate how the gel strength influences the 

release features of materials. 

11.1 Beads swelling degree 

Swelling is the consequence of interactions between a solvent and a matrix and it is the first step 

before its total solvation, if it is possible. However, a crosslinked polymer does not dissolve when 

kept in contact with a solvent, but it will absorb a portion of it and swell. Two forces are competing 

during the swelling process: the free energy of mixing causes the solvent to penetrate and try to 

dissolve the polymer; polymer chains start to elongate under the swelling action of the solvent, but, 

since in a cross-linked polymer they are chemically bounded each other, elastic retroactive forces 

are generated in opposition to this stretching. 

A steady state of swelling is reached when the two forces balance each other; the balance point is a 

direct function of the cross-linking degree; consequently, swelling experiments are a simple and 

low-cost technique to characterize polymer networks, since they can serve as an indexing tool for 

polymer systems with different levels of crosslinking.   

Swelling experiments were conducted on White Alginate Beads (WAB) as described in the 

experimental part. The swelling degree (SD) was calculated using the equation 1 (197).  

&�% =	
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× 100 (1) 

Figure 11.1 and table 11.1 report the weight percentage changes of WAB that were submitted to 

swelling test in water. 



 

Figure 11.1: Swelling of WAB in water 

 

Time 0 m 15 m 30 m 60 m 90 m 120 m 24 h 

Swelling percentage 0% 251% 355% 392% 397% 407% 412% 

 

Table 11.1: Data of WAB swelling in water 

After 60 minutes, a swelling plateau was reached; WAB can swell water up to four times their 

weight. Datum after 24 hours has not been reported on the graph since no significant differences 

occurred. 

The same experiment was repeated using EALYS water solution at 5 mg/ml concentration, in order 

to assess if EALYS can affect the swelling behaviour of alginate. The results of the assay were 

provided in table 5.10 whereas the curve is reported in figure 11.2. 



 

Figure 11.2: Swelling of WAB in EALYS water solution 

 

Time 0 m 15 m 30 m 60 m 90 m 120 m 24 h 

Increase of weight percentage 0% 1076% 1824% 2271% 2924% 3067% 4419% 

 

Table 11.2: Data of WAB swelling in EALYS water solution 

It can be observed that the beads swelled in EALYS water solution, even after only 2 hours, are able 

to swell up to 45 times their weight, 10 times more than when beads were made swelling in pure 

water. However, after 24 hours in the EALYS solution alginate beads started to disrupt: EALYS-

Ca(II) salt forms in the solution subtracting Ca2+ ions from the alginate beads reducing the ionic 

bridges and compromising the stability of the gel network. It is possible to conclude that alginate 

network can be damaged with an excess of EALYS; nevertheless, due to the very high SD, it is 

possible to do beads swell in lower amount of EALYS solution avoiding problem related to network 

degradation. 

11.2 Rheological study 

The rheological properties of alginate films were assessed using the same method previously used 

for pectin. 



 

Figure 11.3: Rheological measurement of AF_EALYS (green lines) and WAF (blue lines) 

It can be observed that the storage moduli (G’), both for film of alginate (WAF) and film of alginate 

with EALYS (AF_EALYS), are always higher than the loss moduli (G’’ ), as shown in figure 11.3: 

the gels show high stability without mechanical properties loss even under high frequency stress. In 

addition, the presence of EALYS does not compromise the gelling process. Bonds between calcium 

and alginate carboxylic moieties, although during swelling test EALYS compromise the alginate 

lattice, have a higher stability in comparison to bonds present in pectin; in fact, calcium reaction 

with EALYS required prolonged exposure time and high quantity of water in order to jeopardize the 

lattice structure.  

11.3 Alginate controlled release 

Once alginate matrices were selected, EALYS was incorporated. In order to evaluate the release, 

assays were performed as described in the “Formulations release studies” paragraph of the 

experimental part. 

In order to evaluate the release properties of alginate and to identify the best in class formulations 

some parameters were modulated, in particular: 

• The physical form of the alginate material: beads and films  

• concentration of carboxymethyl cellulose (CMC) in film formulations 

• concentration of alginic acid sodium salt used in film preparation 
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PBS is able to dissolve alginate gel, as reported in literature (198), because Na+ cations, present in 

the solution, undergo ion-exchange process with Ca2+ ions, which are bound to COO- groups; as a 

result, the electrostatic repulsion among negatively charged COO- groups increases, which 

ultimately causes the chain dissolution and the release of EALYS. 

11.3.1 Release results 

Alginate production procedures and release experiments are described in the experimental part. If 

compared to pectin release experiments, extra data were taken after 24 hours of release, since the 

majority of alginate materials submitted to the tests did not stop releasing EALYS after two hours. 

24 hours time was selected in order to mimic the release at infinite time. 

First, “Produced beads” (PAB), in which EALYS was incorporated in the solutions used to produce 

the beads, and “Swelled beads” (SAB), in which EALYS was incorporated by making WAB 

swelling in an EALYS water solution, were compared to identify differences in their release 

behaviours; release trends are shown in figure 11.4, whereas results are provided in table 11.3. 

 

Figure 11.4: Comparison of SAB and PAB alginate beads 

 

 

 

 



Sample 15’ σ 30’ σ 60’ σ 120’ σ 24 h σ 

SAB 53.0% 2.2 58.0% 2.0 69.7% 21.6 71.5% 15.2 86.0% 25.7 

PAB 4.2% 1.0 6.5% 0.7 7.1% 0.6 8.9% 0.1 8.0% 0.3 

 

Table 11.4: Release data of SAB and PAB alginate beads 

Both materials displayed a release trend over time, but PAB reaches the plateau of release curve 

after 2h EALYS, whereas, SAB could release EALYS even after this time. After 15 minutes SAB 

releases 53% of EALYS present in the formulation and during the following 2 hours 33% more 

EALYS is released by SAB. The preparation method used for SAB leads to obtain an incorporation 

of EALYS both inside the beads and on the surface of the beads: the EALYS present on the surface 

of beads is easily dissolved leading to a rapid rise of EALYS concentration, while the incorporated 

EALYS is less accessible to PBS solution leading to a slow rate release during the assay time. 

Therefore, almost 60% of loaded EALYS is lost during the first 15 minutes while 40% is held 

inside alginate beads which are able to control its release. 

Since the literature procedure reported the use of CMC in order to increase the viscosity of the 

solution used to produce alginate gel (199), two samples were prepared to investigate the effect of 

CMC on the release behaviour; in one sample CMC was used to produce a film, while in the other 

sample no CMC was used. Results are reported in figure 11.5 and table 11.4. 

 

Figure 11.5: Comparison of AF_EALYS_noCMC and AF_EALYS_CMC 



Sample 15’ σ 30’ σ 60’ σ 120’ σ 24 h σ 

AF_EALYS_noCMC 0.22% 0.0 0.22% 0.3 0.61% 0.6 1.72% 1.5 4.01% 0.3 

AF_EALYS_CMC 0.78% 0.7 1.00% 0.1 1.95% 0.1 2.26% 0.5 4.56% 0.7 

 

Table 11.4 - Release data of AF_EALYS_noCMC and AF_EALYS_CMC 

It can be observed that the trends of the two formulations are not significantly different. However, 

the formulation without CMC started to release EALYS after minutes (mostly between 30 and 60 

minutes) while the material with CMC started to release it since the beginning of the test. CMC is 

eliminated from alginate beads or films when the lattice structure is already formed, therefore the 

solubilization and extraction in water remove the excess of CaCl2 leaving micro holes in the alginate 

structure: the high porosity structure dramatically increases the surface in contact with the solvent 

promoting the extraction process. 

The film formulation and the bead material were compared and the results are reported in figure 

11.6 and table 11.5. 

 

Figure 11.6: Comparison of PAB and AF_EALYS 

 

 

 



Sample 15’ σ 30’ σ 60’ σ 120’ σ 24 h σ 

PAB 4.18% 1.0 6.53% 0.7 7.14% 0.6 8.89% 0.1 7.99% 0.3 

AF_EALYS 0.62% 0.1 1.07% 0.0 1.37% 0.1 1.48% 0.0 1.52% 0.1 

 

Table 11.5 - Release data of PAB and AF_EALYS 

The highest release obtained with beads is entirely due to the higher surface area in contact with the 

solvent: the surface area of beads is several times higher than the surface area of film.  

11. 4 Conclusions 

In conclusion, it is possible to identify some characteristics that an alginate material should have to 

obtain a good release overtime of EALYS: 

• Alginate should be produced using CMC to increase the viscosity of the preparative solution 

and to obtain a release of EALYS starting as soon as the material gets in contact with liquid. 

However, if the material is designed to release EALYS only after some time no CMC should 

be used during the film preparation process. 

• Beads formulation has a better control on the release of EALYS if compared with film. In 

addition, CMC is needed to obtain a bead material; in fact, without CMC, the CaCl2 

solution, dropped in the alginate solution, does not have a viscosity high enough to obtain a 

spherical shape (see “Beads production procedure” paragraph in the experimental part) 

leading to an irregular and non-homogeneous material. 

• Beads have to be produced in “blank” form and then EALYS has to be incorporated making 

the beads swelling in a water solution of EALYS. 

• Alginate gels are able to release up to 86% of the loaded quantity of EALYS within 24 

hours, the largest amount of EALYS being released within 2 hours; in comparison to pectin, 

alginate beads are able to release EALYS over a longer period of time and in greater 

amounts. 

Since the release of EALYS should occur at colon level in the GUT, the alginate formulation should 

be protected against strong acidic environment in stomach that can alter the EALYS form. Although 

alginates are shown to undergo an almost immediate hydration that creates a hydrocolloidal layer at 

high viscosity, which acts as diffusion barrier decreasing the migration rate of drugs (200), EALYS 

will start to be released as soon as a water environment will make the alginate swelling.  



To prevent the release before the formulation reaches the colon, a proper coating should be used in 

order to block the release of EALYS until the intestine, where the coating layer will be disrupted by 

microbial action or basic environment (pH= 7.5-8.1).  

  



12. Acrylic derivative of Ellagic Acid 
EA is a very stable and, consequently, very low reactive polyphenol, with a melting point higher 

than 360°C. Few examples concerning the EA reactivity are provided in literature; however, the 

four hydroxyl moieties can react with highly reactive molecules (i.e. anhydride) as was reported by 

Ren et al. (201), describing the preparation of a tetra-acetyl derivative.  

The aim of the third part of the project was to obtain a derivative of EA where the phenolic groups 

are bound to moieties available for further polymerization but, at the same time, can be rapidly 

hydrolyzed in weak acid or basic environment in order to release EA. The moiety with these 

features is an ester: aromatic ester can be obtained with the reaction of anhydride or acyl chloride, 

and is prone to hydrolysis releasing the active molecules. This approach is completely different 

from the approach used for EALYS delivery: in this case the release kinetic is not regulate, as in the 

case of pectin or alginate, by diffusion phenomena through the polymer but it is dependent by ester 

bond hydrolysis kinetic. Therefore, the interaction with water of the polymer and the presence of 

acid/base moieties along the polymer chains are the triggers of the release and their tuning permits 

to fine control the release kinetic. pH is not the only parameter which can influence the release, 

since enzyme catalyzed hydrolysis normally occurs inside human body: esterase enzymes are able 

to cleave the ester bonds releasing the EA. 

EA was modified in order to be further reactive with vinyl monomers; free radical polymerization 

was chosen due to it features: 

• low temperature required for the reaction that avoids possible monomer degradation  

• very fast kinetics and well-known polymerization scheme (possibly to speed up a future 

scale up) 

• availability of several biocompatible monomers with different features (water compatibility, 

ionization, acid or base behavior etc.) that permits to tailor the properties of the material 

Copolymers produced with this approach could be used not only for delivering EA in the 

gastrointestinal tract as food supplement formulations, but also for the production of transdermal 

patches and subcutaneous implants able to release EA over long period of time, due to the slow 

kinetic of hydrolysis of the polymeric matrix. 

The synthesis of a modified moiety of EA with methacryloyl chloride was carried out, as reported 

in the experimental part. The tetra-carboxylate derivative (EAMAC), whose structure is shown in 

figure 12.1, contains four reactive vinyl groups and can be used as crosslinking agent in radical 

polymerizations. 



                                       

Figure 12.1: EAMAC chemical structure 

EAMAC was fully characterized via 1H-NMR (spectrum is reported in figure 12.2) and ESI-Q-Tof 

mass spectrum and the thermal properties were assessed via DSC.  

 

Figure 12.2: 1H NMR (400 MHz, CDCl3) spectrum of EAMAC 



 

In figure 12.3 are reported the attributions of the hydrogen atoms of EAMAC. 

  

Figure 12.3: Representation of EAMAC protons 

1H NMR (400 MHz, CDCl3) δ 8.15 (1H, s, Hd), 6.45 (1H, s, Ha or Ha’), 6.37 (1H, s, Ha’ or Ha), 

5.91 (1H, s, Hb or Hb’), 5.85 (1H, s, Hb’ or Hb), 2.10 (3H, s, Hc or Hc’), 2.06 (3H, s, Hc’ or Hc). 

EAMAC molecule presents a symmetry over the central axis, therefore two different types of 

methacrylic substituents are present on EAMAC, having different chemical shifts. In addition, 

methacrylic substituents place themselves in order to obtain the lowest possible steric hindrance 

thus rendering unsymmetrical the molecule. Geminal constants cannot be identified in the spectrum 

and therefore all hydrogen atoms give singlet signals. 

The theoretical molecular weight of EAMAC is 575.29 g/mol and this value was confirmed by ESI-

Q-Tof mass analysis. 

The DSC thermogram of EAMAC displays a melting transition from 261°C to 266°C. After melting 

the compound starts to degrade.  

12.1 NVP-EAMAC copolymer 

Poly(vinyl pyrrolidone) (PVP) is a biocompatible, easily obtainable and low cost synthetic polymer 

widely used for biomedical application. N-vinyl pyrrolidone (NVP) was chosen for 

copolymerization with EAMAC since PVP is largely used as matrix in pharmaceuticals application 

and as excipient in drug release formulations. Moreover, the absence of acid or basic moieties along 

the side chains avoids the hydrolysis of ester bonds of EAMAC permitting a regular growth of 

polymeric lattice: for instance, acrylic acid (another highly biocompatible monomer) can catalyze 

the hydrolysis of esters bond compromising the formation of a polymeric lattice. 



One of the most diffused radical initiators is azobisisobutyronitrile (AIBN), however, many studies 

have demonstrated that the reaction products of radical decomposition of AIBN are toxic and 

therefore it cannot be used for biomedical application. In order to obtain a biocompatible material, 

Vazo-67©, 2,2′-Azobis(2-methylbutyronitrile), whose structure is shown in figure 12.4, was chosen 

as biocompatible radical initiator: Vazo-67® does not present toxicity issue and reacts in the same 

way of AIBN.  

                                                              

Figure 12.4: Vazo-67© chemical structure 

Bulk polymerization approach was used to obtain crosslinked copolymers of NVP and EAMAC 

with molar ratio of EAMAC to NVP of 0.5% and 1%, as reported in the experimental part. The 

weights of obtained materials are reported in table 12.1. 

Sample Obtained weight Yield 

PVP_EAMAC_0.5% 1351.8 mg 43.6% 

PVP_EAMAC_1% 1534.4 mg 56.5% 

 

Table 12.1: Obtained weights of NVP co EAMAC 

EAMAC, due to its structure, acts as a crosslinking agent; however, solubility tests of 

PVP_EAMAC_0.5% and PVP_EAMAC_1% were performed in order to verify the formation of 

polymeric lattices. Both poly(NVP-co-EAMAC) synthetized were insoluble in water and methanol; 

it is possible to conclude that they are crosslinked polymers. 

The hydrolysis of EAMAC was verified leaving the polymers in NaOH water solution: the 

hydrolysis of ester bonds makes the polymer chains soluble. On the other hand, strong alkali 

solutions, as aqueous NaOH or KOH, are able to solubilize EA obtaining a dark-orange solution 

due to its partial degradation via quinone formation (187). This qualitative tests shows the ability of 

poly(NVP-co-EAMAC) to release EA after the hydrolysis of ester bonds of EAMAC under 

hydrolytic conditions. 



12.2 Release of Ellagic Acid 

PVP_EAMAC_0.5% and PVP_EAMAC_1% were submitted to release studies, as described in the 

experimental part, making hydrolysis experiments in basic environment. The tests were performed 

in D2O in order to evaluate the hydrolysis products of the materials via NMR. In addition, 1H NMR 

spectrum of PVP_blank, which is reported in figure 5.18, was registered to evaluate the differences 

between poly(NVP-co-EAMAC) materials and normal PVP.  

 

Figure 12.5: 1H-NMR (400 MHz, D2O) spectrum of PVP_blank 

In figure 5.19 the attributions of the hydrogen atoms of unreacted NVP and PVP are reported. 
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Figure 12.6: Representation of NVP and PVP protons 



1H NMR (400 MHz, D2O) δ (ppm) of NVP: 6.85 (1H, dd, J=8 Hz and 10 Hz, Ha), 4.57 (1H, d, 

J=12 Hz, Hb), 4.54 (1H, d, J=4 Hz, Hc), 3.52 (1H, t, J=8 Hz, Hd), 2.44 (1H, t, J=8 Hz, He), 2.01 

(1H, qui, J=8 Hz , Hf). Unreacted NVP is present in PVP_blank material, since the material was not 

submitted to washing procedure in water because PVP is water soluble itself.  

1H NMR (400 MHz, D2O) δ (ppm) of PVP: 3.70 (s, Hg), 3.56 (s, Hg), 3.22 (s, Hh), 2.36 (s, Hi), 

2.22 (s, Hi), 1.94 (s, Hl), 1.65 (s, Hm), 1.50 (s, Hm). The signals of PVP chains are very broad; this 

behaviour is typical of vinylic polymers. 

 

Figure 12.7: 1H-NMR (400 MHz, D2O) spectrum of PVP_EAMAC_1% 

Signals of unreacted NVP are not present in the spectra of final poly(NVP-co-EAMAC) materials, 

since they were submitted to a washing procedure in water to remove the unreacted NVP. In 

addition to signals of PVP polymer chains, the signals of EA appeared after the hydrolysis 

experiments, conducted on PVP_EAMAC_0.5% and PVP_EAMAC_1%, as it can be noticed from 

figure 12.7: 1H NMR (400 MHz, D2O) δ (ppm): 7.39 (s). 

Spectra of poly(NVP-co-EAMAC) present signals that can be attributed to methyl groups present 

on PVP chain terminals, i.e. methyl groups in α position to the acid residues obtained after the 

hydrolysis of EAMAC ester bonds: 1H NMR (400 MHz, D2O) δ (ppm): 0.91 (s). 



These experiments assessed the ability of poly(NVP-co-EAMAC) to release EA when submitted to 

hydrolytic environment. The ester bonds of EAMAC can be hydrolysed and this represents the rate 

determining step of the release of EA. 

12.3 Conclusion 

A tetra-vinylic derivative (EAMAC) of EA was successfully synthetized and purified. This 

derivative was copolymerized with a vinylic monomer, under free radical reaction conditions, and 

acts as cross-linking agent. Several poly(NVP-co-EAMAC) were synthesized using different 

amounts of EAMAC and qualitative NMR experiments were carried out to assess the ability of 

these materials to release EA through hydrolysis of the ester bonds of EAMAC.  



 

 

Conclusion 



13. Conclusion 
The project aims to supply natural antioxidants using polymeric matrixes like poly(lactic acid), 

poly(vinylpyrrolidone) and polysaccharides. The attention focused on the use of bio-based polymers 

both synthetic and natural using environmentally friendly materials. 

Biopolymers were investigated for possible applications in two different fields, food packaging and 

biomedicine (active substances delivery), using the same approach: 

1. to Identify the best polymer for the application required 

2. to Tailor the synthesis or the preparation and formulation in order to achieve the best results 

3. to Verify the activity in terms of antioxidant power of the material, assessing also how the 

antioxidant molecules have been supplied 

This approach allows to develop new smart materials using the polymerization process that could be 

in a future easily scaled up.  

The first part of the thesis was devoted to the development of an intrinsic antioxidant polymer for 

food packaging. The world of natural antioxidant is very wide therefore the first step was to identify 

a molecule with antioxidant power able to react with PLA: an aliphatic alcoholic moiety is required 

for the reaction with PLA and a phenolic moiety as radical scavenger. These features narrow a lot 

the range of possible antioxidants of natural origin; moreover, the antioxidant has to be stable at 

polymerization temperature (many natural antioxidants with very high radical scavenger power 

were rejected due to their poor thermal stability even in inert atmosphere). Two molecules were 

actually identified: Tyrosol, as model molecule used to discover how a phenolic moiety interact 

with PLA polymerization process, and Vanillyl Alcohol as antioxidant molecules. 

Vanillyl Alcohol modified PLA has interesting antioxidant activity and it is obtained with a very 

low quantity of VA (0.1%mol/mol). The polymer for active packaging are normally produced adding 

active substance (antioxidant or other additives); in this work, the approach used is completely 

different: the active molecule is bond to polymer chains avoiding the migration during the contact 

with food.  

This strategy permits to overcome two important issues related to the migration of active substance: 

• the loss of activity during the time; 

•  the pollution of food 

The antioxidant power was measured through in-vitro test as DPPH reduction; the interesting 

results obtained allow to perform shelf life test in order to verify the activity of VA modified PLA 



on a real food matrix: VA modified PLA sheets were used as interlayer between two salami slice. 

The preliminary results were interesting: 

• Antioxidant power, measured during the assay, did not decrease confirming that the VA is 

effectively bonded to polymer chains; 

• Polymeric sheets reduce the oxidation rate in food: the oxidation is delayed of about 14 days 

in comparison to control samples packaged without interlayer. 

In conclusion, antioxidant material is obtained using standard industrial conditions (Temperature 

and time), moreover, VA modified PLA is obtained using very low quantity of VA that does not 

negatively affect the mechanical properties of the polymer and permits to achieve interesting 

antioxidant activity. These features allow to hypothesize a rapid scale up for the production of 

antioxidant films based on VA modified PLA. 

The second part of the project aims to supply and to deliver antioxidants for biomedical 

applications: the idea was to use standard polymer for production of devices for controlled release. 

The industrially-oriented approach of this project has promoted the choice of standard materials in 

order to avoid problems related to the study of effects of new material on human body: in this way 

it is possible to predict a rapid industrialization of the devices.  

Both synthetic and natural polymer were chosen for the production of release devices: PLA, 

normally used in biomedical field, and Alginate and Pectin, natural polysaccharides intrinsically 

biocompatible already used for the production of drug release device. These material were used for 

two very different applications:  

• PLA was used for the production of solid scaffolds used for the delivery of OligoTyr 

(ossification enhancer). 

• Pectin and Alginate were used for the production of edible hydrogels for the release of 

Ellagic Acid in gastrointestinal tract.  

The PLA is widely used for the production of biomedical devices therefore the focus of the work 

was to tailor the morphology of the scaffolds in order to control the release of OligoTyr. OligoTyr is 

a mixture of oligomeric species of Tyrosol, obtained by oxidative coupling reaction catalyzed by 

horseradish peroxidase: oligomerization reduce the water solubility of OligoTyr therefore for the 

release from a polymer, a very high surface area is required in order to improve the contact with the 

extractive media (PBS at pH 7.4). Two morphologies can satisfy this request: nanoparticles and 

hierarchical scaffolds; on the other hand, the problem related to nanoparticles safety (many studies 



have been conducted but their effects on human health are not clear yet) leads to prefer hierarchical 

scaffolds, always looking for a future industrial scale up.  

Two different methods for the production of the scaffolds were set up: 

• the method A permits to obtain very high porosity of the material but it has reduced 

reliability on the morphology and on the load of OligoTyr;        

• the method B, on contrary, leads to obtain less porous material but it has good reliability and 

homogenous dispersion of OligoTy 

The kinetics of the release were assessed using PBS at pH 7.4 for 70h; the reduced solubility of 

OligoTyr, in comparison to Tyrosol, and the poor water compatibility of PLA lead to obtain very 

slow release: a continuous release of low quantity of OligoTyr for a long time is required for the 

ossification process that normally takes at least 30 days. It was also verified that the morphology 

triggers the release.  

Besides the development of PLA scaffolds, polysaccharides based delivery system were studied. 

Pectin and alginate, intrinsically biocompatible acid polysaccharides, were used for the production 

of hydrogel: the gel structure is due to the ionic interaction with calcium (II) of acid moieties along 

polymeric chains. Even though they have similar structure, the physical properties of pectin gels 

and alginate gels are very different: rheological studies allow to identify the mechanical properties 

of the formulation and to address formulation for best application.  

Both alginate and pectin are water soluble polymers whereas Ellagic Acid (a natural antioxidant 

from pomegranate) is not; the poor water solubility of EA dramatically reduces its possible 

application as antioxidant supplement, beyond reducing its bioavailability. Therefore, a part of the 

project was devoted to enhance the water solubility of EA: the formation of L-lysine salt allows to 

increase the water solubility up to 400 times (EA water solubility is 10µg ml-1 whereas the EA 

lysine salt solubility is 13mg ml-1). Pectin and alginate hydrogels loaded with EA lysine salt were 

prepared: different release profiles were obtained able to target different scopes (fast or slow 

release, resistance to low or high pH, high or low EA load).  

The last part of the thesis was dedicated to the study of the reactivity of the Ellagic Acid; only one 

literature example is reported about its reactivity: the acetylation of phenolic moieties in order to 

enhance EA lipophilicity. Following the same scheme, a tetra acrylic ester of ellagic acid was 

synthesized: the reaction proceeds at room temperature and does not require purification after the 

work up. Ellagic acid derivative is a tetra-functional acrylate able to react with other acrylic or vinyl 

monomer via free radical polymerization; the idea was to use it as co-monomer for the production 



of scaffolds and act as delivery system for EA. The release is achieved not by extraction of EA from 

the polymer but it is due to the hydrolysis of ester bonds. The kinetic of the release is not regulated 

by the Fick’s law but the erosion of the matrix determines the release.  

The EA derivative was used as cross-linking agent for the polymerization of N-vinylpyrrolidone. 

Poly(vinylpyrrolidone) is a hydrophilic biocompatible polymer widely used for biomedical 

application. A crosslinked material insoluble either in water or in organic solvents was obtained. 

The release was verified in hydrolytic environment: in 24h at 37°C and basic pH, ester bonds are 

hydrolyzed leading to complete solubilization of polymers as verified via 1H-NMR. 

 In conclusion, different fields of antioxidant application were studied and new materials able to 

supply antioxidants were developed and tested understanding the advantage and also the limits 

related to the use of natural antioxidant.  



Materials and 

methods 

  



14. Materials and Methods 

14.1 Materials  

Ellagic Acid (EA) (Fluka, ≥96.0%), L-lysine (crystallized, ≥98.0%), Calcium chloride (anhydrous, 

≥99.9%, 40 mesh), Pectin from apple (Poly-D-galacturonic acid methyl ester), Pectin from citrus 

peel (Galacturonic acid ≥74.0 %), Potassium hydroxide (Fluka, ≥85%,  pellets), Sodium chloride 

(Fluka, ≥99.0%) Alginic acid sodium salt (powder), Methacryloyl chloride (≥97.0%, contains ~ 

0.02% of 2,6-di-tert-butyl-4-methylphenol as stabilizer), triethylamine (≥ 99%), Hydrochloric acid 

(Fluka, 37%), Sodium bicarbonate (Fluka, ≥99.7%), Sodium sulphate (Fluka, ≥99.0%, anhydrous), 

2,2′-Azobis(2-methylbutyronitrile) (VAZO-67©, ≥98.0%), Sodium hydroxide (Fluka, ≥97.0%, 

pellets) were purchased from Sigma-Aldrich Co. and they were used without further purification. 

Sodium carboxymethyl cellulose (medium viscosity) was purchased from A.C.E.F. SPA and was 

used without further purification. 1-Vinyl-2-pyrrolidone (≥ 99.0% stabilized with N,N'-Di-sec-

butyl-p-phenylenediamine) was purchased from TCI chemicals. NVP was distilled under reduced 

pressure in order to remove N,N'-Di-sec-butyl-p-phenylenediamine polymerization inhibitor.  

Water (CHROMASOLV® Plus, for HPLC), Dichloromethane (ACS reagent, ≥99.5%, contains 40-

150 ppm amylene as stabilizer), Hexane (anhydrous, 95%), Ethyl acetate (ACS reagent, ≥99.5%), 

Acetonitrile (CHROMASOLV® Plus, for HPLC, ≥99.9%) were purchased from Sigma Aldrich 

Co., 

L-lactide, Puralact L (polymer grade), purchased from Purac Biomaterials (Gorinchem, The 

Netherlands) was used for the synthesis of PLAs.  An industrial PLA, trademark Natureworks® 

4043D (D-isomer content z 4.3% as declared by the producer) was purchased from Resinex Srl, 

Italy. Methylene chloride, methanol (HPLC purity), tin octanoate (SnOct2), 2-(4-

Hydroxyphenyl)ethanol, Tyrosol (Tyr, purity >98%) were purchased from Sigma-Aldrich Co. 4-

(hydroxymethyl)-2-methoxyphenol, Vanillyl Alcohol (VA,  purity > 98%) was purchased from  

TCI Europe NV. All reagents were used without further purification and no drying process was 

performed. 

14.2 Sample characterization 

UV-Vis spectra were recorded on a UV-Vis spectrophotometer Jasco V-630. Ten absorbance 

measures were collected using by the instrument and the average value was calculated 

automatically by the instrument’s software. Differential scanning calorimetry (DSC) analyses were 

conducted under nitrogen flow using a Mettler Toledo DSC 1 instrument. NMR spectra were 



recorded using a Bruker NMR-400. IR spectra were recorded using a PerkinElmer ATR FT- IR 

Spectrum 100. Solution’s pH values were monitored using a pH-meter “Titrino 751 GPD”. 

Rheological tests were performed using an Anton-Paar MCR 300 rotational rheometer equipped 

with a 50 mm diameter conic plate and 2° slope using a frequency sweep program between 0.01±20 

Hz at 3% strain. Mass spectra were recorded on ESI-Q-Tof Micro-Waters (Wates Corporation, 

Milford, MA) in the data dependent acquisition and positive ion mode. 

14.2.1 UV spectrum of EA 

EA (30 mg) was weighted in a 50 mL round bottom flask and was dispersed in of chromasolv© 

water (20 ml) under magnetic stirring at 30°C overnight. The suspension was allowed to cool at 

room temperature and was filtered using a syringe equipped with a 0.45 μm Teflon® filter. In this 

way, a saturated EA solution was obtained and, by using a UV-Vis spectrophotometer, the spectrum 

of EA in water was recorded between 700 nm and 220 nm wavelength. EA presents two maximum 

of absorbance: one around 360 nm and one around 280 nm. 280 nm was used for performing further 

UV analysis due to higher intensity.  

14.3 Ellagic Acid – L-lysine Salts 

EA and L-lysine were weighted in a 100 mL round bottom flask and solubilized in 20 mL of 

distilled water under magnetic stirring at room temperature. After 30 minutes, water was removed 

using rotary evaporator at 50°C till obtaining a powder, then the residual water was removed under 

vacuum (2 x 10-2 kPa) for 10h at room temperature. The result is a yellowish powder. The used 

amounts of EA and L-lysine used for the preparation of salts are reported in table 14.1. 

Molar ratio of salt EA L-lysine 

1:1 0.4985 g (1.65 mmol) 0.2414 g (1.65 mmol) 

1:2 0.5009 g (1.66 mmol) 0.4829 g (3.30 mmol) 

1:3 0.4982 g (1.65 mmol) 0.7231 g (4.95 mmol) 

1:4 0.4978 g (1.65 mmol) 0.9770 g (6.68 mmol)  

 

Table 14.1 - Weights of reagents used in EA salification reactions 



14.3.1 Water solubility 

EA-L-lysine salt (EALYS) (20 mg) was weighted in a 15 mL glass vial and aliquots of 0.1 mL of 

chromasolv© water were added, under magnetic stirring at room temperature (T=18°C) until 

homogenous solution was obtained. The results are provided in table 14.2. 

Salt (EA to lysine molar ratio) Weight of salt (mg) Used water Water solubility (mg/ml) 

1:1 20.1 15 Insoluble 

1:2 23.6 15 Insoluble 

1:3 19.8 15 Insoluble 

1:4 (EALYS) 22.4 1.7 12.99 

 

Table 14.2 – Weights and volumes used in solubility tests 

14.3.2 Solubility in CaCl2 water solution 

EALYS was weighted in a 50 ml conic flask and 30 ml of chromasolv water was added. The flask 

was shaken in a water shaking bath for 60 minutes at 36°C. After the solution was filtered using a 

syringe equipped with a 0.45 μm Teflon® filter and the resulting solution was analyzed using an 

UV-Vis spectrophotometer.  

 

The same procedure was slavishly followed using a CaCl2 water solution in order to assess the 

interaction between EALYS and Ca(II). CaCl2 and of EALYS were dissolved in 50 ml of 

chromasolv water in a 100 ml round bottom flask. The amount of EALYS was determined using the 

calibration obtained using EALYS as standard in water. Both tests were made in triplicate in order 

to validate the results, which are provided in table 14.3. 

 

 

 

 

 



Sample EALYS weight (mg) CaCl2 weight (mg) Water (ml) EALYS released (%) 

W1 18.5 0.0 30 100.83 

W2 18.2 0.0 30 98.48 

W3 18.7 0.0 30 99.39 

CaCl21 11.2 8.0 50 2.31 

CaCl22 11.7 8.7 50 2.51 

CaCl23 11.6 8.9 50 2.44 

 

Table 14.3 – Results of solubilization tests in water and in CaCl2 solution 

14.3.3 Differential Scanning Calorimetry  

Samples of EA and all EA-lysine salts were prepared weighting about 6 mg of sample and analyzed 

using a dynamic scanning program from 25°C to 500°C at 10°C/min in order to assess their melting 

temperature and their thermal stability.  

14.3.4 NMR 

NMR spectrum of EALYS was recorded by weighting about 10 mg of EALYS in 1 ml of deuterium 

oxide (D2O). 

14.3.5 Calibration curve of EALYS 

EALYS (22.51 mg) was weighted in a 100 ml volumetric flask and solubilized in water. 20 ml of 

this solution was taken with a 10 ml pipette and transferred in a 100 ml volumetric flask, which was 

filled with chromasolv© water (sol. A). 10 ml of sol. A was transferred in a 25 m volumetric flask 

and was filled with chromasolv© water (sol. B). 10 ml of sol. B was transferred in a 25 ml 

volumetric flask and was filled with chromasolv© water (sol. C). 10 ml of sol. C was transferred in a 

25 ml volumetric flask and was filled with chromasolv© water (sol. D). 10 ml of sol. D was 

transferred in a 25 ml volumetric flask and was filled with chromasolv© water (sol. E). The 

absorbances of these solutions were registered using a UV-Vis spectrophotometer setting the 

instrument at 280nm. The absorbance values and the concentration of each solution are reported in 

table 14.4. 

 



Sample Concentration (mg/ml) Absorbnce λ=280 

Sol. A 0,04502 1,9665 

Sol. B 0,01801 0,8432 

Sol. C 0,00720 0,3244 

Sol. D 0,00288 0,1466 

Sol. E 0,00115 0,0658 

 

Table 14.4 - Absorbance values of EALYS calibration curve 

A calibration curve, shown in figure 14.1, was obtained using these data: concentration 0 

corresponds to a 0 absorbance. The linear regression was calculated using Microsoft Excel software 

obtaining the equation 1: 

 �23456�78/7:� = 44.1644 × >?@AB?C�DE�F = 280�7� (1) 

 

 

Figure 14.1 - Calibration curve for EALYS in water 

14.4 Pectin 

14.4.1 Degree of Esterification Determination 

Degrees of Esterification were determined according to the method developed by Manrique et al. 

(117). Pectin was dissolved in water (concentration of 5 g/l) under magnetic stirring at room 



temperature overnight; then the pH was adjusted at 6.0 using KOH 1M water solution. Water was 

removed by freeze-drying in order to obtain solid powders that can be analyzed using an ATR FT-

IR. 

14.4.2 Gels 

Pectin gels were prepared following the procedure described by Fu et al. (202) and Tibbits et al. 

(203):  

1. Pectin was weighted in a 100 ml round bottom flask and dissolved in NaCl 0.1 M water 

solution under magnetic stirring overnight.  

2. pH was adjusted between 6.5 and 7.0 by using 1 M KOH water solution.  

3. The solution was mechanically stirred at 80°C for 15 minutes in order to obtain a 

homogeneous temperature. 

4. Solid CaCl2 was added keeping the solution under mechanical stirring for 10 minutes at 

80°C in order to obtain a homogenous solution. The high temperature inhibits the gelling 

process. 

5. The solution was left at room temperature for 48h in order to complete the gelling process. 

The amount of CaCl2 required for gelling process was calculated on the degree of esterification of 

each pectin (see paragraph 10.1). For each pectin several samples were prepared using 

concentrations of 3 g/L, 5 g/L, 7.5 g/L, 10 g/L, 20 g/L, 30 g/L and 40 g/L.The amount of CaCl2, 

used for the preparation of each gel, was calculated using equation 2. 

� =
��� !"#

��$$%#
 (2) 

Where R is a predetermined parameter already used in the procedure described in literature, [COO-] 

is the concentration on carboxylic acid moieties (determined knowing the DE previously obtained 

using the IR-based methodology) and [Ca2+] is the calcium concentration. The amount of pectin and 

CaCl2 are provided in table 14.5. 

 

 

 

 



Sample Pectin type Pectin weight CaCl2 weight 

3 g/l LM 0.1512 g 12.03 mg 

5 g/l LM 0.2558 g 24.70 mg 

7.5 g/l LM 0.3756 g 36.12 mg 

10 g/l LM 0.5001 g 43.37 mg 

20 g/l LM 0.9989 g 86.70 mg 

30 g/l LM 1.5142 g 126.86 mg 

40 g/l LM 2.0516 g 169.60 mg 

3 g/l HM 0.1506 g 8.10 mg 

5 g/l HM 0.2518 g 13.91 mg 

7.5 g/l HM 0.3939 g 19.72 mg 

10 g/l HM 0.5064 g 25.53 mg 

20 g/l HM 1.0018 g 50.46 mg 

30 g/l HM 1.5185 g 74.04 mg 

40 g/l HM 1.9963 g 99.20 mg 

 

Table 14.5 – Pectin and CaCl2 weights used for the choice of pectin formulation 

A similar procedure was used for the preparation of pectin gels with EALYS and the amount of 

pectin, calcium chloride and EALYS used are provided in table 14.6: 

1. Pectin was weighted in a 100 ml round bottom flask and dissolved in NaCl 0.1 M water 

solution under magnetic stirring overnight.  

2. pH was adjusted between 6.5 and 7.0 by using 1 M KOH water solution. 

3. EALYS was added and the solution was mechanically stirred for 10 minutes till obtaining a 

homogenous solution. 

4. The solution was mechanically stirred at 80°C for 15 minutes in order to obtain a 

homogeneous temperature. 



5. Solid CaCl2 was added keeping the solution under mechanical stirring for 10 minutes at 

80°C in order to obtain a homogeneous solution. The high temperature inhibits the gelling 

process. 

6. Solution was left in the closed flask avoiding the evaporation of water at room temperature 

for 48h in order to complete the gelling process.  



Sample Pectin type Pectin weight EALYS weight CaCl2 weight 

LM_10%EALYS_30g/l LM 1.5228 g 152.1 mg 128.7 mg 

HM_10%EALYS_40g/l HM 2.0194 g 200.3 mg 102.0 mg 

 

Table 14.6 - Pectin, EALYS and CaCl2 weights used for rheological study of pectin formulation with EALYS 

14.4.3 Pectin Film Casting 

Both LM and HM pectin were used for the incorporation of EALYS using a concentration of 30 g/l 

of pectin in water. 

Procedure 

The procedure described in paragraph “Pectin gels” was used for the preparation of pectin gel. On 

the other hand, pectin-based film was required for further release assays therefore the procedure 

previously described was modified. After point 5, instead of leaving pectin for 48h in order to 

obtain a gel, the obtained solution was poured into a plastic Petri dish, having 8.5 cm of diameter 

and 1 cm of depth. The film was obtained by solvent evaporation after 48h under suction hood. 

After that time, the film was overturned and left under the suction hood for other 24h in order to 

obtain a dry material. 

Amounts of pectin and the type, CaCl2, EALYS used for the preparation of each sample are 

reported in the table 14.7. 

 

 

 

 

 

 

 

 

 



Sample Pectin type Pectin weight EALYS weight CaCl2 weight 

LM_10%_100 LM 1.5228 g 152.1 mg 128.7 mg 

HM_10%_100 HM 1.5531 g 156.3 mg 76.4 mg 

LM_2%_100 LM 1.5273 g 32.7 mg 127.1 mg 

HM_2%_100 HM 1.5032 g 31.6 mg 74.9 mg 

LM_10%_50 LM 1.5105 g 151.2 mg 63.8 mg 

LM_10%_0 LM 1.5033 g 150.5 mg 0 mg 

HM_10%_50 HM 1.5067 g 150.8 mg 38.3 mg 

HM_10%_0 HM 1.5063 g 156.1 mg 0 mg 

 

Table 14.7 - Pectin, EALYS and CaCl2 weights used for pectin formulation 

14.4.4 Rheology 

Rheological tests were performed in order to evaluate toughness and mechanical stability of pectin 

gels.  

14.5 Alginate 

14.5.1 Beads 

Alginate beads were prepared following the procedure described by Nigam et al. (204)and Blandino 

et al. (198):  

1. Aqueous solution at 0.5% w/w of alginate (Solution A) and aqueous solution of 1.3% w/w of 

CaCl2 and 3% w/w carboxymethyl cellulose (CMC) (Solution B) were prepared leaving 

reagents under magnetic stirring for 15h in order to obtain homogenous solutions. 

2. Solution B (7 ml) was slowly dropped in solution A (100 ml) using a disposable syringe 

equipped with a 20G needle (inner diameter of 0.6 mm), inside a 250 ml beaker under 

magnetic stirring in order to avoid beads coupling.  

3. The obtained mixture was diluted with 400 ml of water 

4. Beads were filtrated using a metal net colander.  

5. Beads were transferred into a CaCl2 aqueous solution at 1.3%w/w and left there for 15 

minutes in order to complete gelling process.  



6. Beads were filtered with a colander and washed several times with water in order to remove 

the excess of CaCl2.  

7. Beads were freeze-dried to avoid microbial attack.  

The amounts of alginic acid sodium salt, CaCl2 and CMC, which were used for the preparation of 

White Alginate Beads (WAB), are reported in the table 14.8. 

Sample Weight of alginic acid Weight of CaCl2 Weight of CMC 

WAB 0.5146 g 0.3335 g 0.7525 g 

 

Table 14.8 – Alginic acid sodium salt, CaCl2 and CMC weights used for alginate bead production 

 

14.5.2 Beads swelling degree 

Beads (86.1mg) were dipped in water (100 ml) at room temperature and their weight changing was 

monitored at different time (after 15, 30, 60, 90, 120 minutes and after 24 hours). Alginate beads 

were wiped using filtering paper in order to remove the excess of water presents on their surface 

and then weighted. The weight changes were transformed to a percentage using the equation 3: 

 &HE::I�8	�E8BEE	�%� = 	
J+.JK

JK
× 100 (3) 

Where mw is the wet weight and mD is the dry weight of beads samples.  

The same experiment was repeated in order to study how the presence of 5 mg/ml EALYS water 

solution affects the swelling behavior of alginate beads. 

14.5.3 EALYS beads 

Alginate-EALYS samples were prepare using two different strategies. 

A) Weighted amount of WAB was transferred in a round bottom flask and a water solution of 

EALYS (CEALYS= 5 mg/ml) was added using the ratio 1 ml of solution for 20 mg of WAB. 

The swelling process took 15h and, at the end, water was removed by freeze-drying. The 

used amounts of freeze-dried alginate beads and EALYS are reported in the table 14.9. 

 

 



Sample Weight of white alginate beads Weight of EALYS 

SAB 201.7 mg 51.19 mg 

 

Table 14.9 – Freeze-dried alginate beads and EALYS weights used SAB production  

B) EALYS was added in the solution A in order to obtain a concentration of 5 mg/ml and then 

the alginate beads were made using the same procedure reported above. The used amounts 

of alginic acid sodium salt, EALYS, CaCl2 and CMC used are reported in the table 14.10. 

Sample Weight of alginic acid Weight of EALYS Weight of CaCl2 Weight of CMC 

PAB 0.5135 g 0.5010 g 0.3351 g 0.7586 g 

 

Table 14.10 – Alginic acid sodium salt, CaCl2 and CMC weights used for alginate produced bead production 

14.5.4 Film 

The previously described procedure for the preparation of alginate beads was modified in order to 

obtain alginate films.  

1. The solutions A and B were prepared using the same concentration of alginate, CMC and 

CaCl2. 

2. Solution A (25 ml) was poured into a plastic Petri dish, having a diameter of 8.5 cm and a 

depth of 1 cm.  

3. The solution B was firstly sprayed on the surface of solution A, in order to obtain a 

superficial gel formation, and then the Petri dish was sunk in the solution B in a crystallizer 

leaving the material inside the solution B overnight in order to complete the gelling process.  

4. Petri dish was removed from solution B and the material was washed several times with 

distilled water removing the excess of CaCl2.  

5. The obtained films were dried at room temperature for 48 hours and, after this time, the 

material was overturned and left to dry for another 24 hours.  

The amounts of alginic acid sodium salt and CMC used are reported in table 14.11. 

Sample Weight of alginic acid Weight of CMC 

WAF 0.1320 g 0.7642 g 

 

Table 14.11 – Alginic acid sodium salt, CaCl2 and CMC weights used for alginate film production 



EALYS-Alginate films were obtained using a similar procedure: EALYS was added in solution A 

then the procedure previously followed for the non-filled film was slavishly followed. The amounts 

of alginic acid sodium salt, EALYS and CMC used for the preparation of each sample are reported 

in the table 14.12. 

Sample Weight of alginic acid Weight of EALYS Weight of CMC 

AF_EALYS 0.1263 g  0.1244 g  0.7604 g  

AF_EALYS_noCMC 1.0085 g 0.1248 g 0 g 

AF_EALYS_CMC 1.0041 g 0.1246 g 0.7495 g 

 

Table 14.12 – Alginic acid sodium salt, EALYS and CMC weights used for the production of alginate film within EALYS 

14.5.5Rheology 

Rheological analyses of the samples reported in table 12 were registered after step 4 of the 

production procedure, before the drying process. The amounts of alginic acid sodium salt, EALYS 

and CMC used for the preparation of film are provided in the table 4.13. 

Sample Weight of alginic acid Weight of EALYS Weight of CMC 

WAF 0.1320 g 0 g 0.7642 g 

AF_EALYS 0.1263 g  0.1244 g  0.7604 g  

 

Table 14.13 - Alginic acid sodium salt, EALYS and CMC weights for production of alginate films submitted to rheological study 

14.6 Release studies 

Pectin or alginate (10mg < m(SAMPLES) < 30mg) within EALYS was weighed in a 15 mL flat 

bottom vial and dispersed in Phosphate Buffered Saline (PBS) at pH 7.4 (10 ml). The release assay 

was developed in order to study the release in the time range of 24h sampling at 15, 30, 45, 60, 120 

minutes and after 24h. Each sample was prepared in triplicate, therefore 18 vials were prepared, 

using the previously described procedure. The vials were placed in a horizontal water shacking bath 

(Dubnoff), showed in figure 1, set at 36°C with a shacking ratio of 90 strokes per minute.  



 

Figure 14.2 - Dubnoff horizontal water shacking bath 

At fixed time three samples were removed from bath, they were hand-shaken in order to obtain a 

homogeneous solution and then filtered using a syringe equipped with a 0.45 μm Teflon® filter. 

This procedure was repeated on the other samples after 30, 60, 120 minutes and 24h after the 

starting of the test. 

 

The filtered solutions were analyzed by using a UV-Vis spectrophotometer in order to evaluate the 

amount of EALYS present in them.  

14.6.1 Blank tests 

The solubility of EALYS was previously verified in water solution; on the other hand, the release 

assays were performed in PBS solution therefore a solubility check is required (the ionic strength 

solution changing can affect the solubility of EALYS). The same amount of EALYS filled in pectin 

and alginate samples was used for the solubility test; therefore, EALYS was dissolved in 50 ml of 

PBS in order to prepare two solutions: 

2 mg/ml (theoretical concentration obtainable if the 10% sample is able to completely release 

EALYS)  

0.04 mg/ml (theoretical concentration obtainable if the 2% sample is able to completely release 

EALSY) 

The samples were shaken at 36 °C for one hour, filtered using a syringe equipped with a 0.45 μm 

Teflon® filter and then analyzed via UV-Vis spectrophotometer.  



14.7 Ellagic acid reaction with methacryloyl chloride 

14.7.1 Reaction scheme: 

 

Figure 14.3 - Synthesis of EAMAC 

14.7.2 Procedure 

Ellagic acid (500,00mg, 1.6545mmol) was dispersed in 100 ml CH2Cl2 in a round 2 necks bottom 

flask under nitrogen atmosphere at room temperature. Triethylamine (669.70mg, 6,6181mmol) was 

added in the feed in order to neutralize the hydrochloric acid produced from the reaction between 

methacryloyl chloride and EA (the presence of the amine led to obtain a partial solubilization of EA 

into CH2Cl2 where it is not) then the methacryloil chloride (6918.00 mg, 66.1819mmol) was added 

dropwise. After the adding was completed (30min) the reaction was stirred for another 3h and the 

reaction proceeding was checked with TLC (reported in figure 3) using EA as reference (eluent n-

hexane/ethyl acetate 1: 1). The reaction mixture was cooled a 0°C and first washed with a cold 

solution at 5% of hydrochloric acid, then with a solution at 10% of NaHCO3 and finally with water, 

dried with anhydrous Na2SO4 and then the solvent was removed under vacuum at room 

temperature. The product obtained was a pale yellow powder 1H NMR (400 MHz, CDCl3) δ 8.15 

(1H, s, Hd), 6.45 (1H, s, Ha or Ha’), 6.37 (1H, s, Ha’ or Ha), 5.91 (1H, s, Hb or Hb’), 5.85 (1H, s, 

Hb’ or Hb), 2.10 (3H, s, Hc or Hc’), 2.06 (3H, s, Hc’ or Hc). EAMAC. ESI-Q-Tof MS= 587.48 m/z 

(EAMAC + Na+). 



 

Figure 14.5 - TLC of EAMAC (hexane: EtOAc, 1:1), Rf=0.56 

14.7.3 NMR 

1H-NMR spectra was collected solubilizing about 10 mg of product in 1 ml of deuterated 

chloroform.  

14.7.4 Mass spectrum 

Mass spectrum was recorded using AcCN as solvent. 

14.7.5 Differential Scanning Calorimetry  

Sample was prepared weighting about 6 mg of EAMAC and analysed using a dynamic scanning 

program from 25°C to 400°C at 10°C/min in order to assess the melting temperature and the 

thermal stability.  

14.8 Poly(NVP-co-EAMAC) 

The procedure for bulk polymerization of PVP was designed based on a literature work (205). 

EAMAC, NVP and VAZO-67 were weighed in a 15 ml flat bottom vial and magnetically stirred at 

room temperature for 30 minutes in order to obtain a homogeneous dispersion. In fact, EAMAC is 

slightly soluble in NVP at room temperature whereas the solubility rapidly increases when the 

temperature rise. The reaction was conducted under nitrogen atmosphere at 60°C for 8h leaving the 

reactor cooling at room temperature for 15h: a solid pale yellow glassy material was obtained. The 

unreacted NVP was removed under vacuum. The polymer was finally crushed and washed 

overnight in water (50 ml of water for 2.5 g of material) in order to remove unreacted monomer and 

linear fractions. Later, the mixture was filtered and dried under vacuum (0.1 mPa for 8h). The PVP 



synthetized without EAMAC was not submitted to the washing procedure in water (PVP is soluble 

in water. 

 

The amounts of NVP, EAMAC and VAZO-67 used for the preparation of each sample are provided 

in the table 14.14. 

Sample Weight of NVP Weight of EAMAC Weight of VAZO-67 

PVP_blank 5.0090 g 0 mg 35.7 mg 

PVP_EAMAC_0.5% 3.0044 g 77.7 mg 20.0 mg 

PVP_EAMAC_1% 2.5711 g 128.6 mg 17.6 mg 

 

Table 14.14 - NVP, EAMAC and VAZO-67 weights used for PVP samples synthesis 

14.8.1 Release studies of EA 

About 25 mg of poly(NVP-co-EAMAC) was weighted in a 3 ml flat bottom vial and 1 ml of D2O 

was added. The mixture was magnetically stirred at room temperature for 30 minutes to obtain a 

homogeneous dispersion. 40 μl of NaOH solution in D2O (30 mg/ml) was added using a micro 

syringe and the mixture was placed in an ultrasonic bath at 40°C until complete dissolution. The 

solution was transferred into a NMR tube and 1H-NMR spectrum was recorded. The same analysis 

was performed also on PVP_blank sample in order to asses’ differences between linear materials. 

14.9 Poly(lactic acid) synthesis 

14.9.1 Bulk polymerization 

PLA was synthesized in bulk using a 250 ml three-neck glass flask: 50 grams of L-lactide was 

added in the feed together with tin octanoate (0.3% w/w) used as catalyst, and Tyrosol or Vanillyl 

Alcohol, that acted as initiator of lactide polymerization. The mixture was allowed to react under 

slow nitrogen flow at 180 °C for 1.5 h using mechanical stirring (50 rpm). At the end of the 

reaction, the polymer was left in the flask under nitrogen flow and cooled at room temperature; a 

white solid polymer was obtained. After the syntheses, all samples underwent Solid State 

Polymerization (SSP) at 150°C for 12 hours under vacuum (about 4 mbar); all the analyses were 

conducted on the samples obtained after SSP. 



14.9.2 Solution Polymerization 

PLA was synthetized in tetrahydrofuran solution using a 100ml two-neck round bottom flask: 

approximately 10g of L-lactide was solubilized in 50ml of anhydrous THF together with Vanillyl 

Alcohol, used as lactide ROP initiator, and tin octanoate (0.3% w/w) used as catalyst. The mixture 

was allowed to react at 67°C for 165h under magnetic stirring in nitrogen atmosphere. At the end of 

the reaction, the solution was allowed to cool at room temperature; the polymer was poured in cool 

methanol in order to remove the unreacted monomer and catalyst; a white powder was obtained. 

The polymer was dried under vacuum (room temperature; 15h; 4 mBar) (156). 

14.9.3 Thermal Analysis  

Differential Scanning Calorimetry (DSC) analyses were performed using a Mettler Toledo DSC1 

instrument, with 40μl Aluminum pan and under nitrogen atmosphere. An empty pan was used as 

reference. Samples were prepared weighting about 6 mg of Tyr and VA sample and analyzed using 

a dynamic scanning program from 25°C to 200°C at 10°C/min in order to assess their melting 

temperature and their thermal stability.  

Polymers samples were prepared weighting about 6mg of polymers and they were analyzed via 

DSC in order to obtain information about their thermal behavior and to assess crystalline content. 

PLA Ingeo 4043D, poly(lactic acid) with 0,1%mol/mol of tyrosol (PLA+0,1%Tyr) and poly(lactic 

acid) with 0,1%mol/mol of vanillyl alcohol (PLA+0,1%VA) were analyzed under nitrogen flow using 

a Mettler Toledo DSC 1 instrument. The samples were first heated from 25°C to 200°C and left at 

200°C at 10°C/min, left for 5 minutes, then cooled from 200°C to 25°C at -10°C/min, left for 2 

minutes and then re-heated with a second thermal cycle from 25°C to 200°C at 10°C/min. 

The crystalline weight fraction (Xc) of the sample was determined as previously described 

according to eq n(1): 

1) LM =
∆O�.∆OPP

∆OQ
	× 100 

where ΔHm is the heat of fusion measured on the second heating, ΔHcc is the cold crystallization 

heat and ΔHo m is the melting enthalpy of the 100% crystalline polymeric matrix (93 J g-1) (165). 

Thermo gravimetrical analysis (TGA) were performed with a TGA 4000 under nitrogen flux at 

20ml/min with a temperature ramp from 30°C to 600°C at 20°C/min on 6mg of samples. Isothermal 

analyses were performed at 80°C for 120min under nitrogen flux of 20ml/min. 



14.9.4 Gel Permeation Chromatography 

Gel permeation chromatography (GPC) was performed using a size exclusion chromatography 

(SEC) system based on a Waters 1515 Isocratic HPLC pump and a four Phenomenex Phenogel 

column set (103Å-104Å-105Å-500Å) using a flow rate of 1 mL/min and 20 μL as injection volume.  

The detector was a Waters 2487 Dual λ Absorbance Detector, set at 230 nm. Samples were 

prepared dissolving 30 mg of polymer in 1 mL of anhydrous CH2Cl2; before the analysis, the 

solution was filtered with 0.45 μm filters. Given the relatively high loading, a check was performed 

using lower concentrations of polymer (5 mg/mL), in order to verify that no column overloading 

could be observed. Anyway, higher loadings were preferred as the UV absorption of PLA is 

relatively weak. O-dichlorobenzene was used as internal standard (peak appears at 46 minutes in the 

chromatograms). Molecular weight data were obtained using a linear polystyrene standard 

calibration in the range (1600000 – 106) Da.  

14.9.5 Film Casting 

Films were obtained via casting solubilizing 10g of polymer in 50g of CH2Cl2. The solution was 

cast on a glass surface and the solvent was evaporated at room temperature and pressure overnight. 

The absence of residual solvent in the films was checked via isothermal TGA (120min at 80°C 

under nitrogen flow). Film thickness was measured using a Digimatic micrometer (Mitutoyo, 

Japan). The value of film thickness was obtained by averaging 10 measurements, the average value 

obtained being 74 ± 18mm. 

14.9.6 Determination of antioxidant capacity of films in vitro 

The radical scavenging capacity of commercial PLA films was measured as an indicator of the 

antioxidant capacity of films. The radical scavenging capacity was evaluated through the reaction 

with the stable 2,2-diphenyl-1-picrylhydrazyl radical (DPPH). 0.05 g of film were cut and placed in 

a tube with 2 ml of 0.21 mM solution of DPPH in methanol. VA modified PLA, Tyr modified PLA 

and standard PLA were stored at room temperature for 15 days after the solvent casting deposition.  

The tubes were vigorously vortexed for 1 min to assure full contact between the film and the 

solution. After vortexing, the tubes were left in the dark for 30 min at room temperature. The 

absorbance was then measured against methanol at 515 nm in 1 ml cuvettes using a 

spectrophotometer (UV-1700 Pharma Spec, Shimadzu, Milton Keynes). As the DPPH is reduced by 

the antioxidants present in the sample, the solution colour fades in a way that is proportional to the 

antioxidant concentration (206).  

According to Trombino et al.(2012) the radical scavenging capacity was expressed as: 



Percentage of inhibition = (1- APLA/Ablanc) x 100 

Where APLA is the absorbance of the solution in the presence of PLA films (Ingeo 4043D, 

PLA+0.1%VAand PLA+0,1%Tyr), and Ablanc is the absorbance of the DPPH solution. 

The radical scavenging capacity of the films was analysed during shelf life of salami. At each 

sampling time the interleavers were removed from the package, cleaned with n-hexane in order to 

remove any food residue and analyzed. 

14.9.7 1H-NMR of PLAs 

1H-NMR spectra was collected solubilizing about 10 mg of product in 1 ml of deuterated 

chloroform.  

1H-NMR (400 MHz, CDCl3) ppm 1H NMR (400 MHz, CDCl3) δ ppm: 6.90 - 6.82 (m; 3H); 5.18 

(q; J = 5.16; 1H); 4.37 (q; J= 4.36; 1H); 3.89 (s, 3H); 1.59 (d; J=1.58; 3H). 

14.10 Stability Test 

14.10.1 Sample preparation 

Salami (79% pork lean, 21% subcutaneous back fat, and additives, in g/kg of batter: salt, 29; 

sodium nitrite, 0.15; dextrose, 10; lactose, 20; black pepper, 3.0; sodium erythorbate, 0.5; carmine, 

0.05; sodium caseinate, 10; soy protein, 12; decalcified water, 63, and starter culture consisting of 

lyophilized Lactobacillus sakei at levels of 107 CFU/g) was sliced to 1 mm thick samples in a white 

chamber refrigerated at 1ºC. Samples were vacuum packed in PA/PE bags (Sacoliva, Spain) and 

stored at 4 ± 2ºC in a display cabinet. The samples were subjected to light (fluorescent lamp) 12h 

and 12h to darkness (simulating retail conditions). Two batches were obtained: a control batch (C) 

without interleave and an active batch packed with 8x8 cm PLA films containing 0.1%mol/mol VA as 

interleaves to separate salami slices (A). 

Three samples of each batch were removed at 0, 7, 14, 43, and 51 days of storage for analysis. The 

upper slice was used for the color measurement, and after color measurement all the slices were 

minced for further analysis. 

14.10.2 Water activity and pH analysis 

The pH of the minced samples was measured directly with a Crison penetration 52-32 probe 

connected to a Crison Basic 20 pH-meter (Crison Instruments S.A., Alella, Spain). The mean of 

three measurements was recorded for each sample. The water activity of the minced samples was 



measured using a water activity meter AquaLab™ Series 3 (Decagon Devices, Inc., Pullman, WA, 

USA). 

14.10.3 Color measurement 

Instrumental color measurement of films was performed using a Konic Chroma Meter CR-410 

(Minolta, Osaka, Japan). C illuminant and 28 standard observers were chosen. L* (lightness), a* 

(redness, greenness), and b* (yellowness, blueness) color values were determined in the 1976 

CIELAB system. The chromameter was calibrated before each series of measurements using a 

white ceramic plate. The mean of 6 measurements was recorded for each film. Three different 

points from each film type were tested. 

14.10.4 Lipid oxidation analysis 

Thiobarbituric acid reactive substances (TBARS) was determined following an adaptation of the 

method based on Buege and Aust (207). Two grams of minced salami were homogenized with 20 

ml of 1.2 M HCl solution containing 0.1% (w/v) propyl gallate and 0.1%, w/v EDTA for 30s using 

an ULTRA-TURRAX® blender. The homogenate was centrifuged at 5,000 rpm for 10 min. The 

supernatant was injected in a continuous flow analyser Futura System (Alliance Instruments, 

Frepillon, France). A solution of 1.2 M HCl containing 0.327% thiobarbituric acid and 0.5 % Brij-

35 was also injected in the system. The system consists of a bath at 90oC were the reaction is 

accelerated and a colorimeter set at 531 nm to detect the reaction product malondialdehyde (MDA). 

The calibration curve was prepared using 1,1,3,3-tetraethoxypropane (Sigma-Aldrich, Madrid, 

Spain) as a standard. The results were expressed as mg MDA/kg salami. 

14.10.5 Statistical analysis 

Statistical analysis was performed using the General Linear Model from SAS 9.2 software 

(Statistical Analytical Systems Institute, Cary, NC, USA). The batch (control and PLAc), the 

storage time (0, 7, 14, 43, 51 days) and their interaction were included in the model as fixed effects. 

Differences between effects were assessed by the Tukey test ( p < 0.05). 

14.11 Preparation of PLA scaffolds 

All scaffolds were prepared using PLA after purification. PLA was dissolved in dichloromethane 

and then re-precipitated in methanol to remove processing additives e.g. antioxidants. 

Scaffolds were prepared according to two different methods: 



• Method A. PLA (0.1 mg ml-1) and OligoTyr (5%w/w on PLA) were dissolved in THF in a 

100 mL glass flask. Methanol was added at room temperature under mechanical stirring up 

to 95/5 v/v THF/methanol ratio. The solution was frozen by immersion of the flask into 

liquid nitrogen and was then poured in warm water. The solid PLA scaffolds that separated 

were recovered after removal of the solvent by filltration. 

• Method B. PLA (0.1 mg ml-1) and tyrosol or OligoTyr (5%w/w on PLA) were dispersed in 

1,4-dioxane in a 100 mL glass flask at room temperature and taken under mechanical 

stirring overnight. The resulting homogeneous dispersion was frozen by immersion of the 

flask into liquid nitrogen and the solvent was removed by sublimation at room temperature 

under vacuum (2.5 h; 10-3 bar). In other experiments PLA scaffolds containing b-tricalcium 

phosphate (β-TCP) (5% w/w on PLA, porosimetry d50 ¼ 100 nm) with or without OligoTyr 

were prepared. 

 

14.12 Porosity and swelling measurements 

The porosity of PLA scaffold prepared according to method B was determined using two different 

gravimetric methods. In the first one, related porosity was calculated by equation (1) using the 

density of the dry scaffold (ρs) and the density of raw PLA (ρPLA), determined as the ratio between 

the dry mass and the volume of the scaffolds: 

1) Porosity(%) = [1–(ρs/ρPLA)] × 100 

The dry weight of the scaffolds was determined using a high precision balance CPA225D Sartorius, 

the volume was evaluated by geometrical calculation using a caliper. In the second method the 

porosity was evaluated using equation 2: 

2) Porosity(%)={(mw-mD)/[(mD/ρPLA) + mw]} ×100 

where mw is the wet weight of the scaffold (contact time between scaffold and water: 96 h) and mD 

is the dry mass. In this case, the porosity was evaluated as the total amount of water absorbed by the 

scaffold. Swelling of the wet sample was also evaluated using equation 3  

3) Swelling(%)=[(mw-mD)/mD] ×100 
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