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ABSTRACT 

Background - Parkinson’s disease (PD) is the second most common neurodegenerative 

disorder after Alzheimer, primarily affecting about 6 million people worldwide.  

An early identification of PD is one of the main challenges in neurological research 

because to date, its diagnosis is still largely based on the clinical assessment of cardinal 

motor signs (bradykinesia, rigidity, resting tremor and postural instability) resulting by a 

progressive degeneration of dopaminergic neurons of the substantia nigra and locus 

coeruleus. However, impaired motor function appears when over 60% of the dopaminergic 

neurons are degenerated in the brain. In recent years, several evidence indicates that the 

onset of PD happens years to decades before the occurrence of classic motor symptoms. 

Pathological and imaging studies, for example, suggest that signs of nigrostriatal lesion can 

be detected 5–10 years before this clinical stage, and various observational prospective 

studies reveal that several non-motor symptoms (NMS) occur in this pre-diagnostic phase. 

Actually NMS such as olfactory impairment, cardiovascular dysautonomia as orthostatic 

hypotension (OH) and rapid eye movement (REM) behaviour disorder (RBD) are currently 

being studied as features of prodromal PD and seem to be correlated to the early 

neuropathological process of disease. 

Beside these clinical manifestations, other biological alterations such as elevated 

oxidative stress and pro-inflammatory response have been involved in the cascade of 

events leading to degeneration of dopaminergic neurons. Recently, microRNAs (miRNAs) 

have been recognized as potent post-transcriptional regulators of PD-related gene 

expression. 

Consequently, the characterization of several NMS together with the assessment of 

molecular biomarkers linked to inflammation and oxidative damage, could be a potential 

methodological approach for the early identification of PD patients. 

Objectives - The main objective of my study was to explore potential novel diagnostic and 

prognostic biomarkers of PD. Specific study aims were, in patients with prodromal and 

established PD: a) to evaluate clinical markers such as olfactory and cardiovascular 

autonomic functions; b) to measure circulating mediators of oxidative stress and 

inflammatory response as early biomarkers of organ failure; c) to correlate biological 

findings with clinical functional alterations; d) to characterize specific circulating miRNA 

profiles in plasma samples. 
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Methods - For this purpose, we recruited 15 patients with overt PD (Hoehn and Yahr stage 

I-III, on L-DOPA and dopamine agonists combination therapy), 11 subjects diagnosed 

with idiopathic RBD (iRBD) confirmed by lack of atonia during the REM sleep phase on 

polysomnography and 12 age- and gender-matched controls (CTRL). 

All enrolled subjects underwent the following assessments: total olfactory score (TOS) 

using Sniffin' Sticks Extended Test; autonomic function by measuring heart rate variability 

during deep breathing (DB) test, which expresses parasympathetic function, lying to 

standing (LS) test and the Valsalva manoeuvre (VM), that gives information about both 

sympathetic and parasympathetic function; antioxidant/oxidative stress mediators 

[glutathione (GSH), the most important endogenous scavenger, assessed in total and 

reduced form and in plasma and blood samples according to a high performance liquid 

chromatographic (HPLC) method; plasma malondialdehyde (MDA), a marker of lipid 

peroxidation, assayed by HPLC with fluorescence detection; 8-hydroxy-2-deoxyguanosine 

(8-OHdG), index of oxidative DNA damage, and 3-nitrotyrosine (3-NT), a stable end 

product of peroxynitrite oxidation, analyzed by commercial ELISA kits]; inflammatory 

response [plasma concentrations of tumor necrosis factor alpha (TNF) and interleukin 1-

beta (IL1), the most important inflammatory cytokines, measured by ELISA commercial 

kits; urine neopterin levels, a sensitive marker of cellular-mediated inflammation, by an 

isocratic HPLC method]. Biochemical parameters were than correlated with clinical 

functional results. 

 The miRNA profiling was performed in a subpopulation of the enrolled subjects (4 

PD, 4 iRBD and 4 CTRL) by small RNA Sequencing, using Miseq sequencer (Illumina). 

The differentially expressed (DE) miRNAs analysis, based on the negative binomial 

distribution, was performed with DE Seq2 by performing three comparisons:1) iRBD 

versus CTRL; 2) PD versus iRBD; 3) PD versus CTRL. Subsequently, the relative 

expressions of specific miRNAs were validated in all study population by quantitative real-

time (qRT) PCR using miScript PCR System kit (Qiagen). 

Results -  A significant worsening trend was observed in total olfactory score, blood 

reduced GSH, LS and VM ratio and neopterin from the reference controls to iRBD and PD 

groups. In the multivariable ordinal logistic regression model, only low blood reduced 

GSH levels (p=0.037, OR=0.994; 95% CI 0.988 – 1.000), adjusted by history of 

hypertension, total olfactory score, LS ratio and VM ratio, were associated to PD status. 

Functional anosmia was similarly prevalent in iRBD (36%) and PD (33%) patients, but 
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was absent in CTRL (p= 0.097). OH was more common among iRBD (73%) and PD 

(60%) than in controls (25%) (p=0.055), independently of antihypertensive treatment. 

A direct correlation was observed between total olfactory score and blood reduced GSH 

concentrations (R=0.034, p=0.037) and with VM ratio (R=0.43 p=0.015). Conversely, an 

inverse relation was found between total olfactory score and urine neopterin levels (R=-

0.39 p=0.016). 

The results on circulating miRNA profiles found about 889 thousand sequenced 

reads mapped to mature miRNA sequences annotated in miRBase v21, by small RNA 

sequencing analysis. After data processing, no statistically significant DE miRNA was 

observed in the PD versus CTRL, whereas we found 33 DE miRNAs (18 downregulated, 

15 upregulated, p-value <0.005) in the comparison between PD and iRBD and 6 (3 

downregulated, 3 upregulated, p-value <0.005) in iRBD versus CTRL.  

Four common DE miRNAs (miR-101, miR-1260a, miR-142, miR15a) were dysregulated 

between the two different comparisons. In the PD patients, three miRNAs (miR-101, mir-

142 and miR15a) were downregulated (Fold Change < -0.5) and only mir-1260a was 

upregulated (Fold Change > 0.5) with respect to iRBD. Conversely, miR-101, miR-142 

and miR15a were upregulated and miR-1260a downregulated in iRBD compared to CTRL. 

The NGS results have not been validated by RT-PCR analysis till now because these 

miRNAs are poorly expressed in plasma. This condition makes very difficult, from a 

methodological point of view, their extraction and quantification. 

Discussion - The main findings of the present study are that reduced systemic antioxidant 

capacity is independently associated to overt PD and iRBD, a condition now established as 

prodromal PD, and correlates with olfactory and sympathetic dysfunction. Moreover, 

progressive cardiovascular autonomic dysfunction, expressed as altered sympathetic (VM 

ratio, OH) or parasympathetic (LS ratio) response to testing, is found from prodromal state 

to overt disease and correlates with olfactory dysfunction. Increased concentrations of 

neopterin, an inflammatory biomarker, are associated with worse olfactory dysfunction.  

The NGS analysis highlights a miRNA profiling in PD and iRBD subjects that needs to be 

verify, by changing and modifying the methodological approach for miRNA 

quantification.   

Conclusions - Reduced systemic antioxidant capacity is found in prodromal and overt PD 

and may represent, in association with olfactory loss and cardiovascular autonomic 

dysfunction, a useful additive biomarker of disease. Moreover, the present miRNA 

profiling study allowed to identify a set of differentially modulated miRNAs, in the overt 
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PD with respect to prodromal phase despite the analysis was no validated by RT-PCR. Our 

pilot findings need to be confirmed in a larger population to establish their actual clinical 

value for an early diagnosis of PD. 
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1. BACKGROUND 

1.1  Parkinson Disease 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after 

Alzheimer, primarily affecting about 6 million people worldwide [1]. 

Pathologically, PD is characterized by the significant degeneration of dopaminergic 

neurons in the substantia nigra pars compacta of the midbrain. This degeneration is 

accompanied by reactive gliosis in specific areas (ie, vulnerable) of the nervous system and 

by the presence in the remaining substantia nigra neurons of eosinophilic intra-cytoplasmic 

inclusions, known as Lewy bodies (LB), of which misfolded -synuclein is a major 

component [2]. 

The dopamine loss within the basal ganglia, a cluster of deep nuclei that participate in the 

initiation and execution of movements, leads to typical movement disorders of PD patients 

[3]. Cardinal motor manifestations for PD include: bradykinesia, rigidity, resting tremor 

and postural instability [4]. 

The prevalence of PD in industrialized countries is generally estimated at 0.3% of the 

entire population and increases with age from 1% in people over 60 years to 4% of those 

over 80, and is projected to double by 2030 in parallel with an increasing aging population. 

Ten% of cases are classified as young onset, occurring between 20 and 50 years of age, 

and may represent a distinct disease group. Reported standardized incidence rates of PD 

are 8–18 per 100.000 person-years [5]. 

The molecular mechanism of neurodegeneration in PD is mostly unknown. Recently, the 

discovery of a number of monogenetic mutations in several causative loci explain the 

origin of familial cases of PD, although they consider only 5–10% of patients. Over 90% 

PD cases are in fact idiopathic [4]. At present, it seems likely that the vast majority of 

sporadic cases are due to a complex interaction among genes, environmental factors and 

brain aging [6]. In idiopathic PD, mitochondrial dysfunction, oxidative stress, and protein 

damage induced by non-genetic factors, probably in interaction with susceptibility genes, 

are currently considered to have a central pathogenetic role in PD [7]. 

To date, its diagnosis is still largely based on the clinical assessment of cardinal motor 

signs [8]; however, by the time impaired motor function appears, over 60% of the 

dopaminergic neurons are degenerated in the substantia nigra [3]. 
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Unfortunately, clinical PD features, especially in early stages of the disease, are common 

with those of other neurodegenerative and movement disorder, resulting with frequent 

misdiagnosis [9]. 

A number of clinical rating scales are used to evaluate the motor impairment and disability 

in PD patients, but most of them have not been fully assessed for validity and reliability 

[10,11]. The Hoehn and Yahr scale is commonly used to compare groups of PD patients 

and to provide overall assessment of symptoms progression, ranging from stage 0 (no signs 

of disease) to stage 5 (wheelchair bound or bedridden unless assisted) [12]. The Unified 

Parkinson’s Disease Rating scale (MDS-UPDRS) is the most well established scale used to 

follow the longitudinal course of the disability and impairment of the disease [13]. Studies 

making use of UPDRS scale to track the severity of PD suggest that the PD progression is 

not linear and that the rate of deterioration is variable and more rapid in the early phase of 

the disease and in patients with the postural instability gait difficulty [14-16]. 

However, PD can only be definitely confirmed through its pathological hallmark of LB and 

Lewy neurites located in residual neurons or axons, respectively, upon post-mortem 

analysis [17]. 

Therefore, an early identification of PD is one of the main challenges in neurological 

research to better understand, characterize, and identify features of the preclinical phase of 

PD.  

Currently, no reliable and clinically validated biomarker has been yet identified to refine 

the PD diagnosis and to objectively monitor the severity and the rate of progression of PD 

dysfunction and neurodegeneration in the substantia nigra [18]. 

 

1.2 Preclinical phase of PD  

Several evidence indicates that the onset of Parkinson’s disease happens years to decades 

before the occurrence of classic motor symptoms. Pathological and imaging studies, for 

example, suggest that signs of nigrostriatal lesion can be detected 5–10 years before this 

clinical stage (19), and various observational prospective studies [20,21] reveal that several 

non-motor symptoms (NMS) occur in this prediagnostic phase [22]. 

The early presence of NMS in the majority of PD patients may suggest an opportunity for 

early diagnosis and early treatment of PD, with consequent benefits to patient quality of 

life and potential treatment cost savings [23]. 
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Beside the cardinal motor symptoms, PD patients also show a broad spectrum of NMS. 

These include disorders of mood, depression, cognitive dysfunction and hallucinosis, as 

well as sensory dysfunction with hyposmia and pain, disturbances of sleep–wake cycle 

regulation. Also autonomic alterations, including orthostatic hypotension, urogenital 

dysfunction and constipation are present to some degree in PD patients [24]. 

 

 

Figure 1. Graphical illustration of the prodromal phase occurring years or even 

decades before the clinical diagnosis of PD. Adapted from ref. [25]. 

 

 

Although NMS can occur at the same time or follow the onset of motor abnormalities, 

many of them often predate the onset of motor symptoms by many years and are currently 

being studied as features of prodromal PD [3]. However, many NMS are common in the 

general population even unrelated to underlying PD, so they might not be, at least in 

isolation, good markers for early PD identification. Conversely orthostatic hypotension 

(OH) and rapid eye movement (REM) behaviour disorder (RBD) are less commons and 

might be more specific clinical markers of prodromal PD (Figure 1). 

Whereas the causes of motor dysfunction in PD are reasonably well understood, the origin 

of NMS has been largely related to pathology outside of the basal ganglia [26]. 

In fact, postmortem evaluation of PD brains has revealed more widespread degeneration in 

non-dopaminergic systems including several brainstem nuclei [raphe nucleus, locus 
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coeruleus (LC), dorsal vagal nucleus], limbic and neocortical structures, as well as the 

peripheral autonomic system [27,28].  

The degenerative process, proposed by Braak and colleagues, reflecting the stepwise 

progression of  LB pathology in the brain (Figure 2), begins at ‘induction sites’ with 

degeneration of the olfactory bulb and the anterior olfactory nucleus (clinically manifest as 

olfactory dysfunction) at stage 1, while stage 2 exhibits progression of the pathological 

process to the lower brainstem [29] such as the raphe nucleus, LC and pedunculo pontine 

nucleus that may be responsible for prominent early sleep, autonomic and mood 

disturbances [26]. 

The typical motor signs of PD is only apparent at stages 3 and 4 when the SN and mid and 

forebrain nuclei are affected. Stages 5 and 6 are associated with Lewy bodies in the limbic 

and mature neocortex and clinical correlates include the development of hallucinations and 

dementia [30]. 

Consequently, autonomic physiology in PD may provide additional clarification on the 

nature of PD as a multi-level widespread neurodegenerative process, as PD pathology may 

directly lead to autonomic dysfunction [31]. These neuropathological changes might be 

responsible for the occurrence of dysautonomic symptoms, hyposmia, and RBD before the 

onset of parkinsonism. 

 

 

Figure 2. Stepwise progression of Lewy Bodies in the Brain. Adapted from ref. [29]. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3513877/#bibr20-2040622310387847
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1.3  Clinical biomarkers 

1.3.1  Olfactory dysfunction 

Neurodegeneration in PD has been shown to occur with earliest involvement of the 

olfactory bulbs. Recent findings of decreased olfactory bulb volume in volumetric 

magnetic resonance imaging (MRI) scans of PD patients lent in vivo support to this 

neuropathological hypothesis [32]. It is hypothesized that neurons within the microglia-

rich olfactory bulb, that have high metabolic activity and reduced antioxidant capacity, 

may be more susceptible to mitochondrial function impairment, oxidative stress, and 

excitotoxicity [33]. 

Olfactory dysfunction of PD is well characterized phenotypically, with validated olfactory 

tests able to differentiate PD patients from controls better than clinical motor tests [34]. 

Clinically, olfactory dysfunction has a prevalence of up to 90% in established PD, and 

smell loss is relatively stable over time, and unrelated to disease stage or duration. It is not 

improved by drugs that control motor symptoms. Furthermore, losses in both olfaction and 

cardiac sympathetic and parasympathetic function as well as vascular sympathetic 

dysfunction appear to be closely related [35]. 

Longitudinal studies demonstrated that olfactory dysfunction often predates motor signs by 

several years and holds therefore potential as an early marker for subjects at risk to develop 

PD [36,37] and its accompanying non-motor features [33]. 

 

1.3.2  Cardiovascular dysautonomia in PD 

Clinical manifestations of dysautonomia, common NMS in PD, are linked to differential 

involvement of the autonomic nervous system components as recently reviewed [38,39]. 

The sympathetic noradrenergic system is the sympathetic nervous system (SNS) 

component responsible for reflexive constriction of blood vessels and stimulation of the 

heart. The sympathetic cholinergic system mediates sweating. The parasympathetic 

nervous system (PNS) is responsible for different phenomena including respiratory sinus 

arrhythmia, gastrointestinal and urinary bladder tone, salivation, lacrimation, and pupillary 

constriction [38]. 

Cardiac and extra-cardiac noradrenergic denervation and baroreflex failure occur 

independently of striatal dopamine depletion in PD. Loss of cardiac sympathetic 

noradrenergic nerves is virtually universal in PD, and seems to be independent of the 



14 

 

movement disorder in individual patients and is correlated with olfactory dysfunction, also 

an early sign of neurodegenerative disorders [40,41]. 

Plasma levels of the sympathetic neurotransmitter, norepinephrine and its main neuronal 

metabolite, dihydroxyphenylglycol (DHPG), are normal in PD. Some evidences [42] about 

bases for cardioselectivity of sympathetic noradrenergic denervation in PD may be that  the 

myocardium contains a high tissue concentration of norepinephrine (NE), implying 

relatively dense innervation; cardiac sympathetic nerves remove circulating 

catecholamines from the coronary arterial blood; and there is greater production of DHPG, 

the product of  NE oxidation, than other organs, suggesting a high rate of production of 

potentially toxic quinones, aldehydes, and other oxidation products [38]. 

Postmortem studies as well as in vivo imaging with 
123

I-metaiodobenzylguanidine (MIBG) 

in single-photon emission computed tomography (SPECT) studies suggest that there exist 

an early, cardioselective, postganglionic denervation in PD patients [43,44]. 

Although extra-cardiac noradrenergic denervation also occurs and results in inadequate 

vasoconstriction, among PD patients there is greater loss of noradrenergic innervation in 

the heart than in the body as a whole, as documented by normal plasma levels of both NE 

and dihydroxyphenylglycol [24]. 

The coexistence of cardiac and extra-cardiac noradrenergic and arterial baroreflex failure 

in PD result in a syndrome that includes OH, which found in about 30-40% of PD patients 

[45], post-prandial hypotension, blood pressure lability, supine hypertension, and possibly 

fatigue and exercise intolerance [35]. 

Measurement of heart rate variability (HRV), a physiological phenomenon where the time 

interval between heart beats varies, is a simple non-invasive method to study changes in 

cardiovascular autonomic control. HRV reflects the relationship between the PNS and 

SNS. In PD patients, spectral components of HRV are lower during wakefulness and 

appear to have an inverse correlation with disease severity. Abnormalities in 

cardiovascular autonomic controls elicited by head tilting including blunted heart rate and 

LF/HF ratio increase have been demonstrated in PD patients with and without OH [46]. 

Interestingly, one study reported that cardiac autonomic denervation in PD patients, as 

measured by HRV, seems to be predominantly associated with the presence of RBD [47]. 

Decreased HRV has also been observed in premotor PD patients [38] and particularly in 

patients with RBD [48]. 
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1.3.3  REM sleep Behaviour Disorder (RBD) 

RBD is a parasomnia characterised by loss of normal skeletal muscle atonia during REM 

sleep and associated with vivid dreaming and complex motor activity. The prevalence of 

RBD in the general population is approximately 500 per 100 000 (0.5%) [49]. 

RBD may be idiopathic or may precede a neurodegenerative disease: about half of RBD 

cases are associated with neurological disorders, most often the-synucleinopathies: 

Parkinson disease, dementia with Lewy bodies, and multisystem atrophy. RBD is a NMS 

that occurs in the early stages of PD as it tends to manifest prior to the onset of 

parkinsonism and then decreases in frequency and severity over time [50]. In patients with 

isolated RBD, imaging studies have indicated a small but significant symmetrical reduction 

in striatal dopaminergic uptake, which may be suggestive of preclinical Parkinson's disease 

[51]. 

The prevalence of probable clinically significant RBD associated with PD is 15 per 100 

000. In PD patients, RBD is associated with male gender, less parkinsonism and higher 

levodopa equivalent dose.  

In addition, it has been shown that several iRBD patients eventually developed 

Parkinsonian diseases: after 4-5 years since the iRBD diagnosis, between 28% to 45% of 

patients developed PD or multisystem atrophy [49,52-54] 

Reported rates of neurological-disease-free survival from time of iRBD diagnosis are 

65.2% at 5 years and 26.6% at 10 years [52] and the median interval between iRBD 

diagnosis and diagnosis of a defined neurodegenerative syndrome was 6 years [49]. 

Cross-sectional studies in iRBD patients have shown an impressive convergence of 

cardiovascular and neurological alterations: substantial proportion of them have detectable 

abnormalities on measures of smell testing, colour vision and discrimination, cardiac 

autonomic activity, cardiac metaiodobenzylguanidine imaging, motor and gait functioning, 

neuropsychological testing, electroencephalography, transcranial sonography, MRI or 

magnetic resonance spectroscopy, dopamine transporter imaging single-photon emission 

computed tomography (SPECT), and fluorodeoxyglucose and dihydrotetrabenazine 

positron emission tomography (PET) [49, 55]. 

The study of patients with iRBD gives us the opportunity to investigate early disease 

events and changes using clinical, imaging, and biochemical biomarkers before the onset 

of the cardinal motor and cognitive manifestations of Lewy body disorders. 
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About half of patients with PD do not have RBD, in those with RBD, only 18% report that 

dream-enacting behaviours preceded the onset of parkinsonism [49].  

RBD is a potential candidate for the study of early events and progression of this phase and 

to test disease-modifying strategies to slow or stop the neurodegenerative process. 

 

1.3.4  Depression and mood alterations 

Mood disorders such as depression, anxiety and apathy are the most common 

neuropsychiatric symptoms in PD [56]. Depression affect 40–50% of PD patients and can 

adversely impact their quality of life. Depressed patients with PD have greater frontal lobe 

dysfunction and involvement of dopaminergic and noradrenergic systems than non-

depressed PD patients [57]. A cross-sectional study has recently reported an association 

between elevated plasma homocysteine levels, depression and cognitive impairment in PD 

[58]. Other studies have suggested that depression, like RBD and hyposmia, may precede 

the development of PD [59,60]. 

Although the relationship between the pathophysiology of PD and depression remains 

unclear, dysfunction of a combination of dopaminergic, serotoninergic and 

norepinephrinergic pathways in the limbic system is likely [61].  

Recently Tan et al. [62] reported that mesencephalic dopaminergic neurons (mDA) and 

serotonergic (5-hydroxytryptamine; 5-HT) neurons are involved in depression. 

Degeneration of mDA is associated with PD; and defects in the serotonergic signalling are 

related to depression, obsessive–compulsive disorder, and schizophrenia. Although these 

neuronal subpopulations reveal positional and developmental relationships, the 

physiological events that manage specification and differentiation of mDA or 5-HT 

neurons revealing missing determinants are not yet understood exactly. However, the 

serotonergic system is markedly affected in the parkinsonian brain with evidence of loss of 

axons as well as cell bodies in the dorsal and median raphe nuclei of the midbrain. 

However, it remains unclear whether alteration of the serotonergic system alone is 

sufficient to confer vulnerability to depression [62]. 
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1.4  Biochemical markers 

Analysis of brain tissue, blood, cerebrospinal fluid (CSF) or plasma markers is becoming 

increasingly accepted as an aid for diagnosis of neurological disorders. There is increasing 

attention in performance characteristics of markers for which our knowledge of 

Parkinson’s disease pathogenesis provides an underlying rationale, and candidate pathways 

include protein processing, dopamine function, inflammation, transcriptional 

dysregulation, and oxidative stress and mitochondrial function.  

Individual proteins related to pathogenesis of PD in CSF and in brain tissue such as -

synuclein [63], DJ-1 [64], and brain derived neurotrophic factor [65] have been considered 

as candidate biomarkers. 

Assessment of these biomarkers and sample collection on PD patients are either invasive 

(CSF) or quite impossible (brain tissue). Moreover, conflicting results among studied CSF 

proteins have been reported due to assay differences and/or blood contamination [63,66]. 

Conversely, peripheral blood still remains an ideal candidate for a potential biomarker due 

to its propensity to contain biological and chemical signals from relevant sources [67] and 

its large availability and ready accessibility [68]. 

The characterization of NMS, together with the evaluation of molecular markers linked to 

inflammation and oxidative damage, could therefore be a valid methodological approach 

for the early identification of PD patients and the study of potential neuroprotective drugs 

at a stage when they may actually prevent the development of the motor features of PD. 

 

1.4.1  α-Synuclein  

One of the pathological hallmarks of PD is the presence of LB in surviving neurons. α-

synuclein, the major structural component of LB, is present in aggregated and insoluble 

filaments that are hyperphosphorylated and ubiquitinated [69]. Thus, the detection of this 

protein may enable correlation with the risk and progression of the disease. Recently, 

plasma -synuclein levels were found significantly lower in advanced PD and in early-

onset PD patients respect with age-matched controls measured by western blotting [70]. In 

contrast, El-Agnaf et al. have shown a significant increase in oligomers form of plasma-

synuclein in PD patients compared with controls [71].  
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In a later study, plasma immunoassays for total and oligomeric forms of both normal and 

phosphorylated (at Ser-129) -synuclein were performed in 32 PD patients (sampled at 

months 0, 1, 2, 3), as well as single plasma samples from 30 healthy controls. the mean 

level of total phosphorilated -synuclein was found to be higher in the plasma of PD 

patients than controls. No difference in the mean levels of total, oligomeric and oligomeric 

phosphorylated -synuclein between PD cases and controls were be found [72]. These 

conflictual results may be due to case definition and disease duration large individual-to-

individual variation, as well as the types of control cases included, and in the laboratory 

methods in detecting the various forms of α-synuclein [73]. 

 

1.4.2  Oxidative Stress  

It is well known that oxidative stress, a condition of free radical overproduction not 

adequately counterbalanced by endogenous antioxidant defence systems, plays a pivotal 

role in the pathogenesis of PD, favouring the initiation and progression of 

neurodegenerative processes [75] (Figure 3). In the brain there are many sources of free 

radical production. The autoxidation of dopamine in the dopaminergic neurons may 

produce reactive oxygen species (ROS). Normally, these species are eliminated by 

intracellular antioxidant systems, which might be impaired by aging or by specific 

alterations due to the disease pathogenesis [76].  

Recent studies have provided evidence that serum uric acid, a natural antioxidant that 

exerts its scavenger action in many cell populations including neurons, could be a useful 

biomarker of PD diagnosis and disease progression [77]. 

8-hydroxydeoxyguanosine (8-OHdG) produced when ROS react with guanine residues in 

DNA, is a suitable marker of oxidative damage and had been demonstrated to follow with 

good accuracy the progression of disease; moreover, the increase of 8-OHdG is apparently 

not influenced by dopaminergic therapy [78]. Bolner et al. studied the ratio between 8-

OHdG and 2-dG (which is related to the efficacy of the DNA repairing mechanisms) 

indicating that, only the 8-OHdG/2-dG ratio but not the 8-OHdG level was significantly 

higher in plasma samples of PD patients compared to healthy controls, suggesting that the 

ratio of 8-OHdG/2-dG might be a reliable diagnostic tool [79]. 
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Figure 3. Pathways leading to oxidative stress in PD. Abbreviations: ACO: aconitase, 

CYT: cytosolic, DA: dopamine, iNOS: inducible nitric oxide synthase, PHOX: 

NADPH oxidase, VESIC: vesicular. Adapted from ref. [74]. 

 

The most important scavenger of free radicals in brain is the intracellular antioxidant 

glutathione (GSH), whose function depends on two enzymes, glutathione peroxidase and 

glutathione S-transferase (GST), which are responsible for the transition from reduced to 

oxidized state of the molecule. As a consequence of improved oxidative stress in PD, 

increased levels of oxidized GSH and GST had been found not only in the substantia nigra 

[80] but also in peripheral blood of PD patients, suggesting the potential role of these 

antioxidant agents as reliable biomarkers for PD [81].  
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1.4.3  Inflammation markers 

Neuroinflammation, comprising microglial activation and astrogliosis in the substantia 

nigra of PD patients has been shown to be a key contributor to the pathogenesis of PD [82]. 

Increased levels of pro-inflammatory cytokines particularly interleukin (IL)-1IL-and 

tumor necrosis factor alpha (TNF-α), are molecular indicators of systemic inflammation 

and are correlated with chronic neurodegeneration [83,84]. Furthermore, it was found that 

high-sensitivity C-reactive protein (hs-CRP) levels in the early PD group were higher than 

those in healthy controls [85]. Increased TNF-α is associated with cognitive decline in PD 

and Alzheimer’s disease [84,86]. Additionally, plasma levels of both soluble TNF-α 

receptors are increased in PD patients [87], and certain single nucleotide polymorphisms in 

the TNF promoter are associated with PD [88]. Increased levels of IL-6 are also associated 

with poorer performance in cognitive tasks in multiple sclerosis patients [89] and an 

increased risk of all-cause dementia [90]. Thus, it is reasonable to consider that profiling of 

blood plasma cytokines and other inflammatory markers could provide a valid and non-

invasive means of assessing neuroinflammation in relation to PD. 
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1.5  Genomic biomarkers 

Increasing evidence suggests that both genetic susceptibility and environmental factors 

contribute understanding of the etiopathogenesis of PD [91].  

Only 10-15% of PD patients with the typical clinical parkinsonian state have a positive 

family history compatible with a mendelian (autosomal dominant or autosomal recessive) 

inheritance [92]. 

To date, several genetic loci have been identified in PD through genome wide association 

studies [93,94] but these explain only a small percentage of the heritability. 

Mutations described for familial forms of PD include autosomal dominant mutations of 

SNCA (PARK1, PARK4), UCHL1 (PARK5), LRRK2 (PARK8), HTRA2 (PARK13) or 

autosomal recessive mutations of Parkin (PARK2) (the most common), PINK1 (PARK6), 

DJ-1 (PARK7) and ATP13A2 (PARK9). A list of the PARK loci associated with familial 

PD and their probable function is provided in Table 1. 

However, it is established that genetic susceptibility study may allow the identification of 

individuals at risk for disease prior to the onset of motor symptoms. 

 

Table 1. Gene loci identified for PD 

Locus Gene Chromosome Inheritance Probable function 

PARK1 and 

PARK4 

α-

Synuclein 4q21 AD 

Presynaptic protein, Lewy 

body 

PARK2 Parkin 6q25.2-27 AR Ubiquitin E3 ligase 

PARK3 Unknown 2p13 AD Unknown 

PARK4 Unknown 4p14 AD Unknown 

PARK5 UCH-L1 4p14 AD 

Ubiquitin C-terminal 

hydrolase 

PARK6 PINK1 1p35-36 AR Mitochondrial kinase 

PARK7 DJ-1 1p36 AR Chaperone, Antioxidant 

PARK8 LRRK2 12p11.2 AD Mixed lineage kinase 

PARK9 ATP13A2 1p36 AR Unknown 

PARK10 Unknown 1p32 AD Unknown 

PARK11 Unknown 2q36-37 AD Unknown 

PARK12 Unknown Xq21-q25 Unknown Unknown 

PARK13 HTRA2 2p12 Unknown 

Mitochondrial serine 

protease 

Abbreviations: UCHL1, Ubiquitin C-terminal hydrolase L1; ATP13A2, ATPase type 13A2; 

HTRA2, HtrA serine peptidase 2; IGF-1, insulin-like growth factor 1; LRRK2, leucine-rich repeat 

kinase 2; PINK1, PTEN-induced putative kinase 1; AD, Autosomic dominat; AR Autosomic 

recessive. Adapted from reference [95]. 
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1.5.1  microRNA  

Recent advances in OMICS technologies have opened new opportunities in the detection 

of genetic, epigenetic and transcriptomic biomarkers. Very promising are mainly small 

non-coding microRNAs (miRNAs). A number of studies have shown changes in 

distribution profiles of circulating miRNAs (c-miRNAs) associated with various diseases 

and disorders including neurological disorders such as PD [96]. 

miRNAs are endogenous, conserved small non-coding RNAs and an important class of 

post-transcriptional regulators (18 to 22 nucleotides in length) [97]. 

miRNAs play important roles in the regulation of target genes by binding to 

complementary regions of messenger transcripts (mRNAs) and repressing protein 

translation or promoting mRNAs degradation. The process may result in decreased mRNA 

stability and/or translation. Based on computational prediction, it has been estimated that 

more than 60% of mammalian mRNAs are targeted by at least one miRNA [98]. 

The biogenesis of miRNAs starts in nucleus where long primary molecules are transcribed 

by RNA polymerase II. The primary transcript, structured with characteristic stem-loop 

configuration, is processed by the nuclear RNase III-type enzyme Drosha into a shorter 

miRNAs precursor (pre-miRNAs). After the initial processing in the nucleus, pre-miRNAs 

are then exported to the cytoplasm by the complex of Exportin-5 [99]. A Dicer enzyme 

cleaves the molecules, which then form RNA-induced silencing complex (RISC). By 

attaching themselves to complementary sequences of the target RNA, the RISC complexes 

improve their stability and help in mRNA translation. miRNA inhibits protein synthesis by 

interacting with partially complementary regions near the 3’-end, which do not undergo 

translation. Upon binding, the miRNA initiates a pathway that either degrades the 

transcripts or suppresses their translation [100] (Figure 4). 

miRNAs have been proven to regulate neuronal processes such as brain morphogenesis, 

neuronal cell fate and differentiation, and transcription of neuronal-specific genes regulate 

the expression of many genes in neuronal processes such as brain morphogenesis, neuronal 

cell fate and differentiation, and transcription of neuronal-specific genes [101]. More 

recently it has been proposed that miRNAs may also be involved in the pathogenesis of 

several diseases such as cancer and neurodegenerative disease [102,103]. 
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Figure 4. Biogenesis and different functions of miRNAs. Adapted from ref. [104]. 

 

Importantly, miRNAs can also be detected in bio fluids such as blood plasma and serum, 

suggesting their biological function outside of the cell as paracrine signalling molecules 

[105]. This fraction of miRNAs is regarded cell-free circulating molecules residing in 

various extracellular vesicles such as microparticles, exosomes and apoptotic bodies or 

conjugated with RNA binding proteins or lipoprotein complexes [106,107]. 

Recently, a group of reports demonstrate that the expression of miRNA profiles is tissue 

specific and that several miRNAs are dysregulated in brain tissue [108, 109]. For example, 

miR-133b has been reported to be specifically expressed in normal dopaminergic neurons 

and reduced in midbrain tissue of PD patients [110]. Early deregulation of miR-34b/c in 

PD brain samples triggers alterations underlying mitochondrial dysfunction and oxidative 

stress, which at last, compromise cell viability in affected brain areas [111]. Cho et al. 

showed that miR-205 was significantly underexpressed in the frontal cortex of sporadic PD 

patients. They also demonstrated that miR-205 binds to LRRK2-3’UTR, thus leading to its 

down-regulation [112]. 

Margis et al [113] recently found that miR-1, miR-22-5p and miR-29 expression levels in 

total peripheral blood allow to distinguish non-treated PD from healthy subjects, and that 

miR-16-2-3p, miR-26a-2-3p and miR30a differentiate treated from untreated patients. 

Recent study was performed by qRT-PCR in 31 plasma samples from early onset PD 

patients and 25 healthy controls and reported one significantly up-regulated miRNA, miR-
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331-5p [114]; a second plasma-based study identified miR-1826, miR-450b-3p, miR-626, 

and miR-505 in 32 PD patients and 32 controls [115]. Soreq et al. [116] recognized by 

Next Generation Sequencing (NGS) 16 miRNAs significantly dysregulated in blood 

leukocytes from PD patients compared to healthy controls, including miR-16, miR-20a and 

miR-320. Eleven miRNAs were modified following deep-brain stimulation (DBS) 

treatment, five of which were changed inversely to the disease-induced changes. 

MiRNAs might also be involved in iRBD, since a role in sleep regulation and disturbances 

has been postulated from experimental models:  sleep loss is associated with changes in 

miRNA expression in specific brain regions [117] and miR-132 appears to play a 

regulatory role in sleep [118]. 

Because of their characteristics, extracellular miRNAs detectable in the blood have been 

proposed to be used as early biomarkers suitable markers of PD. Identification of specific 

miRNA signature not only may be helpful for diagnosis, but would be possible to use 

miRNAs as target for personal and molecular drug treatment. 

Association studies for disease-specific miRNA generally couple two approaches. The first 

approach based on analysis of thousands of miRNA by high throughput methods such as 

microarray, RT-PCR Array platforms and Next Generation Sequencing (NGS) with 

subsequent validation of miRNA expression biomarkers by quantitative RT-PCR (qRT-

PCR). This method is suitable for screening since it has low sensitivity and high 

variability, but it is less suitable for the analysis of cell-free circulating miRNA in plasma 

or serum because concentrations of many miRNAs in plasma are low, and important 

changes in miRNA levels should not be expected for a chronic pathology. The second 

approach is based on analysis of miRNAs biomarkers candidates, whose expression level 

changes due to a pathology development. This approach also has certain limitations due to 

potential involvement of the same miRNA in diseases of various organs and because 

higher expression of miRNA in an affected organ is not necessarily accompanied by an 

increase in its plasma level [119,120]. Both approaches have been used in the present 

study.  
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2. AIMS OF THE STUDY 

Finding a non-invasive and reliable biomarker in the Parkinson’s disease would be 

necessary to better monitor and to early identify diagnostic features of the preclinical phase 

of PD so that people at high risk for progressing to the clinical phase can be recognised. 

The general aim of this study was to explore potential novel diagnostic and prognostic 

biomarkers of PD. 

Specific study objectives were, in patients with prodromal and established PD: 

a) to evaluate clinical markers such as olfactory and cardiovascular autonomic functions;  

b) to measure circulating mediators of oxidative stress and inflammatory response as early 

biomarkers of organ failure; 

c) to correlate biological findings with clinical functional alterations;  

d) to characterize specific circulating miRNA profiles in plasma samples. 
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3. MATERIALS AND METHODS 

3.1  Study population  

The study population includes 15 patients diagnosed with idiopathic PD (PD group), 10 

subjects diagnosed with idiopathic RBD (iRBD group) and 10 healthy controls (CTRL 

group). 

Eligible subjects aged ≥50 e ≤80 years consecutively recruited between May 2014 and 

May 2015 from the Centre of Sleep Medicine (iRBD group) and by the Neurology 

outpatient clinic (PD group) of Niguarda Cà Granda Hospital and age and gender-matched 

controls (CTRL group) who attended our Institute for laboratory assessment.  

The study was approved by Niguarda Hospital Ethics Committee and conducted in 

accordance with the Declaration of Helsinki [121].  

All subjects expressed their written informed consent to participate. 

All subjects presented none of the exclusion criteria listed below: 

- neurological disorder (other than PD for PD group),  

- major mental disorder,  

- cognitive impairment (Mini–Mental State Examination (MMSE) <26); 

- previous myocardial infarction, heart failure, pacemaker, atrial fibrillation; 

- beta-blockers therapy; 

- glomerular filtration rate <15 ml/min; 

- hepatic insufficiency  

- long standing (>10 years) diabetes. 

 

PD group 

Subjects with clinically diagnosed idiopathic PD, confirmed by a neurologist with 

expertise in movement disorders based on EFNS/MDS-ES recommendations for PD 

diagnosis [122], had to meet the following criteria:  

 Hohen & Yahr stage ≥1 and ≤3 [123]. 

 on L-DOPA and dopamine agonists combination therapy, titrated to maintenance doses 

since at least 1 month.  

PD patients with the following exclusion criteria were not enrolled into the study: 

- genetic aetiology or familial clustering; 

- atypical or secondary parkinsonism; 
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- history of cerebrovascular events; 

- treatment with COMT inhibitors. 

 

iRBD group 

iRBD subjects, enrolled by the Sleep physician according to the International 

Classification of Sleep Disorders criteria [124] had to meet the following criteria:  

 repeated episodes of sleep-related vocalization and/or complex motor behaviours; 

 video-polysomnographic (PSG) documentation of occurrence during REM sleep or 

history suggestive of dream enactment; 

 polysomnographic observation of REM sleep without atonia; 

 exclusion of other sleep disorder, medication, or substance use. 

 

CTRL group 

The control cohort consisted of ten age and gender-matched healthy subjects with a 

cardiovascular risk factor profile similar to the cases enrolled in the study. 

 

3.2  Study design 

Eligible subjects attended the CNR Clinical Physiology Institute in the morning in the 

fasting state to undergo the baseline visit that included the following activities:  

 explanation of the study purpose, procedures, potential risks and benefits, and 

informed consent signing; 

 review of the subject’s medical and drug history;  

 review of concomitant medications; 

 general physical and neurological examination;  

 REM Sleep Behavior Disorder Screening Question [125]; 

 olfactory testing using Sniffin' Sticks Extended Test [126]; 

 blood pressure and heart rate assessment; 

 autonomic function testing;  

 blood sampling for miRNA analysis, oxidative stress profile and inflammation 

markers. 

 urine sampling for neopterine and creatinine assessment. 
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PD subjects were administered the Movement Disorder Society -Unified Parkinson's 

Disease Rating Scale (MDS-UPDRS) Parts I- Non-Motor Aspects of Experiences of Daily 

Living (nMEDL score), for evaluation of mentation, behaviour, and mood and Part II- 

Motor Aspects of Experiences of Daily Living (MEDL score) for self-evaluation of the 

activities of daily life including speech, swallowing, handwriting, dressing, hygiene, 

falling, salivating, turning in bed, walking, and cutting food [127]. 

 

3.3  Sample processing 

After an overnight fast, an antecubital vein was cannulated and blood was drawn into 

different Vacutainer tubes. Immediately after collection, blood samples in EDTA for 

miRNA evaluation and for measurement of oxidative stress and inflammation markers 

were centrifugated at 2000 rpm for 10 minutes in order to separate plasma aliquots. Urine 

samples were drawn into a Vacutainer tubes and immediately stored at -80°C until the time 

for the neopterin determination 

Blood samples for reduced and total GSH determination were treated (see above) and then 

centrifugated at 4000 rpm, for 2 minutes at 4°Cto prevent thiols oxidation. 

Blood samples, collected in serum separator tubes, were kept at room temperature for 30 

minutes to allow samples coagulation before centrifugation at 4000 rpm for 15 minutes. 

Serum samples were used for routine biochemical assessment. 

All samples were stored at -80°C until the time for the determination of circulating 

parameters.  

 

3.4  Biochemical assessments 

3.4.1  Total and reduced glutathione  

Glutathione (GSH), the most important endogenous scavenger, was assessed in total and 

reduced form in plasma and blood samples according to a high performance liquid 

chromatographic (HPLC) method, validated in our laboratory [128]. 

Sample preparation -  Blood and plasma reduced GSH were assessed by mixing whole 

blood or plasma with 10% tri-chloro acetic acid (1:1 v/v), and immediately frozen in liquid 

nitrogen. This step is required to rapidly acidify the medium, avoiding alterations in redox 

state, and remove the aminothiols component linked to proteins. The unfrozen sample was 

centrifuged at 10,000 rpm for 2 min; clear supernatant (100 μL) was mixed with 100 μL of 
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1 M borate buffer, pH 11 containing 4 mM EDTA, 10 μL of 1.55 M NaOH and 10 μL of 

SBD-F acting as a fluorescent derivatization agent able to bound functional sulphydrilic –

SH groups. NaOH and borate buffer assure a basic condition (pH 9.2-9.5) needed by SBD-

F function ability. The mixture was incubated for 60 min at 60 °C before chromatographic 

analysis.  

Because plasma levels of reduced GSH are low (1–2%), blood reduced GSH 

concentrations may come close to GSH content inside the circulating cells (red and white 

blood cells, platelets).  

Blood and plasma total GSH were assayed by mixing 100 μL of whole blood or plasma 

with 10 μL of 10% Tris(2carboxyl-ethyl)-phosphine solution, a reducing agent. In this way 

all the oxidized form of aminothiols have been converted into reduced forms. After 30 

minutes at room temperature, 100 μL of 10% tri-chloro acetic acid were added and samples 

were centrifugate at 10,000 rpm for 2 minutes. Clear supernatant (100 μL) was mixed with 

1 M borate buffer/4 mM EDTA pH 11, 1.55 M NaOH and SBD-F, as described above.  

Standard Curve Preparation: an individual stock solution of GSH reduced forms, was 

prepared by dissolving the GSH powder in a 0.1 M HCl solution to have a final 

concentration of 120 mM (point 1 of curve). From point 1, five successive dilutions (1:2) 

were performed (point 2,3,4,5,6). Each standard point (100 μL) was then treated with the 

same procedure used for blood and plasma samples (Figure 5). 

 

 

Figure 5. Calibration curve of GSH standard. 

 

Chromatographic conditions - GSH separation was performed using a Varian ProStar 

HPLC system (VARIAN, Agilent) equipped with a pump (240 model) and a refrigerated 
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autosampler 410 model), on a Discovery C-18 column (250×4.6 mm I.D, Supelco, Sigma-

Aldrich), eluted with an isocratic mobile phase of 0.1 M phosphate buffer and 8% 

acetonitrile pH 2.1, at a flow rate of 1 mL/min. Fluorescence intensities were measured 

using a with a  excitation at 385 nm and  emission at 515 nm, using a JASCO 

fluorescence detector (FP-4025 model). 

The retention time of GSH was 7.76 minutes (Figure 6). 

 

 

Figure 6. Aminothiols Chromatogram. 

 

 

3.4.2  3-Nitrotyrosine (3-NT) 

3-NT is a stable end product of peroxynitrite oxidation. Plasma 3-NT is measured using an 

ELISA Kit from Hycult Biotech (Uden, The Nederland) according the manufacturer’s 

instruction. It is a ready-to-use solid-phase enzyme-linked immune-sorbent assay (ELISA) 

based on the sandwich principle (Figure 7). Samples and standards were incubated in 

micro titer wells coated with antibodies recognizing 3-NT. Biotinylated tracer antibody 

binds to captured 3-NT. Streptavidin-peroxidase conjugate binds to the biotinylated tracer 

antibody and reacts with the substrate, tetramethylbenzidine (TMB) producing a color 

proportional to the amount of substrate bound. The absorbance at 450 nm was measured 
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with a spectrophotometer. A standard curve was obtained by plotting the absorbance 

(linear) versus the corresponding concentrations of the 3-NT standards log. The 3-NT 

concentration of samples, which are run concurrently with the standards, can be 

determined from the standard curve. 

 

 

Figure 7. A sandwich ELISA schematic principle. 

 

3.4.3  Malondialdehyde (MDA) 

MDA is formed by lipid peroxidation of unsaturated fatty acids and is a index for oxidative 

degradation of cellular membranes. In order to measure this molecule, we use a 

commercial kit of ChromSystems (Gräfelfing, Germany) that allows the reliable 

chromatographic determination of MDA on a simple, isocratic HPLC system with 

fluorescence detector. Sample preparation is based on an efficient protein precipitation step 

followed by derivatisation. The resulting fluorophore is specific and detectable at λ 

excitation of 515 nm and λ emission of 553 nm. The flow rate of mobile phase was 1 

mL/minute. Briefly, the protocol implemented the following steps: 

 100 µl plasma were mixed with 500 µl Precipitation Reagent. 

 Centifugated for 5 min at 16 000g. 

 500 μl of the supernatant were transfer into a dark derivatization vial.  

 100 μl Derivatization Reagent were added and mixed briefly.  

 The reaction was incubated for 60 min at 95 °C, and cooled down immediately. 

 500 μl Neutralisation Buffer were added and mixed briefly. 

 20 µl of each sample was injected into the HPLC system. 
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3.4.4  8-Hydroxy-deoxiguanine (8-OHdG) 

The 8-OHdG, a biomarker of oxidative DNA damage, is removed from DNA by the base 

excision repair pathway, and subsequently transported into saliva, urine and plasma. 

Plasma 8-OHdG levels were assessed according HT 8-OHdG ELISA kit II 

recommendations from TREVIGEN (Gaithersburg, MD, USA). It is a fast and sensitive 

immunoassay for the detection and quantitation of 8-OHdG in plasma. This assay employs 

a 96 strip well pre-coated with 8-OHdG, an anti-8-OHdG monoclonal mouse antibody, an 

HRP conjugated secondary antibody, and colorimetric detection substrate. The 8-OHdG 

monoclonal antibody binds competitively to 8-OHdG immobilized on pre-coated wells and 

in solution. Antibody bound to 8-OHdG in the sample is washed away with PBST buffer 

(1X PBS + 0.1% Tween 20) while antibody bound to 8-OHdG attached to the well is 

retained. Detection was performed with horseradish peroxidase (HRP) conjugate and a 

colorimetric substrate, using a microplate reader with a spectrophotometer set at 450 nm. 

HRP binds to the biotinylated tracer antibody and reacts with the substrate, 

tetramethylbenzidine (TMB) producing a blue colour product that changed into yellow 

after adding acidic stop solution. Product formation is inversely proportional to amount of 

8-OHdG present in the sample.  

3.4.5  Inflammatory markers 

Interleuchin 1 beta (IL-1) is an important mediator of the inflammatory response 

produced by activated macrophages. Plasma IL-1levelwas measured by PicoKine™ 

ELISA kit from Boster Biological Technology (Pleasanton, USA) according the 

manufacturer’s instruction. Briefly, a monoclonal antibody from mouse specific for IL-

1has been precoated onto 96-well plates. Standards and test samples were added to the 

wells, a biotinylated detection polyclonal antibody from goat specific for IL-1 was added 

subsequently and then followed by washing with PBS buffer. Avidin-Biotin-Peroxidase 

Complex was added and unbound conjugates were washed away with PBS buffer. HRP 

binds to the biotinylated tracer antibody and reacts with the substrate TMB producing a 

blue colour product that changed into yellow after adding acidic stop solution. The optical 

density, determined using a microplate reader with spectrophotometer set at 450 nm, was 

proportional to IL-1amount present in the sample. 

Tumor necrosis factor alpha (TNF-) is another important cytokine involved in acute 

phase inflammation. Plasma TNF- levels were performed according Human TNF-
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ELISA kit from Cayman Chemical Company (Ann Arbor, MI, USA). Each well of micro 

well plate has been precoated with a monoclonal antibody specific for TNF-. Standards 

and test samples were added to the wells, An acetylcholinesterase:Fab’ Conjugate 

(AChE:Fab’), which binds selectively to a different epitope on the TNF- molecule, is also 

added to the well. When TNF- (standard or samples) is added to the well, the two 

antibodies form a “sandwich” by binding on opposite sides of the TNF- molecule. The 

“sandwiches” are immobilized on the plate so the excess reagents may be washed away. 

The concentration of analyte is the determined by measuring the enzymatic activity of the 

AChE by adding Ellman’s Reagent (that contains the substrate for AchE) to each well. The 

product of the AChE-catalyzed reaction has a distinct yellow colour which absorbs 

strongly at 412 nm. The intensity of this colour, determining spectrophotometrically, is 

directly proportional to amount of bound Conjugate which in turn is proportional to the 

concentration of TNF-.  

Urine neopterin (Neo) is a sensitive marker of cellular-mediated inflammation. Urine Neo 

levels were measured by an isocratic HPLC method and normalized by urine creatinine 

concentrations [129]. Briefly, urine samples, stored at −20 °C, were thawed and 

centrifuged; the surnatant was then adequately diluted with chromatographic mobile phase 

(15 mM of K2HPO4, pH 3.0). Neopterin and creatinine levels were measured using a 

Kontron instrument (pump 422-S, autosampler 465) coupled to a fluorimetric detector 

(JASCO FP-1520, λ excitation = 355 nm and λ emission= 450 nm) for neopterin detection 

and to a UV–VIS detector (BIO-RAD 1706, λ=240 nm) for creatinine determination. 

Neopterin and creatinine separations were performed at 50 °C on a 5 μm Discovery C18 

analytical column (250×4.6 mm I.D., Supelco, Sigma-Aldrich) at flow rate of 0.9 mL/min. 

The calibration curves were linear over the range of 0.125–1 μmol/L and of 1.25–10 

mmol/L for neopterin and creatinine levels, respectively. 
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3.5  Functional testing 

3.5.1. Olfactory test 

Olfactory function was assessed by the Sniffin’ Sticks Extended Test (Burghart, 

Medizintechnik, GmbH, Wedel, Germany) [126]. The olfactory threshold is the minimum 

concentration of an odorant (n-butanol) that can be detected by a subject when presented 

with 16 different dilutions in felt tip pens. Olfactory discrimination assesses the ability to 

discriminate between different odorants in 16 different triplets. Olfactory identification 

evaluates the ability to correctly identify an odorant among four possible odours for each 

of 16 trials (Figure 8). The total olfactory score (TOS) was calculated as sum of the 3 sub-

scores for olfactory threshold, discrimination and identification and reclassified as normal 

olfaction (between 31 and 48), hyposmia (between 16 and 30) and anosmia (≤15). 

 

Figure 8. Sniffin’ Sticks Extended Test. 

 

3.5.2  Autonomic testing  

Autonomic function [130] was tested in the supine position at a comfortable ambient 

temperature. Heart rate was recorded via standard 12-lead electrocardiogram (Norav PC 

ECG-1002). Blood pressure was measured non-invasively by a manual 

sphygmomanometer.  

Deep Breathing (DB). After 10-minute rest, subjects performed one minute DB (6 

inspiratory and expiratory cycles of 5 seconds each) during continuous ECG recording. 

The DB Expiration/Inspiration (E/I) ratio was calculated as ratio of averages of the three 
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longest RR intervals during expiration and the three shortest RR intervals during 

inspiration.  

Lying to standing (LS). After 10-minute rest, patients were instructed to stand up and 

remain standing for 5 min. Changes in systolic/diastolic blood pressure and heart rate were 

assessed after 1 and 5 minutes standing from the supine position. Orthostatic hypotension 

(OH) was defined as a drop ≥20 mmHg in systolic and/or ≥10 mmHg in diastolic blood 

pressure. The LS 30:15 ratio was the ratio between the longest RR interval measured 

between the 25th and 35th beat after active standing and the shortest RR interval between 

the 10th and 20th beat.  

Valsalva manoeuvre (VM). Sitting patients were instructed to blow into a tube connected 

to a manometer to maintain the pressure at 40 mmHg for 15 seconds, during continuous 

heart rate and blood pressure monitoring. VM ratio was the ratio of the shortest RR interval 

(tachycardia) during expiration to the longest RR interval (bradycardia) after expiration.  

 

3.6  Circulating miRNA profiling study 

The circulating miRNA study was performed in a subpopulation of the enrolled cohort of 

subjects (4 PD, 4 iRBD and 4 CTL), using the Next Generation Sequencing (NGS) method 

able to study a complete profile of miRNA expression.   

Plasma circulating RNA extraction. 

Circulating RNA extraction was performed using QIAamp Circulating Nucleic Acid kit 

(Qiagen) following the manufacturer’s instruction. Plasma volume used for each samples 

was 2 mL. Quality control of total RNAs was performed with 2100Bioanalyzer (Agilent 

Technologies). 

small-RNA libraries preparation 

small-RNA libraries was construction constructed using TruSeqSmall RNA sample 

preparation kit (Illumina) according to the manufacturer’s instruction. Briefly, the protocol 

implemented the following steps to generate a library product, shown in Figure 9: 

 RNA ligation with 3’ and 5’ adapter; 
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 reverse transcription (RT),  

 15 cycles of PCR amplification,  

 gel purification  

The RNA 3' adapter was specifically modified to target microRNAs and other small RNAs 

that have a 3' hydroxyl group resulting from enzymatic cleavage by Dicer or other RNA 

processing enzymes. The adapters were ligated to each end of the RNA molecule. An RT 

reaction was used to create single stranded cDNA by SuperScript Reverse Transcriptase 

(Life Technologies) using a primer complementary of RNA 3' adapter.This process 

selectively enriches those fragments that have adapter molecules on both ends. The 

resulting cDNA was then PCR amplified using two primers: one common to the ends of 

the adapters and a primer containing one of 48specific sequence (Index primer) that allow 

the subsequently identification during sequencing. Each cDNA thus obtained constitutes 

the sample library, and each library is characterized by a different Index primer: in this 

way it is possible to sequence more samples simultaneously. The small-RNA cDNA 

libraries were heterogeneous in size below 200 bp. 
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Figure 9. TruSeq Small RNA Sample Preparation Workflow. 

 

 

 

To isolate only the mature miRNA fraction, a gel purification was performed. For each 

library, cDNA was size fractionated on a 5% tris-borate-EDTA (TBE) polyacrylamide gel 

(Bio-Rad) and the 147 base pair fraction, corresponding to miRNA (20bp) plus two 

primers, was selected and excised. After gel purification, the cDNA libraries were eluted in 

10 µl of Tris-HCl 10 mM pH 8.5. At the end, each library was run on Bioanalyzer 2100 

(Agilent Technologies) in order to check the library quality. A good library should present 

a single peak around the length of 147-150 bp (Figure 10). Six purified libraries were mix 

to obtain two libraries pools (6plex). 
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Figure 10. Library quality check assessed by 2100 Bioanalyzer (Agilent Technologies) 

A. Electropherogram of a library before size selection. B. Electropherogram of a 

library after size selection. The red arrows indicate mature miRNA fraction. The 

green and purple arrows indicate the 35 bp and 10380 bp reference markers, 

respectively. 

 

Small-RNA-sequencing 

After libraries quality check, the library pools were quantified using fluorescence-based 

detection, by Qubit 2.0 Fluorometer (Invitrogen, Life Technologies),and then, were 

correctly diluted with NaOH 0.2 N. Sequencing was performed using MiSeq sequencer 

(Illumina). As a control for sequencing runs, a fixed amount of PhiX Control was added 

for each sample.  

Primary data analysis 

Raw sequenced reads were stored in FASTQ files and were analyzed through the following 

steps: 

A. Sequences quality assessment: the quality of produced reads and the presence of 

adapters sequences were checked using FASTQC v0.10.1, a bioinformatics software. 

Primary sequences reads were initially trimmed off adapter sequences using Cutadapt 

v.1.2.1 [131]; 

B. miRNA mapping: to identify expressed miRNAs, reads were mapped to known human 

pre-miRNA and mature miRNA sequences that are annotated in miRBase database (release 

21) using miRExpress tool (v2.1.3) [132]. The miRBase database is a public available 

repository containing all known human miRNAs. The number of clean reads that mapped 

on mature miRNAs was reported in an output file.  
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C. miRNA profiling: the expression level of each miRNA is proportional to the number of 

reads that are sequenced; for this reason, miRNA expression profiles were built by 

calculating the sum of read counts for each miRNA, according to the alignment criteria. 

 

Secondary Analysis 

A. Exploratory data analysis: the overall similarity between all samples was 

investigated by calculating the Euclidean distance of the miRNA expression 

profiles, followed by hierarchical clustering. More specifically, the cluster analysis 

is an explorative analysis that tries to identify homogenous groups of cases, 

showing a similar expression of a specific microRNA pattern. 

B. Differentially expressed miRNAs identification: from the output file the differential 

expression analysis, based on the negative binomial distribution, was performed 

with DESeq2 (R/Bioconductor package) comparing:  

1) CTRL versus RBD samples  

2) RBD versus PD samples  

3) CTRL versus PD samples 

The output file of each comparison contained the following items for each miRNA 

selected: 

- baseMean: average of the normalized count values 

- log2FoldChange: effect size estimate 

- the P value and the P value adjusted calculated by BH multiple testing 
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3.7  miRNA validation by Quantitative Real-Time PCR 

Expression analyses of specific miRNAs were validated by qRT-PCR. This study was 

performed in all recruited subjects. 

 

miRNA extraction  

Total RNA that included miRNAs was isolated from plasma using the miRNeasy 

Serum/Plasma Kit (QIAGEN). Each plasma sample was thawed and centrifugated at 

14,000  rpm for 15 minutes at 4°C to obtain cell-free plasma. Briefly, the procedure 

consisted of the following steps (Figure 11):  

1. plasma samples were lysed in QIAzol Lysis Reagent, a monophasic solution of phenol 

and guanidine thiocyanate that facilitates cell lysis, inhibits RNases, and also removes 

most of the cellular DNA and proteins from the lysate by organic extraction. After 

addition of chloroform, the lysate is separated into aqueous and organic phases by 

centrifugation. RNA partitions to the upper, aqueous phase, while DNA partitions to 

the interphase and proteins to the lower, organic phase or the interphase.  

2. the upper, aqueous phase was extracted, and ethanol was added to provide appropriate 

binding conditions for all RNA molecules from approximately 18 nucleotides 

upwards. The sample was then applied to the RNeasy MinElute spin column, where 

the total RNA binds to the membrane and phenol and other contaminants were 

efficiently washed away with buffers included in kit. High-quality RNA is then eluted 

in a 14 L of RNase-free water. 

During miRNA purification, the miRNeasy Serum/Plasma Spike-In Control from C. 

Elegans (cel-miR-39) was added to samples at the lyses phase after the addition of QIAzol 

Reagent.  
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Figure 11. miRNeasy Serum/Plasma Procedure. 

 

cDNA synthesis  

Reverse transcription (RT) reaction was prepared in a total volume of 20 μL using miScript 

II RT Kit (QIAGEN) adding the following reagents (Figure 12): 

 10 μL of each total RNA  

 4 μL of miScript HiSpec Buffer,5x (in order to retrotrascribed only mature miRNA)  

 2 μL of miScript Nucleics Mix,10x 

 2μL of miScript Reverse Transcriptase Mix, 10x  

 2μL of RNase-free H2O  
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Thermal cycler conditions were as follows: one step of 37°C for 90 minutes, one step of 

95°C for 5 

minutes to inactivate miScript Reverse Transcriptase, followed by 1 step of 4°C for 5 

minute. The RT reaction product was diluted with 200 μL of RNase-free water and then 

stored at -20°C until its use. 

 

 

 

Figure 12. miScript II RT Kit (QIAGEN) 

 

Quantitative Real Time PCR 

Expression analysis of specific miRNAs (let-7, miR-101, mir-1260, miR-142, miR15a) 

were assessed by qRT-PCR. qRT-PCR was performed according to miScript SYBR Green 

PCR kit (QIAGEN) recommendation, using CFX96 thermal cycler, (Biorad, Hercules, 

CA). miRNA quantification was detected by evaluating the level of fluorescence emitted 

by SYBR® Green at every reaction cycle. During each cycle, cDNA molecules are 

doubled since they reach a plateau when all the reagents are depleted and enzymes activity 

is drastically reduced. All RT PCR reactions were performed in a total volume of 20μL, 
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and prepared in duplicate. For each miRNA-specific assay, the following reagents were 

added: 

 10 μL of QuantiTec SYBR Green PCRMaster Mix, 2x 

 2.5 μL of miScriptUniversal Primer(UP), 10x 

 2.5 μL of miScriptPrimer Assay, 10x 

 2.5 μL of Template cDNA 

 2.5μL of RNase-free H2O 

 

Reactions were incubated at 95°C for 15 min, then 40 cycles of 94°C for 15 sec, 55°C for 

30 sec, 70°C for 30 sec, then a dissociation curve analysis of the PCR products to verify 

their specificity and identity. Dissociation curve analysis is an analysis step built into the 

software of real-time cyclers. 

Relative expression levels were calculated with the comparative threshold cycle (Cq) 

method using the formula: 2^-ΔΔCq [133], using the exogenous spike-in cel-miR-39 as 

reference for normalization. Threshold for expression was set as Cq<37, and miRNAs not 

expressed under these criteria were removed from consideration.  

 

3.8  Statistical Analysis 

Data are presented as median (interquartile range) or frequency (percentage). Categorical 

variables were compared by the chi-square test. Pearson's R correlation coefficient or 

Spearman's rho index were used to correlate continuous clinical, biochemical and 

functional variables (age, symptom duration, nMEDL, MEDL, GSH, Neopt, MDA, 3-NT, 

8-OHdG, TNF,IL1, TOS, LS 30:15 ratio, VM ratio, DB-ratio). Associations with the 

dependent variable “group” were tested by univariable ordinal logistic regression; variables 

with p<0.10 were entered in a multivariable model.  

miRNA expression values coming from RT-PCR quantification have been compared 

among groups by ANOVA analysis. 

A P value <0.05 was considered statistically significant. Statistical analyses were carried 

out with the Statistical Package for the Social Sciences (SPSS Inc, Chicago, Illinois, USA), 

version 17.0 for Windows. 
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4. RESULTS 

4.1  Clinical, biochemical and functional characteristics of the study 

groups 

The clinical characteristics and biochemical and functional parameters of the three study 

groups are summarized in Table 2. We enrolled 38 subjects: 15 patients with overt PD, 11 

subjects with PSG-confirmed iRBD and 12 age- and gender-matched CTRL between May 

2014 and May 2015. 

The average age of the overall population was 70 ± 6 years. Gender distribution was 

similar in the three different groups. The cognitive impairment, expressed as MMSE, was 

28 in iRBD and CTRL and 29 in PD. 

The clinical features of PD patients with respect to disease severity are summarized in 

Table 3. Patients had long standing disease with mild to moderate burden of motor and non 

motor symptoms; only 2 had complicated disease with on-off phenomena and dyskinesia. 

The duration of disease correlated directly with L-DOPA dose (r 0.650, p=0.012) and 

inversely with the DB E/I ratio (r -0.642, p=0.021). Conversely, no correlation was 

observed either with the burden of NMS or with the olfactory score. nMEDL score was 

inversely related to VM ratio (R=-0.726, p=0.017) and with TOS (R=-0.873, p<0.001). 

Conversely, MEDL did not correlate with any biochemical or functional variable but only 

with age (R=0.523, p=0.045). Six PD patients (40%) reported sleep behaviours compatible 

with RBD at the screening question; no differences were observed between patients with 

and those without suspect RBD either in clinical findings or in functional and biochemical 

characteristics.  
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Table 2. Clinical, biochemical and functional characteristics of the study groups 

 Controls (n=12) IRBD (n=11) PD (n=15) 

Age, years 71 (59-74) 71 (64-73) 70 (58-76) 

Gender (M), n% 7 (58%) 10 (91%) 7 (47%) 

Smoking habit, n% 2 (17%) 4 (36%) 1 (7%) 

Hypercholesterolemia, n(%) 4 (33%) 2 (20%) 2 (13%) 

Hypertension, n(%) 7 (58%) 4 (36%) 3 (20%) 

Anti-hypertensive drugs, n(%) 7 (58%) 4 (36%) 2 (13%) 

MMSE 28 (27-28) 28 (27-29) 29 (27-30) 

Systolic Blood pressure mmHg 120 (113;129) 140 (105;160) 135 (115;140) 

Diastolic Blood pressure mmHg 70 (65;70) 70 (65;70) 70 (70;80) 

Heart rate, bpm 64 (60;70) 58 (49;64) 69 (61;78) 

Blood reduced GSH, mol/L 759 (650;833) 582 (380;715) 519 (467;639) 

Blood total GSH, mol/L 1364 (1205;1521) 1091 (923;1563) 1070 (860;1743) 

Plasma reduced GSH, mol/L 1.13 (0.88;1.57) 1.05 (0.72;1.61) 0.86 (0.69;1.01) 

Plasma total GSH*, mol/L 6.95 (6.35;8.66) 5.60 (4.25;10.90) 6.10 (4.57;7.60) 

Plasma MDA, mol/L 0.16 (0.14;0.17) 0.15 (0.14;0.16) 0.14 (0.13;0.16) 

Plasma 3-NT, nmol/L 12.7 (6.1;29.3) 19.7 (17.1;48.6) 18.2 (10.0;34.5) 

Plasma 8-OHdG, nmol/L 279 (229;348) 227 (180;307) 280 (209;357) 

Urine neopterin,(mol/molcreat) 127 (93;188) 141 (114;185) 164 (125;226) 

Plasma TNFpg/mL 26 (21;46) 34 (22;66) 28 (22;60) 

Plasma IL1pg/mL 10.9 (8.9;13.6) 15.0 (12.0;16.1) 10.9 (8.4;14.5) 

Total olfactory score 28.7 (22.2;33.0) 17.5 (11.0;21.5) 18.7 (15.0;24.0) 

LS 30:15 Ratio 1.22 (1.05;1.37) 1.13 (1.07;1.19) 1.03 (1.01;1.18) 

SBP drop at 1 minute standing -2.5 (-16.2;-12.5) -15.0 (-20.0;-10.0) -20.0 (-30.0;-5.0) 

DBP drop at 1 minute standing 0 (-7.5;5.0) -10.0 (-15.0;-5.0) -5.0 (-15.0;0) 

VM Ratio 1.50 (1.31;1.73) 1.38 (1.26;1.45) 1.27 (1.14;1.53) 

DB E:I ratio 1.17 (1.11;1.27) 1.14 (1.09;1.21) 1.15 (1.11;1.26) 

Data are expressed as median and interquartile range (I-III) or as frequency (%).DB, deep-breathing; E:I 

expiration/inspiration; IL, interleukin; LS, lying to standing; GSH, glutathion, MDA, malondialdehyde; 

TNF, tumor necrosis factor; VM, Valsalva manoeuvre. 
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Table 3. Clinical characteristics of disease severity in PD group 

 

 Median (I-III) 

Hohen&Yahr Score 2.5 (2.0-2.5) 

UPDRS Part I 2.0 (1.0-6.0) 

nMEDL 9.0 (5.0-11.0) 

MEDL 12.0 (7.0-14.0) 

nMEDL + MEDL 19 (16-26) 

DOPA dose (mg/die) 500 (300-850) 

Rotigotine dose (mg/die) 9.0 (6.5-11.5) 

Ropirinol dose (mg/die) 6.0 

Pramipexol dose (mg/die) 2.10 (1.05-2.10) 

MEDL, motor experiences of daily living; nMEDL, non-motor experiences of daily living 

 

 

 

4.2  Functional and biochemical differences among PD, iRBD and 

CTRL groups 

Results of univariable ordinal logistic regression analysis are shown in Table 4. Among 

clinical characteristics, a higher prevalence of a history of hypertension was found in 

CTRL than in iRBD and PD patients. A significant worsening trend was observed in total 

olfactory score, blood reduced GSH, LS 30:15 and VM ratio, and urine neopterin from the 

reference controls to iRBD and PD groups. 

In the multivariable ordinal logistic regression model, only low blood reduced GSH levels 

(P = 0.037, OR = 0.994; 95% CI 0.988 – 1.000), adjusted by history of hypertension, total 

olfactory score, LS 30:15 ratio and VM ratio, was associated to PD status.



47 

 

 

 

Table 4. Univariable ordinal logistic regression analysis 

 P OR 95% CI 

Age, years 0.575 0.981 0.920 - 1.047 

Gender (M), n% 0.365 0.566 0.165 - 1.944 

Smoking habit, n% 0.473 0.573 0.125 - 2.622 

Hypercholesterolemia, n(%) 0.216 0.392 0.089 - 1.726 

Hypertension, n (%) 0.043 0.267 0.075 - 0.960 

MMSE 0.620 1.147 0.668 - 1.970 

Blood reduced GSH, mol/L 0.009 0.995 0.991 - 0.999 

Blood total GSH, mol/L 0.892 1.000 0.998 - 1.002 

Plasma reduced GSH, mol/L 0.181 0.736 0.469 - 1.155 

Plasma total GSH, mol/L 0.132 0.852 0.692 - 1.049 

Plasma MDA, mol/L 0.229 0.000 0.001 – 8323 

Plasma 3-NT, nmol/L 0.585 0.998 0.991-1.005 

Plasma 8-OHdG, nmol/L 0.696 1.001 0.995 - 1.007 

Urine neopterin, (mol/molcreat) 0.083 1.107 0.987 - 1.242  

Plasma TNFpg/mL 0.421 1.004 0.992 - 1.016 

Plasma IL1pg/mL 0.582 1.043 0.897 - 1.213 

TOS 0.009 0.890 0.815 - 0.973 

LS 30:15 Ratio 0.047 0.004 0.001 - 0.919 

SBP drop after 1 minute standing 0.100 0.977 0.951-1.004 

DBP drop after 1 minute standing 0.116 0.952 0.896-1.012 

MV Ratio 0.047 0.045 0.002 - 0.961 

DB E/I ratio 0.958 0.879 0.007 – 111 

For abbreviations see Table 2 
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4.3  Group comparison with respect to functional category 

The distribution of olfactory abnormalities among groups is depicted in Figure 13, panel A. 

Although the findings did not achieve statistical significance (P=0.097), functional 

anosmia was similarly prevalent in iRBD (36%) and PD (33%) patients, but was absent in 

CTRL; conversely, a higher proportion of controls (36%) was normosmic compared to 

iRBD (9%) and PD (7%). Hyposmia was similarly prevalent in the 3 groups (64% in 

CTRL, 55% in iRBD and 60 % in PD group), as expected from the advanced age of the 

enrolled population. 

OH was more common among iRBD (73%) and PD (60%) than in controls (25%), with 

borderline significance (p=0.055) (Figure 13, panel B), independently of antihypertensive 

treatment. 
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Figure 13. Comparison among CTRL, iRBD and PD groups with respect to olfactory 

function (Panel A) and orthostatic hypotension (OH) (Panel B).
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4.4  Correlations among clinical, biochemical and functional variables 

The relationship between functional and biochemical variables in the overall population is 

shown in Figure 14 A direct correlation was observed between TOS and blood reduced 

GSH concentrations (panel A) and VM ratio (panel B). Conversely, TOS was inversely 

related with urine neopterin levels (panel C). 

 

 

 
 

Figure 14. Correlation between (A) total olfactory score (TOS) and blood reduced 

glutathione (GSH), (B) Valsalva manoeuvre (VM) ratio, (C) urinary neopterin. 
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4.5  miRNA screening analysis 

Primary analysis: 

Overall, an average of 4 million of 36 bp single-end reads from each sample was obtained. 

After pre-processing and filtering steps, about 2,7 million reads per sample of clean 

sequences (minimum length of 17bp) were selected for downstream analysis. For each 

sample, miRNA expression profile was built by counting the number of sequenced reads 

for each identified miRNA that is present in miRBase v.21. About 889 thousand reads 

mapped to mature miRNA sequences annotated in miR Base v.21. The distribution of total 

reads counts in each sample is shown in table 5. 

 

 

Table 5. Primary data analysis for each sample submitted to NGS 

 

    
Total raw 

reads 

Total clean 

reads 

miRNAs 

reads 

Sample ID Group       

MONPI PD 4175567 3460919 1471225 

PERSA PD 6746074 3656277 655337 

CORGI PD 3837344 2566989 714984 

FOIMA PD 4765964 2998895 655740 

GUAGU RBD 4434625 3098705 1423235 

HONGI RBD 3072386 1885273 934277 

ACQAN RBD 3137508 2264316 723285 

UGOMA RBD 1661235 1358618 667221 

PEDAN CTRL 2810804 1493910 473819 

CAMPA CTRL 5918979 4944012 998772 

CINGI CTRL 5558930 3453483 1188206 

FIOGRE CTRL 2729471 1669040 756306 

Average Counts 4070741 2737536 888534 
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Secondary analysis: 

A. Exploratory data analysis: in order to retrieve insight into group similarities, the overall 

similarity between all samples was investigated by measuring the Euclidean distance 

between the miRNA expression profiles, followed by hierarchical clustering. Resulting 

heat map (Figure 15) suggested that, considering the global miRNA expression profile of 

all samples, samples were generally very similar each other. Samples belonging to RBD 

group were more homogeneous respect to samples of the other two groups. 

Moreover, in the PD group as well as in the CTRL group two samples (MONPI and 

CAMPA respectively) were more different from the other members of the same group, 

even if not so much to exclude them from the differential analysis only on the base of these 

results. So we decided to perform the differential analysis with all samples. 
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Figure 15.  Sample clustering based on sequenced microRNA profiles. The heat map 

shows a blue scale false colour representation of the Euclidean distance matrix, and 

the dendrogram represents a hierarchical clustering.   
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B. Differentially expressed miRNAs identification: No statistically significant DE miRNA 

was observed in the PD versus CTRL, whereas we found 33 DE miRNAs in the PD versus 

iRBD comparison; among these, 18 were downregulated with FC<-0.5 and 15 upregulated 

with FC>0.5. Six DE microRNA (3 down- and 3 up-regulated) was detected in the iRBD 

group compared to CTRL one. 

 Only 4 DE miRNAs (miR-101, mir-1260a, miR-142, miR15a) were common in the two 

comparisons reported above. As shown in Table 6, three of these (miR-101, mir-142 and 

miR15a) were downregulated and one (mir-1260a) upregulated in the PD patients with 

respect to iRBD group. Conversely, miR-101, mir-142 and miR15a were upregulated and 

miR-1260a downregulated, in iRBD compared to CTRL subjects. 

 

Table 6. Analysis of DE miRNA between PD versus RBD and RBD versus CTRL 

groups 

miRNA ID PD vs iRBD iRBD vs CTRL 

 
log2 FC p-value log2 FC p-value 

hsa-miR-101 -1,26 2,56E-04 2,77 5,56E-03 

hsa-mir-142 -0,91 1,53E-03 2,84 4,47E-03 

hsa-mir-15a -1,41 4,76E-05 2,78 5,35E-03 

hsa-mir-1260a 1,31 3,10E-04 -2,94 3,31E-03 

 

 

 

4.6  miRNA validation by Quantitative Real-Time PCR 

In order to validate the results observed in our miRNA sequencing analysis, we 

subsequently carried out the qRT-PCR in the overall recruited subjects (n=38). 

Specifically, miR-101, mir-1260a, miR-142, miR15a were chosen for validation test. 

Relative expression levels were calculated by the 2−ΔΔCT method, using the exogenous 

spike-in cel-miR-39 as reference for normalization. The crucial step of this analysis was 

the optimization miRNA extraction method to achieve adequate miRNA quality and 

quantity. In order to optimize the method of RNA extraction we primarily tried to increase 

the starting plasma volume from 100 ml to 200 ml modifying the manufacturers’ protocol. 

In addition, we added for each sample, 5 μg of glycogen, a common co-precipitant for 

enhanced RNA recovery. To evaluate the miRNA recovery, we monitored the Cp of cel-
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miR-39 spike-in control, added during the RNA extraction. We detected an increase of 

miRNA yields observing a reduction of the mean spike-in control Cp (data not shown). We 

performed new qRT-PCR assay for each miRNA but no statistical differences were still 

found between three groups (Figure 16).  

 

 

Figure 16. Relative Expression for let-7, miR-101, miR-1260, miR-142 and miR-15a in 

PD, iRBD and CTRL groups by qRT-PCR. 
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5. DISCUSSION 

Development and validation of disease-specific biomarkers for the diagnosis of 

preclinical phase of PD represents one of the most urgent needs in neurological research 

[4]. The purpose would be to find a non-invasive and reliable biomarker, or a panel of 

biomarkers in PD in order to recognise and better monitor asymptomatic individuals during 

the early-stage of the disease.  

The main findings of the present study are that reduced systemic antioxidant capacity is 

independently associated to overt PD and iRBD, a condition established as prodromal PD, 

and correlates with olfactory and sympathetic dysfunction. Moreover, progressive 

cardiovascular autonomic dysfunction, expressed as altered sympathetic (VM ratio, OH) or 

parasympathetic (LS ratio) response to testing, is found from prodromal state to overt 

disease and correlates with olfactory dysfunction. Increased concentrations of neopterin, an 

inflammatory biomarker, are associated with worse olfactory dysfunction. 

GSH, the most abundant aminothiol in mammalial cells, has several functions in the 

brain, acting as an antioxidant and a redox regulator [134]. Several evidences, from 

experimental results in PD models and analyses of postmortem brain tissue from PD 

patients, point to a profound loss of GSH in the substantia nigra, that parallels the severity 

of disease and occurs prior to other hallmarks of tissue damage [135,136]. GSH depletion 

may affect mitochondrial function through the selective inhibition of mitochondrial 

complex I enzyme in the respiratory chain [137] which leads to an excessive production of 

ROS and a general decrease in ATP levels. 

We found low GSH concentrations in blood cells of both PD patients and prodromal iRBD 

subjects. These results suggested that antioxidant depletion may be present not only in 

brain tissue, but also in systemic cellular districts, already at an early stage of disease. 

However, we did not find any difference in plasma GSH content and oxidative stress 

biomarkers, indicating that this perturbation might be confined to the intracellular space 

without involvement of the extracellular compartment.  

In our study, blood reduced GSH concentrations paralleled the progression from prodromal 

to overt disease, as expressed by olfactory impairment and autonomic dysfunction. 

Moreover, blood reduced GSH levels were directly related to total olfactory score in the 

overall population, indicating that subjects with olfactory dysfunction have low GSH 

concentrations. 
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The long established observation of olfactory dysfunction as an early frequent 

feature of PD, which often precedes motor symptoms by several months or even years 

[138], is grounded in Braak's hypothesis of a six-stage pathological process in the 

development of PD [29]. The accumulation of Lewy bodies follows a predictable 

sequence, that begins in the anterior olfactory nucleus and bulb and in the dorsal motor 

nuclear complex of the glossopharyngeal and vagal nerves and gradually advances, 

through the brain stem toward the midbrain, in the late stage of the disease. Recent 

findings of decreased olfactory bulb volume in volumetric MRI scans of PD patients lent in 

vivo support to these neuropathological findings [32] Importantly, previous studies did not 

find a significant progression of olfactory dysfunction with PD duration [33,36]. We 

observed worsening olfactory dysfunction from control subjects to iRBD and PD patients, 

with functional anosmia being present in both iRBD and PD patients, but not in CTRL. 

While odour identification, discrimination, and threshold detection are unlikely to 

deteriorate in the course of PD, as confirmed by the lack of correlation between olfactory 

dysfunction and disease duration in our PD group, olfactory loss may be an important 

preclinical marker of disease, which may be assessed using non-invasive and low cost 

methods, such as the standardized “Sniffin’ Sticks” test. Conversely, hyposmia, which is 

strongly influenced by age, was unable to discriminate patients in the prodromal phase or 

with overt disease from CTRL. On the same line, worse olfactory dysfunction correlated 

with increased neopterin levels, which were not independently predictive of overt PD; 

aging per se is in fact a state of low-grade inflammation. 

Cardiovascular dysautonomia in PD affects both the sympathetic and 

parasympathetic component of the autonomic nervous system [39,139,140]. OH is present 

in up to 52% of PD patients[141]. Mechanisms of OH in PD have been postulated to 

include baroreflex failure due to central lesions in the upper brainstem, that affect postural 

control of blood pressure, and loss of sympathetic innervation, e.g., post-ganglionic 

impairment, at the cardiac and peripheral vascular level. While the severity of 

parasympathetic dysfunction worsens with disease progression [36], as also confirmed in 

our patients by the inverse relation between PD duration and the DB E/I ratio, OH has been 

shown to occur early or predate disease development in PD [143] and to be associated with 

neuroimaging evidence of cardiac and extra-cardiac sympathetic denervation [139]. 

Among iRBD patients who converted to a neurodegenerative disease after a mean of 

approximately 3 years, Postuma et al. [143] observed a higher prevalence of OH (66% 



58 

 

 

versus 0%) and a larger systolic blood pressure drop from lying to standing than in non-

converters. In a large multicenter series, patients with iRBD complained significantly more 

often of dizziness with postural changes than controls [144], while cardiovascular and 

gastrointestinal symptoms, together with older age, also predicted conversion from iRBD 

to neurodegenerative disease [145], which occurred in 41% of patients at 5 years. 

Frauscher et al. [146] compared autonomic function testing among 15 iRBD, 12 PD 

patients and healthy controls. These authors found evidence of autonomic dysfunction in 

iRBD, with intermediate severity between controls and PD patients on blood pressure 

regulation during orthostatic standing test and symptoms, and similar to PD in Valsalva 

testing. In our cohort, OH prevalence overlapped among iRBD and PD patients at 

approximately 60% and was almost 3-fold higher than in age-matched controls. We 

likewise observed a lower Valsalva ratio and larger systolic and diastolic blood pressure 

drop in iRBD patients, of intermediate severity with PD, than in CTRL, as well as a 

progressive decline in the LS ratio from prodromal to overt disease. 

Non-motor symptoms of PD such as anosmia, REM behaviour disorder, and OH, 

which were also associated in our series, have been suggested to indicate relatively greater 

involvement of noradrenergic than dopaminergic neurons [139]. The LC noradrenergic 

system influences olfactory function by directly modulating neurogenesis in the olfactory 

bulb, which has been implicated in olfactory learning and discrimination. Since an intact 

noradrenergic innervation is critical in maintaining normal levels of dopamine release in 

the mesolimbic and nigrostriatal systems, a deficient LC-noradrenergic system could be a 

key factor in the loss of nigrostriatal dopaminergic function and development of PD 

symptoms in this disease [149]  

Recent evidences have suggested that miRNAs play a role in PD pathogenesis by 

regulating oxidative stress, mitochondrial dysfunction, -synuclein aggregation and 

inflammatory neurodegeneration [147]. However, currently there are no known miRNA 

expression profiles rather than single miRNA levels that are specifically responsible for the 

development of individual neurological disease and that could be useful biomarkers for 

diagnosis of PD [148]. To date, few studies have been conducted in PD patients and 

healthy controls and the results presenting the circulating differentially expressed miRNAs 

are inconsistent [113-115,150]. For this purpose, we investigated the plasma miRNA 

profile in PD as potential biomarkers for overt and prodromal PD with respect healthy 

controls.  
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A next generation sequencing approach has been chosen to have a complete coverage of 

miRNA profiling and, even if the analysis was performed on a limited number of subjects, 

it reveals significant differences in the patterns of miRNA expression in the overt PD with 

respect to prodromal phase but not compared to controls. In particular, 33 miRNAs were 

deregulated between iRBD subjects and PD patients and 6 between prodromal state and 

control group. These results indicate that the number of deregulated miRNAs is greater in 

the prodromal subjects compared to established disease and controls. The NGS results 

have not been validated by RT-PCR analysis till now probably for a methodological 

problem and also because these miRNAs are expressed at very low levels in plasma. The 

methodological approach for plasma miRNA extraction, retrotranscription and 

amplification reactions needs to be improved. 

This study presents, however, some specific limitations. Our series was relatively 

small, yet similar to those analyzed in previous studies comparing iRBD and PD for 

multiple domains [146]. There was some gender imbalance, which did not achieve 

statistical significance, between PD and iRBD groups; however, this finding is in 

accordance with the known male prevalence among iRBD patients [145].  

We did not study drug-naive PD subjects, which might be important to trace the 

progression from prodromal to early disease. However, we recruited PD patients who were 

homogeneous for disease stage and drug therapy: all were in Hohen&Yahr stage 1 to 3 and 

on concomitant dopaminergic and DOPA treatment.  

PD medications have shown differential effects on the autonomic responses to 

cardiovascular testing. In the study by Haapaniemi et al. [151] during chronic treatment 

dopaminergic agonists increased and levodopa reduced the orthostatic fall in blood 

pressure, whereas neither drug affected heart rate responses. Since all our PD patients were 

all on both drug classes, concurrent therapy might have mitigated orthostatic blood 

pressure changes. On the other hand, our results may not be generalizable to drug-naive 

patients or those on either drug class alone. 

In conclusion, reduced systemic antioxidant capacity is found in prodromal and 

overt PD and may represent, in association with olfactory loss and cardiovascular 

autonomic dysfunction, a useful additive biomarker of disease. Moreover, the present 

miRNA profiling study allowed to identify a set of differentially modulated miRNAs, in 

the overt PD with respect to prodromal phase despite the analysis was no validated by RT-
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PCR. Our pilot findings need to be confirmed in a larger population to establish their actual 

clinical value for an early diagnosis of PD. 
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