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UNIVERSITÀ DEGLI STUDI DI MILANO

Computer Science Department

PhD in Computer Science,

XXIX Cycle

Abstract

Mobile assistive technologies for people with visual impairment: sensing and conveying

information to support orientation, mobility and access to images

Andrea GERINO

Smartphones are accessible to persons with visual impairment or blindness (VIB): screen reader

technologies, integrated with mobile operating systems, enable non-visual interaction with the

device. Also, features like GPS receivers, inertial sensors and cameras enable the development

of Mobile Assistive Technologies (MATs) to support people with VIB. A preliminary analysis,

conducted adopting an user-centric approach, highlighted some issues experienced by people with

VIB in everyday activities from three main fields: orientation, mobility and access to images.

Traditional approaches to address these issues, based on assistive tools and technologies, have

some limitations: in the field of mobility, for example, existing navigation support solutions (e.g.

the white cane) cannot be used to perceive some environmental features like crosswalks or the

current state of traffic lights; in the field of orientation, tactile maps adopted to develop cognitive

maps of the environment are limited in the amount of information that can be represented on a

single surface and by the lack of interactivity, two issues experienced also in other fields where

access to graphical information is of paramount importance like, for example, didactics of STEM

subjects.

This work presents new MATs that deal with these limitations by introducing novel solutions

in different fields of Computer Science. Original computer vision techniques, designed to detect

the presence of pedestrian crossings and the state of traffic lights, are used to sense information

from the environment and support mobility of people with VIB. Novel sonification techniques

are introduced to efficiently convey information with three different goals: first, to convey guid-

ance information in urban crossings; second, to enhance the development of cognitive maps by

augmenting tactile surfaces; third, to enable quick access to images.

Experience reported in this dissertation shows that the proposed MATs are effective in supporting

people with VIB and, in general, that mobile devices are a versatile platform to enable affordable

and pervasive access to assistive technologies. Involving target users in the evaluation of MATs

emerged as a major challenge in this work. However, it is shown how such challenge can be

addressed by adopting large scale evaluation techniques typical of HCI research.
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Chapter 1

Introduction

Today, smartphones are accessible to persons with visual impairment or blindness (VIB). Screen

reader technologies, integrated with mobile operating systems, enable non-visual interaction with

the device by means of gesture-based interaction paradigms and auditory feedback. People with

VIB can now interact with the mobile OS as well as with most applications by third party

developers. New opportunities arise thanks to the availability of features like GPS receivers,

inertial sensors and cameras, all integrated in the same device. By using these features it is

possible to develop novel Mobile Assistive Technologies (MATs) to support people with VIB [54].

The development of MATs requires to address challenges in many fields of Computer Science

like accessibility, computer vision, non-visual representation of information and human-computer

interaction.

This dissertation describes MATs that have been developed responding to specific needs high-

lighted by people with VIB, presenting contributions in the fields of orientation and mobility,

access to images, didactics and large scale evaluation of assistive technologies. Challenges en-

countered during the development of each MAT are reported, together with the design decisions

and novel solutions introduced.

Solutions presented in this work are validated by a large number of user evaluations, conducted

with different methodologies. Each methodology is described in detail, and the results of each

evaluation are reported. The analysis of evaluation results identifies interesting insights in MATs

and a number of future research directions.

1.1 Problem description

We adopted an user-centric approach to identify everyday activities that may benefit from MATs.

By collaborating with people with VIB and associations1, we analyzed some common problems

and identified those that may benefit from MATs.

A first set of problems belongs to the field of orientation and mobility. Orientation and mobility

skills are developed since childhood, often with the support of orientation and mobility specialists.

1“Istituto dei Ciechi di Milano” (Milan’s institute of blind people), “Unione Italiana Ciechi” (Italian Union of
Blind and Partially Sighted People) and “Retina Italia Onlus”
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However, people with VIB meet a number of challenges while walking independently without a

guide, mainly concerning the acquisition of information about the environment [67, 9]. There

are many assistive tools that may be used to address this challenge. For example, tactile maps

support the development of the cognitive map of an environment [47], and the white cane is used

to perceive environmental information, like obstacles, while walking.

A second set of problems pertains to the field of didactics and, in particular, of mathematics

and other STEM subjects. Learning these topics poses many challenges to people with VIB

because they heavily rely on graphical information that is not accessible (e.g. complex formulas,

histograms and charts) [8, 43]. A common approach to enable access to graphical information is to

transfer images on tactile drawings that can be haptically perceived. Another approach consists

in adopting sonification (i.e. to convey data through the acoustic channel) to represent image

features through sound. Solutions from the literature [79] show that, by using image sonification

techniques, it is possible to acquire enough visual skills to pass the blindness threshold in the

visual acuity tests proposed by the World Health Organization.

Existing solutions, based on assistive tools and technologies, have some limitations. First, access

to assistive tools may be difficult. For example, tactile maps of environments must be manually

produced either by sighted individuals or by using expensive hardware and, moreover, they may

not be available for all locations. Other factors may limit access to some assistive tools. Take

for example the “eSight” 2, an assistive augmented reality device built exclusively for people

with low vision, and the “OrCam MyEye” 3, a system that runs computer vision algorithms to

provide object recognition and OCR to people with VIB. The two devices share two main issues.

First, to the best of our knowledge, these systems are not extendible, in the sense that there is

no way to develop custom software to address different accessibility needs. Second, the devices

price (15,000$ for the eSight and 2500$ for the OrCam) could limit their availability to many

end users.

Limitations may also arise when using existing solutions in particular contexts. For example,

navigation support tools may be not enough to perceive some types of environmental information:

the white cane cannot be used to detect road markings like crosswalks or the current state of

pedestrian traffic lights. Tactile drawings are limited in the amount of information that can be

represented in a single sheet and students may need to carry many tactile drawings in order to

study topics like geometry or function graphs. Also, because the exploration of tactile drawings

requires good spatial skills and a lot of concentration, it may discourage young math students

from practicing maths and learning STEM subjects. Image sonification techniques enable non-

visual access to image information, however a long training is often required in order to become

proficient.

Finally, there are issues also from the point of view of researchers in assistive technologies. In

order to guide the iterative design process of an assistive technology and evaluate its effectiveness,

it is of paramount importance to understand users behavior during interaction. In order to

collect valuable feedback to deliver on this objective, a large number of tests must be performed

involving many representative users. However, performing these tests requires a large effort that

sometimes is not feasible, considering that papers published in recent accessibility literature often

do not appropriately include representative users [78]. Also, in many cases, tests are conducted

2http://www.esighteyewear.com
3http://www.orcam.com
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over a short period of time and this represents a severe limitation in the evaluation of certain

key aspects of HCI such as, for example, the learning curve of an assistive technology.

1.2 Contributions

In this work we present our contributions in the fields of orientation and mobility, access to

images, didactics and large scale evaluation of assistive technologies.

We introduce a novel computer vision technique to detect zebra crossings [3, 55], a particular

type of pedestrian crosswalk 4 also called “continental crosswalk” in the United States. The tech-

nique, called “Zebra Recognizer”, delivers on two main objectives. First, it removes projection

distortion from the acquired image, hence improving the accuracy of the recognition and making

it possibile to compute the quantified relative position of the crossing with respect to the user.

Second, it is efficient and suitable for realtime processing on mobile devices, as it performs the

most complex calculations on the device’s GPU. The technique has been evaluated on a dataset

of about 4200 annotated video frames, obtaining 1.0 precision and 0.89 recall scores.

We propose “TL-Recognizer” [56, 57], a novel computer vision technique to detect the presence

and the current state of pedestrian traffic lights (i.e. if the person must wait or is allowed to cross).

The technique differs from similar contributions on two main aspects. First, it adopts a robust

method to acquire images with proper exposure in different illumination conditions. Second, it

implements multi-resolution processing and parallel computation techniques in order to reduce

processing times without affecting recognition performances. A dataset of 1252 annotated images

is used for performance measurements, which show that the technique obtains 1.0 precision and

0.81 recall scores.

Two auditory guiding modes based on data sonification are introduced to address the challenge

of conveying guidance information during road crossings without distracting the user from the

surrounding environment [59]. Target users have been involved in the sound design process

through informal discussions and a preliminary evaluation. We implemented the two guiding

modes based on sonification, along with a less innovative solution relying on speech, in a mobile

application which adopts the Zebra Recognizer technique from our previous contributions. Three

evaluations involving, in total, 11 blindfolded sighted subjects and 15 blind individuals showed

that the mobile application can effectively guide people in crossing the road with any of the three

guiding modes. However, most test subjects (75%) preferred one of the two auditory guiding

modes.

Another contribution [65] faces the problem of supporting independent orientation of visually im-

paired people in unknown environments. The intuition is to enable the creation of the cognitive

map of an environment prior to journeying. In order to deliver on this intuition we propose an

auditory display that reproduces environmental information (audio descriptions and environmen-

tal sounds) while the user is exploring the tactile map of an area. A prototypal auditory display,

developed as a mobile application, has been evaluated with 5 visually impaired individuals and

it obtained a favorable assessment.

4Described in “Art. 145, d.p.r. 16/12/1993, n. 495, in materia di “regolamento di esecuzione e di attuazione
del nuovo codice della strada” relativo all’art. 40 c.s.”
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In the field of didactics, we propose “Math Melodies” [28], a tablet application5 targeted to

students in primary school. The application presents accessible exercises in a narrative context

that entertain children and stimulates them in practicing math. An interaction paradigm based

on “Audio Icons” is adopted to achieve three main objectives. First, to enable access to exercises

that heavily rely on images. Second, to reduce the time and mental workload required to grasp

the exercises. Third, to entertain both sighted an visually impaired students and stimulate them

to keep practicing. We evaluated the final version of the application with 3 blind and 2 sighted

students in primary school. All children enjoyed the application and were entertained by “Audio

Icons”. All blind children experienced difficulties in the early exploration of tables, and needed

help by a sighted supervisor. However, after 2 minutes of supervised training, all children got

familiar with the application and were able to autonomously solve the exercises.

Also, we present “Audio Functions” [81], a mobile application that enables blind and visually

impaired students to explore function diagrams through sound. We introduce three novel ex-

ploration modes to support the user in exploring the function shape through sonification, some

taking advantage from direct interaction with the touchscreen to enable proprioception. By us-

ing the application, students can independently insert the function equation though a specialized

keyboard and perceive both the function shape and additional information, including quantita-

tive information (e.g., the pair 〈x, f(x)〉) and relevant points, like maximum and minimum. We

evaluated “Audio Functions” with 7 blind subjects, all with secondary school education in math-

ematics and familiar with tactile drawings. All subjects were asked to explore three different

function diagrams, each one with a different tool. Every user obtained a better understanding

of the function graph by using our solution.

We deliver on the need for new solutions to enable non-visual access to image information

by introducing five novel “sonification modes” i.e., software modules that combine an image

exploration paradigm with an image sonification technique [29]. The novel sonification modes

are based on a mono dimensional exploration paradigm along the vertical axis and adopt sound

spatialization (employing both interaural level and time differences) and sound equalization

filtering to provide spatial information about the missing dimension. In order to evaluate the

performances of the novel sonification modes, we implemented them in an iOS application called

“The Invisible Puzzle Prototype”. The application instructs users on how to use one sonification

mode, challenging them to recognize some (invisible) shapes, and measuring their performances.

A first evaluation, conducted with 178 sighted subjects and 49 blind ones, showed that one of the

techniques shows statistically significant better performance with respect to some of the other

techniques.

Another goal of this work is to evaluate MATs with a large number of subjects and for long

periods of time. We adopt a methodology typical of HCI research to perform the large scale

evaluation of two applications, “iMove”6 and “The Invisible Puzzle Game”7 [42, 30]. In par-

ticular, iMove usage data collected over a period of four months consists in 771,975 log records

across 17,624 unique user pseudo-identifiers. By analyzing this data with both inferential and

exploratory methods, including unsupervised learning of user clusters, we pointed out a number

of use properties of iMove, including functions that are more commonly used, and clusters of

users based on common interaction parameters.

5Available on the AppStore: https://itunes.apple.com/us/app/math-melodies/id713705958
6Available on the AppStore: https://itunes.apple.com/us/app/imove/id593874954
7Available on the AppStore: https://itunes.apple.com/us/app/the-invisible-puzzle/id1051337548
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1.3 Common factors between research contributions

Research described in this dissertation addresses challenges in many different areas of Computer

Science like, for example, accessibility, computer vision, non-visual representation of informa-

tion, human computer interaction and software engineering. Despite the heterogeneity of our

contributions, there are three different aspects that make all of them part of a coherent research

work.

First, there is a logical connection between the contributions. Our first contributions explored the

use of computer vision techniques to sense information from the surrounding environment [3, 55,

56, 57] with the goal of supporting orientation and mobility of people with VIB. However, while

working on these contributions, we identified a major challenge: to efficiently convey guidance

information to the user without distracting her from the surrounding environment. In order to

address this challenge we started to explore the field of non-visual representation of information

and presented two novel auditory guiding modes based on sonification [59] and an auditory

display to support the development of a cognitive map of environments before journeying [65].

The experience made in the field of non-visual representation of information inspired us new ways

to use sonification to enable access to images, one of the challenges highlighted in our problem

description. We then introduced new interaction modalities and sonifications to support learning

of STEM subjects [28, 81] and explored a more general approach to the sonification of binary

images [29, 30]. In our contributions we adopt a user centered design approach, involving target

users in all development phases of the proposed solutions. However, since our early works, we

had to endure a large effort to identify test candidates and involve them in the evaluations. The

problem is well known in the literature, so we started to investigate solutions to reduce the effort

required to perform tests with a large number of representative users, adopting a methodology to

provide training, administer tests and collect usage statistics [29, 30] and extending the approach

to evaluate assistive applications published on mobile app stores [42].

A second aspect that links research presented in this dissertation is the profile of target users,

i.e. people with VIB. In its “Global data on visual impairment 2010” report, the World Health

Organization estimates that 285 million people are visually impaired worldwide. Among those,

39 million are blind. Visual impairment is a matter of great concern in developing countries,

where access to health care is still an issue, as well as in developed countries, where elderly

population increases and more people will be at risk of visual impairment due to chronic eye

diseases and aging processes, making the availability of affordable assistive technologies even

more important.

Finally, the last common aspect is that all solutions we introduce are designed to be used on

general purpose hardware: mobile touch-screen devices such as smartphones and tablets. This

choice brings several advantages. First, people with VIB can adopt a single device to perform

multiple tasks, reducing the number of single purpose tools they must carry with them. Second,

as these device are mass produced, their cost is often lower if compared with that of devices

built specifically for a small population. Third, mobile devices have large on-board processing

capabilities, one or more cameras and advanced sensors such as the GPS and the inertial mea-

surement unit (IMU), technologies that enable the development of assistive technologies that

source information from the user’s environment. Fourth, assistive technologies are often em-

bedded into mobile operating systems and provide a single interaction paradigm that provides
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access to all applications, dramatically reducing the amount of training required to use different

assistive solutions shipped as mobile applications for the same platform. Finally, touch screen

based interaction let users take advantage of proprioception to grasp spatial concepts like, for

example, the shape of function graphs.

1.4 Outline

Chapter 2 introduces the state of the art of accessibility research focusing on mobile assistive

technologies. In Chapter 3 we present a solution, in the field of orientation, that supports

people with VIB in developing the cognitive map of an environment prior to journeying. Two

contributions in the field of mobility, with the goal of assisting people with VIB in road crossings,

are presented in Chapter 4 and Chapter 5. Chapter 6 highlights our efforts to support didactics

of maths and STEM subjects by enabling access to images. We describe how we adopted a large

scale evaluation methodology to a MAT available to the general public in Chapter 7. Finally,

Chapter 8 concludes this work.
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Chapter 2

Related Work

In this chapter we introduce the state of the art of accessibility research in the fields of orientation

and mobility, image sonification, didactics of math and STEM subjects and large scale evaluation

of assistive technologies.

2.1 Orientation and Mobility

Many solutions have been proposed to support orientation and mobility of people with VIB,

broadly divided in two categories: pre-navigation solutions and in-navigation ones. Pre-navigation

solutions enable pre-learning of routes and formation of cognitive maps of environments prior

to journeying. Tactile maps with Braille labels are used to such extent. In-navigation solutions,

instead, support the user by providing guidance while traveling. An issue of the pre-navigation

approach based on tactile maps is that the amount of information that can be represented on the

map is limited [82], as it is constrained by the size and complexity of the map. To address this

issue, Parkes [66] proposes to augment tactile maps by providing auditory feedback about map

features while they are being touched by the user. A prototypal system adopting spoken au-

dio, verbal landmarks, environmental audio and auditory icons to convey additional information

about the environment is presented by Jacobson [40]. A similar solution proposed by Schneider

et al. [76] adopts computer vision techniques to track user interactions on a tactile grid, map-

ping user touches and objects on the digital map of an environment. However, these solutions

have limitations because the adoption of either a touch pad or a touch grid does not convey

direct stimulus from tactile relief and the user has to rely solely on proprioception to reconstruct

spatial features, an activity that may require a lot of concentration thus becoming cognitively

demanding. O’Sullivan et al. [64] propose the “Audio Tactile Maps” (ATMap) system to provide

interactive auditory feedback for paper tactile maps. The idea is to use vision-based techniques

to track a user’s finger while she explores a tactile map and provide auditory feedback about

the touched map features. Feedback is provided through both speech audio and recordings of

characteristic acoustical features of the environment, such as ambient noise and self produced

sounds. Authors perform a preliminary evaluation of the idea in a “Wizard of Oz” experiment

where a person with VIB is asked to explore an interactive tactile map, obtaining speech-based

feedback from a text-to-speech synthesizer operated by the test supervisor. The results of such
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evaluation highlighted the need to develop a fully functional prototype of the system and con-

duct an extended evaluation with people with VIB, a need that is addressed by a contribution

presented in Chapter 3.

A solution to support both pre-navigation and in-navigation tasks is the “MOBIC Travel Aid”,

introduced by Petrie et al. [70]. The system has two components: a desktop application to

support the user while planning the journey by providing access to information about the travel

environment (e.g. maps, public transport information) and a mobile unit, consisting in an

handheld computer equipped with GPS, that provides guidance while journeying. A limitation

of MOBIC is that it relies on dedicated hardware that the user must carry while traveling

(along with other tools like the white cane). Similar in-navigation solutions are now available

as applications for general purpose devices such as smartphones. An example is “iMove”1, an

iOS application that informs the user about the current address and nearby points of interest.

iMove retrieves contextual information by performing geo-spatial queries to remote data sources.

A common issue with both MOBIC and iMove is that there is no guarantee that information

about the environment (e.g. the position of road crossings) is up-to-date or available at all.

A different approach has been followed by researchers in order to source information directly

from the surrounding environment. These solutions aim to support the mobility of persons with

VIB by reasoning over data captured by smartphone devices like inertial sensors and the onboard

camera. Se et al. [77] propose a technique to detect pedestrian crossings in images by using

computer vision. The Hough line segment detector is adopted to identify line segments and

their vanishing points. Then, outliers are filtered by a Random Sample Consensus algorithm.

The remaining segments are finally validated using cross ratio constraint. This solution has

two main limitations. First, it fails to detect a crossing if its pattern is not completely in the

camera’s field of view or if it is covered by objects. Second, it is not evaluated with a large set

of images. The first issue is addressed by a new technique proposed by Uddin et al [85] that

improves the effectiveness of the detection algorithm. However, also this solution has not been

extensively evaluated. Another limitation of the aforementioned solutions is that they focus on

the detection technique and do not consider the problem of how to provide feedback to the user.

Ivanchenko et al. [37] illustrate a technique to detect pedestrian crossings in images captured

in realtime by a smartphone’s camera. The technique is implemented in the “Crosswatch”

prototype, a mobile application that provides simple feedback to the user, in the form of an

audio tone, when a crossing is detected. In another contribution, Ivanchenko et al. [38] extend

Crosswatch with a new computer vision technique to identify standard “two-stripe” crosswalk

patterns. The novel solution determines the lateral position of the user with respect to the

corridor defined by the two stripes and provides speech feedback to support the user in staying

inside the crosswalk. With a similar approach, Ahmetovic et al. [4] propose “ZebraLocalizer”,

a technique to detect zebra crossings and compute the approximate position of the user with

respect to the crosswalk. ZebraLocalizer uses data from the accelerometers to improve the

recognition performance and to provide more accurate information about the relative position

of the zebra crossing. Position information is then used to provide guidance, in the form of

speech messages, to support the user in correctly aligning to the crossing. This solution has

two main issues. First, the position of the user is approximated, as the technique does not take

into account the perspective distortion of zebra crossing features and measures metric properties

1Available on the AppStore: https://itunes.apple.com/us/app/imove/id593874954
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like distances and angles in perspective images, introducing error. Second, the solution provides

feedback in the form of speech messages which may distract the user from paving attention to

the environment during the actual crossing. These issues are addressed in an extension of the

original work by Ahmetovic et al. presented in Chapter 4.

Another problem that has been addressed adopting computer vision techniques on mobile devices

is that of recognizing the state of pedestrian traffic lights. Ivanchenko et al. [39] present a

recognition algorithm, targeted at smartphones, to detect the status of traffic lights in the U.S..

The technique is divided in two steps. First, smartphone sensors are used to determine the

horizon’s position. Second, traffic lights are identified in the area above the horizon by looking

for both the circular light and the shape of the pedestrian. Another approach is followed by

Roters et al. [73], as they propose an algorithm consisting in three stages: “Identification”,

“Video analysis” and “Time-based verification”. The novelty of this approach is that it performs

spatial and temporal reasoning, analyzing sequences of images to validate candidate traffic lights.

Experimental results conducted by the authors show that the analysis of image sequences yields

better results than the analysis of still images.

The aforementioned techniques share a common issue: images are processed after their acqui-

sition with algorithms designed to be robust under different lighting conditions. However, as

highlighted by Diaz-Cabrera et al. [25], obtaining consistent accuracy in different illumination

conditions is sometimes unfeasible. For example, particular lighting conditions may produce

underexposed and overexposed images from which it is impossible to precisely reconstruct color

information [24]. In order to overcome this problem, camera parameters should be dynamically

tuned depending on the current illumination condition. This objective is partially met in a

technique proposed by Diaz-Cabrera et al. [24] that adapts camera settings (i.e. shutter and

gain) depending on values from each image’s sky pixel histogram. However, it is unclear how the

technique determines camera settings when images do not contain sky pixels. A novel technique

to efficiently detect the state of traffic lights on mobile devices, adapting camera parameters to

the current lighting condition, is presented in Chapter 5.

A common aspect of many solutions presented in this section is that they are mostly focused

on improving the detection quality of environmental features (pedestrian crossings and traffic

lights). However, in order to provide solutions that really support people with VIB in orientation

and mobility tasks, it is important to find effective ways to convey information about the sensed

environmental features. The solution proposed by O’Sullivan et al. [64] shows that non-visual

interaction paradigms based on sonification can be used to such extent and we present two novel

auditory guiding modes adopting sonification to guide users in road crossings in Chapter 4.

2.2 Access to images and didactics

Access to images is fundamental in learning STEM subjects like maths [8]. For example, images

are often used to illustrate concepts like direction, quantity, shape and slope in an holistic

manner [84]. Traditionally, access to graphical education material is provided by tactile drawings.

However, tactile drawings suffer the same limitations introduced in Section 2.1 about tactile

maps: a limited amount of information can be displayed on the map and there may be subjects

that do not read Braille and therefore have no access to these labels.

9



In Section 2.1, we described a solution adopting non-visual interaction paradigms based on

sonification to support orientation of people with VIB. Sonification has also been adopted to

address the problem of enabling visually impaired persons to understand graphical information.

Sanz et al. [74] and Sarkar et al. [75] present comprehensive surveys of sonification systems used

to represent visual scenes and bi-dimensional images. Two kinds of sonification techniques can be

adopted to support the study of STEM subjects: techniques based on “Auditory Icons”, which

associate images to metaphorical sounds and those based on a “Parameter Mapping” approach,

where image features are mapped to sound attributes like, for example, volume and pitch. Yeo

and Berger [93] created a framework for designing image sonification methods, categorizing

various aspects of the sonification process. The authors point out the difference between two

methods to organize data for auditory display: scanning and probing. In the scanning method,

image data is scheduled to be sonified in a predefined order. Differently, in the probing method,

the user can interactively change the portion of the image to be sonified.

A technique following the scanning method is proposed by Dallas and Erickson [22]. The tech-

nique adopts the parameter mapping approach, generating sound by associating the vertical

position of each pixel of an image to frequency, the horizontal position to time and brightness to

loudness. This technique is adopted in “the vOICe project” [60] that aims to enable people with

VIB to explore frames captured through a camera. A conceptually similar solution proposed

by Abboud et al. is called “EyeMusic” [1]. Yoshida [94] adopts the probing method to allow

exploration of images on a touchscreen device by using two different sonification modes: local

area sonification and distance-to-edge sonification. In the first mode, when the person slides the

finger over an edge, a sound representing the line is played. In the second mode, a pulse train

signal is used to represent the finger’s distance to the closest edge. All of these techniques present

some drawbacks. In particular, as highlighted by S. Maidenbaum, a long and arduous training

is necessary to become proficient in exploring generic images [53]. However, for certain types of

images like binary drawings, simplified techniques may be adopted with the aim of making users

proficient even when little or no training is provided. In Section 6.3.6 we propose and evaluate

six novel sonification techniques to explore binary drawings that are effective after a few minutes

training.

Parameter mapping-based sonification techniques are adopted to represent function diagrams

through sound. Gardner et al. [27] introduce “Audio Graphing Calculator”, a desktop appli-

cation that describes a function diagram through a simple sound. Walker et al. [87] propose

“Sonification Sandbox”, a desktop application that describes a function diagram through a syn-

thetic sound. Sonification enables blind students to understand the trend of the graph and

relevant points such as maxima, minima and intersections [19]. Unfortunately, no quantitative

information is straightforwardly provided by these programs while a blind student is exploring

the curve. Moreover, the sound feedback is not enough to convey additional information like,

for example, the asymptotic behavior of a function (e.g. to find out an horizontal asymptote)

and concavity in a given interval. We address these issues in Section 6.2 by introducing “Audio

Functions”, a mobile application that adopts a probing approach to sonify function graphs and

their properties.
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2.3 Large Scale Evaluation

Understanding user behavior during interactions with a software application is of paramount

importance for evaluating the application’s effectiveness, for guiding the iterative design process,

and for informing the design of similar applications. However, there are inherent challenges

in conducting behavioral studies both over long periods and with large samples of participants

with disability. Indeed, as shown by Petrie et al. [69], it is difficult to find sufficient numbers

of target users and bring them to a facility to take part in usability evaluations. Also, it may

be cumbersome to recruit a sufficiently diverse sample of test subjects to account for different

abilities. We experienced such issues in some user evaluations presented in this dissertation like,

for example, the one described in Subsection 4.6.2 where finding and involving 12 test subjects

required a very large effort.

In the broader field of human computer interaction, instrumented remote evaluations [33] are

adopted to address these issues by collecting usage data while users are interacting with a soft-

ware application in the users’ normal environment (e.g. at home or at office) and analyzing them

offline. We adopted this methodology to evaluate six novel sonification techniques (see Subsec-

tion 6.3.6). However, even if the adoption of an instrumented remote evaluation simplified the

conduction of our tests, a large effort was still required in order to identify and reach appro-

priate test subjects. A solution to this issue could be to recruit test subjects and administer

instrumented remote evaluations using online labor markets like Amazon Mechanical Turk [46].

Accessibility researchers have already shown that online labor markets can be used to provide

human-powered assistive solutions [12]. An example is “VizWiz”, a mobile assistive applica-

tion to crowdsource answers to visual questions from sighted workers [11]. However, while it is

known that people with disabilities participate in online labor markets as workers [96], it is not

known, to the best of our knowledge, how many test subjects with VIB can be recruited on these

platforms.

A common practice in human computer interaction research is to collect and analyze real-world

usage data in order to evaluate software applications. However, not many contributions in the

field of assistive technologies adopt methodologies involving the analysis of collected real-world

usage data. To name a few, “Webinsitu”, a contribution by Bigham et al. [10] where user actions

automatically collected during web browsing are used to assess the accessibility of web pages by

visually impaired users. Usage log analysis is also performed by Nakajima et al. [62] to evaluate

the localization error of a navigation assistance tool using Video Light Communication (VLC)

for guiding people with visual impairments. Hurst et al. [35] used log data from real-world tasks

over a long period to build predictive models in distinguishing users by pointing performance.

In a work by Riboni et al. [72], behavior anomalies perceived during user interaction with a

sensor-enabled smart home environment act as a diagnostic tool for detecting mild cognitive

impairments in senior patients. In Chapter 7 we describe the methodology we adopted to collect

and analyze real-world usage data from “iMove”, a mobile application that supports orientation

and mobility of people with VIB. The analysis allowed to pinpoint a number of usage properties

of the application, cluster users depending on their usage patterns and identify improvements to

be introduced in future versions of the application.
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Chapter 3

Supporting orientation with

Audio-Tactile Maps

It is common for people with VIB to explore a new location (such as a work environment or

a university campus) when there is little other traffic present, in an effort to develop a mental

map of the location; the spatial model developed from gathering this experiential knowledge is

a cognitive map [47]. Developing a cognitive map is a challenging task, as it requires to pay

attention to a variety of proprioceptive, tactile and acoustic cues. It has been shown [44, 64]

that the nature of sound reflections in a space can give valuable acoustic cues for orientation and

that people with VIB use self-produced sounds such as finger-snaps and footsteps to learn about

their surroundings by listening to the reverberant feedback from the space. Acoustic cues are

also provided by environmental sounds like, for example, noise coming from vent shafts or from a

nearby street. Tactile maps can be adopted to understand the spatial features of an environment

before journeying but, due to the lack of acoustic cues, cannot substitute “in-situ” exploration.

The “Audio Tactile Map” (ATMap) project aims to address this type of scenario by providing

a virtual reality tool which can help a visually impaired individual to form a cognitive map of a

location remotely, before visiting the physical site. This is achieved by supplementing a paper

tactile map with an interactive auditory display of the target environment, featuring verbalized

information and simulations of characteristic acoustical features. In the next section we introduce

the ATMap prototype, a system that builds on the previous experience by O’Sullivan et al. [64],

refining the proposed auditory display and defining two novel user interfaces. Finally, we describe

the preliminary evaluation of the prototype involving 5 subjects with VIB.

3.1 The ATMap prototype

ATMap is a prototype software system that provides an auditory display for users interacting

with a paper tactile map. Two forms of the system interface have been created as desktop

and mobile versions. The first of these is designed as a larger-format information point; the

movement of a user’s hands are tracked over the tactile paper map with selections being made

through large push-buttons. The use of comparatively inexpensive camera technology has kept
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(a) DMU Campus map. (b) Queen’s Building map.

Figure 3.1: Tactile maps used with the ATMap prototype system.

the cost of this system low while allowing maps to be used up to A3 paper size. In addition,

this technology has the potential for tracking interaction with objects other than low-relief paper

tactile maps. The mobile interface uses a tactile paper overlay on a multi-touch tablet to sense

user interaction. The ubiquity and quality of such devices makes their use in the deployment of

the ATMap worthy of investigation, despite the smaller sizes of maps that can be produced at

reasonable cost. It must be stressed that although touted as a mobile interface, this latter version

is still designed to assist in the cognitive map training rather than as an in-navigational tool

to be carried and used while in transit. Both interfaces communicate with the system software

running on a computer, but a self-contained application which runs on the iOS operating system

for Apple mobile devices has also recently been prototyped.

The first map used with the system is a portion of the campus of De Montfort University (DMU)

in Leicester, including buildings, streets and the nearby river. As shown in Figure 3.1(a), various

textures indicate specific features and a key written in Braille is provided at the bottom of the

map. A second map of a building within this campus has also been used. The map shown in

Figure 3.1(b) shows the first floor of the Queen’s Building, with portions of the ground floor and

main ground floor entrance also visible. Dark blocks are used to indicate interior spaces without

any additional use of a texture key. These digital map images are printed on swell paper using

a regular office printer and are then passed through the fuser oven. Areas of dark print absorb

heat and become raised, generating a textured surface as shown. The fuser has a heat setting

which determines the height of the raised elements.

3.1.1 Software overview

To facilitate rapid-prototyping while maintaining flexibility, the ATMap software was written

in the Java programming language. A digitised map and data files are loaded and the map

is analyzed using an image processing module to automatically extract regions of interest of

arbitrary shape. In the DMU campus map example, each of the buildings is segmented and

labelled. Labels are combined with metadata, such as the building name, and any associated

audio files for that map location. At runtime, a software zone is specified for each building;

tracking data is projected onto the map coordinates and a zone returns its information when
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selected. The system has a graphical user interface (GUI) that displays information for sighted

individuals and provides administrator access to system settings and metadata. ATMap was

developed to allow two modes of use by tracking the interactions of the user with the paper

tactile map. The first mode, called “exploration”, presents the user with information about

specific landmarks and can be used to find out about buildings, roads or other key features

of the map. The second mode, “navigation” presents the user an interactive, sequential route

between two chosen landmarks. Intermediate waypoints are provided which describe nearby

landmarks and features, helping to create a cognitive map of the route.

3.1.2 Auditory Display

The ATMap system delivers spatial audio over headphones (but with mono compatibility for

loudspeaker playback) and uses audio in two ways; text-to-speech synthesis of map metadata

and sounds of characteristic acoustical features of spaces. Interaction with the map produces

audio feedback and the nature of sounds produced is context sensitive. When a user selects a

map feature, the information contained in the associated map zone is rendered using a basic text-

to-speech engine. For example, when a building is selected on the ATMap of the DMU campus,

its name is synthetically spoken first, followed by any additional stored information. Audio is

also provided in the form of environmental and self-produced sounds. Examples of the former

are the background sounds positioned in the DMU campus map; the sound of the river can be

heard at outdoor locations towards the top left of the map, for example. Some interior spaces on

the Queen’s building map have recordings of self-produced sounds, such as hand-claps, finger-

clicks and footsteps, embedded at various locations. All sounds were recorded using binaural

microphones at the associated physical locations, as this allows for the reproduction of realistic

3D sound-fields using a pair of headphones [32]. This type of auditory display preserves the

acoustic cues found to be useful for navigation in physical spaces by people with VIB.

3.1.3 User Interfaces

Desktop Interface

The mounted paper tactile map is shown in Figure 3.2. A “Leap Motion” device is positioned

above the map and is used to track the movements of hands on the tactile paper. The Leap

Motion is an inexpensive consumer device and is finding popular use in interactive applications

as a free air gesture controller. It comes with a suitable Application Programming Interface

(API) to allow rapid prototyping and code integration. The device has a pair of cameras and

illumination technology contained within a small form factor enclosure, making it unobtrusive

and well-suited to the current application. The coordinates and orientations of hands, fingers

and tools in view of the device are sent to a computer over a Universal Serial Bus (USB) cable

connection. Preliminary testing of the interface with a visually impaired user participating in

the early stages of the system development has previously been described [64]. The observations

made were generally positive and encouraged further development of the system, including im-

plementation of new functionality and/or modifications to existing features. For example, the

default low quality TTS engine was replaced and audio files were instead pre-rendered using
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Figure 3.2: The hardware setup for the desktop interface of ATMap, consisting in the leap
motion device, the tactile map and three push buttons mounted on a wooden board.

the AT&T Natural Voices R© Text-to-Speech before being loaded into the system. This improved

the discernibility of delivered information and also made the ATMap more pleasant to use.

Large electronic push-buttons (visible in Figure 3.2) were another addition, providing robust

and reliable selection events. These are interfaced with the host computer using an Arduino

microcontroller over a USB serial connection. However, in testing, it was found that the Leap

Motion did not always provide robust tracking in an uncontrolled environment and required

repeated set-up and calibration. Using the device to track hands which were in contact with a

surface was problematic. In lieu of this, an alternative approach was undertaken to allow the use

of a mobile tablet interface and further test the system software. This also allowed investigating

the feasibility of deploying the system on mobile platforms and widening the potential user base.

Mobile Interface

The mobile interface is designed to use a tactile paper overlay on a touchscreen device. Affordable

mobile tablets do not have screen sizes that would allow the production of larger tactile maps

(i.e. A4 paper size and larger), but such devices are now so commonplace that it was deemed

necessary to investigate their use as the sensing component of an ATMap. An iOS application was

therefore developed that sends control information (currently from a single point of touch) to the

system software. The messaging format used Open Sound Control (OSC), which is an effective

means of sending control information via User Datagram Protocol (UDP) over a network [91].

Adoption of this popular communications approach allows easy integration with other systems,

as many OSC clients exist for common development environments as well as code libraries for

standard programming languages (e.g. Java, C++). A module for receiving and parsing OSC

messages was therefore integrated into the existing ATMap software. In light of the experiences

of Brock et al. [16], a mono-touch interaction mechanism using single-and double-tap selection

gestures was implemented. The mobile version of the interface described above has been used to

evaluate the usability of the ATMap, the results of which are presented in the following sections.

Development on the project has now progressed to include the full ATMap software system in a
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(a) Redesigned DMU Campus
map.

(b) Redesigned Queen’s Building map.

Figure 3.3: Tactile maps redesigned for the evaluation of the mobile interface. Circles rep-
resent the location of auditory icons.

mobile application for the iOS platform. However, this integrated solution has not been formally

evaluated.

Adapting maps for the Mobile Interface

The tactile paper was found to be suitable for use as an overlay for an Apple iPad touchscreen

only with some modifications to the designs of the maps. Using higher settings of the fuser

oven results in a more raised surface of the tactile paper, preventing the screen from detecting

a touch through its capacitive sensing mechanism. To circumvent this issue, the maps were

redesigned to contain voided areas within tactile features e.g. as buildings were represented as

dark- printed raised blocks, a light area placed within would be rendered as a flat region. This

had the advantage of specifying a discernible area which acted as the selection point for a feature

of interest. In Figure 3.3(a), the modified version of the DMU campus map shows the circular

voids (in white) which were designed to be easily identifiable among the rectangular buildings.

Touching at these areas produced reliable touch coordinate and gesture information. As this

map is of buildings from an exterior view, it was also possible to use circles to indicate the

locations of outdoor auditory icons containing environment sounds. The Queen’s Building map

shown in Figure 3.3(b) necessitated a different design as it depicts interior spaces. The use of

voided circles for both room information and auditory icons made the interface confusing for

users, so circles were only employed as icons containing both environmental and self-produced

sounds. The selection gesture made at these locations determined the sound played back: a

single tap played environment sounds and a double tap played the self-produced sounds. The

rooms themselves are bounded by thick outlines; making a section gesture anywhere within a

space returned the associated information.

The ATMPad Application

The original ATMap prototype is comprised of different components: a tactile paper map, a

Leap Motion camera and electronic circuit, with a laptop running the system software. As

previously discussed, use of the Leap Motion was found to require some set-up and that the
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Figure 3.4: Apple iPad with tactile map overlay.

sensor be calibrated occasionally. The mobile version of the interface communicates with the

system software over a network. In order to explore the feasibility of a simpler architecture,

a second prototype called ATMPad has been developed as a tablet application for the iOS

platform. The application displays a map of the current environment and detects touches on

areas of interest. Auditory feedback is then provided through the internal speaker or via wired

or Bluetooth headphones. Different environment representations can be loaded by pointing the

tablet camera towards a QR code printed on a tactile map, which may then be placed over the

tablet screen as shown in Figure 3.4.

3.2 Evaluation of mobile interface

From the beginning, the ATMap project was concerned with the impact on the blind and vi-

sually impaired community and with the usability of the developed tool. For this reason, the

involvement of blind and visually impaired individuals was necessary as early as possible both in

the design and implementation of the ATMap system, and in the preliminary evaluation of the

prototype [64]. The testing stage presented in the following sections was therefore important not

only to technically ensure that the system was working adequately, but also to gain feedback on

the usability of the application and on its suitability for the use by people with VIB. These first

tests are focused on the exploration mode of the ATMap.

3.2.1 Experimental methodology

A total of 5 visually impaired individuals (3 completely blind, and 2 with residual vision) carried

out the test, 2 of whom were females. Testing was carried out in November/December 2014

on one open environment map (the DMU Campus map) and one closed environment map (the
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Environment Selection Gesture Auditory Display

DMU
Campus
Centre

Single-tap on circle within building Mono text-to-speech with location in-
formation

Single-tap on circle on the roads/out-
doors

Binaural location recording

Queen’s
Building

Single-tap on any location inside
building

Mono text-to-speech with location in-
formation

Single-tap on circle inside/outside
building

Binaural location recording (environ-
mental/background sound)

Double-tap on circle inside/outside
building

Binaural location recording of finger
snapping sound

Table 3.1: Selection gestures and associated audio feedback used in the evaluation of the
ATMap mobile interface.

Queens Building map). The touch gestures used to interact with the maps were as shown in

Table 3.1.

The evaluation was structured in the following way:

• Brief introduction to the ATMap project and system (5 minutes).

• Exploration of the open environment map (15 minutes).

• Exploration of the closed environment map (15 minutes).

• System Usability Scale questionnaire (5 minutes).

• Computer System Usability questionnaire (5 minutes).

• Interview (5 minutes).

To navigate the map the individuals used an Apple iPad over which the swell paper map was

positioned and which communicated with the ATMap software over a wireless network, as pre-

viously described. The individuals wore a pair of Beyerdynamic DT770 headphones for the

delivery of both mono and binaural signals.

3.2.2 Questionnaires

Two questionnaires were presented to the individuals after the exploration stage. These were

the System Usability Scale (SUS) questionnaire [17] and the IBM Computer Usability Satis-

faction questionnaire [50]. Users were asked to rate their levels of agreement with a series of

statements regarding use of the system. Note that statements have been shortened in the figures

presented below to aid illustration, but these were presented to subjects with strict adherence

to recommended wordings.

For the SUS questionnaire, the possible answers to each question could go from 1 (“Strongly Dis-

agree”) to 5 (“Strongly Agree”). For the odd-numbered statements, a high number corresponded

to a positive feedback on the system, while for the even-numbered statements it was the inverse.

For this reason, the statements have been re-ordered in Figure 3.5(a) (with statement order,

moving downwards; 1-3-5-7-9-2-4-6-8-10). Considering the odd-numbered statements, the mean
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response value was 4.04 (±1.27 standard deviation), while for the even-numbered statements the

mean response value was 1.6 (±1.04 standard deviation).

For the Computer Usability Questionnaire the possible responses to each statement could range

from 1 (“Strongly Disagree”) to 7 (“Strongly Agree”), with the possibility of selecting the value

0 for answers which did not apply to the currently evaluated system (“n/a”). In this case, for

all statements a higher response value corresponded to a more positive feedback on the system.

Seven statements from the original questionnaire did not seem to apply to the ATMap system (at

least 60% of the subjects answered “n/a”), and were therefore removed from the analysis. The

responses of each subject to each of the 12 statements are reported in Figure 3.5(b). The mean

response value across all subjects was 6.39 (±0.86 standard deviation). The IBM questionnaire

also gave the opportunity for each subject to report up to three positive notes regarding the

system, and three negative ones.

Positive comments

• It’s a very good system, especially if someone was coming new to the place and had very

little or no vision.

• Very interesting system, which could potentially be very useful. I would like now to try to

go to the actual location of the map and see how much I’ve learnt.

• The audio (speech and sounds) was pleasant and informative.

• Very informative and easy to use.

• I feel that I really know the environments.

• Interesting approach to learning maps before going in the place.

• Potentially useful also when you are in the place, maybe with guidance while walking.

• The maps are clear, but mainly using my residual vision. The tactile design is clear though.

• The circular features works quite well when feeling them, even though apparently they are

too small for the touch action.

Negative comments

• Some of the circles were very insensitive, while some were hypersensitive...the level of

sensitivity needs to be more equal.

• It might work better if the whole circles were raised (like button press).

• Some difficulties in starting the audio playback.

• Audio playback locations were limited in number.

• Start play of the click noise is difficult to activate.

• Takes some time to get used to navigating the map.
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(a) Responses to the SUS questionnaire. (b) Responses to the IBM questionnaire.

Figure 3.5: Subject responses for the two administered questionnaires (0 stands for “n/a”).

• The environmental sound couldn’t be stopped, once when you knew what they were, and

they were overlaying the other sounds when playing.

• It would be nice to know what the streets were...names of the streets.

• The responsiveness is an issue...either related with the iPad or the touch response, but it

is sluggish.

3.2.3 Interview

A brief interview was carried out after the two questionnaires. The subjects were all asked four

questions, which are reported here followed by a brief summary of the responses.

Did you find the non-speech audio informative? All subjects did, except for Subject 5,

who reported that for him it was not particularly informative, but that they could potentially
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be informative for visually impaired individuals with no residual vision (it is important to note

that Subject 5 was one of the two subjects with residual vision who did this evaluation).

Did you find both finger snap and background noise informative? Again, except for

Subject 5 all subject found the two types of audio feedback informative. Three subjects clearly

preferred the background noise, and one the click noise.

What features would you like to see in future versions of the system? Here follows a

list of the answers given to this question:

• Ability to program two locations and give guidance description on how to move from one

to the other.

• Use buttons instead of circles.

• Considering the answer of buttons, the possibility of using an extra button (not on the map)

with the other hand for triggering sounds could be interesting. Another option could be to

change the textures in the circles (maybe little dots).

• Simpler selection of the sound to play back, and possibly more recordings of noise and clicks

in different locations. Maybe an error report for when the playback is not triggered properly.

• More audio playback areas. Maybe also interactive audio playback, which changes as I move

in the environment.

• More interactivity, maybe sound which is changed continuously while moving in the envi-

ronment.

• Surely simpler trigger for the click noise.

• Audio playback stop, and better audio quality.

• Where the crossing is in Mill Lane, for example, it’d be useful to know that that is a

crossing.

• Add more tactile and audio description features regarding, for example, roads, etc.

As can be observed, some of these responses refer to features which have been developed for the

ATMap system, but which were not evaluated in this stage (e.g. the use of push buttons to select

features). Other responses are related to potential improvements that could be implemented in

a further version of the ATMap system.

Do you think the system is useful in forming a mental map of the associated area

prior to visiting it? Two of the five subjects had a good knowledge of both the DMU Campus

and the Queen’s Building configuration, but reported that the ATMap system could potentially

be “extremely useful” for learning the configuration of environments they did not already know.

Two of the subjects who were not familiar with the real environments reported that they felt

they had a good mental representation of the environments after navigating them through the

ATMap system. One of the subjects reported that he was not sure about this, but that he

would have liked to have the possibility to navigate the real environments and verify if he could

remember something from the ATMap navigation.
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3.3 Discussion

In general, considering the results of both questionnaires and of the interviews, the system was

very well received. Relevant feedback was gathered regarding technical issues, problems and

potential improvements for the ATMap system. As reported in the previous sections, Subject 5

gave lower scores overall and had more critical comments on the usability of the system. The

feedback of all subjects was nevertheless constructive and often addressed real technical problems

that are being resolved before the deployment of future prototypes and evaluation stages.

Tactile surfaces may be produced using inexpensive heat-reactive paper, providing touchable

information display for a variety of applications. The addition of inexpensive sensing technology

can add interactivity through a computerized system with potential for multimodal information

delivery. The delivery of information through audio and tactile channels is of benefit to people

with VIB and this first application is designed to help in the formation of a cognitive spatial map

of a location prior to journeying. The auditory display provides both verbalized information and

environmental sounds for map locations. Previous research has shown that these can be beneficial

for the formation of cognitive maps in visually impaired individuals and can aid in navigation.

In addition, advanced auditory display can present audio recordings that preserve some of the

acoustic cues used in psychoacoustic and spatial cognition.

3.4 Summary and future directions

In this chapter we present the ATMap prototype system, which extends research presented in

a previous work [64] highlighting three main contributions. First, a novel auditory display to

augment tactile maps is introduced. The solution adopts verbalized information and simulations

of characteristic acoustical features to convey additional information about the environment.

Indeed, the adoption of an auditory display makes it possible to represent a larger amount of

information on the map if compared with approaches based on Braille labels, addressing a known

issue highlighted by previous research [82]. Also, by using binaural recordings of environmental

noise and self produced sounds, the system provides valuable acoustic cues to support the de-

velopment of cognitive maps of environments. A second contribution consists in the fact that

the ATMap system tracks interaction over traditional tactile maps, letting users perceive direct

stimulus from tactile relief, which makes it possible to better understand the represented environ-

ment, if compared with previous contributions adopting touch pads and touch grids [66, 40, 76].

Finally, a preliminary experimental evaluation conducted with 5 subjects with VIB shows that

the system is well received by users and highlights some issues of the current approach.

Future research directions include proposals for system improvements and new evaluations. The

auditory display should be improved in order to introduce the real-time acoustical rendering

of sounds during map exploration. Such functionality should adopt head tracking facilities to

provide realistic binaural rendering and implement an approach based on HRTF to provide

accurate sound spatialization. Also, the usability of the ATMap system should be improved in

order to make its desktop interface more intuitive. For what concerns the mobile interface, two

possible improvements may be introduced: first, accelerometer input may be used to improve the

robustness of selection gestures in the absence of pressure sensing multi-touch devices; second,
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magnetometer input may be used to determine the direction pointed by the user and adapt the

acoustical rendering.

For what concern evaluations, we should perform a quantitative study comparing how people

with VIB orient themselves in the environment after learning its structure using standard tactile

maps or tactile maps augmented by ATMap. Performance may be measured by asking subjects

to rebuild the shape of the environment with plastic bricks or by asking them to perform some

navigation tasks directly in the environment.

24



Chapter 4

Recognizing zebra crossings

In Chapter 3 we introduced a solution to support orientation by enabling the development of a

cognitive map of an environment before journeying. However, knowing the characteristics of an

environment and how to navigate it is not enough to provide safe journeying. There are many

difficulties like, for example, to avoid obstacles along the way (e.g., people on the sidewalk, trash

bins, poles, etc.), to find a target (e.g., stairs, doors, intersections, etc.) and to get information

reported on pedestrian signs (e.g., crossing a road over a zebra crossing when the traffic light is

green, etc.).

In this chapter we describe our efforts in developing a mobile application called ZebraX that

addresses the problem of supporting a person with VIB while crossing the street. ZebraX detects

zebra crossings, a common type of pedestrian crossings (See Figure 4.2 for an example) in images

captured with the mobile device camera and provides guidance to perform the actual crossing.

There are a number of challenges involved with the identification of pedestrian crossings. First,

given the hazards inherently connected with road crossing, it is crucial to have no false positives,

i.e., to erroneously recognize a crossing in an image that actually contains none. At the same

time, in order to guarantee an effective solution, most pedestrian crossings should be properly

identified. Second, it is necessary to precisely compute the relative position between the user

and the pedestrian crossing. Third, since the application should be responsive, the identification

process should have a low execution time. Fourth, guidance information should be provided with-

out overloading the auditory channel, thus allowing users to focus on important environmental

sounds like the one of an approaching car.

4.1 The ZebraX application

The ZebraX application is divided into three main modules, as depicted in Figure 4.1. The Rec-

ognizer module implements the “ZebraRecognizer” algorithm [3] which identifies zebra crossings

in an image and computes the relative distance between the user and the zebra crossing. Starting

from the positioning data computed by the Recognizer module, the Logic module computes the

messages that are to be conveyed to the user. The Logic module is also in charge of keeping

distance quantities updated by using gyroscope readings. Finally, the Navigator module is in
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Figure 4.1: Modules of the ZebraX application.
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Figure 4.2: Examples of zebra crossings.

charge of conveying audio instructions to guide the user towards and along the zebra cross-

ing. The main challenge in Navigator is that the user needs to be continuously informed about

his/her position with respect to the zebra crossing. However a person with visual impairment

or blindness should not be overwhelmed with too many audio messages, because they can divert

the attention from the surrounding audio scenario, which is essential to acquire indispensable

information (e.g., an approaching car, a person walking by, etc.).

4.2 The Recognizer module

The Recognizer module implements a computer vision technique tuned for detecting zebra cross-

ings as defined by Italian traffic regulations (see Figure 4.2(a)), but it can be easily adapted to

most definitions used worldwide. For example, given the similarity between Italian zebra cross-

ings (Figure 4.2(b)) and the US version (see Figure 4.2(c)), it is possible to reconfigure Recognizer

to recognize the US zebra crossings with very limited effort, by setting and re-tuning the de-

tection parameters. Clearly, the solution does not directly apply to other types of pedestrian

crossings, like the “two lines crossings” (see Figure 4.2(d)). Still, the adopted methodology can

be used to design similar solutions for other pedestrian crossings or other kinds of geometrically

well-known horizontal traffic signs.

A zebra crossing is described as a horizontal traffic sign consisting of an alternating pattern of

dark and light stripes (see Figure 4.2(a)). It is composed of at least 2 light stripes and 1 dark

stripe. The stripes are commonly rectangular and, less frequently, in case of diagonal crossings,

parallelograms. They are 50cm thick and have a width of at least 250cm. The dark stripes are
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Figure 4.3: Rotation and position of the mobile device while using ZebraX.

of the same color of the underlying road while the light stripes may be white or, when the road

is undergoing repairs, yellow.

The recognition process is entirely computed locally on the mobile device because the responsive-

ness requirements of ZebraX make it impractical to have a remote computation due to network

latency. For the detection of zebra crossings, Recognizer relies on data sources available on

off-the-shelf smartphones: video camera, accelerometer and gyroscope. The first captures video

frames that can then be analyzed with computer vision techniques in order to detect zebra cross-

ings. Accelerometer and gyroscope, instead, can be used to extract the orientation of the device

with respect to the ground plane and the detected crossings.

Technically, the input of Recognizer consists of the user’s height hu, an image i with height ih

and width iw and the gravity acceleration data represented as a three dimensional unit vector

a = 〈ax, ay, az〉. Its elements ax, ay and az are measured in g = 9.80665 m/s2, take values in

[−1, 1] and represent, respectively, the portion of the gravity that is applied on the device x, y

and z axes (see Figure 4.3(a)).

The output of the algorithm is the most suitable detected zebra crossing, if any. It is characterized

by a list of stripes, each one defined by its top and bottom line segments and its color (i.e.,

black or white). We represent the position of each line segment both in the source image (e.g.,

Figure 4.4(a)) and on the rectified ground plane (e.g., Figure 4.4(b)). The result also includes

five compact and easy-to-use distance measurements (see Figure 4.4(c)). “Rotation angle” is the

angular distance between the user’s heading and the line perpendicular to the stripes. “Minimum

frontal distance” (“maximum frontal distance”, respectively) is the distance between the user

and the closest (farthest, respectively) stripe. Finally, “lateral distance left” (“lateral distance

right”, respectively) is the distance between the user and the left (right, respectively) border of

the crosswalk.

The Recognizer module is internally divided into 6 steps, as shown in Figure 4.5. The first three

steps (rectification matrix computation, image pre-processing and line segments detection) are

all aimed at extracting the line segments that represent the stripes. In the last three steps (line

segments grouping, zebra crossing validation and final result computation) the line segments are

processed and the user’s relative position with respect to the crossing is computed.
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(a) Line segments in the source image. (b) Line segments in the rectified
ground plane.
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Figure 4.4: Zebra crossing identification and relative distances.
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Figure 4.5: ZebraRecognizer flowchart.

4.2.1 Geometric operations

Horizon computation

Horizon computation is a prerequisite for many steps of the Recognizer module like, for example,

the Rectification Matrix Computation step we are about to introduce. ZebraX uses accelerometer

and gyroscope data to compute the equation of the horizon line in the image reference system.

The computation is based on Property 1 (proofs of formal results are reported in our previous

work [55]).

Property 1. Let ρ and θ be the device pitch and roll angles respectively, C = 〈Cx, Cy〉 is the

center of the image and f is the focal distance of the camera (in pixels). Then, the equation of

the horizon line h inside the acquired image is:

sin(θ)x+ cos(θ)y − sin(θ)(Cx + tan(ρ) sin(θ)f)− cos(θ)(Cy + tan(ρ) cos(θ)f) = 0 (4.1)

Rectification Matrix Computation

Planar rectification is a homography, represented by a 3×3 rectification matrix, that removes the

projective distortions from the image of a planar surface and returns a view of the same plane in

which the camera’s axis is perpendicular to the plane. For the ground plane, the rectified image

is a view from directly above it, as seen in Figure 4.6. Once the rectification matrix is known, it

can be selectively applied to some elements (i.e., line segment end points) instead of the whole

image, thus reducing the execution time. In our previous work [3], the rectification matrix is

obtained multiplying the affine rectification matrix, determined using the approach proposed by
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Liebowitz and Zisserman [52], with an approximated metric rectification matrix computed using

a custom technique. The custom technique has been adopted because the original solution from

Liebowitz and Zisserman requires prior knowledge of image properties, which is not available in

our context. A more recent approach by Lefler et al. [48] shows how to compute the rectification

matrix using the plane’s vanishing line and the vertical vanishing point, which can be both

computed using the gravity vector and the equation of the horizon line. We experimentally

observed that the approach by Lefler et al. [48] yields better performance (mainly in terms of

recall) and hence we decided to adopt it in Recognizer.

Note that the rectification matrix is computed for each new frame using the last available gravity

data. Since on the system used for the experiments (iPhone 5S) gravity acceleration data is

updated about 100 times per second, each time a new frame is received the rectification matrix

is computed with values no older than 10ms.

The application of the rectification matrix to the image yields a “rectified plane” in which the

distances are proportional to those on the ground plane. More specifically, the distance between

any two points on the ground plane is equal to the distance of the corresponding points on the

rectified plane multiplied by a zoom factor. To compute the zoom factor it is necessary to know

the distance between any two points in the rectified plane as well as the distance between the

corresponding two points in the ground plane.

In our case, we consider two artificial points on the rectified plane that are crafted in such a way

that we can derive the distance of the two corresponding points in the ground plane thanks to

the knowledge of the camera position in space and camera parameters. Property 2 shows how

to derive the zoom factor (proof is reported in our previous work [55]).

Property 2. Let ρ be the device pitch angle, hd the device’s height, C the center of the image

and f the focal distance of the camera (in pixels). R is the rectification matrix computed

previously while Ai and Bi are arbitrary points below the horizon and that lie on line vl that is

perpendicular to the horizon and that passes through the image principal point C.

Points Ar = R ·Ai and Br = R ·Bi are rectified points corresponding to Ai and Bi respectively.

Then, the zoom factor z is:

z =
hd ·

[

tan
(

π − ρ− atan
(

CBi

f

))

− tan
(

π − ρ− atan
(

CAi

f

))]

ArBr

(4.2)
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Note that Property 2 assumes that the height hd of the camera with respect to the ground is

known. To estimate this value, Recognizer assumes that the user is holding the device in a

position like the one depicted in Figure 4.3(c) in which the elbow is close to the hip and the

forearm has an inclination of about π/6 with respect to the ground plane. By considering the

proportions of the human body [36], the device height can be derived from the user’s height hu

(either estimated or asked to the user). Indeed, on average, the height at elbow is 0.615 · hu and

the forearm length is 0.205 · hu. Consequently, the device height from the ground is estimated

as:

hd = 0.615 · hu + sin(π/6) · 0.205 · hu (4.3)

Clearly the above computation is subject to some approximation. However, the error does

not practically affect navigation. For example, considering a 175cm tall person, the technique

estimates that the device is held at 125cm from the ground. Even in the extreme case in which

the device is actually kept at the height of the shoulders1 (about 145cm from ground), a zebra

crossing at a distance of 2m is computed as being 2.33m from the user i.e., the error is less than

an average step length.

4.2.2 Image Pre-Processing

As observed, zebra crossings can be painted with different colors. Hence we are only interested

in the light and dark components of the image. For this reason, we acquire grayscale images.

Clearly, the use of single-channel images also helps improving the computation performance and

reduces the memory footprint.

The acquired images contain many small details we are not interested in, such as cracks, paint

imperfections, leaves and dirt. These imperfections may actually impair detection, hence we

use resampling and blurring to filter them out. The first method rescales the image until small

details become undetectable. Also, it reduces the image size and thus diminishes the execution

time of per-pixel operations that follow. However, the size still has to be sufficient for a correct

detection. As highlighted in our experiments (see Section 4.5), the best recognition results can

be obtained at a relatively low resolution (i.e., 180 × 320). ZebraX acquires images at this

resolution. Vice versa, the images in the test-sets were recorded at the resolution of 1080× 1920

and resized, with a linear interpolation filter, before running each test so that Recognizer can be

evaluated with images at different resolutions.

Finally, a Gaussian blur filter is applied to the image. Similarly to the resampling, the aim is to

filter out imperfections in the image and ease the line segments detection. Since this step reduces

the number of recognized line segments, it also indirectly affects the computation performances

because fewer line segments need to be processed in the following steps.

Figure 4.7(b) shows an example of the pre-processing step applied to Figure 4.7(a) (the portion

of the image above the horizon is ignored). Henceforth with “image” we intend the result of the

pre-processing step.

1This is an unnatural position that we never observed during experiments.
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(a) Original image. (b) Pre-processing. (c) Line segments.

(d) Line segment groups. (e) Crossing validation. (f) Detected crossing.

Figure 4.7: Main steps of Recognizer.

4.2.3 Line Segments Detection Algorithm

The line segments detection step is a modified version of the EDLines algorithm [6]. The input is

composed by the pre-processed image, the horizon line and the rectification matrix. The output

is a set of detected segments in the rectified coordinate system. There are four main differences

with respect to the original algorithm.

First, our technique ignores the portion of the image above the horizon since no zebra crossings

will ever be found there. This approach significantly reduces the computation time for two

different reasons: it speeds up the line segments detection process itself and it reduces the

number of detected segments, hence reducing the computation time of successive processing

steps. This solution also helps improving the recognition accuracy as it prevents false positives

(i.e., a false crossing recognized above the horizon).

The second difference with respect to the original EDLines algorithm is that our solution com-

putes additional information about the detected line segments. First, in addition to gradient

direction, our solution also computes the gradient orientation of the detected segments, so, in
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Figure 4.8: Example of line segments merging.

practice, we compute the angle of the gradient in [0, 2π) rather than in [0, π). This information is

useful in the following steps since the direction and the orientation of the gradient can differenti-

ate between segments on the top and those on the bottom of each stripe. The second additional

information computed by our version of EDLines is whether each end point of each line segment

lies on the image boundary. This is useful, in the following computation, to distinguish between

stripes that terminate in the end point position and those that, instead, can potentially continue

but are not visible in the image.

The third difference is that our technique also merges close segments. Two segments having both

slope distance and spatial distance lower than specified thresholds are merged. This is useful,

for example, when two or more portions of a line segment have been recognized as different

line segments due to minor imperfections in the image, noise, flawed coloration of the stripes or

objects between the observer and stripes (Figure 4.8 shows an example). The line segment s

resulting from the merging of two line segments s1 and s2 is computed as follows: first, the lines

l1 and l2 on which the two line segments lay are calculated. Then, a new line l (equation in

general form: ax+ by + c = 0) is computed with parameters a, b and c being weighted averages

(based on the two segments’ lengths) of the corresponding parameters of lines l1 and l2. Finally,

the segment s is computed as the union of the two line segments’ projections on l.

In our previous solution [3], this merging operation was computed using line segments in their

representation on the image, hence subject to projection distortion. Vice versa, in our current

solution, line segments are rectified before being merged.

The fourth difference is that, during line segment computation, we use orthogonal regression

instead of least squares line fitting for the purpose of determining the equation of the line on

which each line segment lays. Orthogonal regression computes the orthogonal distance between

each point and the candidate line, differently from the line fitting algorithm that computes the

vertical distance. Orthogonal regression is needed in our case since we are also interested in

vertical line segments.

As a final step, after merging lines segments, we prune the segments that are too short to possibly

represent a stripe edge. Figure 4.7(c) shows an example of application of our personalized version

of EDLines.
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4.2.4 GPU Computation of Line Segments Detection

While our implementation of EDLines has been highly optimized, it is still the most expensive

operation of Recognizer and it takes about 45% of the entire computation time. The reason

is that three operations required by EDLines have a time complexity linear in the number of

pixels in the image. These three operations consist in the computation of gradient magnitude,

gradient direction and the so called “anchors”, i.e. pixels where the gradient operator produces

maximal values and that are likely to be edge elements. Since the aim of these three operations

is to extract the anchors, we globally refer to them as “anchors extraction”.

To reduce the computation time of “anchors extraction”, we implemented it through two frag-

ment shaders, so that the computation can be run by the GPU highly parallel architecture.

Indeed, while general purpose GPU computation frameworks like CUDA and OPENCL are still

not available on mobile devices, it is possible to use programmable fragment and vertex shaders

that are actually available in mobile GPUs. The core idea behind a fragment shader is that it

defines how to compute each pixel of an output image. To achieve a highly parallel computation,

each pixel in the output image must be computed independently from all the others in the sense

that it is not possible to use, in the computation of a pixel, the result of the computation of a

different one.

The proposed solution adopts a single fragment shader to compute both gradient magnitude and

direction. These two operations can be computed in a single fragment shader as both depend on

the input image only. Vice versa, anchors computation depends on the result of the other two

operations, hence it is implemented in a separate fragment shader. The result of each operation

is stored in a different channel of an RGB image.

Our experimental results, run on an iPhone 5s with the methodology presented in Section 4.5,

show that, on average, anchors extraction is more than 4 times faster when run on GPU. In

absolute terms, the average time required to compute these operations on a single frame is

about 8.5ms when computed on the CPU and less than 2ms when computed on the GPU.

4.2.5 Line Segments Grouping

The aim of the line segments grouping phase is to partition the set of line segments into blocks,

each one representing a different candidate crossing. Each candidate crossing is characterized

by a set of stripes, that, in turn, are composed by a pair of line segments each. During line

segments grouping, rectified line segments are processed, so that it is possible, for example,

to straightforwardly check geometrical properties (e.g., parallelism) and to compute quantified

measurements (e.g., the width of each stripe).

Line segments detected using our custom implementation of EDLines are grouped adopting a cus-

tom hierarchical agglomerative clustering technique. Starting with singleton clusters composed

of exactly one segment, clusters are grouped according to three criteria: “slope”, “horizontal

overlapping” and “vertical distance”.

The idea behind the slope criterion is that the line segments in the same crossing are mutually

parallel. For example, in Figure 4.7(d), line segment 7 is not grouped with the line segments in
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the dashed box due to the ‘slope’ criterion. The same holds for line segments 9, 10, 11, 12, 13

and 14.

In addition to being parallel, line segments composing a zebra crossing should also be reciprocally

‘aligned’. Technically, consider the projections of the line segments on a line parallel to them; it

should hold that the large part of each line segment projection overlaps with the projections of

the other line segments. The horizontal criterion captures this property. The evaluation of this

criterion should take into account that in some cases a line segment can actually have a small

overlap due to the fact that it is partially outside the field of view. It is possible to distinguish

these cases because it is known, for each end-point of each line segment, if it lies on the image

boundary (see Section 4.2.3). Consider the example of Figure 4.7(d). The line segments in the

dashed box are all grouped together, even if the line segments closer to the user have a smaller

overlapping: this is due to the fact that part of the line segment is outside the field of view. Vice

versa, line segments 3, 4 and 8 are not grouped together with the line segments in the dashed

box because their overlap with the other line segments is too small.

Finally, the vertical distance criterion guarantees that, in each group, two consecutive line seg-

ments must have opposite gradient directions and a distance of about 50cm (this is specific for

Italian regulation). For example, in Figure 4.7(d) line segments 1 and 2 are too close to the line

segments in the dashed box and hence are not grouped with these line segments. Analogously,

line segments 5, 6 and 15 are too far away and, again, are not grouped together with the line

segments in the dashed box.

The first criterion (“slope”) is applied to the entire set of line segments (considered as a single

set) and results in a set of blocks, each one used as input for the iterative application of the

other two criteria.

4.2.6 Zebra Crossing Validation

After the line segments grouping step, each resulting block is validated according to two criteria:

“grayscale consistency” and “number of edges”.

The Grayscale consistency criterion captures the fact that each light (or dark) stripe has a

grayscale level that is lighter (darker, respectively) than the average grayscale level of the can-

didate crossing. Clearly the expected grayscale level (light or dark) of a stripe is known due to

the fact that the gradient of its two edges is defined. The minimum required difference between

the stripe grayscale level and the crossing average grayscale level is specified by the “grayscale

consistency magnitude threshold” parameter. Thanks to this criterion, structures that are ge-

ometrically similar to stripes but without consistent dark/light alternating grayscale level are

discarded. An example of application of the grayscale consistency criterion is shown in Fig-

ures 4.9(a) and 4.9(b). After the grouping phase, some line segments are grouped in a single

block and hence are marked as a candidate crossing (Figure 4.9(a)). However, as can be observed

in Figure 4.9(b), there is a too small difference in the grayscale intensity of the identified stripes.

By enforcing the grayscale consistency criterion the candidate crossing is discarded.

The second validation criterion, is “number of edges”. It defines that a valid zebra crossing

should be composed of a minimum number of edges. In most of our experiments, this value is

34



(a) A false positive candidate crossing after group-
ing.

(b) False positive is discarded by “grayscale con-
sistency” criterion.

Figure 4.9: Application of the “grayscale consistency” criterion.

set to 5, hence guaranteeing that each crossing contains at least two white stripes, as required

by Italian regulation. Consequently, blocks that contain a smaller number of line segments are

pruned.

In theory, the number of edges criterion could only be checked as the last step of the recognition

procedure (i.e., after enforcement of grayscale consistency). However, checking the number of

edges criterion requires a negligible time (i.e., it takes constant time in our implementation).

For this reason this criterion is evaluated after each step of grouping and validation in order to

reduce the number of line segments to process, hence improving the overall computation time of

Recognizer.

A candidate crossing that meets the grayscale consistency and the number of edges criteria is

marked as a ‘validated crossing’.

4.2.7 Final Result Computation

In many cases either none or a single validated crossing is returned by the validation phase.

However, it is possible that two or more crossings are returned. This happens, for example,

at crossroads or when there are two consecutive zebra crossings separated by a traffic island.

To decide which one is the “most relevant” crossing for the user, we adopted the following

methodology. We identified, in a set of sample images (see Section 4.5) the cases in which

two or more validated crossings are identified. By observing them, we empirically defined this

procedure: the most relevant crossing is the closest to the user among those having roughly the

same direction as the user. Consequently Recognizer first checks if any detected crossing has

an orientation angle within a threshold from the user’s orientation. If favorable crossings are

available, all other crossings are discarded. Among the remaining ones, the closest one to the

user is selected as the most relevant.

Once the most relevant crossing has been selected, its position with respect to the user is com-

puted for the purpose of guiding the user during the crossing. In particular, the distance is
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Figure 4.10: Computation of lateral distance.

computed as a set of five distance measurements, represented in Figure 4.4(c). “Frontal dis-

tance” is defined as the distance between the user and the closest line segment (CLS in the

following). “Rotation angle” is the (oriented) angular distance between the user’s heading and

the crossing. In the figures shown in this chapter we represent the user pointing upwards, so

the rotation angle corresponds to the stripes angle. In theory, since the line segments should be

mutually parallel, the angle is the same for all line segments. However, in practice, there can be

some approximation and hence the rotation angle is computed as the average angle of all line

segments. The third and fourth distance measurements are “lateral distance left” and “lateral

distance right”. We will describe the former, the latter is analogous. “Lateral distance left”

intuitively represents the distance between the user and the left border of the crossing measured

on CLS. More formally, it is the (directed) distance between the left border of CLS and the

projection of the user’s position on CLS.

There is an issue arising in the computation of “lateral distance left” (the same holds for “lateral

distance right”). Indeed, it is possible that the edge of the first detected stripe is not entirely

contained in the image. In this case the left end-point of CLS does not necessarily represent the

left border of the closest stripe. Let’s consider two examples. In Figure 4.10(a) the left end-point

of CLS (point B) actually represents the left end of the stripe (point A). Figure 4.10(b) shows

the rectified view. Differently, in Figures 4.10(c) and 4.10(d) the first stripe is not fully contained

in the image and the left end-point of CLS (i.e., point B′) is not the left end of the stripe (i.e.,

point A′). In the first case (Figures 4.10(a) and 4.10(b)) it is clear that the user is close to the

left border and hence he/she should be instructed to strife right before crossing. Should the

same instruction be provided in the second case? The answer is negative. Indeed, by observing

the stripes that are farther from the user, it is possible to infer that the first stripe extends

on the left of the user hence, intuitively, it is safe to start crossing in the current position. To

capture this intuitive reasoning, we take into account the left end-points that are marked as

not-being on the image boundary (see Section 4.2.3). If there are too few of these points, the

“lateral distance left” is marked as not quantifiable. Vice versa, we use an orthogonal regression

algorithm to find the stripe “border” i.e., the line that passes through these points. We then

compute the intersection A′ of this line with the line where CLS lies. The “lateral distance left”

is then computed as the length of A′C ′.
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4.3 The Logic module

The Logic module is responsible for computing instructions to guide the user in finding a zebra

crossing, aligning with it and performing the actual cross. To deliver on this objective, Logic

keeps a representation of the position of the user with respect to the crossing and updates it

whenever new positioning data is provided by Recognizer. A moving average filter is adopted in

order to be tolerant to wrong detections that may be introduced because of sudden movements

of the phone or obstacles in the camera field of view. Also, readings from the device’s gyroscope

are used in order to keep distance information updated between two different runs of Recognizer.

Depending on the current position information, the logic module computes instructions to guide

the user in completing the crossing. In order to keep the user focused on the crossing and avoid

creating confusion, Logic computes only one instruction at a time, every time new position data

is available. It is up to Navigator to chose when and how to convey each instruction to the user.

The possible instructions are the following:

• Rise/lower the phone

• Rotate left/right

• Step left/right

• Crosswalk not found

• Crosswalk ahead

• Cross

The next instruction to be conveyed to the user is determined according to the following tech-

nique. First, Logic checks if the device’s pitch resides in a specific range, defined to let the

phone’s camera aim at the right height. If the pitch must be adjusted, a “rise/lower the phone”

instruction is conveyed. Otherwise, the current instruction is determined according to the pres-

ence of a crossing and the user’s alignment with it. If no crossing is found, the “crosswalk not

found” instruction is conveyed. If a crossing is detected but the user is not aligned in front of

it, the “rotate left/right” or “step left/right” instructions are conveyed according to the current

position of the user. If a crossing is found but it is too far away from the user, the “crosswalk

ahead” instruction is conveyed. Finally, if the user is correctly aligned to the crosswalk, a “cross”

message is conveyed. Along with the current instruction, Logic conveys quantified information

relative to the instruction. For example, if a “rotate left” message is delivered, the distance from

the target angle is conveyed too. Guiding modes based on sonification convey such information

to the user.

It is important to note that the “cross” instruction is conveyed by Logic when the user is correctly

aligned in front of the crosswalk, but to decide whether it is safe to cross or not is left to the user

and her understanding of the environment. In the future, other solutions based on computer

vision may be adopted to further support the user by, for example, determining the current state

of traffic lights.
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4.4 The Navigator module

The Navigator module implements two auditory guiding modes based on data sonification, to-

gether with a benchmark guiding mode based on speech messages. The two sonification-based

guiding modes are similar, with the main difference being that one produces mono sound (i.e.,

one single sound signal) and the other produces stereo sound (i.e., two different sound signals,

one for the left and one for the right ear). We conducted the sound design process employing a

user-centric approach, frequently considering end users feedback and carrying out a preliminary

evaluation session. ZebraX was then used to conduct three sets of evaluations aimed at assessing

the effectiveness of the guiding modes. The audio files of the sonifications and examples of their

application during road crossing are available on-line2.

4.4.1 Speech guiding mode

Referring to the instructions computed by the Logic module (see Section 4.3), the Navigator

module delivers to the user a set of messages generated by the iOS on-board text-to-speech

synthesizer. Since the subjects who participated to the evaluation were all Italian mother-tongue,

the messages were delivered in Italian (an English translation is available between brackets).

• Abbassa/alza il dispositivo (Rise/lower the phone)

• Ruota a sinistra/destra (Rotate left/right)

• Passo a sinistra/destra (Step left/right)

• Non trovato (Crosswalk not found)

• Strisce davanti (Crosswalk ahead)

• Attraversa (Cross)

Each message is automatically reproduced once, as soon as the Logic module computes an

instruction different from the previous one. This choice of timing has been made to prevent the

guiding mode to be too verbose and distract the user from paying attention to the environment.

However, users can request to reproduce again the last instruction by tapping on any part of

the screen. This choice has been made to avoid using buttons that may have been difficult to

find during single handed operation of the phone. As a future work, different ways to request

the reproduction of the last instruction should be investigated, maybe using voice recognition

techniques or wearable devices.

4.4.2 Guiding modes based on sonification

One of the main problems with the speech guiding mode is that it does not convey quantified

information about the relative position between the user and the crosswalk. For example, if the

user is instructed to rotate right, he/she does not know how much rotation is required in order

2http://webmind.di.unimi.it/zebraexamples/
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to be aligned with the crosswalk. In theory, it could be possible to design a speech guiding mode

in which the quantity is reported (e.g., “rotate right - 20 degrees”). However, this guiding mode

would be much more verbose and, most importantly, it would be clearly impractical to update

the quantity associated to the message (i.e., the rotation angle in the above example) while the

user is moving.

To overcome this problem, the guiding modes based on sonification must inform the user about

the quantity associated with the instruction. For this reason we base our technique on parameter

mapping sonification [34], which is based on the creation of a link between the data to be rendered

and the parameters of a synthesizer (or of any other device which generates or plays back sound).

The process of user-centric analysis of the system raised another important requirement that

has a direct impact on the sound design. Most people with VIB are not willing to wear head-

phones, as this prevents the acquisition of audio information from the environment (e.g., an

approaching car). This problem can be partially solved by using bone-conducting headphones3.

However, some users declared to find bone-conducting headphones rather uncomfortable, due to

the mentally-demanding task to distinguish the sounds produced by the headphones from the

environment sound.

Two solutions have therefore been designed: the mono sonification delivers one monaural audio

signal, which is suitable to be played by the device speaker. Vice-versa, the stereo sonification

employs sound spatialization in order to allow the user to clearly perceive certain sounds as

coming from the left or from the right, therefore conveying information using an additional cue.

This sonification requires the user to wear a pair of headphones, and employs, for a determined

set of messages, a binaural spatialization approach [32]. Considering the low resolution of bone-

conducting headphones in terms of high frequencies (above 10 kHz), and the complexity of the

individual-related features of a full Head Related Transfer Function (HRTF) simulation, the

stereo technique was not implemented performing a full spatialization. A simpler approach was

taken, modifying the differences in level and time of arrival of the sound at the two ears (i.e.,

Interaural Level Differences - ILD and Interaural Time Differences - ITD).

Two further requirements emerged during sound design:

• Since for certain types of messages the understanding of the pitch of the sound is essential,

the fundamental frequency of the stimulus had to be easily perceived.

• For a precise spatialization, the sound had to feature a large and dense spectrum.

For these reasons, a custom set of impulsive sounds of short duration was designed and imple-

mented. The test sound was produced by additive synthesis of 5 to 20 harmonic or inharmonic

partials (depending on the type of message to be sonified), each implemented by an exponen-

tially damped oscillator. Attack times of all partials was set to 1 ms. The relative amplitude of

the partials followed a roll-off of −3 to −6 dB/octave, whereas decay times differed depending

on both the partial and the sonified message type (a similar approach was employed by Katz

et al. [45]). Different repetition and envelope patterns were also used in order to allow a clear

distinction between the sonification of different instructions.

3Bone-conducting headphones do not occlude the ear canal and, therefore, do not impede the perception of
sounds from the surrounding environment.

39



Mono sonification

In order to deliver left-right-type messages without relying on sound spatialization, low pitch

sounds were associated to a rotation/step towards the left, and high pitch sounds towards the

right. This choice can be intuitively explained considering the keyboard of the piano from the

point of view of the player (high-pitch notes on the right).

Considering the list of speech messages in Section 4.4.1, the following mono sonifications have

been designed and implemented:

• Rise/lower the phone. Impulsive sound with fast transients and harmonic spectrum (similar

to a short beep). Two quick repetitions with no pause. High pitch (800 Hz) for the ’rise’

message and low pitch (200 Hz) for the ’lower’ message. The signal is repeated increasing

linearly the rate (from 1 Hz to 2.5 Hz) the closer the user gets to the right inclination.

• Rotate left/right. Impulsive sound with fast transients and in-harmonic spectrum (similar

to a percussive sound on metal). The left-right information is delivered modifying the

frequency of the stimulus; 300 Hz for the left rotation and 1200 Hz for the right rotation.

The repetition rate of the sound is modified linearly from 1.6 Hz (large rotation) to 3.3 Hz

(small rotation), varying continuously until the user reaches the target angle.

• Step left/right. Impulsive sound with fast transients and in-harmonic spectrum (similar to

a percussive sound on wood). Two fast (200 ms) repetitions. The left-right information is

delivered modifying the frequency of the stimulus; 300 Hz for the left step, and 1200 Hz

for the right step.

• Not found. Low frequency (200 Hz) in-harmonic sound, slow transients, two repetitions

(300 ms the first and 500 ms the second).

• Crossing ahead. Pure-tone (single frequency with no harmonic components) impulsive

sound. A rising scale of 6 notes (between 800 and 1700 Hz, one each 100 ms) for a required

10 m advance, 5 notes for 8 m, 4 notes for 6 m, 3 notes for 4 m and 2 notes for 2 m. The

scale is repeated every 1000 ms, modifying the message as the person gets closer to the

target.

• Cross. Impulsive sound with fast transients and in-harmonic spectrum (similar to a per-

cussive sound on wood). A group of three notes (one note every 150 ms) with fundamentals

at 500-800-1000 Hz is repeated every 1200 ms. If the user is required to proceed towards

the right, the frequency of the fundamentals is multiplied by 0.33 (lower pitch), while if

towards the right is multiplied by 2 (higher pitch). The level of the sound is rather low,

but it becomes louder (up to +20 dB) the more the user needs to modify the path towards

the left or the right. When the user is at less than 4 meters from the target, the delay

between repetitions is decreased linearly (down to 700 ms).

Stereo sonification

In the stereo sonfication mode the audio signal is delivered differently to the two ears. The user

is therefore able to clearly localise a sound in any position between left, center and right. As
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outlined earlier, the spatialization was performed employing ILD (from 0 to 10 dB) and ITD

(from 0 to 0.5 ms)

The following stereo sonifications have been designed and implemented:

• Rise/lower the phone. Same as mono mode.

• Rotate left/right. Same sound as mono mode, frequency 500 Hz. The impulse is continu-

ously repeated every 400 ms, and is spatialized on the left if the user needs to turn left,

and vice-versa if the user needs to turn right. The repetition continues until the user can

center the sound on the front (therefore when reaching the target angle).

• Step left/right. Same sound as mono mode, frequency 500 Hz. Sound spatialized on the

left or on the right (depending on the required direction)

• Not found. Same as mono mode.

• Crossing ahead. Same as mono mode.

• Cross. Same sound as mono mode, with frequencies 500-800-1000 Hz. The left-right

direction is given by gradually spatializing the sound on the left or on the right, so that

the task of the user is to rotate in order to keep the sound central.

4.4.3 Preliminary evaluation

During the design of the auditory guiding modes several test subjects were asked to use the

application and provide feedback. In addition to these informal evaluations, a preliminary eval-

uation was carried out in order to allow for the fine tuning of the whole application, and in

particular of the auditory guiding modes. This section describes the evaluation methodology, its

results and how the guiding modes were changed according to this evaluation.

Evaluation methodology

The evaluation was conducted at the Milan Institute for Blind People (Istituto dei Ciechi di

Milano4), which offered support in terms of location and test subjects.

The evaluation was conducted with five congenitally blind test subjects in a controlled envi-

ronment, namely a large corridor (20m long, 6m wide approximately), where a real-size zebra

crossing was represented on a large plastic sheet. The choice of conducting the evaluation in

an indoor space was driven by the fact that we wanted test subjects to focus on the sonified

audio without being distracted from environmental noise,even if such space provided acoustic

cues that could ease orientation. The auditory guidance information was delivered using a pair

of wired bone conducting headphones5, connected with an iPhone 5. Each test subject was

asked to perform five tasks in random order, one task for each one of the instructions listed in

Section 4.4.1 (except for Not found). The goal of each task was to reach a target position (e.g.,

by rotating, by moving forward, etc.) starting from a random position. Each task was repeated

4http://www.istciechimilano.it/
5Headphones model is Goldendance Audio Bone Aqua

41

http://www.istciechimilano.it/


three times, once for each auditory guiding mode (again, in a random order), and was preceded

by a five minutes training.

The following data was measured for each task and auditory modality: time to perform the task,

average error (distance from the target, in degrees or metres), and tolerance (number of times

each person entered and exited a small area around the target).

At the end of the evaluation, every test subject was asked to give feedback about the application,

in particular about the three auditory guiding modes.

Evaluation Results

Considering the low number of test subjects, statistical significance was not calculated. Based on

simple descriptive statistics we observed that, in tasks concerning rotation (i.e., rotate left/right

and raise/lower the phone), the two sonification guiding modes were more effective than the

speech guiding mode. Regarding the other instructions, no notable difference was observed

among the three audio guiding modes.

Regarding the test subjects’ feedback on the application, it is worth noting that all of them

reported to be unable to judge the effectiveness of speech and sonification guiding modes in

the real world (i.e., with traffic noise). To address this problem, successive evaluations (see

Section 4.6) were conducted in outdoor spaces, with audible traffic noise. Furthermore, the

following comments were made by more than two subjects:

1. The sound spatialization was not evident. It was often not possible to clearly distinguish

when a sound was coming from the left, center or right.

2. The repetition rate changes, which for certain sonified messages indicated the proximity

to the target, were not clearly identifiable.

3. Both sonifications required longer training if compared with the speech messages.

In addition to these comments, we observed that in some cases the headphones wire entered the

camera field of view, hence preventing the computer vision technique to work properly.

4.4.4 Updated auditory guiding modes

Certain features and parameters of the auditory guiding modes were modified in order to reflect

the results of the preliminary evaluation.

To address the first comment, a simple evaluation was carried out in order to establish the

minimum detection thresholds for ILD and ITD using bone conducting headphones. Using a

simple up-down 1 dB step adaptive procedure [49], the discrimination threshold was measured

for seven test subjects. The mean discrimination threshold (i.e., the smallest inter aural difference

which allowed a test subject to position a sound source on the left or on the right) for the ILD

was 1.15 dB, and for the ITD 0.13 ms. Considering that these mean discrimination thresholds

are sensibly larger to the ones obtainable with a standard pair of headphones, the spatialization
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ranges were changed. The ILD was increased to a maximum of 20 dB (before it was 10 dB), and

the ITD to a maximum of 1 ms (before it was 0.5 ms).

To address the second comment, the following minor modifications have been applied:

• Rise or lower the mobile phone - the repetition rate has been increased to a maximum of

3.3 Hz (before it was 2.5 Hz).

• Step left or right - the repetition rate has been linked to the required displacement (before,

the sonification was of boolean type, therefore no information was delivered about the

amount of required displacement). The stimulus is repeated every 800 ms if the required

displacement is relatively large (2 m), increasing linearly the repetition rate (up to one

repetition each 400 ms) for smaller displacements (50 cm).

Finally, considering the third comment, an additional functionality was added to ZebraX. In

all auditory guiding modes, the user can tap on the screen of the device to listen the current

instruction through a speech message. In practice, with the speech guiding mode, upon tapping

on the screen ZebraX repeats the last message that was played. Vice versa, with mono and

stereo, upon tapping ZebraX provides a speech explanation (using the same messages defined

for the speech guiding mode) of the instruction being sonified. The addition of an optional

touch-activated speech message within the sonification guiding modes represents a major change

in the design of the guiding modes, which is discussed in Section 4.7.

4.5 Evaluation of the Recognizer module

4.5.1 Experimental methodology

When Recognizer is run in ZebraX, the input data are taken directly from the device’s cam-

era and sensors, and this makes it impossible to run the recognition procedure twice with the

same input. Clearly this is a problem when debugging the application, tuning parameters and

measuring performance. To overcome this issue we developed two applications to first collect

images and then process them off-line. zRecorder is a mobile application that records the stream

of images and motion sensors data (i.e., accelerometer and gyroscope). The other application,

zSimulator, reads the data stored by zRecorder and uses it as an input to run Recognizer so that

its performance can be measured. zSimulator can be run both on traditional devices (i.e., desk-

tops and laptops) and on mobile ones. This approach significantly eases the debugging process

and enables regression tests, parameters tuning and reproducible experimental tests.

We used zRecorder to create four sets of images (with corresponding motion data) at 1080×1920

resolution. All sets are publicly available6. The first set, called Testset1, consists of 40 videos

and 4015 frames captured in different illumination conditions (sunny, cloudy and night). All

frames have been manually annotated to distinguish those containing a zebra crossing (1877)

from the remaining ones (2138). The second set, called Testset2, includes 6 videos with 206

frames. In this case, for each frame we also annotated the relative position of the crossing. To

6http://webmind.di.unimi.it/ZebraRecognizerTestSet/
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minimize the approximation while collecting this information, we recorded the videos by using

a tripod positioned at a given frontal and left/right distance from the crossing. Since the tripod

is stationary, the frontal and lateral distances are fixed for each video, while the rotation angle

varies. To measure the rotation, before starting the recording, we calibrate the device so that it

is perfectly perpendicular with the stripes and then, for each frame, we measured the rotation

angle by using gyroscope readings. We empirically observed that the error introduced by the

gyroscope is negligible, also considering that the duration of the recording is of few seconds and

that the device is not subject to sudden movements (since it is on a tripod). The third set, called

Testset3, is a subset of Testset1 that contains only heavily blurred images with zebra crossings

(manually selected from Testset1). Testset3 contains 613 images, mostly taken in conditions of

low ambient light. Finally, the fourth set, called Testset4 contains 265 images of zebra crossings

that are partially covered by external objects, for example a pole (like in Figure 4.8).

We used a desktop pc for computationally intensive evaluations (e.g., parameters tuning) and

an iPhone 5s smartphone for evaluating the execution time of the final application.

We take four indicators into consideration: precision, recall, execution time and positioning

accuracy. Precision, calculated as the ratio between the correctly detected crossings and all the

detected crossings, measures the amount of false positives. A precision score of 1.0 means that

each detection corresponds to a crossing in the examined image, conversely a lower ratio implies

that some crossings were detected where none was present. The recall metric is computed as the

ratio between the detected crossings and all the correct crossings in the dataset. While a score

of 1.0 means that all the crossings were correctly detected, lower values indicate that some of the

crossings were not. Given the safety concerns for the navigation of users with visual impairment

or blindness in a dangerous environment, we notice how anything less than a perfect precision

score is unacceptable, while a high recall score, although important, is less critical. Henceforth,

unless differently stated, we report our results in which the precision is always equal to one. We

point out, however, that precision may be less than one in other test sets and in real world usage

scenarios.

The execution time defines the average time needed to run Recognizer. It does not take into

account the time required to load the image from the hard drive nor the time required to resize

the input image. Indeed, when Recognizer is used in ZebraX, the input image is already acquired

at the necessary resolution and no resizing is needed. Clearly, lower execution time allows higher

frame rates, increasing the detection responsiveness with respect to the user’s movements. Also,

it means that the procedure is less computationally intensive, with a lower power consumption.

Finally, the positioning accuracy indicates to which extent the relative position returned by Rec-

ognizer is precise. The positioning accuracy in a given frame is characterized by four values, one

for each distance measurements. Each value is the difference between the distance computed by

Recognizer and the expected (actual) value. Clearly, positioning accuracy can only be computed

if the expected relative distance is known and hence only using Testset2.

It is worth noting that, in the following, different versions of Recognizer are compared. As

Recognizer is a completely analytical computer vision technique, it does not adapts to any

training or test set. Instead, each version of Recognizer is different because of the line segment

detection approach adopted, of algorithmic improvements aimed at increasing recall and other
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Parameter Min Chosen Max
Resolution 90× 160 180× 320 720× 1280

Grouping angle 1.5 3 7.5
Grayscale consistency 1 5 9

Blur kernel size 3 9 13
Blur standard deviation 0.7 0.9 1.4

Table 4.1: Most influential parameters and their values.

optimizations introduced to reduce the computation time. The parameters of each version are

always tuned using Testset1.

4.5.2 Parameters tuning

This section reports the results of the study conducted to tune five representative parameters

that highly influence recognition performances: “resolution”, “grouping angle”, “grayscale con-

sistency”, “blur kernel size” and “blur standard deviation” .

The “resolution” parameter specifies the size of the image on which the detection is run. The

“grouping angle” parameter defines the maximum angular distance between two line segments

that are grouped together (see Section 4.2.5). The “grayscale consistency” parameter defines

the minimum difference in grayscale level (value range between 0 and 255) between a stripe and

the average grayscale level of the crossing (see Section 4.2.6). The last two parameters refer

to the strength of the blur filter applied during image pre-processing (see Section 4.2.2). These

parameters are listed in Table 4.1 together with their minimum and maximum values used during

parameters’ tuning, and their default chosen values.

Figure 4.11(a) shows that with a very low resolution (below 90×160) recall diminishes drastically.

This is due to the fact that in these cases the features are hard to detect. For high resolutions

(above 180× 320) there is also a reduction in recall due to the fact that noise and imperfections

are more visible and impair drastically the segment detection stage. While this behavior can

be offset by using stronger blurring during the preprocessing step (see Section 4.2.2), higher

resolutions do not improve the detection accuracy. Thus, the default resolution used for the

detection is 180× 320 pixels.

For the “grouping angle” parameter we observe (see Figure 4.11(b)) that, for larger values of

this parameter, recall is higher due to the fact that larger blocks of line segments are generated

with the application of the “slope” criterion hence it is less likely that they are pruned by the

“number of edges” criterion. However, for values larger than 3◦, some false positives can be

introduced and hence precision diminishes, although very slowly. For this reason, the default

value is 3. The analysis for the “grayscale consistency” parameter is similar (see Figure 4.12(a)):

for smaller values of this parameter the “grayscale consistency” criterion is easier to satisfy, hence

there is a higher recall. However, for values smaller than 5 precision is less than 1. Hence, we

choose 5 as the default value.

Figure 4.12(b) shows that, for what concerns the “blur standard deviation” parameter, there is

a peak in both precision and recall for the value 0.9. Thus, we chose this value as the parameter

default. For the “blur kernel size” parameter, we can observe in Figure 4.12(c) that, for values

45



0

0.2

0.4

0.6

0.8

1

11
x2

0

90
x1

60

18
0x

32
0

27
0x

48
0

36
0x

64
0

45
0x

80
0

54
0x

96
0

63
0x

11
20

72
0x

12
80

R
ec

al
l

Image resolution

(a) Image Resolution parameter. Recall signifi-
cantly drops at resolutions below 90x160.

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 1.5  3  4.5  6  7.5  9
 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

P
re

ci
si

o
n

R
ec

al
l

Grouping angle

Precision
Recall

(b) Grouping angle parameter. For grouping an-
gles wider than 3 precision is no longer 1, while
recall slightly improves.

Figure 4.11: Results of tuning the image resolution and grouping angle parameters.
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Figure 4.12: Results of tuning the grayscale consistency, blur standard deviation and blur
kernel size parameters.

smaller than 7, there are some false positives (i.e., precision is less than 1). Vice versa, when

this parameter is set to 7 or higher, precision is 1. For values larger than 7, both precision and

recall are not influenced, but the computation costs are higher. Hence, we chose the value of 7

for this parameter as default.

4.5.3 Impact of GPU computation

One set of experiments is aimed at assessing the improvements of the GPU implementation of

anchors extraction (see Section 4.2.4). Figure 4.13(a) shows the comparison between the CPU

and the GPU implementations for different values of the “resolution” parameter. As expected,

this parameter significantly influences the execution time of anchors computation as this is an

operation with time complexity linear in the number of pixels. Indeed, the computation time of

the CPU implementation is 2.5ms for images with resolution 90× 160, while it is almost exactly

four times larger (i.e., 9.67ms) for images with four times the number of pixels (i.e., 180× 320).

The same increase can be observed for images with resolution 360 × 640. Differently, with the

GPU implementation, the total computation time is composed by a constant-time overhead (we

estimate its cost to be about 1.5ms) and the actual computation, whose cost is indeed linear in

the number of pixels and about 10 times faster than with the CPU implementation. So, overall,

while the computation on the GPU leads to an improvement of about 30% for 90× 160 images,
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Figure 4.13: Comparing the computation time of the CPU and GPU implementations of
Recognizer.

the improvement is much larger with 180× 320 images (the default resolution value) where the

GPU implementation is more than 4 times faster. In our experiments we also observed that for

larger images the benefits are even higher (e.g., for 360 × 640 images the GPU implementation

is about 8 times faster).

One question is how the GPU implementation of anchors extraction impacts on the overall

computation time of Recognizer. Figure 4.13(b) helps us provide an answer by showing, at the

default resolution, how the entire computation time of Recognizer is divided between anchors

extraction and all other operations. When anchors extraction is computed in CPU, it requires

almost the same time as all the other operations (precisely, anchors extraction takes 44% of

the entire computation time). Vice versa, with the GPU implementation, anchors extraction

requires 15% of the entire computation time. Since the GPU implementation is about 4 times

faster, it improves the overall Recognizer computation time by about 30%.

4.5.4 Robustness

We used Testset3 and Testset4 to evaluate the robustness of the proposed solution when the

zebra crossing is heavily blurred or partially covered. In this analysis, since the two testsets

contain true positives only (all images contain a zebra crossing), we only evaluated recall. Note

that Recognizer has not been specifically tuned for these two testsets of images: the values

of all parameters are the same as defined in the tuning phase, conducted with Testset1 (see

Section 4.5.2).

Figure 4.14 shows a comparison of the recall obtained in Testset1, Testset3 and Testset4 when

two different techniques are used for line segments detection. In this section we consider the

default technique only (EDLines); we discuss the results with the other technique (LSD) in

Section 4.5.5.

We can observe in Figure 4.14 that, when Recognizer is run with heavily blurred images, recall

slightly improves (from 0.93 with Testset1 to 0.96 with Testset3). This is due to the fact that

images in Testset3 are mainly captured in conditions of low ambient light (when it is easier to

have heavily blurred images). In this light condition, there is a higher contrast between light

stripes and the dark background, which makes it easier to detect crossings.
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For what concerns Testset4, we can observe that, considering only images in which the stripes

are partially covered, the decrease in recall is very small: from 0.93 with Testset1 to 0.88 with

Testset4. This supports the fact that, in the great majority of the cases, the line segment

detection algorithm is able to reconstruct the entire stripe edge, even when it is partially occluded.
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Figure 4.14: Recall with Testset1, Testset3 and Testset4 using EDLines and LSD.

4.5.5 Comparison with previous solutions

In this section we first compare the impact on Recognizer of two different algorithms for line

segment detection and then we compare the solution presented in this chapter with our previous

ones.

Since line segment detection is a crucial part of our technique, we investigated the impact of

two different approaches: a customized version of EDLines (described in Section 4.2.3) and a

customized version of Line Segment Detector (LSD) [86].

We implemented a version of Recognizer adopting LSD and we tuned it with the same method-

ology described in Section 4.5.2 for the “standard” Recognizer version that uses EDLines. In

practice, we tuned the parameters to obtain no false positives (i.e., to have precision 1) and

to have the highest possible recall. Figure 4.14 shows that the algorithm performs consistently

better, in terms of recall, when EDLines is adopted. Indeed, in Testset1, the recall is 0.93 and

0.86 for EDLines and LSD, respectively. A similar result is obtained for Testset3. For Testset4,

the Recognizer version using EDlines yields a much higher recall score. This suggests that the

solution based on LSD is less efficient in reconstructing the line segments if they are partially

occluded. Also, when LSD is adopted, Recognizer has a computation time that is about 3 times

higher than with EDLines. For the above reasons, we can conclude that EDLines outperforms

LSD for this specific application.

We now compare the solution presented in this chapter with previous solutions [4, 3], that are

henceforth called “Version 1” and “Version 2”, respectively. A direct comparison with other

solutions is unfeasible because the implementation and the data used for their evaluation are

not public. Vice versa, as we explain in Section 4.5.1, the data used for our tests is public, so

that a direct comparison of future works with our solution is possible. The three solutions are

compared according to two metrics: recall and computation time.

For each version we use the corresponding default system parameters, which, as previously stated,

are tuned to yield a precision equal to 1.
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Figure 4.15: Performance comparison between different versions of Recognizer (precision is
1 in all versions).

For what concerns recall, Figure 4.15(a) shows that it improved from .69 in Version 1 to .78

in Version 2 up to .93 in the current version of Recognizer. The improvement from Version 1

to Version 2 is mainly due to the fact that in Version 2 the geometrical properties are checked

on the rectified image. The improvements from Version 2 to the current version is due to the

number of improvements described in previous Sections.

For what concerns the computation time, in Version 1 the average time to process each frame

is 74ms, while in Version 2 it is 23ms. In the current version of Recognizer the average time

is 22ms with the CPU implementation of anchors extraction while it is 16ms with the GPU

implementation. Considering also the image acquisition time, ZebraX can process about 25

frames per second.

The small improvement between Version 2 and the current CPU implementation is due to two

contrasting factors: on one side, we engineered and optimized the code, hence improving the

computation time by about 20%. On the other side, we fixed a bug in the line segments merging

algorithm (see Section 4.2.3). The effect of the bug was to erroneously terminate before merging

was complete, hence resulting in a partially incorrect result but faster computation. After fixing

this bug, all line segments are now correctly merged, but the improvement in computation time

from Version 2 to the current version is negligible. Still, the GPU implementation of anchors

extraction guarantees an improvement of about 30%.

4.5.6 Positioning accuracy

A set of experiments is aimed at asserting the approximation introduced when computing the

four distance measurements (see Section 4.2.7). In the following we indicate as “error” the

absolute value of the difference between the distance (frontal, angular or left/right shift) returned

by Recognizer and the expected (correct) distance. It is worth noting that, in some cases the

curvature of the road surface may introduce a small error in distance measurements. The analysis

of such issue is left as a future work. However, our experiments have been conducted on a flat

road surface and results presented in the following are not affected by this issue.

For what concerns the frontal distance, the average error is 0.22m. Figure 4.16(a) shows the

cumulative distribution function (CDF) chart of the error occurring in the computation of frontal
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Figure 4.16: Accuracy of frontal and rotation distances.

distance. It can be observed that in 50% of the cases the error is less than 20cm, while in 96%

of the cases the error is less than 50cm, which corresponds to approximately one step.

In a few cases the error is about 1m: this is due to the fact that the first white stripe is not

recognized. Fortunately this problem occurs in few frames (less than 3%) that are generally non-

consecutive (the longest sequence we measured is composed by two consecutive frames). This

makes it possible to identify the occurrence of this problem in the Logic module by checking

for sudden changes in the frontal distance. Indeed, since the temporal distance between two

consecutive frames is less than 0.05s (frequency is about 25 frames per second), a change in the

frontal distance larger than 0.5m clearly indicates that the closer stripe has not been recognized.

The results of the frontal distance error also show that the mean error is larger when the observer

is far from the crossing. For example, when the observer is 4m far from the crossing, the mean

error is 0.24m, while for a distance of 2m the mean error is less than 0.2m.

For what concerns the rotation angle, the average error is about 2.2◦. Figure 5.3 shows the CDF

chart: it can be observed that the error is up to 9.5◦ and that in 93% of the cases the error is

less than 7◦. In this case it is not possible to check for sudden changes, as a user can possibly

rotate very quickly. Nevertheless values can be smoothed by using a moving average in the Logic

module. For example, with a moving average of length 3, the average error in the rotation angle

is 1.0◦ and the maximum error observed in the experiments is 3.0◦.

During our experiments we observed that the computation of the lateral distance is subject to a

non-negligible approximation caused by two factors: first, EDLines frequently does not recognize

the entire stripe edge, but just a portion of it and consequently the computation of the border is

not always precise. See Figure 4.17 for an example. Second, the projection of the user’s position

on CLS (the line segment closest to the user) can be imprecise due to approximations in the

computation of CLS angle. To address the former issue, our solution excludes, from the border

computation, the points that introduce an error above a given threshold as, for example, point

A in Figure 4.17. This is useful, for example, when there are few line segments that are much

shorter than the actual stripe edge. To address the latter issue, when computing the projection

on CLS, instead of using the angle of CLS, we use the average angle computed among all the

stripes. The resulting technique always correctly identifies a lateral distance as not quantifiable

(i.e., the border is out of the field of view, see Section 4.2.7). In some rare cases it happens that,

even if the border is visible, it is still identified as not quantifiable. This is often due to the fact
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Figure 4.17: The stripe’s edge is not completely recognized.

that the border is only visible in stripes that are far away from the user and these stripes are

not recognized. In any case, in 87% of the cases, if a border is visible then it is identified by our

technique and, in these cases the average error is 0.25m.

4.6 Evaluation of the auditory guiding modes

Considering the difficulties in recruiting test subjects with VIB, we decided to carry out the

evaluations also with sighted individuals. We conducted three sets of empirical evaluations: a

quantitative evaluation with 11 blindfolded sighted test subjects (Section 4.6.1), a qualitative

evaluation with 12 blind test subjects (Section 4.6.2) and, finally, a quantitative and qualitative

evaluation conducted with 3 test subjects with VIB (Section 4.6.3). In Section 4.7 we report a

discussion of the empirical results.

The evaluations were conducted with an iPhone 5s, and all test subjects wore wireless bone-

conducting headphones7. During the evaluations, subjects with VIB who were used to walk with

a white cane kept it in one hand, while the smartphone was held in the other hand, pointing in

front of them.

4.6.1 Quantitative Evaluation with Sighted Test Subjects

The quantitative evaluation was conducted with 11 blindfolded sighted test subjects. In the

following sections the evaluation settings and methodology are described first, followed by the

presentation of the results.

Evaluation Setting and Methodology

The evaluation was conducted in an outdoor environment where a real-size zebra crossing was

represented on a large plastic sheet. The zebra crossing used during the evaluation is compliant

with Italian traffic regulations; it is composed by five light stripes over a dark background, and

each stripe is 2.5m large and 0.5m wide8 (see Figure 4.18).

7Headphones model is Aftershoks bluez 2
8Italian regulation defines zebra crossings that are similar to those used in most countries worldwide

51



15°

75°

45°
0.5m

1m

1.5m

2m

3m

4m

0.5m 0.5m

2
.5

m

1

2

3

4

6

5

Figure 4.18: Layout of the plastic sheet on which the evaluations were conducted. Numbers
and arrows represent starting points and starting directions, respectively.

The outdoor environment was chosen in order to give a more realistic setting to the tests.

In order to reduce the test subjects’ ability to orientate using environmental sounds, and to

minimize hazards, it was decided to carry out the evaluation in a large courtyard. Sound of

traffic and other environmental noises were audible, but particularly diffuse in the environment

and generally not usable for orientation purposes. For the same reason, the plastic sheet was

moved or rotated after each test, so that it was impossible for the test subjects to predict the

position of the zebra crossing based on previous tests. Furthermore, in order to avoid that tactile

and/or audio feedback coming from the ground surface could give clues to help orientation, the

whole testing area was covered by a very large plastic sheet

Each evaluation was organized into three phases: learning, practice and measurements. During

the learning phase each test subject had access to a document describing the evaluation structure,

introducing ZebraX and the three different auditory guiding modes. The document was presented

in the form of an HTML page, so that test subjects could listen to sonification examples9.

During the practice phase, each test subject could try ZebraX with the three auditory guiding

modes. No time constraints were enforced; each test subject could freely decide how long to

practice with each guiding mode, until he/she felt comfortable with it. On average, test subjects

tested the speech guiding mode for about 1 minute, and the other two guiding modes for about

2 minutes each.

During the measurement phase each test subject was asked to autonomously align with the zebra

crossing and to actually cross it. These two operations were repeated for two “rounds” of tests.

During each round, three tests were conducted, one for each guiding mode, in order: speech,

mono, and stereo. For each test, the subject started from a different point, in a different starting

direction. The choice of the starting points was determined by the idea that the time and effort

required to find the crossing, align and cross should be almost the same for all starting points.

After some informal evaluations, the 6 starting points depicted in Figure 4.18 were chosen.

During the measurement phase, the ZebraX app recorded a number of parameters related with

the completion of the task. These included: the time to align (i.e., to reach the first stripe), the

time to cross (i.e., from the first stripe to the end of the crosswalk), the complete list of messages

and the number of taps on the screen to repeat/clarify the message.

9The document was presented in Italian. Its English translation is available here: http://webmind.di.unimi.
it/zebraexplanation/
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Figure 4.19: Average alignment and crossing time in the two rounds of the quantitative
evaluation conducted with sighted subjects.

Evaluation Results

During the measurement phase all test subjects were able to successfully complete all crossings.

The only exception was the test subject 6 who, during the test with the mono guiding mode -

second round, misinterpreted a “rotate left” message and walked straight. Since the subject was

going to hit a parked car, the supervisor had to stop the test.

Figure 4.19 shows, for each test subject and each guiding mode, the average time required in

the two rounds to align and cross. We can observe that 5 test subjects have been able to align

and cross faster with speech guiding mode, 2 test subjects with mono and 4 with stereo. Mean

alignment time is 24s, 29s and 28s with speech, mono and stereo modes respectively, while mean

crossing time is 10s, 14s and 12s respectively. Overall, the mean time to align and cross is 34s,

44s and 41s.

The above results seem to suggest that there is not a clear difference in crossing time for the

three guiding modes. These results can be also graphically observed in the boxplot shown in

Figure 4.20(a). This chart also seems to highlight that, differently from what expected, there

is no learning effect between the first and second round. Indeed, on average, the crossing time

in the second round is slightly lower for the mono guiding mode compared with the other two

guiding modes.

Another metric that can help understand the performance of the three guiding modes is the total

number of changes in the message to be conveyed during the task (this metric will be referred to

as “number of messages”). Clearly, a smaller value indicates higher performance. In this case it

emerges that speech and stereo guiding modes yield very similar results, while mono sonification

requires a slightly larger number of instructions, on average (see box plot in Figure 4.20(b)).

Inferential statistics have been performed to identify whether the differences between guiding

mode groups are statistically significant. Considering the time to align and cross, the data

sets are normally distributed, therefore a one-way ANOVA was conducted. The results show

that there are no statistically significant differences between the three groups (F (2, 63) = 1.178,

p = 0.314). Similarly, no statistical difference was found between the first and second round

performances, and between the starting points (for all guiding modes).
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Figure 4.20: Boxplot representation of results from the quantitative evaluation conducted
with sighted subjects (♦ symbol represents mean).

Considering the number of messages, the data sets are not normally distributed, therefore a

Kruskal-Wallis test was conducted. No statistical difference was found between the three groups

(χ2 = 0.164, p = 0.921).

4.6.2 Qualitative Evaluation with Blind Subjects

The qualitative evaluation was conducted in an indoor environment during an exhibition of

assistive technologies10. The evaluation was conducted with 12 blind subjects.

The evaluation was divided into three phases, similarly to the quantitative evaluation. The learn-

ing and practice phases were conducted with the same methodology presented in Section 4.6.1.

However, due to the particular context of the exhibition, the measurement phase could not be

performed. A questionnaire has been administered instead.

The questionnaire is organized in two sets of Likert-scale items; the first one is derived from the

System Usability Scale [17] and is composed of 7 statements related to the ease of use of the

three auditory guiding modes (see Figure 4.21). The second one, composed of 8 statements, is

derived from IBM Computer Usability Satisfaction Questionnaire (CSUQ) [50] and is aimed at

evaluating the satisfaction with the preferred guiding mode, which is specified by the subjects

with an answer to a multiple choice question.

There are some topics on which most of the test subjects seem to agree, and others in which

there is no consensus. The test subjects agree on the fact that instructions provided with the

speech guiding mode are simple to follow (consider item 1 in the first set), and they all seem to

have an overall positive view of ZebraX (consider in particular items 1, 2, 7 and 8 in the second

set).

There is generally a lower consensus on the items in the first set. For example, test subjects have

very different feelings about the ease of following instructions with the mono guiding mode. 8

test subjects state that they are easy to follow (with a rate of 4 or 5) while 4 test subjects do

not agree with that statement. Very similar result are obtained for the stereo guiding mode. 8

test subjects state that instructions provided with the stereo guiding mode are easy to follow.

Interestingly, only one test subject found the instructions provided with both mono and stereo

10HANDImatica 2014, held in Bologna, Italy.
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6. The stereo mode is more intuitive than the mono mode

7. Hearing sounds from the environment is more difficult in

the speech mode than in mono or stereo

Mean

Stdev

Strongly disagree                     Strongly agree

Figure 4.21: Results of the questionnaire administered at the end of the qualitative evalua-
tion, first part.

0 1 2 3 4 5 6 7

8. Overall, I am satisfied with how easy it is to use this system

9. I can effectively cross the road using this system

10. I feel comfortable using this system

11. It was easy to learn to use this system

12. Whenever I make a mistake using the system.

I recover easily and quickly

13. The (auditory) interface of this system is pleasant

14. The information is effective in helping me

complete the tasks and scenarios

15. Overall, I am satisfied with this system

Mean

Stdev

Strongly disagree                    Strongly agree

Figure 4.22: Results of the questionnaire administered at the end of the qualitative evalua-
tion, second part.

guiding modes hard to follow. Instead, 6 test subjects found that one of the two guiding modes

based on sonification is hard to follow, while the other one is not. This suggests that test subjects

have clear and contrasting preferences. To confirm this, 50% of the test subjects state that the

mono guiding mode is more intuitive than stereo, while 50% state the opposite.

Three test subjects prefers the speech guiding mode, 4 prefers mono and 5 prefers stereo. Despite

this, in the second set of items test subjects converge towards a positive view of ZebraX (see

Figure 4.22). Indeed, subjects argue to be satisfied by the ease of use of the application and that

they have been able to complete the crossing using ZebraX. However, sometimes users reported

to be a little disoriented by contrasting instructions provided by ZebraX. By observing users,

we noticed that the issue occurred when users accidentally moved the hand, aiming the camera

away from the crossing. Three possibile solutions may be considered as future works to address

this issue. First, to warn the user when excessive movement is detected by the IMU, helping

her aim back in the right direction. Second, the Logic module may adopt temporal reasoning to

filter out wrong detections. Third, wearable devices such as smart glasses and wearable cameras

may be used to obtain a steady aim in the correct direction.

55



4.6.3 Qualitative and Quantitative Evaluation with Test Subjects with

VIB

The third evaluation consisted in a quantitative and qualitative evaluation conducted with three

test subjects with severe visual impairments.

Evaluation Methodology

The evaluation was conducted with three test subjects: one of them was blind, the other two

were partially sighted, and not able to recognize zebra crossing through their residual sight11.

The evaluation consisted in five phases. The first three phases (learning, practice and measure-

ments) were similar to the quantitative evaluation described in Section 4.6.1.

The fourth phase was conducted in a urban crossroad, and consisted in a set of about 10 crossing

attempts. A supervisor was constantly supporting the test subjects, in the attempt to avoid

any hazard. At each crossing attempt the supervisor guided the test subject to the crosswalk

vicinity, and then asked him/her to align with the crosswalk. Once aligned, the test subject had

to wait for the traffic light to turn green (this information was provided by the supervisor) and

was then asked to cross. In case the crossing was not complete before the traffic light turned

yellow, the supervisor was instructed to guide the test subject towards the sidewalk. No formal

measurements were collected during this phase. The goal was simply to allow test subjects to

use ZebraX in a real environment.

The fifth phase consisted in the qualitative evaluation described in Section 4.6.2 with an addi-

tional set of open questions.

Evaluation Results

During phase three (measurements), all test subjects have been able to successfully complete the

crossing in all the attempts. Figure 4.23 shows the time to align and cross. For what concerns

the comparison among the three guiding modes, results are not dissimilar to those presented in

Figure 4.19. One difference is that, in the case of test subjects with VIB, the average crossing

time is about 27s with the three guiding modes. This is more than 10s faster if compared with

the performances of blindfolded sighted users. The number of messages is also similar; mean

values are 20, 11 and 14 for the three guiding modes respectively. In this regard, we have to

underline that test subject 12 (the blind subject) had some problems, at the beginning, finding

the correct inclination of the device. This caused a large number of ‘raise’ and ‘lower’ messages

in the two runs with the speech guiding mode.

In phase four, all test subjects completed the crossing before the traffic light turned yellow. The

test subjects conducted at least one test with each guiding mode, but they were left free to

choose how to conduct the majority of tests. All of them choose to use their preferred guiding

mode (listed below).

11The two partially sighted subjects were blindfolded during the test.
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Figure 4.23: Crossing time in the 6 tests conducted by each of the 3 test subjects with VIB.

In phase five, it emerged that the three test subjects agreed on the fact that the instructions

provided in the speech and the mono guiding modes were easy to follow (for both items, two test

subjects rated 7 and the other rated 6). A slightly different score was given to the stereo guiding

mode (two test subjects rated 4 and the other rated 3). Vice versa, there is no consensus about

how hard it is to remember the sonifications; two test subjects reported that they are hard to

remember, while test subject 14 reported the opposite.

Each one of the three test subjects preferred a different guiding mode. Test subject 11 preferred

stereo guiding mode, justifying the choice by saying that the stereo guiding mode “provides

both the spatial references and the clearness of the speech messages that can be activated by

tapping”12. Test subject 12 declared to prefer the speech guiding mode because it was less

cognitive demanding. This test subject comments that “you need to get used to this app,

because when you are crossing you need to pay attention to the surrounding. With the stereo

[and mono] guiding mode[s], you need to concentrate to remember the sounds [i.e., the association

between the sounds and the instruction], and this may distract you”. Finally, test subject 13

preferred the mono guiding mode, reporting these motivations: “I like the other two [guiding

modes] as well. Still, stereo [guiding mode] requires me to concentrate, while speech messages

can get confused with other sounds in the environment”.

Finally, the last questions about the overall satisfaction denoted high satisfaction by all three

test subjects.

4.7 Discussion

In this chapter we introduce the ZebraX application and describe the Recognizer, Logic and

Navigator modules. The Recognizer module is in charge of recognizing pedestrian crossings

from the images captured by the smartphone’s camera. The extensive experimental evaluation

highlights three major contributions with respect to the state of the art. First, Recognizer

removes projection distortion from the features identified in the input image, thus improving

the recognition quality both in terms of precision and recall. Second, the module computes the

12The interview was conducted in Italian, and only the english translation is reported.
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relative distance between the user and the crossing with quantified and precise measures. Third,

Recognizer is engineered to adopt GPU parallel computation techniques to deliver realtime

recognition on mobile devices.

Regarding the Navigator module, that is responsible for guiding the user in the actual crossing

through auditory feedback, a number of discussion points emerge from the analysis of the exper-

imental results and from the experience derived by the observation of the different evaluation

stages. It is quite clear that there is no guiding mode which is best suited for all test subjects.

While on average the speech guiding mode allowed the test subjects to align and cross more

quickly, the majority of test subjects (6 out of 11) were faster to align and cross with one or both

the sonification guiding modes. More importantly, test subjects distribute their preferences for

the best guiding mode almost uniformly among the three solutions (4 prefers speech, 5 mono

and 6 stereo guiding mode).

An important fact to be considered is that, following the results and feedback of the preliminary

evaluation stage (Section 4.4.3), the guiding modes have been integrated with touch-activated

speech messages. While this functionality clearly facilitates the usability of the application, its

implementation essentially changed the nature of the evaluation, which in practice became a

comparison between a guiding mode based on speech only and two guiding modes based on

the combination of sonification and speech. We expected the test subjects to rely on the tap

gesture mainly during the training phase, and then to gradually get used to the sonifications.

Nevertheless, we did not observe a statistical significant decrease in the number of tap gestures

between the first and second round tasks.

During the tests with the two sonifications, some test subjects frequently tapped on the screen,

requesting the speech cue. We believe that these test subjects did not get well acquainted with

the sonification technique, and therefore required constant speech feedback in addition to the

sonification. For example, during the second round with the stereo guiding mode, test subject

4 tapped on the device almost three times for each new message received (67 taps and 24

messages). Differently, other test subjects used the tap gesture only sporadically. For example,

test subject 5 tapped only 2 times in the second round with the mono guiding mode, during

which he received 15 messages in total. This indicates that the test subject was confident to

have correctly interpreted the great majority of messages.

Interestingly, sighted test subjects frequently used the tap gesture also with the speech guiding

mode (more than half of the sighted test subjects used the tap gesture more than once every

four messages). The tap gesture seemed to provide a form of confirmation or reminder of the

last message read. It was not the same for the three test subjects with VIB, who did not use

this functionality with the speech guiding mode.

To judge the applicability of the two sonifications we should also consider that, while they are

considered less intuitive (all test subjects believed that at least one of the two sonifications

was harder to understand than the speech guiding mode), test subjects still expressed their

appreciation for them even after a short practice (11 out of 15 test subjects preferred the mono

or stereo guiding mode). This is due to the fact that, according to some of the test subjects,

the speech messages prevented hearing of environment sounds. Also, as reported by two test

subjects as answers to the open questions, the guiding modes based on sonification conveyed
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the “quantity” of the expected user movement. This additional information, once appropriately

grasped, could further facilitate the alignment and crossing phases.

A further consideration should be made regarding the fact that during the evaluations no learn-

ing effect emerged. None of the metrics defined to estimate the time and effort indicated a

statistically significant improvement between the two rounds. This could be due to the short

duration of the tests. Furthermore, a ‘tiring’ effect could have appeared, considering that the

test subjects were required to keep high levels of concentration during the whole evaluation (ap-

proximately 20 minutes). Using the speech guiding mode, 6 of the 11 blindfolded test subjects

required a longer time to align and cross during the second round if compared with the first one.

Similarly, with both mono and stereo guiding modes 5 test subjects required longer time in the

second run. Since the sonifications appeared to be less immediate, we initially guessed that they

should have taken larger benefit from the learning effect derived by frequent use of ZebraX.

Another aspect to be considered is that the evaluations conducted on the plastic sheet were more

challenging than those in the real environment. It is in fact true that when testing the app on

the plastic sheet, no specific haptic or audio cue is available. Vice-versa, when crossing on the

road there are a number of hints that can help a person with VIB orientate during the crossing,

including, for example, the sidewalk and traffic noise, and the feeling of different types of terrains

under the feet.

One final remark is related to the unexpected high dispersion of the quantitative results with

respect to the mean. The relative standard deviation is 41%, 47% and 40% for speech, mono and

stereo guiding modes, respectively. Combining these data with the experience derived from the

observation of the experiments, we can highlight two important facts. First, some test subjects

are more confident and hence move faster (e.g., test subject 9), while others are more cautious

(e.g., test subject 5) and tend to move and rotate more slowly. Second, there are some human

errors that can lead one test subject to have different results in two tests with the same guiding

mode. For example, test subject 4 completed the two tests with stereo guiding mode in 28s and

104s respectively. In the second round, the test subject misinterpreted a message, believing that

the crosswalk was on his right, while actually it was on his left. This caused the align process

to take much longer (78s in total) than in the previous round.

4.8 Summary and future directions

In this chapter, we introduce the ZebraX application, a novel solution to guide people with

VIB in road crossings. ZebraX is composed of three different modules, Recognizer, Logic and

Navigator.

For what concerns the Recognizer module, research presented here extends a previous contri-

bution by Ahmetovic et al. [3] in many directions. First, perspective projection distortion is

removed from detected features, improving the overall recognition quality; Second, the rela-

tive distance between the user and the crossing is computed, providing quantified and precise

measurements that are used by other ZebraX modules to guide the user in the actual crossing;

Third, the technique is optimized and engineered in order to improve accuracy and reduce com-

putational complexity, offloading computationally expensive operations from the mobile device’s
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CPU to its GPU. The experimental evaluation shows that, in our data sets, the updated Recog-

nizer module outperforms our previous solutions in terms of recall and computation time, while

precision is still equal to 1. Also, Recognizer detects crossings even if they are partially out of

the camera’s field of view, addressing a limitation of a previous approach [77]. Another issue

of previous research [77, 85] is that the proposed solutions have not been evaluated on large

data sets of zebra crossing images. Recognizer, instead, has been evaluated on a large dataset of

about 4000 images captured under different illumination conditions.

A research question left unanswered by previous contributions [77, 85] is to find an effective

way to give feedback to the user, providing guidance while crossing without distracting him/her

from paying attention to the surrounding environment. The Logic and Navigator modules are

introduced to this extent. The Logic module computes instructions to guide the user in the

actual crossing, while the Navigator module implements three auditory guiding modes to convey

instructions to the user. The first guiding mode adopts speech synthesis to convey instructions,

similarly to what is done in previous research [4, 38]. The remaining two modes are novel

contributions that adopt sonification and sound spatialization to convey, at the same time,

instructions and quantitative information like, for example, the distance of a recognized crossing.

Three evaluations have been conducted with people with VIB and blindfolded subjects in order

to evaluate the three auditory guiding modes. All subjects managed to successfully complete all

crossings. Interestingly, no best auditory guiding mode emerged from the quantitative evaluation:

while on average the speech based guiding mode allowed to cross more quickly, the majority of

test subjects were faster with non-speech guiding modes. For what concern subjects preferences,

people with VIB declared to prefer the two non-speech guiding modes even if they are less

intuitive.

Research presented in this chapter highlights several ideas for future works. First, Recognizer

could be extended in order to detect other types of pedestrian crossings. Second, the Logic

module should be extended in order to adopt some form of spatial-temporal reasoning to track

zebra crossings between consecutive frames, hence mitigating the impact of wrong detections.

Also, more evaluations in real world usage scenarios should be performed. A possible way to

reach this objective, is to integrate ZebraX in publicly available mobile applications to support

navigation of people with VIB13. Such integration would enable the collection of real world usage

data to further validate the technique and to perform longitudinal studies that may show how

training impacts on the performance of the auditory guiding modes. Finally, from a usability

perspective, we observed that keeping the phone steady was difficult and sometimes tiresome

for test subjects. The adoption of wearable devices such as smart glasses or wearable cameras

should be considered in order to provide a better way to aim the camera without putting too

much strain on the user.

Results highlighted in this chapter show that MATs based on computer vision can be effectively

used to support navigation of people with VIB. The same approach can be used to address other

challenges encountered while navigating unknown environments. An example is the detection of

the state of traffic lights, a challenge that we approach in the next chapter.

13An example of such application is iMove, a commercial application that supports orientation of people with
VIB developed by EveryWare Technologies.
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Chapter 5

Recognizing traffic lights

The ZebraX application described in Chapter 4 proved to be effective in supporting people

with VIB when crossing roads: it supports users in finding the crossing, in aligning to it and

in staying inside its boundaries while crossing. However, the application has a limitation, as

ZebraX has no way to detect when it is safe to cross. A solution to this problem consists in

crossing at intersections equipped with acoustic traffic lights. There are many different models of

acoustic traffic lights. For example, in Italy, there are acoustic traffic lights that produce sound

on demand by pushing a button placed on the pole. The sound signals to the person with VIB

when the light is green. In Germany, there are models that always produce a sound when the

light is green (no button has to be pushed) and they adapt the intensity of the sound according

to the background noise.

Nonetheless, as reported by many associations for blind and visually impaired persons, in most

industrial countries (e.g., Italy, Austria, France, Germany, etc.), acoustic traffic lights are not

ubiquitous; they are present in some urban areas but may be absent in small towns. Furthermore,

acoustic traffic lights are not always working properly because damages often take a long time

to be reported and fixed. The situation can be even worse in developing countries.

A number of solutions have been proposed in the scientific literature to recognize traffic lights,

however all of them share a common problem: they use images acquired through the device

camera with automatic exposure. With this approach, in conditions of low ambient light (e.g.,

at night) traffic lights result overexposed (see Figure 5.1) while in conditions of high ambient

light (e.g., direct sunlight) traffic lights are underexposed (see Figure 5.2).

In this chapter we present TL-detector, a traffic light recognition system that solves the above

problem with a robust image acquisition method, designed to enhance the subsequent recognition

process.

5.1 The target of the detection

In this work we consider traffic lights currently used in Italy, which adhere to European Standard

12368 [83]. This standard specifies a number of physical properties of the traffic lights, including,
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Figure 5.1: Pedes-
trian traffic light is

overexposed.

Figure 5.2: Pedestrian
traffic light is underex-

posed.

for example, their size, luminous intensities and colors that have to be consistent in all European

countries. Luminous intensities are specified in two classes, with a common minimum and two

maxima according to the class. Values are different according to the color and are reported in

Table 5.1.

red yellow green
min 100cd 200cd 400cd
Max Class 1 400cd 800cd 1000cd
Max Class 2 1100cd 2000cd 2500cd

Table 5.1: Luminous intensities range in the reference axis according to European Standard
12368 [83].

Chromaticities are delimited in the CIE XYZ space according to the values reported in Table

5.2.

chromaticity boundaries boundary
y = 0.290 red

red y = 0.980− x purple
y = 0.320 yellow
y = 0.387 red

yellow y = 0.980− x white
y = 0.727x+ 0.054 green
y = 0.726− 0.726x yellow

green x = 0.625y − 0.041 white
y = 0.400 blue

Table 5.2: Chromaticities range according to European Standard 12368 [83].

In Italy, as in many other countries, differently shaped lights are used to transfer messages to

different classes of road users. For example, the rounded light is used for drivers, while the “body-

shaped” light is used for pedestrians. Two different shapes are used in Italy for pedestrians lights:

one for green light, the other for yellow and red lights (see Figures 5.6, 5.7 and 5.8). While the

actual shape of the figure appearing through the lens can vary from country to country (in some

cases even within the same country), the proposed solution can be easily adapted to most existing
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road

Figure 5.3: Example of ‘maximum rotation angle’.

standards by simply re-tuning the detection parameters and by using different template images

(see Section 5.3.4). Also, if the proposed technique is used in countries with very particular light

conditions (e.g., a bright sunny day in the desert) it could be necessary to accordingly tune the

acquisition parameters with the methodology presented in the following.

Among other physical properties of the traffic light, its position with respect to the observer is

particularly relevant. Indeed, given the application, only traffic lights with bounded distance

from the observer should be detected. For example, considering the width of urban roads, in

the experiments the minimum and maximum horizontal distances adopted are 2.5m and 20m,

respectively. Analogously the signal head should not be too high or too low with respect to

the observer. Hence the vertical distance is bounded. For example, in the experiments the

minimum and maximum vertical distances adopted are 0.5m and 4m, respectively. Finally, the

user is interested only in the traffic lights that point towards him/her. Consider for example

Figure 5.3: the direction of the red traffic light (red circle) is roughly the same angle as the

line passing through the traffic light and the user (black circle). Hence, that traffic light should

be detected. Vice versa, the green traffic light (green circle) is pointing away from the user

and hence it should not be detected. The “maximum rotation distance” parameter defines the

angular distance between the direction of the traffic light and the direction from the traffic light

towards the user. In the experiments a “maximum rotation distance” of 45◦ is adopted. In a

typical crossroad like the one in Figure 5.3, this value prevents the identification of a diagonally

opposite traffic light that, generally, shows an opposite color with respect to the one shown by

the traffic light the user is interested in.

Henceforth some of the terms defined in European Standard 12368 [83] are used. In particular,

the “signal head” (see Figure 5.4) is the device composed by different “optical units” (see Fig-

ure 5.5), each one with its “lens”. For example, in Italy, there are three optical units in each

signal head. The “background screen” is the opaque and dark board placed around the optical

units to increase the contrast. Also, the term “active optical unit” (AOU in the following) refers

to the optical unit that is lighted in a given instant (as in Figure 5.5). Finally, “optical unit

color” is the color of an optical unit when it is active. Examples of different visual appearances

of the AOU are shown in Figures 5.4 to 5.8.
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Figure 5.4:

Sig-
nal
head.

Figure 5.5:

(Active) optical
unit.

Figure 5.6:

Green
AOU.

Figure 5.7:

Yel-
low
AOU.

Figure 5.8:

Red
AOU.

5.2 The TL-detector application

The architecture of TL-detector is similar to the one adopted for ZebraX (described in Chapter 4)

and is made of three main modules: TL-recognizer, TL-logic and TL-Navigation (see Figure 5.9).

TL-Logic TL-NavigatorTL-Recognizer

Figure 5.9: Structure of the main application modules.

The TL-recognizer module computes the position and color of a pedestrian traffic light in a given

image, relying on data sources available on off-the-shelf smartphones. Similarly to ZebraX, TL-

recognizer uses the camera to capture video frames that can then be analyzed with computer

vision techniques and inertial sensors.

The TL-logic module combines different results of TL-recognizer and computes messages to guide

the user. Example 5.1 shows a simple form of reasoning.

Example 5.1. One run of TL-recognizer detects a red traffic light in a certain position. TL-logic

computes a ‘wait’ message to instruct the user not to cross. After the recognition, TL-logic uses

accelerometer and gyroscope data to estimate how the device is being moved and hence where

the traffic light is expected to be in the next frame. Indeed, the following run of TL-recognizer

identifies a green traffic light in the expected position. Consequently TL-logic can conclude that

the traffic light has now turned green and therefore generates a ‘cross’ message for the user.
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The TL-Navigation module is in charge of conveying the messages to the user through audio,

haptic (vibration) and graphical feedback. This module must address the challenge of providing

audio information to the user without diverting the user’s attention from the surrounding audio

scenario, which is essential to acquire indispensable information (e.g., an approaching car, a

person walking by, etc.).

In the following, we focus on the recognition process adopted by the TL-recognizer module. The

TL-logic and TL-Navigation modules are implemented with basic functionality in order to allow

the conduction of human-based tests and their extension is left as a future work.

5.3 The recognition process

The recognition process is organized in five steps (see Figure 5.10). During image acquisition

a frame is captured by the device camera using specifically designed exposure parameters. The

horizon computation step adopts the same technique illustrated in Section 4.2.1 to compute the

equation of the horizon line in the image reference system.

The other three steps are aimed at identifying the AOUs that appear in the image. The overall

computation is presented in Algorithm 1 and is logically divided into: extraction of candidate

AOUs, pruning of candidate AOUs and validation of AOUs.

Figure 5.10: Organization of the recognition process

The image-processing algorithm takes in input the results of the acquisition phase: an image

i (encoded in the HSV color space) and the horizon line equation h. There are other system

parameters that form the algorithm input: three range filters fg, fy and fr, one for each optical

unit color; three template images tg, ty and tr, each one representing the three lenses and, finally,

a threshold value T ∈ (0, 1) used in the validation step. The output of the algorithm is a set of

identified AOUs, each one represented by its color and its contour in the input image.

5.3.1 Image acquisition

The exposure of the image to be acquired is a key point. Light conditions during day and

night are extremely variable, while luminance coming from traffic lights is pretty stable. Since

smartphone camera automatic exposure balances the mean luminance of every point in the entire

image, its use can result in underexposed or overexposed AOUs (see Figures 5.1 and 5.2). For

this reason, the proposed solution disables the automatic exposure feature of the mobile device

and sets a fixed exposition value (EV) chosen among a small group of EVs that have been pre-

computed to encompass the luminance variations. These variations are mainly due to traffic
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Algorithm 1: Image processing (non optimized version)

Input: image i; horizon line equation h; range filters fg, fy and fr; template images tg, ty and
tr; threshold value T ∈ (0, 1).
Output: a set R of active optical units. Each element of R is a pair 〈o, c〉 where o is the AOU
contour and c the color.
Constants: g, y and r represent the three optical unit colors (i.e., green, yellow and red).
Method:

1: R← ∅ {algorithm result}
2: for all (color c ∈ {g, y, r}) do
3: {Extraction of candidate AOU}
4: i′ ← apply fc to i {i′ is a binary image}
5: O ← extract the set of contours from i′

6: for all (contour o ∈ O) do
7: {Pruning of candidate AOU}
8: o′ ← rotate o by the inverse of the inclination of h
9: if (o′ does not satisfy “distance” or “width” properties) then

10: continue {prune o}
11: end if

12: {Validation}
13: p← image patch, extract from i, corresponding to the MBR of o′

14: p← resize p to have the same size of tc
15: α is the result of normalized cross correlation between tc and p
16: if (α > T ) then add 〈o, c〉 to R
17: end for

18: end for

light class (see Section 5.1), and acquisition noise due to distance, misalignment, veiling glare,

pixel saturation etc.

Before selecting candidate EV values, the intensity and chromaticity of light coming from a set

of traffic lights were empirically verified. Table 5.3 reports the values measured for four of them,

as an example of the high variability.

traffic light number AOU color Lux x y
green 2671 0.0875 0.6075

1 yellow 1138 0.5839 0.4155
red 740 0.7068 0.293
green 491 0.2785 0.495

2 yellow 1199 0.5676 0.4471
red 723 0.6568 0.3425
green 754 0.2193 0.5025

3 yellow 1502 0.5755 0.4129
red 955 0.6854 0.3142
green 1941 0.0727 0.5091

4 yellow 2065 0.587 0.4121
red 1082 0.7048 0.2951

Table 5.3: Intensity and chromaticity of four sample traffic lights.

Although the standard for traffic light luminous intensity is clearly defined, variability in the

real world (i.e., in the streets) can be very high, both in terms of illuminance and chromaticity.

The reasons are many: class (see Section 5.1), technology of light bulbs, dirt on the lens, aging,

etc.
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To identify the correct EV, a series of pictures were taken at different times of the day and

distances, starting from the theoretical EV computed from the European Standard luminous

intensity [83] on a ±5 stops bracketing, with step 1. From this set of shots, a subset of EVs

were selected to cover the major part of the variance of correctly exposed lenses, in four light

conditions.

The four light conditions are: very high light intensity (e.g., a sunny day at noon), high light

intensity (e.g., a partially cloudy day at noon, or a clear day when the Sun is not high in the

sky), mid light intensity (e.g., a cloudy day, or a clear day at dawn or dusk), low light intensity

(e.g., night). Note that, for our purposes, light condition is highly influenced by the time of day

and by weather conditions (e.g., sunny, cloudy, etc...), while other meteorological conditions (like

rain) do not affect light intensity. To automatically identify the light condition, the following

approach is adopted: before starting recognition, a picture is taken with fixed camera parameters

(ISO 100, aperture F8.0, shutter speed 1/125). Then, value M is computed as the mean, for each

pixel, of the V channel from the HSV color space. This value characterizes the light condition.

Table 5.4 shows how light conditions are specified as well as the camera parameters that yield

best shots in each of them. It may appear counterintuitive but at night time the exposition is

shorter; this reduces the optical veiling glare on the edges of the body shaped lens.

Light intensity M ISO Aperture Shutter speed
Very High 120 < M 100 F8.0 1/160
High 60 < M ≤ 120 100 F8.0 1/200
Mid 5 < M ≤ 60 100 F8.0 1/250
Low M ≤ 5 100 F8.0 1/500

Table 5.4: EV parameters yielding the best results for each light intensity.

In order to adopt the proposed approach to image acquisition, a device must provide camera

APIs to manually set a specific combination of ISO value, shutter speed and aperture settings.

However we observed that, on our target platform, this isn’t always possible. Image acquisition

with fixed EV was implemented on both Android 4.x and Android 5.x. With Android 4.x it is

possible to set the values for ISO, shutter speed and aperture through the Camera.Parameters

object1. It should be observed that, while the Camera.Parameters object is defined for all

Android APIs up to level 21 (excluded), not all of its methods produce effects on all devices.

Indeed, on most devices the methods to manually set ISO, shutter speed and aperture do not

produce any effect and do not disable auto exposure.

Android 5.x offers different APIs to access the camera and its parameters. The package con-

taining the classes is called Camera2
2. These classes offer several new APIs to control camera

parameters and, based on our experience, these APIs are actually supported by most devices,

including the Nexus 5, which was used for the experiments.

A final comment on gamut spaces. The high variability in terms of both European standard

ranges and actual measured chromaticities of the AOUs (see Table 5.3) turned out to be wider

than the average image variance due to possible changes of gamut space in the acquisition device.

Thus, varying the parameter settings (see Section 5.5) is sufficient to compensate this variance.

1http://developer.android.com/reference/android/hardware/Camera.Parameters.html
2https://developer.android.com/reference/android/hardware/camera2/package-summary.html
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Figure 5.11: Details of four pictures taken in different illumination conditions.

Figure 5.11 shows details of four pictures, each one representing a green AOU in a different

illumination condition. The pictures were taken with the camera parameters described above.

From left to right, the four light intensities are: very high, high, mid, and low. These results

are examples of the stable acquisition (see Figures 5.1 and 5.2 for a visual comparison with

automatic exposure).

5.3.2 Extraction of candidate active optical units.

After image acquisition, for each optical unit color c (i.e., green, yellow and red), TL-recognizer

identifies a set of image portions, each one representing a candidate AOU. To achieve this, the

proposed technique first applies a range filter and then groups contiguous pixels. This approach

relies on the fact that AOUs have high luminosity values and are surrounded by regions with

low luminosity values (i.e., the optical unit background).

The range filter is defined over the HSV image representation and is used to identify the pixels

with high luminosity values (see Line 4 in Algorithm 1). A different filter is defined for each

optical unit color c. We observed that optical units in Italy adopt two different types of illumi-

nants, either an incandescent light bulb or LED lamps. Optical units adopting an incandescent

light bulb sometimes tend to present brighter colors in the center. Range filter boundaries are

designed to account for such issue. The result of the application of the range filter is a binary

image whose white pixels are segmented into blocks of contiguous pixels (see Line 5). This is

obtained through the technique proposed by Suzuki and Abe [80]. The result is a list of contours,

each one composed of a set of points.

Example 5.2. Consider the portion of image shown in Figure 5.12a. Figure 5.12b shows the

application of the range filter for the yellow optical unit color on the H channel. Figures 5.12c

and 5.12d shows the same filter for the S and V channels, respectively. Details on the filter

ranges are provided in Section 5.5. Figure 5.12e shows the logical conjunction of the previous

three figures, i.e., the result of the range filter. Finally, Figure 5.12f shows the contours extracted

from the image.

A possible optimization that may reduce the computational complexity of the technique, already

adopted in a previous contribution [39], consists in looking for candidate AOUs only in the

subset of the image situated above the horizon, where they are most likely to be found. The

implementation of such optimization is left as a future work.
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Figure 5.12: Extraction of candidates AOUs. (a) Portion of original image, (b) filter on H,
(c) filter on S, (d) filter on V, (e) conjunction of filter results, (f) extracted contours.
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5.3.3 Pruning of candidate active optical units.

After extracting the contours from the source image, the algorithm removes the contours whose

geometrical properties are not compatible with those of an AOU. This pruning phase helps

prevent false positives and it also improves computational efficiency, as it reduces the number

of times the validation process needs to be run. Pruning is based on two properties: “distance”

and “width”.

The “distance” property is based on the idea that the optical units to be recognized should not

be too far or too close from the user (see Section 5.1). To capture this intuition, each contour

is assumed to be an AOU (whose size is known). Then, its distance along the horizontal and

vertical axes from the device camera is computed. These distances are then compared with

threshold values and, if the AOU is too close or too far away along any of the two axes, the

contour is discarded. Property 3 shows how to compute the horizontal and vertical distances.

Property 3. Let ρ be the device pitch angle, d1 and d2 the directed minimum and maximum

vertical distances between the contour and the center of the image (in pixel), f the focal distance

(in pixel), lh the height of the optical unit lens (see Figure 5.13 for a graphical representation).

The horizontal and vertical distances (dh and dv, respectively) between the device and the optical

unit are:

dh =
lh · cos(arctan(d2/f) + ρ) · cos(arctan(d1/f) + ρ)

sin(arctan(d2/f)− arctan(d1/f))
(5.1)
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dv = dh · tan(arctan(d1/f) + ρ) (5.2)

There are two aspects related to the “distance” property that are worth observing. First, the

formulae are based on the contour height, which is computed after rotating the contour by the

inverse of the horizon inclination. This makes the proposed technique ‘rotation invariant’ in the

sense that it is not affected by accidental rotation of the device. The reason for using the height

as the reference length is that, by using the device accelerometer, it is possible to compute the

device pitch (i.e., the inclination with respect to the ground) that is then used to compensate for

projection distortion. The second aspect is that, in practice, the “distance” property checks the

vertical size of the contour and discards the contours that are too small or too big. Indeed, small

contours correspond to potential AOUs that are too distant from the user, hence not relevant

for the recognition. Analogous reasoning can be applied for contours that are very large.

The “width” property is used to prune all contours whose width is not compatible with the width

of an optical unit lens. Property 4 shows how to compute the width of the object represented by

the contour. Note that distance d between the camera and the traffic light is easily computed

from dh and dv.

Property 4. Let wc be the contour width, f the camera focal distance (in pixel), α the angular

distance between the image plane and the plane of the optical unit lens and d the distance

between the camera and the optical unit. The width of the object represented by the contour is:

w =
d · wc

f · cos(α)
(5.3)

There is a major difference with respect to the computation of the “distance” property: the

relative angle α between the image plane and the plane of the optical unit lens (see Figure 5.14)

is not known. Consequently it is not possible to compute the exact width of the contour, but

it is possible to bind it in a range. The minimum value of the range represents the case in

which α is zero (i.e., the device camera is pointing directly towards the traffic light), while the

maximum value represents the situation in which α is equal to the ‘maximum rotation distance’

(see Section 5.1). If the width of the optical unit lens (which is known) is not contained in the

range, the contour is pruned.

5.3.4 Validation of active optical units.

Each contour that passes the pruning step has geometrical properties compatible with an AOU;

still, it is not guaranteed that it actually represents an AOU. To validate a contour, the proposed

solution extracts from the input image the image portion (called “patch”, in the following)

corresponding to the contour minimum-bounding rectangle (MBR).

Note that the contour is rotated (see Algorithm 1 Line 8). For this reason, in theory, it should

be necessary to apply the same rotation to the original image before extracting the patch. Since

it is computationally expensive to rotate the entire image, the patch is rotated on-the-fly when

it is constructed.
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a b c d e
Figure 5.15: Validation of candidates AOUs. (a) Portion of original image, (b) Contour, (c)

Rotated Contour, (d) Image Patch (rotated), (e) Template image.

The patch is then resized to the same size as the template, which is a system parameter. Finally,

the two figures (patch and template) are compared with the fast normalized cross-correlation

technique [51], chosen as the technique to evaluate the similarity between two images. The patch

is considered to be an active optical unit if the result of the comparison is larger than a given

threshold T (see Line 16 in Algorithm 1). The methodology adopted to select the threshold is

described in Section 5.5.

Example 5.3. Figure 5.15a shows a portion of an original image. Figures 5.15b shows the

contour, as extracted during the extraction step, while 5.15c shows the rotated contour computed

during the pruning step. Figure 5.15d shows the extracted patch. Note that the extracted patch is

smaller than the template shown in Figure 5.15e (in the figure they are shown with the same size,

but the patch has a smaller resolution). For this reason the patch is first resized to have the same

size as the template and then the two images are compared. In this example, fast normalized

cross-correlation returns a value of 0.82 that, as shown in Section 5.5 is larger than T , hence the

contour is recognized as a green AOU.

5.4 Algorithm improvements

In addition to the core recognition procedure described in Section 5.3, the proposed technique

implements a number of improvements aimed at increasing both the reliability of the results and

computational performances.

5.4.1 Improving recognition of red and yellow AOUs

As shown in Section 5.5, the boundaries of the range filters for the red and yellow colors overlap.

As a consequence, it is relatively frequent that a red AOU is confused with a yellow one, and

vice versa.

To avoid this problem, the following optimization is introduced. The main loop starting at Line 2

(see Algorithm 1) is iterated for two colors only (instead of three): green and ‘yellowRed’, i.e.,

a single color representing both red and yellow AOUs. To distinguish between red and yellow

AOUs, a procedure is run during the validation phase, after extracting the patch p (Line 13).

This procedure counts, in the patch p, the number of pixels with a purely red hue (160 ≤ h ≤ 179)
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and those with a purely yellow hue (10 ≤ h ≤ 30)3. If the number of red pixels is larger than

the number of yellow ones, the patch is then assumed to be red and is compared with the red

template. Otherwise the patch is assumed to be yellow.

As shown in Section 5.5, this approach helps reducing the number of cases in which yellow and

red AOUs are confused.

5.4.2 Improving computational performance

As shown in Section 5.5, the computation time of the base recognition algorithm is about 1s

on a modern smartphone (with maximum image resolution). While a delay of about 1 second

in the notification of the current traffic light color could be tolerable, an additional problem

arose during preliminary experiments: it is challenging, for people with VIB, to point the device

camera towards the traffic light. To find the correct position, users needs to rotate the device

left and right while paying attention to the device feedback (audio or vibration). This requires

a responsive system and a delay of 1 second is not tolerable as it does not allow the user to find

the traffic light position.

To speed up the computation, two different techniques are adopted: multi-resolution processing

and parallel computation. Multi-resolution processing is based on the idea that the validation

step requires to process images at a high resolution, while the extraction and pruning steps

are reliable (in terms of precision and recall) even when images are processed at a smaller

resolution. Running these two steps with images at a smaller resolution significantly improves

the performances. For this reason, a resized version of the acquired image is processed during the

extraction and pruning steps. Then, during the validation step, the image patch p is extracted

(see Line 13) from the original high-definition image. ‘Resize factor’ is the parameter that defines

to what extent the original images is resized. Technically, the number of pixels on both sides

of the original image is divided by ‘resize factor’. As shown in Section 5.5, this optimization

drastically reduces the computation time. However, large values of the resize factor negatively

affect algorithm recall, so the value of the resize factor should be carefully tuned.

Since modern smartphones have multi-core CPUs, a natural approach to improve the perfor-

mance of computational intensive operations is to adopt parallel computation. In particular,

two pools of threads are used: one aimed at parallelizing the extraction process (Algorithm 1,

Line 2), the other aimed at parallelizing contours’ processing (Algorithm 1, Line 6). The former

pool has a number of threads equal to the number of colors, while the latter has a number of

threads equal to the number of CPU cores.

5.5 Parameters tuning and experimental evaluation

Two main sets of experiments were conducted: one set, called “computational-based” is aimed

at tuning the system parameters and at quantitatively measuring the performances of TL-

recognizer. The second set, called “human-based” is aimed at qualitatively asserting the ef-

fectiveness of the proposed technique.

3Henceforth hue scale is reported in [0, 180).
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5.5.1 Experimental evaluation methodology and setting.

In order to ease the development of TL-recognizer and to guarantee reproducibility of the

computational-based experiments, the following methodology was adopted: images of urban

scenarios were recorded, each one with its associated information representing device orienta-

tion4. Each image was manually annotated with the position and the color of AOUs (if any).

Finally, an Android app was implemented to read the stored images and to use them as input

for TL-recognizer.

Two datasets of images each were created. The exposition of all the collected images has been

chosen according to the methodology described in Section 5.3.1. The “tuning” dataset (501

images), was used for debugging and parameters tuning, while the “evaluation” dataset (1, 252

images) was used for performance measurement. Both datasets are divided into four subsets,

one for each illumination condition defined in Section 5.3.1. Details are reported in Table 5.5.

The two datasets are publicly available5. Note that some of the pictures (in particular with mid

and low illumination conditions) were taken while it was raining and results are not affected by

this weather condition.

Set Light intensity
Number of images with

no AOU green AOU red AOU yellow AOU

Tuning

Very High 62 21 22 22
High 62 21 21 19
Mid 62 21 21 22
Low 62 21 21 21

Evaluation

Very High 75 62 45 37
High 105 96 104 52
Mid 64 78 109 59
Low 120 51 118 77

Table 5.5: Composition of the two sets of images.

During the computer-based experiments, a number of parameters were measured, including:

precision, recall, computation time and number of “R-Y errors”, i.e., the number of times a

yellow AOU is confused with a red AOU or vice versa. Note that, from the point of view of a

person with VIB that is about to cross a road, a yellow AOU has the same semantic as a red

AOU i.e., the person should not start crossing. For this reason, when computing precision and

recall, a R-Y error is still considered a true positive result. Note that, unless otherwise specified,

precision is always equal to one, meaning that no traffic light is erroneously detected. Finally,

note that computation time is measured excluding the time needed to acquire the input image.

To conduct human-based experiments TL-recognizer was implemented into TL-detector, a mobile

application that collects live input from the camera and the accelerometer and that implements

basic versions of the TL-logic and TL-Navigation modules. The application continuously runs

TL-recognizer on the acquired frames and creates three messages for the user: ‘not found’, ‘stop’

and ‘go’: the first indicates that no traffic light was found, the second indicates that a red

or yellow AOU was detected and the third one indicates that a green AOU was detected. To

convey these messages, the application uses spoken messages (through the system text-to-speech

4Henceforth, the term “image” refers to the actual image with the associated device orientation information.
5http://webmind.di.unimi.it/CVIU-TrafficLightsDataset

73

http://webmind.di.unimi.it/CVIU-TrafficLightsDataset


Figure 5.16: Pixels composing AOUs.

synthesizer), two clearly distinguishable vibration patterns (for ‘stop’ and ‘go’ messages) and a

visual message for subjects that are partially sighted (the entire screen becomes black, red or

green).

The experiment involved 2 blind subjects and 2 low-visioned subjects (unable to see the traffic

lights involved in the experiment). The experiments took place in different illumination condi-

tions. All subjects have been trained for about one minute on how to use the application. Then,

in a real urban intersection, subjects were asked to walk towards a crossroad and to determine

when it was safe to start crossing in a given direction (straight, left or right) i.e., when a green

traffic light appears right after a red one. For each attempt, a supervisor recorded whether the

task was successfully completed and took note of any problem or delay in the process. Each

subject repeated this task five times. Finally, the subjects were asked to answer a questionnaire.

For what concerns the devices used during the experiments, the images were collected with a

Samsung Galaxy Camera with Android 4.1. Computer-based and human-based experiments

were conducted with a Nexus 5 device with Android 5, which, with respect to a Galaxy Camera,

has a faster CPU and is also more ergonomic for the subjects involved in the human-based tests6.

5.5.2 Parameters tuning.

The recognition technique presented in Section 5.3 uses several system parameters that need to

be tuned. Section 5.3.1 describes the tuning process of image acquisition parameters. Other

parameters that mainly affect system performance, are tuned as described in the following.

One set of parameters defines the boundaries of the range filters (see Algorithm 1). To tune these

values each pixel composing AOUs (if present) was sampled in the 501 pictures composing the

tuning dataset. This was obtained with a semi-automated process: first, a few pixels were manu-

ally sampled, hence defining broad ranges. Then, by running the algorithm with these ranges, a

set of contours representing the AOUs were extracted, together with contours representing other

objects. Thanks to picture annotations, the contours representing AOUs were automatically

identified and the values of all pixels included in these contours were stored. White pixels (i.e.,

v = 255) and dark pixels were excluded from this set.

6The choice of using a Galaxy Camera to collect images was driven by the fact that, at that time, it was the
only available device that allowed to manually define exposure settings.
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Figure 5.18: Impact of resize factor
on computation time and recall.

The selected pixels are shown in Figure 5.16 where green, red and yellow dots represent a pixel

for a green, red and yellow AOU, respectively. Given these results, the smallest ranges to include

all pixels were defined . Results are shown in Table 5.6. Note that, since the yellowRed color lies

on both sides of the hue circular axis, two range filters are defined and their disjunction yields

the result.

Optical unit color H min H max S min S max V min V max
Green 70 95 100 255 80 255
yellowRed (first) 0 25 100 255 80 255
yellowRed (second) 166 180 100 255 80 255

Table 5.6: Range filters boundaries.

Threshold T is another important parameter that requires to be tuned. The following methodol-

ogy was adopted: the image processing algorithm was run for each image in the tuning dataset.

For each extracted patch (see Algorithm 1) the value of the normalized cross correlation was

stored, together with a boolean value representing whether the patch is actually an AOU or not

(this is derived from the annotations). Among all patches in all images in the tuning dataset,

the larger cross correlation value for a patch that does not represent an AOU is 0.586. Threshold

T is set to this value hence guaranteeing, in the tuning dataset, a precision of 1.

Figure 5.17 shows the impact of the resolution on both recall and computation time. As expected,

computation time decreases almost linearly, since most of the costly operations are linear in the

number of pixels in the image. At the same time, recall slowly decreases when using images with

up to 3 times less pixels (i.e., 1413×1884) that guarantee a recall of 0.887. With smaller images,

recall decreases at a faster rate. For these reasons, images with a resolution of 1413× 1884 were

used in the tests. Note that, while in the tests the images are resized from their original size to

1413× 1884, in the TL-recognizer prototype this operation is not necessary: images are directly

acquired at a similar resolution (i.e., 1536×2048) and this also significantly speeds-up the image

acquisition process.
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5.5.3 Impact of the algorithm improvements

With the basic version of the algorithm, the proposed technique incurs in the ‘R-Y error’ in 20

cases in images from the tuning set. This means that, considering only the 168 images containing

red and yellow AOU, the frequency of this error is above 10%. By using the improvement

described in Section 5.4.1, the number of these errors is reduced by 75% with 5 errors and a

frequency of less than 3%.

Figure 5.18 shows computation time and recall for different values of the resize-factor parameter.

As expected, there is a trade-off between computation time and recall (this is very similar to

what was observed for the resolution parameter). By observing the results shown in Figure 5.18

it is possible to conclude that value 3 is a good trade-off: computation time is halved (with

respect to value 1), while recall decreases only by 0.03. For larger values (e.g., 4) there is no

substantial improvement in the computation time, while recall decreases by more than 0.1.

Finally, it has been measured that with parallel processing computation time diminishes by

about 40%: from an average computation time of 183ms to 113ms. Table 5.7 shows the system

performance measured on the tuning dataset after having tuned the system parameters and

implemented the algorithm improvements.

Testset Precision Recall Computation time
Tuning 1 0.85 113ms

Evaluation 1 0.81 107ms

Table 5.7: Performances of TL-recognizer in the tuning and evaluation datasets.

5.5.4 Results with the evaluation testset

Table 5.7 shows the results obtained with the evaluation dataset. Performance results are very

similar to those obtained with the tuning dataset.

While conducting the evaluation, it has been observed that computation time is influenced by the

total number of contours that are processed. For example, images with an irregular background

(like Figure 5.19) take much longer to compute than average images. For example, Figure 5.20

shows the contours extracted from Figure 5.19: the bright background behind the trees results

in more than 8000 contours to be processed. Clearly the great majority is discarded thanks to

‘distance’ and ‘width’ constraints, but still 80 of them need to be validated. While the overall

result is correct (no traffic light is detected), the computation time for this frame is more than

500ms, about 5 times higher than the average time.

The above observation raises a more general question: how does computation time vary in

different illumination conditions? In sunny days it is more likely to have bright surfaces that

generate a high number of contours, like in Figure 5.19. Indeed, the average computation time

with high light intensity is 196ms. Vice versa, with low light intensity (e.g., at night), since

fixed camera parameters are used, the input image is almost entirely black, with the exception

of traffic lights and other sources of light, like street lamps and car beacon lights. For example,

in Figure 5.21 a single contour is extracted for the green color (there is a small green AOU in
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Figure 5.19:

Frame in a sunny
day.

Figure 5.20: Con-
tours extracted from

Figure 5.19.

Figure 5.21: Frame
during night.

the center of the image) and 5 contours are extracted for the ‘yellowRed’ color (in the figure, in

addition to the green AOU, there are 5 small bright dots corresponding to two car beacon lights

and a street lamp). Hence, with low light intensity, the computation time is 52ms, on average.

In the two intermediate illumination conditions i.e., high and mid light intensities, the average

computation times are 124ms and 90ms, respectively.

The proposed technique performs well also in particularly challenging lighting conditions, like

some test cases with sun directly behind the traffic light (see Figure 5.22 for an example).

Nonetheless, the AOU is correctly identified in 40% of the images, with a mean template matching

score of 0.62.

5.5.5 Results of the human-based evaluation

Overall, all subjects have been able to successfully complete the assigned tasks. The only excep-

tion was with the first attempt made by the first subject: since he was pointing the camera too

high up and almost towards the sky, the traffic light was always out of the camera field of view.

The problem was solved by simply explaining to the subject how to correctly point the camera.

Figure 5.22: Example of a test case with sun directly behind the traffic light.
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This was explained during the training phase of later experiments involving different subjects.

Note that this problem could also be solved by monitoring the pitch angle and by warning the

user if the he/she is pointing too high or too low.

During this experiment it has been observed that the two blind subjects needed a slightly longer

time (up to about 5 seconds) to find the traffic light. This is due to the fact that they could

not precisely predict where the traffic light was and hence needed to rotate left and right until

the traffic light entered the camera field of view. On the contrary, the two partially sighted

subjects managed to find the traffic light almost instantaneously even if they could not see it.

One possible motivation is that the two partially sighted subjects had a better understanding of

their current position with respect to the crossroad and a more developed ability to predict the

position of the traffic light.

For what concerns the questionnaire, all subjects agree that the application is easy to use and

useful. There are some comments that are worth reporting. One subject observes that this

application would be very useful because some traffic lights are still not equipped with acoustic

signals. Also, even when acoustic signals are available, they may not work properly and some-

times it is difficult to find the button to activate the signal (in Milan acoustic traffic lights need

to be activated by a button positioned on the traffic light pole). Another subject observes that

he would use this application only when an acoustic traffic light is not available, because it is

not convenient to hold the device in one hand while holding the white cane on the other one. All

subjects agree on the fact that the vibration pattern is the best way to get the message. Indeed,

it could be difficult to hear audio messages because of traffic noise, as observed by one subject.

Visual instructions are also not practical, according to both low-visioned subjects, as they are

not always clearly visible.

5.6 Summary and future directions

In this chapter we present TL-detector, a system to recognize pedestrian traffic lights aimed at

supporting people with visual impairments in road crossings. This work introduces two main

contributions to the state of the art. The first contribution is the image acquisition technique.

Contributions from previous research [39, 73] acquire images leaving automatic exposure control

to the camera software. However, automatic exposure balances the mean luminance of every

point in the entire image and may produce underexposed or overexposed images. Instead, the

challenge addressed by TL-detector is to capture images with the best possible exposure, regard-

less of the illumination condition. It delivers on this objective by disabling automatic exposure

and varying the mobile camera’s ISO value, shutter speed and aperture settings. The second

contribution is an analytical computer vision technique to detect the state of pedestrian traffic

lights. Two innovative aspects of the technique are that it adopts multi-resolution processing

and parallel computation in order to speed up computation.

Experimental evaluation shows that the proposed solution implements a robust method to ac-

quire images with proper exposure and delivers on the objective of guaranteeing robust recogni-

tion in different illumination conditions. Indeed, with a precision of 1 and a recall of 0.81, our

proposed solution outperforms a previous solution [73] that guarantees a precision of 1 with a

recall of about 0.5. TL-detector is also efficient, as it can run several times a second on existing
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smartphones. Positive results were also obtained with a preliminary evaluation conducted on

subjects with VIB: they were able to detect traffic lights in different illumination conditions.

As a future work, user interaction should be carefully studied with the aim of providing all the

required information without distracting the user from its surrounding environment. The design

of effective user interfaces will become even more challenging if TL-detector is integrated with

other solutions that collect and convey to the user contextual information like, for example,

ZebraX.

Regarding exposure robustness, improvements could be derived from the adoption of HDR tech-

niques to extend the acquisition dynamic range. In this case tests should be performed to verify

the trade-off between reliability gains and computational costs.

An effort will also be devoted to the development of a commercial product based on TL-detector.

Indeed, it could be possible to integrate this software with the ZebraX solution presented in

Chapter 4 and also in commercial applications like “iMove”. This will require to tune the system

in order to detect pedestrian traffic lights in countries other than Italy. In order to ease such

process, a (semi) automated technique to perform parameter tuning should be investigated.
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Chapter 6

Access to images and didactics

In recent years educational applications for touchscreen devices (e.g., tablets) become widespread

all over the world. For example, more than 80, 000 educational applications are available for

iOS devices1. While these devices are accessible to people with VIB, access to educational

applications to support learning of STEM subjects is limited because of inaccessible graphics.

In previous chapters, non visual interaction modes based on sonification proved to be effective in

augmenting tactile maps and providing guidance in road crossings. In this chapter we build on

the experience made using non-visual representation of information while addressing orientation

and mobility challenges to approach a different problem: to convey image information to people

with VIB. Two main approaches are considered: one based on audio icons and another relying

on image sonification. In order to evaluate the applicability of these approaches, we report our

experience in the development of three applications for touchscreen devices. Two applications

are specifically designed to support people with visual impairments or blindness while studying

STEM subjects: MathMelodies and AudioFunctions. The third application, Invisible Puzzle, is

designed to evaluate six novel sonification techniques to represent generic binary images.

6.1 Learning Maths with MathMelodies

MathMelodies is an iPad application that supports primary school children in learning Mathe-

matics, designed and implemented to be accessible and enjoyable by both visually impaired and

sighted children. The software has been first developed as a university prototype and then, also

thanks to a crowdfunding campaign, engineered and distributed as a commercial application2.

In this section we describe the main design challenges of MathMelodies. We adopted a user-

centered design methodology, driven by a number of tests and on-the-field evaluations. In par-

ticular, we report the results of three sessions of evaluation: an expert-based evaluation, a test

conducted with the first prototype of the app and a qualitative evaluation conducted on the

commercial version of the application, involving both sighted and visually impaired children.

1Source: http://www.apple.com/education/ipad/apps-books-and-more/
2 https://itunes.apple.com/us/app/math-melodies/id713705958?mt=8
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Finally, we describe the feedback we have received so far and how it impacts the application

design.

6.1.1 Application design

During the design and development of MathMelodies we faced three main challenges. First, the

application must present exercises that are accessible to visually impaired children. In order to

determine the best approach to enable access to exercises, we developed a prototype implement-

ing both the “audio icons” and “image sonification” based approaches. With the sonification

based approach, the application presents a generic image that can be explored through audio

feedback with a solution similar to the one adopted in a previous contribution [94]. For example,

the application can guide the student to identify a triangle by reproducing a sound when the

boundary is touched. Vice versa, with the audio icons based approach, the application shows

some objects on the screen, each one associated with an audio feedback that represents the ob-

ject itself. In this case, the audio feedback does not depend on the position of the touch within

the object. For example, touching the figure of a dog, the application plays a sound of a dog

barking. Similarly, a digit is read when it is touched.

A preliminary evaluation (described in Section 6.1.3) highlighted that the interaction paradigm

based on audio icons is less cognitively demanding and more enjoyable. According to these

results, we designed a set of 17 different types of exercises relying on the audio icons approach.

In order to further simplify the interaction model, we decided to organize the objects into a

grid layout that, as we observed in our evaluation, helps reducing the time and mental workload

required to explore the entire screen. Another choice driven by the need to simplify interaction

consisted in the definition of two input techniques: a simplified on-screen keyboard to insert the

digits only (e.g., for the addition exercises, see Figure 6.1(a)) and a multiple choice dialog (e.g.,

to answer an exercise like the one shown in Figure 6.1(b)).

The second design challenge is to enable reinforcement learning. Children should be stimulated

to repeat exercises many times, hence correcting their mistakes and learning by reinforcement.

To address this challenge, we designed exercises to have up to 6 difficulty levels. Each exercise is

randomly generated, according to its type and the difficulty level set, every time it is presented.

For example, in the “easy” addition exercise the child is asked to add two single-digit numbers,

while at an harder level (designed for 3rd grade students) the aim is to add three numbers,

each one with up to three digits as in Figure 6.1(a). Another important aspect to stimulate

children to play the same exercise several times is to entertain them. We pursued this objective

by presenting, in most of the exercises, what we call “audio-icons”: amusing drawings, each one

associated with an easy-to-recognize and funny sound. Also, the application gives a reward to

the child, in the form of a short piece of music, when a correct answer is provided. As a future

work we also intend to create a more sophisticated reward mechanism that takes into account

the number of wrong answers the child provided before giving the right one. For example, zero

mistakes can be rewarded with 3 “golden stars”.

The third design challenge is to motivate children to keep on doing exercises and practicing.

To this purpose, exercises are immersed in a tale, divided into chapters, organized in increasing

difficulty levels (two chapters for each grade). Each chapter is further divided into “pages”,
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(a) Addition exercise with simplified keyboard.

(b) Counting exercise.

Figure 6.1: Two exercises of MathMelodies.

each one comprising a background image, some text (read by a speech synthesizer) and some

“audio-icons” often associated with an enjoyable sound (see Figure 6.2). Pages are intertwined

with exercises and there are about 30 exercises in each chapter. Every time each exercise is

completed correctly, a short piece of melody is played as a reward for the student. At the end

of each chapter, all the pieces of the melody are played together to form a full song. Overall,

the tale and the audio-icons have the objective of triggering children’s interest. This is similar

to the approach adopted in most textbooks that heavily rely on colorful images. The difference

is, clearly, that in MathMelodies this solution works for visually impaired children too.

6.1.2 Implementation of MathMelodies

The effort to develop MathMelodies can be divided into two main activities: the actual app

implementation (i.e., the code writing) and content creation: the story text, images (backgrounds

and icons), and audio (sounds and music). Before focusing on the technical issues that arose
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(a) A page with a piano audio-icon.

(b) A page with a frog audio-icon.

Figure 6.2: Two pages of MathMelodies story.

during the app implementation, we would like to give the idea of the effort that was required

to create the content, involving three different professionals (a writer specialized in child tales,

an illustrator and a composer) with no prior experience in accessibility. The story is composed

by six chapters, each one including about 50 pages similar to the ones depicted in Figure 6.2.

Since the app has been localized into two languages (Italian and English), we produced about

600 pages in total. For what concerns the images, there are 25 backgrounds (e.g., the theater

curtains in Figure 6.2) and about 100 audio-icons (like the dog in Figure 6.1(b) or the piano in

Figure 6.2). Also, each chapter has an associated music that is played at the end of the chapter

and that is also divided into small parts, each one played after each exercise for a total of about

200 (short) pieces of music.

While implementing the application we faced a number of technical issues and here we describe

two of them. The first issue deals with the large amount of app content. Indeed, it is clearly

impractical to define the app by hard-coding the content into the program. Instead, we defined

a format for a “content file” that describes, for example, the structure of each chapter, each
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page, etc. A “content engine” in MathMelodies reads this file and presents the content to the

user, in the form of exercises, pages, etc... Thanks to this approach, it is possible to define

the app content independently from the app implementation. Also, since we developed a user-

friendly tool to edit the “content file”, it is also possible for non-technicians (like the people that

collaborated on content creation) to define the app content.

The second issue is related to the implementation of our object-based interaction paradigm that

is built on top of the system accessibility tools. On iOS devices, there are two set of tools that

make both the OS and user applications accessible to visually impaired users. One set of tools

is designed for low-visioned users and includes the “zoom” screen magnifier, font adjustment

and color inversion. While some ad-hoc gestures are defined to use the zoom functions, the

overall interaction paradigm is analogous to the one for sighted users. The second set of tools is

globally called “VoiceOver” and defines a totally different interaction paradigm. The overall idea

is that, when the user taps on a graphical object (e.g., a button), VoiceOver gives it the focus

and describes it both with a speech synthesizer and an external Braille display (if connected).

To activate a focused object (e.g., to press a button), the user double taps anywhere on the

screen. In addition to this basic behavior, VoiceOver has several additional gestures to make the

interaction more efficient.

In order to enhance app usability for visually impaired users that rely on residual sight, we

used large fonts and high contrast between the front objects (i.e., text or pictures) and the

background image. Although we did not evaluate this solution with a sufficiently large number

of low-visioned users, we expect the app to be accessible to most low-visioned students by using

the default accessibility tools.

For what concerns blind users or low-visioned users that cannot totally rely on residual sight,

some issues arose in the implementation of the object-based interaction paradigm. Indeed, the

simplest solution to implement this paradigm would be to fully rely on VoiceOver (i.e., not

implementing any custom behavior for app accessibility). This approach would make it possible

to develop an app that is totally consistent with the system-wide interaction paradigm. However,

this solution suffers from a major drawback, as it is not suitable to address all design challenges.

For example, without defining any custom behavior it is not possible to develop the audio icons

that, when VoiceOver is active, reproduce the associated sound upon getting the focus. Other

features that call for a custom behavior are multi-tap exploration and automatic reading when

a new page is shown.

Clearly, to achieve a deeper customization of the interaction paradigm a larger coding effort is

required and it is quite involved to mimic VoiceOver standard behavior as well as to guarantee

the consistency with the system-wide interaction paradigm.

6.1.3 Experimental evaluation

During the whole design and development process we took benefit from the feedback obtained

from one of the designers who is blind and experienced in education for blind persons. In addition

to this constant feedback, we organized three main evaluation sessions.
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The first session was organized with four teachers expert in education for blind students3. The

evaluation was divided in two steps. In the former, we presented a list of exercises derived from

Italian educational directives and integrated with workbooks and online resources. We asked

experts to evaluate the importance of each exercise in the education of a blind person and to

rate how difficult it is to practice it with existing solutions. In the latter, we presented the

preliminary prototype implementing sonification-based and object-based interaction paradigms.

All four experts independently agreed on the fact that the object-based paradigm would be

quicker to learn, more adaptable to a larger variety of exercises and less cognitively demanding

for children.

The second session was conducted as a test with three blind children. After a short training with

the prototype, we asked each child to solve three exercises adopting object-based interaction and

one exercise adopting sonification-based interaction. All students have been able to complete and

correctly answer exercise 1 (counting) and 2 (position in a table). Vice versa, one student has

not been able to complete (and hence to provide an answer to) exercise 3, a spelling exercise, and

exercise 4, which consists in recognizing a triangle using sonification-based interaction. Overall,

all students reported that the object-based interaction is easier to understand and two of them

also highlighted that it is funnier.

After the second evaluation session a more advanced prototype was developed including both

the story and the exercises. This prototype was used in the third evaluation session that was

conducted with three blind and two sighted students in primary school. The five students were

asked to complete all the exercises in the first chapter consisting in counting exercises, sums, etc.

All blind children were enthusiast while using the application. Two out of three reported that

they were entertained and engaged especially by the sounds (e.g. the call of animals and the

rewarding melodies). All of them experienced some difficulties in the early exploration of tables,

and needed help by a sighted supervisor. However, after at most 2 minutes of supervised training,

all children got familiar with the application and were able to solve the exercises autonomously

providing, most of the times, the correct answer at the first attempt. The two sighted children

enjoyed the application as well. One of the two children experienced some difficulties, at the

beginning, in understanding how to answer. This was partially due to the fact that the child

didn’t pay much attention to the exercise explanation. After explaining how to answer, no more

help was needed.

6.2 Exploring function graphs with AudioFunctions

In this section we present AudioFunctions, an iPad prototype that highly increases the inde-

pendence of math students as well as the comprehension of functions graphs. AudioFunctions

presents two major improvements with respect to existing software solutions. First, being a

tablet application, it benefits from non-mediated interaction, which is typical of touchscreen

devices. This in turns makes it possible to design an interaction paradigm based on the use of

proprioception. Indeed, the second improvement consists in a set of three techniques to explore

a function graph, two of which highly rely on proprioception.

3From the center for the blind people in Brescia, Italy.
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In the following, we introduce the AudioFunctions prototype and the design choices made dur-

ing its development. The use of AudioFunctions can be divided in two main activities: the

specification of the function expression, with its drawing properties, and the function graph

exploration.

6.2.1 Specification of function expression and drawing properties

To specify a function expression, users can choose a template and then edit it (see Figure 6.3(a)).

The template can be chosen from the list of “default” expressions (i.e., a pre-defined set of

common functions, like y = x, y = x2 or y = sin(x)) or from the list of recently used expressions,

as they were edited by the user (in Figure 6.3(a) the list of recently used expressions is hidden

by the keyboard). To edit the function expression AudioFunctions presents an ad-hoc keyboard,

similar to the one of a scientific calculator, containing keys for the digits and for the most common

arithmetic and trigonometric operators.

(a) Specification of the function expression using our ad-hoc keyboard.

(b) Specification of drawing properties.

Figure 6.3: Specification of the function expression and its drawing properties.

87



Function drawing properties (see Figure 6.3(b)) can be specified, including options to define the

domain and the scale on the two axes. With the first option, the user can set the function domain

in terms of the minimum and maximum values of x to be represented. The second property is a

boolean value indicating if the y axis should have the same scale as the x axis. If this property is

set to “true” (the default value) then the next two options are disabled. In case this property is

set to “false”, with the third option the user can choose to automatically scale the y axis, which

means that AudioFunctions chooses the largest scale for the y axis that allows the function graph

to fits in the screen. If “automatic scale” is disabled, then the user can manually choose the

scale for the y axis, indicating the minimum and maximum values to be represented.

6.2.2 Function graph exploration

The function graph can be explored using three different “exploration modes” (see Figure 6.4).

The first one, that we call “non interactive”, is analogous to the solution proposed in Audio

Graph Calculator and Sonification Sandbox: by using a “double two finger tap” gesture4, Au-

dioFunctions starts playing the function sonification, which is obtained as follows. As shown in

Figure 6.4(a), AudioFunctions divides the function domain into a set of intuitively small intervals

(e.g. the rectangle r). For each interval, given the sonification direction starting from the lowest

and up to the highest x coordinate, the app computes the value of y = f(x) where x is the

minimum value of the interval and reproduces the “value-sonification” for y, i.e., a sound whose

pitch is proportional to the value of y with respect to the range of y values.

Example 6.1. With the function y = sin(x), for x ∈ [−10, 10], when x = π/2 we have y = 1

which is also the maximum value for y and hence the value-sonification for x = π/2 has the

highest pitch. Vice versa, if we draw y = x, for x ∈ [1, 10], the sonification for x = 1 has the

lowest pitch, because 1 is the smallest value represented for y.

We call the second exploration mode “mono-dimensional interactive” (Figure 6.4(b)). The user

can slide the finger along an horizontal bar positioned at the bottom of the view that represents

the x axis. While sliding the finger, AudioFunctions uses the value-sonification technique to

represent the value y = f(x) where x corresponds to the current finger position. The clear

advantage of this exploration mode is that, thanks to proprioception, the user can associate

the value of y with the correspondent position on the horizontal axis. Also, the user can move

forward and backward along the x axis, at the desired speed, hence, for example, focusing on

parts of the function that are more relevant for the user (e.g., a minimum point).

The third exploration mode is called “bi-dimensional interactive”. The overall idea is to make

it possible for the user to follow with one finger the graphical representation of the graph. The

shape of the graph is reconstructed thanks to proprioception. This mode adopts a different

sonification, that we call “position-sonification”, since the aim is not to encode the y value, but

rather to guide the user while following the plotted line. When the user touches on the function

line, position-sonification reproduces a sound with the highest pitch. When the user touches

outside the line, the pitch diminishes as the minimum distance between the touched position

and the line increases. For example, in Figure 6.4(c), point A is more distant from f(x) than

4This is the gesture that on iOS devices is associated, for example, to start and pause music reproduction.
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(a) Non interactive. AudioFunctions
automatically reproduces the value-
sonification for all plotted values of y =
f(x).

f(x)

x

(b) Mono-dimensional interactive.
AudioFunctions reproduces the value-
sonification for all values of y = f(x)
where x corresponds to the current
finger position on the horizontal bar.

B

A

(c) Bi-dimensional interactive. Au-
dioFunctions reproduces the position-
sonification corresponding to the current
finger position.

Figure 6.4: Function exploration screen and Exploration modes.

point B. Therefore, when the user touches A a low pitch sound will be played while touching B

will yield a high pitch sound.

The two interactive modes have additional features. First, while exploring, AudioFunctions

reproduces additional sounds in case the function intersects some “interesting points”, like in-

tersection with the axis, local minimum and maximum and changes in concavity. Second, by

double tapping, AudioFunctions reads details on the current position, including: the values of x

and f(x) and the function concavity in that point. This is useful because function concavity is

easily understandable by sight, but hard to figure out with these sonification techniques. Finally,

interaction with two fingers is supported. This is very useful when it is necessary to maintain

a reference point during exploration. To achieve this, when a second finger touches the screen,

AudioFunctions starts reproducing the sound associated to that finger, ignoring the first one

until the second is lifted. For example, consider a case where the user needs to determine the

distance between a local minimum and a maximum on the function graph. The user touches the

screen and follows the function graph until a local minimum is found. At this point, the first

finger is kept in place and a second finger is used to continue exploring the function graph until

a local maximum is found. Thanks to proprioception, the distance between the first and second

finger can be determined.
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6.2.3 Experimental evaluation

The main objective of AudioFunctions is to let the user perceive the shape of a function graph.

Therefore, we focused our experiments on determining how precisely a user can recognize the

function properties during exploration. To measure the level of understanding of the function,

we asked each user to explore the graph and to answer 8 questions (e.g., “what is the concavity

of the function for x = 0?”). We scored each answer with a mark of 0 (totally wrong answer

or no answer), 1 (partially correct answer) or 2 (correct answer). We run the experiment with

7 blind users, all with some education in Mathematics (at least high school) and acquainted

with tactile drawings. During each test session we first described AudioFunctions in about 2

minutes and then we left 3 minutes to let the user get familiar with the app. After this 5 minutes

training, we started the test that was divided into three steps, each one involving a different tool:

AudioFunctions, tactile drawings and “Audio Graphing Calculator” (AGC), a desktop software

to sonify function graphs [27]. The the three steps were presented in random order. During each

step we chose a random function expression from a set of pre-defined functions, presenting the

corresponding graphs to the subject and posing him/her the 8 questions. While answering each

question the user was free to interact with the exploration tool. We recorded the answers and

the time needed to provide them.

Figure 6.5(a) shows, for each user and technique, the sum of the scores from all questions (we

recall that the maximum is 16). Intuitively, this metric represents the overall understanding of

the function obtained by each user with each technique. We can observe that every user obtained

much better results by using AudioFunctions with respect to AGC. AudioFunctions proved to

be more effective also when compared with tactile drawings that, we recall, all the users were

acquainted with. Indeed every user, except user 7, obtained better results with AudioFunctions

than with tactile drawings (e.g., users 2, 4, 5 and 6).
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Figure 6.5: Results of the experimental testing.

Figure 6.5(b) compares the total time required by each user to answer the 8 questions by using

each technique. Results show that, by using AGC, users provided answers more quickly (about 2

minutes on average) than with tactile drawings (about 5 minutes on average) and AudioFunctions

(about 9 minutes on average).
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6.3 Exploring binary images with Invisible Puzzle

Starting from the experience made with the sonification techniques designed for AudioFunc-

tions, we decided to design novel sonification techniques to represent binary (i.e. black and

white) images, such as function drawings, diagrams and charts. In this section we present six

new “sonification modes” i.e., software modules that combine an image exploration paradigm

with a sonification technique. The sonification techniques adopt elements derived from previous

proposals together with novel solutions, such as sound spatialization (employing both interaural

level and time differences) and sound equalization filtering and are designed to be effective after

little training.

Beyond designing an effective sonification technique, there is another major challenge: to tune its

parameters and evaluate it with a large number of users. We present a methodology to compare

sonification modes designed to deliver on two main objectives: first, to enable the quantitative

comparison of the sonification modes (e.g., in terms of the average number of correct answers);

second, to enable the development of an automated evaluation tool that makes it possible to con-

duct a large number of tests with limited supervision effort. The methodology is implemented

in Invisible Puzzle, an iOS application that automates the process of training subjects, admin-

istering tests and collecting usage data. We present the results of the off-line statistical analysis

of the collected data, highlighting performance differences between the sonification modes, also

considering the demographics of test subjects.

We first introduce the six novel sonification modes, and how we adapted two solutions from

existing literature. All sonification modes are based on a parameter mapping approach [34]

where the sonified parameter is the luminance of a specific area of the image. Each sonification

mode is characterized by three main components:

• Exploration paradigm - defines how the image can be explored, and which portion is con-

sidered for sonification given the position of the finger on the screen. Three exploration

paradigms are defined, two based on a probing approach, one based on a scanning approach.

• Audio rendering technique - transforms the selected image portion into higher level infor-

mation.

• Sound generator - generates the sound signals.

6.3.1 Exploration paradigms

In this contribution we describe a novel sonification mode based on the bi-dimensional (2-D)

exploration paradigm. A larger number of novel sonification modes (5) are developed for the

uni-dimensional (1-D) exploration paradigm.

2-D exploration

We designed the 2-D exploration paradigm to provide a benchmark paradigm likely to be intuitive

for the user, as it mimics how a person with visual impairments or blindness explores drawings
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on swell paper. A similar solution is defined as “bi-dimensional interactive” by Taibbi et al. [81]

and “local area sonification” by Yoshida et al. [94]. 2-D exploration allows the user to touch the

screen and to sonify the specific pixel touched in that moment5. The rendered sound therefore

depends on both the horizontal and the vertical position of the finger on the screen, hence the

name bi-dimensional (2-D) exploration.

The audio rendering stage takes in input the luminance of the pixel being touched and re-scale it

in a range of sound frequencies between 100 Hz for the lowest luminance value (i.e., black color)

and 1000 Hz for the highest (i.e., white color). The resulting frequency value is then used by the

sound generator, which produces a sinusoidal wave with that frequency and fixed amplitude.

1-D exploration

The 2-D exploration paradigm requires users to explore the image along two dimensions to per-

ceive all image features. Our intuition, also confirmed by experimental results (see Section 6.3.7),

is that 2D exploration is time consuming.

The 1-D exploration paradigm was designed to address this issue by allowing users to explore

the image by touching the screen and moving their finger up and down on a single dimension.

The sonified portion of the image does not correspond only to the touched pixel (as in 2-D

exploration), but to the whole horizontal line (flush line) at the same height of the touch point.

The horizontal (left-right) position of the finger on the screen is not relevant for this particular

exploration paradigm.

The 1-D exploration paradigm is similar to the technique proposed by Dallas [22], as it simulta-

neously represents all image features on the flush line. However, there are two main differences:

first, our solution is interactive as it adopts a probing approach, while the one by Dallas adopts a

scanning approach. Second, while the solution proposed by Dallas sonifies image features along

a vertical line, our approach sonifies a horizontal line. This choice was driven by the fact that

we use audio spatialization (based on both interaural time and level differences) to convey addi-

tional information about the explored images. Indeed, it has been shown in the literature that

it is more natural for the user to associate left-right spatialized audio information to graphical

features on a horizontal line [89, 7].

In general terms, the luminance of pixels on the flush line is rendered generating a low-frequency

sound for pixels located on the left part of the screen, gradually changing to high frequency for

pixels located on the right part of the screen. Furthermore, sounds generated from pixels on the

left part of the screen are spatialized on the left, gradually changing to the center and the right

for pixels on other parts of the flush line. A schematic representation of the 1-D interaction and

sonification modes can be found in Figure 6.6.

It is important to underline that all the sounds corresponding to a single flush line are reproduced

at the same time, not sequentially moving on the line from left to right. This is due to the fact

that we are designing a sonification mode with a probing approach, i.e., a real time interactive

system. This requires the audio feedback to instantaneously describe the flush line as a whole.

5Clearly, the fingertip touches more than a pixel, however we rely on the mobile OS function that identifies a
single pixel that intuitively represents the center of the touch.
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Figure 6.6: Schematic overview of the 1-D interaction and sonification modes.

For example, if the user slides the finger on the screen (e.g., from the top to the bottom), in each

instant he/she will hear the sonification of the current flush line. This would not be possible if

the flush line was described with a time-varying sound (e.g., a sound obtained by scanning the

flush line from left to right in one second).

In order to allow for a clear discrimination between concurrent low and high frequency sounds,

the spatialization was implemented using both Interaural Level Differences (ILD) and Interaural

Time Differences (ITD). The ILD range was set to a maximum of 20 dB for left-right position,

linearly scaled down to 0 dB for the center position. Similarly, the ITD range was set to a

maximum of 1 ms. These values are consistent with spatial hearing literature [61].

The high-low frequency and left-right spatialization mapping were developed to be as intuitive

as possible, taking inspiration from the keyboard of a piano, with the low frequency notes on the

left and the high frequency notes on the right. The frequency ranges utilized for the sonification

are consistent with the equal loudness curve, therefore with the frequency range for which the

human hearing has enhanced loudness sensitivity [61].

Two different audio rendering techniques have been developed using this exploration paradigm,

namely Variable Frequency (VF) and Fixed Frequency (FF).

6.3.2 Audio rendering techniques

1-D Variable Frequency

The 1-D Variable Frequency audio rendering technique has been designed in order to represent

image features on the flush line at the highest possible resolution (i.e. there is a continuous

mapping between the x coordinate of each pixel on the flush line and frequency and spatialization

parameters of the generated sound). A luminance threshold is established. Each pixel on the flush
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line with luminance above this threshold is sonified with a sound generator, whose frequency

is associated with the horizontal position of the correspondent pixel. The frequency range is

scaled between 100 Hz for the first pixel on the left, and 1618 Hz for the last pixel on the right.

Furthermore, low frequency sounds are spatialized on the left, gradually moving towards the

right for high frequency sounds, as previously described.

With this particular audio rendering technique, a horizontal white line corresponds to a number

of sounds equal to the line length in pixels (possibly a few hundreds). This could potentially

create issues in terms of saturation of the output audio channel and, more importantly, it creates

a redundancy of information: the ability of the human hearing system to discriminate between

several sounds at different frequencies is in fact ultimately limited.

To address this problem, a minimum distance is established between sonified pixels. This is

achieved as follows. Starting from the left side of the screen, when a pixel is found with luminance

above the threshold, a few following pixels are not sonified regardless of their luminance. The

number of these pixels is determined in order to allow for a maximum of 24 concurrent sounds.

This value was established considering the maximum sensitivity of the human hearing system in

terms of frequency bands detection (the Bark scale [95]).

Two sound generators are usually employed in literature for image sonification: pure tone and

noise. We implemented both of them.

• 1-D VF Pure. The sound generators produce pure sinusoidal sounds.

• 1-D VF Noise. The sound generators produce narrow-band noise (1/3 octave band

width).

1-D Fixed Frequency

Due to the particular features of the audio rendering process (i.e., variable frequency and fixed

amplitude), both 1-D VF sonification modes allow for smooth frequency changes when exploring

an image. However, several sounds with very similar frequencies might be present at the same

time and at the same amplitude, creating comb filters and phasing, which are perceived as a

marked vibrato effect. Our intuition is that this vibrato effect could be unpleasant for users.

To deal with this problem, we designed the 1-D Fixed Frequency audio rendering technique that

generates sounds at 24 predefined frequencies. The flush line is divided into 24 equally-sized

sectors. The average luminance of each sector is directly sonified modifying the amplitude of 24

sound generators, each reproducing continuously a signal at a fixed frequency, from 100 Hz for

the generator correspondent with the sector at the extreme left of the screen, to 1440 Hz for the

generator correspondent with the band at the extreme right. The number of sectors is consistent

with the number of concurrent sound generators adopted in 1-D Variable Frequency.

For example, the amplitude of a generator correspondent with a sector in which there are only

black pixels is 0, gradually scaled up to 1 (maximum) for a sector in which there are only white

pixels. The sound of each generator is spatialized from the left to the right, considering the

horizontal position of the associated sector.
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In 1-D FF we use the two sound generators already defined for 1-D VF. However, considering

the level of annoyance generated by listening for long period of times to pure tones and random-

generated noise, we decided to also introduce a third solution which employs a music signal as

sound generator. This option is expected to be more enjoyable.

• 1-D FF Pure. The sound generators produce pure sinusoidal sounds.

• 1-D FF Noise. The sound generators produce narrow-band noise (1/3 octave band width).

• 1-D FF Music. Instead of 24 sound generators, one for each sector, a single sound

generator consisting of a music track player is used. The sound is split into 24 bands,

each with center frequencies going from 100 Hz to 1440 Hz in 1/3 octave bands. The

average luminance of each sector on the flush line is associated with the amplitude of the

corresponding band (left to right, low to high frequency, left to right spatialization). As

an example, if the luminance of a sector on the right of the flush line is high, and for all

other sectors is low, then only some high frequency components of the actual music will

be audible, spatialized on the right. The track chosen for the playback is an 8-seconds

extract from a pop song, continuously looped as soon as the user keeps the finger on the

screen. Thanks to the presence of a drum-kit and of several tuned instruments (no voice),

the frequency spectrum is rather broad (40 Hz to 20 kHz).

Due to the particular features of the audio rendering process (i.e., fixed frequency and variable

amplitude), the 1-D FF Noise and 1-D FF Pure sonification modes generates stepped frequency

variations without the vibrato effect perceivable in the VF modes. Furthermore, the variable

amplitude, associated with the pixel luminance, allows for a higher compatibility with grayscale

images if compared with the threshold rendering technique adopted for the VF modes. We leave

the evaluation of this sonification mode with grayscale images as a future work.

6.3.3 Adaptation of existing solutions

In order to compare the sonification techniques described in the former sections with previous

solutions, we implemented two sonification modes derived from existing literature [22, 94]. In

the following, we report details on how they have been adapted and implemented.

1-D Non Interactive Pure

The first technique, derived from a previous contribution [22], is very similar to the 1-D Fixed

Frequency Pure technique described in Section 6.3.2. It adopts an exploration paradigm that

differs from our contribution on two key aspects. First, it uses a scanning approach instead of

a probing approach, i.e. it uses a non-interactive exploration paradigm where the user cannot

decide what portion of the image should be sonified. Second, it represents image features on a

vertical flush line rather than on a horizontal one.

This was implemented in a new sonification mode, called “1-D NI Pure” (NI stands for “Non

Interactive”). Considering the exploration paradigm, in 1-D NI Pure the sonification starts when

the user touches the screen, and does not depend on the point being touched.

95



The image is horizontally divided in 24 equally sized columns. Upon touch, image features

inside each column are automatically sonified in sequence, from left to right, in a total time of 4

seconds. This implies that each column is sonified for 1/6 second before automatically moving

to the next one. The audio rendering technique adopted is similar to the one used for 1-D

Fixed Frequency Pure (see Section 6.3.2). Each column is subdivided, along the vertical axis,

in 24 sectors of equal size, each associated to a sound generator. The average luminance of each

sector is sonified modifying the amplitude of the corresponding sound generator. Each generator

reproduces a pure tone signal at a fixed frequency, ranging from 100 Hz for the sector on the

bottom to 1440 Hz for the sector on the top of the image. Our implementation of this technique

adopts the same pure tone sound generators already defined for our novel techniques.

2-D Pulse

The second technique, derived from a previous contribution by Yoshida et al. [94], adopts the

same exploration paradigm introduced with our 2-D technique, i.e. it sonifies image features of

the point being touched by the user. However, the sound rendering technique differs because it

conveys two different parameters: the luminance of the point being touched and the distance

between the touched point and the closest edge in the image. Originally (i.e. in Yoshida et al.

[94]), this technique implemented two separate sonification modes: “Local area sonification”,

which uses a scanning approach like the one adopted in 1-D NI Pure, and “Distance-to-edge

sonification”, which uses a probing approach like our 2-D technique. Considering the complexity

of such approach, and the fact that one of the goals of Invisible Puzzle is to allow individuals to

start playing the game without any particular training, we have decided to implement only the

Distance-to-edge mode.

Within “2-D pulse” (the name given to this implementation) luminance is represented in the

same way as in our 2-D technique. Distance to the closest edge is pre-computed for each pixel

using the Felzenszwalb algorithm [26] and stored in a look up table. When the user touches

a pixel in the image, the corresponding value is retrieved from the look up table. In order to

convey distance information to the user, the audio rendering technique maps the distance value

to the period of a pulse train sound. The pulse train period for a point which is at the maximum

distance from an edge is 1 second, linearly decreasing as the touch gets closer to the edge.

6.3.4 Implementation details

The sonification modes adopted in Invisible Puzzle have been implemented as an iOS library

on top of an existing open-source framework called “The Amazing Audio Engine” (TAAE)6. By

adopting this framework, it is possible to implement sound generation and filtering components

in a timelier manner, without having to deal with the low level programming aspects of the iOS

audio system. In TAAE, sound is produced using audio processing components of three different

types. The first type, called “Channel”, is used to generate sound, either programmatically

or by reading audio data from a file. The second type, “Filter”, receives sound from another

component (e.g., a channel) and uses digital signal processing techniques to alter it. A third

type of audio processing component, called “Channel group”, is used to mix together the output

6http://theamazingaudioengine.com/
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Type Name Description Input

Channel

Pure
Generates a pure sinusoidal
sound

Sine wave frequency f

Noise Generates narrow-band noise -

Music
Generates a music signal by
reading audio samples from a file

-

Filter

ITD
Applies Interaural Time
Differences to the output of
another element

Spatialization value s ∈ [−1, 1]

ILD
Applies Interaural Level
Differences to the output of
another element

where −1 corresponds to full
left spatialization and 1 to full

right

Band Pass
Applies a band pass filter to the
output of another element

Band pass frequency f

Volume
Modifies the amplitude of the
output of another element

Multiplier a

Channel
Group

FF
Implements the fixed frequency
audio rendering technique

Array of luminance values

VF
Implements the variable
frequency audio rendering
technique

Array of points

Table 6.1: The nine personalized audio processing components.

of (possibly many) other components (e.g., two channels). The software library that implements

the sonification modes is available on request7.

We extended the basic TAAE components to define nine personalized audio processing compo-

nents (see Table 6.1). Each sonification mode is then implemented as a combination of some

of these components into an audio processing pipeline. Sound generators (as defined above)

correspond to channels, in the TAAE terminology. Similarly, audio rendering techniques are

implemented through pipelines.

For example, the 2-D sonification mode is implemented with a pipeline containing only a Pure

channel where the sine wave frequency varies accordingly to the luminance of the point being

touched.

A more involved pipeline is required to implement 1-D FF Pure (see Figure 6.7(a)). Each of

the 24 sectors of the flush line (see Section 6.3.2) is associated with a pipeline composed of 4

elements: a Pure channel, an ITD filter, an ILD filter and a Volume filter. The output of the 24

pipelines is mixed together by a FF channel group. When each pipeline is initialized, predefined

values for sine wave frequency and spatialization are set. At runtime, the FF channel group

receives an array of 24 values, each one representing the average pixel luminance in each sector,

and dynamically modifies the volume multiplier of each pipeline accordingly.

A similar pipeline is used to implement 1-D FF Noise (see Figure 6.7(b)). There are two main

differences. First, the Noise channel is used instead of Pure. Second, there is an additional

Band Pass filter in each pipeline. At initialization time, the band pass frequency is set with a

predefined value (which is the same frequency used as input for the Pure channel in 1-D FF

Pure). 1-D FF Music is the same as 1-D FF Noise with the only difference that it uses the Music

channel instead of the Noise one.

7https://ewserver.di.unimi.it/16taccessip/
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Pipeline 1 Pipeline 24

FF

(a) 1-D FF Pure.

Pipeline 1 Pipeline 24

FF

(b) 1-D FF Noise.

Pipeline 1 Pipeline 24

VF

(c) 1-D VF Pure.

Pipeline 1 Pipeline 24

VF

(d) 1-D VF Noise.

Figure 6.7: The audio processing pipelines implementing some of the novel sonification
modes. Underlined letters (s, f) represent constants, while the others (a, s, f) denote pa-

rameters defined dynamically at runtime.
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1-D VF Pure is similar to 1-D FF Pure, as it uses the same 24 pipelines (see Figure 6.7(c)) but

differs in two key aspects. First, sine wave frequency and spatialization values are not defined

at initialization time, but they are dynamically set as described in the following. Second, the

input provided to the VF channel group at runtime is the array of points on the flush line.

Each one of these points is dynamically associated to a pipeline whose sine wave frequency and

spatialization values are proportional to the point’s horizontal position. Finally, 1-D VF Noise

(see Figure 6.7(d)) is similar to 1-D VF Pure with the difference of adopting the Noise channel

instead of Pure and the presence of an additional band pass filter whose value is dynamically set

by the VF channel group.

6.3.5 Evaluation methodology

The overall goal of the experimental evaluation is to understand how effectively each sonification

mode allows subjects to perceive images. To deliver on this goal we follow this procedure: first, a

sonification mode is introduced to the user, providing the necessary training. Then, the subject

is asked to perform a series of tasks, where he/she must recognize images relying only on sound.

During each task, we measure how fast and precisely the subject recognizes each image. In the

end, a questionnaire is administered to collect some information about the subject, such as age,

familiarity with video games, etc.

It is important to underline that each subject conducts the evaluation using a single sonification

mode. There are two motivations for this choice. First, from the methodological point of view

we want to exclude that results collected for one task are biased by the fact that the subject has

previously experienced a different sonification mode. Second, from the subject’s point of view,

it is simpler to learn how to explore shapes with a single sonification mode.

Tasks

In each task the test subject is challenged to recognize a shape by using the sonification mode.

Clearly, the shape to be recognized is not visible and it can only be perceived by sound. The

subject can freely explore the shape without time constraints.

When the subject believes he/she has recognized the shape, he/she moves to the “answer phase”.

In this phase the subject cannot explore the shape any more. Instead, he/she is presented with

four shapes, one of them being the ones that has just been explored. The subject has to recognize

the shape he/she has just explored (i.e., correct answer) hence distinguishing it from the other

three (i.e., wrong answers). In case of subjects with blindness, a textual description is read.

All images used in the tasks (including the image to recognize and the three wrong answers for

each tasks) are reported as online resources7.

While a subject faces a task, we collect performance and usage information. As motivated in

Section 6.3.5, a subject can face the same task in more than one attempt. Hence, we collect data

for each attempt in each task. Note that, after the first attempt the user knows which is the

correct answer and hence we are mainly interested in analyzing the results for the first attempt.

For each attempt in each task we collect:
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• Time required to complete the attempt (i.e. from the first touch on the screen to the

moment in which the response is given);

• Exploration time (i.e. time in which the finger was touching the screen);

• Number of touches on the screen (only during exploration);

• User response (including whether it is correct or not) for each attempt.

Training

Considering subjects’ training, the goal is to introduce the subject to the challenge (i.e. recognize

hidden images) and to the basics of the interaction paradigm. This is achieved by playing a very

short video (15 seconds). Three of these have been created, one for each exploration paradigm

(the videos are available online7).

After playing the video, a “learning task” is presented in which the shape is visible (a textual

description of the shape is also provided for subjects with blindness). Subjects can freely explore

the image, becoming acquainted with the sonification mode.

After these two training steps a large portion of subjects (up to 50% for some sonification modes)

is still unable to recognize a simple shape (i.e., a dot on the center right of the screen). In order

to offer further training, we adopt two solutions. First, when the wrong shape is selected during

a task, the correct answer is shown (or read) to the subject and then he/she is asked to repeat

the same task. With this approach the subject can precisely associate the audio feedback with

the shape that, in this case, is known.

The second solution to offer further training consists in adopting a gamification approach [23]

so that exploration tasks are designed to gradually increase in difficulty. Indeed, we defined

six groups of tasks, each one consisting of four tasks. The first three groups focus each on

a particular type of shape: dots, line segments and polygons, respectively. The fourth group

confronts the user with shapes from all previous groups, while the fifth and sixth are focused

on more involved shapes. The fifth group comprises objects of different nature: French playing

cards suits, vehicles, animals and fruits (examples in Figure 6.8). The sixth contains letters,

both uppercase and lowercase, and numbers. An additional “learning task” (i.e., a task in which

the image is visible) is presented at the beginning of each of the first three groups in order to

provide training. Note that the first four groups have also been used in the evaluation reported

in our previous work [29]. Consequently, the experimental evaluation presented in this section

(which extends the one presented in our previous work) reports results both for tests conducted

with the original four task groups and with the so called “long test” comprising also the two

additional groups.

The increasing difficulty of tasks implies that new elements can be gradually introduced. For

example, the first two tasks in the first group consist in a single dot, positioned in different

locations on the screen. The third and fourth tasks are more complex, as they contain two dots,

which in one case are located on the same flush line. Thanks to this approach it is possible to

avoid that the user faces tasks that are too challenging (and frustrating) too early in the test.

At the same time, by finely tuning the increasing difficulty of the tasks, it is possible to engage
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(a) Heart. (b) Butterfly. (c) Motorcycle.

(d) Cherry.

Figure 6.8: Examples of objects included in the fifth task group.

Subjective evaluation
(five-level Likert scale)

I enjoyed playing with Invisible Puzzle
I would like to play with Invisible Puzzle again
I have found some levels to be too easy
I have found some levels to be too difficult
I easily understood how to use Invisible Puzzle
I easily understood how images are represented through sound
I think that the hints provided by Invisible Puzzle were enough
to learn how to use it
Playing with Invisible Puzzle required me a lot of
concentration
I have found the sounds comforting/pleasant

Questionnaire -
subject’s data

Age
Play with computer games (Less than 1 hour per week/1 hour
per week/1 hour per day/More than 1 hour per day)
I play a musical instrument or sing (yes/no)

Questionnaire - Comments Free text

Table 6.2: Questionnnaire details.

the user by presenting challenges that are not too easy. This is in line with the “Flow theory”

from Csikszentmihalyi [21].

Questionnaire

After completing all tasks, subjects are asked compile a questionnaire that has three main ob-

jectives: first, to obtain a subjective evaluation of the sonification mode, second, to collect

personal information that can be associated with performance data and, third, to let the subject

give a comment about the test. Table 6.2 reports the details of the questionnaire. Note that,

since the evaluation procedure was implemented by our Invisible Puzzle application (described

in Section 6.3.6), some of the questionnaire questions refers to Invisible Puzzle.

6.3.6 Invisible Puzzle

The minimum piece of software that enables the evaluation described in Section 6.3.5 consists in

an application that implements the sonification modes. However, such a software would require
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a person that supervises the entire evaluation process, negatively affecting evaluation scalability.

In this section we present Invisible Puzzle, an iOS application that implements the sonification

modes and also automates the evaluation, in the sense that no supervisor intervention is required

except for finding test subjects and providing the smartphone running Invisible Puzzle. Indeed,

Invisible Puzzle trains each subject to use the sonification mode, challenges him/her to complete

the tasks, collects performance data and administers the questionnaire. While a subject is

performing a test, the supervisor may observe the interaction and collect eventual thinking

aloud comments.

The design of Invisible Puzzle

Invisible Puzzle was designed employing a user centered approach through a series of iterations.

After each iteration, Invisible Puzzle has been tested with end users in supervised evaluations

and, indeed, the whole process benefited from feedback given by many subjects, including four

blind individuals (one of which is a member of the research group). Nevertheless, feedback from

sighted subjects was also considered as the design of the initial training stage resulted to be even

more challenging with these subjects.

From the interaction design point of view, the most challenging part was to introduce the user

to two basic activities: to explore the screen and to terminate the exploration (with a double

tap).

In its first version, Invisible Puzzle presented a textual explanation of these activities. However,

we observed that most users did not understand the principle of the image exploration.

To address this problem we added, in the second version, a “learning task” presented after the

textual description. However, we observed that many sighted users, in particular with the 2-D

sonification mode, tended to tap on the visible dots rather than to slide the finger on the screen.

As a consequence, in the following task with a hidden shape, users did not know how to interact.

This problem was addressed by substituting the initial textual explanation with a video that

included a speech-based description. This description is more detailed than the purely textual

one, and includes the explanation of the challenge (i.e., to recognize hidden shapes). With this

solution, most users were able to use the 2-D sonification mode, but some of them still had

problems with the sonification modes based on the 1-D exploration paradigm. Users did not

seem to understand that the image was sonified in its full width independently of the horizontal

coordinate of the point being touched.

To address this problem, we changed Invisible Puzzle so that, when using the 1-D exploration

paradigm, the user is constrained to slide the finger over a small column on the right edge of the

screen (all touches outside this column have no effect). Furthermore, the flush line was visually

represented on the screen (see Figure 6.9(a)).

Finally, some subjects did not understand how to terminate a task and hence remained stuck

on the first one. This issue was solved by displaying a text message (text-to-speech for blind

subjects) reminding the subjects about how the task could be completed (double-tap on the
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(a) Exploration view when the user is touching (1-D ex-
ploration paradigm).

(b) Exploration view when the user is not touching (1-D
exploration paradigm).

(c) Answer view.

Figure 6.9: Interaction with Invisible Puzzle.

screen) every time that the subject did not touch the screen for a given amount of time (2

seconds). See Figure 6.9(b).

Thanks to this design process we developed the introductory part of Invisible Puzzle that allowed

all subjects involved in the experiments to complete the tasks without the need of an external

explanation.

To summarize, the interaction for completing a task works as follows: in the exploration view the

subject explores a (hidden) shape through sonification (Figures 6.9(a) and 6.9(b)). When the

subject believes to have recognized the shape, he/she double-taps on the screen. Invisible Puzzle

then presents the answer view (see Figure 6.9(c)) that contains the explored shape together with

other three ones, in random order. The user has to identify the explored shape by touching it.

For users with blindness, the four possible choices are described with a text-to-speech synthesizer.

During informal tests conducted as part of the user-centered design, we observed a problem

with the automated evaluation. Subjects were less motivated to concentrate on the tasks and to

complete the evaluation procedure. This poses an additional challenge: the evaluation procedure

should engage the subjects, encouraging them to devote an effort in completing the assigned task.

This requires the procedure to be carefully tuned in order to avoid being boring (e.g. tasks should

not be too easy) or frustrating (e.g. tasks should not be too difficult). The choice of tasks is the

result of this tuning.

Remote data acquisition

Invisible Puzzle performs an instrumented remote evaluation [33] to collect: a) quantitative data

during app usage; b) information about the test subject through a questionnaire;
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Sonification ModeUsage data

Cloud

Mobile device

Figure 6.10: The “Hermes” remote logging system architecture.

The logging system is composed of three main elements, as shown in Fig 6.10: a data collection

library (which is part of Invisible Puzzle), a REST (Representational State Transfer) server and

a Database Management System (DBMS).

The data collection library has three main purposes. First, to query the server for the sonification

mode that must be adopted in each test session. This preliminary operation is required in order

to guarantee that all sonification modes are evenly evaluated even if test sessions are conducted

in parallel with no supervisor intervention. The second purpose is to collect usage data and

questionnaire results. Finally, the third purpose is to send the collected data to the REST server

in a reliable way (i.e. performing local caching in order to be resilient to networking issues).

6.3.7 Evaluation results

In order to get statistically significant results, we involved a large number of subjects in the

evaluation of Invisible Puzzle (49 persons with visual impairments and 178 sighted). Table 6.3

reports the number of subjects with visual impairments who took part to the evaluation of each

sonification mode, together with the aggregated personal data we collected from the question-

naire, while Table 6.4 reports the same metrics for sighted subjects.

Indeed, as we discuss in Section 6.3.8, the comparison between the results of the two groups can

help identifying similarities and differences in the cognitive process behind image exploration

[44]. Additionally, results from the two groups can help obtaining statistically significant data

to guide future development and experimental studies for both visually impaired and sighted

subjects. Also, while this contribution is motivated by the needs of people with visual impair-

ments, it cannot be excluded that, in some particular contexts, sighted users can also benefit

from sonification techniques. These include situations in which the user cannot look at the de-

vice’s screen, for example when he/she is operating particular machines or tools that require full

visual concentration. The need for sonification techniques might also arise in situations in which
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Sonification Subjects
Age

Playing
music

Playing videogames

m σ yes no > 1h/day 1h/day 1h/week > 1h/week
2-D 6 27.33 7.15 4 2 0 0 0 6

1-D VF Pure 6 35.33 5.85 6 0 0 0 2 4
1-D VF Noise 7 32.29 6.58 7 0 0 0 1 6
1-D FF Pure 6 29.17 8.35 5 1 0 0 0 6
1-D FF Noise 6 27.83 7.31 5 1 0 0 3 3
1-D FF Music 6 30.67 5.32 5 1 0 0 0 6
1-D NI Pure 6 36.33 11.25 3 3 0 0 1 5
2-D Pulse 6 29.17 5.60 6 0 0 0 3 3
Total 49 31.04 7.51 41 8 0 0 10 39

Table 6.3: Count and personal data of subjects with blindness collected from the question-
naire (“m” = mean).

Sonification Subjects
Age

Playing
music

Playing videogames

m σ yes no > 1h/day 1h/day 1h/week > 1h/week
2-D 24 25.46 6.21 8 16 3 2 7 12

1-D VF Pure 22 27.41 9.48 11 11 7 6 5 4
1-D VF Noise 21 24.90 10.09 9 12 6 9 3 3
1-D FF Pure 23 26.43 4.55 15 8 4 4 2 13
1-D FF Noise 21 24.62 6.21 13 8 10 5 4 2
1-D FF Music 25 30.16 11.61 9 16 3 8 3 11
1-D NI Pure 21 34.19 4.19 9 12 3 3 5 10
2-D Pulse 21 24.00 4.32 5 16 4 6 6 5
Total 178 26.00 7.78 79 99 40 43 35 60

Table 6.4: Count and personal data of sighted subjects collected from the questionnaire (“m”
= mean).

the user is interacting with a device that has no screen at all, like some wearable devices that

are becoming popular nowadays (e.g., wristbands).

Experimental setting

All tests were conducted on iPhone 5 and iPhone 5S devices (that have the same screen size)

and during the tests subjects wore Apple EarPod headphones. Tests with sighted users were

conducted both in Italy and in the UK, while tests with blind users were conducted in Italy

only8. Tests were conducted in various environments: in most of the cases the authors’ office,

while in few cases the students’ library, laboratories and also the cafeteria. In all cases, tests

have been conducted in environments with limited ambient noise.

Tests were not supervised, in the sense that subjects were asked to conduct a test and no other

information was provided, apart for the expected duration of the test (i.e., approximately 15

minutes). The authors served as supervisors and invited students, friends and colleagues to use

the application. The device was provided by the supervisor, who also was in charge of starting

Invisible Puzzle and (de)activating VoiceOver. During the evaluation the supervisor was in the

same room as the subject, but was not observing the test. or example, a common situation is

a test taking place in the supervisor’s office; while the supervisor works at his computer, the

subject tries to complete the different tasks within Invisible Puzzle.

8Invisible Puzzle is localized in Italian and English.
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Sonification
Num. of
Subjects

Correct
answers

Exploration
time (s)

Task time
(s)

tot long test % σ m σ m σ
2-D 6 0 77.0 7.5 25.8 18.4 38.6 32.3

1-D VF Pure 6 6 67.7 12.1 28.0 20.6 39.2 33.6
1-D VF Noise 7 6 65.1 21.9 29.6 27.6 40.6 35.7
1-D FF Pure 6 0 82.2 22.8 15.2 11.5 21.6 18.3
1-D FF Noise 6 6 67.7 6.1 29.5 22.1 36.3 23.0
1-D FF Music 6 0 62.5 13.1 18.0 12.9 24.5 17.4
1-D NI Pure 6 6 56.2 15.8 DNA DNA 36.5 46.2
2-D pulse 6 6 75.0 14.7 37.5 43.6 47.0 48.0
Total 49 30 69.1 16.4 26.3 25.5 35.6 34.6

Table 6.5: Results with blind subjects (“m” = mean). All results computed for the first 16
tasks.

Some of the tests (i.e. those used in our earlier publication [29]) consisted in 4 groups of 4 tasks,

for a total of 16 tasks. 2 additional groups (i.e. 8 additional tasks) were added to the remaining

tests (i.e., 30 tests with visually impaired subjects and 42 with sighted subjects), for a total of

6 groups (24 tasks).

Results with blind subjects

Table 6.5 reports mean values (m) and standard deviations (σ) for the parameters measured

during the use of Invisible Puzzle, for each sonification mode. Results refer to the initial 16 tasks

by the 49 subjects with visual impairments.

Considering that in this particular case the performance of the subjects was characterized by both

speed (i.e. exploration time) and accuracy (i.e. percentage of correct answers), an initial analysis

was performed in order to look for potential interactions between these two parameters. A

Pearson product-moment correlation was run to determine the relationship between exploration

time and percentage of correct answers. There was a medium, positive correlation between

these, which was statistically significant (r = 0.33, n = 49, p = 0.021). A Multivariate Analysis

of Variance (MANOVA) was then performed. Using Pillai’s trace, we found that the sonification

had a significant effect on both the exploration time and percentage of correct responses [V =

0.66, F (14, 82) = 2.36, p = 0.008].

Univariate analysis was then performed, starting with the percentage of correct answers, which

is displayed in the box plot in Figure 6.11. This value represents the percentage of tasks in

which subjects gave the correct answer in the first attempt. 1-D FF Pure yields better results,

on average, if compared with the other sonification modes. Considering that the dataset is

normally distributed, a one-way ANOVA analysis was conducted, showing that the differences

are not statistically significant [F (4, 251) = 1.63,MSE = 783, p = 0.167]. The results observed

for the percentage of correct answers have been correlated with other parameters (e.g., whether

the subject plays a musical instrument), but no statistically significant difference emerged.

1-D FF Pure yields better results also considering exploration time (as shown9 in Figure 6.12).

Also in this case, considering that the data set is normally distributed, a one-way ANOVA

9The exploration time metric does not apply to 1-D NI Pure.
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Figure 6.11: Boxplot representing the correct answers for each sonification mode.
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Figure 6.12: Boxplot representing the exploration times for each sonification mode.

analysis was used. The differences are statistically significant [F (7, 776) = 12.50, MSE = 543.72,

p < 0.001]. Tukey post-hoc analysis shows that 1-D FF Pure is significantly better than 2-D

(p = 0.035), 1-D VF Pure (p = 0.004), 1-D VF Noise (p < 0.001) and 1-D FF Noise (p = 0.001).

It is important to underline that inferential analysis was carried out considering the time taken

to complete every first attempt, and not the average time for each subject.

It is possible to note that the average task time is 12.5 seconds larger than exploration time.

This is due to the fact that task time includes the exploration time plus the time spent selecting

the answer. For users who are blind, this requires listening to the description of each of the four

shapes, and selecting the chosen one.

Considering the results of the questionnaire (see Table 6.6), it emerges that all sonification

modes require high concentration (there is no statistical significant difference among the different

sonification modes). Furthermore, subjects enjoyed Invisible Puzzle more with 1-D FF Pure,

which is in line with the fact that this sonification mode allows subjects to quickly complete the

tasks with a high percentage of correct answers. The general satisfaction in using this sonification

mode is reflected in the intention to play again with it, and in the evaluation of how pleasant is

its sound. Indeed, subjects found the sound of 1-D FF Pure as pleasant as the sound of 1-D FF

Music, which was actually designed with the specific aim of producing a pleasant sound.

As reported in Section 6.3.5, tasks have increasing difficulty. It is therefore interesting to consider

the different results (in terms of percentage of correct answers) in the different chapters. This
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Sonification
Concentration Enjoy Play again Pleasant

sound
m σ m σ m σ m σ

2-D 4.6 0.5 3.6 1.2 3.8 0.9 3.6 1.0
1-D VF Pure 4.8 0.4 3.5 1.2 3.1 1.1 2.8 1.1
1-D VF Noise 4.7 0.4 3.2 1.1 3.1 0.8 3.5 0.5
1-D FF Pure 4.3 0.5 4.5 0.8 4.3 1.0 4.5 0.5
1-D FF Noise 4.1 0.7 3.8 0.4 3.5 0.8 3.8 0.7
1-D FF Music 4.0 0.8 3.5 0.8 3.3 0.8 4.5 0.8
1-D NI Pure 4.6 0.5 3.0 0.8 3.0 0.6 3.0 1.4
2-D pulse 4.8 0.4 3.6 0.5 3.6 0.5 2.5 0.5
Total 4.5 0.6 3.6 0.9 3.4 0.9 3.5 1.0

Table 6.6: Results of the questionnaire for blind individuals (“m” = mean).

Sonification
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
% σ % σ % σ % σ % σ % σ

2-D 83.3 12.9 79.1 24.5 91.6 12.9 54.1 24.5 NA NA NA NA
1-D VF Pure 66.6 20.4 70.8 18.8 75.0 22.3 58.3 25.8 29.1 29.2 70.8 29.2
1-D VF Noise 57.1 18.8 71.4 36.5 67.8 40.0 64.2 19.6 25.0 31.6 50.0 27.3
1-D FF Pure 91.6 20.4 79.1 29.2 83.3 30.2 75.0 22.3 NA NA NA NA
1-D FF Noise 75.0 22.3 75.0 22.3 58.3 25.8 62.5 37.9 29.1 24.5 66.6 12.9
1-D FF Music 58.3 25.8 70.8 29.2 66.6 12.9 54.1 36.7 NA NA NA NA
1-D NI pure 45.8 18.8 58.3 30.2 62.5 20.9 58.3 25.8 16.6 20.4 29.1 24.5
2-D pulse 83.3 12.9 79.1 18.8 75.0 38.7 62.5 26.2 41.6 30.2 50.0 31.6
Total 69.9 23.3 72.9 25.9 72.4 27.5 61.2 26.5 28.3 26.8 53.3 28.4

Table 6.7: Percentage of correct answers for each group of tasks (Blind individuals).

is reported in Table 6.7. While inferential analysis does not show any statistically significant

difference, we can observe that 1-D FF Pure has good performance in all groups (i.e. it is the

sonification mode with best performance in groups 1, 2 and 4, while in group 3 it is the second

after 2-D). In contrast, 1-D NI Pure is the sonification mode with the worse percentage of correct

answers (it has the lowest value in all groups but group 4). Considering the last two groups (4

and 5, whose results are available for 5 sonification modes only), we can observe that in group

5 all sonification modes (except 2-D pulse) do not allow the subjects to distinguish the figures;

indeed, the average number of correct results is about the same as the baseline value of 25% (we

recall that the correct answer should be chosen in a set of four possible candidates). Instead,

in group 6 all sonifications except 1-D NI Pure have much better results, above the baseline.

This suggests that, in this case, we probably failed to tune the difficulty of the tasks in the fifth

group.

Results with sighted subjects

Table 6.8 reports the results of the test conducted with 178 sighted subjects.

Similarly to the analysis conducted in Section 6.3.7, a Pearson product-moment correlation was

run to determine the relationship between exploration time and percentage of correct answers.

There was a small, positive correlation between these, which was statistically significant (r =

.29, n = 178, p < 0.001). A Multivariate Analysis of Variance (MANOVA) was then performed.

Using Pillai’s trace, we found that the sonification had a significant effect on both the exploration

time and percentage of correct responses [V = 0.66, F (14, 340) = 11.98, p < 0.001].
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Sonification
Num. of
Subjects

Correct
answers

Exploration
time (s)

Task time
(s)

tot long test % σ m σ m σ
2-D 24 0 75.0 13.0 22.1 14.1 24.6 14.8

1-D VF Pure 22 0 69.6 15.7 11.6 7.3 13.4 8.0
1-D VF Noise 21 0 67.8 11.9 11.6 7.9 12.9 7.9
1-D FF Pure 23 0 72.0 11.1 10.5 8.2 11.8 8.6
1-D FF Noise 21 0 73.5 12.9 12.5 9.0 13.4 9.2
1-D FF Music 25 0 68.0 15.7 21.5 14.7 23.0 15.5
1-D NI Pure 21 21 61.9 15.4 DNA DNA 11.2 6.8
2-D Pulse 21 21 72.0 15.2 26.2 21.9 29.2 23.2
Total 178 42 70.0 14.2 16.6 11.8 17.6 14.4

Table 6.8: Results with sighted subjects (“m” = mean). All results computed for the first
16 tasks.

Univariate analysis was then performed. Considering the percentage of correct answers (see

box plot in Figure 6.11), the 2-D sonification mode is slightly better than the 1-D (e.g., mean

75% with 2-D and 73.5% with 1-D FF Noise). The sonification that exhibits worse results

according to this metric is 1-D NI Pure, with a value of 61.9%. Considering that the data

sets are normally distributed, a one-way ANOVA analysis was conducted. The results show that

there are no statistically significant differences between the eight sonification modes [F (7, 170) =

1.90,MSE = 0.02, p = 0.072].

Interestingly there are statistically significant differences [F (1, 176) = 16.92,MSE = 0.02, p <

0.001] between subjects that do not play musical instruments (66% correct, σ = 14.3) and those

who do (74% correct, σ = 12.7). On the other hand, no statistically significant difference can be

found between individuals who play computer games (one hour per week or more, 69% correct,

σ = 14.3) and individuals who do not (less than one hour per week, 65% correct, σ = 15.6).

The performances with the various sonification modes exhibit clearer differences in terms of

exploration time, as shown in Figure 6.12. 2-D, 2-D pulse and 1-D FF Music require a longer

exploration time if compared with the other four sonification modes. One-way ANOVA analysis

reveals that the differences between the seven sonification modes are statistically significant

[F (7, 2840) = 115.0,MSE = 148.37, p < 0.001]. As expected, post-hoc Tukey analysis highlights

that 1-D VF Pure, 1-D VF Noise, 1-D FF Pure and 1-D FF Noise are not significantly different

among themselves, but each of them is significantly different (i.e. it has a shorter exploration

time) with respect to the other sonification modes i.e., 2-D, 1-D FF Music and 2-D Pulse (p <

0.001 for each pair). 2-D is not significantly different from 1-D FF Music (p = 0.995), but both

sonification modes are significantly different (shorter exploration time) from 2-D pulse (p < 0.001

in both cases).

Considering again the exploration time, statistically significant differences [F (1, 2846) = 7.19,

MSE = 189.55, p = 0.007] are found between subjects that do not play musical instruments

(mean exploration time 16.1s per task, σ = 13.7) and those who do (mean exploration time

14.7s per task, σ = 13.8).

Task time is approximately 2.8 seconds higher than exploration time for all sonification modes.

The statistical differences between sonification modes are similar to those emerging for the ex-

ploration time metric. One-way Anova shows statistically significant differences [F (7, 2846) =
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Sonification
Concentration Enjoy Play again Pleasant

sound
m σ m σ m σ m σ

2-D 3.8 0.9 3.4 0.7 3.1 1.0 2.2 1.0
1-D VF Pure 3.8 1.0 3.9 0.7 3.5 0.9 2.8 1.1
1-D VF Noise 3.9 0.9 3.9 0.8 3.4 1.1 3.0 0.9
1-D FF Pure 3.5 0.9 4.4 0.6 4.1 0.5 3.6 1.0
1-D FF Noise 4.4 0.8 3.8 1.1 3.9 1.1 3.2 1.0
1-D FF Music 4.4 0.7 4.0 0.6 3.3 1.0 4.2 0.8
1-D NI Pure 4.0 0.9 3.3 0.9 3.0 1.2 2.9 1.2
2-D pulse 4.3 0.7 3.3 0.7 2.7 1.0 2.0 1.0
Total 4.0 0.9 3.7 0.8 3.4 1.1 3.0 1.2

Table 6.9: Results of the questionnaire for sighted individuals (“m” = mean).

103.24,MSE = 167.96, p < 0.001] between the groups. Post-hoc Tukey analysis highlights that

1-D VF Pure, 1-D VF Noise, 1-D FF Pure, 1-D FF Noise and 1-D NI Pure are not significantly

different among themselves but each of them is significantly better (i.e. allows smaller task time)

than the other three sonification modes (2-D, 1-D FF music and 2-D Pulse). Furthemore, 2-D

and 1-D FF music are significantly better than 2-D Pulse.

Considering the qualitative data collected through the questionnaire (see Table 6.9), other in-

teresting aspects emerge. First, higher concentration is required for some of the sonification

modes (1-D FF Noise, 1-D FF Music and 2-D Pulse), but no statistically significant difference

emerges. Instead, there are statistically significant differences for the level of enjoyment. 1-D

FF Pure is significantly enjoyed more than 2-D, 1-D NI Pure and 2-D Pulse (p < 0.001). The

same results hold for reported intention to play again with Invisible Puzzle. 1-D FF Pure is

significantly better than 2-D, 1-D NI Pure and 2-D Pulse (p = 0.023, p = 0.010 and p < 0.001,

respectively). Finally, 1-D FF Music is the sonification mode with the most appreciated sound,

and the difference is significant with respect to all other sonification modes (0.000 < p < 0.025))

except 1-D FF Pure.

Table 6.10 reports the percentage of correct answers in the different groups of tasks. No statis-

tically significant differences emerge among the sonification modes in the four groups of tasks

except for 1-D NI Pure, which shows significantly worse results than the others sonification modes

in the first group [F (7, 170) = 5.40,MSE = 0.04, p < 0.001]. It appears that this sonification

mode is less intuitive than the others, and that some additional training in the first group of

tasks is necessary. This is confirmed by the fact that for task groups 2, 3 and 4 no significant

differences emerge if compared with the other sonification modes.

From Table 6.10 we can also observe that the average percentage of correct answers is much

lower in the fourth group of tasks. This was expected; as discussed in Section 6.3.5, the tasks in

the fourth group are more challenging than those in the previous ones.

6.3.8 Discussion

This contribution focuses on two main aspects: the effectiveness of the sonification modes and the

scalability of the evaluation. Looking at the subjects’ performances10 using the various proposed

10In this section, unless explicitly stated, we refer to the result obtained with subjects with blindness.
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Sonification
Group 1 Group 2 Group 3 Group 4
% σ % σ % σ % σ

2-D 89.5 14.5 88.5 16.4 81.2 21.1 40.6 27.3
1-D VF Pure 80.6 21.7 81.8 24.6 77.2 21.6 38.6 26.4
1-D VF Noise 88.1 16.9 77.3 19.2 66.6 18.2 39.2 25.7
1-D FF Pure 86.9 18.2 71.7 21.7 83.7 17.8 45.6 20.8
1-D FF Noise 86.9 18.7 85.7 12.6 72.6 23.5 48.8 26.7
1-D FF Music 80.0 20.4 81.0 23.1 69.0 30.0 42.0 23.6
1-D NI pure 58.3 24.1 71.4 21.3 76.1 27.9 41.6 22.8
2-D pulse 82.1 23.9 84.5 23.0 75.0 26.2 46.4 22.7
Total 81.7 21.6 80.3 21.0 75.2 23.9 42.8 24.3

Table 6.10: Percentage of correct answers for each group of tasks (sighted individuals).

sonification modes, we can conclude that, despite the very short training, users can successfully

recognize geometric shapes after a few seconds of exploration. Considering for example the third

group of tasks, subjects are asked to recognize geometric figures of different nature (e.g. squares,

circles, diamonds) and size. We expected these tasks to be challenging for subjects adopting

the 1-D exploration paradigm, because they must deal with sounds generated by two or more

points on the same flush line. For example, considering the fourth task in the third group (see

Figure 6.13), despite the similarity between the correct answer (a wide diamond) and one of

the possible alternatives (a narrow diamond), the percentage of correct answer is 76% among

all subjects who used one of the 1-D sonification modes. Results are even better for subjects

adopting the 1-D FF Pure sonification mode, considering that all the individuals managed to

correctly identify the right answer. Using the five novel 1-D sonification modes, subjects gave a

correct answer in 70% of the cases for all tasks of group three. If we consider the results of 1-D

FF Pure it can be observed that 4 subjects (out of 6) correctly recognized all the shapes, with

a mean exploration time of 18, 5 seconds. It is important to remember that these subjects only

practiced with the technique during task groups one and two. On average, before starting group

3, each of these users practiced for less than 3 minutes (i.e., 176s).

(a) Wide diamond. Correct. (b) Narrow diamond.
Wrong.

(c) Square on the left.
Wrong.

(d) Triangle with one base
vertically aligned on the left.
Wrong.

Figure 6.13: Answers of the fourth task in the third group.

Looking at the scalability of the evaluation, a specific challenge has been to quickly introduce

the user to the exploration paradigm. Thanks to the user-centric approach described in Sec-

tion 6.3.6, all subjects successfully completed the evaluation procedure without requiring exter-

nal intervention. This does not mean that the introductory explanation (i.e. the video) provides

an exhaustive explanation on its own; it is the combination of the explanation with the following

interactive trial that allowed subjects to get proficient with the sonification modes. To support

this conclusion, it can be considered that with the 1-D sonification modes only 44% of the sub-

jects with visual impairment provided a correct answer in the first task. This means that, before

starting the first task, more than half of the blind subjects did not actually understand how
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the sonification mode worked. However, more than 78% of subjects that gave a wrong answer

in the first task gave a correct answer in the second one which is set, approximately, at the

same difficulty level. This suggests that errors committed in the first task helped subjects to

understand how the sonification mode worked.

A final challenge faced when designing the evaluation procedure was to engage subjects, so that

they could complete the procedure without distractions. Results show that Invisible Puzzle

achieves this objective. In particular, there are some sonification modes that are more suited

to subject engagement. We originally expected 1-D FF Music to be more engaging. Instead, it

resulted that listening to music required higher attention, and the sonification mode that resulted

more enjoyable by both sighted subjects and subjects with visual impairment was 1-D FF Pure.

Comparing the performance of sighted and visually impaired subjects (see Tables 6.8 and 6.5), we

can observe that, on average, sighted subjects had a faster exploration time. This is statistically

significant for all sonification modes (e.g. for 1-D FF Pure [F (1, 462) = 20.81, MSE = 81.27,

p < 0.001]), except 1-D FF Music. Interestingly, for 1-D FF Music blind subjects have a

significantly lower exploration time [F (1, 494) = 4.64, MSE = 207.25, p = 0.032]. No signifi-

cant differences could be observed regarding the percentage of correct answers among all tasks.

However, considering the percentage of correct answers separately for each group of tasks (see

Tables 6.7 and 6.10) two different trends can be observed. In groups 1 and 2 sighted subjects

have a significantly higher level of correct answers ([F (1, 225) = 11.09, MSE = 0.05, p = 0.001]

for group 1 and F (1, 225) = 4.24, MSE = 0.05, p = 0.041] for group 2). In the third group,

sighted subjects are slightly better, on average, but no statistically significant difference can be

observed. Finally, in the fourth group blind subjects have statistically significant better results

([F (1, 225) = 21.02, MSE = 0.06, p < 0.001]). This suggests that subjects with visual impair-

ment require a longer initial training, but ultimately reach higher performance levels. This can

partially be motivated by the fact that part of the training is still based on visual clues (e.g.

the initial video). After a few minutes of training, individuals with visual impairment become

significantly more effective in recognizing the proposed shapes, possibly due to the fact that they

explore them more carefully (i.e. they devote a longer time to explore).

Other observations can be made regarding the qualitative remarks reported by the subjects.

First, several subjects, especially those with visual impairment, underlined (either by telling to

the operator or by writing it in the comment section) that they had fun playing with Invisible

Puzzle (e.g. “Very entertaining and challenging!”11, “Nice”). At the same time, some subjects

remarked that the early stage of the game was not trivial, as it required them to figure out

by themselves how the sonification technique worked. Furthermore, most of the subjects that

faced the long version of the test (i.e., with 24 tasks in total) reported that the game was too

challenging. In particular, they reported that it was very difficult to recognize objects (group

5). For example: “The level with objects is too tough. I couldn’t distinguish the car from the

airplane”.

Also, some subjects reported to be annoyed by the pure-tone sound and by the high pitch (e.g.

“The sounds were a bit annoying”, “Sound is annoying, in particular in the challenging levels”).

Some subjects noted that, in the most challenging tasks, they did not have a clear understanding

of the hidden shape, but they were able to correctly answer thanks to the fact that Invisible

11Comments in Italian have been translated.
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Puzzle presented a multiple choice, which effectively restricted the range of possible shapes.

Furthermore, almost all of the visually impaired subjects reported that it was easier to recognize

a shape when the context was known (e.g. in group 6 subjects knew that they were exploring

letters and digits). This might also explain the fact that the results obtained in group 6 are much

better than those from group 5. In group 5 subjects knew that they had to recognize “objects”,

which is a very generic term, while in group 6 they knew they had to recognize letters and digits,

which dramatically reduced the range of possible answers.

Some users reported problems in distinguishing circles from polygons. Others noted that, more

in general, figures with curved lines (e.g., letters, the car, etc.) were harder to recognize. An

additional problem was also found with individuals with visual impairment; in some cases, they

did not know the shape associated to the description of an object (e.g., lowercase letters).

A final remark concerns the interactivity of the application. Some subjects with visual im-

pairment that used 1-D NI Pure expressed their concerns for the lack of interactivity of this

sonification mode.

While the evaluation approach based on Invisible Puzzle eases the process of collecting evaluation

data, it still has two limitations: first, it requires a supervisor to invite the subject, that hence

need to be personally in touch with the supervisor. Second, the test is conducted on a device

provided by supervisor, requiring the supervisor and the test subject to be in the same physical

place. To further scale up the number of tests, it is necessary to allow subjects to conduct the

evaluation on their own device. In this case there would be no supervisor at all.

We are actually working in this direction: the experience derived from the design of Invisible

Puzzle and the results about the sonification modes allowed our team to develop a more advanced

version of Invisible Puzzle, that is publicly available on the AppleStore12 in the form of a game.

While users play with Invisible Puzzle, we remotely collect usage data. In particular we expect

that, by advertising Invisible Puzzle in communities of people with visual impairments, it will

be possible reach a broad sample of the population, remotely collecting usage data from subjects

with different visual impairments. Also, if Invisible Puzzle matches its intended aim of being

entertaining, users will likely play with it in more than one session, hence making it possible to

conduct a longitudinal study.

6.4 Summary and future directions

In this chapter we present three solutions where different non-visual interaction modalities are

adopted to convey image information.

The first solution is MathMelodies, a tablet application to support math learning of primary

school children. One of the primary contributions of this work is the identification of a non-

visual interaction paradigm adopting audio-icons to enable access to math exercises limiting the

cognitive effort required by children. Also, we report the challenges encountered while developing

the application and the many design decisions taken. Among these decisions, the adoption of

a tale as a narrative background that entertain children between exercises and the dynamic

12https://itunes.apple.com/us/app/the-invisible-puzzle/id1051337548
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generation of exercises with increasing difficulties, all with the goal of engaging children in order

to keep them practicing maths. To the best of our knowledge, MathMelodies is the first app

for math learning on mobile devices that is specifically designed to be accessible to visually

impaired children. Also, as the results of the experimental evaluations show, MathMelodies

is actually accessible and entertaining. MathMelodies has been available on the AppStore13

for about two years. So far, MathMelodies has been incrementally improved according to the

continuous feedback provided by many users all over the world. In particular, many suggestions

of improvement have been received from educators for blind and sight impaired students and

were implemented in recent releases.

We extended MathMelodies to automatically collect usage data and, as a future work, we intend

to use such data to evaluate the app itself. At the time of writing, MathMelodies is collecting

data from about 200 users, more or less 10 times as much as we could reasonably expect to involve

in the evaluation conducted with physical presence of the users. Another future improvement

consists in developing a collaborative system that allows the final user (or the teachers) to directly

collaborate in the development of the app content. The definition of this crowdsourcing system

can drastically reduce the development costs of the next versions of MathMelodies and ease the

scalability of this solution.

The second solution is AudioFunctions, a tablet prototype that makes it possible for visually

impaired students to explore function graphs. AudioFunctions presents three exploration modes.

The first interaction mode, called “non-interactive”, extends an existing solution [22] with a new

sonification technique. The second, “mono-dimensional interactive” is similar to the first but

implements a probing approach instead of a scanning approach [93]. Finally, “bi-dimensional

interactive” allows the user to follow the graphical representation of the graph, similarly to the

“distance to edge” sonification introduced by Yoshida et al. [94]. AudioFunctions also introduces

several improvements over traditional desktop applications to explore function drawings, like

Audio Graphing Calculator and Sonification Sandbox [27, 87]. First, being a tablet application,

AudioFunctions enables direct interaction with the tablet’s touchscreen, thus allowing users to

take benefit from proprioception. Second, AudioFunctions adopts additional sounds to represent

function features like, for example, local minimum and maximum, concavity and intersection

with the origin. The experimental evaluation conducted with 7 users shows that AudioFunctions

makes it possible to obtain a much better understanding of the the function graph than existing

software solutions. AudioFunctions allows the users to have a better understanding also when

compared to tactile paper. This was not expected, as the users only trained with AudioFunctions

for a few minutes, while they were all acquainted with mathematical exercises on tactile paper.

While the aim of AudioFunctions was to explore different interaction paradigms, as a future

work we intend to focus on the sonification technique, to compare different solutions and identify

the one that best suites each exploration mode. In particular, a sonification technique to sonify

multiple values at the same time should be investigated. We also plan to engineer AudioFunctions

and distribute it on the AppleStore. This would allow a large distribution of the app, which in

turn can have positive effects on future research. Indeed, by remotely collecting usage data, it

could be possible to evaluate the solution with a much larger number of users, possibly in the

order of hundreds or thousands.

13https://itunes.apple.com/us/app/math-melodies/id713705958?mt=8
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Experience made with MathMelodies and AudioFunctions inspired us to investigate more gen-

eral approaches to enable access to images and, in particular, to binary drawings. We deliver on

this objective in our third solution, Invisible Puzzle. Indeed, Invisible Puzzle introduces three

main contributions to the state of the art. The first contribution consists of six novel sonification

modes. A single sonification mode is based on a bi-dimensional exploration paradigm adopting

an approach similar to the “bi-dimensional interactive” one described in Section 6.2.2. The re-

maining five modes adopt a mono dimensional exploration paradigm similar to the technique

proposed by Dallas [22]. However, our paradigm extends the previous solution on two aspects.

First, it adopts a probing approach instead of a scanning approach, making users choose the

portion of image to be sonified. Second, it sonifies image features along a horizontal line instead

that on a vertical line, adopting sound spatialization and sound equalization filtering to repre-

sent the horizontal position of (possibly) multiple image features at the same time. Another

difference between Invisible Puzzle and existing solutions is that new types of sound generators

are evaluated. Invisible Puzzle implements a sound generator based on pure tones similar to

what is implemented in other contributions [22, 60, 94], but also a sound generator based on

pink noise and one adopting music files.

A second contribution is a methodology to compare sonification modes addressing two main

challenges: to enable the quantitative comparison of sonification modes and to automate the

provision of tests in order to conduct a large number of tests with limited supervision effort.

The third contribution is a mobile application adopting the illustrated methodology to evaluate

the novel sonification modes. The application has been used to perform tests with about 200 users

(49 blind) and the statistical analysis of the automatically collected data highlighted statistically

significant differences between the performance of different sonification modes.

Invisible Puzzle can be extended along a number of directions. First, it could be possible to

adopt more sophisticated techniques to evaluate how clearly a subject identifies a figure. With

the current version of Invisible Puzzle subjects explore a figure and then have to identify it

among a set of alternatives. An different solution consists in asking the user to first explore a

hidden image and then to redraw it on the device. The drawn shape can then be automatically

compared to the hidden one. We believe that this solution, possibly coupled with the already

adopted multiple choice question, could give more insights on the actual user’s understanding of

the image.

Another possible improvement consists in evaluating to which extent more complicated images

can be perceived. This also include the use of grayscale images and, by designing new sonification

modes, color images. While in theory the three solutions based on 1-D FF can be already used on

real-world grayscale images, their effectiveness for this kind of application needs to be carefully

evaluated.

As a future work we also intend to take into account the impact of ambient noise on the per-

formances. Indeed, while our study was conducted in environments with low ambient noise, we

cannot exclude that this factor could have an impact. This consideration is even more important

if we consider the public version of Invisible Puzzle that can be used anywhere.
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Finally, we intend to introduce additional features to make exploration more interactive, like the

possibility to zoom in and out in the image or the separation of the image into layers, so that

each layer can be explored separately from the others.

Solutions presented in this chapter highlighted a common issue: conducting user evaluations

required an overwhelming effort. For example, a large amount of time was devoted in finding

people with VIB willing to take part in the evaluation and in reaching them to administer the

test. This issue has been partially addressed in Invisible Puzzle, where provisioning of tests is

simplified by automatically providing training, administering tests and collecting usage data.

However, the problem of identifying and reaching test subjects is left to be solved. A solution

to address this issue is presented in the next chapter.
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Chapter 7

Large Scale Evaluation

In previous chapters we introduced several Mobile Assistive technologies to support people with

VIB. The design of these technological solutions is typically guided by supervised experiments

with few participants, such as formative studies [90], Wizard-of-Oz experiments [15], and evalua-

tion studies [59]. These approaches may be attractive for the advantages they offer. Researchers

can conduct experiments with prototype applications, or in some cases, even prototypes without

working software. They can also conduct such experiments in controlled situations and with

users whose characteristics (e.g., form of disability, age) are known in advance. However, these

approaches are also limited in many ways. First, it is not possible to explore many real world

scenarios. Second, these studies generally involve participants that live in close proximity to the

physical location where the experiment is conducted, leading to the possibility of cultural bias.

Third, these experiments are susceptible to the Hawthorne effect [2], where users may act differ-

ently when they know they are being watched. Finally, and most important, these approaches

are not scalable both in terms of number of involved subjects and length of the study, as stressed

in previous research [31].

In this chapter we present how we adopted an evaluation methodology typical of HCI research

to address these issues. The idea is to collect real world usage data from assistive applications

published on the App Store. Collected data is then analyzed both with inferential and exploratory

methods using statistical tools, in order to identify usage properties of the application like, for

example, commonly used functions and preferences for applications settings. In the following

we introduce the remote data collection system we developed for the task and the evaluation

methodology adopted to evaluate a well known MAT: iMove.

7.1 Remote data collection

In order to collect usage data from applications published on mobile app stores we developed a

remote logging system called Icarus. The system is made of three components: a client library

that can be easily integrated in iOS applications, a REST server and a non-relational database

back-end (see Figure 7.1).
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ServicesUsage data

Cloud

Mobile device

Figure 7.1: Architecture of the Icarus remote logging system.

The client library has methods to support sending data to the remote server, allowing the

programmer to log any data structure that can be represented through JSON1, a popular data-

interchange format. The library tolerates a faulty network connection and automatically caches

unsent data, scheduling it for future delivery. The library also has the added functionality

of collecting and sending data about exceptions, events that disrupt the normal flow of the

program’s instructions and may crash an application. This functionality is particularly useful

to debug application errors that may be hard to produce in the local testing environment of the

programmer like, for example, errors due to different languages or localizations.

Data is collected in compliance with European regulations on data protection2 and logs are

recorded in anonymized form. Each log includes a unique pseudo-identifier associated with an

anonymized user. A pseudo-identifier univocally identifies a pair 〈 anonymized user, mobile

application 〉, and is generated the first time a mobile application adopting Icarus is launched on

the user’s device. It is important to note that the pseudo-identifier contains no information that

could be used to discover the user’s identity. Pseudo-identifiers are used to filter logs in order to

find those originated by the same user of an application and reconstruct interaction history.

Each log record has two main components. The first component is automatically populated by

the library and contains data about the user and the device on which the application is running:

the user’s pseudo-identifier, the device model, the system language, whether VoiceOver is enabled

or not, the application version and log creation timestamps in the user’s time zone and UTC.

The second component contains custom data specified by the programmer. Figure 7.2 shows a

log record collected by the Icarus library.

The REST server has two main functionalities: it serves as a front-end to the non-relational

database and provides an extensible architecture to allow the definition of “services”, programs

that can perform queries on the database and return data to applications. For example, we

developed a service to perform aggregation queries on the database and return data for a real-

time dashboard showing statistics about Invisible Puzzle.

1http://www.json.org
2Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection

of individuals with regard to the processing of personal data and on the free movement of such data, OJ L 281,
23.11.1995, 31-50.
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{
"_id" : ObjectId ("5728 b94cf4adc31c0585c06e "),
"appdata" : {

"uuid" : "CBFF5BDF -42B0 -4FF8 -9374 -1 F6FCAD428E8",
"voiceover" : true ,
"device" : "iPhone8 ,2",
"lang" : "en -US",
"appname" : "Invisible Puzzle",
"appversion" : "43"

},
"timestamp" : {

"utc" : ISODate ("2016 -05 -03 T14 :45:01.014+0000") ,
"user" : ISODate ("2016 -05 -03 T09 :45:01.014+0000")

},
"debug" : false ,
"userdata" : {

"challenge" : NumberInt (2),
"event" : "exploration",
"level" : {

"id" : "01C",
"attempt" : NumberInt (8)

},
"time_exploration" : 13.52493405342102 ,
"headphones" : true ,
"available_sonifications" : [

"INTERSECT_PURE"
],
"sonification" : "INTERSECT_PURE"

}
}

Figure 7.2: Example of a log record collected by Invisible Puzzle.

Finally, we adopt the MongoDB3 non-relational database to store log records. We chose this

solution because MongoDB is a document-oriented database that does not require to specify a

fixed schema. The structure of our log records is different between applications and even records

from the same application may change structure over time. The absence of a fixed schema

allows the system to adapt to log structure modifications with no human intervention either on

the server or database. An additional motivation for the adoption of MongoDB is its ability to

scale and to perform distributed data aggregation tasks.

We integrated Icarus in mobile applications published by EveryWare Technologies4, a spin-off

company of the University of Milan founded by members of our research group. Particularly,

LightDetector, iMove, Invisible Puzzle and MathMelodies5. The library has been gradually

integrated, starting with iMove, from December 2015 and collects a monthly average of about

200.000 log records from 4.300 distinct users.

7.2 Evaluating iMove

iMove is an iOS application that is accessible through the VoiceOver screen reader and magnifier.

The app informs users about outdoor geo-referenced information such as current address, nearby

Points Of Interest (POIs), and geo-notes i.e., user-defined notes associated to a geographical

location. Users can access this information either explicitly, e.g., ask for current address in the

root screen (Fig. 7.3(a)) and list of nearby POIs (Fig. 7.3(b)), or periodically while in motion

3https://www.mongodb.com/
4http://www.everywaretechnologies.com
5 LightDetector : https://itunes.apple.com/us/app/light-detector/id420929143
iMove: https://itunes.apple.com/us/app/imove/id593874954
MathMelodies: https://itunes.apple.com/us/app/math-melodies/id713705958
Invisible Puzzle: https://itunes.apple.com/us/app/the-invisible-puzzle/id1051337548
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by turning on the “Notify me” toggle button in the root screen. The frequency of such periodic

updates can be tuned both in terms of time and proximity (i.e., a minimum temporal/spatial

distance between two readings). Geo-notes can be created and edited as audio recordings or text

entries (Fig. 7.3(c)) and they are organized into “routes” (Fig. 7.3(d)).

(a) Root screen. (b) POI screen. (c) Edit text-note screen. (d) Route selection screen.

Figure 7.3: Main screens of the iMove application.

iMove is designed to be highly customizable: users can specify the categories of POIs they are

interested in, activate automatic readings of surrounding information, and modify settings related

to system verbosity. Therefore, beyond user visited screens, actions, and received notification,

we also collect data related to their settings modifications.

7.2.1 Dataset overview

Since iMove version 2.0, released on December 8, 2015, the application implements the Icarus

remote logging system we introduced in Section 7.1 that makes it possible to collect anonymous

app usage information. In iMove, we partition log entries into four different categories of usage

data:

Screen logs capture user navigation between iMove screens. Each screen log records the screen

name and an “enter” or “exit” label when a user enters or exits a screen.

Action logs record iMove function activation by a user such as recording a new speech note.

Notification logs are generated when the application automatically provides information to the

user (e.g. when the user gets close to a POI).

Preference logs are generated every time a user changes iMove settings. A preference log lists

the name of the modified parameter, its old value, and its new value.

The iMove dataset was collected during the December 2015 - April 2016 period and contains a

total of 771, 975 log records across 17, 624 unique user pseudo-identifiers (µ = 43.8, σ = 105.15)
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log records per user with range 1 - 7,299. A detailed description of the released dataset is

available online6.

From the feedback we received by email and on the appstore, we realized that a number of users,

who we call “incidental” users, installed the application without realizing its functionality and

its intended use for people with visual impairments. For example, some users confused iMove

with iMovie, a popular application for video editing.

To filter out these users, we introduce the concept of “interaction session” (or simply, session):

a period of time during which a user frequently interacts with the application (e.g., navigates

in the screens, performs actions or receives system notifications). A session is extracted from

app usage data as a sequence of consecutive log entries such that: i) the sequence begins with a

“screenRootEnter” record, which signals that the user opened the main screen of the application,

and ii) there is at least a 5 minutes gap between the session starting log and the previous log.

This constraint captures the intuition that the user might temporarily exit the app for a short

time within an interaction session.

Based on the intuition that users who are uninterested in iMove would not use it for more than

one session, we consider only users having two or more sessions. There are a total of 4, 055 such

users generating a total of 255, 004 logs (µ = 62.89, σ = 211.51 logs/user with range 2-7,296).

7.2.2 Use properties across all users

We analyze log records from all 4, 055 users with the goal of highlighting iMove use properties

such as commonly used functions and user preferred values for interaction parameters. Using

both inferential and exploratory methods we examine four categories of log records: preferences,

screen activity, actions, and notifications.

One interesting aspect of iMove is the support of user-defined geo-notes, where users can either

record a speech note associated with a location or type it as text. While both options are

available, we expect that the former will be the one adopted by the users since the purpose of

the app is to support mobility and it is has been observed that typing in mobility is particularly

challenging for people with visual impairments [58]. Specifically, we formulate and examine the

following hypothesis:

H1: iMove users will favor speech over text for input modality when creating geo-notes.

Results and interpretation

Preference logs account for 3.41% of the total log records. Figure 7.4 reports, for each prefer-

ence setting, its default value and how many times it has been set to a given value. We observe

that the parameter “keepUserInformed”, which toggles all notifications, was changed far more

frequently. This interaction was expected by our intuition that users will frequently toggle off

when they do not want to be disturbed by notifications. Anticipating such an interaction during

the design of iMove, we positioned the toggle button in the root screen (see Figure 7.3(a)).

6http://webmind.di.unimi.it/assetsim16/
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Figure 7.4: Number of preference records generated from the subset of users that modified
the default values. Colored circles indicate preferences’ default values, while the percentages
represent how many users changed the value at least once, among those who visited the

corresponding settings screen.

Indeed, 22.2% of the users changed this value twice or more, while 20.9% of the users changed

it more than once for at least one session.

We also explore log records for other parameters, whose semantics are detailed online7, to assess

the default values provided by iMove. This analysis cannot take into account only the values

changed by the users. Since all logged changes necessarily involve modification of default values,

the logged data does not inform us of how many users intentionally choose to stick with the

default value for a given parameter. To estimate this, we compute, for each parameter, the

percentage of users that changed the parameter value at least once, among the users that actually

visited that parameter’s settings screen (values are reported in Figure 7.4).

For example, only 4% of the users who entered the “Settings location” screen actually changed

the value of the “locationSpatialThreshold” parameter. On the other hand, 22% of the users

who entered the System settings page changed the “prevent screen lock” option that by default

is set to false. Similarly, 23% of the users changed the preference “sayCity” and more than 16%

of the users changed the “saySpeed”, “sayHeading” and “sayCourse”. These are parameters

whose default values are candidates for change in future versions of the app. More generally, we

observe the four parameters above are all related to the type of information provided to the user

7iMove parameter semantics is detailed in http://webmind.di.unimi.it/assetsim16/#param_semantics.
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Figure 7.5: User log records distributed across the screens, actions, and notifications logs.

when a location notification occurs. To avoid verbosity in the application, we limited location

notifications to the name and number of the street by default. Apparently, many users prefer to

have more detailed information.

Screen, Notification, and Action logs account for 66.23%, 29.55%, and 0.76% of the total

255, 004 log records, respectively. Figure 7.5 illustrates the distribution of these records across the

subsequent categories. We observe that “Location” is the most common notification followed by

“POI” and the two geo-notes. Interestingly, the “NavigateToPOI” function, suggested by many

users and introduced with app build 31, is the most frequent user action. Geo-notes notifications

(“SpeechNote” and “TextNote”) are less frequent than “Location” and “POI” notifications,

accounting for 3% of the total notifications. This is due to the fact that 83% of the users never

created a geo-note. Among users creating a geo-note, the percentage of geo-note notifications is

10% of the total notifications.

Figure 7.6 shows the distributions of per-user screen, action, and notification logs related to

speech and text geo-notes (box indicates quartiles, center-line indicates median, square symbol

indicates mean, whiskers indicate 1.5 inter-quartile ranges, and crosses indicate outliers). In

support of hypothesis H1, there is a significant difference between the pairs of these graphs de-

termined by Mann-Whitney U test. Specifically, users visit the “NewSpeechNote” screen signif-

icantly more times than the “NewTextNote” screen (p < 0.001) and perform significantly more
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Figure 7.6: Distribution of log records highlighting differences between speech and text
geo-notes logs.

“SavedNewSpeechNote” actions than “SavedNewTextNote” actions (p < 0.05). Not surpris-

ingly, users receive significanlty more “SpeechNote” notifications than “TextNote” notifications

(p < 0.05).

7.2.3 Voiceover-based user comparison

As mentioned in Section 7.1 for each log record we collect the VoiceOver field, which reports

whether VoiceOver was active when the record was generated. This field is particularly rele-

vant for our analysis as it allows us to distinguish users that are likely to have severe visual

impairments. Therefore, we partitioned the iMove users into two groups: VO-group users (VO-

users) have at least one VoiceOver-active record and NVO-group users (NVO-users), have no

VoiceOver-active records.

We formulate and examine the following hypotheses:

H2: VO-users will have different settings preferences than NVO-users.

H3: VO-users will make more intense use of iMove as measured by the number of actions and

notifications as well as the span of days using the app.

Results and interpretation

The VO-group consists of 1, 025 users whereas the NVO-group includes the rest 3, 030 users. We

observe that while VO-group includes a smaller percentage of the overall iMove users (25.28%),

the number of records generated by this group accounts for more than half of the logs (56.34%)

along with a higher mean records per user (µ = 140.16, σ = 403.91) than the NVO-group

(µ = 36.74, σ = 45.05). We also observe a small positive correlation in our dataset between the

number of records for a user and the percentage of records with VoiceOver activated for the same

user.

Users in VO-group generated logs with a high mean percentage of active-VoiceOver records

(1%−100%, µ = 95.26%, σ = 16.6%). This suggests that, while by definition a user in VO-group

can only have one record with VoiceOver-active, in practice users in VO-group have VoiceOver

activated almost all the time during use of iMove. We suspect that users in VO-group are mostly

people with severe visual impairments and a few users with low vision that sporadically activate
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Figure 7.7: Preference log records across users in VO-group and NVO-group.
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Figure 7.8: Differences between users in VO-group and NVO-group.

VoiceOver while users in NVO-group either use magnifier in their interaction with the app or

are non visually impaired (“incidental” users, see Section 7.2.1).

Figure 7.7 illustrates side-by-side the distribution of threshold preference from both groups.

In support of hypothesis H2, we find that users in VO-group set smaller temporal and spa-

tial threshold values determined by Mann-Whitney U test (p < 0.05). Even though different

threshold parameters have different semantics, smaller temporal values result in more frequent

notifications, while smaller spatial values for “PoiProximity” and “GeoNoteProximity” indicate

preference for notification only in close proximity to the target place (POI or geo-note). These

findings suggest that users in VO-group prefer to receive information more frequently than users

in NVO-group and only in close proximity to the target.

To examine hypothesis H3, we consider the number of notifications and actions, as well as the pe-

riod of iMove use per user in each group and compare their mean ranks with the Mann-Whitney

U test. In support of hypothesis H3, we find that users in VO-group receive significantly more

notifications (p < 0.001) such as the “Location” notifications shown in Figure 7.8(a)). Similarly,

users in VO-group perform significantly more actions (p < 0.001), for example Figure 7.8(b)

shows how the number of times a VO-user asks for directions to navigate to a POI is signifi-

cantly higher than for a NVO-user. Users in VO-group use the application for a significantly

longer period than the NVO-users (p < 0.0001), where the period of use is measured as the span

of days between the first and last time a user enters the iMove root screen. On average, this

duration is of 53.95 days for users in VO-group and of 20.45 days for users in NVO-group (as

shown in Figure 7.8(c)).

7.2.4 User clustering based on istreams

While the exploratory and inferential analyses in the previous sections reveal interesting patterns,

they do not take into account the sequential relationship between the log entries. In order to

learn richer patterns of interaction, we use unsupervised learning techniques on record streams,

which preserve the temporal structure of the data. We anticipate that users naturally fall into
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Figure 7.9: Mapping interaction streams to n-grams.

clusters based on common interaction patterns with iMove. The automatic discovery of these

clusters can help us identify: what are the major interaction categories; which is the most

prevalent interaction; and what is the relationship between different types of interactions. This

clustering is performed on the 1, 025 users residing in VO-group, who are likely to have severe

visual impairments and, as shown above, make intensive use of the application.

HCI researchers have adopted prior work in machine learning, natural language processing and

network analysis, to better understand user behavior, with the social network analysis performed

by Wang et al. [88] being the closest to our work. Our methodology builds upon previous

methods to understand and support assistive orientation of people with visual impairment. One

of the inherent challenges in analyzing our data is that users can interact with the app either by

actively navigating the screens and using their functions, captured by screen and action logs, or

by physically changing their location thus generating notifications logs. We introduce the notion

of sessions (defined in Section 7.2.1) into our feature engineering (described below) to yield more

intuitive and high level descriptions for the discovered clusters.

Specifically, we represent each user by the stream of interactions (istream) with the app. We map

users to a feature space extracted from these streams, construct a similarity graph by comparing

users in this feature space, and identify clusters of similar users by graph partitioning. Finally,

we interpret the meaning of the clusters by isolating primary features that are responsible for

forming the clusters. To assist future researchers in adopting this methodology for analysis of

their data, we describe the above steps, implementation, assumptions, and the hyper-parameters

used in our clustering.

Obtaining user istream. We define an istream as a sequence of interactions between the user

and iMove, extracted from user’s log records ordered by timestamp. It captures both the type

of the log entry (i.e. screen, action, or notification) and the magnitude of time gaps between

two consecutive log entries. Precise time gap values are omitted if the log entries belong to the

same session (defined in Section 7.2.1) and are represented by the symbol “—” if they denote

session boundaries. Figure 7.9 illustrates an example of this approach for obtaining a discrete

user istream.

Mapping users to an intuitive feature space. We treat istreams as text sentences and

adopt n-gram-based text representation, a common practice in natural language processing. We

consider three classes of records: screen enters, actions and notifications. Each of these three

classes is defined as a set of atomic strings, which are dented by As (screen enters), Aa (actions),

and An (notifications). For example, the string “s-Root” ∈ As represents an entrance in the root

screen; “a-navigateToPOI” ∈ Aa represents the action of getting the navigation instructions to

a POI; and “n-Location” ∈ An represents the location notification. We define an istream as

126



(s-POI_list, n-Location, s-POI_details, s-POI_list, n-Location) 0.013078 0.001167

feature space normalized frequency

(s-Root, |, s-Root, |, s-Root) 0.002553 0.073674

(n-Location, n-Location, n-Location, n-Location, n-Location) 0.000192 0.046369

in cluster not in cluster

normalized frequency
in cluster not in cluster

normalized frequency
in cluster not in cluster

normalized frequency
in cluster not in cluster

c1 Check list and details of nearby POIs(370   ):

(|, s-Root, n-Location, |, s-Root) 0.024224 0.001708

feature space

(n-Location, |, s-Root, n-Location, |) 0.036877 0.001331

(|, s-Root, n-POI, n-Location, |) 0.023818 0.001058

c4 Short sessions with few notifications(154   ):

(n-Location, n-POI, n-Location, n-Location, n-Location) 0.021846 0.000411

feature space

(n-POI, n-Location, n-Location, n-Location, n-Location) 0.016155 0.000411

(n-Location, n-Location, n-Location, n-Location, n-Location) 0.175919 0.000615

c2 Long sessions of location and POI notifications(247   ):

(s-Root, |, s-Root, |, s-Root) 0.222907 0.001778

feature space

(|, s-Root, |, s-Root, |) 0.186638 0.000567

(n-Location, n-Location, n-Location, n-Location, n-Location) 0.000361 0.056407

c3 Very short sessions of only Root screen entrances(215   ):

Figure 7.10: Clustering results highlighting the four main identified clusters.

a sequence S = (s1s2...sm), where s ∈ As ∪ Aa ∪ An ∪ {|} and m is the total length of the

istream. We define Fn as the set of all possible n-grams (n consecutive elements) from all the

users’ istream sequences: Fn = n-gram(S1) ∪ n-gram(S2) ∪ ... ∪ n-gram(S#users). For each user

istream we calculate the normalized frequencies of the n-grams in Fn. We experimented with

different values of n in the n-gram and chose 5-grams for our analysis, though 4-grams and

3-grams reveal similar clusters. As discussed by Wang et al. [88], intuitively, a larger value of

n for the n-gram captures longer subsequences that are unlikely to repeat as a pattern in the

istream. For the above calculations we use the NLTK platform [13].

Constructing a similarity graph. We create a fully connected graph where each node repre-

sents a user and each edge between a pair of users represents the weight based on their pairwise

similarity score. To calculate the similarity score between two users, we compute the cosine

similarity of their n-gram feature vectors using scikit-learn [68].

Clustering and identifying primary features. We partition the graph into clusters of similar

users with community detection using the Louvain method8 [14]. To interpret cluster meaning,

we isolate the primary features responsible for a cluster by performing feature selection based

on Chi-square statistics (χ2) [92]. For each cluster, we build a classifier that distinguishes users

belonging to that cluster from the remaining users. Then we select the top k features with the

highest discriminating power in separating the two classes using the “SelectKBest” method from

scikit-learn [68].

Results and interpretation

The clustering procedure generates 9 clusters with a modularity of 0.47, where modularity [63]

is a widely-used metric to assess the quality of a graph’s partition into communities. Loosely

speaking, it measures the density of edges inside clusters to edges outside clusters with values in

the [−1, 1] range, where a higher value indicates better clustering. Five of the detected clusters

contain a total of 6 outlier users which we omit from the following discussion, hence focusing on

four clusters with many users. Figure 7.10 visualizes the resulting clusters and the top 3 features

with the highest discriminating power per cluster.

The first cluster (C1) contains 370 users. From the 5 primary features: two indicate that short

sessions, in which the user simply opens the application without further interaction, appear

with lower normalized frequency for users in C1 than those outside C1; one indicates that long

sessions with many consecutive location notifications appear with low frequency as well; last, the

remaining two primary features indicate that sessions in which the user navigates iMove screens

8Library: http://perso.crans.org/aynaud/communities
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(a) Sessions length (minutes). (b) Number of sessions. (c) Ratio of s-POIdetails records.

Figure 7.11: Analysis of the four clusters.

with the list of POIs and their details have higher frequency for users in C1 than the rest. We

can infer that users in this cluster often open the application to check the list of nearby POIs

and their details.

The second clusters (C2) contains 247 users. From the 5 top features characterizing this cluster,

three indicate high frequency of location and POI notification sequences in a single session for

users in C2; and the remaining two primary features indicate low frequency of “empty” sessions,

e.g., “— screenRootEnter — screenRootEnter —”. These features suggest that C2 is a set of

users running the application for long sessions during which they frequently receive many location

and POI notifications.

The third cluster (C3) contains 198 users. In this case four of the 5 primary features denote

high frequencies of short “empty” sessions; and feature points to lower frequency of consecutive

location notifications within the same sessions for users in C3 than outside C3. These features

suggest that C3 contains users that start the application, do not wait for any notification, and

then close the application. We speculate C3 users often open iMove simply to read (though

VoiceOver) the current address.

The fourth cluster (C4) contains 154 users. All 5 primary features have high frequencies of short

sessions with some location and POI notifications. Our interpretation is that these users start

iMove and listen to one or two notifications without any further interactions.

To get a confirmation of the semantics we associate to each cluster, and to further study these

clusters, we analyze user characteristics across clusters. We consider the average session length

per user, computed as the distance between the timestamps of the last and first records in each

session. As shown in Figure 7.11(a), users in C2 have longer sessions than other users. This

supports our earlier interpretation based on the primary features. Figure 7.11(b) shows that

users in C2 also have a higher number of sessions, followed by users in C3 and C4. We can

interpret this observation in two ways. First, given the particular use of the app (keeping iMove

active while moving), users in C2 tend to use it more frequently (e.g., every day, commuting to

work). A second interpretation is that more experienced users of iMove tend to use it for longer

sessions and hence belong to C2. Distinguishing these two cases requires additional analysis that

we leave as future work. Last, Figure 7.11(c) shows that C1 users have a higher rate of records

corresponding to POI details screen enters. This is in support of the primary features extracted

for this cluster, identifying C1 as a user group with an higher frequency of sessions that explore

POI-related screens.
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7.2.5 Discussion

This section presents an analysis of users interactions with iMove, a mobile app that supports

the orientation of people with visual impairment. The initial dataset contains more than 17, 000

users, many of which are “incidental” users, not really interested in the functions of the app. To

filter these users out, we adopted a session-based heuristic that eliminates 77% of the users and

67% of the log records.

The data analysis performed on about 4, 000 remaining users highlights a number of iMove use

properties, including commonly used functions and users’ preferred values for settings parame-

ters. In summary:

• While initial iMove settings favored sporadic and brief notifications, we observed that users,

in particular those with severe visual impairments, prefer to have frequent and detailed

information about the current location, which should include city, speed, heading and

course.

• Applications similar to iMove are recommended to activate the “prevent screen lock” option

by default.

• iMove users favored speech over text for input when creating notes associated to geograph-

ical locations.

• We observed that points of interest (POIs) were important in iMove functionality. Many

users checked the list of nearby POIs (the third most visited screen) and the most popular

action was navigating to a POI.

• VoiceOver users (VO-users) received more notifications, made intensive use of core iMove

functions, and used the app for longer periods than other users. While iMove was designed

with blind users in mind, the observed differences with non-VoiceOver users, possibly

including people with low vision, raises concerns about the app design in support of this

population.

iMove was designed with a main user target in mind: people with VIB that would keep the app

active along a route to get notifications. By clustering about 1, 000 iMove VO-users based on

common interaction patterns, our user target base was successfully identified from one of the

major clusters (C2), which contained 25% of the VO-users. In addition, our clustering method

was able to capture and provide semantics for the remaining 75% of the VO-users with three

more clusters; indicating those users who interact with the app in short sessions. We speculate

that users in those clusters avoid interacting with the app while moving, because they do not

want to be distracted or do not feel comfortable walking while holding their smartphone. Hence,

they use the app in short bursts when they feel comfortable.

The identification of additional user clusters, other than C2, can help improve iMove by designing

new interaction patterns and functions that support these usage patterns. For example, since

many users (those in C1) often open the app to check nearby POIs, it may be possible to

optionally show the list of POIs in the first app screen. Similarly, we speculate that users in C1

often open the app to check the current address and then close it. To support these operations,
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researchers could investigate different interaction modalities like an accelerometer-based interface

to determine when the user wants to read the current address while the device is in the user’s

pocket.

This contribution highlights a number of possible future works. First, the analysis was conducted

from data collected in a period of four months during which iMove has been downloaded on

average more than 4, 000 times a month. We expect the number of users to grow linearly with

time so that, in a few months, it will be possible to conduct the same analysis on a larger set

of users and adopt hierarchical clustering that can potentially refine our higher-level clusters

into more descriptive sub-clusters. On the other hand, collecting data for a longer period will

enable better analysis of a user’s learning curve and evolution of interactions over time, possibly

characterizing the behavior of novice users with respect to experienced ones.

In the future it will also be possible to collect additional types of log data. For example, while

it is not possible to collect users’ location or user-defined geo-notes due to privacy concerns, it

may be possible to collect additional context-related information, like users’ speed and whether

users are walking or traveling on a bus/car.

Also, understanding of the application may be improved by collecting qualitative data from

users. Currently, users can provide feedback by using the “contact the developer” functionality

implemented in the “about” screen, which redirects to a pre-compiled email message. We also

noticed that users provide valuable feedback in App Store reviews like, for example:

• Great app. However, can you add support for different measurements such as yards and ft

for the us? Also want turn by turn directions.

• i’v tested this app on a number of routes i frequently use and have found it to be extremely

useful. the app works well when used in conjunction with other GPS apps such as Navigon.

menus work well with Voiceover and speech notes work as expected. one feature I would

like to see added and would certainly find useful is the option of backing up speech notes to

Icloud, offering the option of deleting old notes would also be beneficial. thanks, Paul.

An issue of this approach to feedback collection is that there is no way to associate each feedback

with the pseudo-identifier of the user who originated it, hence preventing the reconstruction of

her interaction history. As a future work, we should investigate a way to allow the collection of

qualitative feedback from within the application.

From the point of view of users’ clustering, there are three directions along which we intend to

extend this contribution. First, we want to explore hierarchical clusters and dimensionality re-

duction approaches that can further improve our clustering quality and preserve an interpretable

feature space. Second, we intend to investigate the link between preferences for user settings

and the automatically detected user clusters. Third, we intend to experiment with clustering

techniques for effectively identifying “incidental users” so that it is possible to remove them more

reliably.

We see the results, methods, and data provided in this section to improve existing applications,

provide guidance, and advance the state of art in the field of assistive orientation and naviga-

tion – ultimately leading to a better experience of independent mobility for people with visual

impairment.
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7.3 Summary and future directions

In this chapter we present two contributions. First, we illustrate Icarus, a remote logging system

that has been developed to enable the collection of large scale usage data from mobile applica-

tions. The system has been integrated in some assistive solutions, presented in this dissertation,

that have been engineered by EveryWare Technologies and published on mobile app stores.

These applications are providing a large amount of usage data from real world users.

It is worth noting that there are contributions in HCI literature that adopt an opposite approach

with respect to what is presented in this chapter: to use cognitive models to generate simulated

user interactions. CogTool [41] is a software to automate the evaluation of user interfaces by

predicting execution times for particular sequences of actions using a human cognitive model.

Indeed, the approach based on Icarus has two main advantages over CogTool. First, Icarus

collects usage data that better represent the target population of users with VIB as, to the

best of our knowledge, the cognitive model adopted by CogTool does not simulate interaction

from subjects with VIB. Second, Icarus collects usage data originating from real world usage

scenarios that could provide useful insights about the context of use of the application. As a

future work, interaction with iMove should be analyzed with CogTool and the results of such

analysis compared with those obtained with our approach.

The second contribution presented in this chapter is the analysis of usage data collected from the

iMove application. The analysis, performed on data originated by about 4000 users, highlighted

three main aspects. First, it highlighted a number of usage properties of iMove, like the preferred

value of some settings. These values can be used to update the default settings in future releases

of the application. Second, it allowed to identify the list of the most popular functionalities of

the application. Such list may be adopted to drive further development of the application or to

identify basic functionalities that should also be introduced in other applications. Third, users

have been clustered depending on their usage habits. By observing the distinctive features of

the clusters it is possible to understand the typical usage scenarios for each cluster.

Research presented in this chapter inspires many future works. As a large amount of usage

data is being collected by the Icarus system, new data analysis will be required to reach the

following goals: first, to highlight new insights on existing MATs; second, to evaluate novel

research ideas implemented as MATs; third, to inspire future accessibility research. Also, new

analysis techniques should be investigated to allow a better understanding of the collected data.

For example, techniques based on hierarchical clustering and machine learning.

Finally, in order to collect qualitative feedback from users, a new functionality should be added

to the Icarus system to occasionally present questions to the user while an application is being

used. For example, users may be asked to answer questions about the usability of a specific

functionality. Also, quantitative data already known to the library may be used to target ques-

tions to specific users. An example is to inquire subjects who often use a particular functionality

about possible changes to be introduced.
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Chapter 8

Conclusions

Mobile devices are multipurpose tools that, thanks to innovative features like the presence of

onboard sensors (e.g. GPS, accelerometers), cameras, an ubiquitous internet connection and

enough computing power, can be used for a large variety of tasks. For example, they can be

used to make and receive calls, surf the web, listen to music, navigate unknown environments

and play games. The source of this multipurpose nature is the ability to install applications

developed by third party developers that extend the device’s capabilities.

Mobile devices and, particularly, smartphones are accessible to people with VIB and, by de-

veloping applications implementing MATs, they can be used to support people with VIB in

many daily activities. Indeed, a person with VIB often relies on support devices. For example,

the white cane is used to explore a person’s immediate surroundings, light detectors are used

to perceive the amount of light in an environment and tactile drawings enable access to visual

information like maps, function diagrams and charts. However, the traditional approach based

on multiple, single-purpose, support devices has some limitations. For example, devices must

be bought by the user and they may be expensive. Also, they must be carried around and they

may be large and heavy.

Mobile applications implementing MATs, can address these issues and present many advantages

over the traditional approach. First, they can replace multiple tools regularly used by people

with VIB, like the light detector and tactile maps. For example, we have shown in Chapter 6

how a MAT can be used to represent function diagrams, an activity that otherwise poses some

challenges. Second, MATs can be used together with existing tools to augment their possibilities.

For example, in the context of urban navigation, the white cane can be augmented by a MAT

that, adopting computer vision techniques, detects features that are out of the range of the white

cane, like the presence of a crosswalk and the state of pedestrian traffic lights. We addressed

this scenario in Chapter 4 and Chapter 5. Finally, MATs enable new activities that cannot be

performed without relying on mobile devices like, for example, autonomously reading text with

OCR while on the move [20] or crowdsourcing the description of objects [11].

An issue encountered since the early stages of our research is the difficulty in finding test subjects

with visual impairments. This problem may hindrance the results of accessibility research on

two main dimensions. First, evaluations were conducted with a limited amount of subjects,
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not enough to obtain statistically significant results supporting the validity of the proposed

solutions. Second, evaluations may be conducted with samples of the population that may not

be representative of different forms of visual impairment and specific needs of subjects with

different demographics (e.g. the elderly, persons with more than one disability, subjects with

different instruction).

In order to address these issues, we implement an evaluation methodology that performs “in-

strumented remote evaluations” [33], automatically providing all the training required to make

users proficient with a MAT, administering tests and collecting usage data to be analyzed off-line

with statistical methods. The success of evaluations conducted with this methodology depends

on the amount of test subjects involved. For example, we used the methodology to conduct the

evaluation of Invisible Puzzle (see Section 6.3.6) with 227 subjects (49 with visual impairments).

While the amount of subjects involved in the evaluation of Invisible Puzzle is larger than that

of other MATs like AudioFunctions, it is still limited when compared to evaluations conducted

for traditional applications [69]. The main reason behind this limitation is that Invisible Puzzle

still requires to have a test supervisor that identifies and meet candidates and oversees the test.

We propose to broaden the audience that takes part in our evaluations by collecting usage data

from applications available to the general public through the App Store. Delivering on this

objective poses several challenges. First, research prototypes must be engineered in order to be

usable in autonomy by general users on their devices. This effort has a cost that often can not

be sustained by research laboratories within universities. Second, users must be engaged by the

application and willing to use it over time. This goal can be achieved by including game elements

that entertain users and push them in pursuing a challenge of increasing difficulty. Third, the

community of person with VIB must be aware of the existence of the application and willing to

download (eventually purchase) and use it.

We address these challenges by collaborating with EveryWare Technologies (EWT)1, a spin-off

company of the University of Milan founded by members of our research group. Through EWT

we engineer our research prototypes, sustaining the involved costs mainly through partnerships

with associations for the blind (an example is the iMove application, sponsored by Retina Italia

Onlus2) and crowdfunding campains (we did it for MathMelodies3). Making MATs available

to the general public is still not enough to have a large number of persons use our solutions: a

large effort is devoted to advertise our MATs on accessibility websites or blogs 4 and through

associations. The advantage of this approach is twofold: first, it allows us to reach a large pool

of potential users. Second, feedback received from reviewers and users (collected, for example, in

specialized blogs) complements collected usage data to better evaluate MATs and inspire further

research.

There are many future research directions in the broad field of MATs. We could extend current

research by developing new MATs to address other everyday problems of people with VIB, also

integrating existing solutions. For example, a topic that is currently gaining attention in the

accessibility research community is that of supporting indoor navigation of people with VIB

[5]. Solutions in this field may be integrated with iMove, ZebraX and TL-detector to offer a

1http://www.everywaretechnologies.com
2http://www.retinaitalia.org
3https://www.indiegogo.com/projects/math-melodies
4For example: http://www.applevis.com, https://groups.google.com/forum/#!forum/viphone
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single application to address many issues people with VIB face while navigating in both indoor

and outdoor environments. Another interesting direction consists in adopting machine learning

techniques to allow MATs to derive information about their user and adapt their interaction

modalities and contents to the specific needs of the user.

As a final remark, we highlight that MATs are not useful only for people with VIB: there are many

contributions in accessibility research addressing issues of subjects with different disabilities like,

for example, reduced mobility [18]. Also, solutions based on MATs can be used to address the

challenges posed by Specific Learning Disorders like Dyslexia [71].
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scetti. Towards large scale evaluation of novel sonification techniques for non visual shape

exploration. In Proceedings of the 17th International ACM SIGACCESS Conference on

Computers & Accessibility, ASSETS ’15, pages 13–21, New York, NY, USA, 2015. ACM.

[30] Andrea Gerino, Lorenzo Picinali, Cristian Bernareggi, and Sergio Mascetti. Eyes-free ex-

ploration of shapes with invisible puzzle. In Proceedings of the 17th International ACM

SIGACCESS Conference on Computers & Accessibility, ASSETS ’15, pages 425–426, New

York, NY, USA, 2015. ACM.

[31] Nicholas A. Giudice and Gordon E. Legge. Blind navigation and the role of technology.

Engineering handbook of smart technology for aging, disability, and independence, pages

479–500, 2008.

[32] Dorte Hammershøi and Henrik Møller. Methods for binaural recording and reproduction.

Acta Acustica united with Acustica, 88(3):303–311, 2002.
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