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ABSTRACT
The term analytic continuation emerges in many branches of
Mathematics, Physics, and, more generally, applied Science.
Generally speaking, in many situations, given some amount of
information that could arise from experimental or numerical
measurements, one is interested in extending the domain of
such information, to infer the values of some variables which are
central for the study of a given problem. For example, focusing
on Condensed Matter Physics, state-of-the-art methodologies
to study strongly correlated quantum physical systems are
able to yield accurate estimations of dynamical correlations in
imaginary time. Those functions have to be extended to the
whole complex plane, via analytic continuation, in order to infer
real-time properties of those physical systems. In this review, we
will present the Genetic Inversion via Falsification of Theories
method, which allowed us to compute dynamical properties
of strongly interacting quantum many–body systems with very
high accuracy. Even though the method arose in the realm of
Condensed Matter Physics, it provides a very general framework
to face analytic continuation problems that could emerge in
several areas of applied Science. Here, we provide a pedagogical
review that elucidates the approach we have developed.
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1. Introduction

A very challenging problem emerging in pure and applied Physics, as well as in
many branches of Science, is analytic continuation. Such term arises naturally,
at an abstract level, in the realm of complex analysis, where it is defined as a
technique to extend the domain of a given analytic function, sayF : � ⊂ C→ C.
Strictly speaking, performing analytic continuation means finding an analytic
function F̃ : �̃ ⊂ C → C such that �̃ ⊃ � and F̃(z) = F(z) ∀z ∈ �. In
other words, the key point is to use the information encoded in F(�) to find, or
infer, the values of F on a wider set. In addition, in many important cases, the
knowledge of F(�) itself can be affected by uncertainties, that could arise from
the numerical or experimental determination of the values of the function.

Situationswhere analytic continuation turns out to be useful or even necessary
are present in a very broad range of physical or even more generally scientific
studies, encompassing Quantum Field Theory, Condensed Matter Physics, as
well as image reconstruction and many others.

Awide family of physical applications of analytic continuations originate from
the celebratedWick rotation, a mapping between real time and imaginary time:

F(t)←→ F(− iτ), (1)

whose importance and usefulness is essentially due to mathematical reasons.
For example, in the realm of Quantum Field Theory, the Euclidean space–time
approach provides much more well-behaved and well-defined expressions than
the formulation in Minkowski space–time [1]. The relation between the two
approaches is an analytic continuation problem.

Another central example, which will be the topic of this review, arises in
CondensedMatter physics. In this context, theWick rotation provides amapping
between the quantum mechanical evolution operator and the imaginary-time
propagator, or thermal density matrix:

e−
itĤ
� ←→ e−

τ Ĥ
� , (2)

where Ĥ is the Hamiltonian operator of a quantum system and � is Planck’s
constant. As in Quantum Field Theory, calculations involving the imaginary-
time propagator are generally more well-behaved, and there exist extremely
accurate techniques to compute imaginary-time correlation functions. In partic-
ular, most Quantum Monte Carlo (QMC) methodologies, which nowadays are
crucial for the study of strongly correlated physical systems [2,3], are intrinsically
formulated in imaginary time, and yield estimations of correlation functions
involving the imaginary-timepropagator inEquation (2). It is thus necessary and,
as we will discuss below, very challenging, to perform the analytic continuation
necessary to infer real-time properties.
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Incidentally, wemention another context inwhich analytic continuation turns
out to be extremely useful: the reconstruction of images. Consider, for example,
the phase retrieval problem in coherent diffractive imaging (CDI) [4]. This
technique uses the measured diffraction pattern of a coherent beam scattered
by an object to obtain spatial information. In an experimental far-field intensity
measurement, the diffracted intensity, forweak scattering objects, is proportional
to the modulus of the Fourier Transform of the object scattering function. Any
information on the phase is lost in the far-field measurement, and has to be
retrieved in order to obtain the scattering function; this is usually attained by
means of suitable algorithms. The problemof reconstructing the full information
(modulus and phase) in Fourier space from the limited set of data (partial and
noisy measurement of the modulus) is thus a very important example of analytic
continuation problem.

1.1. Analytic continuation and inverse problems

Before digging further in this field, we find very important to mention that
analytic continuation can be embedded in a much wider family of problems,
that are called inverse problems. In this very general context, the relation between
theories and observations is the central point. Given a theory, we can of course,
at least in principle, predict the results of the observations, this being the direct
problem, but the inverse problem, namely to deduce a theory from observations,
is naturally much more subtle. The key question, in a schematic way, is the
following: when building up a theory, how many answers may we expect from
observations?

Even if, at first sight, this seems to have nothing to do with analytic con-
tinuation, a connection can be foreseen if one considers the imaginary-time
properties as the observations and the real-time properties as the theory. This
interpretation, although somehow artificial, is indeed meaningful in the sense
that, in fact, techniques are available to compute, i.e. to observe, imaginary-
time properties, while, currently, general direct computation in real time is
much harder. Therefore, real-time properties have to be guessed, like a theory
is guessed from observations. Anyway, inverse problems have been well known
since the earliest days of research in Physics and the relation between theory
and experiment is, of course, central in Physics and in Science in general, much
beyond the domain of analytic continuation.

The key question quoted above, in the more specific language of analytic
continuation, sounds as follows: how can we use the observations of the values
of a function F on a given domain, say imaginary time, to infer the function F̃
on a different domain, real time, where we cannot calculate the values directly?
At a first glance, one feels that such an inverse procedure in realistic situations
is unavoidably ill–posed since any set of observations is limited and noisy, thus
ruling out the possibility of finding out one and only one theory, i.e. function,
whose predictions fit such data. In other words, there will exist infinite functions
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F̃ defined inside the complex plane that, when restricted to imaginary-time axis,
will be compatible with the estimated imaginary-time correlation functions.

Many tools havebeendevised to face those ill–posed inverse problems.Roughly
speaking, the approaches can be divided into two highly overlapping families.
Some approachesmodify the problem, via a regularization technique, attempting
to find a well-posed, or less ill-posed, problem. Regularizing the problem means
introducing additional constraints to the problem itself; such constraints very
often rely on euclidean norms and are meant to have a unique solution to the
problem or, at least, to drastically reduce the number of possible solutions [5].
On the other hand, another class of approaches looks for a solution in a statistical
meaning, aiming at maximizing the probability of finding a function F̃, given the
function F which is known [5]. This probability is built up in the realm of a
Bayesian description of the analytic continuation problem. In many situations,
mixed approaches including regularization techniques and statistical approaches
are used.

Our approach relies on a falsification principle which we are now going do
explain in some detail. Following Popper [6], Tarantola [7] put forward the
proposition that observations may only falsify a theory. In order to understand
the far reaching consequences of this proposition, let’s formulate the problem at
an abstract level. Suppose we have measured F(�), through some experimental
or numerical tool. In principle, if we were able to perform an infinite number
of measurements, we would have found a sample of results. It is thus natural to
consider our data, which we will denote by d, as a point in a, possibly huge, set of
all possible outcomes, that is a set of data, say D. On the other hand, we denote
S the set of all the possible theories, i.e. the set of all the candidate solutions. The
inverse problem would sound as follows: may we find a theory s ∈ S predicting
D? That is, can we find s ∈ S which is not falsified by any of the elements of D?
If the answer was positive, of course, that theory would be our solution. This is
an idealized situation, since in a finite time we actually never know D but only
a subset D� ⊂ D whose elements are in general used to give an estimation of
the statistical uncertainties in the observations. Normally an infinite number of
theories exists compatible with D�; it is then clear that we may exclude some
theories but we still remain with a set SD� ⊂ S of equivalent ‘solutions’.

Depending on the mathematical details of the space S , a natural idea appears
to be that of devising a procedure enabling to capture what the theories in SD�

do have in common. In this way, even if we won’t succeed in finding out a unique
theory s ∈ S , we will be able nevertheless to find out a class of features, providing
physical properties, that s has to possess so that it will not be falsified by the
limited set of observations.

In order to better understand what this means in a specific example, we will
now focus on the typical analytic continuation problem in condensed matter
physics: the estimation of spectral functions of many-body quantum systems
starting from imaginary-time correlation functions.
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2. Analytic continuation in QMC

The formal definition of a spectral function of a many-body physical system is
as follows:

s(ω) =
∫ +∞
−∞

dt
2π

eiωt〈e iĤt
� Âe−

iĤt
� B̂〉, (3)

Â and B̂ being given operators acting on the Hilbert space of the system whose
Hamiltonian operator is Ĥ . The brackets indicate the expectation value on
the ground state or thermal average. We also introduce the imaginary-time
correlation function:

F(τ ) = 〈e Ĥτ
� Âe−

Ĥτ
� B̂〉. (4)

It is evident that, if we were able to extend the domain of F, computing:

F̃(z) = 〈e iĤz
� Âe−

iĤz
� B̂〉, z ∈ C, (5)

we would immediately be able to compute Equation (3).
In the language of inverse problems, the function s(ω) is the theory we are

looking for, while F(τ ) corresponds to the observations. In the language of
analytic continuation, on the other hand, it is evident that the two functions
are related by Equation (2) and a Fourier transform, or, equivalently, a single
inverse Laplace transform. As mentioned earlier, the reason why we consider
F(τ ) as the observation, while s(ω) is the unknown theory, is that, using QMC
simulations, when the sign problem does not show up, for example for Bose
fluids, it is possible to obtain exact estimations of the values of the function F
[8–10]. In this context, exact means that, for a given statistical accuracy, every
systematic error can be reduced below the noise level via a suitable tuning of the
parameters.

To summarize, the situation is as follows: with QMCmethods we can estimate
values of F(τ ) in correspondence with a finite number of imaginary-time values
depending on the discretization of the methodology. To be specific we will use
the notation f ≡ {fi = F(iδτ), 0 ≤ i < l}. In general f is obtained as an
average of several QMC calculations of F(τ ), each affected by statistical noise,
and which are used to estimate the statistical uncertainties {σi} associated with
{fi}. Moreover, the set of observations can be often enriched relying on sum rules,
which prompt to perform additional QMCmeasurements providing estimations
for some momenta of s(ω): c ≡ {cn =

∫ +∞
−∞ dωωns(ω), n ∈ Z} (for example

c0 = 〈ÂB̂〉 may be easily estimated in equilibrium QMC simulations with an
associated statistical uncertainty).

In this context, the inverse problem of estimating s(ω) has the formal appear-
ance of a Fredholm integral equation

F(τ ) =
∫ +∞
−∞

dωK(τ ,ω)s(ω), (6)
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where for example, at zero temperature, K(τ ,ω) = θ(ω)e−τω, θ(ω) being the
Heaviside distribution. In many cases, this equation can be complemented by
some a priori knowledge that can be deduced from the formalism of quantum
mechanics, such as the support, non–negativity or some further properties.

Since we start from limited and noisy data and the considered kernel corre-
sponds to an ill-conditioned matrix when discretized, it is evident that
Equation (6) does not have a unique solution and that small variations of the
data can largely affect the resulting spectra. In general, there will be an infinite
number of functions s(ω) whose ‘predictions’, namely the reconstructed data
f̄ obtained by the integral in Equation (6), fall inside the confidence intervals
(fi − σi, fi + σi).

3. Genetic inversion via falsification of theories

Being of paramount importance, the task of facing the problem in Equation (6)
has been investigated by many methods.

The Maximum Entropy Method (MaxEnt) and its variants [11–15] are the
most popular approach. MaxEnt applies the maximum likelihood principle
within aBayesian framework. Tobemore specific, theBayesian conditional prob-
ability of the spectrum s, given the measurements f ∗, is equivalent to P(s|f ∗) =
P(f ∗|s)P(s)/P(f ∗), where the conditional probability P(f ∗|s) of the measure-
ments, given the spectrum, is called the likelihood, while the a priori probability
P(s) reflects previous belief concerning the spectrum in the absence of data.
Finally, P(f ∗) is the normalization. In the classical formulation,MaxEnt assumes
P(f ∗|s) ∝ exp (− χ2/2), where χ2 is the quadratic distance of the data f ∗ from
the reconstructed data f̄ . The a priori knowledge is enforced as an entropic term
with respect to a default model m: P(s) ∝ exp (− α

∫
dωs(ω) ln [s(ω)/m(ω)]),

and various ways are proposed to treat the parameter α and the default model
m(ω). The entropic termand some suitable regularization of the necessarymatrix
operations are crucial in this approach in order to obtain a smooth solution.

The average spectrum method (ASM), also called Stochastic Analytical In-
ference [16–22], drops out the need of the entropic prior by averaging over
different spectra according to the likelihood P(f ∗|s) ∝ exp (− χ2/2T). Through
a Monte Carlo sampling of spectral functions, the effective temperature T is
used to gradually force more adherence to the data via a simulated annealing
procedure. Various prescriptions for stopping the simulated annealing have been
investigated. The averaging procedure smoothes the final average and retains
only common features. It has beendemonstrated [18] thatMaxEnt can be derived
as a mean-field limit of the ASM. This finding has been further explored in [21].

The Stochastic optimization with consistent constraints method (SOCC)
[23–25] also averages over spectra which are obtained with a Monte Carlo
walk aiming at minimizing the χ2 distance of the data and reconstructed data;
however, the averaging procedure consists of a linear combination of spectra,
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aiming at obtaining amaximally smooth result. This flexible averaging procedure
allows for estimating error-bars for the spectrum, by artificially emphasizing the
main spectral features up to values which would worsen the value of the χ2.

Without being exhaustive, we mention that other research directions involve
the use of other basis functions for the spectra [26,27], the exploit of more
information from tailored QMC simulations [28,29] or the consideration of
different kernels [30]. We also note that, in the context of image reconstruction,
differentmeasures of distance of the reconstructed data frommeasurements have
been proposed, such as the Kullback–Leibler or I-divergence [31], which allow
for the implementation of deterministic error-reduction algorithms [32].

The GIFT approach [10], which we are going to describe in detail, follows
more radically the general scheme outlined in the introduction: we need a space
of models S , containing a wide collection of spectral functions consistent with
any prior knowledge about s(ω), a falsification procedure relying on the QMC
‘measurements’ d = {f , c} ∈ D, and a strategy to capture the accessible physical
properties of s(ω). The introduction of the space D is meant to stress that
there is nothing special in the particular set of QMC measurements d. If a new
independent simulation is performed, a new set of measurements will show up
and it will be completely equivalent to the original one.

3.1. The space ofmodels

In our mathematical framework S is made of step functions, providing a com-
promise between the possibility of suitably approximating anymodel of spectral
function and the feasibility of numerical operations inside it.

In the typical case (Â = B̂†) when s(ω) is known to be real-valued, non-
negative and the zero-momentum sum rule holds, we rely on models s of the
form:

s(ω) =
m−1∑
j=0

sj
M�ωj

χIj(ω),
m−1∑
j=0

sj =M. (7)

We rely on a fixed partition {ω0, . . . ,ωm} of widths �ωj of an interval of the real
line much larger than the hypothesized support of s(ω). In particular, we use
equally spaced frequencies up to an intermediate value where the spectrum is
hypothesized (or verified with exploratory reconstructions) to have significantly
decayed, and we then employ exponentially spaced frequencies, to ease the
fulfillment of high-order sum rules. In some cases, for example for some 1D
models [22,33,34], a minimal threshold frequency ωth is known, below which
the spectrum is zero; this can be easily implemented by setting ω0 = ωth. We
use the characteristic function χIj(ω) of the intervals Ij = [ωj,ωj+1), which takes
the value 1 inside Ij and 0 outside. Moreover, we introduce a discretization of
the codomain, sj ∈ N ∪ {0}, to make the space finite. M provides the maximum
number of quanta of spectral weight available for the ensemble of the intervals Ij.
Notice that s(ω) differs from the physical spectral functions by a factor c0, being
c0 the zero–momentum, which belongs to the set of observations.
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Just to stress the different kind of applications that the present framework
could include, we note that the choice expressed by Equation (7) originates
from the fact that the first GIFT implementation was inspired by an application
in quantitative finance related to a stochastic optimization of portfolios based
on genetic algorithms (GA) [35]. In that application m represented the maxi-
mum number of assets included in the portfolio,M the total investment, which
is naturally quantized, and sj was the number of quanta of investment for
asset j. In the present context, the choice in Equation (7) is meant to provide
a sufficiently vast family of functions: the basic idea is that, apart from a priori
knowledge arising from the formalism of quantum mechanics, no additional
information has to be imposed in the definition of the space of model. Of course,
one has to verify that the results do not change significantly when decreasing
the interval widths. Other representations of the spectral function, such as a
sum of delta contributions, may be implemented as well, with negligible impact
on the methodology. Other stochastic approaches also optimize the widths of
the intervals [23] or the positions of the delta functions [21]: this can increase
efficiency.

3.2. Falsification, fitness, and GA

How can we explore S and falsify its elements? As mentioned before, the most
important point is the translation into a practical algorithm of the falsification
principle described in the introduction. In principle, not only the observed data
d = {f , c}, but any equivalent data d� = {f �, c�}, that are the result of an
independent simulation, should play an equivalent role in determining whether
a model has to be falsified or not. The simplest way to achieve this in practice
leads us to the definition of the fitness of model s̄:


d�(s) = −
l−1∑
j=0

1
σ 2
j

[
f �
j − c�0

∫
dω e−ωjδτ s(ω)

]2

−
∑
n

γn

[
c�n − c�0

∫
dω ωn s(ω)

]2
(8)

depending on the set of data, together with the introduction of a scheme to
build up d� starting from d. In principle, one could store different realizations
d� directly from independent blocks in the QMC simulations. In our imple-
mentation, different random sets d� = {f �, c�} are obtained by resampling
independent Gaussian distributions centered on the original QMC observations
d, with variances which correspond to the estimated QMC statistical uncertain-
ties. Generalizations can be easily conceived if the covariance matrix among
the data is computed during a simulation. More precisely, suppose that the
l × l matrix Cij = cov

(
fi, fj

)
is estimated. The above-mentioned sampling of

independent Gaussian distributions relies on the approximation Cij � δijσ
2
i . If
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the nondiagonal elements are also computed, the equivalent data can be sampled
using the formula:

f �
i = fi +

∑
j

Lijεj, (9)

where εj are realizations of independent standard normal random variables, and
the lower triangular matrix Lij satisfies LLT = C [5]. Matrix L can be obtained
via standard Cholesky decomposition, since the covariance matrix of vector f is,
by construction, real-valued and positive definite. Once this is done, the fitness
in Equation (8) can be modified using the matrix C−1 = (L−1)TL−1 instead of
δij/σ

2
j . The results presented in this Review are obtained by ignoring covariance

and considering only the variance of the data. It can be argued that the typical
covariance of QMC imaginary-time data is positive, due to the kinetic term in
the densitymatrix, so that ignoring covariance yields unnecessary fluctuations in
our resampled imaginary-time data. This is overcome by pursuing lower values
of the fitness function (8) before the final averaging procedure is done [17].

In the definition of Equation (8), the free parameters γn > 0 are adjusted
in order to make the contributions to 
d� coming from f � and from c� of
comparable order of magnitude, provided that convergence of the algorithm
does not slow down due to a too strong constraint coming from high values
of γn. If it happens that one cn is exactly known, no error is added by making
c�n = cn.

The idea, then, is as follows: we sample several independent equivalent data
d� and find out the set of models which are not falsified by them. In order to
achieve this, we rely on GA, which are known to provide an extremely efficient
tool to explore a sample space by a nonlocal stochastic dynamics, via a survival–
to–fitness evolutionary process mimicking the natural selection we observe in
the natural world. Such evolution aims at maximizing the fitness towards ‘good’
building blocks [36] which, in our case, should recover information on physical
spectral functions.

In our GA, for each resampled d�, we start randomly constructing a collection
of s(ω), the initial population, consisting ofNs individuals. Each s(ω) is coded by
m integers, sj in Equation (7). The genetic dynamics then consists in a succession
of generations during which the initial population, consisting of Ns individuals,
is replaced with new ones in order to reach regions of S where high values of the
fitness exist, for a given d�. In the passage between two generations a succession
of ‘biological–like’ processes takes place, given by the genetic operators described
in the next subsection. The GA dynamics performs the falsification procedure:
for each d�, only the s(ω) with the highest fitness in the last generation provides
a model for s(ω) which has not been falsified by d�. This yields the set SD� made
of the elements c�0 s(ω).

Finally, an averaging procedure of the elements of SD� appears as the most
natural way to extract physical information. Presently, we also calculate the
variance of the ensemble SD� as a way to estimate the variance of the spectra.
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However, this is only qualitative, since a more complete information would
stem from considering the whole covariance matrix of the estimated spectral
function. Notice also that the definition of the fitness in Equation (8) is essentially
equivalent to the log-likelihood of other Bayesian approaches, in presence of a
uniform prior. However we do not attempt to find a single maximum-likelihood
spectrum, which would be affected by the saw-tooth instability, but we create
an ensemble of spectra for which the magnitude of the fitness is of order of less
than l + 1. This is very similar to the ASM approach, with the advantage of the
speed-up coming from nonlocal genetic evolution.

3.3. The genetic dynamics

The typical genetic operators are called selection, crossover and mutation. We
found it useful to add also a rejection operator [33], that allows formore flexibility
in the mutation moves, and constitutes a clean bridge between the genetic
and the ASM approaches, yielding a hybrid genetic-ASM algorithm. We now
describe each step of the genetic evolution, for a given realization of d�. The
Selection and Rejection operators are always executed, while the Crossover and
various Mutation operators are called with some probability, which is chosen
after performing small-scale exploratory runs to increase efficiency.

• Selection. The population of the previous generation is ordered in ascending
fitness; then a couple of individuals (‘mom’ and ‘dad’) are selected corre-
sponding to the indexes k = [Ns int(rβ)] + 1 obtained by sampling two
uniform random numbers r ∈ [0, 1); the nonlinearity of k on r is such that
individuals with large fitness are preferentially selected; we typically use
β = 1/3.
• Crossover. An amount of quanta Q is uniformly chosen in the interval[

0,M/2
]
, to be exchanged between mom and dad. Optionally, one can

choose Q ≈ M/2, which accelerates convergence, but is more compu-
tationally expensive. For both mom and dad, a random set of bins {Ij}
is chosen whose total spectral weight is Q. Then, the selected weights of
the mum spectrum are moved to the dad spectrum, keeping their original
mum positions. Vice-versa, the selected dad weights are moved to the
mum spectrum, keeping their original dad positions. This way, the total
spectral weight is preserved, while a very nonlocal operation is performed.
In particular, it is likely that the main spectral features of mum and dad
are exchanged. We observe that this operator, together with the selection
operator, is the main feature concretely distinguishing our approach from
the ASM and SOCC methods, allowing for a significant speed-up of the
evolution. This operation is indeed performed with a high probability of
30/40%.
• Mutation. Having obtained two new spectra, son1 and son2, frommom and
dad, we are nowprompted to perform single-spectrummoves. There is large
room for experimentation at this point; however, since detailed balance is
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not respected, a risk is present to systematically bias the final result towards
specific spectral features, depending on the chosen mutation operators. For
example, in the relevant cases discussed in Subsection 4.1, typical spectra
should include a single narrow peak and a minor broad structure, while in
Subsection 4.3 major broad structures are expected: in this case, mutation
operators favoring only the identification of peaks may hamper the efficient
reconstruction of almost flat spectra. It is thus important to include a variety
of mutation operators to render the algorithm ergodic. We name a few
examples:

◦ Local mutation. The shift of a random fraction of spectral weight
between two random neighboring intervals. With small probability,
the shift is performed preferentially to intervals where spectral weight
is already present, which is useful for the quick discovery of peaks
[10].
◦ Nonlocal mutation. The shift of a random fraction of spectral weight
between two random intervals. In order to avoid the worsening of the
fitness due to this nonlocalmove, especially in the part concerning the
spectral moments c, we impose a detailed balance condition using the
probability density exp (−
d�(s)/T), as in the ASM method, with
an effective temperature that is reduced during the simulation.
◦ Smoothening. A short successionof neighboring intervals is randomly
chosen. The weights are convoluted with a smoothening kernel,
which essentially performs a weighted average of the original spectral
weights.
◦ Error reduction. The steepest descentmethod, or oneof itsmore stable
variants, is applied to the maximization of the fitness in Equation (8),
using its functional derivative with respect to the spectrum s̄. Its
efficient implementation suggests the use of real instead of integer-
valued weights, which requires a trivial adjustment of the algorithm.
This operator performs a deterministic optimization of the spectra;
however, when used alone, it is only able to get to local maxima of the
fitness. The combined use of stochastic and deterministic operators
yields a so-calledmemetic algorithm [37–39].
◦ Flattening. A random number of neighboring interval weights is
substituted by their average. This is a very nonlocal operation and
has to be selected not too often. It is in particular useful to explore
almost flat and broad spectra, which would otherwise be created very
seldom, due to entropic reasons.

After all the described operations, missing or exceeding weight is randomly
redistributed among the spectral intervals, in order to respect the zero-
momentum sum rule.
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• Rejection. Since some of the mutations, such as flattening, could bias the
population, an accept/reject operation is carried out, by performing a
Metropolis check comparing the weight exp (−
d�(s)/T) of son1 with
mom and of son2 with dad. Notice that this does not implement detailed bal-
ance because of the selection and crossover operators. However, by disabling
those, we essentially recover the ASM approach. The effective T is typically
the same used in the nonlocal mutation move and is reduced through a
simulated annealing schedule. We start from a very high T ≈ 106, where
the moves are usually accepted (analogously to the original version of the
algorithm [10]), and we geometrically reduce it every∼100 iterations, until
a small value T ≈ 10−2 is reached. We observed that the precise initial and
final T have a negligible impact on the resulting final spectrum.

The above procedure is repeated until all the individuals s(ω) of the population
are replaced by a new generation, except for the s(ω) with the highest fitness in
the old generation which is cloned (elitism). To decrease the computational
cost, the number of individuals in the new population is reduced by a small
fraction at every generation till Ns is equal to a given minimal value; from
this point over, the number of individuals Ns in the new generations is kept
constant. We monitor the average fitness and χ2 of the best s̄(ω) in the final
ensemble SD� in order to respect the falsification principle, then we take the
final average of elements in SD� , which yields the spectra that are shown in
this review as an example. To choose the algorithm parameters, we perform
short preliminary runs during which we monitor the fitness as a function of the
generation. A slow increase of the fitness usually indicates a poor choice of the
frequency parametrization, while a behavior of the fitness showing frequent
abrupt increases indicates a good choice of parameters. The typical result-
ing initial population size is Ns � 5000, the typical number of resampled
data is Nd� � 200, and the typical number of generations is Ngen � 10000.
Longer runs and population sizes are seldom needed, but are of course beneficial
if larger computational power is available, provided overfitting (|
d�(s)| �
l + 1) is avoided. The typical number of frequency intervals depends on the
desired resolution and quality of initial imaginary-time data, but it is of order
m � 500. We usually find that this is the most delicate parameter, but the choice
of logarithmically spacing at high frequencies, as described in Subsection 3.1,
prevents the need for very largem.

We have performed several tests [10] on exactly solvable analytical models
suitably discretized and ‘dirtied’with randomnoise to ‘simulate’ real data.Having
in mind the 4He case, we have tried to reconstruct spectral functions consisting
of linear combinations of Gaussians, one sharp ‘peak’ at small ω and one broad
contribution at higher ω, or, for the one–dimensional case, a combination of
rectangular shapes andpower-lawdecays [33].Wehave observed that none of the
parameters have a critical role, once the frequency support is identified.However,
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only some features of the exact solution can be consistently reproduced: we
have no possibility to exactly reconstruct the shape of s(ω), especially at high
frequency; on the other hand, access is granted to the identification of the
presence of a sharp peak and to its position, to the position of the broad
contribution, to some integral properties involving s(ω) and to its support.
Moreover, we found that it is possible to estimate properties of the shape of
the spectra (for example power-law decay close to thresholds [33,34]), once the
low-frequency support is reliably estimated. In this case, it is also crucial to
analyze directly the elements in SD� and not only their final average.

4. Applications: the dynamical structure factor of liquid 4He

TheGIFTmethod has been successfully applied to the study of spectral functions
of various zero–temperature quantum systems in different geometries, such
as 4He [10,33,40–44], 4He or H absorbed on various substrates [45–48], 3He
[49,50], hard spheres [34,51,52], soft particles [53–56], and the Fermi-Hubbard
model [57]. Moreover, a finite–temperature version of the GIFT method has
been applied to the study of spectral functions for a system of 4He atoms in
which Bose statistics has been suppressed [58].

Wepresent now some applications of this approach: for the sake of conciseness
wewill discuss only someof our results concerning the dynamical structure factor
of 4He atoms in three-dimensions (3D) [10] and confined to two-dimensional
(2D) [43] or one-dimensional (1D) [33] geometries. We mention that in the
realm of bulk liquid helium, methods such as MaxEnt [8,9], modified kernels
[30], and simulated annealing [59], have also been used. The dynamical structure
factor S(q,ω) is a spectral function which is directly related to scattering experi-
ments coupled to density fluctuations in linear response. It is a function of both
frequency ω and momentum q and its peaks allow for the determination of the
dispersion relations of coherent collectivemodes, if present, while broad features
indicate multiple excitations or damped modes. The study of the spectrum of
elementary excitations of 4He systems in different geometries is of interest on
one hand to investigate the fate of the phonon–maxon–roton spectrum upon
change of the dimensionality of the system; on the other hand, it is useful for
the interpretation of past or forthcoming scattering experiments involving 4He
systems in bulk [60] or confined geometries: 4He atoms adsorbed on planar
substrates [61] or confined in nano–channels [62,63].

In all the applicationswe are going to discuss in the following, the intermediate
scattering functions F(q, τ), i.e. the basic ingredient of the GIFT method, have
been computed using the exact shadow path integral ground state (SPIGS)
method [64,65]. For the technical details, we invite the reader to refer to the
original articles [10,33,43]. In short, SPIGS is a T = 0 K path integral ground
state (PIGS) method [66], which relies on an imaginary-time projected Shadow
wave function [67]. Path integral projector methods like PIGS and SPIGS allow
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for the calculation of exact ground-state expectation values by systematically
improving an approximation of the ground-state wave function via successive
small imaginary-time projections. The imaginary-time evolution cleans up the
spurious overlaps of the variational wave function with excited states and intro-
duces the missing ground-state correlations between particles. We have shown
that when the total imaginary-time projection is large enough, these methods
provide exact ground-state expectation values, within the statistical uncertainties
of the calculations, without any bias due to the choice of the variational wave
function [68].

4.1. Three-dimensional case

Thefirst application of theGIFTmethodwas the study of the dynamical structure
factor of superfluid 4He in 3D geometry [10]. As far as we know, this was the
first analytic continuation method, different from the MaxEnt method, applied
to this very peculiar condensed matter system. The use of GIFT turned out to
be a major improvement with respect to previous MaxEnt studies of superfluid
4He [8]: we were able to recover sharp quasi-particle/elementary excitations,
with excitation energies in good agreement with experimental data, and spectral
functions displaying also themulti-phonon branch (i.e. a branch of the spectrum
corresponding to the creationofmultiple elementary excitations)with the correct
relative spectral weight.

These results can be observed in Figure 1 where color maps of the dynamical
structure factors at equilibrium (ρ3D = 0.0218 Å−3) and freezing (ρ3D =
0.0262 Å−3) densities, extracted with the GIFT method, are shown together
with the experimental quasi-particle/elementary excitations energies [69–71].
As a reference, we also plot the free–particle dispersion ε0(q) = �

2q2/2m, where
m is 4He mass. Moreover, we show the famous Feynman’s dispersion relation
εFA(q) = ε0(q)/S(q), which can be derived using a variational argument [72],
where S(q) is the static structure factor. This dispersion correctly manifests a
minimum in the excitation close to momentum 2π/a, where a is the hard-core
size of the interaction potential, and was first phenomenologically hypothesized
by Landau [73]. In the same momentum region, the static structure factor
features a peak, provided the average interparticle distance is of the order of
a. Our reconstructed S(q,ω) exhibit an overall structure in good agreement
with experimental data: a sharp quasi-particle peak and a shallow multi-phonon
maximumare present. Both features appeared for the first timewithin an analytic
continuation procedure applied to a QMC study of a many–body system in the
continuum.

By integrating the extracted S(q,ω), one has access to quantities like the
strength of the single quasi-particle peak, Z(q), and thus also to the contri-
bution to the static structure factor, S(q), coming from multi-phonon exci-
tations. Remarkably, Z(q) is in close agreement with experimental data [69]
(Figure 1), thus strongly suggesting that the broad structure in S(q,ω) at large
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Figure 1. Dynamical structure factor of zero–temperature superfluid 4He in 3D geometry.
Notes: (Upper panels) S(q,ω) extracted at the equilibrium ρ3D = 0.0218 Å−3 and freezing ρ = 0.0262 Å−3 bulk
densities (from [10]), for a discrete set of wave vectors compatiblewith the periodic boundary conditions used in the
simulations. Color scale represents bins’ height in units of �/meV. Weights exceeding the color scale are cropped.
(Lower panels) Corresponding GIFT strength of the quasi-particle peak Z(q) as a function of q and comparison to
experimental data [69–71]. The reference free ε0(q) and Feynman’s εFA(q) dispersion relations are described in
the text.

frequency carries indeed reliable physical information on the multi-phonon
branch of the spectrum. Given the assumption of a pair-wise interatomic in-
teraction [74] and the experimental and algorithmic statistical uncertainties (the
latter being estimated via multiple independent QMC simulations and GIFT
reconstructions, also involving variants of the interaction potential [74–76]),
the agreement of the extracted Z(q) is very good. This shows that, via analytic
continuation, it is at least possible to extract one sharp feature in the spectral
function with the correct spectral weight and a broad multi-phonon component
which represents semi-quantitatively the combination of multiple quasi-particle
excitations. Note that here the width of the reconstructed single quasi-particle
peak ismainly ameasure of the uncertainty in the statistical reconstruction of the
position. Thus the exact shape of the spectral function is not accessible, given the
ill-posed nature of the problem: future improvements will unavoidably require
QMC simulations on more powerful computational facilities.

4.2. Two-dimensional case

Another application of the GIFT method to superfluid 4He systems has been
the study of S(q,ω) for a pure 2D geometry. As highlighted by the 2016 Nobel
Prize in Physics [77], bosons in two dimensions are of great theoretical interest
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Figure 2. Dynamical structure factor of zero-temperature superfluid 4He in 2D geometry.
Notes: S(q,ω) extracted at the areal densities ρ2D = 0.0321 Å−2, 0.0432 Å−2, 0.0536 Å−2, 0.0658 Å−2 (from [43]).
See also caption of Figure 1.

because the standard scenario of superfluidity associated with Bose–Einstein
condensation is not appropriate anymore. As shown by J.M. Kosterlitz and D.J.
Thouless [78], the notion of long-range order has to be replaced by that of
topological long-range order, characterized by a slow algebraic decay of the
local order parameter correlation function. Notwithstanding a vanishing order
parameter in 2D, i.e. a condensate wave function which vanishes at any finite
temperature for a bulk system, a superfluid response is theoretically predicted
up to a temperature where vortex and antivortex pairs unbind.

The dynamical structure factors obtained for 2D 4He [43] at different areal
densities are reported in Figure 2. We found well defined excitations in the
full density range where the system is superfluid; however, significant differ-
ences are present with respect to 3D 4He. In 2D, close to the spinodal density
(ρ2D = 0.0321 Å−2), where the system is unstable against droplet formation,
the excitation spectrum features the maxon (the maximum of the coherent
dispersion) and the roton (the finite-momentum minimum) frequencies almost
coalescing in a plateau. At the equilibrium density (ρ2D = 0.043 Å−2), the
small peak in the static structure factor causes a maxon–roton structure which
is rather weak, with the maxon frequency only 10% higher than the roton
frequency. Above the equilibrium density, a well definedmaxon–roton structure
develops (see the density ρ2D = 0.0536 Å−2) and, finally, at freezing density
(ρ2D = 0.0658 Å−2) the ratio between maxon and roton energies is found as
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Figure 3. Dynamical structure factor of zero–temperature superfluid 4He in 1D geometry.
Notes: S(q,ω) extracted at the linear densities ρ1D = 0.036 Å−1, 0.093 Å−1, 0.150 Å−1, 0.300 Å−1 (from [33]).
See also caption of Figure 1.

large as 3. At the same time the wave vector of the roton has a strong density
dependence, whereas that of the maxon is almost density independent. This
strong evolution of the shape of the excitation spectrum with the density is
probably due to the wider density-range of existence of the fluid phase in 2D:
the freezing density is more than twice the spinodal density while in 3D it is
only 60% larger. Moreover, in the maxon region for densities above equilibrium,
the quasi-particle excitation peak is substantially broadened with respect to the
roton region. This implies that, over an extended region of wave-vectors and of
density, the elementary excitations have a finite lifetime even at T = 0 K. In fact,
they can decay into other excitations, since the phonon region is characterized
by a strong anomalous dispersion, featuring a positive curvature [43].

4.3. One-dimensional case

To conclude our discussion on the applications of the GIFT method to 4He
systems, we briefly review our recent study on a system of 4He atoms in a pure
1D geometry. One-dimensional quantum systems exhibit spectacular signatures
of the interplay between quantum fluctuations, interaction and geometry. The
reduced dimensionality prevents the spontaneous breaking of continuous sym-
metries in the presence of short-range interactions [79], which results in a single
Luttinger liquid phase for 4He, with different character depending on density.
Moreover, in the presence of hard–core interactions, bosonic and fermionic
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systems start to share common behavior, since two-body correlationsmust decay
to zero in both cases. A color map of S(q,ω) for the 1D system is shown in
Figure 3. By increasing the density, the dynamical structure factor reveals a
transition from a highly compressible liquid near the equilibrium linear density
(ρ1D = 0.036 Å−2) to a quasi-solid regime (ρ1D = 0.300 Å−2). Notice that the
range of considered densities is much larger than in higher dimensions, so the
typical frequency and momentum scales vary considerably.

In the low-frequency limit, the dynamical structure factor can be described by
the quantum hydrodynamic Luttinger-liquid theory [80]: elementary excitations
are unavoidably collective, i.e. phonons (this holds true even for fermionic
systems). At higher energies, the GIFT analytic continuation approach provides
quantitative results beyond Luttinger-liquid theory. In particular, as the density
increases, the interplay between dimensionality and interaction makes S(q,ω)

manifest a pseudo-particle-hole continuum typical of fermionic systems. The
fate of the phonon–maxon–roton spectrum, which characterizes the excitations
in higher dimensions, is to merge into a pseudo-particle-hole continuum. It is
interesting to note that, by increasing density, the spectral weight moves towards
lower frequencies for wave–lengths of the order of the average interparticle
distance, similarly to the behavior in higher dimensions. However, instead of
having a neat roton excitation, a broad spectral structure bends down, and only
at very high linear densities almost coherent modes are reached. However, we
mention in passing that a power-law behavior close to the lower spectral support
is in fact observed and indeed expected from non-linear Luttinger theories: we
refer the interested reader to Refs. [33,34], where analytical efforts, motivated by
the obtained GIFT spectra, yielded remarkable results.

5. Conclusions

We have described in detail a strategy we have developed to face the analytic
continuation problem that emerges whenever real-time dynamics of strongly
correlated physical systems is studied relying on estimations of imaginary-time
correlation functions.Wehavepresented it in a pedagogicalway, in order to allow
researchers to take full advantage of the methodology. We have enriched the
presentation with figures showing the very accurate results we have obtained for
systems of 4He atoms in different geometries. In general, the family of stochastic
analytic continuationmethods is becomingmore affordable due to the increase of
available computational power, and is thus expected to have higher impact in the
future, due to its accuracy. Our method combines the genetic speed-up coming
from the Crossovermove, to a remarkable robustness with respect to the chosen
parameters, coming from the averaging procedure and the Rejection step. The
only crucial input to be optimized is the frequency support and parametrization,
which suggests that further improvement of themethod is foreseeable.Moreover,
knowledge about the typical features of the considered spectra helps in choosing
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the rate at which appropriate operators are preferentially called, thus increasing
the rate of convergence. The problem we have faced belongs to the huge class of
inverse problems, a deep topic also from a fundamental epistemological point of
view [6]. The basic idea of the falsificationprinciple [7] guidedus in our particular
implementation of analytic continuation: moreover, every analytic continuation
problem emerging in Physics, applied Mathematics or, more generally, applied
Science, can in principle be tackled by a suitable variation of the GIFT algorithm,
which is per se an approach suitable for hybridization with other methods. We
thus expect that the key ideas underlying our approach can be efficiently used also
in other inverse/analytic continuation problems and inmany research fields, like,
just to cite one example, image reconstruction. In fact, one of us has recently faced
the Phase Problem in CDI, following a similar approach: we have found that by
building amemetic algorithm, i.e. hybridizing aGeneticAlgorithmwith standard
iterative methods, it is possible to outperform the phase retrieval capabilities of
the algorithms used asmemes to assist the genetic stochastic search [39].
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