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ABSTRACT 

Paleari, L., 2016. IN SILICO IDEOTYPING: Definition and evaluation 

of rice ideotypes improved for resistance/tolerance traits to biotic and 

abiotic stressors under climate change scenarios. Ph.D. Thesis, University 

of Milan, Italy, 150 pp., 17 figures, 8 tables, 279 references.  

 

Ecophysiological crop models, coupled with advanced computational 

(e.g., sensitivity analysis, SA) and IT techniques, can be profitably used to 

analyze G×E×M interactions and, in turn, to support breeding programs 

through the design of ideotypes suitable for specific growing conditions. 

However, the exploitation of the potential of simulation technologies for 

breeding purposes is limited by the uncertainty in the distribution of values 

for the in silico representation of traits for available germplasms and by the 

partial suitability of the models themselves. Indeed, although to a different 

extent, available modelling approaches lack a clear relationship between 

model parameters and plant traits and, in most cases, they miss algorithms 

for processes involved with resistance/tolerance, which are often priority 

aspects within breeding programs. This, as well as technological barriers, 

prevented the modelling and breeding communities from interacting. 

This research addressed these issues focusing on rice – given its role as 

staple food for more than half of the world’s population – and targeting both 

current conditions and future climate projections, to support the definition of 

breeding strategies in the medium-long term. 

A new procedure to identify parameters whose uncertainty in 

distributions would affect ideotype design was developed and district-

specific ideotypes improved for resistance/tolerance traits were defined by 

means of variance-based SA techniques or by mimicking introgression of 

traits from donor genotypes. A paradigm shift towards a new generation of 



  

  

models explicitly built around traits for which breeding programs are 

ongoing was proposed, with a case study presenting a new model for salt 

tolerance used for ideotyping purposes in two different environments. A 

modelling platform for district-specific ideotyping was also designed and 

developed by targeting breeders as final users, highlighting the role of an 

interdisciplinary approach to increase the usefulness of simulation 

technologies for supporting breeding programs. 

 

 

 

Reference to the contents of Chapters II, IV, and VI should be made by 

citing the original publications. 
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1.1. Background 

Since their early origins in the late 1960s, crop models have been 

developed targeting two main objectives (Hammer et al., 2002): (i) assisting 

crop management and agricultural polices (e.g., Berndt and White, 1976; 

Wilkerson et al., 1983), and (ii) supporting breeding activities via the in 

silico analysis of (G) genotype × (E) environment × (M) management 

interactions (e.g., Duncan et al., 1967; Loomis et al., 1979; Hammer and 

Vanderlip, 1989). Crop models, indeed, have a great potential to identify 

key traits and design plant types for specific agro-environmental contexts, 

because of their capability to reproduce crop growth and development as a 

function of environmental (including management) factors and of model 

parameters representing genotypic features (Hammer et al., 1996; Boote et 

al., 2013; Ramirez-Villegas et al., 2015). 

However, while there are a number of examples proving the role of crop 

models for cropping systems management (e.g., Jones et al., 2003; 

Confalonieri et al., 2006; Lehmann et al., 2013), their use to analyze 

G×E×M interactions has received much less attention, thus making this area 

one of the most promising for future model development and contributions 

(Hammer et al., 2002; Tardieu, 2010; Boote et al., 2013). A consequence of 

this developmental pathway is that current crop models are only partly 

suitable to support breeding activities (Yin et al., 2000; Chenu et al., 2008; 

Bertin et al., 2010; Hammer et al., 2010; Messina et al., 2011). Among the 

main reasons, a key role is played by the lack of a clear relationship between 

model parameters and plant traits, which decreases the possibility of 

realizing in vivo the ideotypes defined in silico (Boote et al., 2001; Hammer 

et al., 2002). 

However, attempts to use crop models to design plant ideotypes have 

been carried out in the past 25 years, starting from pioneering studies 

performed in the 1990s (Dingkhun et al., 1991; Kroppf, 1994a, Aggarwal et 

al., 1997) until recent examples (e.g., Quilot-Turion et al., 2012; Raza et al., 

2013; Singh et al., 2014; Drewry et al., 2014; Tao et al., 2016; Ding et al., 
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2016). Actually, there is an increasing effort towards the use of crop models 

to aid ideotype design (Martre et al., 2015a; Rötter et al., 2015). After 

decades from the first proposal of the ideotype concept for crop 

improvement (Donald, 1968), indeed, the interest in the ideotype-based 

approach for defining plant breeding strategies has continuously grown 

(e.g., Kush et al., 2001; Peng et al., 2008; Habash et al., 2009; Kush, 2012; 

Dingkhun et al., 2015). According to this approach, breeders should select 

directly for the plant ideotype rather than empirically for grain yield, where 

the ideotype is defined as “a combination of morphological and 

physiological traits (or their genetic bases) conferring to a crop a satisfying 

adaptation to a particular biophysical environment, crop management and 

end use” (Martre et al., 2015a). “Ideotyping” thus refers to a two-steps 

process: (i) identifying key traits for the objective/s to be accomplished 

(e.g., improving quantitative/qualitative aspects of productions and/or use of 

resources), and (ii) providing indications about their putative value. The 

analysis should be performed in the given agro-environmental context 

targeted by the breeding program, in order to take full advantage of the 

interactions between G, E and M (Hammer et al., 1996). In the challenge of 

meeting an ever-increasing global food demand (Foley et al., 2011) while 

yields are stagnating for most of staple crops (Deepak et al., 2012) and 

weather extremes are expected to increase their frequency and intensity 

(Teixeira et al., 2013), this approach for adapting crops to specific 

conditions assumes even more relevance. 

Despite their limits and uncertainties, ecophysiological models provide a 

unique platform for integrative analyses of the impact of traits (single or in 

combination) on the behavior of the whole plant. This impact is indeed 

difficult to predict without advanced supporting tools, since plant response 

to environmental factors is often strongly non-linear (e.g., Hammer et al., 

2009; Bertin et al., 2010) and because of complex dynamic interactions 

between different traits. Moreover, process-based crop models allow 

exploring the putative value of traits in a wide range of environmental and 

management conditions (e.g., Casadebaig et al., 2011; Jeuffroy et al., 2012) 
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− even in entire production districts (Tao et al., 2012; Confalonieri et al., 

2013). Exploring the same degree of variability with field trials in 

experimental stations is practically unfeasible. Using crop models, ideotypes 

can thus be tailored for specific agro-climatic contexts by effectively 

exploring the environments targeted by breeding programs (Hammer et al., 

2006; Chapman et al., 2008; Chenu et al., 2011). The analysis can also 

include climate change scenarios (e.g., Semenov and Shewry, 2011; Zheng 

et al., 2012; Semenov and Stratonovitch, 2013; Tao et al., 2016) to account 

for the long-term prospective of breeding strategies and the need to develop 

new varieties better suited to future climate conditions (Tester and 

Langridge, 2010; Ramirez-Villegas et al., 2015). 

From a methodological point of view, model-based ideotyping is carried 

out by modifying model parameters according to the known genotypic 

variation of the corresponding trait (e.g., Kropff et al., 1994a; Semenov and 

Halford, 2009; Hammer et al., 2010) or by exploiting optimization 

algorithms (e.g., Semenov and Stratonovitch, 2013) using simple or 

composed objective functions (e.g., Drewry et al., 2014), as well as standard 

or Bayesian approaches (Van Oijen and Höglind, 2016) for defining 

parameter values. However, one of the most popular methodologies to 

evaluate putative traits relies on sensitivity analysis techniques (e.g., 

Aggarwall et al., 1997; Habekotté et al., 1997; Herdl et al., 2007; Quilot-

Turion et al., 2012; Confalonieri et al., 2013; Martre et al., 2015b; 

Casadebaig et al., 2016), which can be also used to screen traits before 

running optimization algorithms (Génard et al., 2016; Quilot-Turion et al., 

2016). Sensitivity analysis (SA) indeed, allows quantifying the portion of 

model output variance due to variation in input factors (Tarantola and 

Saltelli, 2003) and therefore, under the assumption of a close relationship 

between model parameters and plant traits, it can be used to identify traits 

breeders should focus on under specific conditions. 

Beside these efforts for deriving model-based ideotypes, a wide area of 

modelling research is focusing on the integration of genetic information on 

QTLs in crop models, to turn them into effective tools for solving the issue 
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of linking genotype to its corresponding phenotype (the so-called “G-P” 

problem Cooper et al., 2002). These studies are based on supposed 

relationships between genes/QTLs and the values of model parameters after 

calibration using data from phenotyping on multi-environmental trials. The 

existence of such relationships would allow incorporating in the definition 

of ideotypes the knowledge on the genetic basis of traits (Chenu et al., 

2009). This “gene-based” modelling approach started in the mid-1990s with 

the seminal work from White and Hoogenboom (1996) and the following 

researches from Yin et al. (2000), and it continued to be a dynamic research 

area until today (e.g., Tardieu et al., 2003; Messina et al., 2006; Letort et al., 

2008; Quilot-Turion et al., 2016). However, despite its theoretical potential, 

an accepted methodology to actually link model parameters to genetic 

information is still missing. From a modelling point of view, main limits for 

achieving that goal refer to the uncertainty in parameter values estimation 

due to (i) the limited availability of phenotypic data, needed to incorporate 

in crop models knowledge on gene-gene and gene-environment interactions, 

and (ii) multicollinearity issues, i.e., different combinations of parameters 

leading to the same value for a phenotypic trait. 

Another area of concern relies on the way physiological knowledge is 

currently formalized in crop models, whose adequacy to represent subtle 

differences among genotypes and phenotypic plasticity remains 

questionable (Bertin et al., 2010; Hammer et al., 2010; Messina et al., 2011). 

This drives, again, to the fact that current models are not fully suitable to 

target such applications as they have been developed for different purposes. 

 

1.2. Key issues 

Despite the number of studies involving SA techniques to drive ideotype 

design, there are sources of uncertainties that should be eliminated – or at 

least quantified − to improve the reliability of SA results and, in turn, the 

feasibility of ideotypes. One of the most critical issue is the impact of the 

uncertainty in parameters ranges/distributions on SA outcomes (Pianosi et 
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al., 2016). Many authors, indeed, demonstrated how variations in 

parameters ranges/distributions can drastically alter SA results (Wang et al., 

2013; Shin et al., 2013). However, robust, standard and reproducible 

procedures to quantify this impact and provide possible solutions are not 

available. This issue is relevant regardless of the purpose of the specific 

study, e.g., identifying parameters to calibrate (van Werkhoven et al., 2009), 

analyzing model structure (Sieber and Uhlenbrook, 2005) or developing 

new models (Jakeman et al., 2006), but it becomes crucial when SA is used 

to suggest breeders promising traits to work on (e.g., Martre et al., 2015b). 

Beyond methodological concerns, a key point in modelling studies 

targeting ideotypes design is the lack of specific algorithms for simulating 

the impact of biotic (e.g., diseases) and abiotic (e.g., weather extremes) 

stressors. Despite they are priority in most breeding programs worldwide 

(e.g., Ballini et al., 2008; Das and Rao, 2015) and key factors for adaptation 

to climate change (Garret et al., 2006; Howden et al., 2009; Fisher et al., 

2012), model-based ideotyping studies have completely ignored traits 

affecting resistance to disease and tolerance to environmental constraints. 

Exceptions are tolerance to drought (e.g., Chenu et al., 2009) and few 

studies on heat stress (e.g. Singh et al., 2014). However, both biotic and 

abiotic stressors show strong G×E interactions (Robert et al., 2004; Magarey 

et al; 2005; Tardieu, 2012), which provide crop models a key role to 

evaluate the potential benefits deriving from improved resistance/tolerance 

traits (Tardieu and Tuberosa, 2010; Ramirez-Villegas et al., 2015). The 

main reason for overlooking ideotypes improved for resistance/tolerance 

traits is the lack of a systematic implementation of approaches for the 

simulation of abiotic/biotic stressors in most crop models (Donatelli and 

Confalonieri, 2012; Caubel et al., 2012; Bassu et al., 2014). Another reason 

is likely related to the unsuitability of the few available approaches for 

analyzing the effect of changes in the values of related traits. Concerning 

biotic stressors, many epidemiological models are available, both 

pathosystem-specific (e.g., Calonnec et al., 2008; Robert et al., 2008) and 

generic ones (e.g., Audsley et al., 2005; Garin et al., 2014). However, either 
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these models do not allow the estimation of disease-induced yield losses 

because they consider only the impact of architectural traits on epidemics 

development (e.g., Robert et al., 2008), or the level of detail in the way 

knowledge on the underlying processes is formalized do not allow their use 

for ideotyping applications (e.g., Luo et al., 1995). Taken salt stress as an 

example of abiotic constraint, models for evaluating salinity-induced yield 

losses are available (e.g. Ferrer-Alegre et al., 1997), although they were 

developed to support irrigation management, and this led to a simplified 

representation of plant traits that prevents their use for ideotyping purposes. 

Indeed, while breeders are working on a variety of traits involved with salt 

tolerance (e.g., Ismail et al., 2007; Munns and Tester, 2008; Munns et al., 

2012; Roy et al., 2014), available modelling approaches represent the plant 

response to salt stress via few empirical parameters directly linking yield 

losses to salt concentration in the soil. These considerations – again – drive 

to the basic concerns about the suitability of current crop models for actually 

representing phenotypic traits of interest for breeding, which may call for 

specific model improvement (Chenu et al., 2008; Bertin et al., 2010; 

Hammer et al., 2010; Messina et al., 2011; Boote et al., 2013). 

Model parameters do not always have a biophysical meaning and, even 

when they have, a clear link to traits involved in breeding programs is often 

missing. A direct representation of the physiological and genetic basis of 

traits via model parameters acting at organ or crop level is surely hard to 

derive, for the uncertainty related with the integration across levels of 

biological organization (Sinclair et al., 2004; Yin and Struik, 2010) and the 

dependencies on epistatic and pleiotropic interactions (Cooper and Podlich, 

2002; Cooper et al., 2009). However, a bridge between model parameters 

and genotypic features scored by breeders needs to be established in order to 

avoid discrepancies between the hypothesis tested in silico and their in vivo 

realization (Boote et al., 2001; Hammer et al., 2002; Tardieu et al., 2003; 

Hammer et al., 2010; Ramirez-Villegas et al., 2015). Higher model 

complexity and physiological detail, per se, are neither needed (Hammer et 

al., 2006) nor they represent a guarantee of deriving models with explicit 
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and direct relationships between model parameters and plant traits. This 

because the same knowledge can be formalized by using different modelling 

structures and model complexity is not always a guarantee of higher 

adherence to biological processes (Confalonieri et al., 2016). 

While this paradigm shift in the development of crop models would be 

hard to put in place, it would be crucial to overcome the dualism between 

the interpretation of the ideotype concept by modellers (a combination of 

model parameters) and plant breeders (a combination of phenotypic traits) 

(Andrivon et al., 2013). 

Such dualism may also derive from the lack of modelling tools to be used 

directly by breeders themselves. Pioneering attempts to use mathematical 

models in crop breeding is provided by the modelling platform QU-GENE 

(Podlich and Cooper, 1998) which can be used in conjunction with the 

APSIM biophysical models to evaluate different breeding strategies 

(Chapman et al., 2003). However, even in this case, advanced IT and crop 

modelling expertise are required, thus making crop models still far from 

being routinely used for supporting the definition of breeding strategies. 

As argued by different authors (e.g., Shorter et al., 1991; Tardieu et al., 

2003; Boote et al., 2013; Andrivon et al., 2013), a collaborative effort from 

geneticists, physiologists, crop modelers, breeders and end-users is likely 

the only solution to increase the suitability of crop modelling for supporting 

breeding programs. 

 

1.3. Objectives and organization of the research 

This research covered a variety of issues crucial for the use of 

mathematical models for breeding purposes that are – to a large extent – 

ignored or overlooked by the modelling community. In particular, the aim of 

this research was to increase the adequacy of crop models for ideotyping 

purposes through: 

i) the improvement of methodologies already in use, 
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ii) the inclusion of traits involved with resistance/tolerance in 

ideotyping studies, 

iii) the proposal of a paradigm shift for the development of crop 

models explicitly targeting ideotyping applications (trait-based 

development), and 

iv) the development of software tools to encourage the integration of 

expertise from the modelling and breeding communities. 

Both current conditions and climate change scenarios were considered, 

given time horizons targeted by breeding programs and the impact of 

climate change on the way promising traits affect crop yields. 

The focus was on rice (Oryza sativa L.) for its role as a staple food for 

more than half of the world’s population and as a pioneering crop in the 

adoption of the ideotype perspective in plant breeding. 

 

1.4. Outline of the research 

The uncertainty in parameter distributions can markedly affects SA 

results, thus misleading the identification of putative traits for improving 

qualitative/quantitative aspects of crop production. Chapter 2 presents the 

first procedure ‒ actually a sensitivity analysis of a sensitivity analysis ‒ to 

identify parameters whose uncertainty in distribution can alter SA results, 

i.e., parameters whose distributions need to be defined with more caution. 

The procedure would allow to reduce one of the main sources of uncertainty 

in SA-based ideotyping studies, as shown in Chapter 3. In this Chapter, 

indeed, global SA is applied to evaluate potential benefits deriving from 

increasing resistance to fungal pathogens and tolerance to abiotic stressors 

as compared to those coming by improving phenotypic traits affecting 

potential yield (i.e., light interception, photosynthetic efficiency) and grain 

quality. A dedicated SA-based index to design district-specific ideotypes is 

also proposed and evaluated. 

Improving resistance/tolerance to diseases and abiotic constraints is 

indeed priority among breeding goals to derive new varieties better adapted 
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to specific agro-environmental contexts. However, understand which trait/s 

will be key ones is hampered by strong G×E×M interactions. Given the 

potential of ecophysiological modelling to address this issue, Chapter 4 

was focused on the model-based definition of ideotypes improved for 

resistance to fungal pathogens and tolerance to abiotic stressors. The 

analysis was conducted at district level, to account for characteristics of 

available germplasm and spatial heterogeneity among and within production 

districts. As results show, these aspects can markedly affect ideotype 

features. 

However, despite their potential, ecophysiological models are still far 

from being completely suitable for ideotyping applications. The main limit 

concerns the lack of clear correspondence between model parameters and 

plant traits breeders are working on, which could lead to discrepancies 

between in silico ideotypes and their in vivo realizations. A strategy to 

reduce this risk is to conduct ideotyping studies involving only parameters 

with a close link to phenotypic traits targeted by breeding programs, as 

suggested in Chapter 3 and Chapter 4. However, to fully overcome this 

issue, new models specifically developed to target ideotyping studies (i.e., 

built around actual plant traits) are needed. This paradigm shift in crop 

models development is presented in Chapter 5, taking rice and salt stress as 

a case study. 

Beside the improvement (or re-design) of crop models to increase their 

suitability for ideotyping purposes, the availability of modelling tools usable 

by breeders without specific simulation or IT skills could represent another 

path to promote an effective integration of crop modelling within breeding 

activities. Chapter 6 presents the first ideotyping platform (ISIde, In Silico 

Ideotyping platform) specifically developed targeting ideotyping studies at 

district level and breeders as final users. 
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2.1. Abstract 

Although uncertainty in input factor distributions is known to affect 

sensitivity analysis (SA) results, a standard procedure to quantify its impact 

is not available. We addressed this problem by performing a SA (generating 

sample of parameter distributions) of a SA (generating samples of 

parameters for each generated distribution) of the WARM rice model using 

the Sobol’ method. The sample of distributions was generated using 

distributions of jackknife statistics calculated on literature values. This 

allowed mimicking the differences in distributions that could derive from 

different selection of literature sources. Despite the very low plasticity of 

WARM, the ranks of the two most relevant parameters was overturned in 

22% of the cases and, in general, differed from what achieved in earlier SAs 

performed on the same model. SA results were mainly affected by 

uncertainty in distribution of parameters involved in non-linear effects or 

interacting with others. The procedure identified parameters whose 

uncertainty in distribution can alter SA results, i.e., parameters whose 

distributions could need to be refined. 

 

 

Keywords: Global sensitivity analysis, ideotyping, Morris method, 

parameter distribution, Sobol’ method, WARM rice model. 
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2.2. Introduction 

Sensitivity analysis (SA) is increasingly used to develop, understand, 

improve and use environmental simulation models through the analysis of 

the impact of uncertain input factors on the variability in model outputs 

(Tarantola and Saltelli, 2003; Jakeman et al., 2006; Confalonieri et al., 

2010a; Pianosi et al., 2016). Among the main purpose of SA, indeed, a key 

role is played by the identification of parameters to calibrate (Asseng et al., 

2002), the improvement of models through reduction or simplification 

processes (Ratto et al., 2001), the support to model development (Jakeman 

et al., 2006), and the evaluation of models (Confalonieri et al., 2012). Under 

the assumption of relationships between model parameters and plant traits, 

SA was recently used also in ideotyping studies to identify plant traits on 

which breeders should focus on to increase quantitative and qualitative 

aspects of productions (Martre et al., 2015b; Casadebaig et al., 2016). 

A variety of SA techniques were proposed, each characterized by pros 

and cons that make them suitable for specific purposes or conditions. 

Among the most popular, the method of Morris (1991) is often used to 

screen parameters in case of models with many parameters or demanding in 

terms of computational time (Campolongo et al., 2007). The variance-based 

methods of Sobol’ (Sobol’, 1993) is instead considered as a reference 

technique for its capability of decomposing the output variance into terms of 

increasing dimension, representing the contribution to output uncertainty of 

each input factor and of pairs, triplets, etc. However, it is very expensive in 

terms of model executions and – to reduce the computational time – it is 

often used to estimate the total sensitivity index (Homma and Saltelli, 

1996), i.e., the overall contribution of each input factor, considering all 

possible interactions with others. Even in this case, the computational cost 

of Sobol’ led to propose other methods based on the Fourier series 

expansion of the model output to reduce the number of model executions in 

the approximation of variance-based indices, like Fourier Amplitude 

Sensitivity Test (FAST; Cukier et al., 1973) and extended FAST (E-FAST; 

Saltelli et al., 1999). Extensive reviews of SA methods were recently 
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proposed by different authors (e.g., Saltelli et al., 2005; Pianosi et al., 2016). 

In these reviews, the authors proposed effective criteria to select the SA 

method according to model assumptions, complexity and computational 

time per run, and they outlined ongoing development and research priorities. 

Like many powerful tools, SA techniques need to be applied by carefully 

considering all the aspects that can affect their functioning. Results of SA 

are influenced by the conditions explored (Confalonieri et al., 2010b; Martre 

et al., 2015b; Casadebaig et al., 2016; Cerasuolo et al., 2015), i.e., by the set 

of model inputs that are not investigated by the SA but define the simulation 

scenario. This pushed Stearns (1992) to the point of stating that sensitivity is 

situational. The influence of the conditions explored on SA results can be 

large and its extent varies in accordance with the model plasticity, defined 

as the aptitude of a model to change the sensitivity to its parameters while 

changing the conditions explored (Confalonieri et al., 2012). The 

mathematical expression proposed for the quantification of plasticity is 

              , where TDCC is the top-down concordance coefficient 

(Iman and Conover, 1987) and      is the standard deviation of a 

normalized agrometeorological indicator (Confalonieri et al., 2012). L 

ranges from 0 to about 1.51, with highest plasticity at 0. Despite their 

capability of quantifying the impact of uncertain input factors on model 

outputs, SA methods themselves can be affected by uncertainty in their own 

parameters. Indeed, all SA methods require some settings to be specified, at 

least the size of the sample of combinations of input factors (number of 

executions). Some methods need a seed for sample generation, e.g., Morris, 

FAST/E-FAST methods and some of the regression-based approaches (e.g., 

Latin hypercube sampling, random). The Morris method requires also the 

number of levels to define the parameter hyperspace. Confalonieri et al. 

(2010a) analyzed changes in SA results originated by changes in the 

parameters of the methods, and in many cases the variations they obtained 

were not negligible. Recent studies on the convergence of SA methods 

presented effective procedures to define optimum sample size according to 

the specific simulation exercise (Nossent et al., 2011; Wang et al., 2013; 
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Sarrazin et al., 2016), thus partly reducing the uncertainty related with SA 

method parameterization. 

One of the most critical steps in SA is to define ranges – and possibly 

distributions – for parameters (Pianosi et al., 2016), and this is particularly 

true for variance-based methods. Many authors, indeed, demonstrated how 

different definitions of parameter ranges/distributions can drastically alter 

SA results. Shin et al. (2013) altered the range of two parameters of two 

hydrological models by arbitrarily changing their original upper-bound 

values by ±50%, obtaining relevant changes in SA results with the Morris 

(1991) and Sobol’ (Sobol’, 1993) methods. Wang et al. (2013) run a 

sensitivity analysis of the crop model WOFOST (van Keulen and Wolf, 

1986) using the E-FAST method (Saltelli et al., 1999) and two ranges from 

the parameters for maize: one was obtained by arbitrarily perturbing the 

default value for the species by ±10%, the other was derived by Ceglar et al. 

(2011) from observations and values found in literature. Also in this case, 

SA results changed drastically while changing parameter ranges. However, 

the impact of the uncertainty in parameter distributions on the variability in 

model output and on sensitivity analysis results was never quantified using 

robust, standard and reproducible procedures. 

The aims of this study were (i) to propose and evaluate a procedure for 

quantifying the sensitivity of a SA method to the uncertainty in the 

parameter distributions, and (ii) to evaluate it with a case study using the 

Sobol’ method (Sobol’, 1993) and the WARM model for rice simulations 

(Confalonieri et al., 2009a). 

2.3. Materials and methods 

As a case study to illustrate the procedure, the WARM model for rice 

growth and development (e.g., Confalonieri et al., 2009a, 2010a; Pagani et 

al., 2014) was used. The model is fully described in the seminal literature 

and at the model web page (www.cassandralab.com/applications/2). The 

simulation scenario (one growing season) is the same described by 

Confalonieri et al. (2010a), with rice scatter seeded on 24 May 2004 in 
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northern Italy (45° 23’ N, 9° 13’ E) and grown under flooded conditions 

under unlimiting nutrient conditions and absence of weeds, pests and 

diseases. The target output was aboveground biomass at maturity (AGB). 

Fig. 1 shows the flowchart of the procedure proposed to quantify the 

impact of the uncertainties in parameters and parameter distributions on 

model behavior. When performing SA using methods requiring 

distributions, a rigorous way to retrieve the distribution for each ith model 

parameter is based on: (i) literature search to find out a set Xi = {xi1, …, xij, 

…, xin}of measured or estimated values for the parameter (Fig. 1, step 1) 

(Pianosi et al., 2016), (ii) checking normality of distribution for Xi (or test 

alternate distributions), (iii) estimating distribution parameters (e.g., mean 

and standard deviation in case of normality) for Xi. The cardinality of the 

various Xi can be different, depending on the number of values retrieved 

from literature. For the 11 parameters of WARM involved with rice growth, 

the sets of observations used in this study – always normally distributed 

according to the Shapiro and Wilk (1965) test (p>0.05) – are presented in 

Table 1. 

The uncertainty in the definition of parameter distributions – deriving 

from possible different selections of xij values from literature – was here 

mimicked using the jackknife technique (Quenouille, 1949), with Ki = {ki1, 

…, kij, …, kin} being the vector of the jackknife samples of Xi, with each 

sample kij including all elements of Xi but xij (Fig. 1, step 2). After 

calculating the mean    ̅̅ ̅̅  of each sample kij for each i
th

 parameter (step 3), 

the normality of the distributions of the vectors of the means    ̅̅ ̅̅  was 

checked (step 4), and their mean (  
  ∑    ̅̅ ̅̅

 
    ⁄ , equal to   ̅, since kij are 

jackknife samples of Xi) and standard deviation (  
  √∑ (   ̅̅ ̅̅    ̅

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
 

 
    ⁄ ) 

were estimated (step 5). 
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Figure 1. Flowchart of the procedure proposed to analyze the impact of the uncertainty 

in parameters and parameter distributions on model behavior. Black circles with numbers 

indicate the key steps in the procedure (described in detail in the text). 
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The values of   
 and   

 were then used to generate G
*
 samples of 

combinations of distribution means Jmig for the WARM parameters (step 6), 

with the latter used – together with the jackknife estimate of the standard 

deviation for each parameter (Table 1) – to generate combinations of 

parameter values for each combination of generated means (step 7). The 

jackknife estimate Jsi of the standard deviation for the i
th

 parameter is 

√
   

 
∑ (   ̅̅ ̅̅    ̅)

  
   . 

This allowed to perform G (sample size for the sensitivity analyses) 1
st
 

level SA (estimating the impact of the uncertainty in parameters given a 

certain distribution, using Jmig and Jsi, step 8) and a 2
nd

 level SA (estimating 

the impact of the uncertainty in parameter distributions) of the G 1
st
 level 

SA. For the latter, the output variable considered was AGB, whereas for the 

2
nd

 level SA we used the sensitivity indices (total order effects) derived 

from the 1
st
 level SA, and AGB statistics (mean, standard deviation, 

coefficient of variation (CV)) derived from AGB values simulated during 

each 1
st
 level SA. The variance-based Sobol’ sensitivity analysis method 

(Sobol’, 1993) was used for all the sensitivity analyses performed in this 

study. In both cases, the sample size for the combinations (of distributions 

and of parameter values) was the lowest value of       (   ), with 

   (   )  (    ), q={1, 2 , 3, …, Q}, γ is the number of model runs 

for each parameter (500 for Sobol’ method according to Confalonieri et al. 

(2010a), and n is the number of parameters. In the current study, G assumed 

the value of 6144. 
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Table 1. WARM parameters involved with rice growth, literature sources, mean of 

observations, jackknife estimate of the standard deviation, standard deviation of the means 

of the jackknife subsamples (σ*, see text for details). 
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2.4. Results and Discussion 

Fig. 2 shows the results of the 6144 1
st
 level SA. On average, the 

parameters LAIini, RUE and Topt were those with the largest influence on 

model output, in agreement with what achieved by Confalonieri et al. 

(2010b) with the same model. However, the ranks for the three parameters 

calculated in this study were different: LAIini was ranked first instead of 

third, RUE second instead of first, and Topt third instead of second. 

Considering the very similar agronomic and environmental conditions for 

the two studies and the same parameterization of the SA method, differences 

in results can be explained only by the differences in parameter distributions 

(Table 1). This is a first demonstration of how crucial distributions are in 

SA, given that differences in the distributions used in the two studies led to 

different rankings for most relevant parameters, whereas the same ranks 

were observed by Confalonieri et al. (2010b) for different continentality 

regimes. The importance of distributions in affecting SA results is 

confirmed by the results achieved in this study. Indeed, despite the large 

difference in the mean values of the Sobol’ total order effect (St) for LAIini 

and RUE, their rank was overturned in almost 22% of the 1
st
 level SA 

because of differences in the generated means (Jmig), in turn used to 

generate the samples of parameter combinations. 

Besides the three most relevant parameters – i.e., LAIini (responsible on 

average for 46% of the output variance), RUE (31%) and Topt (10%) – 

RipL0 and Tbase explained, on average, 3.5% and 2.9% of the total 

variability in model output, whereas k and Tmax explained only 1.7% and 

1.1%. The other parameters achieved St values close to zero and are not 

further discussed. 
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Figure 2. Box plots of the Sobol’ total order effects (St) for model parameters obtained 

for the 6144 1st level sensitivity analyses. Variability results from the use of different 

distributions (generated) for model parameters. 

 

Fig. 3 shows the results of the 2
nd

 level SA (impact of different parameter 

distributions). The uncertainty in the distribution of LAIini (on average 

ranked first in 1
st
 level SA) explained a large part of the variability in SA 

results, i.e., in the St values obtained for the different parameters during the 

1
st
 level SA. In particular, it explained almost all the variability in the St 

obtained for LAIini (99%, Fig. 3.a), RUE (98%, Fig. 3.f), Topt (89%, Fig. 

3.d) and k (83%, Fig. 3.g). It explained a smaller part of the variability in St 

for RipL0 (Fig. 3.b) and Tbase (Fig. 3.c), whereas it was not relevant for 

explaining the variability in St for Tmax (Fig. 3.e). Contrarily, the 

uncertainty in the distribution of RUE (ranked 2
nd

 in 1
st
 level SA) did not 

affect SA results: regardless of the parameter (including RUE itself), 

changes in its distribution never explained more than 3% of the variability 

in St values.  
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Figure 3. Sobol’ total order effects (St*) calculated for the 2nd level sensitivity analysis 

(SA) (impact of uncertainty in parameter distributions) using different outputs from the 

6144 1st level SA (uncertainty in parameters). a to g: outputs considered were the 1st level 

SA St for model parameters; h to j: outputs considered were statistics (μ: mean, σ: standard 

deviation, CV: coefficient of variation) calculated on the 6144 aboveground biomass 

(AGB) values simulated for each 1st level. 
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This can be explained by the pronounced linear effect of RUE on AGB 

accumulation. Indeed, for each model parameter, all generated means Jmig 

were used for the 1
st
 level SA with the same value of standard deviation 

(jackknife estimate of the standard deviation Jsi). Given the role of RUE on 

the daily rate of biomass accumulation (Warren Wilson, 1967), this led to 

RUE distributions for the 1
st
 level SA that did not alter considerably the 

relative role of parameter uncertainties in affecting AGB. 

The uncertainty in the distribution of Topt (on average ranked third 

during the 1
st
 level SA) explained 42% and 28% of the variability in the St 

values obtained for Tmax (Fig. 3.e) and Tbase (Fig. 3.c), respectively. This 

made this parameter the one whose uncertainty affected SA results more 

markedly after LAIini. The reason is likely due to the strong interaction of 

this parameter with Tbase and Tmax, since they are simultaneously used to 

define the beta function adopted for thermal limitation to photosynthesis 

(Yin and Kropff, 1996).  

The values of St* for the 2nd level SA calculated on AGB statistics (in 

turn deriving from the 1st level SA) showed a different picture in terms of 

relative role of parameter distributions. The variability of the means of the 

AGB values simulated for each 1st level SA (Fig. 3.h) is largely explained 

by the uncertainty in the distributions of RUE and Topt (both explaining 

40% of the total variance in AGB means). The parameter ranked third in 

terms of relevance of distribution uncertainty on AGB means is Tbase, 

whereas the uncertainty in the distribution of LAIini (on average ranked first 

by 1st level SA) explained only 6% of the variability in AGB means, 

although it explained 45% of the variability in AGB standard deviations 

(Fig. 3.i). This can be partly explained by the variability (CV = 64%, with 

CV for the other parameters ranging between 6% and 24%) in the values for 

this parameter originally retrieved from the literature (Table 1). The 

uncertainty in the distribution of RipL0 (on average ranked fourth in the 1st 

level SA) usually did not affect mean AGB values, although it was ranked 

second for the impact on the standard deviation of the AGB values 

simulated during the 1st level SA (Fig. 3.i). Like for LAIini, this is likely 
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explained by the variability (CV = 24%) in literature values for this 

parameter. 

Considering the coefficient of variation as output for the computation of 

the St values for the 2nd level SA (Fig. 3.j), the uncertainty in the 

distribution of Topt explained more than 25% of the variability, whereas 

LAIini explained 20% and RipL0, RUE and Tbase explained about 13%. 

2.5. Conclusions 

The procedure proposed – actually a sensitivity analysis of a sensitivity 

analysis – demonstrated its capability of quantifying the impact of the 

uncertainty in parameter distributions on sensitivity analysis results. Indeed, 

it proved to be able to identify parameters for which uncertainty in 

distribution has the largest impact on sensitivity analysis results. Besides the 

conceptual relevance, the procedure has practical implications for scientists 

interested in using sensitivity analysis techniques. As an example, it would 

allow – before running the analysis – to better investigate the distributions 

for the parameters whose uncertainty is more relevant, e.g., by searching 

more data to refine the distributions or by screening literature data according 

to the experimental conditions or to the method used for their estimate. To 

give an idea of the practical implications that could derive from uncertainty 

in distributions, we can assume that the simulation experiments presented in 

the case study would have targeted plant traits identification for ideotyping 

purposes. In this case, the overturn of LAIini and RUE as top-ranked 

parameter due to different distributional assumptions (Fig. 2) would have 

led to plan breeding programs focusing on traits dealing with photosynthetic 

efficiency (Zhu et al., 2010) instead of traits involved with coleoptile leaf 

size and initial leaf expansion, and with the effect of environment and 

management on emergence dynamics (Ogiwara and Terashima, 2001). 

However, these considerations are valid regardless of the purpose of the 

specific study, e.g., identifying parameters to calibrate (van Werkhoven et 

al., 2009) or traits breeders should focus on under specific conditions 
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(Martre et al., 2015b), analyzing model structure (Sieber and Uhlenbrook, 

2005) or developing new models (Jakeman et al., 2006). 

In general, the procedure suggests being very careful when defining 

distributions: especially for parameters with a non-linear effect on model 

outputs and for which interactions with other parameters are expected, the 

uncertainty in distribution may markedly alter the results of the analysis, 

even overturning the ranks for most relevant parameters. 

Moreover, the model used in this study, i.e., WARM, demonstrated in 

past studies (Confalonieri et al., 2010b, 2012) its low plasticity compared to 

other crop models (e.g., WOFOST, van Keulen and Wolf, 1986; CropSyst, 

Stöckle et al., 1994). It is largely expected that the uncertainty in parameter 

distributions would have an even stronger impact on sensitivity analysis 

results in case of models with more parameters playing a key and 

homogeneous role in explaining the variability of model outputs. 
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3.1. Abstract 

Growing food crops to meet global demand and the search for more 

sustainable cropping systems are increasing the need for new cultivars in 

key production areas. This study presents the identification of rice traits 

putatively producing the largest yield benefits in five areas that markedly 

differ in terms of environmental conditions in the Philippines, India, China, 

Japan and Italy. The ecophysiological model WARM and sensitivity 

analysis techniques were used to evaluate phenotypic traits involved with 

light interception, photosynthetic efficiency, tolerance to abiotic stressors, 

resistance to fungal pathogens and grain quality. The analysis involved only 

model parameters that have a close relationship with phenotypic traits 

breeders are working on, to increase the in vivo realizability of selected 

ideotypes. Current climate and future projections were considered, in light 

of the resources required by breeding programs and of the role of weather 

variables in the identification of promising traits. Results suggest that 

breeding for traits involved with disease resistance and tolerance to cold- 

and heat-induced spikelet sterility could provide benefits similar to those 

obtained from the improvement of traits involved with canopy structure and 

photosynthetic efficiency. In contrast, potential benefits deriving from 

improved grain quality traits are restricted by weather variability and 

markedly affected by G×E interactions. For this reason, district-specific 

ideotypes were identified using a new index accounting for both their 

productivity and feasibility. 

 

 

 

Keywords: Blast, canopy structure, chalkiness, head rice, photosynthetic 

efficiency, sensitivity analysis, spikelet sterility, WARM. 
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3.2. Introduction 

An ever-increasing world population is generating a need for more 

efficient cropping systems (Foley et al., 2011). This can be achieved via 

more sustainable and effective management practices and via the 

development of genotypes that are more efficient under changing climate 

conditions (Habash et al., 2009; Ziska et al., 2012). 

During the Green Revolution, yield potential was increased mainly by 

breeding for greater photosynthate partitioning to harvested organs and by 

changing canopy structure to increase the efficiency of light interception 

(Drewry et al., 2014). According to many authors, several yield related traits 

are close to their biological limits (e.g. Long et al., 2006) and this highlights 

the need to target a wider number of traits that determine crop productivity 

(Drewry et al., 2014). There is undoubtedly room for further improvements 

to both the efficiency with which light is captured by crop canopies (Long et 

al. 2006) and photosynthetic efficiency, for which there are still wide 

theoretical margins for improvement (Zhu et al., 2010). Some desirable 

traits reduce the yield gap (Espe et al., 2016) by conferring increased 

resistance/tolerance to biotic and abiotic stressors (Kush, 2001; Oerke, 

2006; Paleari et al., 2015). Improving tolerance to extreme climatic events is 

key to facing future challenges dealing with food security (Battisti & 

Naylor, 2009; Semenov & Stratonovitch, 2013). Another factor that is 

expected to play a key role under climate change conditions is the quality of 

products, especially for cereals (Porter & Semenov, 2005; Martre et al., 

2011).  

Ecophysiological models are increasingly used to support breeding 

programs via the putative identification of desirable traits (e.g. Tardieu, 

2003; Dingkuhn et al., 2007; Herndl et al., 2007; Messina et al., 2011; 

Martre et al., 2015a; Casadebaig et al., 2016), or quantifying the 

performance of improved genotypes under a wide range of edaphic and 

climatic conditions (Jeuffroy et al., 2013). This can be done by using single 

crop models or model ensembles, like in the study from Tao et al. (2017), 
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where eight models were used to design climate-resilient barley ideotypes 

for Boreal and Mediterranean climatic zones in Europe. 

An effective way to identify traits to improve yield performance is by 

conducting sensitivity analysis using ecophysiological models (Martre et al., 

2015a). Sensitivity analysis, indeed, quantifies the portion of model output 

variance explained by changes in the values of input factors (Tarantola & 

Saltelli, 2003). The underlying assumption, of course, is the existence of a 

close relationship between model parameters and plant traits (Semenov & 

Stratonovitch, 2013; Casadebaig et al., 2016), which does not always hold. 

As an example, most rice models among those analysed by Li et al. (2015) 

have a parameter for leaf area index at emergence, which has nothing to do 

with a trait but it is simply needed to allow the interception of radiation at 

the first time step after emergence. The reason, of course, is the lack of 

explicit representation of the processes involved with germination and with 

heterotrophic growth of rice seedlings. In addition, some plant breeders 

focus on traits (e.g., stay-green; Thomas and Ougham, 2014) for which most 

models do not have corresponding parameters (Fig. 1). 

 
Figure 1. Diagram showing how model-based ideotyping only deals with a fraction of 

plant traits and model parameters, given the lack of relationships between some plant traits 

and model parameters. 

 

The complex interactions between genotype (G), environment (E) and 

management (M), as well as the large impact of explored conditions on 
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sensitivity analysis results (Confalonieri et al., 2012), strongly suggest there 

is value in performing this kind of analysis at a sub-region level (Paleari et 

al., 2015). The objective of this study is the identification of rice traits that 

putatively produce the largest yield increase in five areas that markedly 

differ in terms of environmental conditions in the Philippines, India, China, 

Japan, and Italy. Phenotypic traits that were analysed impact light 

interception and photosynthesis, tolerance to abiotic stressors, resistance to 

diseases and grain quality. Given the time and resources required to develop 

improved cultivars (Brennan & Martin, 2007; Heffner et al., 2010) and the 

impact of promising traits as affected by environmental variables (Zheng et 

al., 2012), the study was performed under both current (1986-2005 baseline) 

and projected climate conditions. In particular, 20-year series centred on 

2030 and 2050 were derived for IPCC AR5 (IPCC, 2013) representative 

concentration pathways (RCP) 2.6 and 8.5 and two general circulation 

models using a stochastic weather generator.  

Although ecophysiological models are far from being completely suitable 

for ideotyping, they are increasingly structured to reproduce the interaction 

between plant physiology and genetics (Luquet et al., 2016). We attempted 

to reduce discrepancies between in silico ideotypes and in vivo realizations 

by selecting model parameters that have a direct link with specific 

phenotypic traits (orange area in Fig. 1). This allowed us to test in silico 

strategic breeding, while avoiding the need to conduct sensitivity analysis 

on all model parameters. 

3.3. Materials and methods 

3.3.1. The modelling solution 

An hourly-time step modelling solution based on WARM (Confalonieri 

et al., 2009; Pagani et al., 2014) was used. A micrometeorological model 

(Confalonieri et al., 2005) allows using temperatures at the meristematic 

apex for phenological development and spikelet sterility induced by thermal 

shocks, whereas mid-canopy temperature is used for photosynthesis, leaf 

senescence and leaf blast infection. The micrometeorological model is based 
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on the solution of the surface energy balance equation at different depths 

into the canopy; the same approach is used for floodwater temperature, with 

an additional term representing the heat stored into the water (function of 

net radiation and water depth). In particular, temperature at the meristematic 

apex is assumed the same as the water before panicle initiation, whereas 

later as the canopy layer corresponding to the panicle height. Net 

photosynthesis is quantified through the concept of radiation use efficiency 

(RUE), with the latter modulated by temperature, senescence, enzymatic 

chains saturation to light, and rice blast disease, Magnaporthe oryzae B. 

Couch (Confalonieri et al., 2009). Photosynthate partitioning to plant organs 

is based on a set of parabolic and beta functions, with leaf area index (LAI) 

increase derived by daily leaf mass production and a dynamic specific leaf 

area (SLA). Leaf senescence is simulated based on thermal time 

accumulated by each daily-emitted unit of leaf area. Cold-induced spikelet 

sterility is estimated from the difference between a threshold temperature 

and hourly temperatures at the meristematic apex during stem elongation 

(microsporogenesis; Hayashi et al., 2006) and flowering (development of 

the anthers as well as the dehiscence, ripening, shedding and germination of 

pollen grains; Sanchez et al., 2014). The heterogeneity in development 

between plants and between tillers of the same plant (time interval between 

the emergence of successive tillers) is taken into account by weighting daily 

stress values (in turn derived by cumulating hourly ones) by using bell-

shaped functions (Confalonieri et al., 2009). Heat-induced sterility is 

estimated in a similar fashion around flowering. The day of the disease 

onset is estimated based on hydrothermal time accumulation according to 

Arai & Yoshino (1987) and Kim (2000) as a function of hourly air 

temperature for hours with relative humidity exceeding 93%, whereas the 

daily rice blast infection efficiency is computed according to Magarey et al. 

(2005). The simulation of the length of the latency, incubation and 

infectious periods is based on hourly air temperature. Damages to leaf 

tissues are incorporated using a compartmental susceptible-infected-removal 

model, with decrease in photosynthate accumulation based on the estimated 
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loss in photosynthetic leaf area due to blast lesions. Reduction of grain yield 

is reproduced by reducing the daily fraction of assimilates partitioned to the 

panicles by the rice growth model after the panicle initiation stage 

(Bregaglio et al., 2016). 

Simulated grain quality variables are the percentage of kernels that are 

chalky or opaque and head rice yield (relative weight of largely intact 

kernels, also referred to as whole grain, after milling), both of which are key 

factors in determining rice market price at global level. The percentage of 

chalky kernels is simulated depending on the growing degrees daily 

accumulated above a critical temperature post-heading, modulated 

according to cultivar-specific susceptibility and seeding density (Nagahata 

et al., 2006). Potential head rice yield is simulated as function of hourly 

night-time air temperature during grain ripening, and is then decreased when 

rainfall, wind speed and temperature exceed critical thresholds for starch 

synthesis during the sensitive period after full flowering (Cappelli et al., 

2016). Differences among varieties for susceptibility to chalkiness is 

represented by different values of the threshold temperatures inducing the 

damage; a threshold temperature is also used to reproduce the cultivar-

specific susceptibility to grain breakage. 

3.3.2. The ideotyping experiments 

The analysis was conducted for the sites described in Table 1. The first 

four sites (Los Baños, Ludhiana, Nanjing, and Shizukuishi) were described 

by Li et al. (2015), who provided detailed data on management and on other 

information used to run simulations. The Milan site was added to expand the 

climatic conditions included in the analysis, with management information 

for the simulations provided by Confalonieri et al. (2010). For each site, 

sensitivity analyses were conducted for current climate conditions (baseline, 

1986-2005) and for two projected 20-year time frames centred on 2030 and 

2050. Climate change scenarios were generated for the IPCC AR5 (IPCC, 

2013) RCP 2.6 (emissions peak in 2010-2020, decline later) and 8.5 

(emissions continue to rise), to account for the largest variability in future 

projections. For the same reason, two general circulation models (GCMs) 



Chapter 3                                                                                                        .. 

 36 

were used: HadGEM2 (Hadley Centre, UK; Collins et al., 2011) and GISS-

ES (NASA; Schmidt et al., 2006). For each time frame × RCP × GCM, 

synthetic weather series were generated using the CLIMAK weather 

generator (Danuso, 2002; Confalonieri, 2012). 

 

Table 1. Study sites and characterization. 

 

 

Parameters on which sensitivity analyses were conducted are listed in 

Table 2, with references supporting their key role in breeding programs, the 

distribution used to sample the parameters hyperspace, and the sources of 

information used to produce the distributions. The sampling of incoherent 

values from the distributions was avoided using a 0.05 truncation. 

For T-ColdSter, two distributions were used to account for marked 

differences comparing genotypes grown under temperate and tropical 

environments. 

The study was performed using the variance-based global sensitivity 

analysis method of Sobol’ (1993), considered as a reference for sensitivity 

analysis (Saltelli & Sobol’, 1995), with the variance of model output 
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decomposed in terms of increasing dimension (partial variances) 

representing the contribution of each parameter, pair of parameters, triplets, 

etc. to the overall output uncertainty. Monte Carlo sampling is used to 

explore the parameter hyperspace. Statistical estimators of partial variances 

are calculated through multi-dimensional integrals. In this study, we focused 

on the total order effect (S), providing a synthetic representation of the 

effect of each parameter, including possible interactions with others 

(Homma & Saltelli, 1996). 

The number of simulations for each experiment was the lowest value of 

    (   ), with       (    ),       (    ), γ is the 

number of model runs for each parameters (Confalonieri et al., 2010), and n 

is the number of parameters in the sensitivity analysis. The number of 

combination of parameters varied for the simulations was 5120. 

The variable analyzed was: 

       [(    )   ]  
 

 
 

where YL (t ha
-1

) is grain yield, V (€ t
-1

) is the value of whole and non-

chalky grains, HR (unitless, 0-1) is the head rice yield, C (unitless, 0-1) is 

the chalkiness. This simultaneously accounts for both production (t ha
-1

) and 

the value of broken and chalky grains being about half of the value of non-

chalky whole grains. The mean of the outputs simulated over the 20 years 

was used, to account for the seasonal variability in weather data. 

The total number of simulations was in excess of 6.6 millions. 

Parameters were ranked using the Sobol’ total order sensitivity index and 

the agreement between rankings from different districts and under multiple 

climate scenarios within the same location was evaluated using the top-

down coefficient of concordance (TDCC; Helton et al., 2005). Values for 

TDCC close to one indicate a high level of consistency between the 

rankings of parameters. 
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Table 2. Parameters on which the sensitivity analyses were performed, relevance for 

breeding of the corresponding traits, parameters distribution and source of information. 

 

Sensitivity analysis can be used not only to provide indications about 

traits with the highest impact on yield but also to explore putative ideotypes 

(Suriharn et al., 2011). The combination of parameter values derived by 

sampling the parameters hyperspace, indeed, can be regarded as 

hypothetical genotypes, which can be evaluated based on productivity. 

However, yield is not the only criteria to consider for this purpose. In order 
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to derive a comprehensive evaluation of the ideotypes, a synthetic index was 

also developed (Ideotype score, Iscore, unitless): 

       [∑((
       

  
    )  

 

√  
)  
 

 

 

   

]  (  
  

     
) 

where n is the number of parameters defining the ideotype, xi is the value 

of the ith parameter, mi is the distribution mean of the ith parameter, Si is the 

Sobol’ total order index for the ith parameter, and Yv/Yv max is the production 

of the ideotype (expressed as € ha
-1

) normalized to the maximum of all 

ideotypes under evaluation. This index takes into account (i) how much a 

trait should be improved as compared to the population mean and (ii) its 

relative importance for yield via the value of S (i.e., what is the effect of the 

improvement in terms of productivity). This allows scoring for traits for 

which even small improvement has an effect on yield. For each site and time 

frame × RCP × GCM combination, the Iscore was calculated for each of the 

5120 combinations of parameters, and the district-specific ideotype was 

derived by averaging the parameter values of the 1% combinations top-

ranked according to Iscore. This allows identifying ideotypes that are less 

affected by the presence of local minima in the hyperspace and to avoid 

providing breeders with putatively superior ideotypes that have a low 

probability of being reproducible in vivo. 

3.4. Results  

Results are presented and discussed only for the extreme climate 

scenarios that were tested: RCP8.5-HadGEM2 (the warmest) and RCP2.6-

GISS-ES (the mildest). Moreover, only results for the 2030 time frame are 

discussed in detail, due to relevant differences not arising comparing the 

two time frames. 

Regardless of the site and climate scenario, parameters involved with 

photosynthetic efficiency and light interception had a high impact on yield. 

For the latter, SLAtill (involved with leaf area expansion) and k (canopy light 

extinction coefficient, involved with canopy structure) always explained a 

large part of the output variability (Fig. 2), whereas the relevance of SLAini 
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(leaf area expansion during early vegetative growth) was markedly 

influenced by the interaction with environmental conditions. Indeed, SLAini 

achieved high values for the sensitivity metric only in Shizukuishi (Fig. 2j, 

k, l), i.e., the coldest site (Table 1) among those studied. This is largely 

explained by considering that the thermal limitation to photosynthesis is 

partly compensated for by rapid canopy development. For the same reason, 

changes in the sensitivity metric under different environments were obtained 

also for k, for which the highest values for S were obtained for the site 

where the average radiation was lowest (Shizukuishi) and vice versa (Table 

1). 

However, the largest variability in SA among sites and climate scenarios 

was obtained for parameters involved with resistance/tolerance to biotic and 

abiotic stressors. The parameter representing blast resistance had the highest 

relevance in Milan under both current climate and future projections. 

Although to a lesser extent, the same was achieved for Nanjing and 

Ludhiana, whereas very low sensitivity metrics were estimated in Los Baños 

and Shizukuishi. It is important to note that low model sensitivity to a 

parameter does not mean that the impact of the process involved is 

negligible. It just means that changes in the parameter value explain only a 

small portion of the total variance in model outputs. Indeed, the mean 

impact of blast disease on yield simulated for Los Baños and Shizukuishi 

was, under current climate, equal to 12.1% and 11.7%, respectively. 
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Figure 2. Sensitivity analysis results for current climate (left column) and for the 2030 

time frame: RCP2.6-GISS-ES (central column), RCP8.5-HadGEM2 (right column). a, b, c: 

Los Baños; d, e, f: Ludhiana; g, h, i: Nanjing; j, k, l: Shizukuishi; m, n, o: Milan. Stripped, 

chequered, black and white bars refer to parameters involved with interception and 

photosynthesis, blast resistance, tolerance to temperature shocks, grain quality. 
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As expected, strong G×E interactions affected the relevance of 

parameters involved with tolerance to heat- (T-HeatSter) and cold-induced 

(T-ColdSter) spikelet sterility. Under current climate conditions, the model 

was markedly sensitive to T-HeatSter only in Ludhiana (Fig. 2d), where the 

average maximum temperature during the season is the highest. The 

relevance of this parameter was slightly lower under future climate 

projections, despite the general temperature increase. This was not due to 

changes in simulated phenological development that shifted the time 

window when the crop is susceptible but to the overall increase in the 

frequency and intensity of the events, that increased the mean impact of 

heat-induced sterility while decreasing, regardless of the parameter value, 

the variability in related outputs. For the Milan and Nanjing sites, the 

projected temperature increase resulted in an increased impact of T-

HeatSter, which was more pronounced for the warmer scenario (RCP8.5 

HadGEM2). The model was sensitive to T-ColdSter only in the two coldest 

sites of Shizukuishi and Milan and only under the current climate; the 

projected warming of climate, indeed, is expected to reduce the relevance of 

this parameter (Paleari et al., 2015). 

Changes in the values of parameters involved with grain quality did not 

affect model output (i.e., V, € t-1), despite the overall relevance of the 

processes involved with head rice, e.g., broken rice under current climate 

ranged between 17.5% (Los Baños) and 19.7% (Shizukuishi). This suggests 

that, under the conditions explored, the influence of environmental factors is 

larger than the genotype effect. 

The marked heterogeneity in the climate conditions and the G×E×M 

interactions affecting the importance of parameters representing 

resistance/tolerance traits led to poor concordance of parameter rankings 

among sites (TDCC values ranging from 0.52 to 0.75), thus confirming the 

need to perform ideotyping studies at a sub-region level. In contrast, 

concordance between rankings obtained within the same location under 

different climate change scenarios (RCP2.6-GISS-ES and RCP8.5-

HadGEM2) was higher, with TDCC always exceeding 0.98. This proves the 
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independence of the relevance of the key traits identified via sensitivity 

analysis from the uncertainty in climate change projections. Instead, the 

inclusion of current climate (baseline) in the evaluation of the concordance 

among parameter rankings within site led to lower values for TDCC 

(ranging from 0.84 to 0.98). This demonstrates the importance of testing 

ideotypes under both current climate and future projection to define 

medium-term breeding strategies. 

 

The improvement suggested for the traits under evaluation ‒ expressed as 

percentage variation compared to the parameter distribution mean ‒ is 

shown in Fig. 3. In general, ideotypes presented higher values for 

parameters representing traits involved with canopy architecture and 

photosynthetic efficiency (SLAtill, k, RUE), with the exception of SLAini. In 

this case, the pathways of improvement followed both directions based on 

the environment: higher than the distribution mean for cold sites (e.g., 

Shizukuishi, Fig. 3d) and lower for warm sites, especially for HadGEM-

RCP8.5. Indeed, while sensitivity analysis, alone, led to identifying key 

traits, its use within Iscore allowed the extent and the direction for 

improvement to be better defined. The reduction in SLAini under warm 

conditions is explained by considering its role in determining the increase in 

LAI during early stages. Indeed, the higher the rate of increase of LAI 

during early growth, the faster the decrease of green LAI due to senescence 

when those LAI units die, after they have accumulated a given thermal time. 

In warm environments, the thermal time threshold is reached earlier and the 

simulated decrease in green LAI is more rapid. In case of high SLAini, the 

LAI units that start dying at the beginning of senescence are larger and the 

photosynthetic rates in mid-late stages are lower, due to less radiation being 

intercepted. 
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Figure 3. Profile of the ideotypes identified for the five districts. a: Los Baños; b: 

Ludhiana; c: Nanjing; d: Shizukuishi; e: Milan. Traits improvement is expressed as 

percentage variation of the values of related parameter compared to the distribution mean 

(dashed lines). f: percentage yield increases compared to the genotype defined by parameter 

distribution means. Blue series refers to current climate, red series to a 2030 climate change 

projection derived using RCP2.6 and GISS-ES, green series to a 2030 climate change 

projection using RCP8.5 and HadGEM2. 
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Regarding the traits involved with resistance/tolerance to biotic/abiotic 

stressors, district-specific ideotypes showed marked heterogeneity. 

Improvement for blast resistance was particularly relevant in Milan (Fig. 

3e), Nanjing (Fig. 3c) and Ludhiana (Fig. 3b) (from +40.4% to +26.9% in 

parameter value under current climate), whereas it is more limited in Los 

Baños (Fig. 3a) and Shizukuishi (Fig. 3d) (lower than +10%). The 

importance of improvements for blast resistance also changed according to 

the climate scenario, decreasing for the warmest and driest projection 

(HadGEM-RCP8.5), i.e., for conditions less favourable for blast disease 

epidemics. However, the evolutionary potential of the pathogen in the 

medium-long term was not considered in this study, since information is 

currently not available to predict the development of virulent strains. 

Heterogeneity across sites and scenarios characterized ideotypes in terms 

of tolerance to heat- and cold-induced spikelet sterility, as already shown by 

the sensitivity analysis. Despite the high value for the related sensitivity 

metrics, the extent of the improvement required for the ideotypes was quite 

limited, never exceeding 5%. This is because the high model sensitivity to 

changes in the values of the parameters produced significant yield benefits 

even with small variations in parameter values. Once more, this highlighted 

the importance of Iscore for identifying possible breeding pathways. 

In general, although the approach proposed led to quite conservative 

ideotypes (lacking extreme deviations for parameter values compared to the 

distribution means), the simulated yield increase ranged from 6% to 20% 

(Fig. 3f). Using broader distributions would have led to larger variations in 

parameters/traits and to greater increases in ideotypes’ productive 

performance, but would have very likely increased doubts about the 

possibility of producing in vivo the resulting plant types. However, in case 

of availability of data coming from dedicated field measurements carried out 

on breeding populations, the ideotypes can be further refined to exploit the 

available genetic variability. 
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3.5. Discussion 

We performed a global sensitivity analysis involving parameters dealing 

with canopy architecture and photosynthetic efficiency, resistance/tolerance 

to biotic and abiotic stressors and grain quality in five contrasting rice 

production areas, under current weather and climate change scenarios to 

identify future rice ideotypes. These parameters are related with traits 

currently regarded as priority for breeding (Peng et al., 2008; Dingkuhn et 

al., 2015), but a comparative evaluation of their relative importance under 

different conditions was not available. The analysis was performed only on 

parameters with a close link to traits breeders are working on. This would 

allow an increase in the in vivo realizability of ideotypes and to consider the 

effect of the interactions among target parameters (traits). Such interactions 

‒ quantified by total-order sensitivity index ‒ are indeed specific for the set 

of parameters analysed, thus preventing the inclusion of the effect of 

interactions of target parameters with others without clear relationships with 

traits. Although breeding for CO2 responsiveness is increasingly being 

considered as a promising strategy for C3 crops (Ziska et al., 2012), this was 

not considered in this study. Reasons are the non-systematic relationships 

between CO2 responsiveness and specific plant features (in turn generating 

the absence – at the present – of specific models), and the difficulties in up-

scaling knowledge on related biological processes from single leaf/plant to 

canopy level (Ziska et al., 2012). Concerning climate scenarios, CO2 

concentration was here considered as affecting only photosynthetic rate. 

However, the modelling community should start developing tools suitable 

for supporting breeding for CO2 responsiveness, especially considering the 

interactions between rising CO2 and key processes and traits for which 

breeding programs are on-going (Ziska et al., 2012), like, e.g., those 

involved with grain quality (Taub et al., 2008), resistance to diseases (Lake 

and Wade, 2009), tolerance to water stress (Lin and Wang, 2002), and leaf 

morphological features (Ishizaki et al., 2003). 

Results we obtained suggest that breeding for traits involved with disease 

resistance and tolerance to sterility induced by thermal shocks could provide 
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benefits similar to those obtained from improving canopy structure and 

photosynthetic efficiency. However, breeding pathways should account for 

heterogeneity both in space (production areas) and time (climate change 

scenarios), given its key role in modulating ideotypes features. Resistance to 

blast disease is one of the traits with the largest impact on yields in Milan ‒ 

in agreement with the priority given to this trait in Italian rice breeding 

programs (Faivre-Rampant et al., 2011) ‒ but tolerance to heat stress also is 

expected to play a key role in the coming decades. The impact of climate 

change on ideotype features was reported also by Semenov & Shewry 

(2011), who suggested that heat stress could become the main constraint for 

wheat production in Europe in the future. Another important finding of the 

current study is that environmental factors may hide the potential benefits 

obtained by developing improved genotypes, as in case of traits involved 

with grain quality. This is in agreement with the large variability in the 

percentage of broken kernels because of seasonal variability during ripening 

(Rossel & Marco, 2008; Sreenivasulu et al., 2015). 

Of course, this kind of analysis was built on the assumptions of a close 

relationship between model parameters and plant traits (Martre et al., 2015a) 

and of a proper formalization in models of the knowledge on physiological 

feedbacks and interactions between phenotypic features. Although to a 

different extent, both these assumptions hold only partially in available crop 

models (e.g., Messina et al., 2011), including the one used in this study. To 

alleviate potential undesired impacts of partial model unsuitability, 

ensemble modelling is becoming increasingly used within the scientific 

community (e.g., Rotter et al., 2012; Martre et al., 2015c; Li et al., 2015), 

and recent studies are available where multi-model ideotyping was 

suggested (Rötter et al., 2015) or performed (Tao et al., 2017). However, 

one of the key novelties of the current study was designing ideotypes by 

including in the analysis traits involved with resistance to pathogens and 

grain quality variables, and no other rice models are currently available that 

include both these aspects. This prevented us from performing the study 

using ensemble modelling techniques. Moreover, epistatic or pleiotropic 
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interactions were not taken into account. Indeed, correlations between traits 

(due to gene-gene interactions or close linkage or genes affecting multiple 

traits) could limit the number of the potential ideotypes under evaluation. 

However, accounting for them would have required (i) correlation 

coefficients between plant traits and (ii) quantitative relationships between 

plant traits and model parameters. Moreover, correlation coefficients should 

be carefully derived via multi-environmental trials in order to avoid 

including any G×E effect in the relationships, and this is currently 

unavailable (Jahn et al., 2011). For these reasons, despite explicitly 

considering correlations between traits would likely increase the in vivo 

realizability of ideotypes (Yin et al., 2016), they are not included in current 

model-based ideotyping studies (e.g., Casadebaig et al., 2016; Quilot-Turion 

et al., 2016). Another potential criticism of our study is that, despite this 

likely being the first sensitivity analysis-based ideotyping study 

incorporating plant-pathogen interactions, we did not considered the 

evolutionary potential of the pathogen in response to changing climate and 

the potential for development of strains more adapted to local conditions 

(Chakraborty, 2013). 

Despite the potential areas of improvements just discussed, one of the 

main strength of this study is related to the collective breadth of conditions 

explored and with the number of processes considered. Indeed, the analysis 

was performed on traits involved with light interception and photosynthesis 

as well as with tolerance to abiotic stressors, resistance to fungal pathogens 

and grain quality. Moreover, the use of multiple climate change scenarios 

allowed uncertainty associated with climate projections to be addressed and 

provide directions for the medium-long term for breeding programs. These 

elements make the current study an effective screening of traits that could 

represent a basis for further studies, which – starting from these findings – 

could refine the analysis through a deep involvement of breeders and, 

possibly seed companies, also to better tailor distributional assumptions on 

specific germplasm. 
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Sensitivity analysis confirmed its suitability to identify key traits under 

different agro-environmental contexts. The index we developed (Iscore) 

moves a step forward, leading to the identification of district-specific 

ideotypes in light of both their productivity and their feasibility, by 

implicitly considering the probability of high-potential ideotypes to be 

successfully realized in vivo. The index is calculated from total-order effects 

and from the outputs of each simulation performed within the sensitivity 

analysis. Thus, Iscore allowed deriving ideotypes directly from sensitivity 

analysis, without further steps. Other approaches, instead, use sensitivity 

analysis only to identify promising traits that should be considered by rice 

breeders (e.g., Martre et al., 2015a; Casadebaig et al., 2016), since the 

optimal values for those traits under target conditions (in turn defining the 

ideotype) are derived using optimization algorithms (e.g., Semenov and 

Stratonovitch, 2013; Drewry et al., 2014; Quilot-Turion et al., 2016). The 

approach we propose allows use of a single computational procedure for 

both purposes, since the optimization of trait values is performed by 

exploiting the capability of the sensitivity analysis sampling techniques to 

effectively explore the parameter hyperspace. In case quantitative 

information on correlated traits will be available, our approach would allow 

for accounting for pleiotropy and epistasis, since advanced methods for 

sensitivity analysis allow sampling parameter hyperspaces by explicitly 

considering correlations (Mara and Tarantola, 2012). 
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4.1. Abstract 

Using crop models as supporting tools for analyzing the interaction 

between genotype and environment represents an opportunity to identify 

priorities within breeding programs. This study represents the first attempt 

to use simulation models to define rice ideotypes improved for their 

resistance to biotic stressors (i.e., diseases); moreover, it extends approaches 

for evaluating the impact of changes in traits for tolerance to abiotic 

constraints (temperature shocks inducing sterility). The analysis – targeting 

the improvement of 34 varieties in six Italian rice districts – was focused on 

the impact of blast disease, and of pre-flowering cold- and heat-induced 

spikelet sterility. In silico ideotypes were tested at 5 km spatial resolution 

under current conditions and climate change scenarios centered on 2020, 

2050 and 2085, derived according to the projections of two general 

circulation models – Hadley and NCAR – for two IPCC emission scenarios– 

A1B and B1. The study was performed using a dedicated simulation 

platform, i.e., ISIde, explicitly developed for ideotyping studies. The 

ideotypes improved for blast resistance obtained clear yield increases for all 

the combinations GCM × emission scenario × time horizon, i.e., 12.1% 

average yield increase under current climate, although slightly decreasing 

for time windows approaching the end of the century and with a marked 

spatial heterogeneity in responses across districts. Concerning abiotic 

stressors, increasing tolerance to cold-induced sterility would lead to a 

substantial yield increase (+9.8%) only for Indica-type varieties under 

current climate, whereas no increases are expected under future conditions 

and, in general, for Japonica-type varieties. Given the process-based logic 

behind the models used – supporting coherence of model responses under 

future scenarios – this study provides useful information for rice breeding 

programs to be realized in the medium-long term. 

 

Keywords: Blast; genotype × environment; spikelet sterility;  

Oryza sativa L.; WARM.  
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4.2. Introduction 

The development of crop models has been driven since the end of the 

1960s by two main objectives: increasing the efficiency of agricultural 

production systems to maximize yields while reducing costs, and supporting 

breeding programs via in silico analyses of the genotype × environment 

interaction (Donatelli and Confalonieri, 2011). Both these goals are crucial 

to successfully facing the challenges deriving from the need for increasing 

the economic and environmental sustainability of agricultural systems. 

However, most modelling studies focused on the first one, and a large 

number of applications targeting the development of tools for optimizing 

management practices were developed. Instead, the use of crop models for 

designing plant ideotypes – second goal – is still in its infancy (Tardieu, 

2010). 

The development of process-based modelling frameworks integrating the 

available knowledge on the genotype × environment interaction – and on 

how such interaction is modulated by management practices – could 

effectively support breeding programs (Boote et al., 2001), that usually 

require 10 to 15 years and sizable resources to gain effective results, 

although marker-assisted breeding could reduce this time by three-six years 

(Alpuerto et al., 2009). Genetic improvement can be emulated via changes 

in the values of the model parameters describing specific morphological and 

physiological plant traits (Duncan et al., 1967; Semenov and Stratonovitch, 

2013; Confalonieri et al., 2013). This allows one to develop in silico 

ideotypes that can be used (i) a priori, to identify the complex of genes on 

which breeders should focus (Herndl et al., 2007) or (ii) a posteriori, to 

efficiently test the performances of the modified genotypes under different 

agro-environmental contexts and over long term periods (Hammer et al., 

2002). Interesting attempts have been made along these lines for different 

crops: Aggarwal et al. (1997) used ORYZA1 to estimate the impact of 

changes in vegetative and reproductive rice traits in tropical environments. 

Raza et al. (2013) used the crop model CropSyst to analyze the relationship 

of alfalfa cultivar traits with soil water dynamics to derive an ideotype for 
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temperate, semi-arid conditions. Drewry et al. (2014) successfully 

demonstrated how changes in canopy structural traits could allow to 

simultaneously improve productivity and water use efficiency in modern 

cultivar of soybean. The main limits in the use of crop models for this kind 

of studies lie in the absence of explicit algorithmic formalizations 

representing the genetics behind morphological and physiological traits, and 

thus in possible discrepancies between in silico-improved varieties and their 

in vivo realizations (Hammer et al., 2002). However, a model can be 

considered suitable to reproduce the behavior of a given genotype when it 

implements parameter-driven response functions reflecting the way the plant 

actually reacts to agro-environmental conditions (Tardieu, 2003). Model 

parameters must have a biophysical meaning, and changes in their values 

should impact on multiple physiological processes, thus reproducing the 

feedback mechanisms of gene expression (Boote et al., 2001). Finally, a 

conservative definition of in silico ideotypes can be achieved only by 

changing parameter values within the range of their known genetic 

variability. 

“Stressors” are defined as environmental factors assuming values ‒ or 

evolving with dynamics ‒ that prevent the plant to complete its cycle or 

achieve an acceptable yield. Despite the key role of biotic (e.g. diseases) and 

abiotic (e.g. lodging) stresses in determining actual crop production levels 

(e.g., Oerke, 2006), model-based ideotyping studies have completely 

ignored traits related to resistance to diseases and – except for drought and 

only few studies about heat stress (e.g. Singh et al., 2014) – to tolerance to 

critical environmental conditions. A reason for this is the absence of specific 

algorithms for biotic and abiotic stressors in most of the available crop 

models (Donatelli and Confalonieri, 2011). The inclusion of these factors in 

in silico ideotyping studies could instead greatly support the design of 

medium and long term breeding programs, since expected changes in 

climate (IPCC, 2007) would likely lead to shifts in breeding priorities, 

making the integrated, a priori evaluation of the performances of new 

cultivars a pre-requisite for defining effective adaptation strategies 
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(Semenov and Stratonovitch, 2013). Extreme events are expected to 

increase their frequency, undermining future global food security (Battisti 

and Naylor, 2009). Breeders should thus know which traits will be the key 

ones in the coming 15-25 years to derive the most suitable varieties in this 

challenging context. As an example, increasing drought tolerance in wheat 

could appear as a priority under current climate in Europe whereas, 

according to future projections, heat stress would likely represent the major 

constraint to wheat production in this area (Semenov and Shewry, 2011). 

Rice (Oryza sativa L.) is the staple food for more than a half of the world 

population (FAOSTAT, http://faostat.fao.org/) and should be considered as 

a key crop in this context. Rice production is indeed heavily affected by 

biotic stressors, with blast (Magnaporthe oryzae B. Couch) being one of the 

most severe threats to rice yields in the main production districts worldwide. 

Each year, blast is indeed responsible for losses in the global rice production 

that ranges from 10 to 30%. Farmers are thus forced to apply chemical 

treatments to prevent blast epidemics, increasing the economic cost and the 

environmental impact of rice-based cropping systems. The development of 

varieties resistant to M. oryzae, is therefore the primary objective of any rice 

breeding program worldwide (Ballini et al., 2008). Concerning abiotic 

factors affecting rice production, critical temperatures during panicle 

differentiation and flowering stage inducing spikelet sterility play a major 

role (Suh et al., 2010; Sanchez et al., 2014). 

This study presents the results of the first in silico evaluation of the 

performances of ideotypes derived from the introgression of traits for 

resistance to biotic stressors in available rice genotypes. Moreover, 

ideotypes improved for tolerance to abiotic factors (temperature shocks 

inducing sterility) were also evaluated. Simulation results are analyzed in 

light of the different responses achieved in different production districts and 

under different climate scenarios. 
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4.3. Materials and methods 

4.3.1. The study area 

Italy is responsible for more than a half of the total European rice 

production, with 1,500,000 tons produced on 246,500 ha in 2011 

(FAOSTAT, http://faostat.fao.org/). Rice plays an important role in the 

country, because of economic, social and cultural reasons, and it is mainly 

grown under flooded conditions in six districts (Fig. S1) characterized by 

markedly heterogeneous conditions. The Lombardo-Piemontese is the 

widest, accounting for 90% of the Italian rice cropped area (National Rice 

Authority, www.enterisi.it), followed by the Emiliano (9,965 ha), Veneto 

(5,992 ha), Oristanese (3,524 ha), Sibari (565 ha) and Toscano districts (279 

ha). Climate conditions are nearly continental in the northern districts (i.e. 

Lombardo-Piemontese and Veneto) becoming typical of lowland littoral 

areas while moving to the southern part of the country (i.e. Sibari and 

Oristanese districts). Southern areas are also characterized by heat waves 

and drier weather, especially during the growing period of rice (i.e. from 

May to September).  

The high latitudes of the main three districts (around 45° N) expose the 

crop to cold air irruptions from the Alps that – when occurring between 

panicle initiation and heading – could induce spikelet sterility. The 

frequency of this event is about one every four years, and the intensity could 

lead to yield losses larger than 30% for the most susceptible varieties. 

Concerning fungal diseases, they affect rice production regardless from the 

district; blast represents the most serious and widespread pathogen (Faivre-

Rampant et al., 2011), requiring the application of chemical treatments on 

more than 75% of the Italian rice acreage. 

4.3.2. Data used for the ideotyping experiment 

Daily maximum and minimum air temperatures, global solar radiation, 

rainfall, wind speed and reference evapotranspiration needed for the 

baseline climate were extracted from the MARS database 

(http://mars.jrc.ec.europa.eu/mars/Web-Tools) at 25 km × 25 km spatial 
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resolution. For the generation of climate change scenarios, the uncertainty 

related to the future economic, demographic and technological development 

was handled by using the projections of two emission scenarios (A1B and 

B1; IPCC, 2007) as provided by two general circulation models (GCM): 

Hadley3 (UKMO-HadCM3, Gordon et al., 2000) and NCAR (NCAR-

CCSM3, Collins et al., 2004). A1B is a conservative scenario, based on a 

balanced use of fossil and non-fossil energy resources, whereas for B1 the 

implementation of mitigation strategies to reduce carbon emissions is 

assumed. Climate change projections associated with these emission 

scenarios are thus considered to be, respectively, at the high and low range 

of current forecast (IPCC, 2007). Four 20-year time horizons were 

considered: 1991-2010 (baseline), 2020-2040, 2050-2070, and 2085-2105. 

The generation of synthetic weather series was carried out using the 

CLIMAK weather generator (Confalonieri, 2012), which has proved its 

reliability under a variety of conditions, also in comparative studies (e.g. 

Acutis et al., 1998). For each combination emission scenario × GCM × time 

frame × MARS grid cell, monthly mean temperature and precipitation 

anomalies were applied to the CLIMAK parameters describing baseline 

rainfall and temperature patterns. In particular, CLIMAK parameters on 

which deltas were applied are monthly α and β of the gamma distribution for 

rainfall amount and the four coefficients (annual mean maximum and 

minimum temperatures for dry and rainy days) of the second order Fourier 

series for temperature. Future climate change scenarios used to test the 

performance of rice ideotypes are described in Table S1. In agreement with 

Coppola and Giorgi (2010) – who assessed climate change projections 

provided by 19 GCMs over the Italian peninsula – the greatest temperature 

increase is realized under the A1B emission scenario, whereas the B1 leads 

to the lowest. GCMs also affected climate projections, with Hadley3 

providing warmer scenarios than NCAR, in agreement with findings of 

Covey et al. (2003). Projected rainfall varies across scenarios without 

displaying clear patterns; however, the combination GCM × emission 

scenario Hadley-A1B leads to a “drier” climate during the rice growing 
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season as compared to NCAR-B1. Spatial heterogeneity in climate change 

projections is expected, with northern districts showing greater temperature 

increase than the southern ones (e.g., +4.5 °C and +2.5 °C for the 

Lombardo-Piemontese and Oristanese districts, respectively, under the 

Hadley-A1B 2085 scenario). 

Since most of the biophysical processes – e.g., crop growth and 

development, plant-pathogen interaction, spikelet sterility, floodwater effect 

on vertical thermal profile – were simulated using a hourly time step, hourly 

weather data were estimated at runtime using generators implemented in the 

CLIMA software library (http://agsys.cra-cin.it/tools/clima/help/). 

Rice distribution maps – as well as sowing dates – were derived from an 

integrated analysis of available thematic cartography (European Corine 

Land Cover for the year 2006; http://www.eea.europa.eu/data-and-

maps/data/corine-land-cover-2006-clc2006-100-m-version-12-2009) and 

remote sensing data. Ten years (2002-2011) of MODIS 8-Day composites 

images – MOD09A1 product of surface reflectance at 500 m spatial 

resolution – were processed in order to derive a rice distribution database. 

The processing method combines information on the status of vegetation 

and on the presence of floodwater to detect rice areas and derive information 

on rice development (Boschetti et al., 2009). Remote sensed information – 

10 years median – were aggregated at 5 km × 5 km spatial resolution, 

identified as elementary spatial unit for the simulations in light of (i) the 

spatial resolution of the different information layers and (ii) the need for 

finding a compromise between the level of detail to represent the spatial 

heterogeneity among and within rice districts and the computational cost of 

the simulations.  

To account for the heterogeneity of rice varieties commonly grown in 

Italy (Russo, 1994), thirty four varieties were selected as the basis for the 

ideotyping study according to their representativeness in each of the six 

Italian rice districts. The criterion for the selection was a relative presence 

higher than 1% in the district in at least three years during the period 2006-

2010 (National Rice Authority, www.enterisi.it). 



                                  Rice ideotypes improved for resistance/tolerance traits 

 59 

4.3.3. The simulation environment 

4.3.3.1. The modelling solution 

Simulations were performed using the WARM model (Confalonieri et 

al., 2009b), adopted since 2005 by the European Commission for rice 

monitoring and yield forecasting in Europe. In the configuration used in this 

study, crop growth and development are reproduced using a hourly time 

step, in both cases with a curvilinear response function to temperature. 

Floodwater effect on vertical thermal profile is simulated by using the TRIS 

micrometeorological model (Confalonieri et al., 2009b), based on the 

solution of the surface energy balance equation for each 10 cm canopy layer 

and for air-water interface, for the latter assuming the heat accumulation 

into the water as storage term. TRIS, coupled with a model for plant height, 

allows using temperature at the meristematic apex for the simulation of 

development and thermal shock around flowering, and mid-canopy 

temperature for photosynthesis. Biomass accumulation is simulated with a 

net-photosynthesis approach based on radiation use efficiency (RUE), the 

latter modulated by temperature, senescence, atmospheric CO2 

concentration, and light-saturation of the enzymatic chains. For the latter, a 

quadratic function decreasing RUE for global solar radiation higher than 25 

MJ m
-2

 day
-1

 is used (Choudhury, 2001). Photosynthates partitioning to the 

different plant organs, as well as translocation to grains during grain filling, 

are simulated using a set of beta and parabolic functions driven by 

development stage and by partitioning to leaves at emergence. Daily 

increase in leaf area index (LAI) is derived from leaf biomass rate and a 

development-driven specific leaf area, whereas leaf senescence is simulated 

by killing LAI units that reached a thermal time threshold. WARM 

parameters for crop growth and development are shown in Table S2. 

Concerning the simulation of abiotic damages, the impact of cold-

induced spikelet sterility is simulated by reducing the amount of assimilates 

daily partitioned to the grains according to the stress factor (SterilityF, 0-1, 

unitless) shown in Eq. 1 (Confalonieri et al., 2009b): 
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where d1.6 and d1.9 are the days corresponding to panicle initiation and 

heading, respectively, with 1.6 and 1.9 being the values assumed in those 

stages by a development stage numerical code (DVS; 0: sowing; 1: 

emergence; 2: flowering; 3: physiological maturity; 4: harvestable) obtained 

by standardizing the cumulated thermal time; TTC (°C) is the threshold 

temperature inducing sterility; Ti,h is the temperature of day i at hour h; 

bellFi – representing the different susceptibility in the period between 

panicle initiation and heading – is derived from a normal distribution 

function (Eq. 2): 
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where DVSi is the DVS of the day i; γ and δ are empirical coefficients set, 

respectively, to 0.1 and 0.25. The threshold temperature was set, in this 

study, to 12°C and 13°C for current Japonica-type and Indica-type varieties, 

respectively. The impact of heat-induced spikelet sterility is simulated using 

the same approach but with (Ti,h-TTH) used instead of (TTC-Ti,h) in Eq. 1, 

being TTH (°C) the threshold temperature for heat induced sterility (i.e., 

35°C for Japonica-type and 35.5°C for Indica-type varieties). 

From panicle initiation to heading, photosynthates daily partitioned to 

panicles are reduced as a function of the integral of SterilityF. From 

flowering to the end of grain filling phase, the value of SterilityF cumulated 

till heading (DVS 1.9) is used. 

The simulation of blast impact on rice growth was carried out by using 

the set of models of the Diseases software library 

(http://www.cassandralab.com/components/), implementing approaches for 
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the simulation of (i) the phases of infection, latency, infectiousness, 

sporulation, spores dispersal, and (ii) the impact on plants. 

The whole epidemic development is simulated as a function of agro-

environmental variables – e.g., leaf wetness, air relative humidity, air 

temperature – and variety resistance. The models implemented in the library 

were successfully evaluated for blast against a large set of data from field 

experiments in northern Italy (Bregaglio et al., 2016). Parameters describing 

the specific responses of M. oryzae to environmental conditions are given in 

Table S3. According to Bastiaans (1991), the impact of blast epidemic on 

the crop is simulated by considering the reduction of green leaf area and the 

decrease in the photosynthetic activity of remaining green leaf tissues. The 

first coupling point between the disease and the crop model is represented 

by the dynamic removal of the fraction of diseased leaf area using a 

compartmental susceptible-exposed-infected-removed model (Bregaglio and 

Donatelli, 2015; http://www.cassandralab.com/components/). This allows to 

take into account the reduction in the amount of light absorbed because of 

the lesions. A second coupling point concerns the decrease in the 

photosynthetic rate in the remaining green leaf area via a linear function 

relating disease severity and rice radiation use efficiency (Bingham and 

Topp, 2009). 

The WARM modelling solution was here implemented in a dedicated 

platform (ISIde; In Silico Ideotyping platform), based on the BioMA 

architecture (Donatelli and Rizzoli, 2008), specifically developed for 

district-specific ideotyping studies and targeting breeders as final users. 

ISIde is currently available for the six rice districts in Italy, although its 

software architecture allows its extension to other contexts or crops. The 

complete documentation of all the models and software components 

implemented in the modelling solution is available at 

http://www.cassandralab.com/components. 

  

http://www.cassandralab.com/components
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4.3.3.2. Parameterization of the solution for current genotypes 

Adapting the modelling solution to the 34 selected varieties required the 

definition of the values of parameters describing morphological and 

physiological plant features, and of those involved with the simulation of 

biotic and abiotic stressors. 

Five phenological groups were identified by applying the k-means 

clustering method (Dulli et al., 2009) to the length (days) of the vegetative 

and reproductive phases reported for each variety by the National Rice 

Authority (www.enterisi.it). This agency indeed, carried out extensive field 

trials in different sites and seasons to provide a detailed description of 

morphological and phenological characteristics of the main Italian rice 

cultivars. Starting from available parameter sets for Italian Indica- and 

Japonica-type varieties obtained by calibrating model parameters using data 

from field experiments (Confalonieri et al., 2009b), new parameter sets were 

thus developed by combining information on the ecotypes with those 

derived from the cycle lengths clusters (Table S2). 

Parameters involved with blast resistance (Table S4) were derived by 

screening the databases and reports of both the National Rice Authority 

(www.enterisi.it) and the Regional Agency for Agricultural and Forest 

Services (www.ersaf.lombardia.it). These agencies performed extensive 

multi-site and multi-year trials from 2000 to 2011 where the resistance of 

each cultivar to fungal pathogens was determined. These data were analyzed 

and integrated with information coming from interviews to a panel of Italian 

experts in rice diseases. This led to identify three blast resistance levels 

(low, moderate, intermediate), in agreement with Faivre-Rampant et al. 

(2011), who defined Italian rice varieties as having a low to intermediate 

resistance to leaf blast after extensive analyses performed under greenhouse 

conditions. The resistance levels were then translated into parameter values 

by increasing the length of the latency period and by reducing the 

infectiousness duration and the infection/sporulation efficiencies in case of 

higher resistance (Table S3). 
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Temperature thresholds applied on hourly basis for cold- and heat-

induced spikelet sterility for Japonica- and Indica-type varieties (12°C and 

13°C, 35 °C and 35.5°C, respectively; Table S4) were retrieved from 

literature (Andaya et al.,2003; Dreni et al., 2012; Sanchez et al., 2014) and 

consultation with local experts. This allowed to account for peculiarities of 

Italian rice cultivars, selected in recent decades to cope with the conditions 

explored in the main Italian rice district, considered extreme for rice because 

of the proximity to the Alps (Russo, 1994; Confalonieri et al., 2005). 

Information available did not allow to further discriminate among threshold 

values within each group of varieties. 

4.3.3.3. Definition of the new ideotypes 

The evaluation of the impact of potential improvement for 

resistance/tolerance level was carried out by changing values of model 

parameters representing these traits within the range of their known genetic 

variability. Ideotypes were thus created by assigning to resistance/tolerance 

parameters the values defined for resistant/tolerant varieties; this was 

considered as the level of improvement potentially achievable. Assumptions 

concern the absence of relationships between the traits involved with the 

processes analyzed and those related with other plant characteristics (e.g., 

Singh et al., 2012 for resistance to pathogens). Resistant varieties – used as 

sources of effective resistance/tolerance traits – are often traditional 

genotypes selected after long adaptation to the specific Italian agro-climatic 

context (Faivre-Rampant et al., 2011; Russo, 1994). For instance, the variety 

Gigante Vercelli, released in 1946 and has not been cultivated for decades, 

was already selected as a donor of blast resistance in breeding programs 

because of the resistance to main Italian strains of the pathogen (Roumen et 

al., 1997; Faivre-Rampant et al., 2011). It presents an intermediate 

resistance to blast disease. This value was thus used to set blast resistance 

parameters for the improved ideotypes. The temperature threshold below 

which cold sterility occurs was reduced – for the ideotypes – by 0.5°C for 

Japonica-type and by 1°C for Indica-type varieties. This led to set a lowest 
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temperature threshold of 11.5°C, which reflects the response of the cold 

tolerant varieties currently grown in the Italian district. The smaller 

magnitude of the improvement simulated for Japonica-type varieties is in 

line with their better adaptation to temperate conditions (Russo, 1994; Suh 

et al., 2010). They present indeed slightly lower thermal requirements for 

both growth and development (Sanchez et al., 2014), and a lower threshold 

triggering sterility damages compared to Indica-type varieties (temperature 

thresholds applied on hourly basis are 12°C versus 13°C, Table S4). The 

opposite criterion was followed for the quantification of the possible genetic 

improvement for heat-induced sterility (increase in threshold temperature 

for heat induce spikelet sterility was 0.5°C for Indica-type and 1°C for 

Japonica-type varieties), since Indica-type varieties are generally more 

suited to tropical environments (Sanchez et al., 2014). A higher variability is 

reported for tolerance to heat stress in rice (Matsui et al., 2001) but Italian 

rice varieties have not been selected for this traits since they are rarely 

exposed to this damage. 

The information available on the potential incidence of the different 

damages led to evaluate the ideotypes for tolerance to cold-induced sterility 

in the districts Lombardo-Piemontese, Veneto, Emiliano and Toscano. For 

the same districts and in the Oristanese one, ideotypes were defined for blast 

resistance. Improvement involved with the tolerance to heat-induced 

sterility was instead tested for the districts Oristanese and Sibari. 

For each climate scenario and elementary spatial unit, simulations were 

run twice for each variety: the first using the parameterizations for the 

current genotype and the second reproducing the behavior of the 

corresponding improved ideotype. Three production levels were considered: 

blast-, cold sterility- and heat sterility-limited. For each production level, the 

percentage yield increase (Δy, %) was quantified. 

The total number of simulations was 19,910,400, given by the 

combination of 34 rice varieties, three production levels, two general 

circulation models, two emission scenarios, four time horizons, 20 years for 

each time horizons, two genotypes simulated – one for the current variety 
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and one for the corresponding ideotype – and by 305 elementary simulations 

units. 

4.4. Results and discussion 

The high spatial resolution used to perform the simulations allowed an in 

depth analysis of the performances of improved ideotypes. Fig. 1 presents 

sample results for the main Italian rice district for (a) an ideotype derived by 

increasing blast resistance of the variety Volano (Hadley-A1B projections), 

and for (b) an ideotype derived by increasing the tolerance to cold-induced 

sterility for Thaibonnet (NCAR-B1). The largest increases for the blast 

resistance-improved ideotypes were achieved in the central-western part of 

the district when the current climate was considered, whereas they were 

achieved in north-western areas while moving forward the time horizon 

(Fig. 1.a). In general the eastern part of the district appears to be less 

affected by possible breeding programs in the long term (2085 time 

horizon). Fig. 1.b shows that a marked heterogeneity in the yield increase 

extent was simulated. The general north-south gradient is due to the colder 

climate in the northern part of the district, whereas the pattern characterized 

by a high level of granularity is – to a large extent – driven by differences in 

management practices. The use of different sowing dates, indeed, leads to 

shifts in crop phenology and, thus, in the time windows when the crop is 

susceptible, i.e., from panicle initiation to heading. Although benefits 

decrease while moving forward the climate projection because of the raising 

temperature, spot areas markedly affected can be observed for the 2085 time 

horizon. The reason is the shortening of the crop cycle due to the higher 

temperatures, which exposes the crop to the damage in an earlier moment 

during the season, when the frequency of cold air irruptions is higher. 

The mean percentage yield increase achieved with the ideotypes 

improved for resistance/tolerance traits compared to the 34 varieties they 

derive from are shown in Fig. 2 and Fig. 3 for each combination general 

circulation model × time horizon × emission scenario. No results are 

presented and discussed for Sibari since the only stressor potentially present 
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in the district – heat-induced sterility – never affected the crop, regardless of 

the climate scenario. 

 
Figure 1. Percentage yield increase in the Lombardo-Piemontese district due to the 

increased (a) resistance to blast disease for the variety Volano and (b) tolerance to cold-

induced sterility for the variety Thaibonnet. For these sample results, the Hadley-A1B and 

the NCAR-B1 climate change scenarios were used, respectively, for blast and sterility. 

Simulations were performed at 5 km × 5 km spatial resolution. For both examples, a 

marked spatial heterogeneity was observed, and a decrease of the yield increase extent 

while proceeding along the time horizons 

 

In general, improving genotypes for their resistance to M. oryzae led to 

remarkable potential yield increases for all the varieties, regardless of the 

district and the time horizon (Fig. 2). The average yield increase was 

11.87%, with a small variability among districts and climate scenarios 

(coefficient of variation = 11.6%). However, future climate projections 

revealed that the extent of increases could experience a modest decline in 

some of the districts (Toscano and Veneto). The climate scenarios derived 

from the NCAR general circulation model and the B1 emission scenario led 

to the largest yield increases in most of the combinations district × time 



                                  Rice ideotypes improved for resistance/tolerance traits 

 67 

horizon, whereas the lowest were usually achieved with the combination 

Hadley × A1B. This is explained by considering the thermal requirements of 

the pathogen (Table S3) and the temperature increases in the climate change 

projections.  

 
Figure 2. Yield increases due to the improvement of the 34 most representative Italian 

rice varieties for resistance to blast (average value of the twenty-year period). White bars 

refer to results achieved under current climate, black and grey bars to the Hadley-A1B and 

NCAR-A1B realizations, respectively, striped and checkered bars to the Hadley-B1 and 

NCAR-B1 projections. Relevant benefits from possible breeding activities are expected for 

resistance to blast, regardless of the district and climate scenario. 
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Under the conditions explored, indeed, the climate generated using the 

A1B emission scenario and the Hadley circulation model is characterized by 

large increases in temperature, in turns generating conditions less favourable 

for the pathogen, with temperatures during the crop cycle frequently 

exceeding the optimum for the pathogen.  

The differences in yield increase among districts – coefficient of 

variation ranging from 11% to 16% according to the time horizon 

considered – were due to the different suitability of the climate conditions to 

blast epidemics. The Toscano district presented the highest yield increases, 

because of the large number of rice varieties with a low resistance to blast.  

This study was carried out without considering the evolutionary potential 

of the pathogen – that could rapidly develop new races more adapted to 

changing climate conditions (Chakraborty, 2013) – since no quantitative 

information is available on this issue.  

 

Concerning ideotypes improved for the tolerance to cold-induced spikelet 

sterility (Fig. 3), Indica-type genotypes achieved larger yield increases with 

respect to Japonica-type ones in all the districts and for all the combinations 

general circulation model × emission scenario. For Japonica-type varieties, 

indeed, the increased tolerance did not lead to relevant benefits, especially 

under climate change scenarios (data not shown). However – even for 

Indica ideotypes – yield increases are comparable to those simulated for 

blast resistance-improved ideotypes only under current climate conditions. 

In effect, simulations performed using future climate projections revealed 

that their performances are expected to become increasingly similar to those 

of the current varieties, in turn raising doubts about the usefulness of 

breeding programs focusing on this trait in the medium/long term. The 

heterogeneity in the responses across districts was decidedly more 

pronounced compared to that discussed for the ideotypes improved for blast 

resistance: coefficients of variation calculated on the yield increases range 

from 30% to 87% for the 2020 and 2050 time horizons, respectively. 

However, a large part of this variability is due to the low impact of cold-
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induced sterility on the yields simulated in the Emiliano district because of 

its warmer climate. 

 
Figure 3. Yield increases deriving from improving tolerance to pre-flowering cold-

induced spikelet sterility in the Indica-type varieties studied (average values of the years in 

which the damage occurs). Results refer to yield increases achieved under: the current 

climate (white bars), the Hadley-A1B and NCAR-A1B climate scenarios (black and grey 

bars, respectively) and the Hadley-B1 and NCAR-B1 projections (striped and checkered 

bars). Under the conditions explored, a marked decrease of the impact of cold induced 

spikelet sterility is expected. 

 

Contrarily to yield losses caused by blast, cold-induced sterility is driven 

by events – i.e., cold air irruptions during the period between panicle 

initiation and heading – that do not occur during all seasons and, even when 

they occur, present a different intensity. Under current climate, the 

frequency of these events is about one out of five years. Lowering the 

threshold temperature inducing the damage created a marked reduction of 
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the average number of events under future climate projections, although 

with differences among general circulation models and emission scenarios. 

The model did not simulate impacts of heat-induced sterility – for both 

current varieties and improved ideotypes – in the two districts potentially 

interested by this phenomenon (Sibari and Oristanese), regardless of the 

climate scenario and time horizon considered. This clearly indicates that rice 

in Italy would not be affected by this phenomenon even under conditions 

warmer than the current ones. Despite A1B already provides high-impact 

scenarios, further studies might involve the use of more severe emission 

scenarios (e.g., RCP 8.5, IPCC 2013) to test the performance of improved 

ideotypes under a wider range of climate conditions. 

4.5. Conclusions 

The development of new varieties better adapted to future climate is one 

of the most effective strategies to alleviate the impact of climate change on 

agriculture and related food-security issues. In this context, identifying key 

traits is crucial since relatively few breeding cycle are exploitable in the 

forthcoming decades (Lobell et al., 2011). 

We performed here for the first time an in silico ideotyping study 

targeting the improvement of current genotypes for resistance traits to biotic 

stressors at district level. Traits related with tolerance to abiotic constraints 

were also evaluated. The analysis was carried out for rice in Italy by varying 

parameters referred to resistance/tolerance traits according to their known 

variability among Italian rice varieties. This allowed to define ideotypes 

accounting for the level of improvement potentially achievable for these 

traits. Simulations were performed under current climate conditions and 

using future climate projections, to provide indications able to properly cope 

with the time resources needed by breeding programs. Our results clearly 

demonstrate that – under the conditions explored – breeders should focus on 

increasing resistance to blast disease, since M. oryzae appears as the main 

factor limiting rice productions in Italy regardless of the district and the 

climate scenario. On the other hand, increasing tolerance to pre-flowering 
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cold shocks inducing spikelet sterility would lead to sizeable benefits only 

for Indica-type cultivars under current climate conditions in three out of six 

districts (Lombardo-Piemontese, Veneto, Toscano), whereas no relevant 

yield increases are expected after 2020, despite the general circulation 

model and emission scenario. The effect of increasing CO2 on 

photosynthetic rate and changes in phenological development were 

explicitly considered, thus providing a comprehensive evaluation of 

ideotypes. Despite the assumptions behind the study – i.e., (i) absence of 

interactions between resistance/tolerance traits and others, (ii) no adaptation 

strategies considered (e.g., alternative sowing date), and (iii) lack of 

pathogen potential evolution in response to long-term climate variations and 

increased host resistance – we demonstrated the usefulness of simulation 

models as tools for supporting breeding programs via the a priori evaluation 

of the suitability of different ideotypes for specific conditions (i.e., the 

districts). 
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Supplementary figures 

 

 
 

Figure S1. Main rice districts in Italy.  

1. Lombardo-Piemontese; 2. Veneto; 3. Emiliano; 4.Toscano; 5. Sibari; 6. Oristanese. 
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Supplementary tables 

Table S1. Characteristics of the twelve climate scenarios used in this study. They 

derived from the projections of two General Circulation Models (GCM, Hadley3 and 

NCAR) for two CO2 emission scenarios (A1B and B1, IPCC 2007) referred to three 

timeframes (2020/2050/2085). Average increase of mean-temperature for the growing 

season (i.e. May to October) as compared to the reference period (1991-2010) is reported. 

 

 

Table S2. WARM parameters describing traits involved with crop growth and 

development (JE, JM, JL: Japonica-type early, medium and late varieties; IE, IL: Indica-

type early and late varieties). 
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Table S3. Parameters of the disease model for Magnaporthe oryzae B. Couch, and 

sources of information. 
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Table S4. Parameters of the disease model for Magnaporthe oryzae B. Couch, and 

sources of information. 
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5.1. Abstract 

Eco-physiological models are increasingly used to analyze G×E×M 

interactions to support breeding programs via the design of ideotypes for 

specific contexts. However, available crop models are only partly suitable 

for this purpose, since they often lack clear relationships between 

parameters and traits breeders are working on. Taking salt stress tolerance 

and rice as a case study, we propose a paradigm shift towards the building 

of ideotyping-specific models explicitly around traits involved in breeding 

programs. Salt tolerance is a complex trait relying on different physiological 

processes that can be alternatively selected to improve the overall crop 

tolerance. By developing a new model explicitly accounting for these traits, 

we were able to show how an increase in the overall tolerance can derive 

from completely different physiological mechanisms according to soil/water 

salinity dynamics. The study demonstrated that a trait-based approach can 

increase the usefulness of mathematical models for supporting breeding 

programs. 

 

 

 

Keywords: Ideotyping; rice; salinity; salt stress; sensitivity analysis; 

breeding. 
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5.2. Introduction 

One of the key steps in the planning of breeding programs is the 

definition of ideotypes able to assure high and stable yields in target areas 

(Martre et al., 2015a; Dingkhun et al., 2015). An ideotype is a combination 

of traits that makes a crop suited to the edaphic, climatic and management 

factors defining a specific agronomic context. However, exploring in vivo 

the deep interaction between those factors and plant genotypes is expensive 

and time-consuming, being genotype responses nonlinear and the 

heterogeneity in the environmental and management factors huge. 

Moreover, one of the priorities for the analysis is trying to account for future 

climate conditions, but understanding how genotypes would behave in a 

changing climate remains a challenge (Newton et al., 2011). 

Given their capability of interpreting genotype (G) × environment (E) × 

management (M) interactions, crop models are increasingly considered as 

powerful tools to support breeding activities (Martre et al., 2015b; Hammer 

et al., 2016). Representing genotype features via model parameters, indeed, 

crop models can be used to answer the “what if” question when the potential 

impact of varying one or more plant traits is under evaluation (Casadebaig et 

al., 2016). This kind of analysis can involve current conditions and climate 

change scenarios as well as entire production districts, thus allowing to 

effectively exploring both spatial and temporal heterogeneity (Paleari et al., 

2015). Moreover, physiologically sound crop models have the potential to 

integrate the effect of genes or QTLs across different hierarchical levels of 

organization of biological systems, thus providing insight into their impact 

at crop scale (Chenu et al., 2009; Hammer et al., 2016). 

Despite this potential, model development in last decades has been 

mainly driven by the need of defining management strategies and 

agricultural policies, and this limited – although to a different extent – their 

suitability for ideotyping studies (Boote et al., 2001; Tardieu, 2010). Model 

parameters do not always have a biological meaning and, even when they 

have, relationships between model parameters and plant traits are often 
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unclear. This could make the model-based definition of putative ideotypes a 

speculative exercise (Hammer et al. 2002). 

Dissection and modelling of physiological processes explicitly targeting 

specific traits of interest within ongoing breeding programs could represent 

a solution to overcome these limitations. In this way, the overall 

performance of modelled genotypes would be a consequence of dynamics 

modulated by variations in the values of parameters that would directly 

represent plant traits breeders are working on. The resulting in silico 

ideotypes would thus provide clear indications about putative traits for crop 

improvement, especially when context-specific dependencies play a key role 

in determining the optimal value of traits contributing to complex plant 

responses, like in case of tolerance to abiotic stressors (Tardieu and 

Tuberosa 2010). 

With more than 830 million hectares of salt-affected soils, salinity is one 

of the major environmental stress limiting agricultural production 

worldwide (Martinez-Beltran and Mazur, 2005). Moreover, soil salinization 

is further increasing (Rengasamy et al., 2006) because of both human 

activities (e.g., inappropriate irrigation practices) and natural causes (e.g., 

tsunamis), with the latter being exacerbated by climate change (IPCC, 2013; 

Dasgupta et al., 2015). Despite rice is one of the most sensitive crop to salt 

stress (Munns and Tester, 2008; Al-Tamimi et al., 2016), its frequent 

cultivation in coastal areas and river deltas increases it exposure because of 

recurrent flooding and seawater intrusion (Ismail et al., 2007). For these 

reasons, ongoing rice breeding activities target different tolerance traits: (i) 

reduction of shoot sodium (Na
+
) uptake (Ren et al., 2005; Faiyue et al., 

2012); (ii) sequestration of Na
+
 into structural tissues (Costafits et al., 2012; 

Suzuki et al., 2016); (iii) compartmentation of Na
+
 into senescent leaves 

(Fukuda et al., 2004), (iv) higher leaf tissue tolerance via sequestration of 

toxic ions into the vacuole and synthesis of osmoprotectants (Kader and 

Lindberg, 2005), (v) and higher tolerance to salt-induced sterility (Hossain 

et al., 2015). These traits rely on different genetic basis (Munns and Tester, 
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2008) and can be combined in the same genotype or singularly introduced in 

commercial varieties even via non-GM technologies (i.e., using marker-

assisted selection) (Munns et al., 2012). Since the effectiveness of these 

traits varies according to the environmental context, breeding programs 

should target these “component traits” and not the overall performance at 

crop level Ismail et al., 2007; Roy et al., 2014). 

Although models reproducing crop response to salt stress are available 

(e.g., Ferrer Alegre et al., 1997; Karlberg et al., 2006), they mainly focus on 

the effect of salinity on soil osmotic potential, without explicitly considering 

the toxic effect of Na
+ 

in plant tissues which, instead, is a key component of 

salt stress (Munns and Tester 2008; Faiyue et al., 2012). In these 

approaches, plant tolerance is accounted for via few empirical parameters 

directly linking plant response (in terms of yield or overall growth rate) to 

soil salinity, without taking into account the physiological traits at the basis 

of such response. Therefore, these models cannot be considered as suitable 

to design ideotypes actually relying on the real tolerance traits identified by 

breeders. 

The objectives of this study were (i) building a new model for the toxic 

effect of Na
+
 on rice by explicitly taking into account the tolerance traits 

breeders are working on, and (ii) presenting a case study on ideotype design 

targeting production districts in California and Greece. 

5.3. Methods 

5.3.1. The growth chamber experiments 

Two rice (Oryza sativa L. spp. japonica) cultivars differing in their level 

of salt tolerance, i.e., Baldo and Vialone Nano, were grown in dedicated 

hydroponics growth chamber experiments. Caryopses were sterilized with 

50% (v/v) Ca(ClO)2 for 30 min, thoroughly rinsed with deionized water and 

placed on wet filter paper at 26 °C in the dark for four days. Seven days old 

seedlings were then transferred to black plastic boxes containing the 

following complete nutrient solution (Nocito et al., 2011): 1.5 mM KNO3, 1 

mM Ca(NO3)2, 500 μM MgSO4, 250 μM NH4H2PO4, 25 μM Fe-tartrate, 46 
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μM H3BO3, 9 μM MnCl2, 0.8 μM ZnSO4, 0.3 μM CuSO4, 0.1 μM 

(NH4)6Mo7O24, 30μM Na2O3Si (pH 6.5). Floating polystyrene foam sheets 

were used to hold seedlings and to allow renewing solutions without 

touching the plants to avoid any potential damage to the roots (which would 

make Na
+
 entering directly from root lesions). Growing conditions were set 

to 14 h photoperiod; photosynthetically active radiation was supplied by 

fluorescent lamps (400 mmol m
-2

 s
-1

); day/night temperatures were 26 °C/18 

°C; relative humidity ranged between 58 and 92%. Five NaCl treatments 

were applied from three weeks after sowing until maturity: 0 mM, 10 mM, 

25 mM, 35 mM and 50 mM. In order to maintain NaCl concentrations 

nearly constant, solutions were renewed each three days. 

At late heading (BBCH code 51) and maturity (BBCH code 92) three 

plants for each combination cultivar × treatment were harvested and divided 

into stems, panicles and leaves. The latter were further separated into apical, 

medium and senescent leaves (referring respectively to the two youngest 

leaves, others green leaves and dead ones) to detect potential variation in 

Na
+
 accumulation among leaves of different ages. Plant height, number of 

tillers and dry biomass of each organ were measured. Dry biomass samples 

were ground to a fine powder and digested by concentrated HNO3 (10 mM) 

in a microwave digester (ETHOS D, milestone, Italy) at 100°C (Amari et 

al., 2014). The mineralized material was dissolved in 5 mL 0.1 M HNO3 and 

Na
+
 content was measured by inductively coupled plasma mass 

spectrometry (Bruker Aurora M90 ICP-MS, ICP Mass Spectrometer). Na
+
 

content and dry biomass of different plant organs were then used to 

calculate corresponding Na
+
 concentrations. Immediately before the first 

sampling event (late heading), the impact of salt stress on net photosynthetic 

rate, stomatal conductance and transpiration rate was measured on the 

youngest fully expanded leaf using a CIRAS-3 Portable Photosynthesis 

System (PP Systems, Amsbury, MA, USA). Apical and medium leaves 

were then scanned to determine plant leaf area and SLA, the latter 

calculated as ratio between leaf area and leaf dry biomass. At harvest, 

spikelet sterility was determined. 
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5.3.2. The ideotyping study 

5.3.2.1. Case studies and simulation scenarios 

An ideotyping study was carried out to using the salt stress model to 

identify the traits breeders should focus on in two production areas differing 

for the salinity seasonal dynamics (Fig. 2). Colusa is one of the six counties 

at the north of Sacramento where the production of rice in California ‒ the 

second largest rice-producing state in the US ‒ is concentrated. While most 

of the irrigation water has a low salt content, water holding periods for 

herbicide distribution and high temperatures promote evapo-concentration 

of salt in rice fields (Scardaci et al., 2002; Linquist et al., 2015). This leads 

salinity in field water during the first part of the crop cycle to increase up to 

3.5 dS m
-1

, and to decrease rapidly once the flow of fresh water is restored. 

Although the mean seasonal salinity is not high, the rice susceptibility 

during early phenological phases can lead yield losses to exceed 10% 

(Grattan et al., 2002). The second scenario targets the southeastern region of 

Axios River plain, near Thessaloniki, one of the key regions for rice 

production in Greece (Ntanos et al., 2001). Ninety percent of the soils in the 

area are saline, causing increases in the salts content of irrigation water 

during infiltration. Evapo-concentration of salts due to high temperatures 

also contributes to increase salinity, which progressively reaches values of 2.5 

dS m
-1

from mid-season to harvest. Dynamics of salinity in field water and 

information on management practices used for the two case studies were 

derived from Scardaci et al. (2002) and Linquist et al. (2015) (California), 

and from Lekakis et al. (2015) (Greece). 
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Figure 2. Seasonal electrical conductivity (dS m

-1
) of field water for the two scenarios 

used for the ideotyping study, derived from Scardaci et al. (2002) (California) and Lekakis 

et al. (2015) (Greece). Salinity dynamics follow different patterns: in the Californian site 

the highest level of salinity is reached in the first part of the crop cycle whereas in the 

Greek one salt concentration increases gradually until mid-season and remains constant 

afterwards. 

 

Simulations were performed for the cultivar Thaibonnet (also known as 

L202), developed by the California Co-operate Rice Research Foundation 

and currently representing an important variety in Greece (Ntanos et al., 

2001). 

5.3.2.2. Sensitivity analysis 

The ideotyping study was performed using global sensitivity analysis 

(SA) techniques (e.g., Martre et al., 2015b; Casadebaig et al., 2016). In 

particular, the variance-based method of Sobol’ (Sobol’, 1993) – considered 

as a references for SA (Saltelli and Sobol’, 1995)
 
– was used, targeting yield 

as reference output. The analysis focused on first- and total-order effects, 

accounting, respectively, for the effects of variations in each parameter on 

simulated yield, and for the effects of variations in parameter including 



                                                Trait-based modelling for designing ideotypes 

 85 

possible interactions with others. The sample size for the combinations of 

parameters was 5632, i.e., the lowest value of     (   ), with   

    (    ),   {         },   is the suggested number of model runs 

for each parameter, and   is the number of parameters in the sensitivity 

analysis. In this study,   was set to 500 (Confalonieri et al., 2010a). 

Parameterization of the crop model WOFOST-GT2 for Tropical Japonica 

rice varieties was derived from Stella et al. (2014). Concerning the 

parameters of the salt stress model, the values derived from the growth 

chamber experiments were used as means (Table 1), with the exception of a 

correction factor applied to the maximum suberin content to account for 

differences in root development between hydroponic and soil conditions 

(Kotula et al., 2009). Distributions for the SA were assumed as normal, and 

standard deviations were set to 5% of the mean values for the parameters 

(Richter et al., 2010). 

In order to avoid the risk of including in SA results the effect of a 

specific meteorological season, simulations for both sites were performed 

on 20-year series of weather data (1995-2015) retrieved from the European 

Centre for Medium-Range Weather Forecasts (ECMWF; ERA-Interim 

database; www.ecmwf.int. 
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Table 1. Plant traits, corresponding model parameters, and distribution means. 

Distributions were assumed as normal and standard deviations were set to 5% of the mean 

values (Richter et al., 2010). 

 

5.4. Results 

5.4.1. A new model for salt stress built around actual plant traits 

A new model for the salt stress on rice was developed by directly 

targeting tolerance traits breeders are working on (Fig. 1). In the following 

equations, terms with the prefix (T-) refer to traits. 

5.4.1.1. Plant Na
+
 uptake 

The plant capability to reduce the shoot Na
+
 uptake relies on a “root 

filter” (Ash et al., 1997) that prevents Na
+
 from entering the roots and 

getting translocated, via the xylematic stream, to the shoot (Roy et al., 

2014). The root filter can be more or less pronounced, leading to the 

identification of “excluder” genotypes as opposite to varieties less effective 

in preventing Na
+
 from entering the xylem stream (Faiyue et al., 2012). 
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Figure 1. Flowchart of the new model for the impact of salt stress on rice growth. T1, 

T2, T3, T4, and T5 refer, respectively, to the traits involved with the capability limiting 

shoot Na
+
 uptake, sequestrating Na

+
 into the culm base, storing toxic ions in senescent 

leaves, decreasing the toxicity of Na
+
 in photosynthetically active leaves, and reducing salt-

induced spikelet sterility. Grey items represent coupling points between the salinity model 

and the crop simulator. 

From a physiological standpoint, the root filter is made of two 

components: morphological barriers reducing the apoplastic entry of Na
+
 

(bypass flow), and channels in the plasma membrane of root 

epidermal/cortical cells that mediate the selective and non-selective 

transport of Na
+
 (Tester and Davenport, 2003; Ren et al., 2005). Although 

by-pass flow accounts for 22-35% of the total Na
+
 uptake in rice (Faiyue et 

al., 2010; Faiyue et al., 2012), it is a key responsible for the differences in 

the degree of salt tolerance in rice genotypes. This makes the reduction of 

bypass flow a promising trait for increasing salt tolerance in rice 
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(Senadheera et al., 2009; Faiyue et al., 2012). The amount of water 

potentially flowing through the apoplastic pathway (JvB, mm day-1) is 

calculated according to the following equation: 
 

    
          

   
        (1) 

 

where Tract (mm day
-1

) is the actual transpiration and RJvB (%) is the 

percentage of water uptake through the apoplastic pathway, estimated as a 

function of air relative humidity (RH; %) according to Steudle et al. (2000) 

and Faiyue et al. (2010): 
 

                            (2) 
 

The development of Casparian bands and the deposition of suberin 

lamellae in the root exo- and endodermis reduce the water transport through 

the apoplast and thus the bypass flow-Na
+
 uptake (Krishnamurthy et al., 

2009). The relative reduction of bypass flow (RRBF, unitless, 0-1) is thus 

calculated as a function of the root suberin content (Krishnamurthy, 2011): 
 

      
 

   
 (  )       

        
(  )                  (3) 

 

where (T1)RRBFmax (%) is the reduction of bypass-flow when the suberin 

content is maximum; SC (mg g
-1

) is the root suberin content; (T1)MaxSubC 

(mg g
-1

) is the maximum suberin content; SCmin (mg g
-1

) is the minimum 

root suberin concentration at which bypass flow start to be reduced. The 

root suberin content is derived as a function of plant age (equation 4) and of 

the genotype sensitivity to salinity (equation 5) (Krishnamurty et al, 2009; 

Zhou et al., 2011): 
 

   (  )       
    (    (     )  )

(     )    
      (4) 

 

    
[   ]   

    [   ]   
 

 

(  (  )         )
      (5) 

 

where DVS (unitless; 0-2) is a SUCROS-type development stage code (0: 

emergence; 1: anthesis; 2: maturity); Fsc (unitless; 0-1) is deposition of 

suberin in response to salinity; (T1)SubDepEff (unitless; 0-1) is the suberin 

deposition efficiency (genotype specific); [Na
+
]ext and Max[Na

+
]ext (mM) 
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are, respectively, the actual and maximum (at which the suberin deposition 

is maximum) Na
+
 concentrations in the external medium. Therefore, the 

amount of Na
+
 actually delivered to the shoot via bypass-flow (NaUptakeAP, 

mg ha
-1

) is: 
 

                     [  
 ]         (6) 

 

The fraction of bypass Na
+
 on the total Na

+
 uptake (RNaUptakeAP; %) is 

derived analogously to equation 2 (Faiyue et al., 2010). Finally, the total 

amount of Na
+
 daily entering the shoot (NaUptake, mg ha

-1
) is derived 

according to equation 7: 
 

                   
   

           
      (7) 

5.4.1.2. Sequestration of Na
+
 into structural/senescent organs 

To reduce the amount of Na
+
 reaching the leaves, plants have developed 

mechanisms to accumulate toxic ions in the tissues of culm base and leaf 

sheath (Costafits et al., 2012; Suzuki et al., 2016). The former is estimated 

considering genotypic differences and feedback mechanisms triggered by 

the amount of Na
+
 already stored in culms (Asch et al., 1997). The actual 

culm sequestration rate (ActCulmSeqRate; mg ha
-1

) is derived as: 
 

               (  )          {  [     ((               )          )]} 

          (8) 

where (T2)PotCSeq (mg plant
-1

) is the potential capability of the genotype 

to sequestrate Na
+
 in culms; D is the plant density (plant ha

-1
); RelSinkSize 

(unitless, 0-1) is a dynamic sink capacity of culm for Na
+
 sequestration 

accounting for feedback mechanisms (equation 9), with (T2)MaxCC and 

[Na
+
]culmAct (mg g

-1
) being the maximum and actual Na

+
 concentration in 

culms, respectively. 
 

              
[   ]       

(  )     
       (9) 

 

The amount of Na
+
 daily reaching the panicle (NaPanicle, mg ha

-1
) is 

derived as a function of the Na
+
 not sequestrated in culms and of the 

transport of photosynthates to panicles: 
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          {
     (  )        (                       )            

                                                                                           
 

         (10) 

where ParP (unitless) is the relative amount of photosynthates daily 

partitioned to panicles and (T5)NaToPan (unitless; 0-1) is the factor for Na
+
 

translocation to panicles. 

The amount of Na
+
 daily reaching leaves (NaLeaves, mg ha

-1
) is the 

difference between total Na
+
 uptake in shoots and the amounts of Na

+
 

sequestrated in the culms and partitioned to panicles. Plants tend to 

accumulate Na
+
 in the oldest leaves to preserve photosynthetically active 

tissues from toxic ions (Tester and Davenport, 2003; Cotsaftis et al., 2012). 

This is represented using equation 11: 
 

           
        

∑ [(  (  )       )
[
(   )
(   )

]
] 

   

  (  (  )       )
[
(   )

(   )
]  (11) 

 

where NaUptakeLi (mg ha
-1

) is the Na
+
 delivered to the ith canopy layer; 

(T3)PartCap (unitless; 0-1) is the genotype capability of partitioning Na
+
 to 

oldest leaves; x is the ith canopy layer; N is the number of living canopy 

layers. To account for this heterogeneity in Na
+
 accumulation in leaves of 

different ages, the model for salt stress should be coupled with a crop model 

providing a multilayer canopy structure. 

5.4.1.3. Impact of Na
+
 on photosynthesis, leaf senescence and spikelet 

sterility 

The Na
+
 effect on photosynthesis (dos Reis et al., 2012) and leaf 

senescence (Rajendran et al., 2009; Hairmansis et al., 2014) depends on the 

genotype ability to sequestrate toxic ions in the vacuole and to synthesize 

osmolytes to counterbalance the osmotic pressure. The stress factor for 

photosynthesis (RPn, unitless 0-1) – also used to increase senescence – is 

derived using equation 12: 

    [(
[   ]    [  

 ]        

(  )      [   ]        
)  (

(  )         [   ]  

(  )         (  )     
)]
(
(  )         (  )     

(  )      [   ]        
)

 

 (12) 
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where [Na
+
]Li (mg g

-1
) is the Na

+
 concentration in leaves at the ith 

canopy layer; [Na
+
]leaf min (mg g

-1
) is the Na

+
 concentration in unstressed 

leaves; (T4)ThreL (mg g
-1

) is the Na
+
 concentration above which salt stress 

starts; (T4)CritLeaf (mg g
-1

) is the Na
+
 concentration at which 

photosynthesis becomes null; C is a shaping coefficient.  

Na
+
 also increases maintenance respiration due to the high metabolic 

costs of the processes of ion exclusion, vacuolar compartmentation and 

synthesis of osmolytes (Jacoby et al., 2011). The factor increasing 

maintenance respiration in leaves (MRespF, unitless, 0-1) is thus: 
 

       
[   ]       [  

 ]      

[   ]     [  
 ]      

      (13) 
 

where [Na
+
]Crit (set to 3 mg g

-1
) is the Na

+
 concentration at which 

respiration is double; [Na
+
]Thresh  (set to 0.5 mg g

-1
) is the Na

+
 concentration 

at which maintenance respiration starts to be affected; [Na
+
]tissue  (mg g

-1
) is 

the average concentration in leaves (weighted for layers’ biomass). The 

same function is used for the increased maintenance respiration in culms. 

Salt stress also affects spikelet sterility (Hossain et al., 2015) according to 

panicle Na
+
 concentration and plant susceptibility, the latter depending on 

the genotype and phenological stage (equation 14). 
 

           {
(  )       [   ]                                     

                                                                 
   (14) 

 

where SterilityF (unitless, 0-1) is the factor reducing spikelet fertility due 

to salt stress; (T5)SuscSt (unitless; 0-1) represents the genotype 

susceptibility; bellF (unitless; 0-1) is a factor modulating susceptibility 

according to the within- and between-plant heterogeneity phenological 

development (Confalonieri et al., 2009b). The bellF is calculated 

considering two phenological stages of maximum susceptibility to abiotic 

stress-induced sterility: booting (microsporogenesis; DVS=0.8) and 

flowering (DVS=1). SterilityF is then used to reduce the amount of 

photosynthates daily partitioned to panicles. 

The reduction of growth due to the osmotic potential in the external 

medium (Munns and Tester, 2008) is derived by reducing leaf area 
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expansion (Poorter et al., 2009) (equation 15) and culm growth (Rajendran 

et al., 2009) (equation 16) because of limitations to cell wall extension 

caused by a reduced cell water uptake (Confalonieri et al., 2014). 
 

                  [   ]   
        [   ]         (15) 

                       [   ]   
        [   ]       (16) 

 

where SLAstress (unitless, 0-1) is the reduction factor for specific leaf 

area (SLA; m
2
 kg

-1
); CVSstress (unitless, 0-1) is the reduction factor for 

culm growth; [   ]   
 .(mM) is the Na

+
 concentration in the external 

medium. 

The salinity model was coupled to the WOFOST model as modified by 

Stella et al. (2014), to benefit from an explicit multi-layer canopy 

representation. The resulting modelling solution was evaluated using the 

growth chamber datasets described below and then used for the ideotyping 

study. 

5.4.2. Model evaluation 

The agreement between observed and simulated values of aboveground 

biomass, yield, biomass of culms, leaves and panicles, leaf area index and 

plant sodium content is shown in Fig. 3. In general, the model showed good 

performances in reproducing the impact of salt stress on aboveground 

biomass accumulation and yield (Fig. 3.a), with relative root mean square 

error (RRMSE; %; 0 to +1, optimum 0) equal to 28.0% and 23.8%, 

respectively. Good values for these two variables were achieved also for R
2
 

(0.89 and 0.90) and modelling efficiency (EF; -∞ to +1, optimum +1; Nash 

and Sutcliffe, 1970): 0.83 and 0.87. The values of coefficient of residual 

mass (CRM; -∞ to +∞; optimum = 0; Loague and Green, 1991) close to zero 

highlighted the absence of systematic over- or underestimations. 

Good performances were achieved also for the simulation of the biomass 

of culms, leaves, and panicles (Fig. 3.b), with RRMSE never exceeding 

36% and values of R
2
 ranging between 0.74 (leaves) and 0.94 (panicles). 

Regardless of the organ, EF was always above positive. Concerning the 

simulation of panicles weight, the model showed a slight tendency to 
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underestimate the values at heading, likely because of the observed 

heterogeneity among tiller development. An opposite behavior (slight 

overestimation around heading) was instead observed for culm and leaf 

biomass. In this case, the reason is likely an underestimation of the impact 

of the osmotic component of salt stress on leaf area expansion and tiller 

development, which are only implicitly reproduced in the current version of 

the modelling solution, since the crop model used does not explicitly 

simulate tillering and leaf size. Future model improvements could thus refer 

to the implementation of dedicated approaches for the simulation of the 

Na
+
-induced reduction in cell turgor pressure and related decrease in tissues 

expansion. 

The discussed overestimation of leaf biomass explains the similar 

behavior showed by the model for the simulation of leaf area index (Fig. 

3.c) (CRM = -0.33), although the model correctly reproduced the relative 

reduction in leaf area for increasing Na
+
 concentrations (R

2
=0.89; EF=0.65). 

This is considered as particularly important, since leaf area index is a key 

state variable involved with the amount of water daily transpired and thus 

with the potential entry of Na
+
 through the apoplastic pathway (Faiyue et al., 

2012; equations 1-6). 

Concerning Na
+
 uptake (Fig. 3.d), simulated Na

+
 contents showed a good 

agreement with measured data, although the values of the performance 

metrics were slightly worse compared to those achieved for other outputs 

(RRMSE was around 50% and CRM was -0.20). However, the large portion 

of variance explained (R
2
 = 0.72) and the largely positive value of EF (0.66) 

allows considering also this variable as satisfactorily simulated. Indeed, Na
+
 

content results from the simulation of both Na
+
 dynamics (entry, 

translocation, sequestration, etc.) and the related effects on crop growth, and 

also by the uncertainty of the crop model itself. The interaction between the 

crop model and the salt stress model is deeply involved with the way plant 

growth drives Na
+
 uptake through the simulation of actual transpiration (in 

turn driven by leaf area index) and Na
+
 sink capacity (driven by organs 

biomass). For this reasons, the general overestimation of plant Na
+
 content 
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could be related to the overestimation in leaf area index and culm biomass 

(Fig. 3.c). However, the model was not able to reproduce the high plant Na
+
 

content measured at harvest for the cultivar Baldo at the highest Na level 

(150 mg plant
-1

). Another aspect able to partly explain the values for the 

agreement metrics obtained for the simulation of Na
+
 content is the Na

+
 

accumulation for the control treatment (0 mM NaCl). In this case, the model 

simulates a null Na
+
 plant content, whereas small values were measured in 

real plant tissues. 

 
Figure 3. Measured and simulated values of (a) aboveground biomass (AGB) and yield, 

(b) biomass of culms, leaves and panicles, (c) leaf area index, and (d) plant sodium content. 

The grey line indicates the 1:1 agreement between measured and simulated data. 

5.4.3. Identification of key traits in different scenarios 

Simulations performed during the SA led to 14% and 12% average yield 

losses in California and Greece, respectively, in agreement with the 

expected yield reduction under salinity levels similar to those explored 

(Grattan et al., 2002). 
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Results of the SA (Fig. 4) showed how different scenarios could allow 

defining contrasting breeding strategies to increase the overall cultivar salt 

tolerance and, in turn, further demonstrated the potential of trait-based 

modelling for designing district-specific ideotypes (Paleari et al., 2015). 

Indeed, simulations revealed that – despite salt tolerance is an issue in both 

scenarios – different traits would guarantee the highest increase in yields in 

California and Greece. This is in agreement with Roy et al. (2014), who 

observed how different traits could be exploited to increase salt tolerance 

under different salinity levels. Tissue tolerance (T4, indicated in pink in Fig. 

4) was the most important trait in California (Fig. 4.b), where high-salinity 

peaks occurs for short periods in the first part of the season (Fig. 2). Indeed, 

although the reduction of shoot Na
+
 uptake (T1, green in Fig. 4) also played 

a role (because of the relevance of a parameter involved with Na
+
 exclusion 

at root level via suberin deposition), the sharp increase in salinity in a 

moment when root barriers are still not developed makes the response at leaf 

level more important to increase the overall plant tolerance. A similar peak 

occurring later in the season (with a higher root suberin content) would have 

led to different results. 

In case of prolonged stressful conditions like those characterizing the 

Greek scenario (Fig. 2), instead, the most important tolerant traits were 

involved with the plant capability to prevent Na
+
 from reaching leaf blades 

(Fig. 4.d), i.e., reduction of Na
+
 uptake (suberin deposition) and − to a lesser 

extent – higher sequestration in structural tissues (T2, indicated in red in 

Fig. 4). The trait involved with tissue tolerance were not considered as 

relevant for this scenario, because Na
+
 accumulation in leaf tissues was so 

fast to rapidly overcome the capability of the plant to segregate toxic ions 

into the vacuole and to synthesize osmolytes. This is in agreement with 

Munns et al. (2012), who observed the same relationship between high 

salinity and the importance of excluding Na
+
 at root level for wheat. 
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Figure 4. Sobol’ first- (a, c) and total-order (b, d) effects calculated for the sensitivity 

analysis performed on model parameters representing salt tolerance traits (Table 1). The 

analysis was carried out for two scenarios, one in California (a, b) and the other in Greece 

(c, d). The output for which sensitivity metrics were calculated was the final yield. 

 

The comparison of the Sobol’ first- and total-order effects highlighted 

strong interactions only for the Californian scenario (Figs. 4.a and 4.b) for 

the two parameters modulating the toxic effect of Na
+
 in leaf blades, i.e., 

(T4)ThreL and (T4)CritLeaf. This is partly due to the fact that these two 

parameters are involved in the same response function (equation 12), thus 

they interacted with each other. However, the large differences in the values 

of the first- and total-order sensitivity metrics suggest that these two 

parameters interacted also with others, being tissue tolerance strictly 

depending on the whole chain of processes modulating the sodium uptake at 

root level and its translocation and accumulation in photosynthetic tissues. 

Regardless of the scenario, parameters involved with tolerance to salt-

induced spikelet sterility did not resulted important in affecting yields. The 

reason is that Na
+
 concentration in the young panicles was not high enough 
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during the two sensitive stages (i.e., booting and flowering). In California, 

indeed, the accumulation of Na
+
 in the developing panicles before flowering 

was low because of the reduction of salinity due to fresh water inflow after 

the herbicide treatments, whereas in Greece Na
+
 concentration in field water 

started to increase too late to generate high contents in the reproductive 

organs before flowering. 

5.5. Discussion 

Taking salt stress tolerance and rice as a case study, we showed how the 

design of ideotypes can benefit from the availability of models explicitly 

developed starting from traits breeders are working on. Indeed, the model 

developed demonstrated its suitability for analyzing in depth key G×E×M 

interactions. Salt tolerance is a complex trait relaying on a variety of 

physiological mechanisms that can be alternatively selected to improve the 

overall crop tolerance. The availability of new tools for genetic 

improvement (e.g., Marker Assisted Selection) allows breeding for specific 

traits instead of targeting the overall crop tolerance (Roy et al., 2014) thus 

increasing the efficiency of the breeding process, since the effectiveness of 

the changes in the values of different traits varies according to the agro-

environmental context. 

For the first time, a modelling approach dedicated to ideotyping was 

developed by explicitly building algorithms around traits for which breeding 

activities are ongoing. We consider this strategy as the only one able to 

avoid inconsistencies between model parameters and plant traits, and thus 

between in silico ideotypes and the possibility of realizing them in vivo. 

Indeed, a high level of detail in the representation of physiological processes 

cannot be considered as a guarantee of direct relationships between model 

parameters and plant traits, given the same knowledge can be formalized in 

a variety of possible modelling structure (Confalonieri et al., 2016). 

Moreover, during model development, a pronounced process-based 

perspective was used to properly account for the key physiological 

processes and feedback mechanisms involved. 
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Results of model application to design district-specific ideotypes showed 

that, despite differences between scenarios were mainly limited to the 

seasonal dynamics of salt concentration in field water, putative traits to 

increase salt tolerance can rely on completely different physiological 

mechanisms. Results achieved encourage a paradigm shift towards the 

development of dedicated trait-based models and their use for supporting 

breeding programs at district level. 

Limits of our study − and thus potential areas for model improvement − 

deal with the lack of approaches to simulate also the uptake and distribution 

of K
+
, since the toxicity of Na

+
 seems to be related also to the Na

+
:K

+
 ratio 

and not only to the concentration of Na
+
 in itself (e.g., Ren et al., 2005). 

Also, improved (i.e., more explicit) approaches would be needed for the 

simulation of the effect of the osmotic component of salt stress on tissue 

expansion and stomatal reaction, in order better account for osmotic 

adjustment. 
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6.1. Abstract 

Ecophysiological models can be successfully used to analyze genotype 

by environment interactions, thus supporting breeders in identifying key 

traits for specific growing conditions. This is especially true for traits 

involved with resistance/tolerance to biotic and abiotic stressors, which 

occurrence can vary greatly both in time and space. However, no modelling 

tools are available to be used directly by breeders, and this is one of the 

reasons that prevents an effective integration of modelling activities within 

breeding programs. ISIde is a software platform specifically designed for 

district-specific rice ideotyping targeting (i) resistance/tolerance traits and 

(ii) breeders as final users. Platform usability is guaranteed by a highly 

intuitive user interface and by exposing to users only settings involved with 

genetic improvement. Other information needed to run simulations (i.e., 

data on soil, climate, management) is automatically provided by the 

platform once the study area, the variety to improve and the climate scenario 

are selected. Ideotypes indeed can be defined and tested under current and 

climate change scenario, thus supporting the definition of strategies for 

breeding in the medium-long term. Comparing the performance of current 

and improved genotype, the platform provides an evaluation of the yield 

benefits exclusively due to the genetic improvement introduced. An 

example of the application of the ISIde platform in terms of functionalities 

and results that can be achieved is reported by means of a case study 

concerning the improvement of tolerance to heat stress around flowering in 

the Oristanese rice district (Italy). The platform is currently available for the 

six Italian rice districts. However, the software architecture allows its 

extension to other growing areas ‒ or to additional genotypes ‒ via 

dedicated tools available at the application page. 

 

 

Keywords: Blast, breeding, climate change, fungal pathogens, spikelet 

sterility, WARM. 
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6.2. Introduction 

Costs and time resources required to develop new varieties on the one 

hand, and the availability of new technologies for genetic improvement on 

the other hand, have given new interest in breeding for specific traits (Peng 

et al., 2008). In order to identify such traits, genotypes need to be 

extensively evaluated under the target agroenvironmental and management 

contexts. This activity is onerous and prevents breeders from testing 

genotypes under climate change scenarios, despite the time needed to 

complete breeding programs, as well as their cost, would likely suggest to 

carefully consider them (Paleari et al., 2015). Despite their level of 

uncertainty and their exploratory nature, ideotyping studies based on 

simulation models can be useful to this end (Martre et al., 2015a). Changes 

in the values of parameters describing morphological and physiological 

plant traits indeed, allow the definition of in silico ideotypes that can be 

screened under a wide range of conditions. However, possible discrepancies 

between the in silico improved varieties and their in vivo realization could 

limit the effectiveness of model-based ideotyping studies (Hammer et al., 

2002). An interdisciplinary approach is thus crucial to develop modelling 

tools (i) able to provide reliable estimates of differences among genotypes 

for specific traits and (ii) easily manageable directly by target users (i.e., 

breeders) without requiring specific crop modelling or IT skills. This would 

avoid testing hypothesis unfeasible in practical terms. 

Usability ‒ defined by ISO as “the capability of a software product to be 

understood, learned, used and attractive to the user, when used under 

specified conditions” (ISO, 2001) ‒ thus become a key factor for extending 

the use of simulation tools to users other than modellers and computational 

experts (Carpenter et al., 2013). 

The objective of this work is to present the first integrated modelling 

platform specifically developed for the definition and evaluation of rice 

ideotypes improved for resistance and tolerance traits, targeting breeders as 

reference users. Ideotypes can be tested over different production districts 



Chapter 6                                                                                                        .. 

 102 

and under current and climate change scenarios, thus supporting the 

identification of key traits for specific contexts in both the short and the 

medium-long term. 

6.3. The ISIde platform 

ISIde (In Silico Ideotyping platform) is a rice-specific modelling platform 

for ideotyping studies. It is currently available for the six Italian districts and 

for resistance/tolerance traits dealing with blast disease and with spikelet 

sterility induced by cold shocks during microsporogenesis and by heat/cold 

shocks around flowering. However, the component-based architecture 

allows easily extending the platform to other contexts (i.e., other regions) or 

processes (i.e., other biotic or abiotic stressors). Simulations are performed 

with a 5 km × 5 km spatial resolution to capture the heterogeneity of the 

environmental conditions explored by the crop throughout the districts. 

ISIde is made available as a .NET application (C#); the setup is freely 

available at info@cassandralab.com. 

6.3.1. The modelling solution 

A schematic representation of the modelling solution implemented in 

ISIde is given in Fig. 1. A full description of the modelling solution is 

available in Paleari et al. (2015), whereas details on algorithms implemented 

are available in the seminal literature and in the model web pages 

(http://www.cassandralab.com/applications/2). 

The simulation engine is the hourly-time step version of the rice model 

WARM (Confalonieri et al., 2009b), which reproduces key processes 

involved with the rice growth and development, as well as the impact of 

biotic and abiotic stressors on yield. A micrometeorological model is used 

to reproduce the floodwater effect on the vertical thermal profile. Biomass 

accumulation is estimated using a net-photosynthesis approach based on 

radiation use efficiency (RUE), with the latter modulated by senescence, 

temperature and saturation of enzymatic chains. Spikelet sterility due to pre-

flowering cold shocks and to cold and heat shocks around flowering is 
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simulated by considering the different plant susceptibility during the periods 

of interest via bell-shaped functions. Given the strong relationship between 

damage magnitude and specific phenological stages, these functions allow 

accounting for the between- and within-plant heterogeneity in phenological 

development (Yoshida, 1981). The simulation of the interaction between the 

plant and fungal pathogens is performed using the model proposed by 

Bregaglio et al. (2016) parameterized according to the specific thermal and 

moisture requirements of the airborne fungal pathogen causing blast disease 

(Magnaporthe oryzae B. Couch). 

 
Figure 1. The WARM modelling solution implemented in the ISIde platform. Coupling 

points between the crop model and models for the impact of biotic/abiotic stressors are 

represented via dotted arrows. AGB: aboveground biomass; DVS: development stage code 

(1.6 = panicle initiation, 2.1 = end of flowering); LAI: leaf area index; PAR: 

photosynthetically active solar radiation, RUE: radiation use efficiency. 

6.3.2. A high-resolution, geo-referenced database for model inputs 

and parameters 

To avoid setup problems due to specific system configurations, the ISIde 

database is structured in a series of binary files. This solution avoids 

dealing, e.g., with different ODBC driver versions when installing client 
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applications targeting databases management systems (DBMS), such as 

Oracle and PostgreSQL. This solution is thus coherent with the plausible 

background of the target user, i.e., a breeder, who is not required to have 

system administrator skills in his/her background. The ISIde geo-referenced 

database includes data on weather (current climate and future projections), 

soil, crop distribution and management practices (e.g., sowing date) at         

5 km × 5 km spatial resolution. District-specific information on the most 

representative varieties, related parameterizations and on which are the 

biotic/abiotic constraints affecting rice productions is also included. Daily 

weather data from the MARS database (http://mars.jrc.ec.europa.eu/mars/) 

were used for the current climate (i.e., the 1986-2005 baseline), whereas the 

uncertainty related with future projections was handled by using two 

contrasting IPCC AR5 representative concentration pathways (RCP2.6 and 

RCP8.5; IPCC, 2013) and two general circulation models (GCMs): 

HadGEM2-ES (Hadley Centre, UK) and GISS-E2-R (NASA). 20-year 

weather series centered on 2030, 2050 and 2070 were then generated for 

each combination RCP × GCM, using the CLIMAK weather generator 

(Confalonieri, 2012). Information on rice distribution and sowing dates was 

derived from European Corine Land Cover data 

(http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-

raster-2) and remote sensing products (10-year median from time series of 

MODIS 8-Day composite images at 500 m spatial resolution; Boschetti et 

al., 2009). For each district, the most representative rice varieties were 

selected according to data provided by the Italian National Rice Authority 

(ENR; www.enterisi.it). Overall, the platform provides the complete 

characterization of 34 varieties. The resistance levels to blast diseases were 

derived by analyzing the results of multi-site and multi-year variety trials 

carried out by ENR and by the Regional Agency for Agricultural and Forest 

Services (ERSAF; www.ersaf.lombardia.it). The temperature thresholds 

triggering cold- and heat-induced spikelet sterility were retrieved from 

literature for both Japonica- and Indica-type varieties (Andaya et al., 2003; 

Shah et al., 2011). The complete description of parameters involved with 

http://www.enterisi.it/
http://www.ersaf.lombardia.it/
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crop growth and development and of parameters representing the 

resistance/tolerance level to biotic and abiotic stressors is provided in 

Paleari et al. (2015). 

6.3.3. User interaction 

The platform user interface (UI) is highly intuitive, with a set of icons 

representing the steps needed for the definition and evaluation of the 

ideotype (Fig. 2). A quick guide ‒ available via the question mark icon ‒ 

provides users with instructions/suggestions for each specific region of the 

UI. Moreover, information on which is the next step to perform is always 

displayed at the bottom left of the working area. To guarantee usability, 

after a specific district is selected (Fig. 2, step 1) only parameters related to 

breeding activities focusing on biotic/abiotic stressors are exposed to the 

user for defining the ideotype (Fig. 2, step 2). 

Therefore, only information related with genetic improvements needs to 

be provided, since all other information is automatically selected by the 

platform once the district, the variety to improve and the climate scenario 

(Fig. 2, step 3) are chosen. When all simulations are run, synthetic results 

are displayed (Fig. 2, step 4), whereas detailed outputs are stored in the 

database and can be exported in tabular format as text (.csv) files. A MS 

Word (.docx) report on the ideotyping exercise is also produced 

(summarizing results as well as the information on settings) to guarantee 

work reproducibility (Carpenter et al., 2013). A complete documentation 

and a video tutorial illustrating how to use the platform are available at the 

application page (www.cassandralab.com/applications/4) and at 

www.cassandralab.com/components. 

  

http://www.cassandralab.com/applications/4
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Figure. 2. The ISIde user interface. Windows highlight the consecutive steps needed to 

define and test ideotypes at district level. 

6.4. A case study: defining and testing an ideotype improved 

for heat tolerance around flowering in the Italian rice district 

“Oristanese” 

The study area has a typical Mediterranean climate, with maximum 

temperature during summer months frequently close to the upper limit for 

rice (higher than 35 °C). Damages due to high temperature around flowering 

could thus potentially threaten rice productions as the climate gets warmer. 

We hypothesized to improve the Japonica-type cultivar Volano ‒ 

extensively grown in Italy for the preparation of “risotto” ‒ for tolerance to 

heat-induced spikelet sterility. The ideotype was defined by increasing the 

threshold temperature for sterility (35 °C; Paleari et al., 2015) up to the 

value characterizing potential donor varieties available among Italian rice 

germplasm, as the cultivar Thaibonnet (threshold temperature = 36 °C). The 

latter is an Indica-type cultivar, considered a “founder” for its crucial 

contribution to the current Italian rice germplasm. To explore a wide range 

of future climatic projections, we selected two scenarios (HadGEM2-ES 

GCM − RCP8.5 and GISS-E2-R GCM − RCP2.6, respectively leading to 

the highest and the lowest expected temperature increase) and three 20-year 

timeframes centred on 2030, 2050 and 2070. In contrast with a sizable 
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benefit (in terms of yield increase) simulated for the same cultivar and 

district in case of an improved resistance to blast disease (Paleari et al., 

2015), results showed that increasing tolerance to heat-induced spikelet 

sterility may provide limited advantages under current climate (+2.3%). 

Benefits increased up to 5% while moving forward the time frame 

considered with the warmest scenario (HadGEM2-ES GCM − RCP8.5), 

whereas they remained stable under 3% with the more optimistic scenario 

(GISS-E2-R GCM − RCP2.6) (Fig. 3). This highlighted the importance of 

providing the user with more RCP scenarios and GCMs, to test the ideotype 

under different climate projections. 

 

 
Figure 3. Performance of an ideotype derived by improving the cultivar Volano for 

tolerance to heat-induced spikelet sterility in the Oristanese rice district. The baseline 

(1986-2005) and three 20-year scenarios centered on 2030, 2050 and 2070 are reported. 

Had-8.5: HadGEM2-ES GCM − RCP8.5; GISS-2.6: GISS-E2-R GCM − RCP2.6. The six 

main Italian rice districts are highlighted with rectangles. 

6.5. Conclusion and perspectives 

To achieve an effective integration of crop modelling and breeding 

activities, breeders themselves should be enabled to perform model-based 

ideotyping studies. This means, in turn, that modelling tools must be 

developed targeting users who does not have necessarily in-depth skills in 

agronomy, climatology, agrometeorology, crop modelling, IT. ISIde, 
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deriving from a close collaboration between target users, biophysical 

modelers and software developers, represents the first prototype of a 

platform specifically developed for being used by breeders to identify 

putative traits improving varieties at district level. Taking advantage of 

software engineering expertise and explicitly targeting breeders as users, it 

allows testing hypothesis of genetic improvement via an advanced, detailed 

modelling solution, thus representing a step forward towards an actual role 

of crop modelling in breeding programs. The availability of supporting 

software tools (for the creation of new databases and the parameterization of 

the modelling solution for new varieties) allows extending the platform to 

new study regions. Indeed, specific applications are available at 

info@cassandralab.com to generate new weather scenarios and to create the 

binary files constituting the ISIde database, whereas the application WARM 

2 (www.cassandralab.com) can be used to parameterize the simulation 

engine for other genotypes. 
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The development of new varieties better adapted to specific growing 

conditions is one of the most effective strategies to tackle food security 

issues, alleviate the impact of climate change on agriculture and increase the 

sustainability of farming systems (Lobell et al., 2011; Ramirez-Villegas et 

al., 2015). This study addressed the use of crop models to support breeders 

in designing putative ideotypes for improving quantitative and qualitative 

aspects of crop productions in specific agro-climatic contexts. 

The use of crop models for ideotyping purposes was analyzed from 

different perspectives, and new solutions were proposed to problems dealing 

with uncertainty, model suitability, and availability of IT tools. The need of 

varieties adapted to specific conditions was fully considered by performing 

analyses at district level and including climate change scenarios. 

Part of the researches carried out during the PhD project originated from 

the consideration that current models are – to a different extent – not 

completely suitable for ideotyping studies. Indeed, they lack clear 

relationships between parameters and plant traits. To overcome this 

limitation, a shift of paradigm was proposed towards the redesign of crop 

models by building them around traits breeders are working on (trait-based 

development). According to this new paradigm, a new model for salt stress 

was developed, by explicitly considering the five traits involved. Compared 

to existing approaches, the new model demonstrated its full suitability and 

usefulness in case studies where ideotypes improved for salt tolerance were 

designed and evaluated in two different contexts. 

However, redesigning from the scratch complete crop models will take 

years. For this reason, another part of this research was focused on 

decreasing the uncertainty deriving from the use of partially suitable models 

to maximize their usefulness. This was achieved through the development of 

a new mathematical procedure for identifying traits for which information 

on distributions is more important for ideotypes definition, and through the 

design of ideotyping experiments explicitly accounting for the variability in 

time and space of the conditions explored by current and improved varieties. 

Moreover, for the first time, ideotyping studies dealing with plant-pathogen 
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interactions were carried out, demonstrating how yield benefits deriving 

from increased resistance can be markedly affected by spatial and temporal 

heterogeneity. Similar considerations were derived when the potential 

benefits of breeding for tolerance to abiotic stressors were simulated. 

A third part of the research focused on the development of the first 

software platform for in silico ideotyping designed to target breeders as final 

users. The aim of the platform was bridging the gap between the modelling 

and breeding communities. Although it is currently available for the six 

Italian rice districts and limited to resistance/tolerance traits, the platform 

could be easily extended to other growing areas, additional genotypes and 

phenotypic traits. 

Future developments could be driven by the limits behind this research: 

(i) absence of explicit interactions between traits, since epistasis and 

pleiotropy could potentially bind the combination of traits to be explored 

(e.g., Chenu et al., 2009), (ii) no adaptation strategies considered (e.g., 

alternative sowing date; Zheng et al., 2012), and (iii) lack of evolutionary 

potential of the pathogen in response to long-term climate variations and 

increased host resistance (Chakraborty, 2013). Finally, the definition of 

ideotypes could be extended by including the genotypic variation in yield 

response to elevated CO2 (Ziska et al., 2012). 

  



General conclusions                                                                                      ... 

 112 

 

 



 

 113 

 

 

 

REFERENCES 

Acutis, M., Donatelli, M., Stöckle, C.O., 1998. Comparing the performance 

of three weather generators. Proceedings of the 5th ESA Congress, Nitra, 

Slovak Republic, 117-118. 

Aggarwal, P.K., Kropff, M.J., Cassman, K.G., Ten Berge, H.F.M., 1997. 

Simulating genotypic strategies for increasing rice yield potential in 

irrigated, tropical environments. Field Crop. Res. 51, 5-17. 

Alpuerto, V.L.E.B., Norton, G.W., Alwang, J., Ismail, A.M., 2009. 

Economic impact analysis of marker-assisted breeding for tolerance to 

salinity and phosphorous deficiency in rice. Rev. Agr. Econ. 31, 779-792. 

Al-Tamimi, Brien, C., Oakey, H., Berger, B., Saade, S., Ho, Y.S., 

Schmöckel, S.M., Tester, M., Negrão, S, 2016 Salinity tolerance loci 

revealed in rice using high-throughput non-invasive phenotyping. Nat. 

Comm. 7, 13342. 

Amari, T., Ghnaya, T., Debez, A., Taamali, M., Ben Youssef, N., Lucchini, 

G., Sacchi, G.A., Abdelly, C., 2014. Comparative Ni tolerance and 

accumulation potentials between Mesembryanthemum crystallinum 

(halophyte) and Brassica juncea: metal accumulation, nutrient status and 

photosynthetic activity. J. Plant Physiol. 171, 1634-1644. 

Ambardekar, A.A., Siebenmorgen, T.J., Counce, P.A., Lanning, S.B., 

Mauromoustakos, A., 2011. Impact of field-scale nighttime air 

temperatures during kernel development on rice milling quality. Agric. 

For. Meteorol. 122, 179-185. 

Andaya, V.C., Mackill, D.J., 2003. QTLs conferring cold tolerance at the 

booting stage of rice using recombinant inbred lines from a 

japonica×indica cross. Theor. Appl. Genet. 106, 1084-1090. 



 

 114 

Andrivon, D., Giorgetti, C., Baranger, A., Calonnec, A., Cartolaro, P., 

Faivre, R., et al. 2013. Defining and designing plant architectural 

ideotypes to control epidemics? Eur. J. Plant Pathol. 135, 611-617. 

Arai, N., Yoshino, R., 1987. Studies on the sporulation of rice blast fungus: 

(1) relation between sporulation and temperature. Ann. Phytopathol. Soc. 

Jpn. 53, 371-372. 

Asch, F., Sow, A., Dingkuhn, M., 1999. Reserve mobilization, dry matter 

partitioning and specific leaf area in seedling of African rice cultivars 

differing in early vigor. Field Crop. Res. 62, 191-202. 

Asch, F., Dingkuhn, M., Wopereis, M.S.C., Dörffling, K., Miezan, K., 1997. 

A conceptual model for sodium uptake and distribution in irrigated rice. 

In: M.J. Kropff et al. (eds.), Applications of Systems Approaches at the 

Field Level, pp. 201-217, Kluwer Academic Publishers, Dordrecht. 

Asseng, S., Bar-Tal, A., Bowden, J.W., Keating, B.A.,van Herwaarden, A, 

Palta, J.A., Huth, N.I., Probert, M.E., 2002. Simulation of grain protein 

content with APSIM-Nwheat. Eur. J. Agron. 16, 25-42. 

Audsley, E., Milne, A., Paveley, N., 2005. A foliar disease model for use in 

wheat disease management decision support systems. Ann. Appl. Biol. 

147, 161-172. 

Awoderu, V.A., Esuruoso, F., Adeosun, O.O., 1991. Growth and conidia 

production in race HG-5/IA-65 of Pyricularia oryzae Cav. In vitro. J. 

Basic Microbiol. 31:163-168. 

Ballini, E., Morel, J.P., Droc, G., Price, A., Courtois, B., Notteghem, J.L., 

Tharreau, D., 2008. A genome-wide meta-analysis of rice blast resistance 

genes and QTLs provides new insights into partial and complete 

resistance. Mol. Plant Microbe. In. 21, 859-868. 

Battisti, D.S., Naylor, R.L., 2009. Historical warnings of future food 

insecurity with unprecedented seasonal heat. Science 323, 240-244. 

Bassu, S., Brisson, N., Durand, J-L., et al., 2014. How do various maize 

crop models vary in their responses to climate change factors? Global 

Change Biology 20, 2301-2320. 



 

 115 

Berndt, R.D., White, B.J., 1976. A simulation-based evaluation of three 

cropping systems on cracking clay soils in a summer rainfall 

environment. Agric. Meteorol. 16, 211-229. 

Bertin, N., Martre, P., Genard, M., Quilot, B., Salon, C., 2010. Under what 

circumstances can process-based simulation models link genotype to 

phenotype for complex traits? Case study of fruit and grain quality traits. 

J. Exp. Bot. 61, 955–967. 

Boote, K., Jones, J., White, J.W., Asseng, S., Lizaso, J. 2013. Putting 

mechanisms into crop productions models. Plant Cell Environ. 36, 1658-

1672. 

Boote, K., Ibrahim, A.M.H., Lafitte, R., McCulley, R., Messina, C., Murray, 

et al., 2011. Position statement on Crop Adaptation to Climate Change. 

Crop Sci. 51, 2337-2343. 

Boote, K.J., Kropff, M.J., Bindraban, P.S., 2001. Physiology and modelling 

of traits in crop plants: implications for genetic improvement. Agri. Sys. 

70, 395-420. 

Boschetti, M., Stroppiana, D., Brivio, P.A., Bocchi, S., 2009. Multi-year 

monitoring of rice crop phenology through time series analysis of 

MODIS images. Int. J. Remote Sens. 30, 4643-4662. 

Boschetti, M., Bocchi, S., Stroppiana, D., Brivio, P.A., 2006. Estimation of 

parameters describing morpho-physiological features of mediterranean 

rice varieties for modelling purposes. Ital. J. Agrometeorol. 3, 40-49. 

Bregaglio, S., Titone, P., Cappelli, G., Tamborini, L., Mongiano, G., 

Confalonieri, R., 2016. Coupling a generic disease model to the WARM 

rice simulator to assess leaf and panicle blast impacts in temperate 

climate. Eur. J. Agron. 76, 107-117. 

Bregaglio, S., Donatelli, M., Confalonieri, R., 2013. Fungal infections of 

rice, wheat, and grape in Europe in 2030-2050. Agr. Sustain. Dev. 33, 

767-776. 

Brennan, J.P., Martin, P.J., 2007. Return on investment in new breeding 

technologies. Euphytica 157, 337–349. 



 

 116 

Calonnec, A., Cartolaro, P., Naulin, J-M., Bailey, D., Langlais, M., 2008. A 

host–pathogen simulation model: powdery mildew of grapevine. Plant 

Pathol. 57, 493–508. 

Cambpell, C.S., Heilman, J.L., McInnes, K.J., Wilson, L.T., Medley, J.C., 

Wu, G., Cobos, D.R., 2001. Seasonal variation in radiation use efficiency 

of irrigated rice. Agric. Forest Meteorol. 110, 45-54. 

Campolongo, F., Cariboni, J., Saltelli, A., 2007. An effective screening 

design for sensitivity analysis of large models. Environ. Modell. Soft. 22, 

1509-1518. 

Cappelli, G., Bregaglio, S., Romani, M., Feccia, S., Pagani, M.A., Lucisano, 

M., Confalonieri, R., 2016. Are models for rice quality suitable for 

operational contexts? A multimodel study in northern Italy. Proceedings 

of the 14th Congress of the European Society for Agronomy, Edinburgh, 

Scotland, UK, 5-9 September 2016 

Carpenter, A.E., Kamentsky, L., Eliceiri, K.W., 2013. A call for bioimaging 

software usability. Nat. Methods 9, 666-670. 

Casadebaig, P., Zheng, B., Chapman, S., Huth, N., Faivre, R., Chenu, K., 

2016. Assessment of the potential impacts of wheat plant traits across 

environments by combining crop modelling and global sensitivity 

analysis. PLoS ONE 11, e0146385. 

Casadebaig, P., Quesnel, G., Langlais, M., Faivre, R., 2012. A generic 

model to simulate air-borne diseases as a function of crop architecture. 

PLoS ONE 7, e49406. 

Casadebaig, P., Guilioni, L., Lecoeur, J., Christophe, A., Champolivier, L., 

Debaeke, P., 2011. SUNFLO, a model to simulate genotype specific 

performance of the sunflower crop in contrasting environments. Agri. 

For. Meteorol. 151, 163–178. 

Casanova, D., Epema, G.F., Goudriaan, J., 1998. Monitoring rice 

reflectance at field level for estimating biomass and LAI. Field Crop. 

Res. 55, 83-92. 

Caubel, J., Launay, M., Lannou, C., Brisson, N., 2012. Generic response 

functions to simulate climate-based processes in models for the 



 

 117 

development of airborne fungal crop pathogens. Ecol. Model. 242, 92-

104. 

Ceglar, A., Črepinšek, Z., Kajfež-Bogataj, L., Pogačar, T., 2011. The 

simulation of phonological development in dynamic crop model: the 

Bayesian comparison of different methods. Agr. Forest Meteorol. 151, 

101-115. 

Cerasuolo, M., Richter, G.M., Richard, B., Cunniff, J., Girbau, S., Shield, I., 

Purdy, S., Karp, A., 2016. Development of a sink–source interaction 

model for the growth of short-rotation coppice willow and in silico 

exploration of genotype×environment effects. J. Exp. Bot. 67, 961-977. 

Chakraborty, S., 2013. Migrate or evolve: options for plant pathogens under 

climate change. Glob. Change Biol. 19, 1985-2000. 

Chapman, S., 2008. Use of crop models to understand genotype by 

environment interactions for drought in real-world and simulated plant 

breeding trials. Euphytica 161, 195–208. 

Charles-Edwards, D.A., 1982. Physiological determinants of crop growth. 

Academic Press, Sydney, NSW, Australia. 

Chenu, K., Cooper, M., Hammer, G.L., Mathews, K., Dreccer, M., 

Chapman, S., 2011. Environment characterization as an aid to wheat 

improvement: Interpreting genotype–environment interactions by 

modelling water-deficit patterns in North-Eastern Australia. J. Exp. Bot. 

62, 1743–1755. 

Chenu, K., Chapman, S.C., Tardieu, F., McLean, G., Welcker, C., Hammer, 

G.L., 2009. Simulating the yield impact of organ-level Quantitative Trait 

Loci associated with drought response in maize: a “Gene-to-Phenotype” 

modeling approach. Genetics 183, 1507-1523. 

Chenu, K., Chapman, S.C., Hammer, G.L., McLean, G., Ben- Haj-Salah, H., 

Tardieu, F., 2008. Short-term responses of leaf growth rate to water 

deficit scale up to whole-plant and crop levels: an integrated modelling 

approach in maize. Plant Cell Environ. 31, 378–391. 



 

 118 

Collins, W.D., Hack, J.J., Boville, B.A., Rasch, P.J., 2004. Description of 

the NCAR Community Atmosphere Model (CAM3.0). Technical note 

TN-464+STR, National Center for Atmospheric Research, Boulder, CO. 

Confalonieri, R., 2012. Combining a weather generator and a standard 

sensitivity analysis method to quantify the relevance of weather variables 

on agrometeorological models outputs. Theor. Appl. Climatol. 108, 19-

30. 

Confalonieri, R., Bregaglio, S., Adam, M., Ruget, F., Li, T., Hasegawa, T., 

et al., 2016. A taxonomy-based approach to shed light on the babel of 

mathematical models for rice simulations. Environ. Modell. Softw. 85, 

332-341. 

Confalonieri, R., Stella, T., Dominoni, P., Frasso, N., Consolati, G., 

Bertoglio, M., et al., 2014. Impact of agro-management practices on rice 

elongation: analysis and modelling. Crop Sci. 54, 2294-2302. 

Confalonieri, R., Bregaglio, S., Cappelli, G., Francone, C., Carpani, M., 

Acutis, M., El Aydam, M., Niemeyer, S., Balaghi, R., Domng, Q., 2013. 

Wheat modelling in Morocco unexpectedly reveals predominance of 

photosynthesis versus leaf area expansion plant traits. Agron. Sustain. 

Dev. 33, 393-403. 

Confalonieri, R., Bregaglio, S., Acutis, M., 2012. Quantifying plasticity in 

simulation models. Ecol. Model. 225, 159-166. 

Confalonieri, R., Bellocchi, G., Bregaglio, S., Donatelli, M., Acutis, M., 

2010a. Comparison of sensitivity analysis techniques: a case study with 

the rice model WARM. Ecol. Model. 221, 1897-1906. 

Confalonieri, R., Bellocchi, G., Tarantola, S., Acutis, M., Donatelli, M., 

Genovese, G., 2010b. Sensitivity analysis of the rice model WARM in 

Europe: exploring the effects of different locations, climates and methods 

of analysis on model sensitivity to crop parameters. Environ. Model. 

Softw. 25, 479-488. 

Confalonieri, R., Acutis, M., Bellocchi, G., Donatelli, M., 2009a. Multi-

metric evaluation of the models WARM, CropSyst, and WOFOST for 

rice. Ecol. Model. 220, 1395-1410. 



 

 119 

Confalonieri, R., Rosenmund, A.S., Baruth, B., 2009b. An improved model 

to simulate rice yield. Agron. Sustain. Dev. 29, 463-474. 

Confalonieri, R., Gusberti, D., Bocchi, S., Acutis, M., 2006. The CropSyst 

model to simulate the N balance of rice for alternative management. 

Agron. Sustain. Dev. 26, 241-249. 

Confalonieri, R., Bocchi, S., 2005. Evaluation of CropSyst for simulating 

the yield of flooded rice in northern Italy. Eur. J. Agron. 23, 315-326. 

Cooper, M., van Eeuwijk, F.A., Hammer, G.L., Podlich, D.W., Messina, C., 

2009. Modeling QTL for complex traits: detection and context for plant 

breeding. Curr. Opin. Plant Biol. 12, 231–240. 

Cooper, M., Podlich, D., 2002. The E(NK) model: extending the NK model 

to incorporate gene-by-environment interactions and epistasis for diploid 

genomes. Complexity 7, 31–47. 

Cooper., M., Chapman, S.C., Podlich, D.W., Hammer, G.L., 2002. The GP 

problem: quantifying gene-to-phenotype relationships. In Silico Biol. 2, 

151-164. 

Coppola, E., Giorgi, F., 2010. An assessment of temperature and 

precipitation change projections over Italy from recent global and 

regional climate model simulations. Int. J. Clim. 30, 11-32. 

Costafits, O., Plett, D., Shirley, N., Tester, M., Hrmova, M., 2012. A Two-

Staged Model of Na
+
 Exclusion in Rice Explained by 3D Modeling of 

HKT Transporters and Alternative Splicing. PloS ONE 7(7): e39865. 

Covey, C., AchutaRao, K.M., Cubasch, U., Jones, P.D., Lambert, S.J., 

Mann, M.E., Phillips, T.J., Taylor, K.E., 2003. An overview of results 

from the Coupled Model Intercomparison Project. Global Planet. 

Change. 37, 103-133. 

Cukier, R.I., Fortuin, C.M., Shuler, K.E., Petschek, A.G., Schaibly, J.H., 

1973. Study of the sensitivity of coupled reaction systems to uncertainties 

in rate coefficients. I. Theory. J. Chem. Phys. 59, 3873-3878. 

da Cruz, R.P., Milach, S.C.K., Federizzi, L.C., 2006. Rice cold tolerance at 

the reproductive stage in a controlled environment. Sci. Agric. 63, 255–

261. 



 

 120 

Danuso, F., 2002. CLIMAK: a stochastic model for weather data generation. 

It. J. Agron. 6, 57-71. 

Das, G., Rao, G.J.N., 2015. Molecular marker assisted gene stacking for 

biotic and abiotic stress resistance genes in an elite rice cultivar. Front. 

Plant Sci. 6:698. 

Deepak, K. R., Ramankutty, N., Mueller, N.D., West, P.C., Foley, J.A., 

2012. Recent patterns of crop yield growth and stagnation. Nat. Comm 

3:1293 

Ding, W., Xu, L., Wei, Y., Wu, F., Zhu, D., Zhang, Y., Max, N., 2016. 

Genetic algorithm based approach to optimize phenotypic traits of virtual 

rice. J. Theor. Biol. 403, 59-67. 

Dingkuhn, M., Laza, M.R.C., Kumar, U., Mendez, K.S., Collard, B., 

Jagadish, K., et al., 2015. Improving yield potential of tropical rice: 

Achieved levels and perspectives through improved ideotypes. Field 

Crop. Res. 182, 43-59. 

Dingkuhn, M., Luquet, D., Clément-Vidal, A., Tambour, L., Kim, H.K., 

Song, Y.H., 2007. Is plant growth driven by sink regulation? Implications 

for crop models, phenotyping approaches and ideotypes. In: J.H.J. 

Spiertz, P.C. Struik, H.H van Laar (eds) Scale and complexity in plant 

systems research: gene-plant-crop relations, pp. 157-170, Springer, 

Dordrecht, The Netherlands. 

Dingkuhn, M., Johnson, D.E., Sow, A., Audebert, A.Y., 1999. Relationships 

between upland rice canopy characteristics and weed competitiveness. 

Field Crop. Res. 61, 79-95. 

Dingkuhn, M., Penning de Vries, F.W.T., Datta, S.K., van Laar, H.H., 1991. 

Concepts for a new plant type for direct seeded flooded tropical rice. In 

Selected Papers from the International Rice Research Conference, 27–31 

August 1990, Seoul, Korea. International Rice Research Institute, 

Manila, Philippines, pp 17–38. 

Donald, C.M., 1968. Breeding for crops ideotypes. Euphytica, 17, 385-403. 



 

 121 

Donatelli, M., Confalonieri, R., 2011. Biophysical models for cropping 

system simulation. In: G. Flichman (eds) Bio-Economic Models applied 

to Agricultural Systems, pp 59-87, Springer. 

Donatelli, M., Rizzoli, A.E., 2008. A design for framework-independent 

model components of biophysical systems. In: Proceedings of the 

International Congress on Environmental Modelling and Software 

(iEMSs ’08), vol. 2, pp. 727-734, Barcelona, Spain. 

dos Reis, S.P., Lima, A.M., de Souza, C.R.B., 2012. Recent molecular 

advances on downstream plant responses to abiotic stress. Int. J. Mol. 

Sci. 13, 8628-8647. 

Dreni, L., Gonzales Schain, N., Pilatone, A. et al., 2012. Thermal stress 

responses in rice. In: Proceeding from the International Workshop Crop 

Improvement in a Changing Environment: the RISINNOVA Project for 

sustainable rice production in Italy, Venice, Italy, pp 11 

Drewry, D.T., Kumar, P., Long, S.P., 2014. Simultaneous improvement in 

crop productivity, water use, and albedo through crop structural 

modification. Glob. Change Biol. 20, 1955-1967. 

Dulli, S., Furini, S., Peron, E., 2009. Data Mining. Springer, Berlin. 

Duncan, W.G., Loomis, R.S., Williams, W.A., Hanau, R., 1967. A model 

for simulating photosynthesis in plant communities. Hilgardia 38, 181-

205. 

Espe, M.B., Cassman, K.G., Yang, H., et al., 2016. Yield gap analysis of US 

rice production systems shows opportunities for improvement. Field 

Crop. Res. 196, 276-283. 

Faivre-Rampant, O., Bruschi, G., Abbruscato, P., Cavigiolo, S., Picco, 

A.M., Borgo, L., Lupotto, E., Piffanelli, P., 2011. Assessment of genetic 

diversity in Italian rice germplasm related to agronomic traits and blast 

resistance (Magnaporthe oryzae). Mol. Breeding. 27, 233-246. 

Faiyue, B., Al-Azzawi, M.J., Flowers, T.J., 2010. The role of lateral roots in 

bypass flow in rice (Oryza sativa L.). Plant, Cell Environ. 33, 702-716. 



 

 122 

Faiyue, B., Al-Azzawi, M.J., Flowers, T.J., 2012. A new screening 

technique for salinity resistance in rice (Oryza sativa L.) seedlings using 

bypass flow. Plant, Cell Environ. 35, 1099-1108. 

Ferrer-Alegre, F., Stöckle, C.O., 1999. A model for assessing crop response 

to salinity. Irrig. Sci. 19, 15-23. 

Farrel, T.C., Fox, K.M., Williams, R.L., Fukai, S., 2006. Genotypic 

variations for cold tolerance during reproductive development in rice: 

screening with cold air and cold water. Field Crop. Res. 98, 178-194. 

Fisher, G., Shah, M., Tubiello, F.N., Velhuizen, H.V., 2005. Socio-

economic and climate change impacts on agriculture: an integrated 

assessment, 1990-2080. Philos. Trans. R. Soc. London, Ser. B. 360, 

2067-2083.  

Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., 

McCraw, S.L., Gurr, S.J., 2012. Emerging fungal threats to animal, plant 

and ecosystem health. Nature 484, 186-194. 

Foley, J.A., Ramankutty, N., Brauman, K.A., et al., 2011. Solutions for a 

cultivated planet. Nature 478, 337–342. 

Fukoka, S., Saka, N., Koga, H., et al., 2009. Loss of function of a proline-

containing protein confers durable resistance in rice. Science 325, 998-

1001. 

Fukuda, A., Nakamura, A., Tagiri, A, Tanaka, H., Miyoa, A., Hirochika, H., 

Tanaka, Y., 2004. Function, intracellular localization and the importance 

in salt tolerance of a vacuolar Na/H antiporter from rice. Plant Cell 

Physiol. 45, 149-159. 

Garin, G., Fournier, C., Andrieu, B., Houlès, V., Robert, C., Pradal, C., 

2014. A modeling framework to simulate foliar fungal epidemics using 

functional-structural plant models. Ann. Bot. 114, 795-812. 

Garret, K.A., Dendy, S.P., Frank, E.E., Rouse, M.N., Travers, S.E., 2006. 

Climate change effects on plant disease: genomes to ecosystems. Annu. 

Rev. Phytopathol. 44, 489–509 

Génard, M., Memmah, M-M., Quilot-Turion, B., Vercambre, G., Baldazzi, 

V., Le Bot, J., Bertin, N., Gautier, H., Lescourret, F., Pagés, L., 2016. 



 

 123 

Process-based simulation models are essential tools for virtual profiling 

and design of ideotypes: example of fruit and root. In: X. Yin, P. Struick, 

(eds) Crop Systems Biology, pp. 83-104, Springer International 

Publishing. 

Gordon, C., Cooper, C., Senior, C.A., Banks, H., 2000. The simulation of 

SST, sea ice extent and ocean heat transport in a version of the Hadley 

Centre coupled model without flux adjustments. Clim. Dynam. 16, 147-

168. 

Gothandam, K.M., Kim, E.S., Chung, Y.Y., 2007. Ultrastructural study of 

rice tapetum under low-temperature stress. J. Plant Biol. 50, 396-402. 

Grattan, S.R., Zeng, L., Shannon, M.C., Roberts, S.R., 2002. Rice is more 

sensitive to salinity than previously thought. Cal. Agric. 56,189-195. 

Gregory, P.J., S.N. Johnson, A.C. Newton, and J.S.I. Ingram., 2009. 

Integrating pests and pathogens into the climate change/food security 

debate. J. Exp. Bot. 60, 2827–2838 

Habash, D.Z., Kehel, Z., Nachit, M., 2009. Genomic approaches for 

designing durum wheat ready for climate change with a focus on 

drought. J. Exp. Bot. 60, 2805–2815. 

Hairmansis, A., Berger, B., Tester, M., Roy, S.T. 2014. Image-based 

phenotyping for non-destructive screening of different salinity tolerance 

traits in rice. Rice 7, 16. 

Hammer, G., Messina, C., van Oosterom, E., Chapman, S., Singh, V., 

Borrel, A., Jordan, D., Cooper, M., 2016. Molecular breeding for 

complex adaptive traits: how integrating crop ecophysiology and 

modelling can enhance efficiency. In: X. Yin, P. Struick, (eds) Crop 

Systems Biology, pp. 147-162, Springer International Publishing. 

Hammer, G.L., van Oosterom, E., McLean, G., Chapman, S.C., Broad, I., 

Harland, P., Muchow, R., 2010. Adapting APSIM to model the 

physiology and genetics of complex adaptive traits in field crops. J. Exp. 

Bot. 61, 2185-2202. 

Hammer, G.L., Dong, Z., McLean, G., Doherty, A., Messina, C., Schussler, 

J., Zinselmeier, C., Paszkiewicz, S., Cooper, M., 2009. Can changes in 



 

 124 

canopy and/or root system architecture explain historical maize yield 

trends in the U.S. corn belt? Crop Science, 49, 299–312. 

Hammer, G., Cooper, M., Tardieu, F., Welch, S., Walsh, B., van Eeuwijk, 

F., Chapman, S., Podlich, D., 2006. Models for navigating biological 

complexity in breeding improved crop plants. Trends Plant Sci. 11, 587–

593. 

Hammer, G.L., Kropff, M.J., Sinclair, T.R., Porter, J.R., 2002. Future 

contribution of crop modelling from heuristic and supporting decision 

making to understanding genetic regulation and aiding crop 

improvement. Eur. J. Agron. 18, 15-31. 

Hammer, G.L., Butler, D.G., Muchow, R.C., Meinke, H., 1996. Integrating 

Physiological Understanding and Plant Breeding via Cop Modelling and 

Optimization. In: M. Cooper, G.L. Hammer (eds), Plant adaptation and 

crop improvement, pp. 419-441, CAB International, Wallingford. 

Hammer, G.L., Vanderlip, R.L., 1989. Studies on genotype by environment 

interactions in grain sorghum III. Modelling the impact in field 

environments. Crop Sci. 29, 358-391. 

Haverkort, A.J., Kooman, P.L., 1997. The use of systems analysis and 

modelling of growth and development in potato ideotyping under 

conditions affecting yields. Euphytica 94, 191-200. 

Habekotté, B., 1997. Optimization of increasing seed yield of winter oilseed 

rape (Brassica napus L.): a simulation study. Field Crop. Res. 54, 109-

126. 

Hayashi, T., Yamaguchi, T., Nakayama, K., Komatsu, S., Koike, S., 2006. 

Susceptibility to coolness at the young microspore stage under high 

nitrogen supply in rice (Oryza Sativa L.). Proteome analysis of mature 

anthers. Plant Production Science, 9, 212-218. 

Heffner, E.L., Lorenz, A.J., Jannink, J-L., Sorrells, M.E., 2010. Plant 

breeding with genomic selection: gain per unit time and cost. Crop Sci. 

50, 1681-1690. 

Helton, J.C., Davis, F.J., Johnson, J.D., 2005. A comparison of uncertainty 

and sensitivity analysis results obtained with random and Latin 



 

 125 

hypercube sampling. Reliability Engineering and System Safety, 89, 305-

330. 

Herndl, M., Shan, C., Wang, P., Graeff, S., Claupein, W., 2007. A model 

based ideotyping approach for wheat under different environmental 

conditions in North China plain. Agric. Sci. China 6, 1426–1436. 

Homma, T., Saltelli, A., 1996. Importance measures in global sensitivity 

analysis of nonlinear models. Reliab. Eng. Syst. Safe. 52, 1-17. 

Horie, T., Ohnishi, M., Angus, J.F., Lewin, L.G., Tsukaguchi, T., Matano, 

T., 1997. Physiological characteristics of high-yielding rice inferred from 

cross-location experiments. Field Crop. Res. 52, 55-67. 

Horie, T., Sakuratani, T., 1985. Studies on crop-weather relationship model 

in rice. (1) Relation between absorbed solar radiation by the crop and the 

dry matter production. J. Agric. Meteorol. 40, 331-342. 

Hossain, H., Rahman, M.A., Alam, M.S., Singh, R.K., 2015. Mapping of 

Quantitative Trait Loci Associated with Reproductive-Stage Salt 

Tolerance in Rice. J. Agron. Crop Sci. 201, 17-31. 

Howden, S.M., Soussanna, J.F., Tubiello, F.N., Chhetri, N., Dunlop, M., 

Meinke, H., 2009. Adapting agriculture to climate change. PNAS 11, 

19691-19696. 

Iizumi, T., Yokozawa, M., Nishimori, M., 2011. Probabilistic evaluation of 

climate change impacts on paddy rice productivity in Japan. Climatic 

Change 107, 391-415. 

Iman, R.L., Conover, W.J., 1987. A measure of top-down correlation. 

Technometrics 293, 351-357. 

IPCC, 2013. Summary for Policymakers. In: T.F Stoker et al. (eds), Climate 

Change 2013: The Physical Science Basis. Contribution of Working 

Group I to the Fifth Assessment Report Of the Intergovernmental Panel 

on Climate Change, Cambridge University Press, Cambridge, United 

Kingdom and New York, NY, USA. 

IPCC, 2007. Climate Change 2007: The Physical Science Basis, 

Contribution of working group 1 to the fourth assessment report of the 



 

 126 

Intergovernmental Panel on Climate Change. Cambridge University 

Press. 

Ismail, A.M., Heuer, S., Thomson, M.J., Wissuwa, M., 2007. Genetic and 

genomic approaches to develop rice germplasm for problem soils. Plant 

Mol. Biol. 65, 547-570. 

ISO IEC 9126-1:2001, 2001. “Software Engineering product Quality Part 1-

Quality Model”. 

Ishimaru, T., Hirabayashi, H., Ida, M., Takai, T., San-Oh, Y.A., Yoshinaga, 

S., Ando, I., Ogawa, T., Kondo, M., 2010. A genetic resource for early-

morning flowering trait of wild rice Oryza officinalis to mitigate high 

temperature-induced spikelet sterility at anthesis. Ann. Bot. 106, 515-

520. 

Ishizaki, S., Hikosaka, K., Hirose, T., 2003. Increase in leaf mass per area 

benefits plant growth at elevated CO2 concentration. Ann. Bot., 91, 905-

914. 

Jacoby, R.P., Taylor, N.L., Millar, A.H., 2011. The role of mitochondrial 

respiration in salinity tolerance. Trends Plant Sci. 16, 1360-1385. 

Jagadish, S.V.K., Muthurajan, R., Oane, R., Wheeler, T.R., Heuer, S., 

Bennet, J., Craufurd, P.Q., 2010. Physiological and proteomic 

approaches to address heat tolerance during anthesis in rice (Oryza sativa 

L.). J. Exp. Bot. 61, 143-156. 

Jakeman, A.J., Letcher, R.A., Norton, J.P., 2006. Ten iterative steps in 

development and evaluation of environmental models. Environ. Model. 

Softw. 21, 602-614. 

Jeuffroy, M.H., Casadebaig, P., Debaeke, P., Loyce, C., Meynard, J.M., 

2013. Agronomic model uses to predict cultivar performance in various 

environments and cropping systems. A review. Agron. Sustain. Dev. 34, 

121-137. 

Jeuffroy, M.H., Vocanson, A., Roger-Estrade, J., Meynard, J.M., 2012. The 

use of models at field and farm levels for the ex ante assessment of new 

pea genotypes. Eur. J. Agron. 42, 68–78. 



 

 127 

Jones, J., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., 

Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. 

The DSSAT cropping system model. Eu. J. Agron. 18, 235-265. 

Kader, M.A., Lindberg, S., 2005 Uptake of sodium in protoplasts of salt-

sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by 

the fluorescent dye SBFI. J. Exp. Bot. 56, 3149-3158. 

Karlberg, L., Ben-Gal, A., Jansson, P-E., Shani, U., 2006. Modelling 

transpiration and growth in salinity stressed tomato under different 

climatic conditions. Ecol Model. 190, 15-40. 

Kim, K.R., 2000. Weather-driven models for rice leaf blast and their 

implementation to forecast disease development on the near real-time 

basis. PhD Thesis. Seoul National University, Suwon, Korea. 

Kim, H.Y., Horie, T., Nakagawa, H., Wada, K., 1996. Effects of elevated 

CO2 concentration and high temperature on growth and yield of rice. II. 

The effect of yield and its component of Akihikari rice. Jpn. J. Crop Sci. 

65, 644-651. 

Kiniry, J.R., Mc Cauley, G., Xie, Y., Arnorl, J.G., 2001. Rice parameters 

describing crop performance of four U.S. cultivars. Agron. J. 93, 1354-

1361. 

Kotula, L., Ranathunge, K., Schreiber, L., Steudle, E., 2009. Functional and 

chemical comparison of apolpastic barriers to radial oxygen loss in roots 

of rice (Oryza sativa L.) grown in aerated and deoxygenated solution. J. 

Exp. Bot., 60, 2155-2167. 

Koutroubas, S.D., Mazzini, F., Ponsc, B., Ntanos, D.A., 2004. Grain quality 

variation and relationships with morpho-physiological traits in rice 

(Oryza sativa L.) genetic resources in Europe. Field Crop. Res. 86, 115-

130. 

Krishnamurty, P., Ranathunge, K., Franke, R., Prakash, H.S., Schreiber, L., 

Mathew, M.K., 2009. The role of apoplastic barrriers in salt tolerance of 

rice (Oryza sativa L.). Planta 230, 119-134. 



 

 128 

Krishnamurty, P., Ranathunge, K., Nayak, S., Schreiber, L., Mathew, M.K., 

2011. Root apoplastic barriers block Na
+
 transport to shoots in rice 

(Oryza sativa L.). J. Exp. Bot. 62, 4215-4228. 

Kropff, M.J., Peng, S., Setter, T.L., Matthews, R.B., Cassmann, K.G., 

1994a. Quantitative understanding of rice yield potential. In: K.G. 

Cassman (eds), Breaking the Yield Barrier: Proceedings from the 

Workshop on Rice Yield Potential in Favourable Environments, pp. 5-20, 

International Rice Research Institute, Philippines. 

Kropff, M.J., van Laar, H.H., Matthews, R.B., 1994b. ORYZA1: an 

ecophysiological model for irrigated rice production. In: SARP Research 

Proceedings, pp. 110, International Rice Research Institute, Los Banos, 

Philippines. 

Kush, G.S., 2012. Strategies for increasing the yield potential of cereals: 

case of rice as an example. Plant Breeding 132, 433-436. 

Kush, G.S., 2001. Green Revolution: the way forward. Nat. Rev. Genet. 2, 

815-822. 

Lake, J.A., Wade, R.N., 2009. Plant-pathogen interactions and elevated 

CO2: morphological changes in favour of pathogens. J. Exp. Bot., 60, 

3123-3131. 

Laza, M.R., Sakai, H., Cheng, W., Tokida, T., Peng, S., Hasegawa, T., 

2015. Differential response of rice plants to high night temperatures 

imposed at varying development phase. Agricult. Forest Meterol. 209-

210, 69-77. 

Lehmann, N., Finger, R., Klein, T., Calanca, P., Achim, W., 2013. Adapting 

crop management practices to climate change. Modelling optimal 

solutions at the field scale. Agr. Syst. 117, 55-65. 

Lekakis, E., Aschonitis, V., Pavlatou-Ve, A., Papadopoulos, A., 

Antonopoulos, V., 2015. Analysis of temporal variation of soil salinity 

during the growing season in a flooded rice field of thessaloniki Plain-

Greece. Agronomy 5, 35-54. 

Letort, V., Mahe, P., Cournède, P.-H., De Reffye, P., Courtois, B., 2008. 

Quantitative genetics and functional-structural plant growth models: 



 

 129 

simulation of quantitative trait loci detection for model parameters and 

application to potential yield optimization. Ann. Bot. 101, 1243-1254. 

Li, T., Hasegawa, T., Yin, X., et al., 2015. Uncertainties in predicting rice 

yield by current crop models under a wide range of climatic conditions. 

Glob. Change Biol. 21, 1328-1341. 

Lin, J.S., Wang, G.X., 2002. Doubled CO2 could improve the drought 

tolerance better in sensitive cultivars than in tolerant cultivars in spring 

wheat. Plant Sci., 163, 627-637. 

Linquist, B.A., Snyder, R., Anderson, F., Espino, L., Inglese, G., Marras, S., 

et al., 2015. Water balances and evapotranspiration in water- and dry-

seeded rice systems. Irrig. Sci. 33, 375-385. 

Lobell, D.B., Schlenker, W., Costa-Roberts, J., 2012. Climate trends and 

global crop production since 1980. Science, 333, 616-620. 

Long, S.P., Naidu, S., Ort, D., 2006. Can improvement in photosynthesis 

increase crop yields? Plant Cell Environ. 29, 315-330. 

Loomis, R.S., Rabbinge, R., Ng, E., 1979. Explanatory models in crop 

physiology. Annu. Rev. Plant Physiol. 30, 22-34. 

Loague, K., Green, R.E., 1991. Statistical and graphical methods for 

evaluating solute transport 16 models: overview and application. J. 

Contam. Hydrol. 7, 51-73. 

Luo, Y., TeBeest, D.O., Teng, P.S., Fabellar, N.G., 1995. Simulation studies 

on risk analysis of rice blast epidemics associated with global climate in 

several Asian countries. J. Biogeogr. 22,  673–678. 

Luquet, D., Rebolledo, C., Rouan, L., Soulie, J-C., Dingkhun, M., 2016. 

Heuristic exploration of theoretical margins of improving adaptation of 

rice through crop-model assisted phenotyping. In: X. Yin, P. Struick, 

(eds) Crop Systems Biology, pp. 105-127, Springer International 

Publishing. 

Magarey, R.D., Sutton, T.B., Thayer, C.L., 2005. A simple generic infection 

model for foliar fungal plant pathogens. Phytopathology 95, 92-100. 



 

 130 

Madan, P., Jagadish, S.V.K., Craufurd, P.Q., Fitzgerald, M., Lafarge, T., 

Wheeler, T.R., 2012. Effect of elevated CO2 and high temperature on 

seed-set and grain quality of rice. J. Exp. Bot. 63, 3843-3852. 

Magarey, R.D., Sutton, T.B., Thayer, C.L., 2005. A simple generic infection 

model for foliar fungal plant pathogens. Phytopathology 95, 92-100. 

Mara, T.A., Tarantola, S., 2012. Variance-based sensitivity indices for 

models with dependent inputs. Reliab. Eng. Syst. Safe., 107, 115-121. 

Martinez-Beltran, J., Manzur, C.L., 2005. Overview of salinity problems in 

the world and FAO strategies to address the problem. pp 311-313 in 

Proc. Int. Salinity Forum, Riverside, CA, USA. 

Martre, P., Quilot-Turion, B., Luquet, D., Ould-Sidi, M.-M., Chenu, K., 

Debaeke, P., 2015a. Model-assisted phenotyping and ideotype design. In: 

V. Sadras, D. Calderini (eds), Crop Physiology. Applications for Genetic 

Improvement and Agronomy, Ed 2 pp. 349-373, Academic Press, 

London, UK. 

Martre, P., He, J., Le Gouis, J., Semenov, M.A., 2015b. In silico system 

analysis of physiological traits determining grain yield and protein 

concentration for wheat as influenced by climate and crop management. 

J. Exp. Bot. 66, 3581-3598. 

Martre, P., Wallach, D., Asseng, S., et al., 2015c. Multimodel ensembles of 

wheat growth: many models are better than one. Glob. Change Biol., 21, 

911-925. 

Martre, P., Bertin, N., Salon, C., Génard, M., 2011. Modelling the size and 

composition of fruit, grain and seed by process-based simulation models. 

New Phytol. 191, 601-618. 

Maruyama, A., Weerakoon, W.M.W., Wakiyama, Y., Ohba, K., 2013. 

Effects of increasing temperatures on spikelet fertility in different rice 

cultivars based on temperature gradient chamber experiments. J. Agron. 

Crop Sci. 199, 416-423. 

Masutomi, Y., Arakawa, M., Minoda, T., Yonekura, T., Shimada, T., 2015. 

Critical air temperature and sensitivity of the incidence of chalky rice 



 

 131 

kernels for the rice cultivar “Sai-no-kagayaki”. Agric. For. Meteorol. 

203, 11-16. 

Matsui, T., Namuco, O.S., Ziska, L.H., Horie, T., 1997. Effects of high 

temperature and CO2 concentration on spikelet sterility in indica rice. 

Field Crop. Res. 51, 213–219. 

Matsui, T., Omasa, K., Horie, T., 2001. The difference in sterility due to 

high temperature during the flowering period among japonica-rice 

varieties. Plant Prod. Sci. 4, 90-93. 

Messina, C.D., Podlich, D., Dong, Z., Samples, M., Cooper, M., 2011. 

Yield-trait performance landscapes: from theory to application in 

breeding maize for drought tolerance. J. Exp. Bot.62, 855-868. 

Messina, C.D:, Jones, J.W., Boote, K.J., Vallejos, C.E., 2006. A gene-based 

model to simulate soybean development and yield response to 

environment. Crop Sci. 46, 456-466. 

Monteith, J.L., 1969. Light interception and radiative exchange in crop 

stands. In: Eastin, J.D. (Ed.) Physiological aspects of crop yield. ASA, 

Madison, WI. pp. 89-111. 

Morita, S., 2008. Prospect for developing measures to prevent high-

temperature damage to rice grain ripening. Japanese J. Crop Sci. 77, 1–

12. 

Morris, M.D., 1991. Factorial sampling plans for preliminary computational 

experiments. Technometrics 33, 161-174. 

Munns, R., James, R.A., Xu, B., Athman, A., Conn, S.J., Jordans, C., et al. 

2012. Wheat grain yield on saline soils is improved by an ancestral Na
+
 

transporter gene. Nat. Biotechnol. 30, 360-364. 

Nagahata, H., Shima, K., Nakagawa, H., 2006. Modeling and prediction of 

occurrence of chalky grains in rice: 1. A simple model for predicting the 

occurrence of milky white rice. Jpn. J. Crop Sci. 75, 18–19. 

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual 

models.Part I – A discussion of principles. J. Hydrol. 10, 282-290. 

Newton, A.C., Johnson, S.N., Gregory, P.J., 2011. Implications of climate 

change for diseases, crop yields and food security. Euphytica 179, 3-18. 



 

 132 

Nocito, F., Lancilli, C., Dendena, B., Lucchini, G., Sacchi, G.A., 2011. 

Cadmium retention in rice is influenced by cadmium availability, 

chelation and translocation. Plant Cell Environ. 34, 994-1008. 

Nossent, J., Elsen, P., Bauwens, W., 2011. Sobol sensitivity analysis of a 

complex environmental model. Environ. Model. Softw. 26, 1515-1525. 

Ntanos, D.A., 2001 Strategies for rice production and research in Greece. 

Cah. Opt. Méditerr., 50, 115-122. 

Oerke, E.C., 2006. Crop losses to pests. J. Agr. Sci. 144, 31-43. 

Ogiwara, H., Terashima, K., 2001. A varietal difference in coleoptile growth 

is correlated with seedling establishment of direct seeded rice in 

submerged field under low-temperature conditions. Plant Prod. Sci. 4, 

166-172. 

Okada, M., Iizumi, T., Hayashi, Y., Yokozawa, M., 2011. Modeling the 

multiple effects of temperature and radiation on rice quality. Environ. 

Res. Lett. 6, 1–8. 

Ou, S.H., 1985. Rice Diseases, 2nd edn. Farnham Royal C.A.B. 

International, Slough. 

Pagani, V., Francone, C., ZhiMing,W., Qiu, L., Bregaglio, S., Acutis, M., 

Confalonieri, R., 2014. Evaluation of WARM for different establishment 

techniques in Jiangsu (China). Eur. J. Agron. 59, 78-85. 

Paleari, L., Cappelli, G., Bregaglio, S., Acutis, M., Donatelli, M., Sacchi, 

G.A., Lupotto, E., Confalonieri, R., 2015. District-specific, in silico 

evaluation of rice ideotypes improved for resistance/tolerance traits to 

biotic/abiotic stressors under climate change scenarios. Climatic Change 

132, 661-675. 

Peng, S., Khush, G.S., Virk, P., Tang, Q., Zou, Y., 2008. Progress in 

ideotype breeding to increase rice yield potential. Field Crop. Res. 108, 

32-38. 

Pianosi, F., Beven, K., Freer, J., Hall, J.W., Rougier, J., Stephenson, D.B., 

Wagener, T., 2016. Sensitivity analysis of environmental models: A 

systematic review with practical workflow. Environ. Modell. Soft. 79, 

214-232. 



 

 133 

Poorter, H., Niinemets, U., Poorter, L., Wright, I.J., Villar, R., 2009. Causes 

and consequences of variation in leaf mass per area (LMA): a meta-

analysis. New Phytol. 182, 565-588. 

Porter, J.R., Semenov, M.A., 2005. Crop responses to climatic variation. 

Philos. Trans. R. Soc. B, 360, 2021-2035. 

Quenouille, M.H., 1949. Approximate tests of correlation in time series. J. 

R. Stat. Soc. B 11, 68-84. 

Quilot-Turion, B., Genard, M., Valsesia, P., Memmah, M-M., 2016. 

Optimization of allelic combinations controlling parameters of a peach 

quality model. Front. Plant Sci. 7:1873. 

Quilot-Turion, B., Ould-Sidi, M.-M., Kadrani, A., Hilgert, N., Génard, M., 

Lescourre,t F., 2012. Optimization of parameters of the “Virtual Fruit” 

model to design peach genotype for sustainable production systems. Eur. 

J. Agron. 42, 34-48. 

Rajendran, K., Tester, M., Roy, S.J., 2009. Quantifying the three main 

components of salinity tolerance in cereals. Plant, Cell Environ. 32, 237-

249. 

Ramirez-Villegas, J., Watson, J., Challinor, A.J., 2015. Identifying traits for 

genotypic adaptation using crop models. J. Exp. Bot. 66, 3451-3462. 

Ratto, M., Tarantola, S., Saltelli, A., 2001. Sensitivity analysis inmodel 

calibration. GSA-GLUE approach. Comput. Phys. Commun. 136, 212-

224. 

Raza, A., Friedel, J.K., Moghaddam, A., Ardakani, M.R., Loiskandl, W., 

Himmelbauer, M., Bodner, G., 2013. Modeling growth of different 

lucerne cultivars and their effect on soil water dynamics. Agr. Water 

Manage. 119, 100-110. 

Ren, Z.H., Gao, J.P., Li, L.G., Cai, X.L., Huuang, W., Chao, D.Y., Zhu, 

M.Z., Wang, Z.Y., Luan, S., Lin, H.W., 2005. A rice quantitative trait 

locus for salt tolerance encodes a sodium transporter. Nat. Genet. 37, 

1141-1146. 



 

 134 

Richter, G.M., Acutis, M., Trevisiol, P., Latiri, K., Confalonieri, R., 2010. 

Sensitivity analysis for a complex crop model applied to Durum wheat in 

the Mediterranean. Eur. J. Agron. 32, 127-136. 

Robert, C., Fournier, C., Andrieu, B., Ney, B., 2008. Coupling a 3D virtual 

wheat (Triticum aestivum) plant model with a Septoria Tritici epidemic 

model (Septo3D): a new approach to investigate plant-pathogen 

interactions linked to canopy architecture. Funct. Plant Biol. 35, 997-

1013. 

Robert, C., Bancal, M-O., Lannou, C., 2004. Wheat leaf rust uredospore 

production on adult plant: influence of leaf nitrogen content and Septoria 

tritici blotch. Phytopathology, 94, 712-721. 

Rossel, C.M., Marco, C., 2008. Rice. In: E.K Arendt, F. Di Bello (eds) 

Gluten-free cereal products and beverages, pp. 81-100, London: 

Academic Press. 

Rötter, R.P., Palosuo, T., Kersebaum, K.C., et al., 2012. Simulation of 

spring barley yield in different climatic zones of Northern and Central 

Europe: a comparison of nine crop growth models. Field Crop. Res., 133, 

23-36. 

Rötter, R.P., Tao, F., Höhn, J.G., Palosuo, T., 2015. Use of crop simulation 

modelling to aid ideotype design of future cereal cultivars. J. Exp. Bot. 

66, 3463-3476. 

Roumen, E., Levy, M., Notteghem, J.L., 1997. Characterization of the 

European pathogen population of Magnaporthe grisea by DNA 

fingerprinting and pathotype analysis. Eur. J. Plant Pathol. 103, 363-371. 

Roy, S.J., Negrao, S., Tester, M., 2014. Salt resistant crop plants. Curr. 

Opin. Biotechnol. 26, 115-124. 

Saito, K., 2016. Plant characteristics of high-yielding upland rice cultivars 

in West Africa. Crop Sci. 56, 276-286. 

Sakaguchi, A., Eguchi, S., Kasuya, M., 2014. Examination of the water 

balance of irrigated paddy fields in SWAT 2009 using the curve number 

procedure and the pothole module. Soil Sci. Plant Nutr. 60, 551-564. 



 

 135 

Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F., 2005. Sensitivity 

analysis for chemical models. Chem. Rev. 105, 2811-2828. 

Saltelli, A., Tarantola, S., Chan, K.P.S., 1999. A quantitative model-

independent method for global sensitivity analysis of model output. 

Technometrics 41, 39-56. 

Saltelli, A., Sobol’, I.M., 1995. About the use of rank transformation in 

sensitivity analysis model. Reliab. Eng. Syst. Safe.. 50, 225-239. 

Sanchez, B., Rasmussen, A., Porter, J.R., 2014. Temperatures and the 

growth and development of maize and rice: a review. Glob. Change Biol. 

20, 408-417. 

Sarrazin, F., Pianosi, F., Wagener, T., 2016. Global sensitivity analysis of 

environmental models: Convergence and validation. Environ. Modell. 

Soft. 79, 135-152. 

Satake, T., 1995. High temperature injury. In: T. Matsuo et al. (eds), 

Science of the rice plant Vol. 2. Physiology, pp 805-812, Tokyo: Food 

and Agricultural Policy Research Centre. 

Satake, T., Lee, S.Y., Koike, S., Kariya, K., 1987. Male sterility caused by 

cooling treatment at the young microspore stage in rice plants. XXVII. 

Effect of water temperature and nitrogen application before the critical 

stage on the sterility induced by cooling at the critical stage. Jpn. J. Crop 

Sci. 56,404–410. 

Satake, T., Yoshida, S., 1978. High temperature-induced sterility in indica 

rices at flowering. Jpn. J. Crop Sci. 47, 6–17. 

Scardaci, S.C., Shannon, M.C., Grattan, S.R., Eke, U.A., Roberts, S.R., 

Goldman-Smith, S., Hill, J.E., 2002. Water management practices can 

affect salinity in rice fields. Calif. Agric. 56, 184-188. 

Schmidt, G.A., Ruedy, R., Hansen, J.E., et al., 2006. Present day 

atmospheric simulations using giss model: Comparison to in-situ, 

satellite and reanalysis data. J. Climate 19, 153-192. 

Semenov, M.A., Stratonovitch, P., 2013. Designing high-yielding wheat 

ideotypes for a changing climate. Food and Energy Security 2, 185-196. 



 

 136 

Semenov, M.A., Shewry, P.R. 2011. Modelling predicts that heat stress, not 

drought, will increase vulnerability of wheat in Europe. Sci. Rep. 1, 1-5. 

Semenov, M.A., Halford, N.G. 2009. Identifying target traits and molecular 

mechanisms for wheat breeding under a changing climate. J. Exp. Bot. 

60, 2791-2804. 

Senadheera, P., Singh, R.K., Maathuis F.J.M., 2009. Differentially 

expressed membrane transporters in rice roots may contribute to cultiv,ar 

dependent salt tolerance. J. Exp. Biol. 60, 2553-2563. 

Shah, F., Huang, J., Cui, K., Nie, L., Shah, T., Chen, C., Wang, K., 2011. 

Impact of high-temperature stress on rice plant and its traits related to 

tolerance. J. Agri. Sci. 149, 545-556. 

Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality 

(complete samples). Biometrika 52, 591-611. 

Sheehy, J.E., Mitchell, P.L., 2013. Designing rice for the 21st century: the 

three laws of maximum yield. Discussion Paper Series 48: Los Baños 

(Philippines) International Rice Research Institute. 19pp. 

Shin, M.-J., Guillaume, J.H.A., Croke, B.F.W., Jakeman, A.J., 2013. 

Addressing ten questions about conceptual rainfall-runoff models with 

global sensitivity analyses in R. J. Hydrol. 503, 135-152. 

Siebenmorgen, T.J., Grigg, B.C., Lanning, S.B., 2013. Impacts of preharvest 

factors during kernel development on rice quality and functionality. 

Annu. Rev. Food Sci. Technol. 4, 101–115. 

Sieber, A., Uhlenbrook, S., 2005. Sensitivity analyses of a distributed 

catchment model to verify the model structure. J. Hydrol. 310, 216-235. 

Sinclair, T.R., Purcell, L.C., Sneller, C.H., 2004. Crop transformation and 

the challenge to increase yield potential. Trend. Plant Sci. 9, 70–75. 

Singh, P., Nedumaran, S., Traore, P.C.S., Bootem K.J., Rattundem H.F.W., 

Vara Prasad, P.V., Singh, N.P., Srinivas, K., Bantilan, M.C.S., 2014. 

Quantifying potential benefits of drought and heat tolerance in rainy 

season sorghum for adapting to climate change. Agric. For. Meteorol. 

185, 37-48. 



 

 137 

Singh, V.K., Singh, A., Singh, S.P., Ellura, R.K., Choudharyc, V., Sarkelc, 

S., et al., 2012. Incorporation of blast resistance into “PRR78”, an elite 

Basmati rice restorer line, through marker assisted backcross breeding. 

Field Crop Res., 128, 8-16. 

Sobol’, I.M., 1993. Sensitivity estimates for nonlinear mathematical models. 

Math. Model. Comput. Exp. 14, 407-414. 

Sreenivasulu, N., Butardo Jr, V.M., Misra, G., Cuevas, R.P., Anacleto, R., 

Kishor, P.B.K., 2015. Designing climate-resilient rice with ideal grain 

quality suited for high temperatures stress. J. Exp. Bot. 66, 1737-1748. 

Stearns, S.C., 1992. The evolution of life histories. Oxford University Press, 

Oxford. 

Stella, T., Frasso, N., Negrini, G., Bregaglio, S., Cappelli, G., Acutis, M., 

Confalonieri, R., 2014. Model simplification and development via reuse, 

sensitivity analysis and composition: a case study in crop modelling. 

Environ. Modell. Softw. 59, 44-58. 

Steudle, E., 2000. Water uptake by plant roots: an integration of views. 

Plant Soil 226, 45-56. 

Stöckle, C.O., Martin, S.A., Campbell, G.S., 1994. CropSyst, a cropping 

systems simulation model: water/nitrogen budgets and crop yield. Agric. 

Syst. 46, 335-359. 

Suh, J.P., Jeung, J.U., Lee, J.I., Choi, Y.H., Yea, J.D., Virk, P.S., Mackill, 

D.J., Jena, K.K., 2010. Identification and analysis of QTLs controlling 

cold tolerance at the reproductive stage and validation of effective QTLs 

in cold-tolerant genotypes of rice (Oryza sativa L.). Theor. Appl. Genet. 

120, 985-995. 

Suriharn, B., Patanothai, A., Boote, K.J., Hoogenboom, G., 2011. Designing 

a peanut ideotype for a target environment using the CSM-CROPGRO-

Peanut Model. Crop Sci. 51, 1887-1902. 

Suzuki, K., Yamaji, N., Costa, A., Okuma, E., Kobayashi, N.I., Kashiwagi, 

T., et al., 2016. OsHKT1;4-mediated Na+ transport in stems contributes 

to Na
+
 exclusion from leaf blades of rice at the reproductive growth stage 

upon salt stress. BMC Plant Biol. 16-22. 



 

 138 

Takur, P., Kumar, S., Malik, J.A., Berger, J.D., Nayyar, H., 2010. Cold 

stress effects on reproductive development in grain crops: An overview. 

Environ. Exp. Bot. 67, 429-443. 

Tao, F., Rötter, R.P., Palosuo, T., Dìaz-Ambrona, C.G.H., Mìnguez, M.I., 

Semenov, M.A., et al., 2017. Designing future barley ideotypes using 

crop model ensemble. Eur. J. Agron., 82, 144-162. 

Tao, F., Zhang, S., Zhang, Z., 2012. Spatiotemporal changes of wheat 

phenology in China under the effects of temperature, day length and 

cultivar thermal characteristics. Eur. J. Agron. 43, 201–212. 

Tarantola, S., Saltelli, A., 2003. SAMO 2001: methodological advances and 

innovative applications of sensitivity analysis. Reliab. Eng. Syst. Safe. 

79, 121-122. 

Tardieu, F., 2012. Any trait or trait-related allele can confer drought 

tolerance: just design the right drought scenario. J. Exp. Bot. 63, 25-31. 

Tardieu, F., 2010. Why work and discuss the basic principles of plant 

modelling 50 years after the first crop models? J. Exp. Bot. 61, 2039-

2041.  

Tardieu, F., 2003. Virtual plants: modelling as a tool for the genomics of 

tolerance to water deficit. Trend. Plant Sci. 8, 9–14. 

Tardieu, F., Tuberosa, R., 2010. Dissection and modelling of abiotic stress 

tolerance in plants. Curr. Opin. Plant Biol. 13, 206-212. 

Taub, D.R., Miller, B., Allen, H., 2008. Effects of elevated CO2 on the 

protein concentration of food crops: a meta-analysis. Glob. Change Biol., 

14, 565-575. 

Teng, P.S., Klein-Gebbinck, H.W., Pinnschmidt, H., 1991. An analysis of 

the blast pathosystem to guide modeling and forecasting. In: IRRI (eds) 

Rice blast modeling and forecasting. Selected papers from the 

International Rice Research Conference, pp. 27-31 August 1990, Seoul, 

Korea Republic. 1991. P.O. Box 933, Manila Philippines, pp 1-30. 

Tester, M., Langridge, P., 2010. Breeding technologies to increase crop 

production in a changing world. Science 327, 818–822. 



 

 139 

Tester, M., Davenport, R., 2003. Na
+
 tolerance and Na

+
 transport in higher 

plants. Ann. Bot. 91, 503-527. 

Teixeira, E.I., Fisher, G., Vellthuizen, H.V., Walter, C., Ewert, F., 2013. 

Global hot-spots of heat stress on agricultural crops due to climate 

change. Agric. For. Meteorol. 17, 206-215. 

Thomas, H., Ougham, H., 2014. The stay-green trait. J. Exp. Bot., 65, 3889-

3900. 

Usui, Y., Sakai, H., Tokida, T., Nakamura, H., Nakagawa, H., Hasegawa, 

T., 2014. Heat-tolerant rice cultivars retain grain appearance quality 

under free-air CO2 enrichment. Rice (N Y), 7, 6. 

van Heemst, H., 1988. Plant data values required for simple and universal 

simulation models: review and bibliography. Simulation reports CABO-

TT. 

van Keulen, H., Wolf, J., 1986. Modelling of agricultural production: 

weather soils and crops. Simulation Monographs. Pudoc, Wageningen. 

van Oijen, M., Höglind, M., 2016. Toward a Bayesina procedure for using 

process-based models in plant breeding, with application to ideotype 

design. Euphytica 207, 627-643. 

van Werkhoven, K., Wagener, T., Reed, P., Tang, Y., 2009. Sensitivity-

guided reduction of parametric dimensionality for multi-objective 

calibration of watershed models. Adv. Water Resour. 32, 1154-1169. 

Wang, J., Li, X., Lu, L., Fang, F., 2013. Parameter sensitivity analysis of 

crop growth models based on the extended Fourier Amplitude Sensitivity 

Test method. Environ. Modell. Soft. 48, 171-182. 

Warren Wilson, J., 1967. Ecological data on dry-matter production by plants 

and plant communities. In: E.F. Bradley, O.T. Denmead (eds), The 

collection and processing of field data, pp. 77-123, Interscience 

Publisher, New York. 

White, J.W., Hoogenboom, G.H., 1996. Integrating effects of genes for 

physiological traits into crop growth models. Agron. J. 88, 416-422. 



 

 140 

Wilkerson, G.G., Jones, J.W., Boote, K.J., Ingram, K.T., Mishoe, J.W., 

1983. Modeling soybean growth for crop management. T. Asae 26, 63–

73. 

Yamakawa, H., Hirose, T., Kuroda, M., Yamaguchi, T., 2007. 

Comprehensive expression profiling of rice grain filling-related genes 

under high temperature using DNA microarray. Plant Physiol. 144, 258–

277. 

Yin, X., Struik. P.C., 2016. Crop systems biology: where are we and where 

to go? In: X. Yin, P. Struick, (eds) Crop Systems Biology, pp. 219-227, 

Springer International Publishing. 

Yin, X., Struik, P.C., 2010. Modelling the crop: from system dynamics to 

system biology. J. Exp. Bot. 61, 2171-2183. 

Yin, X., Chasalow, S., Dourleijn, C.J., Stam, P., Kropff, M.J., 2000. 

Coupling estimated effects of QTLs for physiological traits to a crop 

growth model: predicting yield variation among recombinant inbred lines 

in barley. Heredity 85, 539–549. 

Yin, X., Kropff, M.J., 1996. The effect of temperature on leaf appearance in 

rice. Ann. Bot. 77, 215-221. 

Yoshida, S., 1981. Fundamentals of Rice Crop Science. International Rice 

Research Institute, Los Baños, Philippines. 

Zhang, X., Meinke, H., DeVoil, P., van Laar, G., Bouman, B.A.M., Abawi, 

Y., 2004. Simulating growth and development of lowland rice in APSIM. 

4th International Crop Science Congress, 26 Sep-1 Oct, Brisbane, 

Australia, www.cropscience.org.au/icsc2004/poster/2/8/1212_zhang.htm. 

Zheng, B., Chenu, K., Dreccer, M.F., Chapman, S., 2012. Breeding for the 

future: what are the potential impacts of future frost and heat events on 

sowing and flowering time requirements for Australian bread wheat 

(Triticum aestivum) varieties? Glob. Change Biol. 18, 2899-2914. 

Zhou, Q., Wang, L., Cai, X., Wang, D., Hua, X., Qu, L., Lin, J., Chen, T., 

2011. Net sodium fluxes change significantly at anatomically distinct 

root zones of rice (Oryza sativa L.) seedlings. J. Plant Physiol. 168, 

1249-1255. 

http://www.cropscience.org.au/icsc2004/poster/2/8/1212_zhang.htm


 

 141 

Zhu, X.-G., Long, S.P., Ort, D.R., 2010. Improving photosynthetic 

efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235-261. 

Ziska, L.H., Bunce, J.A., Shimono, H., et al., 2012. Food security and 

climate change: on the potential to adapt global crop production by active 

selection to rising atmospheric carbon dioxide. Proc. R. Soc. B. 279, 

4097–4105. 

 



. 

 142 

 

  



 

 143 

 

 

SUMMARY 

The development of new cultivars better adapted to specific growing 

conditions is a key strategy to meet an ever-increasing growing global food 

demand and search for more sustainable cropping systems. This is even 

more crucial in the context of a changing climate. 

Ecophysiological models and advanced computational techniques (e.g., 

sensitivity analysis, SA) represent powerful tools to analyze genotype (G) 

by environment (E) interactions, thus supporting breeders in identifying key 

traits for specific agro-environmental contexts. However, limits for the 

effective use of mathematical models within breeding programs are 

represented by the uncertainty in the distribution of plant trait values, the 

lack of processes dealing with resistance/tolerance traits in most ideotyping 

studies, the partial suitability of current crop models for ideotyping 

purposes, and the absence of modelling tools directly usable by breeders. 

The aim of this research was to address these issues improving 

methodologies already in use, proposing new paradigms for the 

development of crop models explicitly targeting ideotyping applications and 

developing tools that would encourage a deep interaction of the modelling 

and breeding communities. The focus was on rice, for its role as staple food 

for more than a half of world’s population, and on resistance/tolerance traits 

to biotic/abiotic stressors, for their central role in increasing crop adaptation. 

Moreover, current conditions and climate change projections were 

considered, to support the definition of strategies for breeding in the 

medium-long term. 

A standard procedure to quantify − and manage − the impact of the 

uncertainty in the distribution of plant trait values was developed, using the 

WARM rice model and the Sobol’ method as case study. The approach is 

based on a SA (generating sample of parameter distributions) of a SA 

(generating samples of parameters for each generated distribution) using 
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distributions of jackknife statistics calculated on literature values to 

reproduce the uncertainty in defining parameters distributions. As a practical 

implication, the procedure developed allows identifying plant traits whose 

uncertainty in distribution can alter ideotyping results, i.e., traits whose 

distributions could need to be refined. 

Global SA was then used to identify rice traits putatively producing the 

largest yield benefits in five contrasting districts in the Philippines, India, 

China, Japan and Italy. The analysis involved phenotypic traits dealing with 

light interception, photosynthetic efficiency, tolerance to abiotic stressors, 

resistance to fungal pathogens and grain quality. Results suggested that 

breeding for traits involved with disease resistance and tolerance to cold- 

and heat-induced spikelet sterility could provide benefits similar to those 

obtained from improving traits affecting potential yield. Instead, advantages 

resulting from varying traits involved with grain quality were markedly 

frustrated by inter-annual weather variability. Since results highlighted 

strong G×E interactions, a new index to derive district-specific ideotypes 

was developed. 

Given the key role of biotic/abiotic stressors in determining actual yield 

and the deep impact of related G×E interactions, a study was carried out by 

explicitly focusing on the definition of rice ideotypes improved for their 

resistance to fungal pathogens and tolerance to abiotic constraints 

(temperature shocks inducing sterility). The analysis was carried out at 

district level with a high spatial resolution (5 km × 5 km elementary 

simulation unit), targeting the improvement of the most representative 34 

varieties in six Italian rice districts. Genetic improvement was simulated via 

the introgression of traits from donor varieties. Results clearly showed that 

breeders should focus on increasing resistance to blast disease, as this 

appears as a factor markedly limiting rice yields in Italy, regardless of the 

districts and climate scenarios, whereas benefits deriving from improving 

tolerance to cold-induced sterility could be markedly affected by G×E 

interactions. 
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To reduce the risk of discrepancies between in silico ideotypes and their 

in vivo realizations, both studies involved only model parameters with a 

close relationship with phenotypic traits breeders are working on. However, 

a long-term strategy to overcome limitations related with the partial 

suitability of available models would be building new ideotyping-specific 

models explicitly around traits involved in breeding programs. This 

proposal for a paradigm shift in model development was illustrated taking 

salt stress tolerance and rice as a case study. Dedicated growth chamber 

experiments were conducted to develop a new model explicitly accounting 

for tolerance traits modulating Na
+
 uptake and distribution in plant tissues, 

as well as the impact of the accumulated Na
+
 on photosynthesis, senescence 

and spikelet sterility. An ideotyping study was conducted at two sites (in 

Greece and California) characterized by different seasonal dynamics of 

salinity in field water. Results showed how, under different scenarios, traits 

assuring the largest contribution to the overall tolerance could refer to 

completely different physiological mechanisms: tissue tolerance in one case, 

sodium exclusion in the other. This encourages the development of explicit 

trait-based approaches to increase the integration of crop models within 

breeding programs. 

A parallel path to achieve this goal is the development of modelling 

platforms targeting breeders as final users, who does not have necessarily 

in-depth skills in crop modelling and IT. The platform ISIde, derived from a 

close collaboration between target users, biophysical modelers and IT 

specialists, represents the first prototype of a platform specifically 

developed for being used directly by breeders to evaluate in silico improved 

varieties at district level. 

This thesis demonstrated the usefulness of simulation models for the 

definition of ideotypes for specific agro-environmental conditions. 

Targeting ideotyping applications, new methodologies, paradigms for model 

development and modelling tools were developed, thus contributing to 

improve the potential of crop modelling to support breeding programs. 

Future developments will target researches aimed at overcoming the limits 
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behind this study, i.e., (i) absence of explicit interactions between traits, (ii) 

no adaptation strategies considered, and (iii) lack of approaches for the 

simulation of the evolutionary potential of pathogens in response to long-

term climate variations and increased host resistance. 
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