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Abstract. We rigorously analyze the quantum phase transition between a metal-
lic and an insulating phase in (non solvable) interacting spin chains or one di-
mensional fermionic systems. In particular, we prove the persistence of Luttinger
liquid behavior in the presence of an interaction even arbitrarily close to the crit-
ical point, where the Fermi velocity vanishes and the two Fermi points coalesce.
The analysis is based on two different multiscale analysis; the analysis of the
first regime provides gain factors which compensate the small divisors due to
the vanishing Fermi velocity.

1. Introduction
1.1. Spin or fermionic chains
Recently a great deal of attention has been focused on the quantum phase transition
between a metallic and an insulating phase in (non solvable) interacting spin chains
or one dimensional fermionic systems. Beside its intrinsic interest, such problem
has a paradigmatic character, see e.g. [1, 2]. Interacting fermionic systems are often
investigated using bosonization [3], but such method cannot be used in this case;
it requires linear dispersion relation, while in our case close to the critical point
the dispersion relation becomes quadratic. Interacting fermionic systems with non
linear dispersion relation have been studied using convergent expansions, based on
rigorous Renormalization Group methods. However the estimate for the radius of
convergence of the expansions involved vanishes at the critical point, so that they
provide no information close to the quantum phase transition. This paper contains
the first rigorous study of the behavior close to the metal insulator transition, using
an expansion convergent uniformly in a region of parameters including the critical
point.

We will focus for definiteness on the model whose Hamiltonian is given by

H =−∑
x

1
2
[S1

xS1
x+1 +S2

xS2
x+1]−λ ∑

x,y
v(x− y)S3

xS3
y − h̄∑

x
S3

x +UL (1)
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where (S1
x ,S

2
x ,S

3
x) =

1
2 (σ

1
x ,σ

2
x ,σ

3
x ), for x = 1,2, ...,L, σ i

x, i = 1,2,3 are Pauli matri-
ces, h̄ is the magnetic field and v(x) is a short range even potential, that is

v(−x) = v(x), |v(x)| ≤ e−κ|x|.

Finally UL is an operator depending only on Si
1 and Si

L to be used later to fix the
boundary conditions. When v(x− y) = δx,y+1, this model is known as XXZ Heisen-
berg spin chain. Setting x = (x0,x), we define Si

x = eHx0Si
xe−Hx0 . Moreover, given

an observable O, we define

〈O〉β ,L =
Tre−βHO
Tre−βH and 〈O〉= lim

β→∞

lim
L→∞
〈O〉β ,L. (2)

It is well known that spin chains can be rewritten in terms of fermionic operators
a±x , with {a+x ,a−y }= δx,y, {a+x ,a+y }= {a−x ,a−y }= 0, by the Jordan-Wigner transfor-
mation:

σ
−
x = e−iπ ∑

x−1
y=1 a+y a−y a−x , σ

+
x = a+x eiπ ∑

x−1
y=1 a+y a−y , σ

3
x = 2a+x a−x −1 (3)

where σ±x = (σ1
x ± iσ2

x )/2. In terms of the fermionic operators the Hamiltonian
becomes

H =−∑
x

[
1
2
(a+x+1a−x +a+x a−x+1)+ha+x a−x

]
−λ ∑

x,y
v(x− y)a+x a−x a+y a−y (4)

where h = h̄− λ v̂(0) and UL can be chosen so to obtain periodic boundary con-
ditions for the fermions, i.e. a±L = a±1 . Therefore the spin chain (1) can be equiv-
alently represented as a model for interacting spinless fermions in one dimension
with chemical potential µ =−h.

The 2-point Schwinger function is defined as

SL,β (x−y) = 〈Ta−x a+y 〉L,β (5)

where T is the time ordering operator, that is T(a−x a+y ) = a−x a+y if x0 > y0 and
T(a−x a+y ) = −a+y a−x if x0 ≤ y0. We will mostly study the infinite volume zero tem-
perature 2-points Schwinger function given by

lim
β→∞

lim
L→∞

SL,β (x−y) = S(x−y).

1.2. Quantum Phase transition in the non interacting case
The fermionic representation makes the analysis of the λ = 0 case (the so called
XX chain) quite immediate. We associate to the set of creation and annihilation
operators the corresponding set of operators in momentum space writing

a±x =
1
L ∑

k∈D̃

e±ikxâ±k

where D̃ =
{

k |k = 2πm
L , −π ≤ k < π

}
and â±k are creation and annihilation op-

erators verifying {â+k ,a
+
k′} = {â

−
k , â

−
k′} = 0, {â+k , â

−
k } = Lδk,k′ with δ the periodic

Kronecker delta function. From these definitions we get

H0 =
1
L ∑

k∈D̄
ε(k)â+k â−k ε(k) =−cosk−h (6)
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where we have used the identity ∑k∈D̃ eikx = Lδk,0. The ground state of (6) depends
critically on h. Indeed, for h <−1 the ground state is the fermionic vacuum (empty
band insulating state), for h > 1 it is the state with all fermionic levels occupied
(filled band insulating state) while for −1 < h < 1 the ground state corresponds to
the state in which all the fermionic levels with momenta |k| ≤ pF = arccos(−h),
are occupied (metallic state). pF is called Fermi momentum and ±pF are the Fermi
points (the analogous of the Fermi surface in one dimension). In other words the
values h = ±1 separate two different behaviors at zero temperature; one says that
in correspondence of h = ±1 there is a quantum phase transition [1] between a
metallic and an insulating phase.

The metallic or insulating phases are signaled by different properties of the
two point Schwinger function, which is given by

S0,L,β (x) =
1
L ∑

k∈D̃

e−ikx

{
e−x0ε(k)

1+ e−βε(k)
ϑ(x0)−

e−(β+x0)ε(k)

1+ e−βε(k)
(1−ϑ(x0))

}
(7)

where ϑ(x0) = 1 if x0 > 0 and ϑ(x0) = 0 otherwise. The Schwinger function (7)
is defined for −β ≤ x0 ≤ β but it can be extended periodically over the whole
real axis; such extension is smooth in x0 for x0 6= nβ , n ∈ Z. It is easy to see
that S0,L,β (nβ+,x) = S0,L,β (nβ−,x) for x 6= 0 so that it is discontinuous only at
x = (nβ ,0). Since S0,L,β (x) is antiperiodic in x0, it can be written in Fourier series
except that at the discontinuity points; that is, for x 6= (nβ ,0)

S0,L,β (x) =
1

βL ∑
k∈D

e−ikxŜ0,β ,L(k) (8)

with k = (k0,k), D =
{

k |k = 2πm
L , −π ≤ k < π, k0 =

2π

β
(n+ 1

2 )
}

and

Ŝ0,L,β (k) =
1

−ik0 + cosk+h
(9)

In the metallic phase the Schwinger function Ŝ0(k) is singular in correspondence of
the Fermi points (0,±pF). For |k| close to pF we have Ŝ0(k)∼ 1

−ik0+vF (|k|−pF )
. No-

tice that the 2-point Schwinger function is asymptotically identical, if the momenta
are measured from the Fermi points, to the Schwinger function of massless Dirac
fermions in d = 1+1 with Fermi velocity vF . For values of h close to h = −1 (i.e.
for small positive r if we set h = −1+ r) both the distance of the Fermi points and
vF are O(

√
r), that is the Fermi velocity vanishes with continuity and the two Fermi

points coalesce. At criticality when r = 0 the 2-point function Ŝ0(k) is singular only
at (0,0) and Ŝ0(k)∼ 1

−ik0+
1
2 k2 ; the elementary excitations do not have a relativistic

linear dispersion relation, as in the metallic phase, but a parabolic one. Finally in the
insulating phase for r < 0 the two point function has no singularities.

It is natural to ask what happens to the quantum phase transition in presence
of the interaction.

1.3. Quantum Phase transition in the interacting case
The Schwinger functions of the interacting model in the metallic phase have been
constructed using Renormalization Group (RG) methods in [4, 5, 6, 8, 9]. Luttinger
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liquid behavior (in the sense of [7]) has been established, showing that the power
law decay of correlations is modified by the interaction via the appearance of critical
exponents, that depend in a non trivial way on the interaction. It should be stressed
that such analysis provides a full understanding inside the metallic phase, but gives
no information on the phase transition; the reason is that the physical observables
are expressed in terms of renormalized expansions which are convergent under the
condition

|λ | ≤ ε|vF | (10)

and small ε; therefore, the closer one is to the bottom (or the top) of the band, the
smaller the interaction has to be chosen. This is not surprising, as such RG methods
essentially show that the interacting fermionic chain is asymptotic to a system of
interacting massless Dirac fermions in d = 1+1 dimensions with coupling λ

vF
. One

may even suspect that an extremely weak interaction could produce some quantum
instability close to the boundary of the metallic phase, where the parameters corre-
spond to a strong coupling regime in the effective description.

This is however excluded by our results; we prove the persistence of the metal-
lic phase, with Luttinger liquid behavior, in presence of interaction even arbitrarily
close to the critical point, where the Fermi velocity vanishes. This result is achieved
writing the correlations in terms of a renormalized expansion with a radius of con-
vergence which is independent from the Fermi velocity. In order to obtain this result
we needs to exploit the non linear corrections to the dispersion relation due to the
lattice. The proof is indeed based on two different multiscale analysis in two regions
of the energy momentum space; in the smaller energy region the effective relativis-
tic description is valid while in the larger energy region the quadratic corrections
due to the lattice are dominating. The scaling dimensions in the two regimes are
different; after the integration of the first regime one gets gain factors which com-
pensate exactly the velocities at the denominator produced in the second regime, so
that uniformity is achieved.

Our main results are summarized by the following theorem. We state it in
terms of the Fourier transform of the 2-points Schwinger function defined by

ŜL,β (k) =
∫

β

0
dx0 ∑

x
eikxSL,β (x) (11)

for k ∈D .

Theorem 1.1. Given the Hamiltonian (1) with h =−1+ r with |r|< 1, there exists
ε > 0 and C > 0 (independent from L,β ,r) such that, if |λ | < ε then the Fourier
transform of SL,β (x) (5) defined in (11) can be written in the following way.

1. For r > 0 (metallic phase),

ŜL,β (k) =
[k2

0 +α(λ )2(cosk−1+ν(λ ))2]η(λ )

−ik0 +α(λ )(cosk−1+ν(λ ))
(1+λRS(λ ,k)) (12)

where

ν(λ ) =r+λ rRν(λ ) α(λ ) = 1+λRα(λ )
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η(λ ) =bλ
2r+λ

3r
3
2 Rη(λ ) (13)

with b > 0 a constant and |Ri| ≤C for i = S,ν ,α and η .
2. For r = 0 (critical point)

ŜL,β (k) =
1+λRS(λ ,k)

−ik0 +α(λ )(cos(k)−1)
(14)

where α(λ ) = 1+λRα(λ ) and |Ri| ≤C for i = α,S.
3. For r < 0 (insulating phase)

|ŜL,β (k)| ≤
C
|r|

(15)

Moreover Ŝ(k) = limβ→∞ limL→∞ ŜL,β (k) exists and is reached uniformly in λ .

Clearly, by symmetry, similar results hold at the top of the band by setting
h = 1− r.

From the above result we see that in the metallic phase Luttinger liquid be-
havior is present; indeed the interaction changes the location of the Fermi points
from pF = ±arccos(−1+ r) to pF = arccos(−1+ r +O(λ r)) and, more remark-
ably, produces an anomalous behavior in the two point Schwinger function due to
the presence of the critical exponent η . Luttinger liquid behavior persists up to the
critical point (corresponding to a strong coupling phase in the effective relativistic
description); interestingly, the critical exponent becomes smaller the closer one is
to the critical point. This is due to the fact that the effective coupling is O(λ r) (and
not O(λ )), so that the effective coupling divided by the Fermi velocity is O(

√
r) and

thus small for small r
At the critical point no anomalous exponent is present; the asymptotic behav-

ior is qualitatively the same as in the non interacting case, up to a finite wave func-
tion renormalization and the presence of α . Finally in the r < 0 again an insulating
behavior is found, as the 2-point function has no singularities.

1.4. Grassmann representation
In order to prove the above Theorem it is convenient to write the Schwinger function
in terms of Grassmann integrals. We introduce the propagator

gM,L,β (x−y) =
1

βL ∑
k∈D

eik(x−y) χ0(γ
−M|k0|)

−ik0 + cosk+h
(16)

where χ0(t) is a smooth even compact support function with χ0(t) = 1 for |t| ≤ 1,
χ0(t)> 0 for 1 < t < γ and χ0(t) = 0 for |t| ≥ γ , for some 1 < γ ≤ 2.

Let Dβ be the subset of D contained in the support of χ0(γ
−M|k0|), that is

Dβ = {k ∈D | |k0|< γM+1}. We consider the Grassmann algebra generated by the
anticommuting Grassmannian variables {ψ±k }k∈Dβ

. On this algebra we define the
Grassmann integration

∫ [
∏k∈Dβ

dψ
−
k dψ

+
k
]

as the linear operator defined∫ [
∏

k∈Dβ

dψ
+
k dψ

−
k

]
∏

k∈Dβ

ψ
−
k ψ

+
k = 1 (17)
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while ∫ [
∏

k∈Dβ

dψ
+
k dψ

−
k

]
Q(ψ−,ψ+) = 0 (18)

if the monomial Q(ψ−,ψ+) does not contains all of the variables {ψ±k }k∈Dβ
. Fi-

nally this definition can be extended to the all algebra using the anticommuting
properties of the Grassmanian variables and linearity.

Setting Γβ =
{

x0 =
m0πβ

γM+1 |0≤ m0 ≤ γM+1−1
}

, for x ∈ Γβ ×Λ we define the

Grassmanian fields as ψ±x = 1
βL ∑k∈Dβ

e±ikxψ
±
k , while the Gaussiam Grassmann

measure is defined as

P(dψ) =
[

∏
k∈Dβ

βLdψ
−
κ dψ

+
k ĝ(≤M)(k)

]
exp
{
− 1

βL ∑
k∈Dβ

(ĝ(≤M)(k))−1
ψ

+
k ψ
−
k

}
(19)

After extending the Grasmann algebra adding the new anticommuting Grasmann
fields {φ±x }x∈Γβ×Λ, we introduce the generating functional WM(φ) defined in terms
of the following Grassmann integral

e−WM(φ) =
∫

P(dψ)e−V (ψ)+(ψ,φ) (20)

where, if
∫

dx is a short form for ∑x∈Λ

β

γM ∑x0∈Γβ
, we set

(ψ,φ) =
∫

dx[ψ+
x φ
−
x +ψ

−
x φ

+
x ] (21)

V (ψ) = λ

∫
dxdyv(x−y)ψ+

x ψ
−
x ψ

+
y ψ
−
y + ν̄

∫
dxψ

+
x ψ
−
x (22)

and v(x−y) = δ (x0− y0)v(x− y); moreover

ν̄ = λ v̂(0)
[

S0,L,β (0+,0)−S0,L,β (0−,0)
2

]
. (23)

We call limM→∞ gM,L,β (x) = gL,β (x) and we observe that if x 6= (nβ ,0)

gL,β (x) = S0,L,β (x) (24)

while for x = (nβ ,0)

gL,β (x) =
S0,L,β (nβ+,0)+S0,L,β (nβ−,0)

2
(25)

and S0,L,β (nβ ,0) = (−1)nS0,L,β (0−,0).
Finally we define

SM
L,β (x−y) =

∂ 2

∂φ
+
x ∂φ

−
y

WM(φ)|φ=0 (26)

The Grassmann integral (26) can be used to compute the thermodynamical proper-
ties of the model with Hamiltonian (1); a sketch of the proof of this well known fact
is in Appendix A.
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1.5. Setting up the multiscale analysis
The analysis of the Grassmann integral (20) is done using a multiscale expansion.
For definiteness, we take |r| ≤ 1/4. The remaining range of r is covered by the
results in [4]. The starting point of the analysis is the following decomposition of
the propagator

gM,L,β (x) = g(>0)(x)+g(≤0)(x) (27)
where

g(≤0)(x) =
∫

dkeikx χ0(γ
−M|k0|)χ≤0(k)

−ik0 + cosk+h
(28)

where
∫

dk stands for 1
βL ∑k∈Dβ

, χ≤0(k)= χ0

(
a−1

0

√
k2

0 +(cosk−1+ r)2
)

. Finally

g(>0)(x) is equal to (28) with χ≤0(k) replaced by (1− χ≤0(k)). We chose a0 =
γ−1(1/2− r) so that, in the support of χ≤0(k) we have |k| ≤ π/6. This assures that
on the domain of χ≤0 we have

1
2
|k| ≤ |sin(k)| ≤ |k|.

By using the addition property of Grassmann integrations we can write

e−W (φ) =
∫

P(dψ
(>0))P(dψ

(≤0))e−V (ψ(>0)+ψ(≤0))+(ψ(>0)+ψ(≤0),φ). (29)

After integrating the field ψ(>0) one obtains

e−W (φ) = e−βLF0(φ)
∫

P(dψ
(≤0))e−V (0)(ψ(≤0,φ) (30)

It is known, see for instance Lemma 2.2 of [8] for a proof, that V (0)(ψ(≤0,φ) is
given by

V (0)(ψ,φ) = ∑
n+m≥1

∫
dx
∫

dy
n

∏
i=1

ψ
εi
xi

m

∏
j=1

φ
σ j
x j Wn,m(x,y) (31)

where x = (x1, . . . ,xn) and y = (y1, . . . ,ym) while ∏
n
i=1 ψ

εi
xi = 1 if n = 0 and

∏
m
j=1 φ

σ j
y j = 1 if m = 0; moreover Wn,m(x,y) are given by convergent power series

in λ for λ small enough and they decay faster than any power in any coordinate
difference. Finally, the limit M→ ∞ of V (0)(ψ,φ) exists and is reached uniformly
in β ,L.

Thus we are left with the integration over ψ(≤0). The heuristic idea to perform
this integration is to decompose ψ

(≤0)
x as

ψ
(≤0)
x =

−∞

∑
h=0

ψ
(h)
x

where ψ
(h)
x depends only on the momenta k such that −ik0 + cosk−1+ r ' γh. By

using repeatedly the addition property for Grasmann integration this decomposition
should allow us to integrate recursively over the ψ(h). The index h is called the
scale of the field ψ(h). Two different regimes will naturally appear in the analysis,
separated by an energy scale depending on r and defined as

h∗ = inf{h |a0γ
h+1 > |r|}. (32)
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A different implementation of the renormalization procedure is done in each of these
two regimes.

1. The first regime correspond to h ≥ h∗; the momentum k is far from the two
Fermi points ±pF and the dispersion relation is approximatively quadratic:
cosk− h ∼ k2. In this regime, due to Pauli principle (or anticommutativity
of Grassmann variables), the effective interactions are much smaller than one
can expect according to power counting arguments, and the theory turns out
to be superrenormalizable: all the interactions are irrelevant and their effect is
to produce a finite renormalization of the parameters. In the insulating phase
or at the critical point, only this regime is present.

2. In the second regime, for h < h∗, the momentum k is close to one of the
Fermi points and the leading contribution to the dispersion relation is linear;
cosk− h ∼ (k± pF). The local quartic terms are therefore marginal and the
theory is renormalizable. As a consequence, while in the previous regime the
wave function renormalization is finite, in this regime increases at each iter-
ation step. The wave function renormalization is therefore extracted at each
iteration step and is exactly compensated by the growth of the effective cou-
pling. In addition the small divisors due to the vanishing Fermi velocity are
compensated by the factors coming from the integration of the first regime,
due to the different scaling dimensions.

2. Renormalization Group integration: the first regime
We saw that after the ultraviolet integration we have

e−W (0) = e−βLF0

∫
P(dψ

(≤0))e−V (0)(ψ(≤0)) (33)

where V (0)(ψ(≤0)) is the effective potential on scale 0 and can be written has
V (0)(ψ,0)≡ V (0)(ψ)

V (0)(ψ) = ∑
n≥1

∫
dx
∫

dyW (0)
2n (x,y)

n

∏
i=1

ψ
+
xi

ψ
−
yi
= ∑

n≥1
V

(0)
2n (ψ) (34)

A direct perturbative analysis suggest that to perform the integration (33) we need a
renormalized multiscale integration procedure. In particular, the terms with n = 1,2
are relevant and the terms with n = 3 are marginal. For this reason we introduce a
localization operator acting on the effective potential as

V (0) = L1V
(0)+R1V

(0) (35)

with R1 = 1−L1 and R1 is defined in the following way;

1. R1V
(0)

2n = V
(0)

2n for n≥ 4;
2. for n = 3,2

R1V
(0)

4 (ψ) =
∫ 4

∏
i=1

dxiW
(0)
4 (x)ψ+

x1
D+

x2,x1
ψ
−
x3

D−x4,x3
(36)
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R1V
(0)

6 (ψ) =
∫ 6

∏
i=1

dxiW
(0)
6 (x)ψ+

x1
D+

x2,x1
D+

x3,x1
ψ
−
x4

D−x5,x4
D−x6,x4

(37)

where
Dε

x2,x1
= ψ

ε
x2
−ψ

ε
x1

(38)

3. For n = 1

R1V
(0)

2 (ψ) =
∫

dx1dx2W (0)
2 (x)ψ+

x1
H−x1,x2

(39)

where

H−x1,x2
=ψ

−
x2
−ψ

−
x1
− (x0,1− x0,2)∂0ψ

−
x1
− (x1− x2)∂̃1ψ

−
x1
−

1
2
(x1− x2)

2
∆̃1ψ (40)

and

∂̃1ψ
−
x =

1
2
(ψ−x+(0,1)−ψ

−
x−(0,1)) =

∫
dkisinkeikx

ψ̂
−
k

∆̃1ψ
−
x = ψ

−
x+(0,1)−2ψ

−
x +ψ

−
x−(0,1) = 2

∫
dk(cosk−1)eikx

ψ̂
−
k

As a consequence of the above definitions

L1V
(0) =Ŵ (0)

2 (0)
∫

dxψ
+
x ψ
−
x +∂0Ŵ (0)

2 (0)
∫

dxψ
+
x ∂0ψ

−
x +

1
2

∂
2
1 Ŵ (0)

2 (0)
∫

dxψ
+
x ∆̃1ψ

−
x (41)

where we have used that

i. g(0)(k0,k) = g(0)(k0,−k), so that we get

∂1Ŵ (0)
2 (0) = 0 (42)

ii. There are no terms in L1V
(0) with four or six fermionic fields, as

ψ
ε
x1

Dε
x2,x1

= ψ
ε
x1

ψ
ε
x2
. (43)

and therefore R1V
(0)

4 = V
(0)

4 and R1V
(0)

6 = V
(0)

6 . As a consequence (36)(37)
just represent a different way to write the four and six field contribution to the
effective potential. This representation will be useful in the following where
we will exploit the dimensional gain due to the zero term x2 − x1 and the
derivative in eq.(38).

We will call L1V
(h) the relevant part of the effective potential. Since it is

quadratic in the fields, we can include it in the free integration finding

e−W (0) = e−βL(F0+e0)
∫

P̃(dψ
(≤0))e−R1V (0)(ψ(≤0)) (44)

where e0 comes from the normalization of the new Grassmann integration and the
propagator of P̃(dψ(≤0)) is now

g̃(≤0)(x) =
∫

dkeikx χ≤0(k)
D−1(k)

(45)
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where D−1(k) =−ik0(1+ z−1)+(1+α−1)(cosk−1)+ r+ γ−1µ−1 and

z−1 = z0 +χ≤0(k)∂0Ŵ (0)
2 (0) α−1 = α0 +χ≤0(k)∂ 2

1 Ŵ (0)
2 (0)

γ
−1

µ−1 = µ0 +χ≤0(k)Ŵ
(0)
2 (0) (46)

where z0 = α0 = µ0 = 0 but we have added them in (46) for later reference.
We can now write

g̃(≤0)(x) = g(≤−1)(x)+ g̃(0)(x) (47)

where

g(≤−1)(x) =
∫

dkeikx χ≤−1(k)
D−1(k)

(48)

with
χ<−1(k) = χ0

(
γa−1

0 |D−1(k)|
)
.

Clearly

g̃(0)(x) =
∫

dkeikx f0(k)
D−1(k)

(49)

where
f0(k) = χ≤0(k)−χ≤−1(k).

Using again the addition property for Grassmann integrations we can rewrite (33)
and perform the integration over ψ(0) as

e−W (0) =e−βL(F0+e0)
∫

P(dψ
(≤−1))

∫
P̃(dψ

(0))e−R1V (0)(ψ(≤0)) = (50)

=e−βLF−1

∫
P(dψ

(≤−1))e−V (−1)(ψ(≤−1)) (51)

where P̃(dψ(0)) is the integration with propagator g̃(0)(x), P(dψ(≤1)) is the integra-
tion with propagator g(≤1)(x) and

e−βLẽ0−V (−1)(ψ(≤−1)) =
∫

P̃(dψ
(0))e−R1V (0)(ψ(≤0)) (52)

and F−1 = F0 + e0 + ẽ0. The fact that this integration is well defined follows from
the properties of the propagator g̃(0)(x) that will be derived in Lemma 2.1 below.

We can now repeat the above procedure iteratively. At the h step (i.e. at scale
h) we start with the integration

e−W (0) = e−βLFh

∫
P(dψ

(≤h))e−V (h)(ψ(≤h)) (53)

defined by the propagator

g(≤h)(x) =
∫

dkeikx χ≤h(k)
Dh(k)

(54)

with Dh(k) =−ik0(1+ zh)+(1+αh)(cosk−1)+ r+ γhµh and

χ≤h(k) = χ0

(
γ
−ha−1

0 |Dh(k)|)
)
. (55)
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The effective potential on scale h is given by

V (h)(ψ) = ∑
n≥1

∫
dx
∫

dyW (h)
2n (x,y)

n

∏
i=1

ψ
+
xi

ψ
−
yi
= ∑

n≥1
V

(h)
2n (ψ)

Again we can apply the operator L1 to V (h) to get

V (h) = L1V
(h)+R1V

(h) . (56)

where R is defined exactly as in the case of V (0) and

L1V
(h) =Ŵ (h)

2 (0)
∫

dxψ
+
x ψ
−
x +∂0Ŵ (h)

2 (0)
∫

dxψ
+
x ∂0ψ

−
x +

1
2

∂
2
1 Ŵ (h)

2 (0)
∫

dxψ
+
x ∆̃1ψ

−
x (57)

Moving the relevant part of the effective potential into the integration we get

e−W (0) = e−βL(Fh+eh)
∫

P̃(dψ
(≤h))e−RV (h)(ψ(≤h)) (58)

where the propagator of P̃(dψ(≤h)) is

g̃(≤h)(x) =
∫

dkeikx χ≤h(k)
Dh−1(k)

(59)

and the running coupling constants are defined recursively by

zh−1 = zh +χ≤h(k)∂0Ŵ (h)
2 (0) αh−1 = αh +χ≤h(k)∂ 2

1 Ŵ (h)
2 (0)

µh−1 = γµh +χ≤h(k)γ−hŴ (h)
2 (0) (60)

Finally we can rewrite (44) as

e−W (0) = e−βL(Fh+eh)
∫

P(dψ
(≤h−1))

∫
P̃(dψ

(h))e−R1V (h)(ψ(≤h)) (61)

where P̃(dψ(h)) has now propagator

g̃(h)(x) =
∫

dkeikx fh(k)
Dh−1(k)

=∫
dkeikxĝ(h)(k) (62)

and fh(k) = χ≤h(k)−χ≤h−1(k); one can perform the integration over ψ(h)

e−βLēh−V h−1
=
∫

P̃(dψ
(h))e−R1V (h)(ψ(≤h)) (63)

obtaining an expression identical to (53) with h−1 replacing h, so that the procedure
can be iterated.

To show that the above procedure is well defined we need to study the propa-
gator g̃(≤h)(x). We first have to distinguish two range of scales. The construction of
the theory for r > 0, is based on the fact that the behavior of the propagator changes
significantly when one reaches the scales h' h∗ defined in (32). To understand this
phenomenon, let’s, for simplicity sake, neglect the presence of the running constant
in the function χ≤h. We will see in Lemma 2.1 and Lemma 3.1 below that the pres-
ence of αh, zh and µh does not change the picture. In this situation, it is easy to see
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that if h > h∗ then the domain of fh(k) is a ring of width γh that goes around both
Fermi points (0,±pF). At this momentum scale the propagator does not distinguish
between pF and −pF . On the other hand, when h < h∗ we have

k2
0 +(cosk−1+ r)2 > a2

0γ
2h+1 (64)

in an open neighbor of the k0 axis. This means that the domain of fh(k) splits in two
rings, one around pF and the other around −pF . In this situation it is convenient
to write the propagator as a sum of two quasi-particle propagators, each of which
depends only on the momenta close to one of the Fermi points.

Here we need precise estimates on g̃(h) for h≥ h∗ as reported in the following
Lemma. The case h < h∗ will be studied in section 3. The prove of this Lemma is
reported in Appendix B.

Lemma 2.1. Assume that there exists a constant K > 0 such that

|zh|, |αh|, |µh|< K|λ | (65)

for h≥ h∗. Then for |x0| ≤ β/2, every N and λ small enough we have∣∣∣∂ n0
0 ∂̃

n1
1 g̃(h)(x)

∣∣∣≤CN
γ

h
2

1+[γh|x0|+ γ
h
2 |x|]N

γ
h(n0+n1/2) (66)

with CN independent from K.

2.1. Tree expansion for the effective potentials.
The effective potential V (h)(ψ(≤h)) can be written in terms of a tree expansion, see
[10],[11], defined as follows.

h vh h+1 −1 0 +1

r v
0

v

FIGURE 1. A tree τ ∈Th,n with its scale labels.

1. On the plane, we draw the vertical lines at horizontal position given by the
integers from h to 1, see Fig. 1. We select one point on the line at h (the root)
and one point on the line at h+ 1 (the first vertex v0). On the line at k, with
h+ 1 < k ≤ 1, we select mk > 0 points (the vertex at scale k). We call Mk
the set of vertices at scale k. To each vertex v in Mk we associate exactly one
vertex v′ in Mk−1 and we draw a line between these two vertices. The vertex v′
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is called the predecessor of v. Finally we require that if v and w are in Mk with
v below w then v′ is below or equal to w′. The final results of this procedure is
clearly a tree with root r.

2. Given a vertex v on scale k, let sv be the number of vertices on scale h+ 1
linked to v. If sv = 0 we say that v is a end point. The number n of endpoint is
called the order of the tree. If sv = 1 we say that v is a trivial vertex. Finally
if sv > 1 we say that v is a branching point or non-trivial vertex. The tree
structure induce a natural ordering (denoted by <) on the vertex such that if
v1 and v2 are two vertices and v1 < v2, then hv1 < hv2 . We call Th,n the set of
all tree constructed in this way.

3. Given a vertex v of τ ∈ Th,n that is not an endpoint, we can consider the
subtrees of τ with root v, which correspond to the connected components of
the restriction of τ to the vertices w > v. If a subtree with root v contains only
v and an endpoint on scale hv +1, we will call it a trivial subtree.

4. With each endpoint v we associate one of the monomials contributing to
R1V

(0)(ψ(≤hv−1)) and a set xv of space-time points.
5. We introduce a field label f to distinguish the field variables appearing in the

terms associated with the endpoints described in item 4); the set of field labels
associated with the endpoint v will be called Iv, x( f ), ε( f ) will be the position
and type of the field variable f . Observe that |Iv| is the order of the monomial
contributing to V (0)(ψ(≤hv−1)) and associated to v. Analogously, if v is not an
endpoint, we shall call Iv the set of field labels associated with the endpoints
following the vertex v; finally we will call the set of point x( f ) for f ∈ Iv the
cluster associated to v.

Given Ui(ψ
(h)) for i = 1, . . . ,n we define the truncated expectation on scale h

as

E T
h
[
U1(ψ

(h)); . . . ;U (h)
n (ψ(h))

]
= (67)

∂ n

∂λ1 · · ·∂λn
log
∫

P
(

dψ
(h)
)

eλ1U1(ψ
(h))+···+λnUn(ψ

(h))

∣∣∣∣
λ1=...=λN=0

.

In terms of above trees, the effective potential V (h), h≤−1, can be written as

V (h)(ψ(≤h))+βLeh+1 =
∞

∑
n=1

∑
τ∈Th,n

V (h)(τ,ψ(≤h)) , (68)

where, if v0 is the first vertex of τ and τ1, . . . ,τs (s = sv0 ) are the subtrees of τ with
root v0, V (h)(τ,ψ(≤h)) is defined inductively as follows:

i if s > 1, then

V (h)(τ,ψ(≤h)) = (69)

(−1)s+1

s!
E T

h+1
[
V̄ (h+1)(τ1,ψ

(≤h+1)); . . . ; V̄ (h+1)(τs,ψ
(≤h+1))

]
,

where V̄ (h+1)(τi,ψ
(≤h+1)) is equal to R1V

(h+1)(τi,ψ
(≤h+1)) if the subtree τi

contains more than one end-point, or if it contains one end-point but it is not a
trivial subtree; it is equal to R1V

(0)(ψ(≤h+1)) if τi is a trivial subtree;
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ii if s = 1 and τ1 is not a trivial subtree, then V (h)(τ,ψ(≤h)) is equal to

E T
h+1
[
R1V

(h+1)(τ1,ψ
(≤h+1))

]
.

Using its inductive definition, the right hand side of (68) can be further expanded,
and in order to describe the resulting expansion we need some more definitions.

We associate with any vertex v of the tree a subset Pv of Iv, the external fields of
v. These subsets must satisfy various constraints. First of all, if v is not an endpoint
and v1, . . . ,vsv are the sv ≥ 1 vertices immediately following it, then Pv ⊆ ∪iPvi ; if v
is an endpoint, Pv = Iv. If v is not an endpoint, we shall denote by Qvi the intersection
of Pv and Pvi ; this definition implies that Pv = ∪iQvi . The union Iv of the subsets
Pvi \Qvi is, by definition, the set of the internal fields of v, and is non empty if sv > 1.
Given τ ∈Th,n, there are many possible choices of the subsets Pv, v ∈ τ , compatible
with all the constraints. We shall denote Pτ the family of all these choices and P
the elements of Pτ .

With these definitions, we can rewrite V (h)(τ,ψ(≤h)) in the r.h.s. of (68) as:

V (h)(τ,ψ(≤h)) = ∑
P∈Pτ

V (h)(τ,P) ,

V (h)(τ,P) =
∫

dxv0ψ̃
(≤h)(Pv0)K

(h+1)
τ,P (xv0) , (70)

where
ψ̃

(≤h)(Pv) = ∏
f∈Pv

ψ
(≤h)ε( f )
x( f ) (71)

and K(h+1)
τ,P (xv0) is defined inductively by the equation, valid for any v ∈ τ which is

not an endpoint,

K(hv)
τ,P (xv) =

1
sv!

sv

∏
i=1

[K(hv+1)
vi (xvi)] E T

hv
[ψ̃(hv)(Pv1 \Qv1), . . . , ψ̃

(hv)(Pvsv \Qvsv )] , (72)

where ψ̃(hv)(Pvi \Qvi) has a definition similar to (71). Moreover, if vi is an end-
point K(hv+1)

vi (xvi) is equal to one of the kernels of the monomials contributing to
R1V

(0)(ψ(≤hv)); if vi is not an endpoint, K(hv+1)
vi = K(hv+1)

τi,Pi
, where Pi = {Pw,w ∈

τi}.
The final form of our expansions is not yet given by (68)–(72). We can fur-

ther decompose V (h)(τ,P), by using the following representation of the truncated
expectation in the r.h.s. of (72). Let us put s = sv, Pi ≡ Pvi \Qvi ; moreover we order
in an arbitrary way the sets P±i ≡ { f ∈ Pi,ε( f ) =±}, we call f±i j their elements and
we define x(i) = ∪ f∈P−i

x( f ), y(i) = ∪ f∈P+
i

x( f ), xi j = x( f−i j ), yi j = x( f+i j ). Note that

∑
s
i=1 |P−i |= ∑

s
i=1 |P+

i | ≡ n, otherwise the truncated expectation vanishes.
Then, we use the Brydges-Battle-Federbush [12, 13, 14] formula saying that,

up to a sign, if s > 1,

E T
h (ψ̃(h)(P1), . . . , ψ̃

(h)(Ps)) = ∑
T

∏
l∈T

g(h)(xl−yl)
∫

dPT (t) detGh,T (t) , (73)

where T is a set of lines forming an anchored tree graph between the clusters asso-
ciated with vi that is T is a set of lines, which becomes a tree graph if one identifies
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all the points in the same cluster. Moreover t = {tii′ ∈ [0,1],1≤ i, i′ ≤ s}, dPT (t) is a
probability measure with support on a set of t such that tii′ = ui ·ui′ for some family
of vectors ui ∈Rs of unit norm. Finally Gh,T (t) is a (n− s+1)× (n− s+1) matrix,
whose elements are given by

Gh,T
i j,i′ j′ = tii′g

(h)(xi j−yi′ j′) , (74)

with ( f−i j , f+i′ j′) not belonging to T . In the following we shall use (71) even for s = 1,
when T is empty, by interpreting the r.h.s. as equal to 1, if |P1| = 0, otherwise as
equal to detGh = E T

h (ψ̃(h)(P1)). It is crucial to note that Gh,T is a Gram matrix, i.e.,
the matrix elements in (74) can be written in terms of scalar products:

tii′g
(h)(xi j−yi′ j′) = (75)

=
(

ui⊗A(xi j−·) , ui′ ⊗B(xi′ j′ −·)
)
≡ (fα ,gβ ) ,

where

A(x) =
∫

dke−ikx
√

fh(k)

√∣∣D̂h(k)
∣∣

D̂h(k)
, (76)

B(x) =
∫

dke−ikx
√

fh(k)
1√∣∣D̂h(k)

∣∣ .
where D̂h(k) = −ik0(1+ zh)+ (1+αh)cosk− 1+ r+ γhµh. The symbol (·, ·) de-
notes the inner product, i.e.,(

ui⊗A(x−·),ui′ ⊗B(x′−·)
)
= (ui ·ui′) ·

∫
dzA∗(x− z)B(x′− z) , (77)

and the vectors fα ,gβ with α,β = 1, . . . ,n− s+ 1 are implicitly defined by (75).
The usefulness of the representation (75) is that, by the Gram-Hadamard inequality,
|det(fα ,gβ )| ≤∏α ||fα || ||gα ||. In our case, ||fα ||, ||gα || ≤Cγh/4 as it easily follows

along the line of the proof of Lemma 2.1. Therefore, ||fα || ||gα || ≤Cγ
h
2 , uniformly

in α , so that the Gram determinant can be bounded by Cn−s+1γ
h
2 (n−s+1).

If we apply the expansion (73) in each vertex of τ different from the endpoints,
we get an expression of the form

V (h)(τ,P) = ∑
T∈T

∫
dxv0ψ̃

(≤h)(Pv0)W
(h)
τ,P,T (xv0)≡ ∑

T∈T
V (h)(τ,P,T ) , (78)

where T is a special family of graphs on the set of points xv0 , obtained by putting
together an anchored tree graph Tv for each non trivial vertex v. Note that any graph
T ∈ T becomes a tree graph on xv0 , if one identifies all the points in the sets xv, with
v an endpoint.

2.2. Analyticity of the effective potentials.
Our next goal is the proof of the following result.
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Lemma 2.2. There exists a constants λ0 > 0, independent of β , L and r, such that
the kernels W (h)

l in the domain |λ | ≤ λ0, are analytic function of λ and satisfy for
h≥ h∗

1
βL

∫
dx1 · · ·dxl |W

(h)
l (x1, . . . ,xl)| ≤ γ

h( 3
2−

l
4 )γ

ϑh (C|λ |)max(1,l−1) (79)

with ϑ = 1
4 .

Proof. The proof is done by induction on h. We assume that for k≥ h+1 (79) holds
together with ∫

dx(|x0|+ |x1|2)|W (k)
2 (x)| ≤C|λ |γϑk (80)

and ∫
dx|W (k)

2 (x)| ≤C|λ ||r|γϑk. (81)

The validity of (80) and (81) implies (65).
We now prove that the validity of (79), (80) and (81). Using the tree expansion

described above and, in particular, (68), (70), (78), we find that the l.h.s. of (79) can
be bounded above by

∑
n≥1

∑
τ∈Th,n

∑
P∈Pτ

|Pv0 |=l

∑
T∈T

Cn

[
n

∏
i=1

Cpi |λ |
pi
2 −1

][
∏

v not e.p.

1
sv!

γ
hv

(
∑

sv
i=1
|Pvi |

4 −
|Pv|

4 −
3
2 (sv−1)

)]
·

(82)[
∏

v not e.p.
γ
−(hv−hv′ )z1(Pv)

][
∏

v e.p.,|Iv|=4,6
γ

hv′
|Iv|−2

2

][
∏

v e.p.,|Iv|=2
γ

3hv′
2

]
where z1(Pv) = 2 for |Pv| = 6, z1(Pv) = 1 for |Pv| = 4 and z1(Pv) =

3
2 for |Pv| = 2.

Note the role of the R1 operation in the above bound; if we neglect R1 we can get
a similar bound where the second line of eq.(82) is simply replaced by 1. Its proofs
is an immediate consequence of the Gram–Hadamard inequality

|detGhv,Tv(tv)| ≤ c∑
sv
i=1 |Pvi |−|Pv|−2(sv−1) · γ

hv
2

(
∑

sv
i=1
|Pvi |

2 −
|Pv|

2 −(sv−1)
)

(83)

and of the decay properties of g(h)(x), implying

∏
v not e.p.

1
sv!

∫
∏
l∈Tv

d(xl−yl) ||g(hv)(xl−yl)|| ≤ cn
∏

v not e.p.

1
sv!

γ
−hv(sv−1) . (84)

If we take into account the subtraction to the 2 field terms and rewriting of the 4 and
6 fields terms involved in the R1 operation we obtain the extra factor[

∏
v not e.p.

γ
−(hv−hv′ )z1(Pv)

][
∏

v e.p.,|Iv|=4,6
γ

hv′
|Iv|−2

2

][
∏

ve.p.,|Iv|=2
γ

3hv′
2

]
which is produced by the extra zeros and derivatives in the fields Dxi,x j (when writ-
ten as in the last of (38)) and Hx1,x2 ; each time or space derivative produce a gain
γhv′ or γhv′/2 respectively while the zeros can be associated to the propagators in
the anchored tree T (for vertices that are not end points) or to the kernels in V (0)
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(for the end points) producing a loss bounded by γ−hv or γ−hv/2. While the origin
of such factors can be easily understood by the above dimensional considerations,
some care has to be taken to obtain such gains, related to the presence of the inter-
polated points and to avoid "bad" extra factorials; we refer for instance to section 3
of [4] where a similar bound in an analogous case is derived with all details.

Once the bound (82) is obtained, we have to see if we can sum over the scales
and the trees. Let us define n(v) = ∑i:v∗i >v 1 as the number of endpoints following
v on τ . Recalling that |Iv| is the number of field labels associated to the endpoints
following v on τ and using that

∑
v not e.p.

[
sv

∑
i=1
|Pvi |− |Pv|

]
= |Iv0 |− |Pv0 | ,

∑
v not e.p.

(sv−1) = n−1 , (85)

∑
v not e.p.

(hv−h)

[
sv

∑
i=1
|Pvi |− |Pv|

]
= ∑

v not e.p.
(hv−hv′)(|Iv|− |Pv|) ,

∑
v not e.p.

(hv−h)(sv−1) = ∑
v not e.p.

(hv−hv′)(n(v)−1) ,

we find that (82) can be bounded above by

∑
n≥1

∑
τ∈Th,n

∑
P∈Pτ

|Pv0 |=2l

∑
T∈T

Cn
γ

h( 3
2−

1
4 |Pv0 |+

1
4 |Iv0 |−

3
2 n)

[
n

∏
i=1

Cpi |λ |
pi
2 −1

]
[

∏
v not e.p.

1
sv!

γ
(hv−hv′ )

(
3
2−
|Pv|

4 +
|Iv|
4 −

3
2 n(v)+z1(Pv)

)]
[

∏
v e.p.,|Iv|=4,6

γ
hv′
|Iv |−2

2

][
∏

v e.p.,|Iv|=2
γ

3hv′
2

]
(86)

Using the identities

γ
hn

∏
v not e.p.

γ
(hv−hv′ )n(v) = ∏

v e.p.
γ

hv′ ,

γ
h|Iv0 | ∏

v not e.p.
γ
(hv−hv′ )|Iv| = ∏

v e.p.
γ

hv′ |Iv| , (87)
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we obtain
1

βL

∫
dx1 · · ·dxl |W

(h)
l (x1, . . . ,xl)| ≤

∑
n≥1

∑
τ∈Th,n

∑
P∈Pτ

|Pv0 |=2l

∑
T∈T

Cn
γ

h( 3
2−

l
4 )

[
n

∏
i=1

Cpi |λ |
pi
2 −1

]
· (88)

·

[
∏

v not e.p.

1
sv!

γ
−(hv−hv′ )

(
|Pv|

4 −
3
2+z1(Pv)

)]
·

·

[
∏

v e.p.,|Iv|>6
γ

hv′
(
|Iv|
4 −

3
2

)][
∏

v e.p.,|Iv|=2
γ

hv′
2

][
∏

v e.p.,|Iv|=4,6
γ

hv′
3|Iv|−10

4

]
Note that,[

∏
v e.p.,|Iv|>6

γ
hv′
(
|Iv|
4 −

3
2

)][
∏

v e.p.,|Iv|=2
γ

hv′
2

][
∏

v e.p.,|Iv|=4,6
γ

hv′
3|Iv|−10

4

]
≤ γ

h̄
2 , (89)

with h̄ the highest scale label of the tree. Since

|Pv|
4
− 3

2
+ z1(Pv)≥

1
2

(90)

we see that [
∏

v not e.p.

1
sv!

γ
−(hv−hv′ )

(
|Pv|

4 −
3
2+z1(Pv)

)]
γ

h̄
2 ≤[

∏
v not e.p.

1
sv!

γ
−(hv−hv′ )η

(
|Pv|

4 −
3
2+z1(Pv)

)]
γ

h (1−η)
2 . (91)

for any 0 < η < 1. On the other hand we have that

|Pv|
4
− 3

2
+ z1(Pv)≥

|Pv|
16

(92)

so that, using also eq.(90), we get

∏
v not e.p.

1
sv!

γ
−(hv−hv′ )η

(
|Pv|

4 −
3
2+z1(Pv)

)
≤

[
∏

v not e.p.

1
sv!

γ
− η

4 (hv−hv′ )

][
∏

v not e.p.
γ
− η

32 |Pv|

]
(93)

Collecting the above estimates and using that the number of terms in ∑T∈T is
bounded by Cn

∏v not e.p. sv! we obtain

1
βL

∫
dx1 · · ·dxl |W

(h)
l (x1, . . . ,xl)| ≤ γ

h( 3
2−

l
4 )γ

1−η

2 h
∑
n≥1

Cn
∑

τ∈Th,n

[
n

∏
i=1

Cpi |λ |
pi
2 −1

]
·

·

[
∏

v not e.p.
γ
−(hv−hv′ )

η

4

]
∑

P∈Pτ

|Pv0 |=2l

[
∏

v not e.p.
γ
− |Pv|

64

]
.

(94)
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Remark: eq. (94) says that a gain γ
h̄
2 at the scale of the endpoint, see (89), implies a

gain γh 1−η

2 at the root scale, as consequence of the fact that the renormalized scaling
dimension of all vertices of the trees is strictly positive and≥ 1

2 ; this property, which
will be extensively used below, is called short memory property.

The sum over P can be bounded using the following combinatorial inequality:
let {pv,v∈ τ}, with τ ∈Th,n, be a set of integers such that pv ≤∑

sv
i=1 pvi for all v∈ τ

which are not endpoints; then, if α > 0,

∏
v not e.p.

∑
pv

γ
−α pv ≤Cn

α .

This implies that

∑
P∈Pτ

|Pv0 |=2l

[
∏

v not e.p.
γ
−|Pv| η

32

]
n

∏
i=1

Cpi |λ |
pi
2 −1 ≤Cn|λ |n .

Finally

∑
τ∈Th,n

∏
v not e.p.

γ
−(hv−hv′ )

η

4 ≤Cn ,

as it follows from the fact that the number of non trivial vertices in τ is smaller
than n−1 and that the number of trees in Th,n is bounded by constn. Altogether we
obtain

1
βL

∫
dx1 · · ·dxl |W

(h)
l (x1, . . . ,xl)| ≤ γ

h( 3
2−

l
4 )γ

ϑh
∑
n≥1

Cn|λ |n , (95)

where we have set ϑ = (1−η)/2. Moreover we choose η = 1
2 so that ϑ = 1

4 . Once
convergence is established, the limit L,β →∞ is a straightforward consequence, see
for instance section 2 of [8].

In order to complete the proof we need to show the validity of the inductive
assumption (80)(81). It is clearly true for h = 1; moreover, by the bound (95) we
get (80). We have finally to prove (81). We can write g(h)(x) = g(h)|r=0(x)+ r(h)(x)
where g(h)|r=0 is the single scale propagator of the r = 0 case and r(h) satisfkies∣∣∣∂ n0

0 ∂̃
n1
1 g̃(h)(x)

∣∣∣≤CN
|r|γ− h

2

1+[γh|x0|+ γ
h
2 |x|]N

γ
h(n0+n1/2)

that is the same bound (66) with an extra |r|
γh . We can therefore write

Ŵ (h)
2 (0) = Ŵ (h)

2,a (0)+Ŵ (h)
2,b (0) (96)

where Ŵ (h)
2,a (0) is the effective potential of the r = 0 case. We will show below

that ∑
1
h=−∞

Ŵ (h)
2,a (0) = 0 and as a consequence |∑1

h=k Ŵ (h)
2,a (0)| ≤ C|λ |γ(1+ϑ)k as

|Ŵ (h)
2,a (0)| ≤C|λ |γ(1+ϑ)h. On the other hand |Ŵ (h)

2,b (0)| ≤C|λ ||r|γϑh so that

γ
h−1

µh−1 = γ
h
µh +Ŵ (h)

2 (0) (97)

hence γh−1µh−1 = ∑
1
h=h Ŵ (k)

2 (0) and |µh| ≤C|λ |.
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It remains to prove that ∑
1
h=−∞

Ŵ (h)
2,a (0) = 0. This can be checked noting that in

the r = 0 case it is more natural to consider the following ultraviolet regularization,
instead of (16) at β = ∞

g(x) = ϑM(x0)
∫

π

−π

dkeikx+ε(k)x0 (98)

with ε(k) = cos(k)−1 and ϑM(x0) is a smooth function with support in γ−M,+∞;
note that g(x) verifies (24). We can write g(x)= g(u.v.)(x)+g(i.r.)(x) with g(u.v.)(x)=
h(x0)g(x) and g(i.r.)(x) = (1−h(x0))g(x), and h(x0) a smooth function = 1 is |x0|<
1 and = 0 if |x0|> γ . The integration of the ultraviolet part can be done as in section
3 of [11], writing ϑM(x0) as sum of compact support functions. After that, the limit
M→ ∞ can be taken, and we can write g(i.r.)(x) = ∑

−1
h=−∞

g(h)(x) with

g(h)(x) = ϑ(x0)(1−h(x0))
∫

π

−π

dkch(k)eikx+ε(k)x0 (99)

with ch(k) a smooth function non vanishing for πγh−1 ≤ |k| ≤ πγh+1; note that
g(h)(x) verifies (66), and the integration of the infrared scales is essentially identical
to the one described in this sections. Once all scales are integrated out, we obtain
kernels W (−∞)

n,m coinciding with the ones obtained before; however with this choice
of the ultraviolet cut-off, W (−∞)

2,0 ≡ 0 is an immediate consequence of the presence
of the ϑM(x0) in the propagator. Indeed the kernels can be written as sum over
Feynman graphs, which contain surely a closed fermionic loop or a tadpole (the
interaction is local in time).

2.3. The 2-point Schwinger function in the insulating phase.
In the case r = 0 we have h∗ = −∞ and the integration considered in this section
conclude the construction of the effective potential. Similarly, if r < 0 and |λ | is
small then g(<h∗) ≡ 0, so that again the construction of the effective potential is
concluded by the integration on scale h∗.

In both case the analysis described above can be easily extended to take into
account the external fields, that is φ 6= 0 (see for instance section 3.4 of [4] for details
in a similar case). The 2-point Schwinger function can be written as, if we define
hk = min{h : ĝ(k) 6= 0}

Ŝ(k) =
hk+1

∑
j=hk

Q( j)
k ĝ( j)(k)Q( j)

k −
hk+1

∑
j=hk

G( j)(k)Ŵ ( j−1)
2,0 (k)G( j)(k) (100)

where from (79) |Ŵ ( j−1)
2,0 (k)| ≤C|λ |γ(1+ϑ) j, Q(h)

k is defined inductively by the rela-
tion Q(1) = 1 and

Q(h)
k = 1−Ŵ (h)

2,0 (k)g
(h+1)(k)Q(h+1)

k (101)

and

G(h+1)(k) =
1

∑
k=h=1

g(k)(k)Q(k)
k (102)

so that
|Q(h)

k −1| ≤C|λ |γϑh |Ĝ( j)(k)| ≤C|λ |γ−ϑh (103)
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Using that

ĝ(h)(k) =
fh(k)

−ik0(1+ z−∞)+(1+α−∞)
k2

2

+ r̂(h)(k) (104)

where
|r̂(h)(k)| ≤Cγ

(1−ϑ)h (105)
so that (14) follows.

3. Renormalization Group integration: the second regime in the
metallic phase.

3.1. The anomalous integration.
We have now to consider the integration of the scales with h < h∗, that is

e−W (0) = e−βLFh∗
∫

P(dψ
(≤h∗))e−V (h∗)(ψ) (106)

where P(dψ(≤h∗)) has propagator given by

g(≤h∗)(x) =
∫

dk
χ≤h∗(k)

−ik0(1+ zh∗)+(1+αh∗)(cosk−1)+ r+ γh∗µh∗
(107)

with zh∗ ,αh∗ ,νh∗ = O(λ ).
The denominator of the propagator (107) vanishes in correspondence of the

two Fermi momenta and we need a multiscale decomposition. It is convenient to
rewrite (106) in the following way∫

P(dψ
(≤h∗))e−V (h∗)(ψ) =

∫
P̃(dψ

(≤h∗))e−V (h∗)(ψ)−γh∗νh∗
∫

dxψ+
x ψ−x (108)

where P̃(dψ(≤h∗)) has propagator

g(≤h∗)(x) =
∫

dkeikx χ≤h∗(k)
−ik0(1+ zh∗)+(1+αh∗)(cosk− cos pF)

(109)

and
(1+αh∗)cos pF = (1+αh∗)− r− γ

h∗
µh∗ + γ

h∗
νh∗ (110)

Observe that, assuming that also νh∗ ≤ K|λ |, then we have

C−
√

r ≤ pF ≤C+
√

r (111)

for λ small enough. The strategy of the analysis is the following:
a) we will perform a multiscale analysis of (106). In this analysis we will have to

chose νh∗ = O(λ ) as function of pF and λ to obtain a convergent expansion.
b) at the end of the above construction we will use (110) to obtain the Fermi

momentum pF as function of λ and r.
We can now write

χ≤h∗(k) = χ≤h∗,1(k)+χ≤h∗,−1(k)

where

χ≤h∗,ω(k) = ϑ̃

(
ω

k
pF

)
χ≤h∗(k)
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where ω =±1, ϑ̃ is a smooth function such that ϑ̃(k) = 1 for k > 1
2 and ϑ̃(k) = 0

for k <− 1
2 and

ϑ̃(k)+ ϑ̃(−k) = 1

for every k. Thus ϑ̃

(
k

pF

)
is equal to 1 in a neighbor of pF and 0 in a neighbor of

−pF . Clearly χ≤h∗,±1(k) is a smooth, compact support function and it allows us to
write

g(≤h∗)(x) = ∑
ω=±1

eiω pF xg(≤h∗)
ω (x) (112)

where

g(≤h∗)
ω (x) =

∫
dkei(k−ωpF )x χ≤h∗,ω(k)

−ik0(1+ zh∗)+(1+αh∗)(cosk− cos pF)
(113)

with pF = (0, pF).
We observe that, if the running coupling constants were not present in the

cut-off function χ≤h, we could have used as a quasi-particle cut-off function

χ̃≤h∗,±1(k) = ϑ (±k)χ≤h∗(k)

where ϑ(k) = 1 if k > 0 and ϑ(k) = 0 if k < 0. Indeed, thanks to (64), this would
have made essentially no difference. On the other hand, thanks to (111) and (65), we
have that χ≤h∗,±1 differs from χ̃≤h∗,±1 only for a finite number (not depending on r)
of scales so that this does not modify our qualitative picture. Finally notice that the
argument of ϑ̃ is not scaled with γ−h but only with p−1

F = O(γ−
h∗
2 ).

The multiscale integration is done exactly as in [4]. The localization operation
is defined in the following way

L2

∫
dxW4(x1,x2,x3,x4)

4

∏
i=1

ψ
εi
xi,ωi =Ŵ4(0)

∫
dxψ

+
x,1ψ

−
x,1ψ

+
x,−1ψ

−
x,−1

L2

∫
dxW2(x1,x2)ψ

+
x1,ω

ψ
−
x2,ω

=Ŵ2(0)
∫

ψ
+
x,ω ψ

−
x,ω dx+

∂1Ŵ2(0)
∫

ψ̄
+
x,ω ∆1ψ

−
x,ω dx+∂0Ŵ2(0)

∫
ψ

+
x,ω ∂0ψ

−
x,ω dx (114)

where

∆̄1 f (x) = 2
∫

dk(cosk− cos pF)eikx f̂ (k) if f (x) =
∫

dkeikx f̂ (k)

Note that in the kernels Wl are included the oscillating factors eiω pF x coming form
(112).

After the integration of the scale ψ(h∗), ..ψ(h) we get

e−W (0) = e−βLFh

∫
PZh(dψ

(≤h))e−V (h)(
√

Zhψ) (115)

where PZh(dψ(≤h)) is the Grasmann integration with propagator g(≤h)
ω

Zh
where

g(≤h)
ω (x) =

∫
dkei(k−ωpF )

χ≤h,ω(k)
−(1+ zh∗)ik0 +(1+αh∗)(cosk− cos pF)

(116)
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where

χ≤h,ω(k) = ϑ̃

(
ω

k
pF

)
χ0(a0γ

−h|(1+ zh∗)ik0− (1+αh∗)(cosk−cos pF)|). (117)

Observe that in the denominator of (116) and in (117) we have the running constant
αh∗ and zh∗ .

We can now write∫
PZh(dψ

(≤h))e−V h(
√

Zhψ) =
∫

P̃Zh−1(dψ
(≤h))e−Ṽ h(

√
Zhψ)

where

L2Ṽ
(h)(ψ) =lh

∫
dxψ

+
x,1ψ

−
1,xψ

+
x,−1ψ

−
−1,x +(ah− zh)∑

ω

∫
dxψ

+
ω,x∂ψω,x+

nh

∫
dxψ

+
ω,x +ψω,x (118)

while P̃h(dψ(≤h)) is the integration with propagator identical to (116) but with
χ≤h,ω(k) replaced by χ≤h,ω (k)

Z̃h−1(k)
with

Z̃h−1(k) = Zh +χ≤h,ω(k)Zhzh

Setting Zh−1 = Z̃h−1(0), we can finally write∫
PZh(dψ

(≤h))e−V h(
√

Zhψ) =

e−βLeh

∫
PZh−1(dψ

(≤h−1))
∫

P̃Zh−1(dψ
(h))e−V̄ (h)(

√
Zh−1ψ(≤h)) (119)

where P̃Zh−1 is the integration with propagator g̃(h)ω

Zh−1

g̃(h)ω (x) =
∫

dkeix(k−ωpF )
f̃h,ω(k)

(1+ zh∗)ik0 +(1+αh∗)(cosk− cos pF)

where

f̃h,ω(k) = Zh−1

[
χ≤h,ω(k)
Z̃h−1(k)

−
χ≤h−1,ω(k)

Zh−1

]
.

Finally we have

V̄ (h)(ψ(≤h)) = Ṽ (h)

(√
Zh

Zh−1
ψ

(≤h)

)
(120)

so that

L2Ṽ
h = λh

∫
dxψ

+
x,1ψ

−
1,xψ

+
x,−1ψ

−
−1,x +δh ∑

ω

∫
dxψ

+
ω,x∂ψω,x+

γ
h
νh ∑

ω

∫
dxψ

+
ω,xψω,x (121)

with

γ
h
νh =

Zh

Zh−1
nh δh =

Zh

Zh−1
(ah− zh) λh =

(
Zh

Zh−1

)2

lh
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We can now integrate the field ψ(h)

∫
P̃Zh−1(dψ

(h))e−V̄ (h)(
√

Zh−1ψ(≤h)) = e−βLẽh−V (h−1)(
√

Zh−1ψ(≤h−1)) (122)

so that the procedure can be iterated.

We can now state the following Lemma whose proof is reported in Appendix
B.

Lemma 3.1. For h≤ h∗, every N and λ small enough we have

|∂ n0
0 ∂

n1
1 g̃(h)ω (x)| ≤CN

v−1
F γh

1+[γh|x0|+ v−1
F γh|x|]N

γ
h(n0+n1)v−n1

F (123)

with vF = sin(pF) = O(r
1
2 ).

Again the effective potential can be written as a sum over trees similar to the
previous ones but with the following modifications:

1. We associate a label h≤ h∗ with the root.
2. With each endpoint v we associate one of the monomials contributing to

R2V
(h∗)(ψ(≤hv−1)) or one of the terms contributing to L2V

(hv)(ψ(≤hv−1)).

The main result of this section is the following Lemma.

Lemma 3.2. Assume that

|λk|, |δk| ≤CvF |λ | |νk| ≤C|λ | (124)

than there exists a constants λ0 > 0, independent of β , L and r, such that, for h < h∗,
the kernels W (h)

l are analytic functions of λ for |λ | ≤ λ0. Moreover they satisfy

1
βL

∫
dx1 · · ·dxl |W

(h)
l (x1, . . . ,xl)| ≤ γ

h(2− l
2 )v

l
2−1
F (C|λ |)max(1,l−1) . (125)

Proof. The proof of this Lemma follows closely the line of [4]. The only major
difference is the presence of the small factors in (123). We will report only the
modification of the proof needed to deal with those factors.
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We start noting that the analogous of the bound (82) becomes

1
βL

∫
dx1 · · ·dxl |W

(h)
l (x1, . . . ,xl)| ≤

∑
n≥1

∑
τ∈Th,n

∑
P∈Pτ

|Pv0 |=l

∑
T∈T

Cn

[
∏

v not e.p.

1
sv!

γ
hv

(
∑

sv
i=1
|Pvi |

2 −
|Pv|

2 −2(sv−1)
)]

 ∏
v not e.p.

(
1

vF

)
∑

sv
i=1
|Pvi |

2 −
|Pv|

2 −(sv−1)
[ ∏

v not e.p.
γ
−(hv−hv′ )z2(Pv)

]
(126)

 ∏
v e.p.;v∈IR,|Iv|≥6

|λ |γh∗
(

3
2−
|Iv|
4

) ∏
v e.p.;v∈IR,|Iv|=2,4

|λ |γh∗
(

3
2−
|Iv|
4

)
+z2(Pv)(hv′−h∗)


 ∏

v e.p.;v∈Iλ

|λ |vF

 ∏
v e.p.;v∈Iν ,δ

|λ |γhv′

[ n

∏
i=1

Cpi

]

where:

1. the last factor keeps into account the presence of the factors Zh/Zh−1;

2. the factor
(

1
vF

) |Pvi |
2 −

|Pv|
2 −(sv−1)

comes from the bound on the Gram determi-

nant and the fact that |gh(x)| ≤ γh

vF
;

3. z2(Pv) = 1 for |Pv|= 4 and z2(pv) = 2 for |Pv|= 2;

4. IR is the set of endpoints associated to RV (h∗) and the factor γ
h∗
(

3
2−
|Iv|
4

)
comes

from the bound (79);
5. Iλ is the set of end-points associated to λk and the factor vF comes from (124);
6. Iδ is the set of end-points associated to δk and the derivative in (121) produces

an extra γhv′/vF ;
7. Iν is the set of end-points associated to νk and the factor γhv′ comes from

(121).
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Proceeding like in the proof of Lemma 2.2 using (85) we get

1
βL

∫
dx1 · · ·dxl |W

(h)
l (x1, . . . ,xl)| ≤

∑
n≥1

∑
τ∈Th,n

∑
P∈Pτ

|Pv0 |=l

∑
T∈T

Cn
γ

h(2− 1
2 |Pv0 |+

1
2 |Iv0 |−2n)

[
∏

v not e.p.

1
sv!

γ
(hv−hv′ )

(
2− |Pv |

2 +
|Iv|
2 −2n(v)+z2(Pv)

)]
[

∏
v e.p.;v∈IR

|λ |γhv′
(

3
2−
|Iv|
4

)] ∏
v e.p.;v∈Iλ

|λ |vF

 ∏
v e.p.;v∈Iν ,δ

|λ |γhv′

[ n

∏
i=1

Cpi

]
 ∏

v not e.p.

(
1

vF

)(
∑

sv
i=1
|Pvi |

2 −
|Pv|

2 −(sv−1)
)

(127)

Finally using (87) we arrive to

1
βL

∫
dx1 · · ·dxl |W

(h)
l (x1, . . . ,xl)| ≤

∑
n≥1

∑
τ∈Th,n

∑
P∈Pτ

|Pv0 |=l

∑
T∈T

Cn
γ

h(2− 1
2 |Pv0 |)

[
∏

v not e.p.

1
sv!

γ
(hv−hv′ )

(
2− |Pv|

2 +z2(Pv)
)]

[
∏

v e.p.,v∈IR

γ
hv′
(
− 1

2+
|Iv|
4

)] ∏
v e.p.;v∈Iλ

|λ |vF

 ∏
v e.p.;v∈Iν ,δ

|λ |

[ n

∏
i=1

Cpi

]
 ∏

v not e.p.

(
1

vF

)(
∑

sv
i=1
|Pvi |

2 −
|Pv|

2 −(sv−1)
) (128)

Because γh′v ≤ γh∗ ≤ v2
F and |Iv| ≥ 2 we have

γ
hv′
(
− 1

2+
|Iv|
4

)
≤ v
−1+ |Iv|2
F
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so that
1

βL

∫
dx1 · · ·dxl |W

(h)
l (x1, . . . ,xl)| ≤

∑
n≥1

∑
τ∈Th,n

∑
P∈Pτ

|Pv0 |=l

∑
T∈T

Cn
γ

h(2− 1
2 |Pv0 |)

[
∏

v not e.p.

1
sv!

γ
(hv−hv′ )

(
2− |Pv|

2 +z2(Pv)
)]

 ∏
v e.p.,v∈IR,Iλ

v
−1+ |Iv|2
F

 ∏
v not e.p.

(
1

vF

)(
∑

sv
i=1
|Pvi |

2 −
|Pv|

2 −(sv−1)
) |λ |n[ n

∏
i=1

Cpi

]
(129)

For v ∈ Iδ , Iν , one has |Iv|= 2 so that v
−1+ |Iv |2
F = 1, and we can write ∏

v e.p.,v∈IR,Iλ

v
−1+ |Iv|2
F

=

[
∏

v e.p.
v
−1+ |Iv|2
F

]
= v
−n+∑v e.p

|Iv|
2

F (130)

Using that

∑
v
(sv−1) = n−1 ∑

v e.p.
|Iv|= l +∑

v

sv

∑
i=1

(|Pvi |− |Pv|)

we get

∏
v e.p.

v−1
F ∏

v not e.p.

(
1

vF

)−(sv−1)

=v−1
F

∏
v e.p.

v
|Iv|
2

F ∏
v not e.p.

(
1

vF

)(
∑

sv
i=1
|Pvi |

2 −
|Pv|

2

)
=v

l
2
F (131)

Collecting these estimates we get
1

βL

∫
dx1 · · ·dxl |W

(h)
l (x1, . . . ,xl)| ≤ (132)

v
l
2−1
F ∑

n≥1
∑

τ∈Th,n

∑
P∈Pτ

|Pv0 |=l

∑
T∈T

Cn
γ

h(2− 1
2 |Pv0 |)

[
∏

v not e.p.

1
sv!

γ
(hv−hv′ )

(
2− |Pv|

2 +z2(Pv)
)]

|λ |n
[

n

∏
i=1

Cpi

]
Performing the sums as in the previous section we prove (125).

Remarks.
• Observe that, for h≥ h∗, bound (79) says that the L1 norm of the effective po-

tential is O(γh(3/2−l/4)) while, for h≤ h∗, bound (125) says that the L1 norm of

the effective potential is O(γh(2−l/2)v
l
2−1
F ); the two bounds coincide of course

at h' h∗ since γh∗ ∼ r, vF ∼
√

r so that r(2−l/2)r
l
4−

1
2 = r

3
2−

l
4 .
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• The fact that the Fermi velocity vanishes as r approaches 0 produces the "dan-

gerous" factor
(

1
vF

) |Pvi |
2 −

|Pv|
2 −(sv−1)

in (127) which is diverging as r→ 0. This
is compensated by the extra factors of vF associated to the difference between
the scaling dimensions the first and second regime, that is[

∏
v e.p.

γ
hv′
(

3
2−
|Iv|
4

)]
=

[
∏

v e.p.
γ

hv′
(

2− |Iv |2

)][
∏

v e.p.
γ

hv′
(
− 1

2+
|Iv|
4

)]
(133)

3.2. The flow of the running coupling constants
We now prove by induction that, for h≤ h∗ and ϑ = 1

4 we have

|λh| ≤C|λ |r
1
2+ϑ , |δh| ≤C|λ |r

1
2+ϑ |νh| ≤C|λ |γϑh (134)

First we check that (124) is true for h = h∗. By definition of the L2 operation

λh∗ = λ [v̂(0)− v̂(2pF)]+O(λ 2
γ

h∗( 1
2+ϑ)) (135)

where the second term in the r.h.s comes from (79); as v̂(k) is even the first term
is O(r) so that surely λh∗ vanishes as O

(
r

1
2+ϑ

)
. Moreover from (79), taking into

account that a derivative ∂1 gives an extra γ−h/2, that is∫
dx|∂1W (h∗)

2 (x)| ≤C|λ |γh∗( 1
2+ϑ) (136)

we get

|δh∗ | ≤Cγ
h( 1

2+ϑ)|λ | ≤C|λ |r
1
2+ϑ (137)

The flow of νh is given by

νh−1 = γνh +β
(h)
ν (~vh, ...,~v0) (138)

where~vh = (λh,δh,νh). We can decompose the propagator as

g̃(h)ω (x) = g(h)
ω,L(x)+ r(h)ω (x) (139)

where

g(h)
ω,L(x) =

∫
dkeikx f̃h(k)

−ik0 +ωvF k
(140)

and f̃h has support contained in Cγh−1 ≤
√

k2
0 + v2

F k2 ≤Cγh+1. Moreover, for every
N, we have

|r(h)ω (x)| ≤
(

γh

vF

)3 CN

1+ γh(|x0|+ v−1
F |x|)N

(141)

that is the bound for r(h)ω (x) has an extra factor γ2h/v2
F ≤ γh with respect to the bound

(123) for g̃(h)ω (x).
In the expansion for β

(h)
ν studied in the previous subsection, we can decom-

pose every propagator as in (139) and collect all the term that contains only g(h)L,ω
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and that come from trees with no end-points associated to RV (h∗); this sum vanish
due to parity. Therefore β

(h)
ν = O(λγϑh) and by iteration

νh−1 = γ
−h+h∗ [νh∗ +

h∗

∑
k=h

γ
k−h∗

β
(k)
ν ]. (142)

Thus we can choose νh∗ so that

νh∗ =−
h∗

∑
k=−∞

γ
k−h∗

β
(k)
ν (143)

This implies that

νh−1 = γ
−h+h∗ [−

h

∑
k=−∞

γ
k−h∗

β
(k)
ν ] (144)

and |νh| ≤C|λ |γϑh.
We now study the flow equations for λh and δh with h < h∗

λh−1 = λh +β
(h)
λ

(~vh, ...,~v0)

δh−1 = δh +β
(h)
δ

(~vh, ...,~v0) (145)

where we have redefined δ0 as to include the sum δ̃0 of the terms O(λ ), which
satisfies

|δ̃0| ≤C
∣∣∣∣∫ dkk∂

2v(k+(ω−ω
′)pF)g≤h∗

ω (k)
∣∣∣∣ (146)

where one derivative over v comes from the R1 operation and the other from the
definition of δ . Observe that

|δ̃0| ≤C ∑
k≤h∗

v−2
F γ

2h ≤C|λ |r (147)

since vF k ≤Cγh in the support of fh.
Again we can use (139) and decompose the beta function for α = λ ,δ as

β
(h)
α (~vh, ...,~v0) = β̄

(h)
α (λh,δh, ...,λ0,δ0)+β

(h)
α,R(~vh, ...,~v0) (148)

where β̄
(h)
α contains only propagators g(h)

ω,L(x) and end-points to which is associated

λk,δk. Therefore β
(h)
α,R contains either a propagator r(h)

ω,L(x), a νk or an irrelevant term.
Observe that

1. Terms containing a propagator rh or a factor νh have an extra γϑh in their
bounds, therefore by an argument similar to the one used in (70) (short mem-
ory property) they can be bounded as O(vF γϑh). The factor vF comes from
the factor vl/2−1

F in (125) when α = λ , and from the derivative ∂1 in the case
α = δ .

2. The terms containing an irrelevant end-points associated to a term RV (h∗) have
an extra γϑh∗ (coming from (59)) and an extra γϑ(h−h∗) for the short memory
property; therefore they can be bound as O(vF γϑh). The origin of the factor
vF is the same as in the previous point.
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In conclusion
|β (h)

α,R| ≤CvF λ
2
γ

ϑh (149)

From (140) it is easy to see that

β̄
(h)
λ

(λh,δh, ...,λ0,δ0) =vF β̂
(h)
λ

(
λh

vF
,

δh

vF
, ...,

λ0

vF
,

δ0

vF

)
β̄
(h)
δ

(λh,δh, ...,λ0,δ0) =vF β̂
(h)
δ

(
λh

vF
,

δh

vF
, ..,

λ0

vF
,

δ0

vF

)
(150)

where β̂
(h)
λ

(λd ,δh, ..,λ,δ0) is the beta function of a Luttinger model with vF = 1.
The following crucial result, called asymptotic vanishing of the beta function, has
been proved in [5] that

|β̂ (h)
λ

(λd ,δh, ..,λ0,δ0)| ≤C[max(|λk|, |δk|)]2γ
ϑ(h−h∗) (151)

Assuming by induction that |λk|, |δk| ≤ 2|λ |r 1
2+ϑ for k ≥ h we get

|β̄ (h)
α (λh,δh, ...,λ0,δ0)| ≤ 4CvF λ

2r1+2ϑ
γ

ϑhv−2
F r−ϑ ≤ 4CvF λ

2
γ

ϑhrϑ . (152)

Thus

|λh−1| ≤ |λh∗ |+
h∗

∑
k=h

4CvF λ
2
γ

ϑhrϑ ≤ 2|λ |r
1
2+2ϑ (153)

and the same is true for δh.
Moreover we have

Zh−1

Zh
= 1+β

(h)
z (154)

so that

γ
η = 1+β

−∞

(
λ−∞

vF

)
(155)

where β−∞ is the beta function with vF = 1; therefore

Zh = γ
−η(h−h∗)(1+A(λ )) (156)

with |A(λ )| ≤ C|λ |. Observe that η = O(λ 2r4ϑ ), hence is vanishing as r→ 0 as
O(λ 2r).

Finally the inversion problem for pF can be studied as in section 2.9 of [8].
The analysis for the Schwinger function is done in a way similar to the one in section
3 above.

Remark. Note that, from (155), Zh increases at each iteration step; in the multiscale
expansion described in §3.1 one singles out this factor Zh from the propagator at
each integration step and it turns out that such factors are exactly compensated by the
couplings of the quartic terms in the effective potential, which increase as O(λZ2

h),
see (120) and (151). This remarkable compensation is established by (115), which
was proven in [5], [6] by a combination of Ward Identities and Schwinger-Dyson
equations.



Quantum Phase Transition in an Interacting Fermionic Chain. 31

Appendix A. Grassmann integrals and Schwinger functions.
It is easy to verify that SL,β (x−y) (5) and limM→∞ SM

L,β (x−y) (26) are order by order
equal at non coinciding points. Indeed they can be written as a power series in terms
of ν ,λ or ν̄ ,λ respectively, and each term of the series can be expressed as a sum of
integrals over propagators ( S0,Lβ (x,y) (7) or gL,β (x,y) (16) respectively) which can
be represented by Feynman graphs. The subset of graphs contributing to SL,β (x,y)
(5) and with no tadpoles coincides the the graphs contributing to limM→∞ SM

β ,L(x,y)
(26) and no vertices ν̄ . The integrands are different, as the propagators S0,Lβ (x,y)
(7) and gL,β (x,y) (16) are different at coinciding times. However the integrals are
well defined and coincide, as the integrands of the graphs coincide except in a set of
zero measure. Let us consider the remaning graphs. In the graphs with a tadpole in
the expansion for limM→∞ SM

L,β (x−y) (26) there is a factor of the form

gL,β (x1−x)νT gL,β (x−x2) , νT =−λ v̂(0)
[

S0,L,β (0,0+)+S0,L,β (0,0−)
2

]
(157)

On the other hand, given a graph G of this type, there is another graph G̃, which
differs from it only because, in place of the term V (ψ) which produced the tadpole,
there is a vertex ν̄ . If we sum the values of G and G̃, we get a number which is
equal to the value of G, with −λ v̂(0)S0,L,β (0+,0) replacing νT , so that the terms
coincide with the analogous term in the expansion for SL,β (x,y) (5). Therefore the
perturbative expansion for SL,β (x,y) (5) and limM→∞ SM

L,β (x−y) (26) coincide.

Lemma A.1. Assume that, for any finite β and L, there is a function ν(λ ) such
that ν(0) = 0 and both ν(λ ) and SM

β ,L(x) (26) with ν = ν(λ ) are analytic in λ ∈D,
where D = {λ ∈ C : |λ | ≤ ε0} with ε independent of β and L, and that they are
uniformly convergent as M→ ∞. If λ ∈ D and x 6= (nβ ,0) then

SLβ (x) = lim
M→∞

SM
L,β (x) (158)

where Sβ ,L(x) is defined in (5) with H given by (1) and h replaced by h+ ν while
SM

L,β (x) is defined in (26).

Proof. The main point, strictly related with the fact that we are treating a fermionic
problem, is that, for L and β finite, Sβ ,L (5) is the ratio of the traces of two matri-
ces whose coefficients are entire functions of λ and ν , hence it is the ratio of two
entire functions of λ and ν . On the other hand, the hypotheses on ν(λ ) and SM

β ,L

and Weierstrass theorem imply that ν(λ ) and limM→∞ SM
β ,L are analytic in D. It fol-

lows, in particular, that Sβ ,L, calculated with ν = ν(λ ), is the ratio of two functions
analytic in D; hence, it may have a singularity in a point λ0 ∈ D only if Tr[e−βH]
vanishes there, which certainly does not happen in a neighborhood of λ = 0 small
enough (how small possibly depending on L,β ), since ν(λ ) is of order λ . Moreover,
also the r.h.s. of (158) is analytic in a small neighborhood of λ = 0 and, as we have
explained above, its power expansion in λ and ν , hence also its power expansion
in λ for ν = ν(λ ) coincide with that of Sβ ,L; hence, the two functions coincide in
a disk D̃L,β with center in λ = 0 and radius εβ ,L possibly vanishing as β ,L→ ∞.



32 F. Bonetto and V. Mastropietro

However, Sβ ,L, being the ratio of two functions analytic in D, may have only iso-
lated poles in D\D̃L,β ; hence, if E is the set of poles, Sβ ,L is analytic in D\E and
necessarily coincide with the r.h.s. of (158) in this set, since the two functions coin-
cide in D̃L,β ⊂ D\E. It follows that, if E were not empty, Sβ ,L would be unbounded
in D\E, while this is not of course true for the other function.

Appendix B. Proof of Lemma 2.1 and Lemma 3.1
Proof of Lemma 2.1. We start observing that fh(k) ≤ χ≤h(k). Moreover from (55)
and the fact that the support of χ0 is contained in [0,γ] we have that, in the support
of fh(k),

(1+ zh)|k0| ≤ γ
h+1a0 |(1+αh)(cosk−1)+ r+ γ

h
µh| ≤ γ

h+1a0 (159)

Recalling that a0γ = 1/2− r and |r| ≤ 1/4 we get 1/4 ≤ a0γ ≤ 3/4 and assuming
|λ | so small that K|λ | ≤ 1/2 we get

|sin(k)| ≤ 2
√

1− cos2(k)≤ 2

√
|r|+Kγh|λ |+a0γh+1

1−K|λ |
≤ 2
√

3γ
h
2 (160)

so that from (29) we have |k| ≤
√

3γ
h
2 . Since the first of the (159) implies |k0| ≤ 3

2 γh,
it follows that ∫

fh(k)dk≤ 6
√

3γ
3
2 h. (161)

Because we clearly have

[γh|x0|+ γ
h
2 |x|]N |g̃(h)(x)|= ∑

N1+N0=N

(
N
N1

)
|x0|N0 |x|N1 |g̃(h)(x)|γh

(
N0+

N1
2

)

to prove the statement for n0 = n1 = 0 we just need to show that

|xN0
0 xN1 g̃(h)(x)| ≤ Eγ

h
(

1
2−N0−

N1
2

)
(162)

for some suitable constant E. We will use that, for 0≤ x0 ≤ β/2, we have

x0 ≤
β

2
sin
(

π

β
x0

)
and

ei π

β
x0

(
β

2π

)N0

sin
(

π

β
x0

)N0

xN1 g̃(h)(x) =
∫

dkeikx
∂̂

N0
0 ∂

N1
1 ĝ(h)(k) (163)

where ∂̂0 is the discrete derivative with respect to k0, that is

∂̂0h(k0) =
β

2π

(
h
(

k0 +
2π

β

)
−h(k0)

)
.

We thus need an estimate for ∂̂
N0
0 ∂

N1
1 ĝ(h)(k). To this end, we observe that

∂̂
N0
0 ∂

N1
1 ĝ(h)(k) =

N1

∑
P1=1

∑
∑

N1−P1
i=1 pi=N1−P1

AP1,{pi}∂̂
N0
0 ∂

P1
cos(k)ĝ

(h)(k)
P1

∏
i=i

dpi

dkpi
sin(k)

(164)
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where AP1,{pi} are combinatoric coefficients taking into account how many time the
term ∂

P1
cos(k)ĝ

(h)(k)∏
P1
i=i

dpi
dkpi sin(k) appears in ∂

N1
1 ĝ(h)(k). In particular

AP1,{pi} ≤
N1!
P1!

N1−P1

∏
i=1

1
pi!

so that
N1

∑
P1=1

∑
∑i pi=N1−P1

AP1,{pi} ≤ (1+N1)
N1 .

Observe now that,

∂cos(k)ĝ
(h)(k) =

∂cos(k) fh(k)
−ik0(1+ zh−1)+(1+αh−1)(cosk−1)+ r+ γh∗µh−1

− (1+αh−1) fh(k)
(−ik0(1+ zh−1)+(1+αh−1)(cosk−1)+ r+ γh∗µh−1)2 . (165)

In turn we see from (55) that

|∂cos(k) fh(k)| ≤ a−1
0 γ

−h(1+K|λ |)(1+ γ)‖χ ′0‖∞ ≤ 36‖χ ′0‖∞γ
−h (166)

where ‖χ ′0‖∞ = supp |χ ′0(p)| while the second line of (165) can be bounded by (1+
K|λ |)a0γh+1 ≤ 3/8γh. All togehter we get∣∣∣∂cos(k)ĝ

(h)(k)
∣∣∣≤C′γ−2h.

for a suitable C′. Using that ∂̂0h(k0) = ∂k0h
(

k0 +θ
2π

β

)
for a suitable 0≤ θ ≤ 1 we

get, with a similar argument, that∣∣∣∂̂0ĝ(h)(k)
∣∣∣≤C′γ−2h.

Iterating these estimates gives∣∣∣∂̂ N0
0 ∂

P1
cos(k)ĝ

(h)(k)
∣∣∣≤C′N0,P1

γ
−h(1+N0+P1). (167)

It remains to estimate ∏
P1
i=i

dpi
dkpi sin(k). If P1 ≤ N1/2 we can use∣∣∣∣∣ P1

∏
i=i

dp1

dkpi
sin(k)

∣∣∣∣∣≤ 1 and γ
−h(1+N0+P1) ≤ γ

−h
(

1+N0+
N1
2

)
(168)

while, if P1 > N1/2, at least 2P1−N1 of the pi in the above product must be zero so
that ∣∣∣∣∣ P1

∏
i=i

dp1

dkpi
sin(k)

∣∣∣∣∣≤(2√3)(2P1−N1)γ
(2P1−N1)

h
2

γ
−h(1+N0+P1)γ

h
2 (2P1−N1) =γ

−h
(

1+N0+
N1
2

)
(169)

In both cases we get

|∂̂ N0
0 ∂

N1
1 ĝ(h)(k)| ≤

(
(1+N1)

N1(2
√

3)N1 sup
P1≤N1

C′N0,P1

)
γ

h
(

1+N0+
N1
2

)
. (170)
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It is clear that ∂
N0
0 ∂

N1
1 ĝ(h)(k) has the same support of fh(k) so that from (161) we

get (162). Finally observe that

∂̃
n0
0 ∂

n1
1 g̃(h)(x) = (i)n0+n1

∫
dkeikxkn0

0 sinn1 kĝ(h)(k). (171)

The Lemma follows easily reasoning as above and using (159) for the extra powers
of k0 and k.

Proof of Lemma 3.1. As before, on the support of fh(k) we get

(1+ zh∗)|k0| ≤ γ
h+1a0 |(1+αh∗)(cosk− cos pF)| ≤ γ

h+1a0 (172)

Writing

cosk− cos pF = cos pF(cos(k−ω pF)−1)+ωvF sin(k−ω pF)

and using (172) it easily follows that

|sin(k− pF)| ≤Cγ
hr−

1
2

and thus |k− pF | ≤Cγhr−
1
2 , so that∫

χ≤h,ω(k)dk≤Cr−
1
2 γ

2h. (173)

Reasoning like in the proof of Lemma 2.2 we find that we need to show

|xN0
0 xN1 g̃(h)ω (x)| ≤ Eγ

h(1−N0−N1)r
N1−1

2 (174)

To prove such an estimate we can closely follow the proof of Lemma 2.2. We first
observe that (164) and (167) remain true. Indeed the only difference arise in (166)
due to the presence of ϑ̃ in f̃h,ω . Thus for h≤ h∗ we get

|∂cos(k) fh(k)| ≤ γ
−h
(

a−1
0 (1+K|λ |)(1+ γ)‖χ ′0‖∞ +

γh

pF
‖ϑ̃ ′‖∞

)
≤Cγ

−h (175)

Again we need to estimate ∏
P1
i=i

dpi
dkpi sin(k). For P1 ≤ N1/2 we use (168) to-

gether with

γ
−h(1+N0+P1) ≤ γ

−h(1+N0+N1)rN1−P1 ≤ γ
−h(1+N0+N1)r

N1
2 .

while for P1 > N1/2 we get∣∣∣∣∣ P1

∏
i=i

dp1

dkpi
sin(k)

∣∣∣∣∣≤Cγ
(2P1−N1)hr

N1
2 −P1 . (176)

Observing that

γ
−h(1+N0+P1)γ

(2P1−N1)hr
N1
2 −P1 = γ

−h(1+N0+N1)r
N1
2

(
γh

r

)P1

≤Cγ
−h(1+N0+N1)r

N1
2

and collecting we get

|∂̂ N0
0 ∂

N1
1 ĝ(h)(k)| ≤ γ

−(1+N0+N1)hr
N1
2 (177)

The Lemma follows easily combining the above estimate with (173) and the analo-
gous of (171).
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