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Abstract

Aim: Recently, maxillofacial imaging has drastically evolved thanks to the development

of dedicated imaging techniques. The complex anatomy of the maxillofacial region requires

the use of different image modalities, demanding the development of dedicated image anal-

ysis procedures. This doctoral thesis aims at explore the possible use of image processing

techniques for maxillofacial applications.

Hard tissue imaging: In this chapter, we propose different studies that focused on im-

age segmentation, registration and artifact reduction applied to the automatic extraction

of hard tissue structures in CBCT data. The procedure involves an adaptive, cluster-based

segmentation of bone tissues followed by an intensity-based registration of an annotated

reference volume onto a patient CBCT head volume. Automatic segmentation shows a

high accuracy level with no significant difference between automatically and manually de-

termined threshold values. The overall median localization error was equal to 1.99 mm

with an interquartile range (IQR) of 1.22-2.89 mm.

The second study aims to objectively compare the influence of different image parameters

on metal artifact generation. After a fully automatic segmentation and image registra-

tion, the effect on metal object segmentation and background image noise was evaluated.

Results showed that metal object segmentation is highly influenced by the device and

material factor, while background noise was more affected by the devices and the FOV

parameters compared to the used material.

Then, in the third study, in order to improve the automatic extraction of craniofacial

features and cephalometric landmarks, we designed a metal artifacts reduction (MAR)

algorithm. The new MAR step is fully integrated with our landmark detection algorithm

and works on both projection and image domain and allows the automatic detection of the

corrupted portion of the image, thus preserving image details. The algorithm was tested

on 17 CBCT volumes with a total number of 245 analysed VOIs and reduction of SD

values in not metallic voxels was used as image metric. In our dataset, the proposed MAR
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algorithm always decreased the voxel intensity SD in the examined VOIs, thus showing a

significant metal artifact reduction in a fully automatic way.

Finally, in order to improve the segmentation quality in the mandibular condyle region,

which is usually affected by large amount of noise, a dedicated segmentation approach was

developed. Also this algorithm is integrated with the hard tissue segmentation approach

and it is based on patient adaptive thresholding and contrast enhancement techniques.

The algorithm was tested in vitro on a series of CT and CBCT scans of a dried human

mandible. To reproduce soft-tissue attenuation, a copper filter was used. The proposed

automatic segmentation algorithm allows to improve the quality of the trabecular bone

segmentation, significantly reducing the overestimation of the segmented bone.

Soft tissue imaging: In this section, the application of stereophotogrammetric systems

and laser scanners for the development of computer aided approaches for facial morphol-

ogy evaluation was evaluated.

In the first study, we present a new quantitative method to assess symmetry in different

facial thirds, objectively defined on trigeminal distribution branches territories. Seventy

subjects (40 healthy controls and 30 patients affected by monolateral facial palsy) were

acquired with a stereophotogrammetric system and the level of asymmetry was evaluated,

RMSD was used as asymmetry metric. Results show a high average reproducibility of

area selection and significant differences in RMSD values between controls and patients

for all the thirds. No significant differences were found on different thirds among controls,

while significant differences were found for upper, middle and lower thirds of patients. The

proposed method provides an accurate, reproducible and local facial symmetry analysis.

The second study aims to develop an imaging technique that allows to integrate the infor-

mation about patient dentition together with the stereophotogrammetric reconstruction

of the face, providing an un-invasive way to assess the morphology of facial soft tissues in

relation to teeth. The proposed algorithm is based on several surface registration steps,

initialized by a landmark registration step. To validate the proposed method, CBCT im-

ages were analysed and a series of dentofacial distances were calculated. The high values

of percentage of corresponding point and a median distance of 0.59 mm prove the accuracy

of the registration progress. Statistical analysis shows no significant differences between

distanced calculated on CBCT image or on face and dental surfaces, except for one dis-

tance.
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Upper airway imaging: In this last section, a new image analysis method was de-

veloped to assess whether three-dimensional morphometric parameters could be useful in

nasal septal deviation (NSD) diagnosis and, secondarily, whether CBCT could be consid-

ered an adequate imaging technique for the proposed task. Forty-six CBCT scan were

segmented using ITK-Snap in order to obtain the 3D model of patient upper airway and

compute four morphological parameters septal deviation angle (SDA), percentage of vol-

ume difference between right and left side of the nasal airways, nasal airway total volume

and a new synthetic septal deviation index (SDI). Principal component analysis (PCA) was

used to unveil relationships between each variable and the global nasal airway variability.

Among the analysed parameters, SDI seemed to be the most suitable for the quantitative

assessment of NSD, and CBCT allowed accurate assessment of airway morphology.

Conclusion: In conclusion, we proved that the application of image processing tech-

niques may help in the development of new diagnostic tools. This PhD thesis has helped

creating a good basis for future studies on the application of imaging techniques in oral

and maxillofacial applications.



Sommario

Scopo del lavoro: Negli ultimi anni, l’imaging maxillo-facciale si é notevolmente evoluto

grazie all’introduzione di nuove tecnologie per l’analisi tridimensionale del distretto cranio-

facciale. La complessa anatomia di questo distretto e i differenti tessuti che lo compongono

richiedono l’utilizzo di diverse modalitá diagnostiche e, di conseguenza, dello sviluppo di

metodi di analisi dedicati. Questa tesi di dottorato ha lo scopo di esplorare le possibili

applicazioni delle metodiche di analisi di immagini a tematiche riguardanti la diagnostica

per immagini in ambito maxillo-facciale.

Imaging dei tessuti duri: In questo capitolo vengono trattati diversi studi focalizzati

sulla segmentazione, registrazione e riduzione di artefatti, volte all’estrazione di caratter-

istiche dei tessuti duri in immagini CBCT. In primo luogo, viene sviluppato e validato un

algoritmo di segmentazione automatica dei tessuti duri basato sul calcolo di 4 diversi clus-

ter in un subset di slice, al fine di ricavare una soglia di segmentazione adattiva, specifica

per ogni immagine analizzata. La fase di segmentazione é seguita da una di registrazione,

nella quale un cranio annotato di riferimento viene automaticamente registrato su quello

del paziente in modo da ottenere l’annotazione automatica di 21 punti cefalometrici. La

validazione ha mostrato alti livelli di accuratezza nella fase di segmentazione e un errore

mediano nell’annotazione automatica pari a 1.99 mm con un intervallo inter-quartile pari

a 1.22-2.89 mm.

Il secondo studio ha come scopo quello di valutare quantitativamente l’effetto di diversi

parametri di immagine sulla genesi di artefatti da metallo. Gli oggetti metallici contenuti

nei fantocci acquisiti durante lo studio sono stati automaticamente segmentati e registrati

in modo da permettere la valutazione oggettiva dell’impatto degli artefatti sia nel pro-

cesso di segmentazione degli oggetti metallici che nella valutazione del rumore presente

sullo sfondo dell’immagine. I risultati dimostrano che la segmentazione degli oggetti metal-

lici é principalmente influenzata dal tipo di materiale presente nel fantoccio e dal tipo di

CBCT utilizzata. Per quanto riguarda l’effetto sui tessuti circostanti, questo risulta essere
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maggiormente influenzato dal tipo di FOV e tomografo utilizzato.

Nel terzo studio, al fine di migliorare la segmentazione dei tessuti duri e della detezione

automatica dei landmark cefalometrici, é stato sviluppato un algoritmo per la riduzione

degli artefatti da metallo in immagini CBCT. L’algoritmo é completamente integrato

nell’algoritmo di annotazione e lavora sia nello spazio immagine che nello spazio delle

proiezioni. Inoltre la soluzione proposta individua automaticamente la porzione di volume

corrotta da artefatti in modo da ridurre il costo computazionale e preservare il maggior

numero di dettagli possibile all’interno dell’immagine. L’algoritmo é stato testato su 17

volumi CBCT e in particolare in 245 VOI. I risultati mostrano una riduzione significativa

della deviazione standard nei valori di intensitá, dimostrando l’efficacia della soluzione

proposta. Infine, allo scopo di migliorare l’accuratezza della segmentazione dei condili

mandibolari, é stato sviluppato un algoritmo automatico atto alla segmentazione di questa

specifica struttura anatomica.

Anche questo algoritmo é perfettamente integrato con il primo algoritmo di segmen-

tazione e si basa sull’utilizzo di sogliatura adattiva e tecniche di analisi di immagini atte

all’ottimizzazione del contrasto. L’algoritmo é stato testato in-vitro su una serie di CT

e CBCT. La segmentazione é stata comparata con quella ottenuta attraverso l’utilizzo di

una micro-CT, che rappresenta lo standard per l’imaging dei tessuti duri. La soluzione

proposta permette di migliorare l’accuratezza della segmentazione ed in particolare di

migliorare la segmentazione delle strutture trabecolari, riducendo significativamente la

sovrastima del volume osseo.

Imaging dei tessuti molli: In questa sezione vengono presentati due studi che indagano

la possibilitá di utilizzo di sistemi stereofotogrammetrici e di laser scanner per l’analisi dei

tessuti molli facciali.

Nel primo studio, il metodo proposto é stato testato su 70 soggetti (40 sani e 30 affetti da

paralisi del nervo facciale) acquisiti con sistema stereofotogrammetrico. La RMSD tra i

due lati del volto, analizzata nei diversi terzi, é stata usata come metrica per la definizione

del grado di asimmetria. I risultati mostrano un alto livello di riporducibilitá del metodo

proposto. Inoltre i valori du RMSD mostrano una significativa differenza tra soggetti sani

e patologici.

Il secondo studio propone lo sviluppo di una metodica di integrazione delle arcate den-

tarie, digitalizzate attraverso l’utilizzo di un scanner laser, con la superficie della faccia

del soggetto acquisita con un sistema stereofotogrammetrico. Questo metodo prevede una

serie di step di regsitrazione di superfici. La validazione dei risultati ottenuti é stata effet-
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tuata confrontando l’esito del processo di registrazione con le CBCT degli stessi soggetti.

Il basso errore di registrazione (0.59 mm) prova l’accuratezza del metodo proposto. In-

oltre l’analisi statistica non mostra differenze statisticamente significative per quasi tutte

le distanze dento-facciali usate nel processo di validazione.

Imaging delle vie aeree superiori: In questa ultima sezione viene mostrato uno studio

relativo alla modellizazzione e analisi della morfologia delle vie aeree superiori in immagini

CBCT. In particolare, questo studio si focalizza sullo sviluppo di un indice atto alla valu-

tazione quantitativa della deviazione del setto nasale. Il metodo proposto é stato testato

su 46 immagini CBCT. In queste immagini sono stati valutati 4 parametri morfologici:

l’angolo di deviazione del setto, la differenza di volume delle vie aeree nasali tra lato de-

stro e sinistro, il volume totale delle vie aeree nasali e il nuovo indice di deviazione del

setto. L’analisi delle componenti principali é stata usata per valutare la capacitÃ dei

diversi indici di modellizzare la variabilitá della morfologia delle vie aeree all’interno del

campione studiato. Tra i parametri analizzati il nuovo indice sembra essere quello meglio

utilizzabile per un’accurata valutazione della condizione del soggetto preso in esame.

Conclusioni: In conclusione, in questa tesi di dottorato vengono proposti diversi ap-

procci dove l’utilizzo di tecniche proprie dell’analisi d’immagine vengono usate al fine di

risolvere problematiche tipiche dell’ambito maxillo-facciale. Questa tesi di dottorato getta

le basi per studi futuri sull’applicazione e validazione di tali algoritmi in ambito clinico.



Chapter 1

Oro-maxillofacial imaging

Figure 1.1: Result of the PubMed research, number of article published each year and the same value
normalized on the total number of published article for three different imaging fields: cardiovascular,
maxillofacial and urogenital

During the last decades, maxillofacial imaging has drastically evolved thanks to the devel-

opment of dedicated imaging techniques. Figure 1.1 shows the number of articles published

each year and the same value normalized on the total number of published article for three

1
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different imaging fields: cardiovascular, maxillofacial and urogenital. As can be seen, the

amount of published articles is greater in cardiovascular imaging, which is a, well-known,

growing research field compared to maxillofacial imaging. Nevertheless, the normalized

amount of papers published each year shows a similar incremental trend in cardiovascular

and maxillofacial imaging. Moreover, in the last years, this trend has accelerated in the

maxillofacial field, proving the significant increment of interest of the research community

on this topic.

Maxillofacial imaging involves the interpretation of diagnostic images of the craniofacial

structures, which are well known for their complex anatomy [1]. Craniofacial region com-

plexity is due to the fact that it is composed of many different structures, such as elements

of the musculoskeletal, digestive, respiratory, nervous, vascular and endocrine systems. All

these structures create a unique morphology made from cartilaginous, osseous, dental and

soft-tissue elements, which requires different modalities to be imaged [2].

Figure 1.2: Examples of different imaging modalities applied to the maxillofacial region: CBCT (A),
MRI (B) and MSCT (C)

Traditional maxillofacial imaging was based on two-dimensional X-ray radiographs. Nowa-

days, the advent of new imaging technologies has moved this radiology branch to a three-

dimensional virtual based process [3].

Different imaging modalities are used for the diagnosis of maxillofacial diseases, among

these CBCT, MSCT, MRI and US imaging are the most used in daily clinical practice to

obtain a 3D representation of the hard and soft tissue of the craniofacial region. Figure

1.2 shows three examples of images that can be used in daily diagnosis. As can be seen,

each modality allows to enhance different tissues. For example, CBCT and MSCT images

(Figures 1.2.A and 1.2.C) are more suitable for hard tissue evaluation, due to their high

contrast of dense structures such as teeth, bone and enamel [4]. On the other hand, MRI
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images (Figures 1.2.B) can be a powerful tool for soft tissue evaluation.

Together with these systems, the use of optical devices, such as laser scanner, intra-oral

scanner and stereophotogrammetric systems has increased in the last years. The advan-

tage of these systems is that they allow to render the facial soft tissue and obtain the

digital models of dental arches in a fast and un-invasive way [2].

Figure 1.3: Computer aided design and manufacture of a surgical guide for implant placement (B),
which allows to simulate implant placement (C) and design tooth prosthesis (D), based on patient
dentition (A), before the surgery

Data obtained with these imaging modalities can be processed to integrate and interpret

patient data, making clinicians able to plan treatment and assess its outcomes in a pre-

cise and objective way [5]. In particular, the integration of those data allow the use of

computer aided surgical systems to customize surgery and prosthesis manufacturing [6].

Figure 1.3 shows an example CAD and CAM of a surgical guide for implant placement

and of dental prosthesis based on patient dentition.

Moreover, the correct use of these modalities will lead to a reduction of patient discomfort,

decreasing the invasiveness of diagnostic tools.

The incremental use of this images in clinical practice, has led to the development of new

imaging techniques for craniofacial feature extraction.

In the last years, several segmentation approaches were developed in order to improve 3D

model accuracy. In particular, dedicated segmentation approaches were designed for each
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structures of the craniofacial complex, such as teeth [7–9], bony structures [10–12] and

upper airways [13,14].

Moreover, in order to integrate information from different data sources, several image

registration techniques were developed [15, 16]. Data fusion approaches allow to regis-

ter different DICOM images to visualize different kinds of tissues at the same time, or

to integrate morphological and functional data [17, 18]. Furthermore, image registration

allows to fuse DICOM images with three-dimensional surface models obtained using op-

tical systems. For example, the fusion of 3D model of dental arches with the CBCT data

of the patient is now routinely used in computer aided implantology and orthognathic

surgery [19,20].

Figure 1.4: Example of virtual patient models, on the right is depicted a model that integrates CBCT
bone rendering, the 3D digital model of patient dental arch and the CAD model of the dental implant.
On the left is depicted an virtual model composed by the stereophotogrammetric facial surface and the
digital dental casts of the patient

The integration of different image data allows not only the complete and accurate evalua-

tion of patient condition, but also to overcome the limitations of a specific image modality,

fusing it with another one that compensates its lack of information.

The creation of virtual patients model will allow to simulate the entire treatment nonin-

vasively and adapt it to patient expectations. Moreover, virtual planning allows to take

the relationship between dental arches and surrounding bony structure into account at the

same time using a single 3D model [21].
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Figure 1.4 shows some examples of virtual patient models created fusing different three-

dimensional images of the craniofacial complex. The continuous advancement in image

analysis techniques may allow researchers to develop patient-specific and pathology-specific

protocols, in order to customize treatment planning and follow-up evaluations as much as

possible.

In this PhD thesis, we applied imaging processing techniques to maxillo-facial tasks in

order to obtain digital tools that may help clinicians during diagnosis and treatment eval-

uation. The thesis is divided in three main sections, each one related to the kind of

biological tissue analysed in the proposed studies.



Chapter 2

Overview on image processing

techniques

In order to fully understand the imaging processes used in all the studies presented in this

doctoral thesis, an overview of the main existing techniques is presented in this chapter.

2.1 Image segmentation

Image segmentation plays a key role in many medical imaging applications. Its main aim

consists in automating or facilitating the delineation of anatomical structures or other

object of interest. Diagnostic imaging techniques allow to enrich the knowledge of normal

and pathological anatomy and represent a critical step in diagnosis and treatment plan-

ning.

In the literature, image segmentation is defined as "the partitioning of an image into non-

overlapping, constituent regions that are homogeneous with respect to some characteristic

such as intensity or texture" [22].

Segmentation can be performed in a two-dimensional or three-dimensional image domains.

In general, methods that rely only on image intensity values are independent from the im-

age domain, on the other hand other segmentation method, such as region growing, can

operate differently depending on image dimensionality. Moreover segmentation can be

performed at different interaction levels. The identification of a trade-off between manual

interaction and segmentation performance represents one of the main issues in medical

applications.

Over the years several methods for biomedical image segmentation have been developed.

These approaches can be classified into main categories [23].

6
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• Thresholding: this approach allows the creation of a binary image segmenting

scalar images by partitioning of its image intensity values. This method is simple

and effective where different structures have different intensity values. The main

limitations of this approach rely on the fact that it does not consider the spatial

characteristics of the image, making the segmentation to be sensitive to noises and

intensities inhomogeneity.

• Region growing: it is a technique that allows to extract a region of the image

which is connected basing on some a priori criteria. Unfortunately it usually requires

manual interaction to find the seed point. Thus, for each region of interest, a seed

has to be planted. Furthermore, it can also be sensitive to noise, creating holes or

disconnecting anatomical regions.

• Classifiers: these pattern recognition techniques explore a feature space, e.g. image

intensities, derived from the image using data with known labels. They are defined

as supervised methods, since they require training data that are manually segmented

and used as models to automatically segment new data.

• Clustering: clustering can be defined as a classifier algorithm that does not require

the use of training data. For this reason, they are defined as unsupervised methods.

Clustering techniques use iterative methods to compensate the lack of training data.

During the iterations, these algorithms alternate between segmenting the image and

characterizing the properties of each of the clusters, training itself using the available

data.

• Markov random field: that represents a statistical model which can be used within

other segmentation methods, modelling spatial interactions between adjacent pixels.

• Artificial neural networks: it represents a paradigm for machine learning and is

used in several ways for image segmentation. In medical imaging it is often used as

a classifier that using a training data allows to segment new data.

• Deformable models: this model-based techniques are usually used for delineating

region boundaries using closed parametric curves or surfaces that are deformed under

the influence of both internal and external forces. The main advantages of these

models are their ability to directly generate closed parametric curves or surfaces from

images and their robustness to noise and spurious edges. Their main disadvantage is
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that they require manual interaction to place an initial model and choose appropriate

parameters.

• Atlas-guided: image segmentation that requires a standard atlas or template. The

atlas is generated by compiling anatomical information of the structure that requires

segmenting, then it is used as a reference frame for segmenting new images.

In this doctoral thesis, different segmentation approaches were used. In each study the

characteristic of the used image modalities were evaluated in order to find the segmentation

approach that best fits image proprieties and allow to segment the anatomical structure

of interest.

2.2 Image registration

To better understand the reasons that led to the choice of the registration approaches used

in presented studies, it is useful to define the registration task and the criteria by which

different methods can be classified.

The task of image registration is to find an optimal geometric transformation between

corresponding image data [24]. Each registration methods can be seen as different combi-

nation of the following categories:

• Dimensionality: like segmentation, registration can be performed in any dimen-

sion, in all the studies presented in this thesis work three-dimensional images were

used.

• Domain of the transformations: a transformation is called global if it applies to

the entire image and local if subsections of the image which have their own transfor-

mation are defined [25]

• Elasticity of the transformations: transformations can be divided into rigid,

affine, projective, and elastic. An image coordinate transformation is called rigid,

when only translations and rotations are allowed. If the transformation maps parallel

lines onto parallel lines it is called affine and if it maps lines onto lines, it is called

projective. Finally, if it maps lines onto curves, it is called elastic [26]

• Nature of registration basis: image based registration can be divided into in-

trinsic, based on the image information as generated by the patient and extrinsic,

based on foreign objects introduced into the image space (e.g. skin markers) [27].
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In this thesis, intrinsic registration methods were used, which rely on image content

and can be classified as:

– Corresponding landmark based: these methods are based on a limited set

of corresponding landmarks that can be manually or automatically detected in

the image.

– Surface based: when it is not possible to find corresponding landmarks, sur-

face registration approach can be used to find the geometrical transformation

that best align the analysed surfaces.

– Segmentation based: it can be rigid or deformable model based, where the

same anatomical structures are segmented from both image to be registered.

– Voxel property based: these methods stand apart from the other intrinsic

methods, due to the fact that they operate directly on the image grey values,

without prior data reduction caused by the user or segmentation [27].

• Interaction: image registration methods can be divided into 3 level of interaction.

Automatic where no user interaction is needed, semi-automatic where the user can

specify some registration parameter and interactive, where the user does the regis-

tration himself assisted by software [27]

• Image modality: when a image is registered with another image create with the

same image modality, the registration can be defined a mono-modal process. If the

two images that have to be registered are created by different imaging modalities

the registration is defined as multi-modal

• Involved subject: when all the images involved are acquired from a single patient

the registration process can be defined as intra-subject registration. If the registra-

tion is performed using two image from different patient it is called inter-subject

registration and then if one image is acquired from a single patient and the other im-

age is constructed using a image informations database containing different patients

acquisitions, it is called atlas-based registration [27]

As well as for the segmentation approach, when image registration is needed, the properties

of analysed images were evaluated in order to find the registration approach that best fulfil

study requirements.



Chapter 3

Hard Tissue Imaging

This chapter is based on:

• M. Codari et al. "Computed aided Cephalometry from CBCT data", International

Journal of Computer Assisted Radiology and Surgery, 1-9, 2016.

• M. Codari et al. "Quantitative evaluation of metal artifact using different CBCT

devices, high-density materials and field of views", submitted to Clinical Oral Implant

Research, 2016. This project was made under the supervision of Prof. Jacobs as part

of the OMFS-IMPATH research group of the KU Leuven University in collaboration

with University of Campinas.

• M. Codari et al. "Automatic segmentation for condylar morphometric analysis in CT

and CBCT data: an in-vitro validation", International Journal of Computer Assisted

Radiology and Surgery, 11(S1):S146-S147, 2016. Proceedings of the CARS 2016

Conference. This project was made in under the supervision of Prof. Jacobs as part

of the OMFS-IMPATH research group of the KU Leuven University in collaboration

with University of Milan and Politecico di Milano.

• M. Codari et al. "Automatic Hard Tissue Segmentation And Metal Artifacts Re-

duction In Dental CBCT Data", International Journal of Computer Aided Radiology

and Surgery, 10(S1):300-301, 2015. Proceedings of the CARS 2015 Conference.

• The project titled "Elaborazione ed integrazione nella piattaforma software di Ce-

fla di metodiche algoritmiche per le rimozione/riduzione di artefatti da metallo in

CBCT", financed by Cefla S.C and made in collaboration with the Politecnico di

Milano.
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3.1 Hard tissue maxillofacial imaging

Three-dimensional images are gaining importance in assisting surgical planning and diag-

nosis in maxillofacial field. In particular, when cross-sectional images of the hard tissues of

craniofacial structures are needed, MSCT and CBCT are the current method of choice [4].

Both CT and CBCT are tomographic, X-ray based, techniques which provide high res-

olution and well contrasted images of hard tissues. The differences between these two

modalities are primarily related to beam geometry, which can be cone or fan shaped,

scanning and detector geometry [28].

In particular, CBCT allows to obtain high resolution and isotropic images, which dimen-

sions range from 0.08 to 0.4 mm depending on device and acquisition parameters [29].

Moreover, CBCT data are obtained with only one rotation of the source and detector

around patient’s head. During this rotation, projection data taken from different angles

are used for 3D volume reconstruction, which is performed through modification of the

original cone-beam algorithm developed by Feldkamp [30,31]. The single rotation reduces

the acquisition time, which ranges between 6 and 20 seconds, reducing the possibility of

major movement artifacts [32]. Figure 3.1 shows an example of an axial slice of a CBCT

image of the craniofacial complex and its corresponding 3D surface rendering.

Although CBCT provides diagnostically acceptable images, projection data are affected

by a considerable amount of scatter radiation, that leads to an inferior soft tissue contrast

compared to MSCT images [4].

Both MSCT and CBCT are used to asses bony structures of the head and neck. Nev-

ertheless the use of CBCT has increased, due to the relatively low dose delivered to the

patient during acquisition [33]. Nowadays, CBCT finds its application in implantology,

Figure 3.1: Axial slice of a CBCT image and the corresponding three-dimensional renderings of hard
tissue structures
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orthodontics, endodontics, detection of maxillofacial traumas, maxillofacial surgical plan-

ning, temporomandibular joint evaluation and otorhinolaryngology [34].

All these clinical applications require the development of dedicated image processing tech-

niques. For this reason, with the advancement of its use in clinical practice, several effort

were performed to improve its image quality.

One of the main limitations of CBCT images is the presence of different kind of image

artifacts, which are defined as structures visible in the reconstructed image that are not

present in the imaged object. Among them extinction artefacts, beam hardening artefacts,

partial volume effect, aliasing and motion artifacts are the most relevant [32].

Moreover, the presence of high density objects, such as metals, generated strong artifacts

that can compromise the diagnostic process [35,36]. Figure 3.2 shows an example of CBCT

image corrupted by metal artifacts, showing the effect of both image grey values and ren-

dered surface model.

Figure 3.2: Axial slice of a CBCT image corrupted by metal artifacts (left) and the corresponding
three-dimensional rendering of hard tissue structures (right)

Metal artifacts can strongly compromise all the image processing steps that are usually

involved in CBCT image analysis, like image segmentation and registration. For these

reasons, the quantification and reduction of such artifacts is becoming a "hot" topic in

dental research.

Recently, some studies were conducted in order to assess the expression of metal artifacts

and their impact on image quality, finding that material density, exposure parameters,

FOV and imaged structures affect their expression [35–37]. For this reason, several metal
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artifact reduction algorithms has been developed [38–42].

Other efforts were done in the development of automatic or semi-automatic segmentation

methods for CBCT data. The need of automatic methods relies in another limitation of

CBCT images, namely the grey values variability of its voxels.

CBCT devices use 12-bit or 16-bit images scaled like Hounsfield units (HU), but nonethe-

less it is demonstrated that CBCT grey values cannot be as accurately calibrated as HU.

This miscalibration is due to the amount of noise, artifacts, beam geometry and the lim-

ited FOV size [43]. This variability in grey values make it difficult to standardize threshold

segmentation approaches, which are those most commonly used to segment hard tissue

in clinical practice. For this reason, several automatic or semi-automatic segmentation

algorithms for CBCT data were developed [44–46]. Furthermore the development of au-

tomatic or nearly automatic segmentation algorithms help in the reduction of operator

variability, which is a well-known source of inaccuracy in segmentation tasks.

In maxillofacial and oral radiology, as for the other branches of radiology, operator de-

pendency of performed measurements is one of the most important source of bias. This

problem is usually related to the huge number of image processing steps that characterize

computer aided surgical planning and image segmentation. All these steps represent a

series of approximations subjected to intra and inter-operator variability and are usually

time consuming. For all these reasons, nearly automatic or fully automatic softwares have

been developed in the last years [47–49].

CBCT imaging is becoming the imaging method of choice when three-dimensional analysis

of the hard tissues of oral and maxillofacial region is needed. Nevertheless some limitations

need to be overcome to fully exploit its advantages. Efforts should be made in both image

improvement and diagnostic tool development.

In this section, we present a series of projects focused on automatic feature extraction,

automatic segmentation and artifact reduction in CBCT data.
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3.2 Computed aided Cephalometry from CBCT data

The measurement of the head, known as cephalometry, considers both soft and hard tis-

sues and has many applications in today’s world. The application of cephalometry to the

clinical needs, commonly known as cephalometric analysis, is widely used in dental appli-

cations, such as orthodontics and implantology, and in surgical planning and treatment

evaluation for maxillofacial surgery [50–52]. Traditionally, cephalometric analyses have

been manually performed on a 2D cephalogram, which is a standardized tracing of cran-

iofacial structures as depicted by a latero-lateral radiography of the head. Currently, with

the diffusion of Cone Beam Computerized Tomography scanners, 3D cephalometric analy-

sis is emerging [53]. CBCT is used for small segments of the body, such as the head or part

of it, and generally delivers lower dose to the patient, compared to CT [54]. In particular,

CBCT is a useful tool for identification and evaluation of treatment outcomes, becoming

one of the most common image modality used to visualize the facial skeleton [55–57].

Both maxillofacial surgeons and dentists can foresee remarkable developments by the aid

of computerized methods permitting to easily extract individual features and perform

measurements.

Nowadays, manual point-picking represents the method of choice to perform 3D cephalo-

metric analysis, however this approach is limited in accuracy and repeatability due to

the differences in intra- and inter-operator landmark identification [58–60]. The need to

overcome these limitations recently led to the development of aided, automated or nearly-

automated methods [45, 48, 61–65]. Here, we propose a semi-automatic computerized

method that can help the clinician to annotate three-dimensional CBCT volumes of the

human head, using intensity-based image registration.

Material and Methods

The proposed algorithm, entirely developed in MATLAB (MathWorks, Natick, MA, USA),

automatically segments the skull from CBCT volumes of the human head and subsequently

estimates a number of cephalometric landmarks. The flowchart of the proposed algorithm

is presented in Figure 3.3.

Anatomical Landmarks: In this study, a set of fiducial points, which location will be

estimated, must be decided and defined. To validate the proposed method, a set of 21

landmarks, commonly used in clinical practice and distributed all over the skull surface,

was chosen [66]. All chosen landmarks are listed in Table 3.1. [54].



3.2. Computed aided Cephalometry from CBCT data 15

Figure 3.3: Flowchart of the presented algorithm, which receives a DICOM file as input, articulates in
3 phases: image pre-processing, segmentation and registration and returns the landmark coordinates
as output

Dataset: Datasets of 18 subjects who underwent CBCT imaging examination at the

SST Dentofacial Clinic, Italy, were retrospectively selected. These image were acquired

for reasons independent of this study and in all acquisitions the device was operated at

6-10 mA (pulse mode) and 105 kV using a X-ray generator with fixed anode and 0.5 mm

nominal focal spot size. All images were acquired with cephalometric field of view (200 mm

x 170 mm). All subjects were adult Caucasian women, aged from 37 to 74 years, without

diagnosed craniofacial pathologies, who had teeth in both dental arches. No limitations

was set to the presence of dental implants, dental fillings or even on particular dental

treatments carried out before the radiological examination.

Image Processing: In order to standardize the structures in the CBCT data, the pro-

posed method requires a single initialization step consisting in pointing the most inferior

point of the mandibular bone. Currently, this is the only manual operation required; how-

ever, this is easy to automatize, provided a standard patient positioning on the scanner

chin set. Next, the volume is cut off below the selected slice and the algorithm proceeds

automatically in landmark identification. This simple step defines a common criterion for

volume limitation capable of providing a coarse standardization of the structures.

Subsequently, to improve the accuracy of the segmentation procedures and to make it
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Table 3.1: Landmark used in this study

Landmark Abbreviation

Sella Turcica S

Nasion N

Left and Right Gonion lGo and rGo

Anterior Nasal Spine ANS

Pogonion Pg

Menton Me

Left and Right Orbitale lOr rOr

Posterior Nasal Spine PNS

Left and Right posterior maxillary points lPM and rPM

Left and Right Upper Incisor lUI and rUI

Left and Right Lower Incisor lLI eLI

Left and Right Frontozygomatic Point lFz and rFz

A Point A

B Point B

Basion Ba

robust to the presence of noise, the image was filtered using a three-dimensional low pass

Gaussian filter. The size of this cubic filter was set to 3 voxels in order to limit the blurring

effect, increase signal to noise ratio and preserve the morphology of craniofacial bones [67].

Image Segmentation: The segmentation algorithm aims at a standard hard-tissue

thresholding, though after a subject-specific adaptation with no manual interaction and

no training dataset or previously developed models. A major consideration driving the

algorithm design was that CBCT scanners provide less calibrated contrasts than CTs, thus

reducing the confidence in pre-set thresholds [68].

This aim was approached by k-means clustering separately performed on a representative

subset of the volume slices.

Given a set of observation the K-means clustering aims to partition N observations xn,

where n runs from 1 to N, into K sets by minimizing the sum of euclidean distances

between all observations belonging to the same cluster and their mean (or centroid) mk

. Each observation x can have J components xj , in this case each observation is a mono-

dimensional vector representing the intensity values of the image voxels.
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K-means is an iterative algorithm which divides the given observations into a set of clusters

following these steps:

1. Initialization: the centroids mk are initialized to random values.

2. Assignment step: each data point is assigned to the nearest mean. In the following

equation the guess for the cluster kn that the observation xn belongs to is denoted

by k̂n.

k̂n = argmin
k
{‖xn −mk‖} (3.1)

Then in this step, the variables rn,k, called responsibilities, are set following this

relationship:

rk,n =


1, if k̂n = k

0, if k̂n 6= k

(3.2)

3. Update step: the means are adjusted to match the sample means of the data points

that they are responsible for

mk =
∑

n rk,nxn

Rk
(3.3)

where Rk is the total responsibility of mean of the cluster k,

Rk =
∑

n

rk,n (3.4)

In this way, when Rk = 0 the corresponding mean remain at its original value.

4. Optimization step: the assignment step and update step are repeated until the

assignments do not change [69].

In particular, the k-means clustering was chosen due to its low sensitivity to initialization

parameters, relatively low computational complexity and its suitability for biomedical

image segmentation since the number of clusters can be easily defined based on prior

anatomical knowledge [70,71].

The present validation considered a 1:2 reduction, by analysing each second slice; however,

further preliminary trials revealed that higher reduction factors improved efficiency with

no accuracy loss. As detailed below, the statistics of clusters was used to set the optimal

soft/hard tissue separation threshold; also, a good robustness against dental metal artifacts

was achieved by proper elimination of low-density outliers. Within each subset, slice tissues

were classified into 4 main categories, one representing air, two representing soft tissues

and one representing hard tissues. The classification was performed using a k-means

clustering approach [72]. The following statistics through the subset of slices considered
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the minimum of the highest intensity cluster; i.e., the one intended to classify bone and

tooth tissue.

These values allowed to determine the global threshold which was defined at the 10th

percentile of the population of minima. This threshold value was shown to make the

algorithm robust to misclassification of tissues in a limited (i.e., less than 10%) number

of slices that are easily classified as outliers. The 10% rule was shown selected to avoid a

specific search of outliers.

After the optimized threshold value was obtained, it was possible to proceed with the

thresholding of the entire volume that needs to be segmented, since preliminary analyses

confirmed that possible intensity calibration trends through slices were negligible. The

outcome of single voxel thresholding was next improved by removing all the residual

volumes of the segmentation process, caused by the presence of noise or artifacts. A

3D labelling process identified all structures and those presenting a volume lower than

0.1% of the total segmented volume were eliminated. An example of the outcome of the

segmentation process is shown in Figure 3.4.

Figure 3.4: The figure shows, in a median sagittal slice, which structures are maintained during the
segmentation process
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Image Registration: Landmark placement was based on the propagation of landmarks

through the registration on an annotated reference skull. The reference skull was auto-

matically segmented with the above presented method and annotated in a double blinded

process by three expert operators for three times, in order to take into account intra and

inter-operator variability. Each operator had at least 4 years of experience in morpho-

logical evaluation of the skull. To allow the user to annotate the reference skull a GUI

was created using MATLAB. This GUI allowed the user to annotate the skull visualizing

MPR views. Once all the operators performed the annotation the center of mass of all

annotations was used as final landmark positions.

In previous investigations, deformable registration approaches have been used to align

corresponding structures in different images in order to estimate anatomical landmarks,

as such methods take into account the global appearance information of the anatomical

structures [73–75]. During this step, segmentation for both subject and reference was used

for masking only, thus keeping the information of gray levels inside the segmented bone.

Registration was started by affine transformation that, being global and linear, permits

re-scaling according to the individual proportions and also allows a robust compensation

of the different volumetric FOVs occurring in CBCT. Its transform is expressed by:

F : xF ∈ ΩF 7→ F (xF )

M : xM ∈ ΩM 7→M(xM )

where F (xF ) is an intensity value of the image F at the location xF and M(xM ) is an

intensity value of the image M at the location xM [76].

The MSD was applied as registration objective function to be minimized. This cost figure

is defined as follows:

MSD = 1
N

∑
xF∈ΩT

F,M

|F (xF )−MTa(xF )|2 (3.5)

where xF represents the voxel locations in image F and TF,M represents the overlap

domain consisting of N voxel subset.

Trilinear interpolation was applied in computing the transformed image gray levels and

an iterative gradient descent algorithm was applied to find the optimal transform:

Ra = MTa = Ta(M) (3.6)

The affine registration (linear) step was used as initialization of a subsequent elastic regis-

tration (nonlinear). Importantly, the algorithm was designed to avoid deformations due to

the presence of different anatomical structures in the image volumes; which were caused by
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the limited field of view of CBCT images and inter-subject morphological variability. This

problem was solved by shrinking the subjects mask to the overlap subset TF,M found after

the first affine registration step, thus cutting out the individual volume in excess to the ref-

erence volume. Then, the skulls were processed with a subsequent step of intensity-based

global elastic registration, by MATLAB Medical Image Registration Toolbox, MIRT, Free

FFD with three hierarchical levels of B-spline control points [77,78]. A wide mesh window

size between the B-spline control points of 15 voxels was set, in order to register the main

skull features while avoiding deformation relevant to the largely varying bone structure

details and to artifacts. As a result, the number of control points varied for each image,

depending on its size.

Moreover, in order to prevent the mesh to get too much deformed, a regularization term

was used. In particular, the Euclidean distance between all the neighbouring displace-

ments of B-spline control points was penalized [77]. In our algorithm, the regularization

weight was set to 0.1. Both mesh window size and regularization weight were empirically

determined to give the best performance in term of accuracy.

Like the affine one, the elastic registration was an iterative process, which optimizes the

MSD voxel similarity measure using a gradient descent optimization method with 3 hier-

archical levels of optimization. This additional transformation Te is defined as:

Re = Te(Ra) (3.7)

An example of the outcome of these registration steps is depicted in Figure 3.5, which

shows how the elastic registration allowed to better adapt the morphology of the reference

skull to the patient’s one, compared to the affine step.

Landmark Estimation: Through the registration phase the algorithm superimposes

and deforms the reference skull to comply with the morphology of the patient using only

the information provided by the intensity values of the segmented CBCT images.

Such process is geometrically defined by the transformations Ta and Te, that can be applied

to the coordinates of cephalometric landmarks annotated on the initial reference skull to

estimate the same cephalometric landmark positions on the patient’s one.

Regarding the affine transformation, it is possible to derive the geometric transformation

Ta corresponding to the image transformation Ta and apply it to the matrix of the reference

landmark coordinates.

Defining the position of the i-th landmark in the reference system as pi, where i runs from
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Figure 3.5: Example of affine registration (above) and affine + elastic registration (below). Median
sagittal view of the segmented subject skull (light) with the register. Arrows indicate the mandibular
region, which is fully registered after the elastic segmentation step
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1 to 9, the new estimated position of the same landmark on the transformed reference

skull, and expressed in the patient’s reference system, p̂a
i can be calculated as follows:

p̂a
i = Tapi (3.8)

The elastic transformation Te was implemented numerically on a zeros volume, the size

of the original volume, marked with a single 1 at the landmark position. The transformed

image was no more binary and the center of mass coordinates were taken as transformed

landmark coordinates. The 21 landmark coordinates were collected in a vector pe rep-

resenting the final estimation of the chosen cephalometric landmark coordinates. At the

end of the annotation process each annotated landmark is displayed on the 3D surface of

the patient skull. Moreover each landmark is centered into a spherical confidence region

that helps the clinician during a subsequent eventual manual refinement of the annotation,

as can be seen in Figure 3.6. The radius of the confidence spheres was set to the 95th

percentile of the annotation error population calculated during the validation step.

Figure 3.6: Example of the proposed, computer aided, annotation process outcome; each landmark is
centered into a spherical confidence region (95th percentile of the annotation error population) that
can help the clinician in a subsequent manual refinement of the annotation

Validation: Optimized thresholding, though preliminary to registration and automated

annotation, was considered a crucial step deserving a specific validation. Therefore, the al-

gorithm outcomes were compared to the manual thresholding performed by an experienced

user on the whole data set. Both threshold values and segmented volumes were compared
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testing correlation and significance of differences of automatic vs. manual identification.

Depending on the normality of data, either Student’s t-test or Wilcoxon signed rank test

was used; p-value significance level was set to 0.05. The normality of data distribution

was checked with Jarque-Bera test; also in this case significance level was set to 0.05.

To evaluate the quality of the annotations performed in this study all CBCT volumes

were manually annotated. In particular, in order to take into account the inter-operator

variability of the annotation process a team of expert users manually annotated the im-

age dataset. This way, for each subject, the expected location of the 21 cephalometric

landmarks can be defined as the barycenter of operator annotation. Figure 3.6 shows an

example of manually and automatically annotated landmarks.

Subsequently, the Euclidean distance, expressed in mm, between the position of each man-

ually annotated landmark and the position of its corresponding landmark estimated by the

proposed algorithm, was calculated. These distances will be subsequently used to display

confidence regions around the estimate landmarks in order to allow the user to easily place

the landmark in the most suitable place.

Results

Segmentation: To evaluate the accuracy of the segmentation process, both threshold

values and segmented volumes where compared. Both manual and automatic threshold

values resulted normally distributed (p > 0.05). They were highly correlated (R = 0.96, p

< 0.001) and no significant difference was found between them (p > 0.05), thus indicating

that the automatic optimization well reproduced the threshold setting of experts.

Segmented volume values resulted not normally distributed (p < 0.05), and non-parametric

tests were used for their statistical comparisons. Even for these values, a high level of

accuracy was found between automatically and manually segmented volume values (ρ =

0.98, p < 0.001) and no significant differences were found between the two groups (p >

0.05).

Landmark Estimation: The mean (SD) inter-operator ICC for all the analysed land-

marks was 0.98 (0.04). The overall median value of the computer-aided localization error

was equal to 1.99 mm with an IQR of 1.22 - 2.89 mm.This median error expressed in the

horizontal, vertical and transverse direction was equal to 0.60, 0.86 and 0.89 mm, respec-

tively. These distances widely varied among different landmarks. In particular, among the

calculated estimation errors the lowest value was reported for the PNS landmark with a

median value of 1.47 mm and an IQR of 0.79 - 1.76 mm. On the other hand, the highest
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values were observed for Gonia, respectively, right Gonion with a median value of 2.81

mm and an IQR of 1.46 - 4.83 mm and left Gonion with a median value of 4.00 mm and

an IQR of 2.00 - 4.86 mm.

Considering all landmarks, annotation error was less than 5.00 mm for 90 % of landmarks

and less than 2.50 mm for 63 % of them.

The descriptive statistics for the obtained distances for each landmark are shown in Figure

3.7.

Figure 3.7: Annotation error, calculated as the Euclidean distances between manually annotated and
estimated landmarks, for all the analyzed landmarks.

Conclusion

The proposed method allows to find a good estimate of landmark positions, which may

subsequently be refined by the clinician, saving operator time and reducing annotation

variability.

Nowadays the annotation of cephalometric points is mainly performed manually. Recent

studies reported that the error caused by identification of landmark varies between 0.02

mm to 2.47 mm [58–60, 79]. Therefore, one important aim for the evaluation of skeletal

morphology in maxillofacial patients is to reduce the landmark identification error under

2.00 mm [79].

In the present study, landmarks lying in different locations present largely different aver-

age localization errors. Using our method, Gonia arise as the most difficult markers to

localize. As a matter of fact, this reflects the variability of human anatomy and manual

annotation. The mandibular bone, statistically, is among the most variable bones of the

skull [80] and this is reflected in the estimation of right and left Gonion [81].

In this study, since annotation errors were not normally distributed among different pa-
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tients (p<0.001), the median annotation error was used to measure the accuracy of the

annotation process. In particular, the median annotation error was found as 1.99 mm

with an IQR of 1.22 - 2.89 mm. In a recent study, Shahidi et al. validated an algorithm

for landmark annotation based on 3D image registration for 14 landmarks on a dataset of

20 CBCT images. They obtained an overall mean error of 3.40 mm, which is significantly

higher compared to the one obtained with the current method [64]. In another study,

Gupta et al. proposed a knowledge-based algorithm for automatic detection of cephalo-

metric landmarks on CBCT images that was validated on 30 CBCT images. Gupta et

al. obtained a mean error of 2.01 mm with a standard deviation of 1.23 mm, which is

comparable with the one obtained with the proposed methodology [48]. With our method

a comparable accuracy level was obtained with reduced a priori information about land-

mark positions.

The method described in the present study attempts a general and robust approach for

the propagation of landmarks from an annotated reference skull to subject-specific ones.

Segmentation of hard tissues is a fully automatic process that reduces the amount of er-

ror dependent on operator experience. In the validation step, no significant difference

was found between manually and automatically determined threshold values. Moreover,

the correlation coefficient close to 1 proved the high accuracy of the segmentation step

compared to manual thresholding, which is now considered the standard method of seg-

mentation in maxillofacial applications.

Since the segmentation step was proved to be very robust, the registration step represents

the main source of variability in automatic annotation. In order to improve the annotation

accuracy, local adaptation in a region of interest around each estimated landmark should

be added to overcome the limits of the global registration step. Moreover, we believe that

a computer aided cephalometric annotation of CBCT volumes, relying on intensity-based

image registration, can be a good initialization that can help the clinician in performing

cephalometric analysis. Indeed, for most landmarks the current results are well compara-

ble with those provided by other methods present in the literature [62,63]. One advantage

of our method is that cephalometric landmark coordinates were obtained without any local

a priori information about geometry and location of each landmark, allowing physicians

to use this approach for personalized cephalometric analysis. Indeed, the method can

be customized only changing the number of landmark annotated on the reference skull,

without any modification of the annotation algorithm. Results are promising, nevertheless

the study should be expanded in order to validate it on a larger dataset and reduce the
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estimation error to provide a fully automatic annotation algorithm. Moreover, in order

to improve the segmentation and, consequently, the annotation in the dental region, a

dedicated high intensity object artifact reducing algorithm should be implemented.
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3.3 Metal artifacts in CBCT images

3.3.1 Quantitative evaluation of metal artifact using different CBCT

devices, high-density materials and field of views

Figure 3.8: Examples of the effetc of metal artifacts on CBCT images

Since the advent of CBCT, attempts to quantify image artifacts have gained impor-

tance. For this reason, in the last years, research focused on the evaluation of the factors

that influence artifact expression in CBCT images in order to better understand how to

analyse and improve corrupted images [37,82,83].

Artifacts can be seen in the reconstructed images and several etiologies has been reported in

the literature [32,35]. Among the possible causes of artifacts, beam hardening is described

as the most common; followed by the dispersion of photon noise and motion artifacts [84].

One of the main causes of artifacts is the presence of high-density materials within the

FOV, such as metal implants, intracanal posts, metallic crowns and amalgam restoration.

The literature has demonstrated that metal artifacts have negative influence in the daily

diagnosis. In particular, their presence influences root fractures diagnosis in CBCT images

in presence of intracanal materials and metal posts [85–89]. Some examples of the effect
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of metal artifact on CBCT images are depicted in Figure 3.8. This negative influence is

due to the appearance of artifacts mimicking the fracture lines disturbing the diagnostic

process, leading to an incorrect diagnosis and treatment plan and in some cases to unnec-

essary extraction.

Similar limitation may occur when looking for the dental implants surface. Despite the

CBCT provides accurate information related to bone morphology and guidance on the

positioning of the implant in the alveolar ridge [90], the peri-implant region can be com-

promised by the presence screw artifacts hindering or even making impossible the diagnosis

in this region [82,91].

High density materials can create artifacts that affect image quality in different ways

depending on the CBCT device [36] and imaging protocol. For this reason, acquisition

parameters, detector type and reconstruction algorithms are important parameters that

must be taken into account while evaluating image quality in terms of image noise, con-

trast resolution and artifacts [92].

Given the influence of such factors on artifact generation and in order to better under-

stand their expression in CBCT images, the aim of the present research was to develop

a quantitative method to assess the effect of different CBCT devices, materials and FOV

sizes on metal artifact generation.

Materials and Methods

Phantoms

For this study, three acrylic resin phantoms (VIP, São Paulo, Brazil) were manufactured.

Each phantom contains three cylindrical pins, made with different high-density materials:

titanium, copper-aluminum alloy (CuAl) and amalgam. These metal pins were positioned

at the vertices of an isosceles triangle to mimic the position of the central incisors (A) and

seconds molars (B and C) in a human mandible. Phantom geometry and composition is

described in Figure 3.9.

The dimensions of the metallic cylinders were checked with an electronic digital caliper

(0-150 mm Stainless, Hardened) before their inclusion in the resin phantom. Moreover,

their correct position inside the phantom was certified using a comparative microscope

(Olympus Optical CO, LTD, Japan), in order to standardize the geometry of all phantoms.
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Figure 3.9: Geometry and composition of the phantom used in this study

CBCT parameters

All phantoms were scanned using hi-resolution parameters, fixing the spatial resolution to

0.2 mm and choosing one representative large and small FOV for each CBCT devices: 3D

Accuitomo 170 (J. Morita, Kyoto, Japan); ProMax 3D (Planmeca Oy, Helsinki, Finland)

and Newtom VGI evo (Newtom, Verona, Itlay). All exposure protocols are shown in Table

3.2.

Table 3.2: Exposure protocols for the CBCT devices included in this study

ID FOVs (cm) kVp mA exposure time (s) voxel size (mm)

3D Accuitomo 170 CBCT1 4x4/10x5 90 5.0 30.8/17.5 0.2

NewTom VGI evo CBCT2 5x5/10x5 110 3.0 1./1.8 0.2

ProMax 3D CBCT3 5x5/10x5 96 5.6 12/12 0.2

Image analysis

During image analysis, for each combination of CBCT device and material, the images

acquired with the 2 different FOV were analyzed.

At first, to quantify the effect of metal artifact on image quality, the metal cylinders were

segmented in both images. To automatically segment them, all the voxel were classified

in 3 categories (air, acrylic resin and metal) using a three-dimensional k-mean clustering
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approach [93]. Then, the voxels belonging to the most intense cluster were classified as

metal.

After the segmentation, in order to select the same ROI, in both images, the small FOV

image was registered to the one acquired with the large FOV. This registration was per-

formed automatically and was divided in two steps. The first step consists in the estimation

of the initial translation transformation that allow to roughly register the two volumes.

During this step, the metal cylinders in B position, which were present in both images,

were automatically detected in order to calculate their barycenter and estimate the initial

transformation. After this initialization step, a fine intensity-based registration step was

used to register the volumes. For this registration step the normalized mutual information

was used as registration metric [94].

Once the volumes were registered, the same ROI was selected. The ROI was automatically

defined as the portion of the acrylic resin phantom that was imaged in both the registered

volumes. All the acquired images were analyzed using Matlab (MathWorks, Natick, USA).

The flowchart of the presented image analysis process is depicted in Figure 3.10.

Figure 3.10: Flowchart of the image processing process used to estract the same ROI from the images
obtained for each combination of CBCT device, material and FOV

Within the selected ROIs, to evaluate how the metal cylinder geometry was corrupted by

metal artifacts, the difference between the segmented volume and the real volume of the

metal cylinder (VD), expressed as percentage of the real volume, was calculated.

On the other hand, to evaluate the impact of the metal artifact in the surrounding voxels,

the voxels segmented as metal were removed from the ROI. Once removed, the original
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ROI was divided into three sub-ROIs. In these way, the amount of artifacts was evaluate

taking the distance between the surrounding voxels and the metal object into account.

Figure 3.11 shows an example of ROI division.

To quantify the amount of the artifacts in these regions, the nSD was used (Pauwels et al.

2013). In particular, the SD of the voxels contained therein the ROI was normalized to

the maximum possible SD, which is defined as half or the full grey value range, allowing

us to compare different CBCT devices with different gray value ranges.

Figure 3.11: Example of ROI subdivision showed in an axial slice

Statistical analysis

Data were analyzed with a three-way ANOVA model, with CBCT device, material and

FOV as three crossed factors. Since there is only one measurement for each combination

for the volumetric measurements and nSD of the different ROIs, a solution was found by

confounding the three-way interaction factor with the error term. Any difference between

measured values that may point to a three-way interaction was explained by experimental

error. Level of statistical significance was set for p-value < 0.05.

Results

Differences between segmented and real volume were observed for all CBCT devices and

materials, see Table 3.3. Within the materials, amalgam generated the strongest artifacts

while titanium generated the lightest. Statistical differences were found among different

materials for different combination of CBCT devices and FOVs. Moreover, statistical dif-

ferences were found in volume overestimation when varying CBCT devices, but not when

varying FOV size.

The most accurate segmentation (0.2% of volume overestimation) was found for a Tita-
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nium pin, acquired with CBCT1 using a small FOV. On the contrary, the least accurate

segmentation was obtained for an amalgam pin, acquired with CBCT3 using a large FOV

(67.0% of volume overestimation). In Figure 3.12 the differences between segmentation

for each combination of CBCT device, material and FOV are shown.

For AD values, significant difference was observed for all combinations of FOV, CBCT

Figure 3.12: Segmented volumes for all the combinations of CBCT devices, materials and FOV

Table 3.3: VD values (%) for all the combinations of CBCT device, material and FOV

CBCT 1 CBCT 2 CBCT 3

Titanium
LFOV 3.7 2.1 23.1

sFOV 1.7 0.2 22.3

CuAl
LFOV -6.0 -2.6 27.9

sFOV -7.1 -5.4 25.3

Amalgam
LFOV 15.6 12.3 67.0

sFOV 13.8 8.6 60.2

device and material. The results of this analysis are summarized in Table 3.4. Normalized
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Table 3.4: Median and interquartile range of AD values (%), for all the combination of CBCT device,
material and FOV

CBCT 1 CBCT 2 CBCT 3

Titanium
LFOV 4.4 (0.6) 2.8 (1.9) 17.5 (0.6)

sFOV 3.3 (0.8) 1.8 (1.2) 17.1 (1.1)

CuAl
LFOV -0.8 (3.5) 0.6 (3.5) 23.0 (7.5)

sFOV -2.2 (4.7) -1.4 (4.8) 23.6 (7.7)

Amalgam
LFOV 13.6 (3.0) 16.0 (1.4) 61.5 (17.0)

sFOV 11.2 (1.1) 14.0 (2.1) 53.6 (10.4)

standard deviation varied differently between the three ROIs in each device (Table 3.5).

There was no significant difference between materials for all combinations of CBCT and

FOV (p>0.05). Only CBCT3 showed significant difference in nSD values for all combi-

nations of FOV and materials (p<0.05). Finally, the small FOV in all the CBCT devices

showed statistical significant differences (p<0.05).

Discussion

The present study showed the influence of different high density materials, CBCT devices

and FOVs on the image quality, using a novel and fully objective method.

In CBCT images, grey values intensity is specific for each equipment due to the influ-

ence of technique factors inherent for each device. Usually, in modern CBCT devices,

the acquired images are stored as 12-bit or 16-bit DICOM images. The difference in the

number of stored bits lead to a different number of possible grey values, which is defined

as 2(storedbit−1). To compensate these differences and be able to compare SD values from

different CBCT devices, nSD was calculated [35].

Independently of this specific characteristic related to each CBCT device, the presence of

high density materials produces severe artifacts in the reconstructed data. These artifacts

are even worse when these materials are present in more than one place. In this case, the

region between two objects is deteriorated, impairing the diagnosis.

Beam hardening is the most common cause of artifacts in CBCT related to the polychro-

matic source and especially, two types of artifacts can result from this phenomenon: dark

bands or "photon starvation" between dense objects and cupping artifacts [95]. In the

present study, both artifacts were observed in all the samples for all the materials reduc-
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ing the image quality. Several studies demonstrated that CBCT image quality can be

improved by changing some parameters during scanning procedure, such as kVp [96–99],

mA [100], FOV [101] and voxel size [102].

Therefore, in the present study, the protocols for each CBCT were carefully established.

A fixed spatial resolution was selected to eliminate partial volume artifacts standardizing

image quality analysis. However, even choosing similar protocols, the results showed sta-

tistical differences in volume measurements among CBCT devices. In particular, CBCT1

and CBCT2 seemed to have the same behaviour for all combination of material and FOV

(p>0,05). On the other hand, CBCT3 showed significant differences compared to the other

devices (p<0.05). This can be explained by the differences in operating characteristics of

each X-ray tube. The latter varies with different voltage peaks and therefore, different

effective beam energies. Despite choosing similar high resolution protocols, the presence

of high-density material in the scanned volume originated severe artifacts.

In dentistry, a number of dense materials are currently in use which can differ in density

and uniformity. In this study we used three different materials to evaluate the effect of

their proprieties on metal artifact generation.

In particular amalgam, which is a heterogeneous material composed by mercury (Z=80),

silver (Z=47), tin (Z=50) and zinc (Z=30), showed a different behaviour compared to

CuAl (Copper Z=39 and Aluminum Z=13) and Titanium (Z = 22). The high density

of this material compared to the others causes strong artifacts that lead to high volume

overestimation during segmentation.

In this study, segmented volume analysis allow to globally evaluate the effect of metal

artifact on metal cylinder segmentation. On the other hand the area analysis allowed to

evaluate slice by slice if the over or underestimation was constant troughs the metal ob-

ject. Our findings showed that amalgam had the highest values of median overestimation

in interquartile range (IQR). In particular, the high value of median overestimation can

be due to the high density of the material, that causes strong artifacts. In the same way,

the high IQR values can be related to its heterogeneity that causes a large variability in

AD values on different slices. This hypothesis is than confirmed by the values measured

in the titanium cylinders, which is a homogeneous material with a lower atomic number,

that showed the lowest values for both median and IQR of AD values. These results allow

us to correlate the effect of metal artifact not only to material density, but also to their

homogeneity.

Moreover, the area analysis allows to observe that the segmentation of the metal object
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was mainly affected in the initial and final slices that compose the metal cylinders. This

behaviour is common for all samples, highlighting a strong effect of artifacts at the vertical

edges of the metal object. Probably, this can be explained by the divergence of the vertical

beam in the extremes. The beam diverges from the ideal perpendicularity to the rotation

axis and the detector. According to Molteni et al. a slight, but consistent increase in

grey values intensity can be noticed moving toward the top (where X-ray beam increases

divergence from an ideal orthogonal) [95].

The quantification of inaccuracy in metal object volume and area quantification can be of

help for clinician during the evaluation of corrupted images, making them more aware of

the amount of volume difference between the real object and the one imaged in the CBCT

data. Regarding the amount of background, quantified using nSD, there was no signifi-

cant difference in nSD values between materials for all combinations of CBCT and FOV

(p>0.05), proving that the difference among materials affects more metal segmentation

than background noise. Moreover, our results confirmed that amalgam, compared to the

other two materials increased the SD of intensity of surrounding voxels. Similar finding

were reported in a recent study that compared the SD values of intensity values in metal

artifacts generated by amalgam and other composites [99].

The results of the present study showed also a significant difference between the three

analyzed CBCTs, only in the small FOV. The presence of few artifacts in large FOV im-

ages may be explained by the scattered radiation and differences related to the scanning

process (i.e., scanning geometry and image reconstruction and preprocessing).

For the small FOVs the presence of metal objects outside the reconstructed FOV should

be one of the reasons for the differences between the devices. In general, smaller irradiated

and reconstructed volumes are less prone to inaccurate voxel values, caused by scattered

radiation and by non-ideal geometry [95]. The presence of metal objects outside the re-

constructed FOV may be particularly problematic with limited-volume CBCT, for which

only a small part of the head is within the reconstructed volume.

Conclusions

Different CBCT devices, materials and FOVs may affect the quality of resulting CBCT

images. In particular, segmentation of a metal object was highly affected by the device

and material factor, while FOV size seemed less important in this case. Regarding the

background noise, CBCT devices and FOV size had more influence on the amount of

artifacts than the materials.
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3.3.2 Automatic hard tissue segmentation and metal artifact reduction

in dental CBCT data

This project was financed by Cefla SC. The presented algorithm was then upgraded in col-

laboration with Cefla group and integrated in their imaging software. Details regarding

the final version of this algorithm are not reported in this section, respecting the signed

non-disclosure agreement.

In last decades, the use of CBCT devices has significantly increased. These devices allow

to obtain high resolution cross-sectional images delivering a lower radiation dose to the

patient, compared to a traditional multi-slice CT [66].

Cone Beam CT finds it main application in dental and maxillofacial applications, both

in diagnosis and treatment planning, in particular when computer aided procedures are

planned [34].

In this kind of applications, image quality plays a key role, since the accuracy of 3D models

and manufactured surgical templates strictly relies on it [103]. Nowadays, CBCT images

allow to create 3D models in a reliable and clinically applicable way, but there are some

factors that can compromise model accuracy [104].

In craniofacial CBCT images severe corruption is caused by high-density objects, such as

dental implants and dental fillings. The presence of metal artifacts worsens the image re-

constructed by back-projection algorithms with bright streaks radiating from the metallic

objects and with dark areas near them. The true contrast may be completely obscured in

regions between adjacent metallic objects. Eventually, these artifacts may lead to misclas-

sification of landmarks used for diagnosis, surgical planning and clinical follow-up [35].

Due to the clinical relevance of this matter, several efforts were made to reduce metal

artifacts in CBCT images.

To reduce this kind of artifact, specific metal artifact reduction (MAR) algorithms, which

allow improving image quality, were developed. These correction algorithms can be clas-

sified in three different groups: interpolation-based methods, iterative reconstruction ap-

proaches and adaptive filtering algorithms [38]. In the last years, specific MAR algorithms

for CBCT images were developed [38–42] and now MAR solutions are available in some

commercial devices. These solutions allow to improve image quality and consequently

image segmentation and feature extraction.

In order to improve an automatic extraction of craniofacial features and cephalometric

landmarks, currently in development by our research group, we designed a MAR solu-
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tion. The new MAR step is fully integrated with our landmark detection software and

exploits features of the preceding skull segmentation to limit the metal affected VOI to be

corrected, with consistent computational saving.

Materials and Methods

Our automatic skull annotation algorithm starts with a hard tissue segmentation by a

thresholding, driven by a k-means clustering performed on the first one out of every two

slices. A vector of minima of the highest intensity cluster in each slice is computed. Then

its 10th percentile is fixed as low threshold for the entire volume, thus assuming that at

least 90% of the analyzed slices has no low-intensity artifact [44].

Once the original volume is segmented, the result may not be satisfactory due to the pres-

ence of strong metal artifacts. To reduce them, the algorithm automatically detects the

corrupted volume subset.

This VOI was identified as a set of adjacent slices (slab) where the previous k-means

clustering was affected by high intensity artifact caused by metal objects. To detect this

VOI, the vector of intensity minima classified as hard tissue was used. When metal arti-

facts are present, this vector is characterized by abrupt changes in intensity values, since

the 4th cluster is composed by metal voxels. A change of more than 500 grey levels was

considered as threshold to identify the limits of the VOI. Figure 3.13 shows an example of

change in minimum values that allows to automatically detect the VOI where the MAR

Figure 3.13: Example of automatically selected sub-volume from the original image volume
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algorithm will be applied.

In this way, a new image volume is created using only a subset of the original image, which

will be processed to reduce metal artifacts and improve its image quality. The proposed

MAR algorithm works in 3D and starts with the segmentation of metal objects within the

VOI by a three-dimensional k-means technique [105]. In this step, all the voxels segmented

as bone were automatically classified in 6 clusters. Among them, the 2 most intense were

classified as metal. This process was conducted only in the segmented part of the image,

in order to save computational time and accurately detect all the metal objects.

After this process, the binary image containing only metal information was created. This

metal image was then forward projected to obtain the metal trace in the image sinograms.

For each slice contained in the VOI, the metal trace was identified using the metal image.

Figure 3.14 shows an example of metal trace extracted from the VOI sinogram.

Figure 3.14: Example of metal trace (below) automatically estracted from the original stack of sinograms
(above)

Once the metal trace was extracted, metal voxels were replaced in all sinograms to perform

artifact suppression. During sinogram correction, in order to add the information provided

from adjacent slices, the algorithm considers the series of 2D sinograms belonging to each

VOI slice as a single volume.

MAR was performed in the 3D space of projections (approximately the stake of sino-

grams) to account for slice cross-talk. The proposed correction was non-linear, all the

voxels corresponding to the metal trace are considered as missing data and filled by the

3D inpainting technique proposed by Garcia in 2010 [106]. Moreover, in order to reduce

the streak artifacts, a 3 x 3 x 3 low pass 3D Gaussian filter is applied to the corrected

sinogram [40]. Figure 3.15 shows an example of the results of sinogram correction.
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Figure 3.15: Example of sinogram correction after the application of the proposed MAR solution

After that, the corrected sinograms were backward projected and metal objects were re-

placed in their original position.

Finally, in order to reduce the low-pass filtering effect of forward projection and recon-

struction steps, the difference image between the original and corrected reconstructed

volumes was calculated. This difference image was then used to detect the voxels signifi-

cantly modified by the MAR algorithm and those only smoothed by the low-pass filtering.

The rationale behind this decision was that artifact correction should strongly change the

intensity of those voxels corrupted from dark bands and streak artifacts. On the other

hand, the smoothing effect should modify the intensity values to a lesser extent.

The smoothed voxels were then identified applying a threshold to the difference image, the

threshold value was set to 5% of original intensities. Then, all voxels below this threshold

value were set to their original intensity. In order to avoid abrupt changes of intensity

values, a weight mask was created applying a low pass 3 x 3 x 3 median filter on the binary

mask obtained after difference image thresholding.

To quantify the artifact reduction, a series of sub-VOIs around each metal object were

extracted. The dimension of each sub-VOI was 40 x 40 x 20 voxels.

In each detected sub-VOI, the voxels classified as metal were deleted and the surrounding

voxels were used to calculate the mean intensity of the non-metallic voxels and its SD.

The percentage of SD reduction was used as image quality metric to quantify the metal

artifact reduction [35].

Boxplots were used to represent the distribution of mean and SD intensity values of

non metal voxels. Normality distribution of the data was tested using the Kolmogorov-
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Smirnov-test, then Wilcoxon signed rank test was used to compare mean and SD values

before and after the application of the MAR algorithm. Significance level was set to

p<0.05.

Results

The algorithm was tested on 17 CBCT volumes with a total number of 245 analized VOIs.

All images were provided by Cefla and used as validation set. For each volume, the algo-

rithm qualitatively improved the image quality, reducing both streak artifacts and dark

areas. Figure 3.16 shows some examples of images before and after the application of the

proposed MAR solution.

Figure 3.16: Examples of original (O) and corrected (C) images before and after the application of the
proposed MAR solution

The mean intensity value (and its SD) across the sub-VOIs, both expressed in grey levels,

were 2318 (1949) before and 2120 (1408) after image correction, with a median SD reduc-

tion percentage (and IQR) value of 22%(24%). Both mean and SD intensity values of the

surround metal voxels were significantly reduced using the proposed MAR algorithm. (p

< 0.001). The comparisons were performed using the signed rank sum test. Figure 3.17

shows the populations of standard deviation and mean intensity values measured in all

the selected MS-VOIs.
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Figure 3.17: Boxplot of the values of Mean (MI) and standard deviation (SDI) intensity measured in
the analysed MS-VOIs

Discussion

The proposed algorithm works on both projection and image domain and allows the auto-

matic detection of the corrupted portion of the image, thus preserving image detail where

the artifacts are not present.

The described method allows to automatically segment hard tissues and metal objects,

finding them in the projection data and replace them taking into account slice cross-talk.

In particular, this algorithm was applied on CBCT images of the maxillofacial region.

The proposed method starts with the segmentation of hard tissue, corrupted sub-volume

identification and metal object segmentation. Using a clustering approach all these steps

were performed automatically and without the need of a priori information, such as preset

thresholds or prior knowledge about metal object geometry and composition [107–109].

Moreover, this adaptive segmentation approach allows to overcome a well-know limitation

of CBCT images, such as the variability of grey values, allowing its use on different CBCT

devices [43,110].

As can be seen in Figure 3.16 the proposed MAR approach allows to both reduce dark

bands and streaks artifacts. From these results, qualitative improvement of image quality

can be noticed, even in presence of strong artifacts. In particular, the corrected images

are free of radiating pattern and shadows artifact between metal objects. In some cases,
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the algorithm is not able to fully delete metal artifact and in few cases new artifacts are

introduces, which is a problem common to most of the published methods [111]. Results

show a significant reduction of SD of intensity values of non metallic voxels in all the

analyzed regions of interest.

As known, the interpolation method can reduce SD values due to the low-pass effect of

sequential forward and backward projections [111]. In this work, this effect was reduced

working directly in the image domain, restoring the image details lost due to the smooth-

ing effect. In this way, a well-know side effect of the projection interpolation approach was

reduced in a fast and computationally inexpensive way.

Conclusion

Figure 3.18: example of image before and after the application of the proposed MAR algorithm and
the outcomes of image segmentation applying the same threshold value

In our dataset, the proposed MAR algorithm always decreased the voxel intensity
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SD in the examined surrounds of metal objects, thus showing a significant metal artifact

reduction in a fully automatic way. Moreover, the reduction of metal artifacts allowed

to improve segmentation outcomes. Figure 3.18 shows an example of image before and

after the application of the proposed MAR algorithm and the outcomes of image segmen-

tation applying the same threshold value. As can be seen, some anatomical structures

partially lost due to the presence of artifacts were recovered, improving the quality of the

segmented hard tissue. Improvements in segmentation allow to obtain more accurate 3D

models, making them more suitable for CAD/CAM applications.

Obtained results are promising, the algorithm seems able to reduce metal artifacts without

a priori information about image setting parameter and metal object geometry. Neverthe-

less, further validation using equivalent tissue phantoms must be performed.
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3.4 Automatic segmentation for condylar morphometric anal-

ysis in CT and CBCT data: an in-vitro validation.

The aim of orthognathic surgery is treatment of maxillofacial deformities to improve oral

function as well as facial aesthetics with a long-term perspective. The surgery itself in-

volves significant bone remodelling. The latter surely applies to the mandibular condyles.

Condylar remodelling may remain within physiological condition or result in progressive

condylar resorption [112]. Diagnosis of this condition is mainly based on 3D radiological

examination (MSCT or CBCT). These 3D scans enable analysis of morphological and vol-

umetric changes during healing [49]. Since such analyses strictly depend on the accuracy

of bone segmentation, it is important to have an accurate and repeatable segmentation

method. For this reason, in this study we propose an automatic method to segment

condyle structure in both MSCT and CBCT data.

Figure 3.19: Flowchart of the mandibular condyle segmentation process

Materials and Methods:

The proposed algorithm, entirely developed in MATLAB (MathWorks, Natick, MA, USA),

automatically segments the mandibular condyle in both MSCT and CBCT images. The

flowchart of the proposed algorithm is presented in Figure 3.20. The presented segmenta-

tion method combines patient adaptive thresholding and contrast enhancement techniques

in order to improve the segmentation of both trabecular and cortical bone. Thresholding

was done by 4 clusters (air, soft tissue, trabecular and cortical bone) k-means clustering

performed on one of each two slices of the original volume. For each slice the minimum

intensity value classified as cortical bone was collected. Thereafter, the global threshold

was defined as the 10th percentile of the population of minimum values. Then the same
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method was applied to the trabecular bone cluster. Secondly, to create the first seg-

mentation mask, the image contrast was enhanced using unsharp masking technique and

segmented using the cortical threshold value. The unsharp masking id an image sharp-

ening techniques that subtract a blurred (unsharp) version of the image from itself. In

this study, this technique is used to locally increase image contrast, thus improving the

subsequent adaptive thresholding step.

Then, the trabecular bone threshold was applied to the voxels of the first mask obtaining

the second segmentation mask.

Once this mask was obtained, it was refined removing all the residual volumes of the

segmentation process caused by noise or artifacts. Finally, it was applied to the original

volume, maintaining the detail of the trabecular bone.

Figure 3.21 shows a detailed flowchart of these image processing steps, applied to an axial

slice of a CBCT image.

Figure 3.20: Example of image processing steps applied to an axial image of the dry condyle used in
this study

For validation, a dry human hemimandible was scanned with 4 CBCT and 1 MSCT ma-

chine using clinical scanning protocols for condylar examination. To reproduce soft-tissue

attenuation, a copper filter was used during all acquisitions. Moreover, the condyle was

cut and scanned using a microCT, which represents the gold standard for bone x-ray

imaging.

After image registration, all images were segmented with the proposed method and manual

global thresholding. The segmented volumes, Dice similarity coefficient, which is a spatial

overlap index. Dice coefficient can range from 0, indicating no spatial overlap between

two sets of binary segmentation results, to 1, indicating complete overlap [113]. Moreover,

the percentages of bone overestimation were calculated. Signed-rank sum test was used

for data comparisons, with the significance level set to p<0.05.
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Results:

The algorithm was tested on 6 image volumes. Qualitative comparison between the pro-

posed algorithm and the global thresholding showed improvement of the segmentation

accuracy, as it can be seen in Figure 3.22. The median (IQR) segmented volume was

1515.1 mm3 (166.8 mm3) for the automatic segmentation method and 1949.9 mm3 (79.9

mm3) for the manual thresholding.

Significant differences were found between segmented volume values (p < 0.05), Figure

3.21 shows the values of volume difference in all the used images.

The median (IQR) Dice Similarity Coefficient was 0.87 (0.1), with the maximum value of

0.98 for the MicroCT image volumes. Regarding the percentages of overestimation of the

segmented volume compared with the MicroCT image, the median (IQR) value was 13%

(10%) for the proposed method and 7% (4%) for the manual thresholding (p < 0.05).

Figure 3.21: Volume difference between the microCT scan of the condyle (gold standard) and each CT
and CBCT acquisition, segmented with the proposed method and manual thresholding

Conclusion:

The proposed method represents a fully automatic alternative for condyle segmentation in

both CT and CBCT data. In particular, the automatic segmentation allows to improve the

quality of the trabecular bone segmentation and significantly reduce the overestimation

of the segmented bone (with a median reduction of 24% between methods), especially for

high resolution images, as can be seen in Figure 3.22. Results are promising, nevertheless

a further validation on an enlarged sample is advised.
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Figure 3.22: Outcomes of mandibular condyle segmentation, applied on an axial slice, obtained with
manual and automatic segmentation



Chapter 4

Facial Soft Tissue Imaging
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4.1 Facial soft tissue imaging

Facial soft tissue can be imaged using different image modalities. MRI and US imaging

can be used to evaluate the inner craniofacial soft tissue, while external facial surfaces can

be imaged with optical systems. Among optical systems, stereophotogrammetry can be a

useful tool to evaluate facial morphology, since it allows to reconstruct the digital surface

of patient face in a safe, un-invasive and fast way [2].

These systems allow to create a 3D image from a series of multiple photographs taken si-

multaneously from different points of view. These images allow to reconstruct a 3D mesh

composed by a point cloud connected in order to form triangular faces. Figure 4.1 shows

an example of obtained 3D representation of facial soft tissues.

Figure 4.1: Three-dimensional surface rendering, and the corresponding triangular mesh, of facial soft
tissues obtained using a stereophotogrammetric system

Stereophotogrammetric systems were found accurate and reliable for the detection of fa-

cial landmarks and for the evaluation of facial distances and angles [114, 115]. Moreover,

they allow to acquire patient face in a contact-free way and without the use of ionizing

radiations, making it suitable for frequent follow up evaluations. Another advantage of

stereophotogrammetric systems is the short acquisition time, that makes it usable for the

analysis of non-collaborative patients, such as children and special needs subjects.

Patients with craniofacial dismorphology are usually characterized by complex irregular-

ities in the shape and configuration of facial soft tissue structures [116]. Moreover they

often undergo extensive surgical procedures, so the development of fast and un-invasive

follow up techniques is of particular importance for them.

Laser scanners are another class of instruments that allows to obtain three-dimensional
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surfaces. They consist in a light source that projects well defined lines on the scanned

object, which are then acquired from a series of cameras in order to reconstruct a 3D tri-

angle based surface. The main limitation of this acquisition system is the time necessary

for a complete facial scan, which is significantly higher than that necessary for stereopho-

togrammetry [2]. For this reason, their main application is for the reconstruction of 3D

surfaces of dental cast for CAD/CAM applications.

Together with the advancement in scanning technology, the development of new follow-up

protocols for the quantitative evaluation of patient morphology is important. Recently,

several study were published on the application on stereophotogrammetric system for the

evaluation of maxillofacial surgery outcomes [117–119].

Figure 4.2: Example of surface analysis performed on stereophotogrammetric images

The instruments offer an innovative approach where surface and volumetric analysis dur-

ing treatment planning allow the users to easily evaluate facial morphology without the

need of direct measurement on patient face, thus reducing patient discomfort. Figure 4.2

shows an example of surface analysis performed on stereophotogrammetric images.

Moreover, using image fusion techniques, the stereophotogrammetric surface of patient

face can be integrated with bony structure models obtained from MSCT and CBCT data,

or with digital dental cast models obtained using laser scanners. In this way, it is easy to

evaluate patient’s condition, and then plan and simulate possible treatment and surgery

options, monitor actual images of progress and make evaluations of outcomes [120].

Stereophotogrammetry, together with other imaging modalities, can be a powerful tool

for the development of virtual patient models. In this section, two different follow up

approaches for the evaluation of soft tissue morphology, based on stereophotogrammetric

facial surfaces, are presented.
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4.2 Facial thirds-based method for facial asymmetry evalu-

ation

Many pathologies can result in facial asymmetry. Among those, hemifacial microsomia,

cleft lip/palate, mandibular osteochondroma, trauma and infections, untreated mandibu-

lar fractures and damage to facial nerves are mentionable. In particular, facial nerve palsy,

which can be due to different etiologies, from neoplasm to infective, traumatic, congenital

and metabolic causes, can strongly alter facial harmony [121]. Furthermore, environmen-

tal factors, as chewing and sucking habits, or craniofacial syndromes, can compromise

facial symmetry [122, 123]. The amount of asymmetry of the face can vary among sub-

jects, ranging from unperceived or subclinical cases to evident and clear ones. In those

cases, aesthetics, appearance and functionality of the orofacial complex can be severely af-

fected, leading to discomfort and dissatisfaction of the patients for their own facial appear-

ance [124, 125]. To both improve aesthetics and correct functional defects, an objective,

quantitative assessment of facial asymmetry is advised. The quantification of asymmetry

can be especially useful during surgical treatment planning, but it can also be performed

during follow up examinations, allowing surgeons and dentists to evaluate the progressive

reduction of asymmetry, therapy progression and achieved results [126–128].

The evaluation of facial morphology evolved during the last decades, passing from the di-

rect measurement to an indirect assessment of the face, through two- and three-dimensional

imaging systems [129]. These technologies can allow not only a facial analysis based on

landmarks, but also the investigation of the whole surface [130]. Surface assessments

have already been found to be more sensitive than landmark measurements [128]. Cur-

rently, facial asymmetry is mainly evaluated using the entire facial surface, thus providing

measurements that give only general information about facial morphology [128, 131]. In

contrast, several pathologies affecting facial appearance are localized in selected parts of

the face [123, 132], and a local assessment can provide helpful information for clinical de-

cisions.

In this study, we introduce a new method that combines surface and landmarks based

approaches to assess facial asymmetry, taking different facial thirds into account, in order

to provide local information. The intra-operator repeatability of the method was assessed,

and a practical application in patients with unilateral facial palsy was made.
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Materials and methods

Sample: Seventy adult Caucasian subjects were voluntarily recruited for this study. This

sample was composed of 40 healthy subjects (21 females; 19 males; average age 39 ± 12

years) and 30 patients with diagnosed unilateral facial palsy (15 females; 15 males; average

age 44 ± 15 years). All healthy subjects had no history of facial trauma, maxillofacial

surgery and craniofacial syndromes or deformities. Among the patients, the etiology of

the facial nerve palsy was: oncological surgery (71%), Bell’s palsy (18%), trauma (7%)

and brainstem embolus due to arterio-venous malformations (4%).

Image acquisition: All the involved subjects were acquired using the VECTRA M3

stereophotogrammetric system (Canfield Scientific Inc., Fairfield, NJ), which allows to

scan their faces in a fast and non-invasive way [2]. Before the acquisition, 50 soft tissue

facial landmarks were marked using black liquid eyeliner; following a protocol that was

previously developed, tested and validated by our research group [114, 133]. During the

acquisition, subjects were asked to have a neutral facial expression of the face, with teeth

in loose contact and closed mouth. The institutional review board of the University of

Milan (approval n. 92/2014) approved all the described procedures and all patients gave

their written informed consent to them.

After the acquisition process, the facial landmarks were digitally marked on each surface,

to delimit the portions of the face used for asymmetry evaluation, using the manufacturer’s

software (Mirror Vectra; Canfield Scientific Inc., Fairfield, NJ).

Asymmetry quantification: In order to define the portion of face used to evaluate

the asymmetry of the subject, 10 facial landmarks were selected. A detailed list of these

landmarks is provided in Table 1. Landmark selection allows to delimit the facial surface

in a standard and repeatable way, thus reducing operator dependency. An example of the

selected surface is depicted in Figure 4.3. Intra-operator repeatability of FA selection was

evaluated on a training sample of 20 facial surfaces. One experienced operator selected

the different facial thirds and the FA twice with a two week interval. The repeatability

was assessed on facial surface selection since it is the main cause of variability in surface

mirroring approaches, as further image processing steps are automated. After landmark

identification, the Mirror Vectra software (Canfield Scientific Inc., Fairfield, NJ) automat-

ically computed the surface area.

The selected surface was then used to calculate the plane of maximum symmetry, this pro-

cess allowed to automatically find the midline plane of symmetry using only a previously
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Figure 4.3: Facial area (FA) selected to evaluate asymmetry, based on the more external anthropometric
landmarks of the face. Landmarks that are not visible from the frontal view are shown in white; r and
l indicate right and left side of the face, respectively

selected area on the acquired facial surface. In this study, the selected area was defined in

order to minimize the regions that can affect asymmetry quantification, such as hairs and

neck region, and to take all the craniofacial structures of interest for maxillofacial mor-

phometric analysis into account. This processing step was carried out using the Mirror

imaging software (Canfield Scientific Inc., Fairfield, NJ).

Once the plane of maximum symmetry was obtained, it was used as mirroring plane to

obtain the reflected face of each subject.

The original facial surface was then divided in two hemi-face surfaces, that were subse-

quently subdivided into three different facial thirds: upper, middle and lower third. In

the proposed method, facial thirds division was based on the territories of distribution of

trigeminal branches, which correspond to different embryological origins (Holmes, 2016).

Each third was defined using anatomical landmarks, thus providing a standard and repeat-

able selection criterion. The list of landmarks used to define each facial third is provided

in Table 4.1 while an example of facial third selection is depicted in Figure 4.4.

Finally, to quantify the asymmetry of each facial third in each subject, the RMSD be-

tween original and reflected surfaces was calculated. A color-coded surface map displayed
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Table 4.1: Landmarks used to define facial area and the different facial thirds

Selected Area Landmarks

Facial area (FA)
trichion (tr); frontotemporale (ft); zygion (zy); tragion (t); go-

nion (go); gnation (gn)

Upper third (UT)

trichion (tr); glabella (g); nasion (n); pronasale (prn); columella

(c); alare (al); endocantion (en); exocantion (ex); frontotempo-

rale (ft)

Middle third (MT)

endocantion (en); alare (al); upper terminal of the nostril (stn);

columella (c); subnasale (sn); labiale superius (ls); stomion

(sto); chelion (ch); zygion (zy); frontotemporale (ft); exocan-

tion (ex)

Lower third (LT)

Stomion (sto), labiale inferius (li); sublabiale (sl); pogonion

(pg); gnation (gn); gonion (go); tragion (t); zygion (zy); cheil-

ion (ch)

Figure 4.4: (a) Upper facial third (UT); (b) Middle facial third (MT); (c) Lower facial third (LT); each
one defined by the respective anatomical landmarks, chosen to follow the territories of distribution of
trigeminal branches
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the local values of the distances between the two surfaces, as it can be seen in Figure 4.5.

The RMSD has already proved to be a reproducible and accurate way to measure facial

asymmetry, using three-dimensional photogrammetric systems [134].

Figure 4.5: Color coded maps for the local distances between the original and mirrored facial areas. (a)
Upper third; (b) Middle third; (c) Lower third

Statistical Analysis: Chi square test was used to check differences in sex distribution

between control and patient groups, while unpaired Student’s t-test was used to check age

difference.

The repeatability in surface area selection was tested using Bland and Altman analysis

for both the total facial area and each facial third. For repeated area measurements, the

bias value, that corresponds to the systematic error, and the RC, that represents the least

detectable difference among measurements and it is twice the standard deviation of mea-

surement differences [135], were calculated.

Boxplots were used for representing RMSD values of different facial thirds in different

subject groups. Normality distribution of the data was tested using the Kolmogorov-

Smirnov-test. RMSD of different facial thirds in both control and pathological subject

were positively skewed; so logarithmic transformation of the data was performed in order

to obtain normal distributions. After this transformation, a two-way ANOVA analysis was

performed in order to check if there were statistical significant differences among groups

and facial thirds. Post hoc analyses were performed using Fisher’s LSD test. The statis-

tical level of significance was set to p<0.05 for all tests.
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Results

In this study, 40 control subjects and 30 patients with diagnosed unilateral facial palsy

were analyzed. No statistically significant differences were found in age (p = 0.1, Student’s

t) and sex distribution (p = 0.84, chi-square).

The statistical analysis of the repeated area measurements showed high level of repro-

ducibility. Bland and Altman plots and the values of bias, SD, RC and reproducibility are

respectively reported in Figure 4.6 and Table 4.2.

Figure 4.6: Bland and Altman plots for the area repeated measurements. Continuous line indicates the
average; dashed lines indicate the interval of agreement
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Table 4.2: Results of Bland and Altman analysis. Bias, SD and RC of area measurements are reported
for upper (UT), middle (MT) and lower (LT) thirds and the whole facial area (FA).

UT MT LT FA

Left Right Left Right Left Right

Bias [cm2] -0.003 -0.051 -0.039 -0.028 0.097 0.043 0.075

SD [cm2] 0.319 0.372 0.393 0.329 0.340 0.267 0.479

RC [%] 0.9 1.1 1.7 1.4 1.4 1.1 0.6

Values of RMSD in control subjects and patients, divided for each facial third, are pre-

sented in Figure 4.7. Overall, patients had a larger asymmetry in all facial thirds than

control subjects; the difference appears particularly evident for the middle and lower

thirds. Two-way ANOVA showed a statistically significant difference in RMSD values be-

Figure 4.7: Box plots, representing Root Mean Square (RMS) values of controls subjects and patients
for upper, middle and lower facial third

tween control subjects and patients (p = 0.000). A significant effect of facial third was

also found (p = 0.0014), together with a significant group x third interaction (p = 0.0012).

Among different thirds, the RMSD values of the UT resulted significantly different from

the ones of the MT (p = 0.005) and LT (p = 0.003). Post hoc analysis showed that among

control subject there was no significant difference between different thirds (p > 0.05). On



4.2. Asymmetry evaluation 59

the other hand, in patients there was a significant difference between UT and MT (p =

0.001) and between UT and LT (p = 0.000). Comparing the same third between control

and patient groups, statistically significant differences were found in all occasions (p =

0.000).

Discussion

The evaluation and quantification of facial asymmetry is a key task in maxillofacial surgery

and orthodontics, since a lot of conditions can alter it, thus compromising the patient qual-

ity of life from functional, aesthetic and social points of view [136].

The introduction of noninvasive and inexpensive imaging procedures, e.g. laser scan and

stereophotogrammetry, speeded up the research in this field and, in the last years, a lot

of works were published on this topic, suggesting different approaches to assess facial

asymmetry [128, 137–139]. Unfortunately, none of them is universally accepted from the

scientific community, thus demonstrating that is still necessary to improve these proce-

dures [132].

In the proposed method, we analyzed symmetry comparing original and mirrored facial

surfaces and calculating the RMSD of the distances between their corresponding points.

This approach is well known in the literature and it has proved to be a potentially powerful

method to analyze facial symmetry [131,132,134].

Traditionally, the whole face is used to measure the asymmetry level of the subject, thus

providing only a global evaluation of facial morphology [128,139]. In this study, we divided

each hemi-face in thirds, based on trigeminal branches distribution territories for somatic

sensitivity. Other studies tried to provide a local subdivision of the face using horizontal

planes, thus obtaining irregular edges of selected thirds due to subjective selection of the

facial area [132,134,140].

In the proposed method, facial area selection is the only manual image processing step

needed to quantify the asymmetry of the face using surface mirroring approaches. To ob-

tain a standardized imaging method it is essential to reduce the variability among different

measurements as low as possible. For this reason, the selection of the FA plays a key role

in asymmetry assessment on 3D facial surfaces. In the proposed method, the standardized

definition of thirds allowed to reach a very high level of reproducibility during area selec-

tion, which is the main source of variability in asymmetry quantification. Repeatability

analysis shows an average RC value (± SD) equal to 1.2% ± 0.005%, proving a high level

of agreement between repeated measurements. As shown by the Bland and Altman plot in
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Figure 4, the bias is always near to 0% (average bias value 0.03% ± 0.001%), thus demon-

strating the absence of systematic errors during repeated measurements. Moreover, the

division of the face in thirds allows to focus treatment planning and follow up evaluations

on the most asymmetric region.

To validate the proposed method, both patients with diagnosed unilateral facial palsy and

control subjects, matched for gender and age, were enrolled. Unilateral facial palsy causes

an evident asymmetry of the facial soft tissues, so it can be considered a perfect condi-

tion for testing this method within a clinical context. Other investigations used artificial,

mathematically originated facial asymmetries that can be difficulty translated into daily

practice [128].

In all subjects, the asymmetry was quantified calculating the RMSD of corresponding

points belonging to mirrored hemi-facial thirds. The results show that patients had a sig-

nificantly less asymmetric UT compared to the middle and lower thirds. Indeed, the UT is

mainly composed by the frontal region, which is the area less affected by facial palsy. On

the other hand, despite the fact that this third is less asymmetric than the other two, it is

still more asymmetrical in patients than in control subjects. That can also be explained by

the fact that the upper eyelid/ superior orbital region, which is strongly altered in facial

nerve palsy, is part of our UT. Among control subjects, there was no significant difference

in RMSD values of different thirds, thus confirming the recent observations of Djordjevic

et al. [132].

These results proved the accuracy of the proposed method in asymmetry quantification,

both in physiological and pathological conditions, allowing clinicians to use it in different

kind of pathologies. Moreover, the strong reproducibility of this method makes it suitable

for follow up evaluations in different craniofacial conditions.

Conclusions

With this study a facial third-based method for the analysis of facial asymmetry is pro-

vided. The method showed high reproducibility and accuracy in evaluating differences

between control subjects and patients. Moreover, it is applicable for diagnosis, treatment

planning and evaluation in patients with altered craniofacial morphology. In particular,

the method appears suitable for pathologies that alter only part of the face, providing

quantitative local information about facial symmetry.



4.3. Stereophotogrammetry and laser scans 61

4.3 Stereophotogrammetry and laser scans: non-invasive

follow up technique for orthodontic patients

Nowadays digital technologies are widely used in dentistry, moving dental practices to

virtual-based processes [3]. For this reason, the use of three-dimensional (3D) images is

becoming normal in both clinical and research contexts [2] .

Three-dimensional images of the face, skull and dentition of the patient can be acquired

using different imaging technologies. Among these, only CT and MRI allow to include

all the mentioned structures in a single image, but they can not be used routinely due to

their invasiveness, accessibility or cost. On the other hand, stereophotogrammetry and

laser scanner allow to acquire separately the face and the dentition of the subject in a

noninvasive way, making them suitable for use in children and for longitudinal evaluation

of treatment outcomes [141]. Given the great potential of these technologies for applica-

tion in the oro-maxillo-facial field, the integration of these imaging modalities seems to

be a logical solution that will allow clinician to create a 3D virtual model of the patient

and to deeply understand the correlation between soft and hard tissues that compose the

face [142,143].

In this context, the current work aims to define and validate a technique that allows to

integrate the information about the dentition of the patient with the stereophotogrammet-

ric reconstruction of the face and providing an uninvasive way to assess the morphology

of facial soft tissues in relation to teeth.

Materials and methods

In this work the digitized dental plaster casts and the facial stereophotogrammetric images

of seven subjects just undergone CBCT were registered and analyzed. Moreover, CBCT

images of the same subjects were analyzed in order to validate the proposed registration

method.

All subjects undergone CBCT for clinical reasons not correlated with this study. All pro-

cedures related to this study were noninvasive; involved subject were previously informed

about them and gave their written consent, according to the principles outlined in the

Declaration of Helsinki.

As a continuation of the work proposed by Rosati et al. [144], for each subject both max-

illary and mandibular dental cast was obtained and digitized using a commercial laser

scanner (Dental Wings series 3, Dental Wings Inc., Montreal, Canada). The upper and
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lower dental arches were separately digitized preserving the original teeth alignment and

occlusion using the DWOS software (Dental Wings Inc., Montreal, Canada).

Moreover, facial soft tissues were acquired twice using a stereophotogrammetric system

(Vectra 3D, Canfield Scientific, Fairfield, NJ), the first time with open lips and with cheek

retractors (in order to make visible frontal teeth) and the second time with teeth in oc-

clusion and closed lips [144].

As proposed by Rosati et al., the two surfaces representing the subject faces were regis-

tered using point based and subsequently a surface based registration technique [144].

As regarding the registration of the digitized dental cast, the current study proposes a new

approach. The proposed algorithm, entirely developed in MATLAB (MathWorks, Natick,

MA, USA) aims to register the maxillary and mandibular dental arches using a point base

registration, subsequently refined with a surface based registration.

At first, to properly register the dental arches into subject’s face, a region of interest (ROI)

was selected on the open-lips stereophotogrammetric surface and on the laser scanner sur-

face of the upper dental arches. These ROIs will contain the same the upper frontal teeth,

as can be seen in Figure 4.8.

Once the ROIs were selected a point based rigid registration was perform to initialize the

Figure 4.8: Example of selected region of interest (ROI) from the stereophotogrammetric (above) and
laser scanner surface (below). These ROIs were used for point and surface based registration

subsequent surface based registration.

During the first step the operator must select at least 3 point in each ROI in order to

find the optimal rigid transformation that align the ROI selected on upper dental cast to

the ROI selected on the stereophotogrammetric images. These points may be anatomi-
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cal landmarks or point of interest easily detachable on both the surfaces and may vary

from subject to subject, since the point based registration is only an initialization for the

surface based registration. To calculate this optimal geometric transformation between

corresponding points the Procrusters method was used, which determines a linear trans-

formation of the fiducial points of the first image to best conform them to the fiducial

points of the second image. The chosen cost function was the sum of squared errors that

was minimized during the iterative registration process [94].

After this step the registration was refined using a surface base registration. To this pur-

pose the Iterative Closest Point (ICP) algorithm was chosen to find the optimal geometric

transformation that rigidly registers the structures contained in the ROIs.

The ICP algorithm reduces the general non-linear minimization problem to an iterative

point-based registration problem. In order to address the issue of point correspondence,

the ICP algorithm iteratively performs the following steps:

1. Matching step: For each point of the moving surface the nearest neighbour of the

reference surface is calculated.

2. Minimization step: The error metric, that in this case was the mean square

distance between corresponding points, is minimized

3. Update step: points are transformed using the geometric transformation resulting

from the minimization step.

The process iterates until the mean square distance stabilized within s pre-set tolerance

value [145, 146]. Once this geometric transformation is calculated, it was applied to the

original upper and lower dental cast, providing their correct position relative to patient

face. To evaluate ROIs registration the median distance and its interquartile range (IQR)

between the point clouds of the ROIs was calculated. Figure 4.9 shows the distanced

between corresponding points displayed using a colour scale on the surface of patient

dental arch. Moreover, the percentage of corresponding points between the two ROIs was

evaluated. Corresponding point were defined as points that showed a distance lower than

1 mm [20].

An example of the outcome of this registration process is depicted in Figure 4.10.

To validate the proposed algorithm five facial and six dental landmarks were placed on

the CBCT image of each subject and on the registered facial and dental surfaces. Since

CBCT represent simultaneously the hard and the soft tissue of the patient it is suitable

for the validation of the proposed method.
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Figure 4.9: Example of assessment of distances between corresponding points between dental cast and
stereophotogrammetric images

The chosen facial landmarks were: right and left Orbitale (lOr and rOr), Pronasale (Prn),

Subnasale (Sn), Sublabiale (Sl), upper and lower inter-incisal (uIn and lIn) and the upper

and lower distal vestibular cups of the first right and left molar (16, 46, 26 and 36).

To evaluate the accuracy of the proposed method, the difference between distances were

calculated. The Wilcoxon signed rank test was used to compare each distance taken on

CBCT or stereophotogrammetric and laser scan surfaces. Significance level was set to

p<0.05.

Results

For the evaluated subjects the median distances between ROI point clouds was 0.59 mm

with an IQR of 0.43 - 0.73 mm. The median percentage of corresponding points was 86.1%

with an IQR of 81.6% - 92.1%. In this work 28 dentofacial distances were evaluated. All

distances, their descriptive statistics and p-value values are summarized in Table 4.3 and

Table 4.4. No significant differences were found among all the evaluated distances except

for the 36 - rOr distance (p<0.05).

Discussion

The proposed work aims to validate a method that allows clinicians to visualize the face

and the dentition of patients using noninvasive imaging techniques. Compared with the

method presented by Rosati et al., the proposed method allows to register separately both
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Figure 4.10: Example of registration outcome, between facial and dental surfaces. The darken surface
represents the stereophotogrammetric acquisition of the face and the lighten surfaces represent the
digitized dental casts

dental arches, providing a complete representation of patient dentition [144]. Moreover

the dental arches were isolated from each other, allowing to analyze them together or

separately.

To validate the proposed method CBCT images of the same subjects were retrospectively

selected. CBCT images are used as reference image to evaluate the distances between face

and teeth. In particular, the proposed work represents the first attempt at a complete

validation of the registration algorithm on a subject sample [141,147].

The high values of percentage of corresponding point and a median distance of 0.59 mm

prove the accuracy of the registration progress. Statistical analysis shows no significant
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Table 4.3: Median(IQR) distances between facial landmarks and landmarks belonging to the upper
dental arch, expressed in mm

Distance CBCT Matched Surface Wilcoxon p-value

uIn - lOr 66.3 (7.0) 64.8 (3.2) 0.43

uIn - rOr 67.4 (3.2) 64.3 (4.9) 0.06

uIn - Prn 46.3 (3.6) 45.9 (3.2) 0.84

uIn - Sn 27.3 (1.6) 27.1 (1.6) 1.00

16 - lOr 83.8 (7.2) 83.8 (3.0) 1.00

16 - rOr 53.2 (3.4) 54.2 (3.0) 0.56

16 - Prn 73.9 (5.6) 75.7 (2.5) 0.16

16 - Sn 55.7 (5.8) 57.4 (1,6) 0,31

16 - Sl 49.0 (3.0) 50.4 (2.5) 0.06

26 - lOr 52.4 (3.6) 54.2 (2.5) 0.16

26 - rOr 83.6 (6.2) 83.8 (1.8) 0.84

26 - Prn 73.7 (1,7) 74.9 (1.3) 0.09

26 - Sn 55.7 (2.6) 57.1 (4.6) 0.22

26 - Sl 48.8 (7.0) 49.3 (4.1) 0.69

differences between distanced calculated on CBCT image or on face and dental surfaces,

except for one distance. This significance may be caused by the presence of the orbital

landmark, which is difficult to annotate in CBCT images.

In conclusion, results show that this technique can be a useful tool to assess the position of

facial soft tissues of the patient with respect to teeth. The results obtained are encouraging,

nevertheless further validations on a larger sample are advisable.
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Table 4.4: Median(IQR) distances between facial landmarks and landmarks belonging to the lower
dental arch, expressed in mm

Distance CBCT Matched Surface Wilcoxon p-value

lIn - lOr 64.3 (6.4) 63.1 (5.8) 0.56

lIn - rOr 65.5 (4.4) 62.3 (7.1) 0.07

lIn - Prn 46.8 (4.7) 46.9 (3.2) 0.84

lIn - Sn 27.2 (2.2) 27.4 (0.9) 1.00

46 - lOr 84.2 (5.4) 80.7 (1.7) 0.09

46 - rOr 55.7 (2.5) 53.4 (2.3) 0.09

46 - Prn 74.7 (4.6) 73,2 (3.3) 0.31

46 - Sn 56.1 (4.4) 54.7 (2.0) 0,31

46 - Sl 47.5 (1.2) 48.3 (3.8) 0.44

36 - lOr 54.9 (0.4) 50.6 (2.7) 0.16

36 - rOr 84.3(4.5) 79.4 (3.0) 0.03

36 - Prn 74.1 (2,0) 70.5 (1.2) 0.09

36 - Sn 55.8 (3.2) 52.8 (4.2) 0.16

36 - Sl 46.8 (3.2) 47.8 (4.9) 0.44
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Upper Airways Imaging

This chapter is based on:

• M. Codari et al. "The nasal septum deviation index (NSDI) based on CBCT data",

Dentomaxillofacial Radiology, 45(2):20150327, 2015.
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5.1 Upper airways imaging

The evaluation of craniofacial growth and in particular in airways morphology has in-

creased in the last decades due to the interest in understanding the relationship between

upper airway configuration and craniofacial morphology [148].

Traditionally, the upper airways and the near craniofacial structures were imaged using

lateral cephalometric radiographies, which allow to perform linear and angular measure-

ment to explore upper airway morphology [149]. However, cephalometry is affected by the

limitation of two-dimensional radiographic procedure [150].

Usually, patient disease diagnosis requires the evaluation of the three-dimensional mor-

phology of airways. For this reason, according to the medical literature airway evaluation

can be performed using MRI, cine-MRI, MSCT, endoscopy and optical coherence tomog-

raphy [148].

Recently, CBCT has emerged as cross-sectional, X-ray based, image modality for up-

per airways modelling thanks to its accessibility. Although CBCT has an inferior soft

tissue contrast compared to MSCT, it is able to accurately define the boundaries be-

tween soft-tissue and air with high spatial resolution [149]. Furthermore, its accuracy

and reliability for the assessment of upper airway was evaluated and confirmed in several

studies [151, 152]. The main advantage of CBCT consists in the reduced radiation dose

delivered to the patient without the reduction of its diagnostic usability, that make it

suitable for otorhinolaryngological applications.

For all these reasons, recently different methods for upper airway segmentation and mod-

elling were developed [14, 153, 154]. These algorithms allow clinicians to obtain three-

dimensional models of the upper airways in an accurate and reliable way, which can be

used for volumetric assessment, virtual rhinoscopy and computational fluid dynamics sim-

ulations.

Together with the advancement in software development, new imaging protocols for upper

airway assessment were developed, which allow to fully understand their complex anatomy

and help clinicians during treatment and surgical planning. In this way clinical evalua-

tion can be helped by quantitative assessments of patient conditions, which may help in

improve patient care.

In this section a new method for the quantification of nasal septal deviation and upper

airway modelling in CBCT data is presented.



5.2. Airway modelling from CBCT data, application on nasal septum quantification 70

5.2 Airway modelling from CBCT data, application on nasal

septum quantification

Nasal septal deviation consists in a misalignment of nasal septum from the midline, which

leads to respiratory disease caused by volume reduction in nasal cavity. In approximately

90% of adults, nasal septum is not perfectly straight and median, but it often presents

thickening and describes curves and angles [155]. NSD originates as a result of a disharmo-

nious development of the facial skeleton that in some cases may occur after a trauma. A

small anterior deviation can lead to a significant nasal obstruction, while a large deviation

placed at the rear of nasal cavity may have no effect on the resistance of respiratory flow.

Together with NSD, the compensatory hypertrophy of the turbinates, opposed to septal

convexity, is often noticed [156,157].

Diagnostic investigations currently used for this pathology are anterior rhinoscopy, en-

doscopy, multislice CT and MR, which allow a good evaluation of the entity and position

of NSD [158–162]. In particular, pre-operative CT scan of the paranasal sinuses is often

performed before septoplasty, in order to evaluate nasal anatomy, to find concomitant

sinonasal pathologies and to reduce surgical failure [163,164].

Despite the fact that pre-operative CT scan of the paranasal sinuses can be recommended

in case of obstructive middle turbinate hypertrophy, impossibility to evaluate the middle

meatus and the posterior nasal cavity or in patients with chronic sinusitis, the high radi-

ation dose and costs do not allow its usage routinely in patients undergoing septoplasty.

In the last decades, CBCT is emerging and now it is widely used in dentistry thanks to its

high resolution and low radiation dose. Currently its clinical use in other medical fields is

limited and not widespread because of minor soft tissue contrast; however, many studies

confirm that CBCT could be a valid support also in otorhinolaryngology [56,165,166].

Given that the evaluation of NSD is currently mainly based on subjective clinic and ra-

diologic analysis, many studies are trying to find homogeneous and standard evaluation

criteria based on morphometrical analysis of nasal airways [167,168]. For example, recent

studies evaluated the severity of NSD measuring the deviation angle, which is the angle

included between a line drown from the apex of nasal septal deviation to crista galli and

from crista galli to maxillary spine [157,169].

Another method of evaluation is the segmentation of the upper airways, but the complex

anatomy of the nasal cavity makes it hard to be segmented compared to other parts of

the upper airways such as pharynx or larynx [168]. Three-dimensional segmentation has

already been used in literature to study upper airways, mainly to assess Obstructive Sleep
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Apnoea, but also in the evaluation of morphometrical changes occurred during growth or

in case of congenital malformations [170–172]. In the current study we segmented several

CBCT images to create three-dimensional models of the nasal airways, which were used

to calculate three-dimensional parameters that describe their morphology. The aim of

the proposed study was to understand if such parameters could be useful in NSD diagno-

sis and, secondary, if CBCT could be considered an adequate imaging technique for the

proposed task.

Materials and Methods

For this study, 46 CBCT images were selected from the archives of SST Dentofacial Clinic

(Segrate, MI, Italy), and analysed retrospectively. Subjects who had history of previous

nasal surgery or other abnormality besides nasal septal deviation were excluded. All the

images were evaluated by two experienced operators and divided in healthy and NSD

subjects. An excellent level of agreement was found between operator, with an unweight

Cohen κ equal to 0.86. Only in three cases the operators were in disagreement, so these

data were excluded from the dataset. The final dataset was composed of 15 healthy

subjects and 28 NSD subjects.

All CBCT scans were acquired by the same scanner (WhiteFox, ACTEON, MÃ©rignac,

France). The device was operated at 6-10 mA (pulse mode) and 105 kV using a x-ray

generator with fixed anode and 0.5 mm nominal focal spot size. The selected volume

images are composed of isotropic 0.3 mm voxels.

To evaluate the severity of septal deviation, we assessed the difference between groups

in SDA, calculated as proposed by Orhan et al. [173]. The measurements of the angle

between the maxillary spine, the crista galli and the apex of the septal deviation were

made using the freeware software OsiriX (Pixmeo, Geneva, Switzerland).

Subsequently, we evaluated the percentage difference between the volume of the upper

airways in the right and left side of the nose in the same samples. Volume segmentation

from the CBCT files was made using the freeware software ITK Snap, which allows the

user to accurately segment and calculate volumes of upper airways [56,174]. For all images,

a first automatic segmentation was subsequently refined manually.

At first, in order to obtain an accurate and reproducible segmentation of the nasal portion

of the upper airway, a VOI was delimited for each side of the upper airways. Each VOI was

defined as a box bounded antero-superiorly by the Rhinion, most inferior and anterior point

between nasal bones, inferiorly from the lower limit of the hard palate, posteriorly from



5.2. Airway modelling from CBCT data, application on nasal septum quantification 72

the Posterior Nasal Spine landmark and laterally by the lateral margins of the nasal cavity,

as shown in Figure 5.1. Once VOIs were selected, we proceeded with the segmentation

of the nasal upper airway using the active contour segmentation option. Moreover, to

avoid the inclusion of different portions of the maxillary sinuses in different subjects, they

were segmented separately and their volume was subtracted from nasal airway volume.

In Figure 5.2, an example of the outcome of the segmentation process is shown. The

repeatability in the selection and segmentation of the volume of interest and in deviation

angle measurements were verified on a subsample of 10 CBCT. Statistical analyses on

measurement repeatability were performed calculating Student’s t-test and Dahlberg’s

formula [175].

After the segmentation, the volume of each side of the nasal upper airway was measured,

and then their relative VPD was calculated as:

V DP = |Vr − Vl|
Vr + Vl

100 (5.1)

Where Vr and Vl, both expressed in cm3, represent the volumes of the right and left VOIs

defined previously.

Finally, a new index, named Septal Deviation Index (SDI), was introduced. The SDI was

designed to summarize information about the angle of septal deviation, volume difference

between right and left side of the nose and total volume of the nasal airway and was

calculated as:

SDI = (SDA+ 1)(V PD + 1)
VT

(5.2)

Where SDA is the septal deviation angle, expressed in degrees, VPD is the adimensional

volumetric percentage of difference and VT represents the total volume of nasal airways

( VT = Vr + Vl). Both SDA and VPD were increased by a unitary factor to prevent SDI

from tending to zero if only one of these factors is null.

The statistical analysis was performed using the Matlab statistic toolbox (Mathworks,

Natick, USA). Student’s t-tests were performed to compare different morphometric pa-

rameters in healthy and NSD subjects. Statistical significance was set at p<0.05. Fur-

thermore, since the evaluated morphometric variables are related to each other, we used

PCA to transform all the morphological data into a set of uncorrelated variables called

principal components [176]. According to Kaiser’s rule, we retained the components whose

eigenvalues were larger than one [177]. PCA was performed on the correlation matrix of

the normalized dataset.

Pearson’s correlation coefficients retained principal components and all calculated param-
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Figure 5.1: Example of segmentation of the right (B) and left (C) side of the nasal airway and of the left
and right maxillary sinuses (A and D respectively). In the above image the segmentation outcomes are
represented in a posterior coronal CBCT slice. In the image below, an example of the three-dimensional
volumes segmented in the proposed study is depicted.
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Figure 5.2: Example of a selected VOI for the right side of the nasal airways using ITK Snap. The
bounding box is highlightened using dashed rectangles in sagittal (top) and frontal (bottom) views.
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eters were also computed. In this way PCA is used to unveil the relationship between each

variable and the global nasal airway variability [178].

Results

The analysed groups were composed of 15 healthy subjects (7 men, 9 women, average age

46 ±15 years) and 28 NSD subjects (15 men, 13 women, average age 48±15 years). No

significant difference was found in age and sex between groups (p>0.05).

Repeatability analysis shown no significant differences both for SDA and volume mea-

surements (p>0.05). In particular, random errors explained 0.77% of sample variance for

angle measurements and 0.99% for volume measurements.

Values of SDA, VDP and SDI were significantly higher in NSD subjects compared to

healthy subjects. Descriptive statistics of these parameters are summarized in Table 5.1. In

Table 5.1: Septal deviation angle (SDA), percentage of volume difference (PVD), total volume (VT )
and septal deviation index (SDI) between healthy and NSD group.

Group Mean SD Min Max

SDA [◦] Healthy 9.5 2.5 5.9 14.3

SND 17.3 5.5 10.0 36.0

VPD [ %] Healthy 5.5 4.9 0.1 16.4

SND 13.6 11.6 0.39 54.7

VT [ cm3] Healthy 18.1 4.7 12.2 30.5

SND 16.5 3.1 12.1 23.1

SDI [ ◦/cm3] Healthy 3.8 3.2 0.6 12.0

SND 16.5 14.3 1.3 62.9

particular, intergroup analysis shown statistical significant differences in SDA (p <0.001),

in VPD (p < 0.05) and in SDI (p < 0.001) between healthy and SND subjects. No signif-

icant difference was found in VT between groups (p > 0.05).

Only the first (PC1) and the second (PC2) components resulting from the PCA were re-

tained. These two components explained 86.6% of the sample variance. For PC1, higher

values of correlation coefficient were found for SDI (0.97, p<0.001) and for SD (0.89,

p<0.001), on the other hand PC2 seemed to be more correlated with VT (0.94, p<0.001)

than the other morphological variables. In Table 5.2 all the calculated correlation coeffi-

cients are detailed.
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Table 5.2: Eighenvalues and Explained variance of the retained principal components and their cor-
responding Pearson’s correlation coefficient for the analysed morphological variables. The analysed
parameters are: Septal deviation angle (SDA), percentage of volume difference (PVD), total volume
(VT) and septal deviation index (SDI).

Principal component Explained Variance ( %) R

SDA PVD VT SDI

PC1 57.0 0.75 0.89 0.12 0.96

PC2 29.6 -0.40 0.19 0.94 0.12

Discussion

In otorhinolaryngology, nasal septal deviation is one of the most frequent diagnoses and

it is generally based on the evaluation of patient’s symptoms and on anterior rhinoscopic

outcomes [161]. This clinical analysis is accompanied by quantitative diagnostic methods

used to demonstrate the septal deviation, such as endoscopy, anterior rhinoscopy, acoustic

rhinometry, rhinomanometry and CT images [162,179,180]. In particular, cross-sectional

images allow correlating patient’s symptoms to the airway anatomy of both anterior and

posterior nasal cavity [181]. In this context, CBCT imaging modality is emerging due to

its reduction of the effective dose of radiation, its accuracy and accessibility [151,182].

In this study, we analysed 46 CBCT images belonging to dental patients whose otolaryn-

gological diagnosis is unknown to assess whether there was a significant difference in four

morphological parameters (SDA, VDP, VT and SNI) between SND and healthy subjects.

This analysis was performed in order to assess whether quantitative and evidence-based

morphometric parameters may be useful in nasal septal deviation diagnosis and to test

the validity of a proposed synthetic index summarizing these parameters.

Two experienced operators divided all the images into healthy and NSD groups. An excel-

lent level of agreement, with Cohen’s κ = 0.86, was found suggesting not only concordance

between operators, but also the adequacy of the CBCT images for the proposed task. Re-

garding volumetric and angular measurement, the proposed method appears repeatable,

since the measurement error is less than 1% of the variance of the sample for both mea-

sures. Volume analysis was made after images segmentation, which can be done manually

or automatically; the first technique is the most accurate but it is also time consum-

ing [167,183,184]. In this study we began with automatic segmentation and subsequently

we refined its outcome manually.
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As expected, our results revealed the presence of a significant difference in septal devia-

tion angle between healthy and NSD subjects; this is reasonable, since the deformation

of the bony structures of the nasal septum is the primary but not the only, nasal struc-

tural change in NSD subjects. A significant difference was also found between groups

in the percentage of volume difference between the left and right side of nasal airways.

This value is independent of subject size and consequently of his/her airway dimension.

Therefore it can be a useful three-dimensional index to assess the balance of volume in

the two different sides of the airways. In our study we found higher values of VPD in

NSD subjects, suggesting a paradoxical hypertrophy, which is an acquired phenomenon or

a congenital dimensional difference of turbinates in the nasal cavity, opposite side to the

septal deviation [156,157].

Our results showed that SDA and VDP can characterize NSD subjects. For this reason,

we decided to merge them into a single parameter, the SDI, which is directly proportional

to them and indirectly proportional to the total volume of nasal airways. This index has

significantly higher values in NSD than in healthy subjects and appears to be a useful pa-

rameter to evaluate the deviation of the septum, since it takes various factors contributing

to subject respiration into account. SDI is robust to the variation of only one parame-

ter between SDA and VDP, which may separately contribute to patient’s breathing, and

takes into account that septal deviations may create more or less discomfort to the subject

depending on the size of his/her nasal airway. Moreover, this index showed the highest

correlation with the first PC, which expresses 57.0% of the sample variability.

In multivariate analysis, only PC1 and PC2 were retained. PC1 highly correlates with

all the morphological parameters that have significantly higher values in NSD than in

healthy subjects. This component is therefore more related to factors that identify nasal

septal deviation, rather than with the size of the airway. On the contrary, PC2 (29.6% of

explained variance) is highly related to the nasal airway size of the subject, so it is less

suited for representing the analysed sample. This is also evidenced by the non-significant

difference in terms of VT in the analysed groups.

Conclusion

In the current study four three-dimensional morphological parameters were analysed to

evaluate their usefulness in assessing the deviation of the nasal septum. Retrospectively

selected CBCT images, which allowed to accurately assess the morphology of the airways

of the patient reducing the dose of radiation and therefore its invasiveness, were used to
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the scope.

Among the analysed parameters, the proposed SDI index seems to be the most suitable for

the quantitative assessment of nasal septal deviation, since it summarizes different mor-

phometric factors. Further investigation shall expand the study to patient with clinically

assessed alterations in respiratory function and nasal airways patency.



Chapter 6

Conclusions

Image analysis is widely applied in medicine, since it allows clinicians to quantitatively

assess patient morphology, thus providing a useful diagnostic tool that can be used in daily

diagnosis. In maxillofacial imaging, different kinds of biological tissues need to be imaged

at the same time for a successful diagnosis, requiring, sometimes, the use of different

acquisition modalities.

In this PhD thesis, various approaches were used to face different maxillofacial tasks,

pointing out the possible improvement that can be reached in daily diagnosis. Moreover,

it showed the possibility to improve computer-aided maxillofacial imaging for quantitative,

accurate and reliable assessment of patient condition.

Hard tissue imaging

Among the possible imaging modalities, CBCT represents a useful tool for hard tissue

imaging in the craniofacial complex. Due to its high resolution, isotropic voxels and the

good contrast of hard tissue structures, it is suitable for maxillofacial applications.

In the third chapter, we proposed different studies that focused on image segmentation,

registration and artifact reduction applied to the automatic extraction of cephalometric

landmarks in CBCT data.

In particular, to obtain a three-dimensional model of the bony structures contained in the

FOV, a fully automatic segmentation algorithm was developed. Our findings show high

level of accuracy, comparable with manual thresholding, which represents the most used

segmentation approach in maxillofacial imaging.

Moreover, a specific algorithm was developed for mandibular condyle segmentation. Also

in this case, high level of accuracy were reached. In particular, the proposed method allows

to improve the segmentation of the outer condylar surface as well as the segmentation of
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the inner trabecular bone structures.

These segmentation methods, combined with automatic image registration techniques,

were used to automatically estimate the most used cephalometric landmarks. The pro-

posed method allows to estimate 21 cephalometric landmarks using an atlas based ap-

proach with limited a priori information. Obtained validation results show an annotation

error comparable to the ones reached from other research groups, reducing the amount

prior knowledge about the geometry and location specific each landmark.

Landmark estimation process may be affected by the presence of metal artifacts. For this

reason, in this thesis we evaluated the expression of metal artifact varying image param-

eters. The quantification of these artifacts was performed using a fully automatic process

developed by our research group. This evaluation allowed us to identify those parameters

that affect metal object segmentation and background noise.

The results obtained from the quantification of metal artifacts helped us in the develop-

ment of an efficient metal artifact reduction algorithm, which proved to be an valuable

tool that improves both image quality and hard tissue segmentation.

In conclusion, in this section all the main issues related to hard tissue image processing in

CBCT data were studied. Our results show that the automatic extraction of craniofacial

feature is possible and can lead to the development of clinically useful tools. Neverthe-

less further studies should be conducted in order to improve image quality, segmentation

accuracy and landmark estimation.

Soft tissue imaging

In the fourth chapter we studied the application of stereophotogrammetric systems and

laser scanners for the development of computer aided approaches for facial morphology

evaluation.

Stereophotogrammetric systems were proved to be suitable for the proposed task. In this

doctoral thesis the obtained 3D images were used to evaluate facial asymmetry. In par-

ticular, a quantitative and facial third-based method for the evaluation the asymmetry of

patient face was developed. Our findings show a high level of accuracy and reproducibility

in asymmetry assessment both on healthy and pathological subjects.

Moreover, stereophotogrammetric images were fused with the digital models of patient

dental arches obtained using a dental laser scanner. The proposed approach was based on

automatic surface registration techniques and allows to obtain a virtual model of patient

face that takes into account at the same time the relationship between patient face and
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dentition in a non-invasive way.

The presented studies pointed out the possible applications of optical systems for the

assessment of facial morphology. Moreover it shows how the application of registration

techniques may allows the integration of different image modalities, providing a three-

dimensional model of the patient face that may be used for virtual treatment planning

and follow up evaluations.

Upper airway imaging

Finally, in the fifth chapter a method for nasal septal deviation in CBCT data is presented.

The results of this study show that CBCT images allow the segmentation of upper airway

in a reproducible way. Moreover, the obtained virtual models of upper airway were used

to perform volumetric assessment improving the quantification of nasal septum deviation.

Furthermore, the proposed method allow to define a new index for quantification of septal

deviation, which may help clinician during deviation diagnosis.

From this study, it is possible to conclude that 3D airway modelling can be a valuable

diagnostic tool. The use of such virtual models will make the clinician able to navigate and

deeply understand the complex anatomy of the patient, learning important information

that can enrich the diagnostic process.

General conclusions

In conclusion, we proved that the application of image processing techniques may help in

the development of new diagnostic tools for maxillofacial applications. This PhD thesis

has helped creating a good basis for future studies on the application of imaging techniques

in oral and maxillofacial applications.

Although the clinical influence of the proposed techniques could not be fully evaluated in

this thesis, it represents a starting point for further improvement and evaluation of the

proposed applications. New studies should focus on algorithm optimization, validation

on larger clinical datasets and evaluation of the benefits that computer aided approach

provides to the patient. Furthermore, it was pointed out that the integration of different

image modalities can lead to the creation of a complete three-dimensional virtual model of

patient craniofacial anatomy. With this doctoral thesis, we provide a solid basis for future

studies on image data fusion that will led to the creation of the virtual patient model.
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The nasal septum deviation index (NSDI) based on CBCT data
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Objective: To assess whether three-dimensional morphometric parameters could be useful in
nasal septal deviation (NSD) diagnosis and, secondarily, whether CBCT could be considered
an adequate imaging technique for the proposed task.
Methods: We analysed images of 46 subjects who underwent CBCT for reasons not related
to this study. Two experienced operators divided all the images into healthy and NSD
subjects. Subsequently, the images were segmented using ITK Snap in order to obtain the
three-dimensional model of the nasal airways and compute four morphological parameters:
septal deviation angle (SDA), percentage of volume difference between right and left side of
the nasal airways, nasal airway total volume and a new synthetic septal deviation index (SDI).
Principal component analysis (PCA) was used to unveil relationships between each variable
and the global nasal airway variability.
Results: Differences between the groups were found in SDA (p, 0.001), in volume
percentage difference (p, 0.05) and in SDI (p, 0.001). PCA showed high correlation
between the SDI and the first principal component (0.97, p, 0.001).
Conclusions: Among the analysed parameters, SDI seemed to be the most suitable for
the quantitative assessment of NSD, and CBCT allowed accurate assessment of airway
morphology.
Dentomaxillofacial Radiology (2016) 45, 20150327. doi: 10.1259/dmfr.20150327
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Introduction

Nasal septal deviation (NSD) consists in a misalignment
of nasal septum from the midline, which leads to re-
spiratory disease caused by volume reduction in the
nasal cavity. Together with NSD, a hypertrophy of the
turbinates, opposed to septal convexity, is often noticed.1,2

Diagnostic investigations currently used for this pa-
thology are anterior rhinoscopy, endoscopy, multislice
CT and MR, which allow a good evaluation of the entity
and position of NSD.3–8 In particular, pre-operative CT
scan of the paranasal sinuses is often performed before

septoplasty, in order to evaluate nasal anatomy, to find
concomitant sinonasal pathologies and to reduce surgical
failure.8–10 Despite the fact that pre-operative CT scan of
the paranasal sinuses can be recommended in case of
obstructive middle turbinate hypertrophy, impossibility
to evaluate the middle meatus and the posterior nasal
cavity or in patients with chronic sinusitis, the high ra-
diation dose and costs do not allow its usage routinely in
patients undergoing septoplasty.10

In the last decades, CBCT has been emerging, and
now, it is widely used in dentistry, thanks to its high image
resolution, low radiation dose and low costs.11–13 Cur-
rently, its clinical use in other medical fields is limited and
not widespread because of minor soft-tissue contrast;
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however, many studies confirm that CBCT could be
a valid support in otolaryngology also.14–16

Given that the evaluation of NSD in CT images is
currently mainly based on subjective clinic and radio-
logic analyses, many studies are trying to find homo-
geneous and standard evaluation criteria based on the
morphometric analysis of the nasal airways.1,17–19

Among them, three-dimensional segmentation is cur-
rently used for morphological evaluation of the upper
airways, mainly to assess obstructive sleep apnoea, trau-
mas and congenital malformations.20–22

In the present study, we segmented several CBCT
images to create three-dimensional models of the nasal
airways, which were used to calculate three-dimensional
parameters that describe their morphology. The aim of
the proposed study was to understand if CBCT could be
considered an adequate imaging technique for the pro-
posed task and if such parameters could be useful in
NSD quantification before surgery.

Methods and materials

For this study, 46 CBCT images were selected from the
archives of SST Dentofacial Clinic (Segrate, MI, Italy)
and analysed retrospectively. Subjects who had a history
of previous nasal surgery or other abnormality besides
NSD were excluded.
Since the images were selected from a dental database,

no information about subject otolaryngological diagnosis
was available. Therefore, two experienced operators di-
vided the selected images into deviated (NSD group) or
non-deviated nasal septum (control group). Both oper-
ators were otolaryngologists with more than 3 years’ ex-
perience in NSD treatments. The classification of the
images into NSD or control subjects was randomized
and double blinded; it was performed by each operator
according to the severity of septum deviation in relation
to the median line and to the eventual reduction of the
air volume in the nasal cavity.
An excellent level of agreement was found between

operators, with an unweighted Cohen k equal to 0.86.
Only in three cases, the operators classified the same
subject into different categories; so, these data were
excluded from the data set. The final data set was
composed of 15 control subjects and 28 NSD subjects.
All CBCT scans were acquired by the same scanner

(WhiteFox; ACTEON, Mérignac, France). The device
was operated at 6–10 mA (pulse mode) and 105 kV us-
ing an X-ray generator with fixed anode and 0.5-mm
nominal focal spot size. The selected volume images are
composed of isotropic 0.3-mm voxels.
To evaluate the severity of septal deviation, we assessed

the difference between groups in septal deviation angle
(SDA), calculated as proposed by Orhan et al.23 The
measurements of the angle between the maxillary spine,
the crista galli and the apex of the septal deviation were
taken using the freeware OsiriX (Pixmeo, Geneva,
Switzerland).

Subsequently, we evaluated the percentage difference
between the volume of the upper airways in the right
and left side of the nose in the same samples. Volume
segmentation from the CBCT files was performed using
the freeware ITK Snap, which allows the user to accu-
rately segment and calculate volumes of upper
airways.16,24 For all images, a first automatic segmen-
tation was subsequently refined manually.

At first, in order to obtain an accurate and reproducible
segmentation of the nasal portion of the upper airway,
a volume of interest (VOI) was delimited for each side of
the upper airways. Each VOI was defined as a box
bounded anterosuperiorly by the rhinion, the most inferior
and anterior point between the nasal bones, inferiorly
from the lower limit of the hard palate, posteriorly from
the Posterior Nasal Spine Landmark and laterally by the
lateral margins of the nasal cavity, as shown in Figure 1.

Once VOIs were selected, we proceeded with the seg-
mentation of the nasal upper airway using the active
contour segmentation option. Moreover, to avoid the
inclusion of different portions of the maxillary sinuses in
different subjects, they were segmented separately and
their volume was subtracted from the nasal airway volume.
In Figure 2, an example of the outcome of the segmentation
process is shown.

The repeatability in the selection and segmentation of
the VOI and in deviation angle measurements was
verified on a subsample of 10 CBCT. Statistical analyses
on measurement repeatability were performed by cal-
culating Student’s t-test and Dahlberg’s formula.25

After the segmentation, the volumes of each side of the
upper airway were measured, and then their relative
volume percentage difference (VPD) was calculated as:

VPD5
jVr 2Vlj
Vr 1Vl

×100

where Vr and Vl, both expressed in cm3, represent the
volumes of the right and left VOIs defined previously.

Finally, a new index, named septal deviation index
(SDI), was introduced. The SDI was designed to summa-
rize information about the angle of septal deviation, vol-
ume difference between right and left side of the nose and
total volume of the nasal airway and was calculated as:

SDI5
ðSDA1 1Þ×ðVPD1 1Þ

VT

where SDA is expressed in degrees, VPD is the adi-
mensional volumetric percentage of difference and VT rep-
resents the total volume of nasal airways (VT5Vr1Vl).
Both SDA and VPD were increased by a unitary factor
to prevent SDI from tending to zero if only one of these
factors is null.

The statistical analysis was performed using the
MATLAB® statistic toolbox (MathWorks®, Natick,
MA). Student’s t-tests and x2 tests were performed to
compare different morphometric parameters in healthy
and NSD subjects. Statistical significance was set at
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p, 0.05. Furthermore, since the evaluated morpho-
metric variables are related to each other, we used
principal component analysis (PCA) to transform all
the morphological data into a set of uncorrelated vari-
ables called principal components.26 According to Kai-
ser’s rule, we retained the components whose eigenvalues
were larger than 1.27 PCA was performed on the corre-
lation matrix of the normalized data set.

Pearson’s correlation coefficients retained principal com-
ponents, and all calculated parameters were also computed.
In this way, PCA is used to unveil the relationship between
each variable and the global nasal airway variability.28

Results

The analysed groups were composed of 15 control
subjects (7 males, 9 females; average age 46 ± 15 years)
and 28 NSD subjects (15 males, 13 females; average age

48 ± 15 years). No significant difference was found in
age (Student’s t) and sex composition (x2) between groups
(p. 0.05).

Repeatability analysis showed no significant differences
for both SDA and volume measurements (p. 0.05). In
particular, random errors explained 0.77% of sample
variance for angle measurements and 0.99% for volume
measurements.

Values of SDA, VPD and SDI were significantly higher
in NSD subjects compared with healthy subjects. De-
scriptive statistics of these parameters are summarized
in Table 1.

In particular, intergroup analysis showed statistically
significant differences in SDA (p, 0.001), in VPD (p,
0.05) and in SDI (p, 0.001) between healthy and NSD
subjects. No significant difference was found in VT be-
tween groups (p. 0.05).

Only the first component (PC1) and the second com-
ponent (PC2) resulting from the PCA were retained. These

Figure 1 Example of a selected volume of interest for the right side of the nasal airways using ITK Snap. The bounding box is highlighted using
dashed rectangles in sagittal (top) and frontal (bottom) views.
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two components explained 86.6% of the sample variance.
For PC1, higher values of correlation coefficient were
found for SDI (0.97, p, 0.001) and for standard de-
viation (0.89, p, 0.001); on the other hand, PC2 seemed
to be more correlated with VT (0.94, p, 0.001) than the
other morphological variables. In Table 2, all the calcu-
lated correlation coefficients are detailed.

Discussion

In otorhinolaryngology, NSD is one of the most fre-
quent diagnoses, and it is generally based on the eval-
uation of patient symptoms and on anterior rhinoscopic
outcomes.6 This clinical analysis is accompanied by
quantitative diagnostic methods used to demonstrate
the septal deviation.7,8,29 In particular, cross-sectional
images allow the correlation of patient symptoms to the

airway anatomy of both the anterior and posterior nasal
cavity before surgery.10,30

In this study, we analysed 46 CBCT images belonging
to dental patients whose otolaryngological diagnosis is

Figure 2 Example of segmentation of the right (B) and left (C) side of the nasal airway and of the left and right maxillary sinuses (A and D,
respectively). In the top image, the segmentation outcomes are represented in a posterior coronal CBCT slice. In the bottom image, an example of
the three-dimensional volumes segmented in the proposed study is depicted.

Table 1 Septal deviation angle (SDA), volume percentage difference
(VPD), total volume (VT) and septal deviation index (SDI) between
healthy and nasal septal deviation (NSD) group

Morphological
parameters Groups Mean SD Min Max
SDA (°) Control 9.5 2.5 5.9 14.3

NSD 17.3 5.5 10.0 36.0
VPD (%) Control 5.5 4.9 0.1 16.4

NSD 13.6 11.6 0.39 54.7
VT (cm3) Control 18.1 4.7 12.2 30.5

NSD 16.5 3.1 12.1 23.1
SDI (°/cm3) Control 3.8 3.2 0.6 12.0

NSD 16.5 14.3 1.3 62.9

SD, standard deviation.
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unknown, to assess whether there was a significant
difference in four morphological parameters (SDA,
VPD, VT and SNI) between NSD and healthy subjects.
This analysis was performed in order to assess whether
quantitative and evidence-based morphometric param-
eters may be useful in NSD diagnosis or septoplasty
pre-operative planning and to test the validity of a pro-
posed synthetic index summarizing these parameters.

In the present investigation, two experienced oper-
ators divided all the images into control and NSD
groups. An excellent level of agreement, with Cohen’s k5
0.86, was found, suggesting not only concordance between
operators, but also adequacy of the CBCT images for the
proposed task.

Regarding volumetric and angular measurement, the
proposed method appears repeatable, since the mea-
surement error was ,1% of the sample variance for both
measures.

At first, we evaluated the SDA, which is frequently
used to assess the severity of NSD.23,31,32 As expected,
the results showed a significant difference between
healthy and NSD subjects. Moreover, the high re-
peatability of SDA measurements demonstrated that
CBCT scans could be used to evaluate the severity
of NSD.

A significant difference between the groups was also
found in the percentage of volume difference between
the left and right side of the nasal airways. This value is
independent of subject size and consequently of his/her
airway dimension. Therefore, it can be a useful three-
dimensional index to assess the balance of volume in the
two different sides of the airways. In our study, we
found higher values of VPD in NSD subjects, suggest-
ing a paradoxical hypertrophy. Our results showed that
SDA and VPD could characterize NSD subjects. For
this reason, we decided to merge them into a single
global parameter, SDI, which is directly proportional to
them and indirectly proportional to the total volume of
the nasal airways. This index has significantly higher
values in NSD than in control subjects and appears to be
a useful parameter for septal deviation quantification,
since it takes into account various factors contributing to
subject respiration. SDI is robust to the variation of only
one parameter between SDA and VPD, which may
separately contribute to the patient’s breathing, and takes
into account that septal deviations may create more or
less discomfort to the subject depending on the size of his/
her nasal airway. In particular, SDI can be a useful pa-
rameter because it is not a local descriptor of the nasal

cavity, like SDA, but takes into account the three-
dimensional morphology of the nasal cavity. Moreover,
this index showed the highest correlation with PC1,
which expresses 57.0% of the sample variability.

In multivariate analysis, only PC1 and PC2 were
retained. PC1 highly correlates with all the morpholog-
ical parameters that have significantly higher values in
NSD subjects than in healthy subjects. This component
is therefore more related to factors that identify NSD,
rather than to the size of the airway.

On the contrary, PC2 (29.6% of explained variance) is
highly related to the nasal airway size of the subject; so,
it is less suited for representing the analysed sample.
This is also evidenced by the non-significant difference
in terms of VT in the analysed groups.

From our findings it can be stated that SDA, VPD
and SDI are morphological parameters that may help
surgeons to better understand the patient’s upper airway
morphology, estimating the amount of the septal de-
viation and the air volume in each side of the nose. In
particular, they may be a useful tool during the pre-
operative assessment of the nasal airway, in order to
enable the surgeon to find the optimal surgical inter-
vention that will produce the best outcome.33

Although results are promising, a further validation
of the proposed method is advised. In particular, the
validation on a sample of CBCT images of patients with
known otolaryngological diagnosis would allow corre-
lating these quantitative parameters with the patient
medical history, thus overcoming the limitations caused
by the need to group the subjects only in accordance
with radiologic examination and without clinical diagnosis.

Conclusions

In the present study, four three-dimensional morpho-
logical parameters were analysed to evaluate their use-
fulness in assessing the deviation of the nasal septum.
Retrospectively selected CBCT images, which allowed
accurate assessment of the morphology of the airways
of the patient, reducing the dose of radiation and there-
fore its invasiveness, were used.

Among the analysed parameters, the proposed SDI
seems to be the most suitable for the quantitative as-
sessment of NSD, since it summarizes different mor-
phometric factors. Further investigation shall expand
the study to patients with clinically assessed alterations
in respiratory function and nasal airway patency.

Table 2 Eigenvalues and explained variance of the retained principal components and their corresponding Pearson’s correlation coefficients for
the analysed morphological variables

Principal component Explained variance (%)

Pearson’s correlation coefficient

SDA VPD VT SDI
PC1 57.0 0.75 0.89 0.12 0.96
PC2 29.6 20.40 0.19 0.94 0.12

The analysed parameters are: septal deviation angle (SDA), septal deviation index (SDI), volume percentage difference (VPD) and total volume
(VT). PC1, first component; PC2, second component.
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Abstract

We wanted to find and validate a new way to visualise patients’ faces and their dental arches non-invasively. The stereophotogrammetric
images of the faces and the digitised dental casts of seven healthy subjects were analysed. Point-based and surface-based recording techniques
matched the facial image with those of the mandibular and maxillary dental arches in their relative positions. The cone-beam computed
tomographic (CT) images of the same subjects were analysed retrospectively. Twenty-eight dentofacial distances were obtained on cone-beam
CT images and on the recorded facial and dental surfaces. The median (IQR) distances of more than 96% of the measurements did not differ
significantly.
© 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
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Introduction

Digital technology and three-dimensional images are widely
used in dentistry, making dental practices and research
contexts into virtual-based processes.1,2 Three-dimensional
images of the face, skull, and dentition can be acquired using
different imaging techniques. In particular, stereophotogram-
metry and laser scanners allow us to acquire images of the
face and the dental arches separately non-invasively, mak-
ing them suitable for use in children and for longitudinal
evaluation of outcomes of treatment.3 In this context, we
wanted to define and validate a technique that allows us to
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Salute, via Mangiagalli 31 - I-20133 MILANO - Italy.
Tel.: +39 – 02 503 15407; fax: +39 – 02 503 15387.
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integrate information about facial soft tissues and the teeth
non-invasively.

Patients  and  methods

The digitised dental plaster casts and the facial stereopho-
togrammetric images of seven subjects who had just had
cone-beam computed tomography (CT) for clinical reasons
were recorded and analysed. Cone-beam CT images of the
same subjects were analysed retrospectively to validate the
method. All study procedures were non-invasive, and done
according to the Declaration of Helsinki. All subjects gave
their written consent.

For each subject both maxillary and mandibular dental
casts were obtained and digitised using a laser scanner (Den-
tal Wings Series 3, Dental Wings Inc., Montreal, Canada).
Both dental arches were digitised separately to preserve the

http://dx.doi.org/10.1016/j.bjoms.2016.01.019
0266-4356/© 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
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original alignment of teeth and occlusion using the DWOS
software (Dental Wings Inc., Montreal, Canada).4

Data for facial soft tissues were acquired twice using a
stereophotogrammetric system (Vectra 3D, Canfield Scien-
tific, Fairfield, NJ), the first time with lips open and cheek
retractors (so that the front teeth were visible) and the second
time at rest.4

The two surfaces of the subject’s face were recorded as
previously described.4 To record the digitised dental casts,
we developed a new approach that used a point-based, and
subsequently a surface-based, recording.

First, a region of interest (ROI) that contained the same
upper frontal teeth was selected on the “open-lips” stereopho-
togrammetric and laser-scanned surfaces of the upper dental
arches. Then at least three points were selected in each ROI to
record them using the Procrustes method.5 Either anatomical
landmarks or points of interest that were easily detectable on
both surfaces were used. To evaluate recording of ROI, the
median (IQR) distances between the point clouds of the ROI
were calculated. The percentages of corresponding points
less than 1 mm distance between the two ROI, were also
evaluated.6

This recording was refined using the iterative closest point
algorithm.5 Once the geometric transformation that indi-
cates this process had been calculated, it was applied to
the original dental casts to provide their correct position
(Fig. 1).

To validate the proposed algorithm, 11 landmarks were
placed both on the cone-beam CT image and on the recorded
facial and dental surfaces of each subject. The chosen land-
marks were: right and left Orbitale (lOr, rOr), Pronasale
(Prn), Subnasale (Sn), Sublabiale (Sl), upper and lower inter-
incisal (uIn, lIn), and the distal vestibular cups of the first
molars (16, 46, 26, 36). To evaluate the accuracy of the
digital dentofacial reconstruction, 28 distances were calcu-
lated, and the significance of the differences between the
relevant ones were compared with the Wilcoxon signed rank
test.

Results

The median distance between ROI point clouds was 0.59
(0.43–0.73) mm, and the median percentage of corresponding
points was 86.1% (81.6% - 92.1%). There were no signifi-
cant differences among the evaluated distances except for the
distance 36 – rOr (p-0.03; Tables 1 and 2).

Discussion

Compared with the previous method, this technique allows us
to record both dental arches separately providing a complete
picture of the patient’s teeth,4 and the recording algorithm
was validated on a sample of subjects.3,7 The high percent-
ages of corresponding points, the reduced median distance,

Fig. 1. Example of recorded outcome between facial and dental surfaces.
The dark surface indicates the stereophotogrammetric acquisition of the face
and the light surface the digitised dental casts (published with the permission
of the patient).

and the almost complete lack of significant differences
between paired distances (cone-beam CT compared with
facial and dental surfaces), prove the accuracy of the record-
ing progress.

Table 1
Median (IQR) distances (mm) between facial landmarks and landmarks on
the upper dental arch.

Distance Cone-beam computed
tomography

Matched
surfaces

p value

uIn – lOr 66.3 (7.0) 64.8 (3.2) 0.43
uIn – rOr 67.4 (3.2) 64.3 (4.9) 0.06
uIn – Prn 46.3 (3.6) 45.9 (3.2) 0.84
uIn – Sn 27.3 (1.6) 27.1 (1.6) 1.00
16 – lOr 83.8 (7.2) 83.8 (3.0) 1.00
16 – rOr 53.2 (3.4) 54.2 (3.0) 0.56
16 – Prn 73.9 (5.6) 75.7 (2.5) 0.16
16 – Sn 55.7 (5.8) 57.4 (1.6) 0.31
16 – Sl 49.0 (3.0) 50.4 (2.5) 0.06
26 – lOr 52.4 (3.6) 54.2 (2.5) 0.16
26 – rOr 83.6 (6.2) 83.8 (1.8) 0.84
26 – Prn 73.7 (1.7) 74.9 (1.3) 0.09
26 – Sn 55.7 (2.6) 57.1 (4.6) 0.22
26 – Sl 48.8 (7.0) 49.3 (4.1) 0.69
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Table 2
Median (IQR) distances (mm) between facial landmarks and landmarks on
the lower dental arch.

Distance Cone-beam computed
tomography

Matched
surfaces

p value

lIn – lOr 64.3 (6.4) 63.1 (5.8) 0.56
lIn – rOr 65.5 (4.4) 62.3 (7.1) 0.07
lIn – Prn 46.8 (4.7) 46.9 (3.2) 0.84
lIn – Sn 27.2 (2.2) 27.4 (0.9) 1.00
46 – lOr 84.2 (5.4) 80.7 (1.7) 0.09
46 – rOr 55.7 (2.5) 53.4 (2.3) 0.09
46 – Prn 74.7 (4.6) 73.2 (3.3) 0.31
46 – Sn 56.1 (4.4) 54.7 (2.0) 0.31
46 – Sl 47.5 (1.2) 48.3 (3.8) 0.44
36 – lOr 54.9 (0.4) 50.6 (2.7) 0.16
36 – rOr 84.3 (4.5) 79.4 (3.0) 0.03
36 – Prn 74.1 (2.0) 70.5 (1.2) 0.09
36 – Sn 55.8 (3.2) 52.8 (4.2) 0.16
36 – Sl 46.8 (3.2) 47.8 (4.9) 0.44

Results are encouraging. This technique may be useful
to assess the position of the patient’s face with respect to the
teeth. Nevertheless, further validations on a larger sample are
advisable.
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a b s t r a c t

Many conditions can compromise facial symmetry, resulting in an impairment of the affected person
from both esthetic and functional points of view. For these reasons, a detailed, focused, and objective
evaluation of facial asymmetry is needed, both for surgical planning and for treatment evaluation.

In this study, we present a new quantitative method to assess symmetry in different facial thirds,
objectively defined on the territories of distribution of trigeminal branches.

A total of 70 subjects (40 healthy controls and 30 patients with unilateral facial palsy) participated. A
stereophotogrammetric system and the level of asymmetry of the subjects' hemi-facial thirds was
evaluated, comparing the root mean square of the distances (RMSD) between their original and mirrored
facial surfaces.

Results show a high average reproducibility of area selection (98.8%) and significant differences in
RMSD values between controls and patients (p ¼ 0.000) for all of the facial thirds. No significant dif-
ferences were found on different thirds among controls (p > 0.05), whereas significant differences were
found for the upper, middle, and lower thirds of patients (p ¼ 0.000).

The presented method provides an accurate, reproducible, and local facial symmetry analysis that can
be used for different conditions, especially when only part of the face is asymmetric.

© 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights
reserved.

1. Introduction

Many pathologies can result in facial asymmetry. Among these,
hemifacial microsomia, cleft lip/palate, mandibular osteochon-
droma, trauma and infections, untreated mandibular fractures, and
damage to facial nerves are mentionable. In particular, facial nerve
palsy, which can be due to different etiologies, from neoplasm to
infective, traumatic, congenital, and metabolic causes, can strongly
alter facial harmony (Melvin and Limb, 2008). Furthermore, envi-
ronmental factors, such as chewing and sucking habits, or cranio-
facial syndromes, can compromise facial symmetry (Bishara et al.,

1994; Avelar et al., 2010). The amount of asymmetry of the face
can vary among subjects, ranging from unperceived or subclinical
cases to evident and clear ones. In those cases, aesthetics, appear-
ance and functionality of the orofacial district can be severely
affected, leading to discomfort and dissatisfaction of the patients
regarding their own facial appearance (Kim et al., 2015; Thiesen
et al., 2015).

To both improve aesthetics and correct functional defects, an
objective, quantitative assessment of facial asymmetry is advised.
The quantification of asymmetry can be especially useful during
surgical treatment planning, but it can also be performed during
follow-up examinations, allowing surgeons and dentists to evaluate
the progressive reduction of asymmetry, therapy progression, and
achieved results (Claes et al., 2012; Chatrath et al., 2016; Verhoeven
et al., 2016).

The evaluation of facial morphology evolved during the last
decades, passing from the direct measurement to an indirect
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assessment of the face, through two- and three-dimensional im-
aging systems (Smeets et al., 2010). These technologies can allow
not only a facial analysis based on landmarks, but also the inves-
tigation of the whole surface (Richtsmeier et al., 2002). Surface
assessments have already been found to be more sensitive than
landmark measurements (Verhoeven et al., 2016). Currently, facial
asymmetry is evaluated mainly by using the entire facial surface,
thus providing measurements that give only general information
about facial morphology (Ostwald et al., 2015; Verhoeven et al.,
2016). In contrast, several pathologies affecting facial appearance
are localized in selected parts of the face (Avelar et al., 2010;
Djordjevic et al., 2014a), and a local assessment can provide help-
ful information for clinical decisions.

In this study, we introduce a newmethod that combines surface
and landmarks based approaches to assess facial asymmetry, taking
different facial thirds into account, in order to provide local infor-
mation. The intra-operator repeatability of the method was
assessed, and a practical application in patients with unilateral
facial palsy was made.

2. Material and methods

2.1. Sample

A total of 70 adult Caucasian subjects were voluntarily recruited
for this study. This sample was composed of 40 healthy subjects (21
females; 19 males; average age 39 ± 12 years) and 30 patients with
diagnosed unilateral facial palsy (15 females; 15 males; average age
44 ± 15 years). All healthy subjects had no history of facial trauma,
maxillofacial surgery, and craniofacial syndromes or deformities.
Among the patients, the etiologies of the facial nerve palsy were
oncological surgery (71%), Bell's palsy (18%), trauma (7%), and
brainstem embolus due to arterio-venous malformations (4%).

2.2. Image acquisition

Images for all of the involved subjects were acquired using the
VECTRA M3 stereophotogrammetric system (Canfield Scientific
Inc., Fairfield, NJ), which allows scanning of faces in a fast and non-
invasive way (Sforza et al., 2013). Before the acquisition, 50 soft
tissue facial landmarks were marked using black liquid eyeliner,
following a protocol that was previously developed, tested and
validated by our research group (Ferrario et al., 1998; De Menezes
et al., 2010). During the acquisition, subjects were asked to have a
neutral facial expression of the face, with teeth in loose contact and
closed mouth. The institutional review board of the University of
Milan (approval n. 92/2014) approved all the described procedures
and all patients gave their written informed consent.

After the acquisition process, the facial landmarks were digitally
marked on each surface, to delimit the portions of the face used for
asymmetry evaluation, using the manufacturer's software (Mirror
Vectra; Canfield Scientific Inc., Fairfield, NJ).

2.3. Asymmetry quantification

To define the portion of face used to evaluate the asymmetry of
the subject, 10 facial landmarks were selected. A detailed list of
these landmarks is provided in Table 1. Landmark selection allows
one to delimit the facial surface in a standard and repeatable way,
thus reducing operator dependency. An example of the selected
surface is depicted in Fig. 1.

Intra-operator repeatability of facial area (FA) selection was
evaluated on a training sample of 20 facial surfaces. One experi-
enced operator selected the different facial thirds and the FA twice
with a 2-week interval. The repeatability was assessed on facial
surface selection since it is the main cause of variability in surface
mirroring approaches, as further image processing steps are auto-
mated. After landmark identification, the Mirror Vectra software
(Canfield Scientific Inc., Fairfield, NJ) automatically computed the
surface area.

The selected surface was then used to calculate the plane of
maximum symmetry, this process allowed us to automatically find
the midline plane of symmetry using only a previously selected
area on the acquired facial surface. In this study, the selected area
was defined in order to minimize the regions that can affect
asymmetry quantification, such as hairs and neck region, and to
take all the craniofacial structures of interest for maxillofacial
morphometric analysis into account. This processing step was
carried out using the Mirror imaging software (Canfield Scientific
Inc., Fairfield, NJ).

Once the plane of maximum symmetry was obtained, it was
used as a mirroring plane to obtain the reflected face of each
subject.

The original facial surface was then divided in two hemi-face
surfaces, which were subsequently subdivided into three different
facial thirds: upper (UT), middle (MT), and lower third (LT). In the
proposed method, facial thirds divisionwas based on the territories
of distribution of trigeminal branches, which correspond to
different embryological origins (Holmes, 2016). Each third was
defined using anatomical landmarks, thus providing a standard and
repeatable selection criterion. The list of landmarks used to define
each facial third is provided in Table 1, and an example of facial
third selection is depicted in Fig. 2.

Finally, to quantify the asymmetry of each facial third in each
subject, the root mean square deviation (RMSD) between the
original and reflected surfaces was calculated. A color-coded sur-
face map displayed the local values of the distances between the
two surfaces, as can be seen in Fig. 3. The RMSD has already proved
to be a reproducible and accurateway tomeasure facial asymmetry,
using three-dimensional photogrammetric systems (Taylor et al.,
2014).

2.4. Statistical analysis

The Chi-square test was used to check differences in sex dis-
tribution between control and patient groups, while an unpaired
Student's t test was used to check age difference.

Table 1
Landmarks used to define facial areas and the facial thirds.

Landmarks

Facial area (FA) trichion (tr); frontotemporale (ft); zygion (zy); tragion (t); gonion (go); gnathion (gn)
Upper third (UT) trichion (tr); glabella (g); nasion (n); pronasale (prn); columella (c); alare (al); endocanthion (en); exocanthion (ex); frontotemporale (ft)
Middle third (MT) endocanthion (en); alare (al); upper terminal of the nostril (stn); columella (c); subnasale (sn); labiale superius (ls); stomion (sto);

chelion (ch); zygion (zy); frontotemporale (ft); exocanthion (ex)
Lower third (LT) stomion (sto), labiale inferius (li); sublabiale (sl); pogonion (pg); gnathion (gn); gonion (go); tragion (t); zygion (zy); cheilion (ch)

M. Codari et al. / Journal of Cranio-Maxillo-Facial Surgery xxx (2016) 1e62

Please cite this article in press as: Codari M, et al., Facial thirdsebased evaluation of facial asymmetry using stereophotogrammetric devices:
Application to facial palsy subjects, Journal of Cranio-Maxillo-Facial Surgery (2016), http://dx.doi.org/10.1016/j.jcms.2016.11.003



The repeatability in surface area selection was tested using
BlandeAltman analysis for both the total facial area and each facial
third. For repeated area measurements, the bias value, which cor-
responds to the systematic error, and the repeatability coefficient
(RC), which represents the least detectable difference among
measurements and is twice the standard deviation of measurement
differences (Bland and Altman, 1986), were calculated.

Box plots were used for representing RMSD values of different
facial thirds in different subject groups. Normality distribution of
the data was tested using the KolmogoroveSmirnov test. RMSD of
different facial thirds in both control and pathological subjects
were positively skewed, so logarithmic transformation of the data
was performed in order to obtain normal distributions. After this
transformation, a two-way analysis of variance (ANOVA) was per-
formed in order to determine whether there were statistically
significant differences among the groups and facial thirds. Post hoc
analyses were performed using Fisher's LSD test. The statistical
level of significance was set to p < 0.05 for all tests.

Fig. 2. (a) Upper facial third (UT); (b) middle facial third (MT); (c) lower facial third (LT). Each facial third is defined by the respective anatomical landmarks, chosen to follow the
territories of distribution of trigeminal branches.

Fig. 1. Facial area (FA) selected to evaluate asymmetry, based on the more external
anthropometric landmarks of the face. Landmarks that are not visible from the frontal
view are shown in white; r and l indicate right and left side of the face, respectively.

Fig. 3. Color-coded maps for the local distances between the original and mirrored facial areas. (a) Upper third; (b) middle third; (c) lower third.
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3. Results

In this study, 40 control subjects and 30 patients with diagnosed
unilateral facial palsy were analyzed. No statistically significant
differences were found in age (p ¼ 0.1, Student's t test) and sex
distribution (p ¼ 0.84, Chi-square test).

The statistical analysis of the repeated area measurements
showed high level of reproducibility. BlandeAltman plots and the
values of bias, standard deviation (SD), repeatability coefficient, and
reproducibility are respectively reported in Fig. 4 and Table 2.

Values of RMSD in control subjects and patients, divided for each
facial third, are presented in Fig. 5. Overall, patients had a larger
asymmetry in all facial thirds than control subjects; the difference
appears particularly evident for the middle and lower thirds.

Two-way ANOVA showed a statistically significant difference in
RMSD values between control subjects and patients (p ¼ 0.000). A
significant effect of facial third was also found (p ¼ 0.0014),
together with a significant group � third interaction (p ¼ 0.0012).
Among different thirds, the RMSD values of the upper third (UT)
resulted significantly different from those of the middle third (MT)

Fig. 4. BlandeAltman plots for the area repeated measurements. Continuous line indicates the average; dashed lines indicate the interval of agreement.
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(p ¼ 0.005) and lower third (LT) (p ¼ 0.003). Post hoc analysis
showed that among control subject there was no significant dif-
ference between thirds (p > 0.05). On the other hand, in patients
there was a significant difference between the UT and MT
(p ¼ 0.001) and between the UT and LT (p ¼ 0.000). Comparing the
same third between control and patient groups, statistically sig-
nificant differences were found in all cases (p ¼ 0.000).

4. Discussion

The evaluation and quantification of facial asymmetry is a key
task in maxillofacial surgery and orthodontics, since a lot of con-
ditions can alter it, thus compromising the patient quality of life
from functional, esthetic, and social points of view (Berlin et al.,
2014).

The introduction of noninvasive and inexpensive imaging pro-
cedures, e.g., laser scan and stereophotogrammetry, has speeded up
the research in this field. In the past few years, a lot of work has
been published on this topic, suggesting different approaches to
assess facial asymmetry (Berssenbrügge et al., 2014; Alqattan et al.,
2015; Kornreich et al., 2016; Verhoeven et al., 2016). Unfortunately,
none of these is universally accepted from the scientific commu-
nity, thus demonstrating that is still necessary to improve these
procedures (Djordjevic et al., 2014a).

In the proposed method, we analyzed symmetry comparing
original and mirrored facial surfaces and calculating the RMSD of
the distances between their corresponding points. This approach is
well known in the literature and has proved to be a potentially
powerful method to analyze facial symmetry (Djordjevic et al.,
2014b; Taylor et al., 2014; Ostwald et al., 2015).

Traditionally, the whole face is used to measure the asymmetry
level of the subject, thus providing only a global evaluation of facial

morphology (Kornreich et al., 2016; Verhoeven et al., 2016). In this
study, we divided each hemi-face into thirds, based on trigeminal
branches distribution territories for somatic sensitivity. Other re-
searchers have tried to provide a local subdivision of the face using
horizontal planes, thus obtaining irregular edges of selected thirds
due to subjective selection of the facial area (Djordjevic et al.,
2014a; Taylor et al., 2014; Ozsoy, 2016).

In the proposed method, facial area selection is the only manual
image processing step needed to quantify the asymmetry of the
face using surface mirroring approaches. To obtain a standardized
imaging method, it is essential to reduce the variability among
different measurements to as low as possible. For this reason, the
selection of the FA plays a key role in asymmetry assessment on 3D
facial surfaces. In the proposedmethod, the standardized definition
of thirds allowed one to reach a very high level of reproducibility
during area selection, which is the main source of variability in
asymmetry quantification. Repeatability analysis shows an average
RC value (±SD) equal to 1.2% ± 0.005%, proving a high level of
agreement between repeated measurements. As shown by the
BlandeAltman plot in Fig. 4, the bias is always near 0% (average bias
value 0.03% ± 0.001%), thus demonstrating the absence of sys-
tematic errors during repeated measurements. Moreover, the di-
vision of the face into thirds allows one to focus treatment planning
and to follow up evaluations of the most asymmetric region.

To validate the proposed method, both patients with diagnosed
unilateral facial palsy and control subjects, matched for sex and age,
were enrolled. Unilateral facial palsy causes an evident asymmetry
of the facial soft tissues, so it can be considered a perfect condition
for testing this method within a clinical context. Other in-
vestigations have used artificial, mathematically originated facial
asymmetries that can be difficult to translate into daily practice
(Verhoeven et al., 2016).

In all subjects, the asymmetry was quantified calculating the
RMSD of corresponding points belonging to mirrored hemi-facial
thirds. The results show that patients had a significantly less
asymmetric UT compared to the MT and LT. Indeed, the UT is
composed mainly by the frontal region, which is the area less
affected by facial palsy. On the other hand, despite the fact that this
third is less asymmetric than the other two, it is still more asym-
metrical in patients than in control subjects. That can also be
explained by the fact that the upper eyelid/superior orbital region,
which is strongly altered in facial nerve palsy, is part of our UT.
Among control subjects, there was no significant difference in

Table 2
Results of BlandeAltman analysis.

UT MT LT FA

Left Right Left Right Left Right

Bias (cm2) �0.003 �0.051 �0.039 �0.028 0.097 0.043 0.075
SD (cm2) 0.319 0.372 0.393 0.329 0.340 0.267 0.479
RC (%) 0.9 1.1 1.7 1.4 1.4 1.1 0.6

Bias, standard deviation (SD), and repeatability coefficient (RC) of area measure-
ments are reported for upper third (UT), middle third (MT), and lower third (LT) and
the whole facial area (FA).

Fig. 5. Box plots, representing root mean square (RMS) values of controls subjects and patients for upper, middle, and lower facial thirds.

M. Codari et al. / Journal of Cranio-Maxillo-Facial Surgery xxx (2016) 1e6 5

Please cite this article in press as: Codari M, et al., Facial thirdsebased evaluation of facial asymmetry using stereophotogrammetric devices:
Application to facial palsy subjects, Journal of Cranio-Maxillo-Facial Surgery (2016), http://dx.doi.org/10.1016/j.jcms.2016.11.003



RMSD values of different thirds, thus confirming the recent obser-
vations of Djordjevic et al. (2014b).

These results proved the accuracy of the proposed method in
asymmetry quantification, both in physiological and pathological
conditions, allowing clinicians to use it with different kinds of pa-
thologies. Moreover, the strong reproducibility of this method
makes it suitable for follow-up evaluations in different craniofacial
conditions.

5. Conclusion

With this study a facial thirdebased method for the analysis of
facial asymmetry is provided. The method showed high repro-
ducibility and accuracy in evaluating differences between control
subjects and patients. Moreover, it is applicable for diagnosis,
treatment planning, and evaluation in patients with altered
craniofacial morphology. In particular, the method appears suitable
for pathologies that alter only part of the face, providing quanti-
tative local information about facial symmetry.
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Purpose: Nowadays, with the increased diffusion of Cone Beam Computerized Tomography (CBCT) 12 

scanners in dental and maxilla-facial practice, 3D cephalometric analysis is emerging. Maxillofacial 13 

surgeons and dentists make wide use of cephalometric analysis in diagnosis, surgery and treatment 14 

planning. Accuracy and repeatability of the manual approach, the most common approach in clinical 15 

practice, are limited by intra- and inter-subject variability in landmark identification. So, we propose a 16 

computer-aided landmark annotation approach that estimates the three-dimensional (3D) positions of 21 17 

selected landmarks.  18 

Methods: The procedure involves an adaptive cluster-based segmentation of bone tissues followed by an 19 

intensity-based registration of an annotated reference volume onto a patient Cone Beam CT (CBCT) 20 

head volume. The outcomes of the annotation process are presented to the clinician as a 3D surface of 21 

the patient skull with the estimate landmark displayed on it. Moreover, each landmark is centered into a 22 

spherical confidence region that can help the clinician in a subsequent manual refinement of the 23 

annotation.  The algorithm was validated onto 18 CBCT images.  24 

Results: Automatic segmentation shows a high accuracy level with no significant difference between 25 

automatically and manually determined threshold values. The overall median value of the localization 26 

error was equal to 1.99 mm with an interquartile range (IQR) of 1.22 - 2.89 mm.  27 

Conclusion: The obtained results are promising, segmentation was proved to be very robust and the 28 

achieved accuracy level in landmark annotation was acceptable for most of landmarks and comparable 29 

with other available methods.   30 

 31 
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1.  INTRODUCTION 33 

 34 

The measurement of the head, known as cephalometry, considers both soft and hard tissues and has many 35 

36 

as cephalometric analysis, is widely used in dental applications, such as orthodontics and implantology, 37 

and in surgical planning and treatment evaluation for maxillofacial surgery [1 3]. Traditionally, 38 

cephalometric analyses have been manually performed on a 2D cephalogram, which is a standardized 39 

tracing of craniofacial structures as depicted by a latero-lateral radiography of the head. Currently, with 40 

the diffusion of Cone Beam Computerized Tomography (CBCT) scanners, 3D cephalometric analysis is 41 

emerging [4]. CBCT is used for small segments of the body, such as the head or part of it, and generally 42 

delivers lower dose to the patient, compared to CT [5]. In particular, CBCT is a useful tool for 43 

identification and evaluation of treatment outcomes, becoming one of the most common image modality 44 

used to visualize the facial skeleton [6 8]. Both maxillofacial surgeons and dentists can foresee 45 

remarkable developments by the aid of computerized methods permitting to easily extract individual 46 

features and perform measurements. 47 

Nowadays, manual point-picking represents the method of choice to perform 3D cephalometric analysis, 48 

however this approach is limited in accuracy and repeatability due to the differences in intra- and inter-49 

operator landmark identification [9 11]. The need to overcome these limitations recently led to the 50 

development of aided, automated or nearly-automated methods [12 18]. Here, we propose a semi-51 

automatic computerized method that can help the clinician to annotate three-dimensional CBCT volumes 52 

of the human head, using intensity-based image registration.  53 

 54 

2.  MATERIALS AND METHODS 55 

 56 

The proposed algorithm, entirely developed in MATLAB (MathWorks, Natick, MA, USA), 57 

automatically segments the skull from CBCT volumes of the human head and subsequently estimates a 58 

number of cephalometric landmarks. The flowchart of the proposed algorithm is presented in Fig. 1. 59 

 60 

2.1 Anatomical Landmarks 61 

 62 

In this study, a set of fiducial points, which location will be estimated, must be decided and defined. To 63 

validate the proposed method, a set of 21 landmarks, commonly used in clinical practice and distributed 64 



 3 

all over the skull surface, was chosen [19]. All chosen landmarks and their definition are listed in Tab.1. 65 

[20]. 66 

 67 

2.2 Dataset 68 

 69 

Datasets of 18 subjects who underwent CBCT imaging examination at the SST Dentofacial Clinic, Italy, 70 

were retrospectively selected. These images were acquired for reasons independent of this study and in 71 

all acquisitions the device was operated at 6-10 mA (pulse mode) and 105 kV using a X-ray generator 72 

with fixed anode and 0.5 mm nominal focal spot size. All images were acquired with cephalometric field 73 

of view (200 mm x 170 mm). All subjects were adult healthy Caucasian women, aged from 37 to 74 74 

years, who had teeth in both dental arches. No limitations was set to the presence of dental implants, 75 

dental fillings or even on particular dental treatments carried out before the radiological examination. 76 

 77 

2.3 Image Preprocessing  78 

 79 

In order to standardize the structures in the CBCT data, the proposed method requires a single 80 

initialization step consisting in pointing the most inferior point of the mandibular bone. Currently, this is 81 

the only manual operation required; however, this is easy to automatize, provided 82 

positioning on the scanner chin set. Next, the volume is cut off below the selected slice and the algorithm 83 

84 

volume limitation capable of providing a coarse standardization of the structures.  85 

Subsequently, to improve the accuracy of the segmentation procedures and to make it robust to the 86 

presence of noise, the image was filtered using a three-dimensional low pass Gaussian filter. The size of 87 

this cubic filter was set to 3 voxels in order to limit the blurring effect, increase signal to noise ratio and 88 

preserve the morphology of craniofacial bones [21].  89 

 90 

2.4 Image Segmentation 91 

 92 

The segmentation algorithm aims at a standard hard-tissue thresholding, though after a subject-specific 93 

adaptation with no manual interaction and no training dataset or previously developed models. A major 94 

consideration driving the algorithm design was that CBCT scanners provide less calibrated contrasts than 95 

CTs, thus reducing the confidence in preset thresholds [22].  96 
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This aim was approached by k-means clustering separately performed on a representative subset of the 97 

volume slices. In particular, the k-means clustering was chosen due to its low sensitivity to initialization 98 

parameters, relatively low computational complexity and its suitability for biomedical image 99 

segmentation since the number of clusters can be easily defined based on prior anatomical knowledge 100 

[23, 24]. 101 

The present validation considered a 1:2 reduction, by analyzing each second slice; however, further 102 

preliminary trials revealed that higher reduction factors improved efficiency with no accuracy loss. As 103 

detailed below, the statistics of clusters was used to set the optimal soft/hard tissue separation threshold; 104 

also, a good robustness against dental metal artifacts was achieved by proper elimination of low-density 105 

outliers. 106 

Within each subset, slice tissues were classified into 4 main categories, one representing air, two 107 

representing soft tissues and one representing hard tissues. The classification was performed using a k-108 

means clustering approach [25]. The following statistics through the subset of slices considered the 109 

minimum of the highest intensity cluster; i.e., the one intended to classify bone and tooth tissue.  110 

These values allowed to determine the global threshold which was defined at the 10th percentile of the 111 

population of minima. This threshold value was shown to make the algorithm robust to misclassification 112 

of tissues in a limited (i.e., less than 10%) number of slices that are easily classified as outliers. The 10% 113 

rule was shown selected to avoid a specific search of outliers.  114 

After the optimized threshold value was obtained, it was possible to proceed with the thresholding of the 115 

entire volume that needs to be segmented, since preliminary analyses confirmed that possible intensity 116 

calibration trends through slices were negligible. The outcome of single voxel thresholding was next 117 

improved by removing all the residual volumes of the segmentation process, caused by the presence of 118 

noise or artifacts. A 3D labelling process identified all structures and those presenting a volume lower 119 

than 0.1% of the total segmented volume were eliminated. An example of the outcome of the 120 

segmentation process is shown in Fig.2.  121 

 122 

2.5 Image Registration 123 

 124 

Landmark placement was based on the propagation of landmarks through the registration on an annotated 125 

reference skull. The reference skull was automatically segmented with the above presented method and 126 

annotated in a double blind process by three expert operators for three times, in order to take intra and 127 

inter-operator variability into account. Each operator had at least 4 years of experience in morphological 128 
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evaluation of the skull. To allow the user to annotate the reference skull, a dedicated guided user interface 129 

(GUI) was created using MATLAB. This GUI allowed the user to annotate the skull visualizing multi 130 

planar reconstruction (MPR) views. Once all the operators performed the annotation the center of mass 131 

of all annotations was used as final landmark positions. 132 

In previous investigations, deformable registration approaches have been used to align corresponding 133 

structures in different images in order to estimate anatomical landmarks, as such methods take into 134 

account the global appearance information of the anatomical structures [26 28]. During this step, 135 

segmentation for both subject and reference was used for masking only, thus keeping the information of 136 

gray levels inside the segmented bone. Registration was started by affine transformation that, being 137 

global and linear, permits re-scaling according to the individual proportions and also allows a robust 138 

compensation of the different volumetric FOVs occurring in CBCT. Its transform is expressed by:  139 

F : xF  F F(xF ) 140 

M : xM  M M(xM) 141 

 142 

where F(xF)  is an intensity value of the image F at the location xF F is the domain of the image F, 143 

M(xM) is an intensity value of the image M at the location xM M  is the domain of image M  [15]. 144 

The mean squared intensity difference (MSD) was applied as registration objective function to be 145 

minimized. This cost figure is defined as follows: 146 

 147 

             (1) 148 

where xF represents the voxel locations in image F and T
F,M  represents the overlap domain consisting 149 

of  N voxel subset. 150 

Trilinear interpolation was applied in computing the transformed image gray levels and an iterative 151 

gradient descent algorithm was applied to find the optimal transform: 152 

 153 

        (2) 154 

 155 

The affine registration (linear) step was used as initialization of a subsequent elastic registration 156 

(nonlinear). Importantly, the algorithm was designed to avoid deformations due to the presence of 157 

different anatomical structures in the image volumes; which were caused by the limited field of view of 158 

CBCT images and inter-subject morphological variability. This problem was solved by shrinking the 159 

subjects mask to the overlap subset TF,M found after the first affine registration step, thus cutting out the 160 
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individual volume in excess to the reference volume. Then, the skulls were processed with a subsequent 161 

step of intensity-based global elastic registration, by MATLAB Medical Image Registration Toolbox, 162 

MIRT, Free Form Deformation (FFD) with three hierarchical levels of B-spline control points [30, 31]. 163 

A wide mesh window size between the B-spline control points of 15 voxels was set, in order to register 164 

the main skull features while avoiding deformation relevant to the largely varying bone structure details 165 

and to artifacts. As a result, the number of control points varied for each image, depending on its size. 166 

Moreover, in order to prevent the mesh to get too much deformed, a regularization term was used. In 167 

particular, the Euclidean distance between all the neighbouring displacements of B-spline control points 168 

was penalized [30]. In our algorithm, the regularization weight was set to 0.1. Both mesh window size 169 

and regularization weight were empirically determined to give the best performance in term of accuracy. 170 

Like the affine one, the elastic registration was an iterative process, which optimizes the MSD voxel 171 

similarity measure using a gradient descent optimization method with 3 hierarchical levels of 172 

optimization. This additional transformation Te is defined as: 173 

 174 

          (3) 175 

 176 

An example of the outcome of these registration steps is depicted in Fig. 3, which shows how the elastic 177 

registration allowed 178 

to the affine step.  179 

 180 

2.6 Landmark Estimation 181 

 182 

Through the registration phase the algorithm superimposes and deforms the reference skull to comply 183 

with the morphology of the patient based on the intensity values of the segmented CBCT images. The 184 

combined transformations Ta and Te, can be readily applied to the coordinates of cephalometric 185 

landmarks annotated on the reference skull thus labelling the skull under examination.  186 

Namely, the affine transformation Ta is described by a 4x4 matrix Ta  (12 degrees of freedom) applied to 187 

th  (i = 1  21) to obtain the landmark estimate   188 

[29]: 189 

 190 

          (4) 191 

 192 
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The elastic transformation Te was implemented numerically on a zeros volume, the size of the original 193 

volume, marked with a single 1 at the landmark position. The transformed image was no more binary 194 

and the center of mass coordinates were taken as transformed landmark coordinates. The 21 landmark 195 

coordinates were collected in a vector  representing the final estimation of the chosen cephalometric 196 

landmark coordinates. 197 

At the end of the annotation process each annotated landmark is displayed on the 3D surface of the patient 198 

skull. Moreover, each landmark is centered into a spherical confidence region that helps the clinician 199 

during a subsequent eventual manual refinement of the annotation, as can be seen in Fig 4. The radius of 200 

the confidence spheres was set to the 95th percentile of the annotation error population calculated during 201 

the validation step. 202 

 203 

 204 

2.7 Validation 205 

 206 

Optimized thresholding, though preliminary to registration and automated annotation, was considered a 207 

crucial step deserving a specific validation. Therefore, the algorithm outcomes were compared to the 208 

manual thresholding performed by an experienced user on the whole data set. Both threshold values and 209 

segmented volumes were compared testing correlation and significance of differences of automatic vs. 210 

manual identification. Depending on the normality of data, either -test or Wilcoxon signed 211 

rank test was used; p-value significance level was set to 0.05. The normality of data distribution was 212 

checked with Jarque-Bera test; also in this case significance level was set to 0.05. 213 

To evaluate the quality of the annotations performed in this study all CBCT volumes were manually 214 

annotated. In particular, in order to take the inter-operator variability of the annotation process into 215 

account, a team of expert users manually annotated the image dataset. This way, for each subject, the 216 

expected location of the 21 cephalometric landmarks can be defined as the barycenter of the  217 

annotation. Fig. 4 shows an example of manually and automatically annotated landmarks.  218 

Subsequently, the Euclidean distance, expressed in mm, between the position of each manually annotated 219 

landmark and the position of its corresponding landmark estimated by the proposed algorithm, was 220 

calculated. These distances will be subsequently used to display confidence regions around the estimate 221 

landmarks in order to allow the user to easily place the landmark in the most suitable place.  222 

 223 

3.  RESULTS 224 
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 225 

3.1 Segmentation  226 

To evaluate the accuracy of the segmentation process, both threshold values and segmented volumes 227 

where compared. Both manual and automatic threshold values resulted normally distributed (p > 0.05). 228 

They were highly correlated (R = 0.96, p < 0.001) and no significant difference was found between them 229 

(p > 0.05), thus indicating that the automatic optimization well reproduced the threshold setting of 230 

experts. 231 

Segmented volume values resulted not normally distributed (p < 0.05), and non-parametric tests were 232 

used for their statistical comparisons. Even for these values, a high level of accuracy was found between 233 

automatically and manually segmented volume values (  = 0.98, p < 0.001) and no significant differences 234 

were found between the two groups (p > 0.05). 235 

 236 

3.2 Landmark Estimation 237 

The mean (standard deviation) inter-operator interclass correlation coefficient (ICC) for all the analyzed 238 

landmarks was 0.98 (0.04). 239 

The overall median value of the computer aided localization error was equal to 1.99 mm with an 240 

interquartile range (IQR) of 1.22  2.89 mm. This median error expressed in the horizontal, vertical and 241 

transverse direction was equal to 0.60 mm, 0.86 mm and 0.89 mm respectively. These distances widely 242 

varied among different landmarks. In particular, among the calculated estimation errors the lowest value 243 

was reported for the PNS landmark with a median value of 1.47 mm and an IQR of 0.79  1.76 mm. On 244 

the other hand, the highest values were observed for Gonia, respectively right Gonion with a median 245 

value of 2.81 mm and an IQR of 1.46 - 4.83 mm and left Gonion with a median value of 4.00 mm and 246 

an IQR of 2.00 - 4.86 mm.  247 

Considering all landmarks, annotation error was less than 5.00 mm for 90% of landmarks and less than 248 

2.50 mm for 63% of them. The descriptive statistics for the obtained distances for each landmark are 249 

shown in Tab. 2.  250 

 251 

4.  CONCLUSION 252 

The proposed method allows to find a good estimate of landmark positions, which may subsequently be 253 

refined by the clinician, saving operator time and reducing annotation variability.  254 

Nowadays the annotation of cephalometric points is mainly performed manually. Recent studies reported 255 

that the error caused by identification of landmark varies between 0.02 mm to 2.47 mm [9 11, 32]. 256 
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Therefore, one important aim for the evaluation of skeletal morphology in maxillofacial patients is to 257 

reduce the landmark identification error below 2.00 mm [32].  258 

In the present study, landmarks lying in different locations present largely different average localization 259 

errors. Using our method, Gonia arise as the most difficult markers to localize. As a matter of fact, this 260 

reflects the variability of human anatomy and manual annotation. The mandibular bone, statistically, is 261 

among the most variable bones of the skull [33] and this is reflected in the estimation of right and left 262 

Gonion [34].  263 

In this study, since annotation errors were not normally distributed among different patients (p<0.001), 264 

the median annotation error was used to access the process accuracy of the annotation process. In 265 

particular, the median annotation error was found as 1.99 mm with an IQR of 1.22  2.89 mm. In a 266 

recent study, Shahidi et al. validated an algorithm for landmark annotation based on 3D image 267 

registration for 14 landmarks on a dataset of 20 CBCT images. They obtained an overall mean error of 268 

3.40 mm, which is significantly higher compared to the one obtained with the current method [16]. In 269 

another study, Gupta et al. proposed a knowledge-based algorithm for automatic detection of 270 

cephalometric landmarks on CBCT images that was validated on 30 CBCT images. Gupta et al. 271 

obtained a mean error of 2.01 mm with a standard deviation of 1.23 mm, which is comparable with the 272 

one obtained with the proposed methodology [18]. With our method a comparable accuracy level was 273 

obtained with reduced a priori information about landmark positions. 274 

The method described in the present study attempts a general and robust approach for the propagation of 275 

landmarks from an annotated reference skull to subject-specific ones. Due to the variability in skull 276 

morphology depending on gender, age and ethnicity, in this study we applied the proposed method to a 277 

specific category of patients: adult Caucasian women. To apply the same methodology on other patient 278 

categories, different atlases matched for sex, age and ethnicity must be used. The selection of only one 279 

specific sample represents a limitation of the current study but, at the same time, the low amount of a 280 

priori information needed from the proposed algorithm allows to test it on different patient categories 281 

simply changing the used atlas. 282 

Segmentation of hard tissues is a fully automatic process that reduces the amount of error dependent on 283 

operator experience. In the validation step, no significant difference was found between manually and 284 

automatically determined threshold values. Moreover, the correlation coefficient close to 1 proved the 285 

high accuracy of the segmentation step compared to manual thresholding, which is now considered the 286 

standard method of segmentation in maxillofacial applications.   287 
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Since the segmentation step was proved to be very robust, the registration step represents the main source 288 

of variability in automatic annotation. In order to improve the annotation accuracy, local adaptation in a 289 

region of interest around each estimated landmark should be added to overcome the limits of the global 290 

registration step. 291 

Moreover, we believe that a computer aided cephalometric annotation of CBCT volumes, relying on 292 

intensity-based image registration, can be a good initialization that can help the clinician in performing 293 

cephalometric analysis. Indeed, for most landmarks the current results are well comparable with those 294 

provided by other methods present in the literature [13, 14]. One advantage of our method is that 295 

cephalometric landmark coordinates were obtained without any local a priori information about geometry 296 

and location of each landmark, allowing physicians to use this approach for personalized cephalometric 297 

analysis. Indeed, the method can be customized only changing the number of landmark annotated on the 298 

reference skull, without any modification of the annotation algorithm.  299 

Results are promising, nevertheless the study should be expanded in order to validate it on a larger dataset 300 

and reduce the estimation error to provide a fully automatic annotation algorithm. Moreover, in order to 301 

improve the segmentation and, consequently, the annotation in the dental region, a dedicated high 302 

intensity object artifact reducing algorithm should be implemented. 303 
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Fig. 1.  Flowchart of the presented algorithm, which receives a DICOM file as input, articulates in 3 414 

phases: image pre-processing, segmentation and registration and returns the landmark coordinates as 415

output  416 

Fig. 2. The figure shows, in a median sagittal slice, which structures are maintained during the 417 

segmentation process 418 

Fig. 3.  Example of affine registration (above) and affine + elastic registration (below). Median sagittal 419 

view of the segmented subject skull (light) with the register 420 

Fig. 4.  Example of the proposed, computer aided, annotation process outcome; each landmark is cantered 421 

into a spherical confidence region (95th percentile of the annotation error population) that can help the 422 

clinician in a subsequent manual refinement of the annotation 423 

  424 











Tab.1. List of the 21 estimated landmarks as defined by Swennen et al [16].
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Tab.2. Descriptive statistics of the obtained Euclidean distances for each landmark. 
 

Landmark Median [mm] IQR [mm] Max [mm] Min [mm] 

S 1.42 0.82 - 1.73 3.53 0.60 

N 2.27 1.20  2.92 4.71 0.28 

lGo 4.00 2.00  4.86 8.33 0.45 

rGo 2.81 1.46  4.83 6.62 0.28 

ANS 2.35 1.74  2.97 5.70 0.60 

Pg 2.87 2.11  4.05 5.24 0.00 

Me 1.61 1.36  2.09 3.60 0.30 

lOr 1.47 0.89  2.23 4.46 0.28 

rOr 1.34 0.83  2.27 5.20 0.30 

PNS 1.47 0.79  1.76 4.62 0.30 

lPM 1.61 1.09  2.41 3.63 0.50 

rPM 1.97 1.25  2.93 7.26 0.69 

lUI 1.40 0.95  2.05 3.60 0.37 

rUI 2.01 1.39  2.40 7.27 0.82 

lLI 2.19 1.68  2.58 3.89 1.04 

rLI 3.07 2.22  3.92 5.84 0.92 

lFZ 1.81 1.13  4.30 6.60 0.50 

rFZ 2.01 1.31  2.94 6.98 0.82 

A 1.73 1.04  2.35 3.68 0.69 

B 2.83 1.64  3.68 5.31 0.73 

Ba 2.22 1.68  2.67 2.98 1.08 

All 1.99 1.22  2.89 8.33 0.0 

 


