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Abstract

In the present Thesis we study the behavior of multi-time correlation functions and of thermo-
dynamical quantities such as heat in open quantum systems undergoing an evolution generally
affected by the presence of memory effects, i.e. non-Markovian. In the last decade, a large part of
the scientific community in this field has dedicated its efforts to the understanding, precise def-
inition and quantification of non-Markovianity in the quantum realm and now we have at our
disposal several benchmark results and a plethora of different estimators that allow to determine
the degree of non-Markovianity of a given dynamics. It comes therefore natural to investigate
how other different dynamical quantities relate to such estimators also in order to understand
the physical implications of memory effects on the statistics of observable quantities.

In the first part of this work, a quantitative test of the violation of the so-called quantum
regression theorem in presence of a non-Markovian dynamical regime is investigated. The quan-
tum regression theorem represents a procedure that, whenever valid, allows to reconstruct two-
time correlation functions of system’s operators from the sole knowledge of the dynamics of
mean values. It is worth stressing that two-time correlation functions are necessary in order to
fully characterize the statistical properties of a quantum system, since they are able to catch as-
pects of the dynamics, such as fluorescence spectrum, in general not accessible looking at mean
values. Despite their relevance however, obtaining two-time correlation functions often repre-
sents a formidable task, since the knowledge of the full “system+environment” dynamics is re-
quired, a generally too demanding request in the context of open quantum systems theory. The
quantum regression theorem represents in this regard the easiest route to determine two-time
correlation functions, this highlighting its importance. In this work we show that, in a pure-
dephasing spin-boson model, the quantum regression theorem represents a stronger condition
than non-Markovianity, in the sense that any presence of memory effects in the reduced dynam-
ics inevitably results in violations to the former. These results have been published in [1].

The second part of the Thesis is devoted to the characterization of heat flow at the microscopic
level in open quantum systems, both finite and infinite dimensional. In particular we begin by
studying the time behavior of its mean value in a non-Markovian dynamical regime, showing
that, at variance with what happens in the Born-Markov semigroup limiting case, heat can back-
flow from the environment to the system. After providing a condition for the occurrence of such
phenomenon and a measure for its amount for a given dynamics, the relationship with suit-
able non-Markovianity estimators is sought in two paradigmatic models, namely the spin-boson
and the quantum brownian motion. The results, collected in [2, 3], on the one hand allow for
the identification of parameter-regions where the heat backflow is absent or maximum. On the
other hand they show that the occurrence of heat backflow represents a stricter condition than
non-Markovianity, in the sense that non-Markovianity allows for the observation of heat flowing
back from the environment to the system and, vice versa, a Markovian dynamics prevents its
occurrence. This Thesis concludes with the formulation of a new family of lower bounds to the
mean dissipated heat in an environmental-assisted erasure-protocol scenario where Landauer’s
principle applies. As originally conceived for classical systems, this principle states that every
irreversible erasure of information stored in a system inevitably carries along an amount of heat
dissipated into the environment which is expended to perform the action. Within the frame-
work recently put forward in [4], which guarantees the validity of Landauer’s principle in an
open quantum systems scenario, we provide an asymptotically tight family of lower bounds to
the dissipated heat which are also valid in the non-equilibrium setting. This construction is ap-
plied to an open system consisting of a three-level V-system, in which one transition is externally
pumped by a laser field while the other is coupled through an XX-interaction to an environment
consisting of a spin chain. Beside calculating all these quantities, an exact solution for the dy-
namics of such system is also provided. These results are collected in [5].
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Introduction

Quantum mechanics provides a description of statistical experiments at the microscopic
level. The standard under-graduate course in quantum mechanics deals with closed sys-
tems and with their evolution, which are dictated by a one-parameter group of unitary
operators.

Every concrete physical system has however to be considered as open for two fundamen-
tal reasons.

The first one is the unavoidable (mutual) interaction with an environment. Since the
description of the compound “system+environment” (which again would be closed in
its overall) is almost never feasible due to the complexity of the environment, one has to
restrict the attention on the system, keeping track of the effects of the interaction with the
environment on the dynamics. The solution of this problem is precisely what the theory
of open quantum systems deals with.

The second reason is that quantum mechanics is, as mentioned at the beginning, an in-
trinsic statistical theory where, following the modern formulation developed by Ludwig
[6], Holevo [7] and Kraus [8], the experimental quantities which can be compared with
the predictions of the theory are the relative frequencies that a preparation apparatus,
representing an ensemble of identically prepared quantum systems, triggers a macro-
scopic measurement apparatus. This coupling between a quantum system and a mea-
surement device however does actually represent a paradigmatic example of open quan-
tum system interacting with an environment. For this reason, many concepts and tools
introduced within the statistical formulation of quantum mechanics for composite sys-
tems lie now at the basis of the description of open quantum systems.

The interaction between system and environment generally entails the loss of those typ-
ical quantum properties, such as coherence or entanglement, a phenomenon which gen-
erally goes under the name of decoherence [9]. The preservation of such properties has
however been proven to be an essential feature in countless physical situations such as
quantum computation, quantum information and even quantum biology, in which the
“quantumness” of concrete physical systems (in unavoidable contact with an environ-
ment) was to be taken into account. In the last few decades therefore, an increasing effort

1



Chapter 1. Introduction 2

has been put into developing the theory of open quantum systems, the reason being thus
both practical and fundamental.

Whenever we move from a closed to an open quantum system, its dynamics gets im-
mediately more involved than just unitary evolution, and is given in terms of a so-called
master equation. Though a general structure for the latter in the case of completely generic
initial conditions, couplings and Hamiltonians is still nowadays not known, a corner-
stone result in this direction was given by Gorini, Kossakowski, Sudarshan and Lind-
blad, who determined the form of the generator of a completely positive quantum dy-
namical semigroup. Starting from a microscopic description of the physical model under
consideration, the set of assumptions and approximations involved to obtain a master
equation of this form are however proven to be very restrictive and thus this approach
very often fails to apply to concrete situations. The key assumption to obtain an effective
dynamics described in terms of a quantum dynamical semigroup, usually considered as
the closest quantum counterpart of classical time-homogeneous Markov process, is that
memory effects are taken to be negligible, due to a separation of the much faster time
scale of the environment with respect to that of the open system.

It is usually the case that violations of this time-scales separation occur, for example,
in situations of strong coupling regime between system and environment, structured or
finite-dimensional environment or low bath temperatures. Even if this is not the case, the
huge and fast development of quantum technologies has opened the possibility to access
time-scales of the order of femtoseconds, allowing to resolve the dynamics of open quan-
tum systems at very short time scales, comparable to those of the environment. Within
all these situations, memory effects, generically referred to as non-Markovian effects, play
a fundamental role in the correct determination of the statistical properties of open quan-
tum systems. As a consequence, lots of efforts have been devoted in the last decades to
the characterization of memory effects in quantum systems, meanwhile addressed both
to actually define what is meant by a non-Markovian dynamics in the quantum realm
and to quantitatively estimate the degree of non-Markovianity of a given reduced dy-
namics. Several benchmark results have been obtained in this regard [10-20] and now
we have at our disposal a plethora of quantifier of non-Markovianity, each of which
shedding light upon this property of the dynamics from a slightly different angle. It
is therefore very natural to ask how the presence or absence of memory effects in the
reduced dynamics affects other statistically relevant properties, such as multi-time cor-
relation functions or thermodynamical quantities e.g. energy, heat and work. This is
the leitmotif of the present Thesis, in which we will consider several of these proper-
ties and quantities in order to investigate their behavior in presence of a non-Markovian
dynamics, searching for a connection between them.

1.1 Thesis Outline

This Thesis is organized as follows.
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Chapter 2 provides an introduction to the main notions of open quantum systems theory
which will be useful throughout the remaining of the work. In the first Section we intro-
duce the notions of composite quantum systems, which stand at the very basis of open
quantum systems’ theory. In particular the concepts of statistical operators, POVMs,
trace and partial trace, linear maps and complete positivity are presented here. In the
following Section we apply them to the framework of open quantum systems, where
the definitions and properties of quantum dynamical maps and master equations are
discussed in detail. The connection between the dynamical descriptions provided by
full unitary evolutions, dynamical maps and master equations is drawn, together with
explicit indications of how to obtain one from another. Finally, the constraints on the
structure of the master equations imposed by the properties of the associated dynamical
map are presented. In particular in Subsection 2.2.4.1 we show how trace and hermiticity
preservation reflect upon the structure of time-local master equations, and in Subsection
2.2.4.2 we conclude the Chapter by discussing the role of complete positivity on the latter,
presenting the well-known Gorini-Kossakowski-Sudarshan-Lindblad generator.

Chapter 3 is devoted to clarify the notion of non-Markovianity. In order to make the
exposition of the concepts as clear as possible, we first introduce this concept in Section
3.1 within the classical theory of stochastic processes. Building upon this, we then move
to speak about quantum non-Markovianity in Section 3.2, showing the analogies and the
differences with the classical case and making a detailed survey of all the main criteria
and measures of non-Markovianity so far introduced.

In Chapter 4 we discuss the relationship between non-Markovianity and the quantum
regression theorem, an useful theoretical tool which, whenever valid, allows to recon-
struct, from the bare knowledge of the mean values of system’s observables, the two-time
(multi-time) correlation functions. The latter quantities contain significant information
about the system which are not contained in the mean values; a well known example
of this is represented by resonance fluorescence spectrum [21, 22]. In general, access-
ing them can prove a formidable task; the quantum regression theorem is arguably the
most simple way to accomplish it. In this Chapter we will investigate how the assump-
tions and approximations which guarantee the validity of this procedure relate with the
conditions under which the dynamics describing the evolution of an open quantum sys-
tem is Markovian or non-Markovian. A suitable figure of merit for the violations of the
quantum regression theorem, that can be interpreted as the relative error between the
two-time correlation functions obtained exactly and by applying this procedure, is also
introduced in order to make the connection with the non-Markovianity more quantita-
tive. This analysis is then carried out explicitly in a specific system, the so-called pure
dephasing spin-boson model, where the estimator of the violations to the quantum re-
gression theorem is analytically evaluated and related to two well-known measures of
non-Markovianity, one based on the time-behavior of the trace distance between two re-
duced states of the system [11] and the other based on violation of completely-positive
divisibility [13].

In Chapters 5 and 6, discussion is centred on the characterization of the change in the
environmental energy, i.e. heat, in non-driven open quantum systems undergoing a non-
Markovian evolution.
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In particular, Chapter 5 is devoted to investigate how the mean heat flow between an
open system and its environment behaves in presence of memory effects in the reduced
dynamics. This task is accomplished by means of the so-called full-counting statistics
formalism which allows to reconstruct in principle all the cumulants of the probability
distribution for the change in a generic observable of a quantum system. This investi-
gation tool, widely employed in quantum thermodynamics community to characterize,
for example, the energy flow in quantum thermal machines, is presented in Section 5.2.
By making use of it, we reconstruct the heat flow which occurs in a non-Markovian dy-
namical regime, both for finite and Gaussian open quantum systems. At variance with
what happens in the Born-Markov semigroup approximation, where a steady heat flow
from the hotter to the colder subsystem takes place, a backflow of heat from the envi-
ronment to the system can originate, even in absence of initial temperature gradient,
when the dynamics is non-Markovian. A suitable condition for the occurrence of this
phenomenon and a measure for its amount as property of the dynamical map determin-
ing the reduced dynamics is given in Section 5.3 and related with suitable quantifiers of
non-Markovianity in two paradigmatic and important models: the spin-boson system in
Subsection 5.3.2 and the quantum brownian motion in Section 5.3.3.

In Chapter 6 we will finally deal with the formulation of a new family of lower bounds
for the mean dissipated heat in a general environmental-assisted erasure-protocol sce-
nario, where Landauer’s principle applies [4, 23]. After discussing the second principle
of quantum thermodynamics in Section 6.1 and its equivalent formulation in terms of
Landauer’s principle in Section 6.2, we derive, again by means of a full-counting statis-
tics approach, the above-mentioned family of lower bounds, which have the properties
to be always asymptotically tight and also valid in a non-equilibrium scenario. Their
explicit evaluations are carried out in a novel interesting quantum system consisting of
a three-level V-system, externally pumped by a laser, and coupled to an environment
made of a two-level system through an XX interaction. Analytic exact solutions for the
dynamics of such system are also provided and discussed in Section 6.4.

Conclusions are finally drawn in Chapter 7.









Open quantum systems

2.1 Composite quantum systems

At the very root of open quantum systems theory lies the concept of composite quantum
system, of which we will then now present the main notions that will be useful for our
purposes.

As the name suggests, a composite quantum system is made of two (or more) quantum
systems, generally interacting with each other, regarded as subsystems of the former.
Without lack of generality, let us assume to deal with a composite quantum system made
of two subsystems, which we label as S and FE for future convenience.

Quantum mechanics associates to every physical system a separable Hilbert space .77,
equipped with the scalar product (¢|¢)), with |¢) , [¢) € , and with the induced norm
| 1¥) ll= v/ (¥]¢¥). Denoted with .75 and .7#% the Hilbert spaces associated to the sub-
systems S and E respectively, the structure of the Hilbert space of the composite system
SE is simply given by the tensor product Jsg = 5 ® . Given a generic Hilbert
space .7, we will denote with B(.7#) the set of all linear and bounded operators O on

the Hilbert space; such set is itself a Banach space with respect to the || - ||oc norm defined
as
10 = sup [[O) . (2.1)
lw)lI=1

In case of a composite system, given two linear operators Og € #(#5) and Op €
HB(H%), we can define the linear operator acting on .#%sg by taking their tensor prod-
uct Og ® O and any operator Osg € #(#sE) can be written as

Osg = Z Os1 @ Op . (2.2)
k

In particular, operators of one particular subsystem of a composite system, say S for con-
venience, take the form Og ® 1, and are said to be local operators of S (or equivalently,
to act locally on J75).
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Moreover, given a positive operator O € B(.%) acting on a generic Hilbert space, i.e.
such that
(YlOlY) 20 VY) € A, (2.3)

its trace, given a complete orthonormal basis orthonormal basis {uj}r=12.. € J , is
defined as

Tr[O] = Z (ug|O|ug) - (2.4)

k

If the trace is finite, i.e. if the series in Equation (2.4) converges, then the result is in-
dependent on the choice of the basis; the set of all operators O € B(.%’) whose trace is
finite, which will be denoted with 7 (7¢) and referred to as the set of trace-class operators,
is a Banach space with respect to the so-called trace norm defined as

10 h=T[[0f]  OeT(Xx) (2.5)

Whenever composite systems are taken into account, the trace can be carried out also
on a particular subsystem S/E of the composite systems, thus producing an operator
acting on the complementary Hilbert space one associated with the subsystem S/E (thus
on E/S respectively). This operation, called partial trace, will be denoted with a pedex
corresponding to the subsystem over which the operation is being performed, i.e.

OS/E = TrE/S [OSE] 5 (26)

which describes an average performed over the degrees of freedom of the system over
which the trace is performed. From a physical point of view, the partial trace over a
system corresponds to averaging out that contribution in favour of focusing the attention
on the remaining subsystem.

A remarkable property of the trace is that it gives the following form of duality between
T () and B()

Tr :B(A) x T(H#) — C

(0, A) s Tr [OTA} 27)

which is well defined since the product of a trace class operator and of a bounded op-

erator is still a trace class operator. Equation (2.7) defines a scalar product on 7(#) !,

LT () is a bilateral ideal of B(#), which means that VO € T(s#) and VB € B(s¢), we have that the
products OB, BO still belong to 7 () and in particular

[ BO i< B lleo [ O |1 - (2.8)

Another important bilateral ideal of B(#) is represented by the set HS(.7#) made of linear operators on ¢
such that
Tr [o*o} < +oo. 2.9)

HS(A) is both a Hilbert space with respect to the Hilbert-Schmidt scalar product (2.13) and a Banach space
with respect to the Hilbert-Schmidt norm

| A= +/Tr[0T0], O eHS(H#). (2.10)
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known as Hilbert-Schmidt scalar product, defined as
(0,B) = Tt [o* B} . (2.13)

According to the modern statistical formulation of quantum mechanics [6-8], a generic
system’s state, i.e. the representative of an equivalence class of preparation procedures,
is represented by a trace class, semi-positive and with trace equal to 1 operator, called
statistical operator, i.e. an element of

S(H)={peT(H)p=0,lpl=1} (2.14)

which is a convex subset of 7 (7). The latter property physically traduces the possibility
to consider a statistical mixture of states as a state itself. In particular, the extremal points
of §(4¢), i.e. one dimensional projectors

p=10) [, V) e, (2.15)

are referred to as pure states and correspond to the highest control in the preparation
procedure since their Von-Neumann entropy

S(p) = —Tr[plnp) (2.16)

is zero. In contrast, any state which can be written as a convex combination of pure states
is said to be mixed

P= MW (Tpl, A =0, ) Ne=1, (Tp|T)) = g, (2.17)
k k

In the case of a composite quantum system, given a generic statistical operator psr €
S(H5E) describing its state, one can introduce the statistical operators representing the
states of the subsystems S and FE, often called marginals, respectively by means of the
partial trace (2.6)

ps = Trg [psel, ps € S(Hs)

(2.18)
pe = Trspse], pe € S(HE).

In the simplest case where the subsystems S and E do not interact with each other and
thus are uncorrelated, the state of the composite system psg is given by a factorized (or
product) state of the form

PSE = Ps & pE-. (2.19)

Since the following chain of inequalities holds
| B lloo<ll B [l2<]| B |1, (2.11)

it follows that

T(H) CHS(H) C B(AH). (2.12)
Note that, even though O € B(.%) is not positive, its Hilbert-Schmidt norm is well defined by virtue of the
fact that the operator |O| = VOO is positive by construction.
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Another class of states describing a composite system are those of the form

pSE =D DkPsk ® pEk, Dk > OVE Y pp=1, (2.20)
k k

with pg/p 1 € S(H5 k). These statistical operators physically correspond to states, re-
ferred to as separable, which have been prepared by means of local operations performed
independently on the two subsystems plus a classical communication; correlations built
up this way between S and E are only classical.

There is one other class of states of the composite system SE, i.e. the collection of all
the statistical operators which cannot be represented as separable state. Such states are
called entangled. The entanglement is a genuinely quantum feature and has a central
role in many fields of application, such as for example quantum information theory and
theoretical foundations problems. Since an extended exposition and discussion of the
entanglement and its witnesses in a general framework are beyond the scopes of this
Thesis, we refer the interested reader to [24].

Alongside with states, regarded as preparation procedures, in the statistical interpreta-
tion of quantum mechanics one associates to registration procedures, operated by suit-
able macroscopic devices, the observables of the system. Their mathematical representa-
tives are given in terms of positive operator-valued measures (POVMs) which, provided (2
denotes the set of the possible outcomes of a measurement performed on a given observ-
able and X(12) its c—algebra, are linear and convex-preserving maps of the form

F : X(Q) — B()
M — F(M), (2.21)

where F(M) € B() is called effect and has the following properties:

0< F(M) <1, (2.22)

F(Q) =1, (2.23)

FP(UpMy) =Y F(My) if My My =0 for k # 1. (2.24)
k

The effect 7(M) is in general not idempotent, i.e. F2(M) # F(M); when it does, F (M)
corresponds to a projection operator and we speak of projection-valued measure (PVM).

The final and key ingredient which combines together states and observables to give
statistical predictions, which can then be compared with experimental quantities, is pro-
vided precisely by the above-introduced duality form (2.7), induced by the trace, be-
tween 7 () and B(¢). Given a generic quantum system prepared in a state p € S(J¢),
the probability that a certain observable described by a POVM F takes value in a Borel
set M is given by the so-called Born rule

pp (M) = Tr[p F(M)] . (2.25)
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This expression represents the deep core of the statistical formulation of quantum me-
chanics. 2

2.1.1 Linear transformations

Let’s now describe a general one-step transformation of the operators considered above
without connecting them, for the moment, to any specific evolution process, as it is not
necessary at this level of the discussion.

For convenience we will restrict our attention to the finite-dimensional case 7% = CN.
This also implies that
T() = B(o) = L(CN), (2.27)

with £(C") being the space of linear operators on CV. It is worth noticing that £(C") is
a Hilbert space with respect to the Hilbert-Schmidt scalar product (2.13) (-,-) : L(CY) x
L(CY) — C. By making use of it it, it is easy to introduce for every linear map A € £(CY)
the adjoint map AT such that

(AT[w],0) = (w,Alo]), Vw,o e L£(CN). (2.28)
Moreover, a map A is said to be positive if
(w,Alo]) >0, Ywe L£(CY). (2.29)
Let’s now consider a basis {04 },—1,. n2 which is orthonormal in L(CN) with respect to
the Hilbert-Schmidt scalar product (2.13), i.e.
(0ayT3) = 0q,p8- (2.30)

Every linear map A which acts on £(C¥), often also referred to as superoperator, can be
expanded on this basis as

Alw] =3 AusTr [0}; w} o, Vw € L(C), (2.31)
B

where
Ao = (00, A[og]) = Tr [a; A[aﬁ]} . (2.32)

This representation is usually called Hilbert-Schmidt representation and, in what follows,
we will denote with a boldface typeface the Hilbert-Schmidt matrix A, with entries given
by A, associated with A .

% Note that the properties of POVMs and of statistical operators guarantee that 4, (M) is a real number
between 0 and 1 and that the map

wh  B(Q) — [0,1]
M — ph (M) = Tr [p F(M)] (2.26)

is a classical probability measure.



Chapter 2. Open quantum systems 12

Moreover, the set of linear maps on £(C) is itself a Hilbert space, denoted as £ (£(CV)),
which can be identified with the algebra of the N? x N? complex matrices and is equipped
with respect a scalar product given by

(Ar, Ag) = (Mafoa], Aglow]), A1, Ay € L(L(CY)). (2.33)

67

Two different sets of orthonormal bases for the set of linear transformations can thus
be introduced, each one with reference to the scalar product defined on the respective
Hilbert space. These two sets, which will be denoted as {Eag}g, 26=1 and {Fa/g}g 2,6’=1’
read

Eoslw] = 0ot [ag,w} . Ywe L£(CM), (2.34)
Foplw] = oawog, Yw e £L(CV), (2.35)

and give rise to two representations of any generic superoperator that are equivalent but
that allow to access some relevant properties in a more/less convenient way.

Given a generic superoperator A as considered before, its expansion on the basis { £,z
N2
}a.p—1 Teads

Aw] =3 AagBag = Y AasTr [a}j w} oay Vw € L(TN), (2.36)
ap B

with
Ao = (Eag, A) = Tr [ag; A[aﬁ]} . (2.37)

By direct confrontation with (2.31), it is straightforward to realize that this is equivalent
to the Hilbert-Schmidt representation, this in turn meaning that the expansion on the
first basis { E, g}g ;:1 corresponds to the interpretation of viewing the map A as a linear
operator that acts on the Hilbert space £(CY). This representation is well suited for
studying compositions of maps: if A; 2 denote in fact the two Hilbert-Schmidt matrices
associated with the linear maps A 5, the matrix associated with = = A; o A is simply
given by the matrix product 2 = A1A». This will turn out to be useful in Section 2.2.3,
when time-local expressions for the master equations will be derived.

Expansion of the superoperator A on the second basis { F, ,3}2[ 2ﬁ=1 on the other hand leads

to
Alw] = AL sFap =Y A soawos, Yw e L(CY), (2.38)
af af
where
Nyg = (Fag, A) =3 Tr [aﬁaf/alé/\[aw] . (2.39)
v

Even in this situation, the set of coefficients {A], 5}2’ ;:1 can be rearranged as the entries
of a matrix which will denoted with A’. This representation will be useful to check a very
important property of linear maps, which is complete positivity. As we will discuss more
thoroughly in Subsection 2.1.2, the complete positivity of A will in fact correspond to
the positivity of the associated matrix A’.
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It is of course possible, finally, to move from one representation to the other simply as

Ny =3 Rap(Farg, Fag) = 3 AagTr [o0l0t 04 (2.40)
af af

and viceversa.

2.1.2 Complete positivity

The notion of complete positivity has a long history tracing back to Stinespring [25], Choi
[26, 27] and Kraus [28]. Its enormous relevance in quantum mechanics is due to the fact
that, together with the requirement of being trace-preserving, this property characterizes
those linear maps which, among those introduced in the previous Subsection, properly
describe well-defined and physically implementable quantum states transformations.

Definition 2.1. A linear map A : T(#) — T(#), with 7 = CV, is completely positive
if and only if the map 3

ARy : T(H# CN) = T(H#oCN) (2.41)

is positive.

This property is evidently much more demanding than just positivity (see Equation
(2.29)); a well-known example of a positive map which is not completely positive is
represented by the transposition map, which thus does not represent either a physical
evolution nor an implementable measurement procedure.

Physically, complete positivity traduces the following idea: if, alongside the quantum
system of interest, whose evolution we assume to be given in terms of a map A, we
consider an uncoupled ancillary system undergoing trivial evolution 1y, the extended
dynamics, described by A®1 y;, is still positivity-preserving. Borrowing the notions from
composite quantum systems above introduced, the combined map A ® 1 can thus be
viewed as an operation which acts locally on one of the two subsystems without affecting
the other one.

Completely positive maps, at variance with the positive ones, can be given an important
representation provided by the well-known Kraus decomposition. It can be proven [27, 28]
that a linear map A € £(C) is completely positive if and only if it can be written as

N2
Alw] = Qawaf,, (2.42)
a=1

where the operators Q, € L£(C") are called Kraus operators.

3As stated above, for convenience we have restricted our attention to finite-dimensional quantum sys-
tems. The definition of complete positivity of a map in the infinite-dimensional case is that the extended
map A ® 1,, must be positive for any n € N.
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Kraus decomposition has a direct connection with the representation of linear maps
given by Equation (2.38). Suppose in fact that the N? x N? matrix A’ associated with
the map A is positive definite (which means hermitian and with positive eigenvalues
{A,}a=1,. n2); this implies that it can be diagonalized through a unitary matrix U, i.e.
A’ = UDUT, where D = diag (M,...,Ny2) and where the columns of U are made by
eigenvectors of A'. If we now define the operators & = Uo, we immediately obtain that
Equations (2.38) and (2.42) coincide upon the identification

Qo = V/N\5a. (2.43)

As anticipated before, the complete positivity of a linear map A can be conveniently
checked by looking at the positivity of the associated matrix A’.

Finally, it is important for future purposes to introduce the more familiar Choi matrix
Achoi associated with a linear map A and to prove that it coincides with the represen-
tation of the map given by A’, so that it can be exploited as well in order to study the
complete positivity of A. First of all, consider the orthonormal basis {|u)}r=1.. n in
= CV and denote with ey, = |ug) (4] the induced orthonormal basis on £(CV). The
Choi matrix associated with a linear map A is the matrix

Ale11]  Alers] Alein]
Achoi = A[?l] A[ffgz] A[eng] . (2.44)
Alen1] Alene] -+ Alenn]

It is easy to see that the last expression can be equivalently re-expressed as

Achoi =y Alew] @ ey = N (A @ 1) [|6) rr (Dl ari) (2.45)
kl

where the last equality has been obtained by introducing the maximally entangled state
in @ =CNoCN

N
D) = \/1N ; lug) @ |ug) . (2.46)

Equation (2.45) represents a well-known and important theoretical result known as Choi-
Jamiotkowski isomorphism between completely positive maps on £(CV) and states in
CN ® CN. The property of Acpe; to be positive definite and its partial trace gives Id is
then translated into the fact that the output state (A ® 1n) [|¢) 1,5 (@ly 5] s still a well-
defined statistical operator in CV @ C. Moreover it is immediate to see the positivity of
Achoi implies the positivity of A ® 1 and thus, in light of Definition 2.1, the complete
positivity of A. We finally explicitly show the equivalence between the Choi matrix and
the representation provided by Equation (2.38), i.e. A’. On the one hand, the coefficients
of the Choi matrix on the basis |ug, ;) € J# ®@ # = CN @ CN read

(e, wi| Achoi [unr, uyr) = N (ug, wi| (A @ IN) [|0) ar g (Dl ar ] lunr, wr)
= (upr| Aflwg) Cupl] lug) - (2.47)
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On the other hand, we have that the matrix elements A/, P defined in Equation (2.39) on
the basis ey, provided « <+ (k,1), 8 <> (K/,I') and v <> (k”,1”), reads

o = > Trlluss) Cup| lur) (wpr| [ur) (wre] Allugr) Cupe]]
k//7l//

= (s | Aflur) (o] Jue) - (2.48)

which coincides with Equation (2.47).

2.2 Reduced dynamics: dynamical maps and master equations

In this Section it is shown how the concepts introduced above apply to the framework
of open quantum systems. As we stated at the beginning of this Chapter, the notion of
composite quantum systems stands at the basis of open quantum systems. A bipartite
structure like the one considered in Section 2.1 in fact arises very naturally whenever our
quantum system of interest interacts with an external environment, often also referred
to as bath or reservoir to stress that it is usually considered having much more degrees
of freedom than the system. The overall system is assumed to be closed, so that its dy-
namics is given in terms of a unitary evolution. It is however often the case that the
description of this overall dynamics is too complicated by the presence of the environ-
ment and thus unfeasible even by means of numerical simulations. In any case, even in
the rare situations where this approach turns out to be attainable, one would get from it
a huge amount of unnecessary information for a sufficiently complete description of the
system and of its dynamics. Last but not least, in practical situations it may often be the
case that an experimental control is achievable only on a small part of the full system.

For all these reasons one is naturally led to consider a reduced description given in terms
of a restricted set of relevant dynamical variables while performing an average over the
remaining degrees of freedom. It is immediately clear then that we can apply the whole
construction put forward in Section 2.1 with S denoting the reduced system we focus on
and E denoting the environment, whose presence modifies the dynamics of the former
(that is why we used the labels S and E from the beginning).

2.21 Dynamical maps

Let 75 and % be respectively the Hilbert spaces associated with the system, often
simply called open system, and the environment (degrees of freedom of the composite
system we are not interested in, which will be therefore averaged off). The reduced
system is represented by the reduced state obtained from the total state through Equation
(2.18)

ps = Trg [psk], (2.49)

where Trg [-] denotes the partial trace over .#%.
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Since the overall system is assumed closed, its dynamics is governed by a total Hamilto-
nian which can be written as

Hrot(t) = Hs(t) @ 1p + 15 @ He(t) + Hse(l), (2.50)

where every interaction between the reduced system and the environment is contained
in the interaction Hamiltonian term H gz (¢). The evolution operator thus becomes

U(t,to) = T exp [; / " s ’HTot(s)] (2.51)

to

where T is the chronological time-ordering operator, whose action is to order products
of time-dependent operators such that their time-arguments increase from right to left.
The total state of the composite system is then formally given by

pse(t) = U(t, to)pse(to)U! (t, to) (2.52)

and the latter, by means of the partial trace over the environmental degrees of freedom,
gives the reduced state at time ¢

ps(t) = Trp |U(t, to)pse (to)U! (t,to)} . (2.53)

This way one establishes a family of linear maps = : S(#s ® #%) — S(#5) such that

pse(to) = ps(t) = Y(t,to)pse(te) = Trp [U(tato)PSE(to)w(tvto)} (2.54)

which are completely positive and trace preserving (CPTP), since any unitary map is
CPTP, the partial trace is CPTP and any composition of two CPTP map is again a CPTP
map.

However, in order to give a self-consistent description of the reduced dynamics which
is solely based on the open quantum system, an endomorphism of the set S(.#%) has
however to be introduced, which thus associates to any reduced state pgs(to) its corre-
sponding evolved state pg(t) at a subsequent time ¢. This can be done if we assume that
the initial total state is a factorized state, i.e. of the form

psEe(to) = ps(to) ® pe(to)- (2.55)

The definition of a linear map A(t, to) : S(#5) — S(#%) such that

ps(to) = ps(t) = Alt to)ps(to) = Trm [Ult to)(ps(to) @ pilto)Ul(t,10)]  (2.56)

can then be properly introduced. A(t,?y) is in this case called quantum dynamical map.
The latter is CPTP by construction, which can be easily seen by considering a spectral
decomposition of the environmental state pr(to) = >, Pk |¢r) (¢x| and elaborating as
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follows

ps(t) = Tri [U(t,to) (ps(to) @ pis(to)) U'(t,10)]

—Z (@51 Ut to) [PS (Zml% ¢k!>
—Z (&3] Ut 10) 166)) ps(0) (Vi (6n] U (2, t0) |67))

Ut (t,to) o5

- Z Qi (t,10) ps (0)2L (2, o), (2.57)
jk

where Qi (t,t0) = /Pr (@5 U(t, to) |¢x). It is evident that this expression corresponds to
a Kraus decomposition (2.42), thus guaranteeing the complete positivity of the map A(t,
to). Finally, the trace-preserving character is an immediate consequence of the unitarity
of the operator U (¢, to).

2.2.2 Master equations

In the previous Section it has been shown how the evolution of open quantum systems
can be consistently given in terms of the so-called family of quantum dynamical maps,
which act at the level of the reduced system, obtained by partial trace over the envi-
ronment of the total unitary evolution operator. Nevertheless it is often the situation in
physics that one has to deal with equations of motion rather than with evolution maps,
which are instead usually obtained by solving the former. When such equations of mo-
tion are relative to the reduced system only we speak of master equations, which represent
the topic of the present Section. In particular we will show how the latter can be obtained
from the unitary evolution or from the dynamical map and, viceversa, how to reconstruct
the dynamical maps from the knowledge of the master equations. Moreover, we will in-
vestigate which constraints can be imposed on the structure of the master equations such
that to lead to physically implementable dynamics, i.e. giving rise to CPTP dynamical
maps. The latter problem is in fact of great relevance, since master equations are usually
introduced either through several approximations, either on a phenomenological basis,
thus losing a priori the equivalence with the full unitary dynamics.

2.2.2.1 Projection operator approach to the description of the reduced system’s dy-
namics

Starting from the unitary time evolution of the composite system it is possible to derive
by means of the projection operator technique, the master equation for the reduced statisti-
cal operator. This technique, on which more extensive presentations can be found in the
literature (see for example [21]), stems from the general idea that, when we have to deal
with a composite system made of a relevant subsystem and a (possibly complex) envi-
ronment, a way to try to obtain a manageable dynamics is to get rid of the unimportant
degrees of freedom by means of some projection operator.
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A projection operator is defined as a linear map P which sends states into states, thus
being completely positive and trace-preserving, and which is in addition idempotent
P? = P. Consider the generic situation described many times above where a system S is
coupled to an environment E such that the dynamics of the overall system is dictated by
an Hamiltonian of the form H = Hgs + HE + AHsg, with A being a constant denoting the
coupling strength between S and E. Within this generic framework, one can introduce
two projection operators P and Q whose actions on a generic element psp € S(H5®.7#%)
is defined as

Ppse = Tre [pse] ® pe = ps ® pE,

(2.58)
Qpse = (1 = P) psk,

with pg being a fixed state of the environment, usually taken to be the stationary Gibbs
state pg = e 7E /Trp [e7P"~]. These two maps have the properties to be idempotent,
i.e. P2 = P and same for Q, and to satisfy P+ Q =1 and PQ = QP = 0).

The state Ppgg is often called relevant part of the statistical operator psg, due to the
possibility to reconstruct the reduced statistical operator simply by means of the partial
trace over the environment

ps = Trg [Ppsk] . (2.59)

Correspondingly, the state Qpgp; is referred to as irrelevant part.

Starting from the the Liouville-Von Neumann master equation for pgsg in the interaction
picture (denoted by a” ~ ” over the quantities)

%ﬁs;;(t) = —i)\ |Hsp(t), pse(t)| = Me(t)pse (), (2.60)

one obtains the corresponding two equations of motion

%Pﬁw(i) = P%ﬁszz(t) = XPL(t)pse(t) = N\PL(t)Psp(t) + APL(t)Qpse(t), (2.61)

4 0psit) = Q% psp(t) = NOL()psi(t) = NQL(WPAsi(t) + XQL() Qpsr(t). (262

The aim being to obtain a closed equation of motion for the relevant part of psg, we first
formally solve the second equation to get

t
QﬁSE(t) = g(t, to)QﬁSE(to) + )\/t dsg(t, S) QZ(S)'PﬁsE(S), (263)
with .

G(t,s) = T exp [)\ / dTQﬁN(T):| (2.64)
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being the forward-time propagator.and T being the time-ordering operator defined in
Equation (2.51), and we substitute it into the first one, obtaining

%pﬁSE(t) = APL(t)Ppsr(t) + XPL(H)G(t, t0) Qpsr(to)

+ A2 / t dsPL(t)G(t,s)QL(s)Ppse(s). (2.65)

to

This result has been obtained without any assumption or approximation. A great sim-
plification can be obtained by considering that the total initial state is factorized, which
implies Qpsx(0) = 0, and furthermore assuming that PL(t)P = 0 (which can always be
set upon a shift in the interaction Hamiltonian), under which Equation (2.65) reduces to
the following time non-local equation, often called Nakajima-Zwanzig equation,

d_ ! _
dthSE(t):/ dSlCNz(t,S)P,OSE(S), (266)
to

with Knz(t,s) = APL(t)D(t,s)QL(s)P. In light of its form Kyz(t,7) is commonly
called memory kernel. Equation (2.63) can be cast into an equivalent but local in time
equation by introducing the backward-time propagator

G(t,5) = T exp [—)\ / t dTE(T)} , 2.67)

with T being the anti-chronological ordering operator, and inserting it into the expres-
sion for the formal solution of the irrelevant part of the statistical operator

Qpse(t) = G(t,t0)Qpse(to) + )\/t dsG(t, s)QL(s)PY (. to) (P + Q) pse(t).  (2.68)

to

Upon defining the operator

S(t) = A / t dsG(t,s)QL(s)PY(t,to), (2.69)

to

expression (2.68) reads
(1 —2%(t) Qpse(t) = G(t, to) Qpse(to) + X(t)Ppsk(t). (2.70)

Solving with respect to Qpsr(t) and inserting the result into the equation of motion for
the relevant part leaves with

%PﬁSE(t) = Krer(t)Ppse(t) + Z(t)Qpse(t), (2.71)

where
Krep(t) = XPL(t) (1 —2(t) ' P (2.72)

is the time-local generator and

Z(t) = APL(t) (1 — 2(t) ' G(t, ) Q (2.73)
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denotes the inhomogenous contribution. Though we will return on this in Chapter 4,
we note that the inhomogeneous term vanishes in the case system and environment are
uncorrelated to each other. While this condition is assumed to be true at the initial time
t = tp, itis almost certainly not met at generic time ¢, since the coupled evolution between
system and environment leads to the onset of correlations between S and E. This fact
thus play a role in the determination of two-time correlation functions, as will be made
explicit in the following Chapter.

2.2.2.2 Perturbation expansion of the time-local generator

Both the forms of the time-local generator Krcy, () and of the inhomogeneity Z(¢) are in
general very difficult to be accessed in an exact way and, even in the case of an initially
factorized total state (so that Z(t) = 0), it is very rare to be able to write down an exact
evolution equation for the relevant part Ppsr and thus, by means of the partial trace
over the environment, an exact closed master equation for ps(¢). It is often the case that
a set of physically sensible approximations is performed on the specific model under
consideration, which allows to obtain simplified forms for 7 (t). The most common
systematic approach is to expand the time-local generator in powers of the coupling
strength A\ and then truncate the series to the first lowest terms, thus invoking a weak
coupling approximation. Since this method will be largely employed in this work of
Thesis too, we will briefly recall this method and the respective results.

First of all, we notice that the term (1 — X(t))~! appearing in Equation (2.72) can be

expanded in geometric series * as

+oo
1=5@)"' =) 2" (2.74)
n=0
The time-local generator then reads
“+oo
Kren(t) =AY PL(t) [S(t)]" P. (2.75)
n=0

Now, by expanding both X(¢) and Kr¢,(t) in powers of A as
+o0 +o0
(1) = YA, Krewlt) = Y NKFEL (), (276)

m=1 m=1

and comparing terms relative to the same power of \, we get that
Krlr () =PLWOP, K&, (1) = PLE)SD ()P 2.77
Qon() = PEWP, K2, (1) = PLOSD(1)P, @.77)

where

t ~
> () = / dsQL(t)P. (2.78)
0

*Since Equation (2.72) we are assuming that (1 — £(¢)) ™" exists, which is the case for small times ¢ or for
not too large values of the coupling A.
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Further terms proportional to higher powers of A can be considered; the interested reader
is referred to [21]. By making use of the above-mentioned condition PL(t)P = 0, the
master equation for the statistical operator jg(t) at second order in A is therefore given
by

d . 5 [* ~ ~ N

Gis(t) = =3 [ asteg {[Fisw(0). [fises). s(0)] ]} 2.79)
This form of the master equation will be considered many times in this Thesis.

It is finally worth noticing that even the inhomogeneity Z(¢) can be in principle expanded
in series of power of A in the exact same way; since we were considering, as previously
stated, that psg(0) = ps(0) ® pr(0), this term has been neglected since vanishing but
it will play an important role in the determination of the validity of the so-called quan-
tum regression theorem (see Chapter 4), when it will be applied to a state at time ¢, not
necessarily in factorized form any more.

2.2.3 From dynamical maps to master equations and vice-versa

In Subsection 2.2.2.1 we have seen how to derive a master equation for the reduced statis-
tical operator starting from the microscopic knowledge of the model under examination,
i.e. the Hamiltonian of the composite system, by means of projection operators. It is
often the case that this amount of information on the overall system is not accessible,
and instead only the evolution of the reduced system is known in terms of a family of
CPTP dynamical maps. In this Subsection we explicitly show how a master equation can
be derived from the knowledge of A(t,ty). In particular, we will focus our attention to
those in time-local form, which are often more manageable and in particular will turn
out to be more useful in order to access dynamical properties such as non-Markovianity.
It is important to stress that this does not entail any loss of generality. In Subsection
2.2.2.1, the time non-local and the time-local master equations obtained by taking the
trace over the environment of Eqs. (2.66) and (2.72) respectively, were by construction
formally equivalent to each other.

Consider a one-parameter family of quantum dynamical maps {A(¢, ty) }+>¢,, where ev-
ery A(t,tp) is a CPTP linear map on £(CY). Its action on a generic state of the system
ps(to) is to output another state pg(t) at time ¢, i.e.

ps(t) = Alt, to)ps(to): (2.80)

Under the rather mild assumption of differentiability with respect to time and invertibil-
ity of A(t,1p), it is immediate to construct a time-local master equation

%Ps(t) = [d/\(tato)} ANt t0)ps(t) = Krorn(t)ps(t), (2.81)

dt
with Krcr(t) being the time-local generator defined in Equation (2.72). Since the latter
is then given by the composition of two linear maps, the representation of the three
superoperators on the basis { E,5}% Z;B given by Equation (2.36) is the most suited since,



Chapter 2. Open quantum systems 22

as stated in Subsec 2.1.1, the composition of maps is translated into the product of the
associated matrices, i.e.

d
KTOL(t) = thA(t, to)] ALt to). (2.82)
In Subsection 2.2.4 we will put constraints on the structure of the master equation (2.82)
in light of the properties of the dynamical map A(t, to).

Finally, starting instead from the knowledge of the time-local generator K7 (t), the dy-
namical map A(¢,?y) can be reconstructed by making use of the Dyson series expansion

A(t,0) = T exp [ /O “ir ICTCL(T)] : 2.83)

where again 7T denotes the chronological time-ordering operator and the convergence of
the series is guaranteed by the boundedness of Kr¢r,(t) due to the finite-dimensionality
of the Hilbert space we are focusing on.

2.2.4 Structure of time-local master equations

As already stressed above, it is often the case that open system’s dynamics are investi-
gated through equations of motion, being local as well as non-local in time, not obtained
from the full unitary evolution, but rather introduced on the basis of phenomenological
approximations and ansatz that ultimately depend on the model considered. Since the
equivalence with the full unitary evolution is therefore lost, it is not a priori guaranteed
that they lead to a well-defined time evolution: it still represents an open problem to
determine in full generality which is the operatorial structure of those master equations
which lead to proper well-defined reduced evolutions. The aim of the three following
Subsections is to tackle this topic by showing which properties of the dynamical map
describing the reduced dynamics reflect in determine constraints on the structure of the
associated master equation and, viceversa, which features of the latter can guarantee a
proper and physically implementable dynamical map.

2.2.4.1 Trace and hermiticity preservation

Consider as our starting point a time-local master equation with a time-local generator
Krcr(t) given by Equation (2.72), either obtained from the unitary evolution through
the projection-operator method, either from the knowledge of the dynamical map A(t,
to) through Equation (2.82). It is very important to notice that, by construction, Krcr(t)
satisfies the two following conditions

Tr [Krep(t)w] =0,  Yw e L£(CV), (2.84)
(Krcrw)' = Krepwl,  vwe £(CV), (2.85)

which respectively reflects trace and hermiticity preservation of the evolution map.
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Notice that we are not taking into account, the role that complete positivity has on fixing
constraints on the structure of the associated time-local master equation, posticipating it
to the two following, and conclusive, Subsections.

Consider now a basis {0a}4—¢__n2_; on £(C") such that it is orthonormal with respect
to the Hilbert-Schmidt scalar product and moreover satisfies the following constraints

: (2.86)

oy =

Ek

Tr[oa) =0, fora #0, (2.87)

it is possible to prove [29] that any trace and hermiticity preserving linear map = on
L(CY) can be expressed on this basis as

N2-1

1
Ew=—i[H,w]+ Z = (aawag - Q{Ugaa,w}> , VYwe L£(CN), (2.88)
af=1

where {E] 5}, 5—0,...,.nv2—1 are the coefficients of the matrix =’ associated to the map through
the representation (2.38) and

1
"= (a* - a) (2.89)
denotes an effective Hamiltonian with
1 N2-1
o=— Y E,0a (2.90)
\/N a=1
The matrix Z’ is hermitian, i.e.
Ehs=Zgn  Va,f=0,...,N? -1 (2.91)

due to the request of hermiticity preservation.

The application, by virtue of Eqs. (2.84), of this procedure to the time-local generator
allows to express it as

d N 1
—ps(t)=Krer(Dps(t)=—i[H(1), ps(O]+ Y Ko " (1) (Uosz(t)U; - Q{Ugffmps(t)}) :
o (2.92)
with
H=_ (aT(t) - a(t)) :
LN (2.93)
o(t) = N azl [Krer] oo (B0,

*

where the coefficients ([K7¢ ], (1)) = [K7c ], (t) are the entries of the matrix K7 (¢)
relative to the expansion of the time-local generator Kr¢y, on the basis {Fag}g 25_:%, see

Equation (2.38). The first term of equation (2.92) consists of an unitary contribution due
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to the effective Hamiltonian #, while the remaining part takes into account for the dis-
sipative and decoherent effects due to the interaction with the environment. The sub-
matrix made of the entries {Krcr(t)}as=1,. n2—1 Obtained from Krcrw(t) by removing
the first row and column is still hermitian and thus there exist for any time ¢ unitary
matrices V (¢) which diagonalize it

Krow(t) = VOT()V (1), (2.94)

with T'(¢) = diag (y1 (), ..., vn2_1(¢)) and 74 (¢) real functions of time Vk = 1,..., N? — 1.
It is then possible to write the master equation in diagonal form

d Nt 1
st = =i (M), ps (] + Y (1) (&ku)ps(t)&,i(t) - 2{&,1<t>ak<t>,ps<t>}> . (299)
k=1
where
N2-1
Gr(t) = D Via(t)oa. (2.96)
a=1

2.2.4.2 Complete positivity and time-local master equations: Quantum dynamical
semigroups and the Gorini-Kossakowski-Sudarshan-Lindblad master equa-
tion

In the previous Subsection we have seen how the properties of a dynamical map to be
trace and hermiticity preserving traduces into a set of constraints on the structure of
the associated time-local master equation. In this and the following Subsections we will
focus on another important property which characterizes, as stressed above, physically
well-defined dynamical maps: complete positivity. The first benchmark result in this di-
rection was provided by Gorini, Kossakowski, Sudarshan and Lindblad in 1976 [29], who
found the most general form of time-local generators describing a sub-class of dynamics
called completely-positive quantum dynamical semigroups.

First of all, a one-parameter family of quantum dynamical maps {A(t,to)}i>¢, is said
to be a completely positive quantum dynamical semigroup [30] if it satisfies the following
conditions

A(to,to) =1,

(2.97)
A(t, to) = A(t, S)A(S, to)., Vt, s > to,

with A(t, s) being time-homogeneous, i.e. A(t,s) = A(t — s).

For such a family of dynamical maps the well known Gorini-Kossakowski-Sudarshan-
Lindblad theorem provides a complete characterization of the generator of the semi-
group dynamics: in the finite dimensional case /7 ~ CN and choosing ty = 0 for sim-
plicity of notation it reads [29]

Theorem 2.2 (Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)). A linear operator L &
L(CN) is the generator of a completely positive quantum dynamical semigroup {A(t,0)};>0,
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with
A(t,0) = et L, (2.98)
or equivalently
L= lim M, (2.99)
t—0t t
if and only if it can be expressed as
N2-1 1
Lw=—i[H,w]+ Z Vi <akwcr,1 — 2{a£ak,w}> . Ywe L£(CY), (2.100)
k=1

withy, >0 Vk=1,...,N> -1, H = H and 5}, € L(CN).

A generalization of the validity of this theorem to the case of infinite dimensional Hilbert
spaces can be found in [31].

It directly follows from this Theorem that if the evolution of a reduced system pg(t) is
given by the following master equation

N2-1

@ ps(t) = Los(t) = i [ ps(0] + 3 (awsmo,: - i{a,:ok,psa)}) 2101)
k=1

with v > 0, #! = H and o, € L(CY), then the dynamical map A(t,t) described a
completely positive quantum dynamical semigroup and viceversa.

Few considerations deserve to be made. First of all, if we compare the structure of the
GKSL generator (2.100) and the time-local generator K7, (t) given in Equation (2.95), it
is immediately evident that the differences lie in the fact that the Lindblad operators as
well as the coefficients v, do not depend on time and the latter are forced to be positive
by the request of complete positivity of A(¢,0). The trace and hermiticity preservation
in fact did not allow to put any constraint on the sign on the various 7 () beside them
being real functions of time. We will see in Chapter 3 that this fact plays a crucial role in
the characterization of quantum non-Markovianity.

Another important feature of the structure of the generator given by (2.100) is its invari-
ance under unitary transformations of the set of operators

N2-1
\/%Uk =\ YOk = Z uklﬁal, {ukl} € ﬁ((CNQ*l), (2102)
=1

and also under inhomogeneous transformations

(fkr—)(}kzgk—l-ak,

_ s T
HHH—H+% El w(alal—alal>+b,

where the a;, are complex numbers and b is real.
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It is natural to investigate which is the set of physical approximations that allows to
describe the dynamics of a reduced system in terms of a completely-positive quantum
dynamical semigroup. An example of derivation can be found in [21], where it is shown
that, starting from the overall unitary evolution and under suitable conditions and ap-
proximations such as weak coupling, secular and Born-Markov approximations, a GKSL
master equation is obtained. For the present purposes it is sufficient to remind that the
latter consists in assuming that the environmental correlation functions decay on a time
scale which is negligible compared to the time scale characterizing the evolution of the
reduced system. If we denote with 7g the relaxation time of the system and with 75 the
time-scale over which the environmental excitations induced by the interaction decay,
then the Markov condition is expressed as

TR < Ts. (2.104)

Equation (2.104) means that the description of the dynamics is being given on a tempo-
rally coarse-grained scale. Any information that flows from the system to the environ-
ment cannot effect back the system, since the environment quickly forgets it and returns
the same. Naively speaking, the reduced system is therefore interacting with the same
environment. Under this assumption any memory effect is therefore neglected and it
becomes thus clear why this class of dynamics is conceived to be as the quantum coun-
terpart of classical stochastic Markovian processes, i.e. processes without memory (see
for example [32, 33]). We will extensively come back on the notion of non-Markovianity
in Chapter 3, where we will provide precise definitions both in the classical and in the
quantum setting.

We conclude the present Subsection to present and discuss a straightforward gener-
alization of the Gorini-Kossakowski-Sudarshan-Lindblad equation (2.100) to the time-
dependent case. We will see examples of this master equation throughout the remaining
of this Thesis.

This generalization consists in allowing the Lindblad operators o), as well as the coeffi-
cients v, to be time-dependent, provided the positivity constraint on the latter is main-
tained. The master equation this way obtained, called time-dependent Lindblad equation,
becomes then of the form

N2-1
d

oSO =Lps() == [0 ps()+ X 2w(0)(n(Ops(01oL0) — 5ol (0),ps(e)).
k=1

(2.105)
with y;(t) > 0, HT(t) = H(t) and oy (t) € L(CN) for any ¢ > 0. In light of Equation (2.83),
the corresponding quantum dynamical map is given by

A(t,0) = T exp { /0 "o L(T)] , (2.106)

which is now completely positive by construction thanks to the positivity of the coef-
ficients v (t). Another property of the quantum dynamical map obtained from a time-
dependent Lindblad equation is that it is completely-positive divisible (CP-divisible). The
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relevance of CP-divisible maps will be made evident in the following Chapter, in con-
nection with the notion of quantum non-Markovianity.

Definition 2.3 (CP-divisibility). A family of dynamical maps {A(¢, t9) }+>¢, is CP-divisible,
if, for any ¢ty < s < t the CPTP map A(¢, ) can be expressed as the composition of two
other CPTP maps

A(t,to) = A(t, s)A(s, to). (2.107)

Note that, given a one-parameter family of quantum dynamical maps {A(¢, to) }+>+,, one
can always formally construct a two-parameters family of linear maps, known as transi-
tion maps, as

A(t,s) = A(t, to) A" (s, 1) t > 5> to, (2.108)

for those times s such that the inverse map A~!(s,¢y) exists. The crucial point is that
the maps A(¢, s) this way obtained are nof in general completely positive maps, nor even
positive, since the inverse of a completely positive map is not completely positive. For
this reason, these maps can be formally expressed as

Alt,s) = T exp [ / “ir ICTCL(T)] , (2.109)

where the time-local generator has the structure given in Equation (2.95) with v, (¢) that
are not restricted to take on positive values due to the lack of complete positivity.

It is finally important to observe that if a family of CP-divisible dynamical maps {A(t,
to) }>t, is also time-homogeneous, i.e. if the transition map A(t, s) depends only on the
difference of times ¢ — s, (2.107) reduces to the semigroup property (2.97).

This is reflected in the temporal homogeneity of the relative master equation, and in turn
in the fact that the infinitesimal generator does not depend on time. In this situation we
therefore recover the GKSL master equation.






Non-Markovianity of open quantum
systems

3.1 Classical Markov processes

3.1.1 Formal definition and properties

A stochastic process { X, t € [to, 7] C R}, is a family of measurable maps, called random
variables,
X 1 Qx[to,T] — R, (3.1)

that associates with every elementary event w belonging to a common probability space
(Q, %, P) (with © denoting the sample space, 3 the oc—algebra of subsets of {2 and P the
probability measure with P(Q2) = 1) and with every ¢ € [to, T] a real number X (w,t). For
every fixed w € (), the assignment map t — X (w, t) is called realization or trajectory of the
stochastic process. From now on, for the purposes of this Thesis, ¢ can be interpreted as
time and our attention will be restricted to stochastic process which take value on a finite
set O, = {zo,...,xn}.

A family of joint probability distribution for every n € N and all events z,, € 2, which
satisfies the following consistency conditions

> Py (wi,t) =1, (3.2)
T4
P, (a:n_l,tn_l;...;l'o,to) > 0, Vn € N, (33)
Z]P’n (Tn—1,tn—15 -+ Tmt1, tmt 15 Tms tms Tm—1, tm—1; To, to)
Im
=Py 1 (Tn-1,tn—15 5 Tmt1s bt 1 Tn—1, tm—1; To, o) » (3.4)
P, (mw(n—l)atﬂ'(n—l); <3 (0 t7r(0)) =P (:L‘nfla ln—15...5%0, t(])
for any permutation of the indexes (i), (3.5)

29
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uniquely determines a stochastic process. In fact, according to Kolmogorov’s consistency
theorem, for any family of joint probability distribution which satisfies the conditions
(3.2), there exists a probability space and an associated stochastic process on it. In this
framework, a stochastic process is classified as Markovian according to the following
definition.

Definition 3.1. A stochastic process {X3,t € [to,T] C R} is Markovian if, for every n € N,
for every ordered set of times ty) < t; < ... < t, € [to,T] and for every discrete set of

events g, x1, . . ., Zp, the conditional probability, defined as
]Pn+1 (wna tn; Tn-1,tn—1;...; o, tO)
Py (Tns talTn—1,tn—-1; - - -3 %0, t0) = : (3.6)
in (@nstnl@n-1, t ) Py (Tn—1,tn—1;...; %0, t0)
satisfies the relation
P (T tnlTn, tns - . 5 w0, t0) = Pyjy (w0, tolTn—1,th1), VYn € N. (3.7)

The Markov condition expresses the fact that the probability for the event X (¢,,) =
conditional to the whole history of previous events X(ty) = zo,..., X(tn—1) = Zn—1
actually depends only on the latest. In this sense a Markov process is said to characterize
a ‘memory-less” process. An immediate consequence of the condition (3.7) is that the
whole hierarchy of joint probability distributions, and therefore the stochastic process
itself, can be reconstructed by means of only two quantities, namely the initial probability
density Py (2o, to) and the conditional probability Py, (z,t; 7o, o). In fact, it can be proven
that

n—2

Py (Zn-1:tn—15 .- 70,t0) = P1 (21, t1) [ [ Pipy (st trs s ) - (3.8)
k=0

3.1.2 The Chapmann-Kolmogorov equation

The condition (3.7) and the expression (3.8) naturally point the focus on the so-called con-
ditional transition probability Py, (z,t|xo,to) . From its definition, it follows that it satisfies
the conditions

> Pip(a, tlao, to) = 1, (3.9)
tlgglo P11 (2, t|z0,to0) = Oz - (3.10)

The conditional transition probability is also often referred to as propagator due to the
following relation

Pi(z,t) = Y Py (a, t|zo, to)P1 (0, to), (3.11)

Z0

which means that it connects the one-time probability density at a generic time ¢ to that at
the initial time ¢o. Moreover, another remarkable property is satisfied by the conditional
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transition probability in the case of a Markov process, which is

Pl\l (l‘,t|l’0,t0) = Zpl‘l (l‘,t|l’1,t1) P1|1 (:L‘l,tl‘fb'o,to) , Vig < t1 <t (3.12)

Z1
known as Chapmann-Kolmogorov equation.

Provided Py (w,t|xo,0) is differentiable with respect to time, the differential form of
Eq.(3.12) can be also considered: by making use of Eq.(3.9), one has

0
§P1|1($»t|3¢0, to) = L(t)Py)1(z, t[zo, o), (3.13)

where the linear generator L(t) is defined through its action on a generic test function

¢(x)

T At—O0F

L()é() = lim éz [Py (2.t + Atly, 1) — b0y S(y). (3.14)
)

Such differential Chapmann-Kolmogorov equation is often referred to simply as master
equation. If the process is in particular time-homogeneous, i.e. if the propagator Py (z, t|zo,
to) depends only on the difference of times 7 = ¢ — ty, then the generator L(¢) does not
depend on time any more, this leading to a solution which satisfies a semigroup composi-
tion law (it is not a group because of the constraint t—s > 0), this fact being the expression
of the irreversibility of the stochastic processes. It is immediate to see that this represents
the classical counterpart of the quantum dynamical semigroup introduced in Chapter (2)
Section 2.2.4.2.

In light of Eq.(3.11), the structure of the master equation (3.13) for Py, (w, t|xo, o) is also
shared by the single-time probability density i (x, ), i.e.

0

a[[’ﬁ (x,t) = L(t)P(x,t). (3.15)
In the particular case of a stochastic jump process with an instantaneous jump rate
W (x|zo,t)At > 0 from the value z( to « within the time interval [¢,¢ + At], Eq. (3.15)
takes the familiar form

gtﬂ’ﬁ(xat) = > [W(x|ao, )P (w0, t) — W (wo|a, )Py (x,1)], (3.16)

Zo
commonly known as Pauli master equation [21].

It is worth stressing however that no necessary condition that guarantees the non-Marko-
vianity of the underlying process can be found involving the single-time probability
density Py (z,t). Eq. (3.7) in fact involves the entire family of joint probability distribu-
tion and in particular the conditional transition probability Py, (z,t|xo, o) and thus, as
we will see in the following Subsections, only sufficient conditions of non-Markovianity
concerning P; (z,t) can be introduced. Ultimately, the Chapman-Kolmogorov equation
has then to be understood as an equation for the latter quantity, rather than as an equa-
tion for the single-time probability density. Stochastic processes, in fact, for which the
single-time probability distribution [Py (z, ) satisfies a Chapmann-Kolmogorov equation
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while the conditional transition probability distribution does not can be constructed [34].
Actually, strictly speaking not even the validity of the Chapmann-Kolmogorov equation
for the conditional transition probability Py, (z,t|zo,o) is in general equivalent to the
Markov condition Eq.(3.7) and some processes for which the former holds but that are
still non-Markovian can be found [35, 36]; however, in what follows we will overlook
upon this fact since it goes beyond the scopes of the present work.

3.1.3 Divisibility and non-Markovianity

In view of the Section on the quantum counterpart non-Markovianity, we now focus on
single-time probabilities IP1 (x, t) and give two sufficient conditions for which a stochastic
process is non-Markovian.

Consider for simplicity a N —dimensional classical system, so that the one-point proba-
bility distribution at time ¢ is a probability vector P(t), whose elements {P;(t)};=1.. ~
satisfy the conditions P;(t) = P1(j,t) > 0Vj = 1,...,N and }_; Pj(t) = 1. In analogy
with the quantum case presented in Chapter 2, the time evolution of P(¢) can be in gen-
eral described in terms of a family of linear maps {A(¢, o) }+>¢,, called dynamical maps,
according to which

P(t) = A(t,t0)P (o). (3.17)

Definition 3.2. If the matrix A preserves positivity and normalization, i.e.
> Ajgp=1, Vk=1,...,N (3.18)
J
Ajp, >0, Vj,k=1,...,N, (3.19)
then it is called stochastic matrix.

In light of Egs. (3.17) and (3.11), one is immediately led to identify the dynamical map
A;j(t, o) with the conditional transition probability Py (i, |4, o). This equivalence how-
ever holds true in general only if ¢ is the initial time, while for a generic intermediate
time 1 > to, Ayj(t,t1) # Py(i,t[j,t1). The reason is that Py}, (7,¢|j, 1) is not uniquely
defined for a general stochastic process, since it can be obtained through Eq. (3.6) from
two different initial conditions k& # &, e.g. from two quantities Py5(i, t|7,1; k, o) and
P1|2(i, t|j, tl; k/, tg).

On the other hand, provided A(t, ty) is invertible for every ¢t > t;, we can always con-
struct the dynamical map A(¢,¢;) for t; > tg as:

A(t,t1) = A(t, to) A" (t1, to). (3.20)

The point however is that A(¢,¢;) this way constructed may not be a stochastic matrix
itself, i.e. fulfil the second condition in Egs. (3.18).

These considerations, whose importance will become clear in a moment, lead, in the
same spirit of Chapter 2 for the quantum case, to the introduction of the following defi-
nition:
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Definition 3.3. A family of classical dynamical maps {A(¢, %) }+>0 is (P-)divisible, if, for
any t > t1 > to,
A(t,to) = A(t, t1)A(t1, to), (3.21)

with A(t, t1) being itself a stochastic matrix.

The crucial point is the relationship between P-divisible dynamical maps and Markov
processes, which can be deduced from the above considerations and the Chapmann -
Kolmogorov equation (3.12). It is in fact immediate to realize that, if A;(t,t1) = Py (4,
t|j,t1), then the dynamics of the classical system is Markovian. The latter identification
holds when A(t,t1) is a stochastic matrix and therefore whenever the dynamical map
is P-divisible. The violation of the P-divisibility condition then clearly poses itself as a
sufficient indication of non-Markovianity.

3.14 Thel;—norm

Another sufficient condition for a classical stochastic process to be Markovian which is
accessible by looking at probability vectors P(t) is related to the time-behavior of the
l1—norm, which induces a metric on the space of probability distributions and is defined
in general as

I P(@) [h= Z |1 P5(#)]- (3.22)

This norm has two very remarkable properties. The first one is that it naturally arises in
an hypothesis-testing scenario. Consider in fact a random variable X distributed with a
priori probabilities ¢ and 1 — ¢ according to two probability vectors P!(t) or P?(¢) respec-
tively. Our goal is to infer, by means of a single sampling of X, the correct probability
distribution of our random variable. The maximum probability to give the correct an-
swer can be shown to be given by

_ L P )~ (L= P2

(0 :

(3.23)

The I; —norm between two probability distribution is therefore the bias in favour of the
correct discrimination between the two probability distributions P12(¢). A particular
case which will be of relevance also in the quantum case, see Section (3.2.2), is the a-
priori unbiased case, i.e. ¢ = 1/2. In this case the [; —norm

IgP!(t) = (1 - )P?(t) 1= % I P(t) = P2(t) [k (3.24)

is known as Kolmogorov norm [37].

The second crucial property of the /{—norm is connected to its relationship with P-
divisibile dynamical maps A(t,t), which is contained in the following Theorem (see
for example [38] for the proof)

Theorem 3.4. A family of classical dynamical maps {A(t|to) }+>0 is (P-)divisible, if the I, —norm
is a monotonic contraction with time, i.e. Vt > t| > to and every pair of random vectors P12 (t)
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and a priori probabilities g and 1 — g,

| qP*(t) — (1 — )P%(t) | =] A(t.ta) (¢P'(t2) — (1 — 9)P*(t1)) |h
<|| gP'(t1) — (1 — )P*(t1) |1, (3.25)

with A(t,t1) in general given by Eq.(3.20).

An important corollary of this Theorem is obtained when we identify ¢ in Eq.(3.25) with
the initial time ¢ of the stochastic process. In this case in fact the dynamical map A(t,
to) is, as already stressed before, a stochastic matrix by construction and therefore the
li—norm between two probability distributions is a contraction, i.e.

1P () — (1 = @P*(t) [L <] ¢P'(to) — (1 — )P*(to) |11 - (3.26)

This inequality physically means that the ability to discriminate between two different
probability distributions in the single-shot sampling hypothesis-testing scenario PA/4X (¢)
can only decrease with respect to its initial value.

As a consequence of Theorem (3.4) however, if the process is P-divisible and therefore
Markovian, the decrease of PM4X(¢) is monotonic in time, i.e. SPMAX(¢) < 0Vt >
to. If we bestow an information-oriented interpretation to the ability of discriminating
between P (z, t), then we can interpret this situation as a monotonic loss of information
during the stochastic evolution.

On the other hand, if the process is not P-divisible and thus non-Markovian, the decrease
of PMAX(t) can temporarily invert its trend (though the regrowth can never exceed its
initial value because of the corollary mentioned above), which means that there exist
intermediate times ¢ such that $PM4X(¢) > 0. In the same framework of hypothesis-
testing problem, a temporary regrowth ability to discriminate between the two possible
probability distributions after some initial loss is a signature of an underlying memory
in the process.

To summarize, the correct and proper definition of classical stochastic Markov process
is given by Eq.(3.7) which involves all the family of joint probability distributions. Some
sufficient conditions of non-Markovianity based on the time-behaviour of the single-
time probability distributions can however be formulated in terms of the P-divisibility
of the dynamical maps and of the contractivity property of the [y —norm. In the next
Section we will see how these concepts can (or cannot) have a natural counterpart in the
quantum realm, thus providing the criteria and guidelines employed in the last decade
to characterize quantum non-Markovian processes.

3.2 Quantum non-Markovianity

In the previous Section we made a very brief review of the concept of Markovianity in
classical stochastic processes; in the present Section our aim is to transpose those con-
cepts to the quantum realm, by this meaning that the system under consideration is a
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quantum system. In the last decade, much efforts have been devoted by the scientific
community in order to find a clear definition of a quantum Markovian process in the
closest analogy possible with the classical framework. One of the main difficulties im-
mediately encountered in this endeavour is that Eq. (3.7) has no immediate parallel in
quantum mechanics, the main reason being that measurements, which are a necessary
ingredient in the definition of every joint probability distribution according to the Born
rule, perturb the state of the system affecting the subsequent outcomes. Consequently, no
family of joint probability distributions satisfying the Kolmogorov consistency relations
(3.2) can be constructed. To explicitly see this, consider a generic observable A € B(.¢)
which is measured at n discrete times. Assuming A to have a non-degenerate spectrum,
ie. A=) ala)(a], and denoting with U (¢, 0) the unitary evolution operator governing
the evolution of the quantum system, the joint probability distribution to have obtained
the set of outcomes ay, ..., a, attimes tg < t; < ... <t,is given by

P (an, tn;---;a1,t1) = Tr [70, U (tns tn—1)Tap_; - - - T, U(t1,t0) p(0)
Ul (t1,t0)Ta, -+ Tay, ,Ul(tn,tn-1)ma, |, (3.27)

with 7, = |a;) (a;]. It is immediate to realize that this joint probability distribution,
though being valid for every n, does not fulfil the Kolmogorov consistency condition
(3.2)

D P(an, tniant1,tn1;- a1, b5 a0, t0) # P (ano1, a3 a1, tisao,to)  (3.28)

an—1

since the orthogonal measurement of the observable A generally destroys every quan-
tum interference as well as, when applied to open quantum systems, every correlations
between system and environment, thus influencing the subsequent dynamics. For all
these reasons, a proper definition of (non-)Markovianity in the quantum realm, which
should be independent of any particular measurement scheme, is more subtle than in
the classical framework.

Though still nowadays representing a debated topic, many benchmark results have been
obtained in the last years that pave the way of a proper definition and quantification
of quantum non-Markovianity and its relation with the presence of memory effects in
open quantum systems dynamics. Almost all of these approaches characterize the non-
Markovianity in terms of properties of the family of the quantum dynamical maps which
govern the evolution of the quantum system and cope with the time-behaviour of the
statistical operator p(t). In the following Subsections we will present a number of them
which will be useful and employed in the rest of the present work. It will become imme-
diately clear the parallelism between these approaches and their classical counterparts
presented in the previous Section. The first one in fact relates the non-Markovianity of
an open system’s dynamics to the violation of the CP-divisibility of the quantum dy-
namical map [13], which represents the natural quantum analogue of the P-divisibility
in the classical context. The second approach defines the non-Markovianity through the
contractivity property of some norm defined on S(.#%) [11, 38—40].
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Alongside with these definitions, two measures have been introduced in [11, 13, 40] in
order to quantify the degree of non-Markovianity in terms of suitable (and possibly mea-
surable in experiments) estimators. Inspired by the general criteria underlying these two
measures, several others figures of merit have been introduced in recent years, all sharing
the property to represent monotone contractions under the action of completely positive
and trace-preserving maps. Depending on the case considered, i.e. finite dimensional
systems versus continuous variable systems et cetera, or on the type of interaction, one
of non-Markovianity witness can be more convenient, easy to be calculated or sensitive
than the others and in general they will not coincide. For this reason, and due to the fact
that we will use some of them in the remainder of the work, we will make a brief survey
of some of them in the last Subsection of this Chapter.

3.2.1 CP-divisibility based criterion of quantum non-Markovianity

In the present Subsection we introduce and discuss the definition and measure of quan-
tum non - Markovianity introduced by Rivas, Huelga and Plenio in [13]. Such approach,
as we will see in a moment, copes with the notion of CP-divisibility of a family of quan-
tum dynamical maps {A(¢, to) }+>,, see Definition 2.3 introduced in Chapter 2 Subsection
2242,

Definition 3.5 (RHP non-Markovianity). The time-evolution of a quantum system de-
scribed in terms of a family of dynamical maps {A(t, to) }+>¢, is Markovian if the latter is
CP-divisible.

It is then immediate to see that, since the complete positivity poses itself as the quantum
counterpart of the classical notion of positivity, this definition can be seen as the quan-
tum counterpart of the condition discussed in Subsection 3.1.3. A CP-divisible family
of dynamical maps physically expresses the fact that the evolution of the open quantum
system can be stopped and restarted at any intermediate time obtaining the same result
as if with a one-step evolution. In light of this and of the analogies with the Chapmann-
Kolmogorov equation which holds true in the case of Markov processes, one is led to
interpret this with a lack of memory effects.

It is important to stress that, in order to check CP-divisibility of the time evolution, one
can look at either the quantum dynamical map or at the associated time-local gener-
ator. In particular, given the knowledge of the transition map A(t, s) (2.108), one can
determine its complete-positivity (which expresses the CP-divisibility property (2.3), see
Section (2.2.4.2)) by studying the positivity of the associated Choi matrix Eq. (2.44)

Acnoi(t, s) = [A(t, 5) © IN] (19) pri (Dlarm) (3.29)

with |¢) ;5 = \/iﬁ Z]kvzl |k)®|k) being the maximally entangled state between two copies
of the quantum system under consideration ({|k) }x—1,... n denoting an orthonormal basis
in 7%, here considered of dimension N), see Section 2.1.2. Given instead the time-local
generator K¢y (t) in its time-dependent Lindblad form (2.105), CP-divisibility is granted
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provided that
’yk(t) > 0, Yt > tg. (3.30)

Building on these considerations, Rivas, Huelga and Plenio in [13] proposed to quantify
the degree of non-Markovianity of a quantum process by

I(A) = /R (1), (3.31)

where the quantity g(t¢) denotes the right derivative of the trace norm of the Choi matrix
Achoi (3.29) associated to the quantum dynamical map A:

A (T, —1
g(t) — lim ” Choz( ) +€) Hl )
e—0+ €

(3.32)

Note that g(t¢) is different from zero if and only if the CP-divisibility of the map A is
broken. In fact, when Acy,i(t, t+e€) is positive, the transition map A(¢, t+¢) is completely-
positive, which means that the image of the maximally entangled state through Eq. (3.29)
is again a state and therefore its trace-norm is equal to 1, this fact finally implying that
g(t) = 0. It is worth to emphasize that the evaluation of g(¢), and thus in turn this non-
Markovianity measure, requires the knowledge of the quantum dynamical map, which
can be accessed only by means of full process tomography. This is of course a much
demanding task especially from the experimental point of view.

Finally, in a recent paper [41], Definition 3.5 has been employed to characterize the non-
Markovianity in Gaussian channels and a contextual measure has been proposed. Gaus-
sian channels are represented in terms of a family of completely positive and trace pre-
serving maps generated by a quadratic bosonic Hamiltonian, which thus has the prop-
erty to preserve the Gaussian nature of quantum states during evolution. The impor-
tance of presenting such approach relies in the fact that, in general, addressing the char-
acterization of CP-divisibility in infinite-dimensional quantum system is highly complex.
Though for Gaussian channels, a generalization of the Choi-Jamiolkowski isomorphism
(which allows to construct the Choi matrix associated to the dynamical map and thus
to access the complete positivity of the transition map by studying the positivity of the
latter) has been recently formulated [42], a much simpler way to access the complete
positivity of the transition map A(¢, s) for Gaussian channels can be given in terms of
the so-called covariance matrix of the quantum Gaussian state. For these reasons and
also because we will employ this criterion in Chapter 5, we very briefly recall the basic
notions and notations concerning Gaussian states. For more detailed treatments of the
vast literature on this very important class of quantum states, the reader is referred to
[43, 44].

3.21.1 Continuous-variable systems and Gaussian states

A continuous-variable (CV) system, is a system whose degrees of freedom are associ-
ated to operators with a continuous spectrum. Here we consider CV systems made of
a discrete number n of bosonic modes so they are associated to a Hilbert space J# =
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®p_,74;, where 77, is the Fock space relative to the k—th mode spanned by the fam-
ily {ag)}kzl,m,n of creation (annihilation) operators satisfying the bosonic commuta-

tion relations [ak, aﬂ = 0pj. Such commutation relations are equivalently rewritten in

terms of the canonical coordinates of this system, given by R = (q1,p1,. .., ¢n, pn)T with
gr = (ax +a})/v2and p = i(a] — ax)/ V2, as
_ n 0 1
[Rk, Rj] = Zij, Q= Bp—1w, w= (_1 0) s (333)

and impose the following important condition on the states involving their covariance
matrices _
i

o+ 5020, (3.34)

where o is a 2n x 2n matrix with entries
1
Ok = §<{Rj7Rk}> — (Rj){(Ry), (3.35)

with (-) = Tr[p:] and {O1,02} = 0102 + 020;. It is worth stressing that Eq.(3.34)
traduces the condition p > 0.

A very important operator in this framework is the so-called Wey! (or displacement) oper-
ator defined as
W(A) = QI_, W(\) = ®_, exp [Aka,t - AZak] : (3.36)

with A\, = Mg +iAg ;. The vector (A1, Aii. .. Ay, )\n,i)T belongs to the real 2n—dimen-
sional space equipped with the symplectic form €2 which is called quantum phase space
in analogy with the classical Liouville space. The set of W () is complete and thus any
operator O € . can be expressed according to the Glauber form

0= @Tr [OW(N)] WHN), (3.37)
cn T
where
X [O] (A) = Tr [OW (N)] (3.38)

is the so-called characteristic function of the operator O. It is clear that the characteristic
function of a statistical operator p € S(.#) can be used to provide an equivalent unique
description of the quantum system. For the sake of completeness, it is worth mentioning
that taking the complex Fourier transform of the characteristic function leads to the so-
called Wigner function, which has many remarkable properties and is widely employed
in quantum optics and quantum information processing with continuous variables [43—
46].

Definition 3.6. A CV system’s state with n degrees of freedom is called Gaussian if its
characteristic function, defined in Eq.(3.38) is Gaussian, i.e.

x[p] (A) = exp |[i(R)TX — %ATU)\ : (3.39)
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A Gaussian state is therefore uniquely determined by first and second statistical mo-
ments of the quadrature vector, i.e. by the vector of mean values (R) and by the covari-
ance matrix o.

The quantum evolutions which preserve the Gaussian character of a quantum state are
said to be Gaussian channels [47-49]. The action of a Gaussian channel on a generic
Gaussian state can be written as [41, 42, 50]

o(to) — a(t) = X(t,to)o(to)X(t,to) T +Y (t,t0), (R)L(to) = (RY)T(t) = X(t,t0)(R)T (t0),
(3.40)
with X(¢,t0), Y(t,t9) being 2n x 2n real matrices. Naively speaking, the contribution
Y (¢, o) of a Gaussian channel uniquely determined by the couple (X(t,ty), Y (¢,t0)), can
be regarded as a noise term which has to be non-negative, i.e. Y(t,t9) > 0; the X(,
to) contribution instead corresponds to a symplectic transformation which can be even
negative provided Y (¢, ¢y) is large enough. The requirement of complete positivity poses
a constraint on these two matrices, which represents the key brick to characterize the CP-
divisibility and ultimately the non-Markovianity in the case of a Gaussian channel.

Theorem 3.7 (Demoen 1977). A Gaussian channel is completely positive iff the following con-
dition holds
Y (t,to) + Q — fX(t t0) QX (t,t9) > 0. (3.41)

Note that, for X (¢, ty) = 0 this relation reduces to (3.34).

Considering that the composition of two Gaussian channels (X(t1,%9),Y (t1,%0)) and
(X(t2,t1), Y(t2,t1)) is again a Gaussian channel (3 > t; > t), the set of Gaussian chan-
nels forms a semigroup (which however must not be confused with the one - parameter
semigroup introduced in Chapter 2 Section (2.2.4.2)), with product given by [51]

(X(t1,t0), Y(t1,t0)) - (X(ta,t1), Y(t2,t1))
= (X(t1,t0)X(t2, t1), X(t1,0) Y (t2, 1) X (L1, t0)" + Y (t1,40)). (3.42)

Exploiting this result to write the transition Gaussian channel (X(¢,s), Y (¢, s)), in [41]
Torre, Roga and Illuminati showed that

Theorem 3.8 (TRI 2015). A Gaussian channel is CP-divisible iff the following condition holds

Y(t+et) - %Q + %X(t + e, )QXT(t+e,t) > 0, (3.43)

According to the RHP criterion of non-Markovianity (3.5) introduced above, if and only
if the quantity (3.43) is negative the process is non-Markovian.

Contextually, the authors have proposed also to measure the degree of non-Markovianity
of the Gaussian channel as

Io = / dt &(t),
R+

where vy (t + €, t) are the eigenvalues of the (symmetric) matrix at the Lh.s. of Eq.(3.43).

1
5 L Z [Jvp(t + e, t)] — vt + €, 1)], (3.44)
k
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3.2.2 Trace-norm based criterion of quantum non-Markovianity

Here we discuss in detail the definition and measure of non-Markovianity dynamics of
an open quantum system based on the time-behaviour of the trace norm under the ac-
tion of CP-divisible dynamical maps. This idea, pioneered by the work by Breuer, Laine
and Piilo [11], has been subsequently developed in [38-40] to a more general framework
which better highlights the relationship both with the RHP definition and with the clas-
sical notion of Markovianity. For this reason we will follow this line of exposition in the
present Subsection. From the very first work in this direction [11], this definition had a
clear-cut physical interpretation in terms of information flow between an open quantum
system and its environment, thus allowing for a more immediate interpretation in terms
of memory effects. The main idea behind it is to characterize and quantify the presence
(or absence) of memory effects by means of an ensemble-discrimination scenario, in full
analogy with the classical case presented in Section 3.1.4.

Let us consider the following conceptual experiment: an experimenter, Alice, prepares at
the initial time ¢y a quantum system in either p}(to) or p%(to) with probabilities g and 1—¢
respectively and then sends it to Bob which receive them at time ¢. Bob’s task is to infer
which state has been prepared by Alice by means of a single measurement on the system.
Let {II;,II, = 15 — II; } be a two-valued POVM associated with Bob’s measurement: if
the outcome of the measurement is 1, then the state is inferred to be in pg(t), otherwise if
the outcome is 2 to be in p%(t). The probability of success of this discrimination protocol
is then given by

Psuce(t) = (qTrsTps(t) + (1 — q)TrsTlap$(t)) = 1+ TrsTlh (gp5(t) — (1 — q)p5(t)).
(3.45)
If Bob is clever and thus selects the best measurement scheme, he can achieve the maxi-
mum success probability which is given by [52]

PMAX () = L (14 | As(t) ), (3.46)

succ

O |

where Ag(t) = gpk(t) — (1—q)p%(t) is called Helstrom matrix. This expression shows how
the trace-norm of the Helstrom matrix represents the bias in favour of the correct ensem-
ble identification in the single-shot experiment. It is moreover evident that the trace
norm poses itself as the quantum counterpart of the [y —norm introduced in Subsection
3.14.

Depending on the dynamics, given in terms of A(t, tp), which connects the initial states
piq,’?(to) prepared by Alice with the final states p}f (t) received by Bob, PM4X (1) can vary
with time. A first general answer in this direction is provided by the following Theorem

by Kossakowski [53, 54]

Theorem 3.9. A trace-preserving and hermiticity-preserving linear map A is positive iff the
following condition holds

I A t)A 1<l Al VYA = AT e T(2). (3.47)

The equality sign holds if and only if A is a unitary transformation.
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It follows from this Theorem that PM4X (1) < PMAX (44), namely that the discrimination

ability at any later time ¢ that Bob can achieve is never greater than the value at the initial
time.

An immediate consequence of this is that, if a family of quantum dynamical maps is P-
divisible, which means that the transition map A(¢, s) (with s > ty) defined in Eq.(2.109)
MAX (t) decreases
monotonically with time. On the other hand, if the map is not P-divisible, then at some
intermediate time and for some couple of states p!? the non-positive transition map A(t,
s) may lead to a temporary regrowth of the trace norm and thus of the discrimination
ability. All these considerations, as well as the close similarity with the discussion made

in the classical framework for the L; —norm, leads to the following definition:

is positive for any s < t, then Theorem (3.9) applies at any time and P

Definition 3.10. A process represented by a family of quantum dynamical maps {A(¢,
to) }t>t, is said to be Markovian if, for every couple of initial states p*? and for every
0 < ¢ < 1, the trace norm of the Helstrom matrix A = gp%(t) — (1 —q)p%(t) is a monotonic
contraction of time (or equivalently, thanks to Theorem (3.9) if the process is P-divisible).

According to this definition, in a non-Markovian process the ability to discriminate be-
tween two ensembles p'(t) and p?(t), after being initially decremented due to Theorem
(3.9), can temporarily regrowths, this fact being a signature of memory effects. In order
to substantiate this interpretation, let us assume that the dynamics, described by the fam-
ily of quantum dynamical maps A, correspond to an evolution of the system (prepared
by Alice in the scenario depicted above) with an environment, so that the overall system
is closed. Then let us consider the following quantities

Lt (t) =l aps(t) = (1 = @)p%(t) 1, (3.48)

denoting the amount of information inside the open system, and

Ie:ct(t) :H qp}S'E(t) - (1 - q)pQSE(t) ||1 _Iint(t)a (349)

denoting the information outside the open system (i.e. not accessible by Bob when mea-
surements on the open system only are performed), where pgé(t) = U(t, to)(pg’z(to) ®
pr)UT(t,t0) and where we stress that the initial state of the composite system has been
taken to be in factorized form in order for the quantum dynamical map to be well-
defined. This last assumptions also implies that I.;+(t9) = 0. Note that, in light of the
considerations made above, I (t) is a measure of the distinguishability between pi(t)
and p%(t). Since at the level of the composite system the dynamics is unitary, there is no
flow of information outside it, i.e.

Lint (£) + Teat (t) = ap5p(t) = (1 = 0)p&a(t) 1= Lt (to), (3.50)

and therefore any decrease in J;:(t) due to Theorem (3.9) must correspond to an incre-
ment in I.;;(t). Definition 3.10 therefore means that, during a Markov process, the sys-
tem unidirectionally loses information either to the environment or to the correlations
between them [34, 55] If however, for some intermediate time s € [ty,t] and for at least



Chapter 3. Non-Markovianity of open quantum systems 42

one pair of initial states of the system p}9’2(t0) it happens that

d
U(t) = 7Iint(t) >0, (351)
dt
then some of the information which was previously lost by the system flows back into it,

i.e. a memory effect occurs.

Finally, we remind that the P-divisibility of the quantum process map can be checked
either at the level of the dynamical map by looking at the positivity of the transition map
A(t, s) or at the level of the associated master equation. In particular, if we consider the
time-local generator 7 (t) in the time-dependent Lindblad form (2.105)

d ! 1
G0 = =i ). ps(0] + 30 0ps(1o](0) - 5oLt ps(0)) G52
k=1

the process is P-divisibile iff

D w®Hm Li(®) [n) [P >0, ¥n#m,t>to, (3.53)
k

{|n)} being a generic orthonormal basis of /5.

In their pioneering work [11], Breuer, Laine and Piilo studied the case of unbiased en-
semble preparation by Alice, i.e. considered the particular case ¢ = 1/2. In this particular
case, the Helstrom matrix becomes traceless

(p(t) — p2(1) | (3.54)
but every conclusion made above still holds.

Building on this definition, the following measure of non-Markovianity has been intro-
duced in order to quantify the degree of non-Markovianity of a quantum process

1
N (N) = pégz(itxo) 5 /R+ (lo(®)| +o(t)) dt, (3.55)

where the maximization is performed over all pairs of initial states and the integration is
extended over all the time regions where o(t), defined in Eq. (3.51), is positive.

A (A) is a positive functional of the family of dynamical maps and physically represents
the extended sum of the information that flows back into the open system. The maxi-
mization involved in this measure, which is necessary to make it a property of the family
of dynamical maps, is however an increasingly demanding task, both from theoretical
and experimental point of view, as the dimension of the quantum system grows, despite
a great simplification is provided by the properties of the functional .4 (A) and the con-
vexity of S(.#5). It can in fact be proven [40, 56] that the optimal couple of initial states
p}q’2(t0), i.e. such that the maximum in (3.55) is achieved, is attained when they lie on the
boundary of S(#5) and are mutually orthogonal. However, for systems of dimensions
larger than 3, this procedure typically represents an overwhelming challenge (even from
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the numerical point of view) and therefore either maximization over subclasses of initial

states or the non-maximized version </Vp L2340) (A), which both represent lower bounds for
S

the true measure .4 (A), are considered.

Finally, it is clear from the two definitions of quantum Markovianity (3.5) and (3.10), and
in particular from a direct confrontation between Egs. (3.30) and (3.53), that they coincide
if there is only a single decay channel in the master equation. In general however the
RHP condition for a quantum process to be Markovian is stricter with respect to trace-
norm based condition, due to the fact that CP-divisible quantum dynamical maps are a
subset of the P-divisible ones. This reflects also in the respective measures, in the sense
that the following relation holds

T(A) =0 = A (A) =0, (3.56)

but not the vice versa.

3.2.3 Other relevant non-Markovianity quantifiers

To conclude this Chapter, we review in the present Section some of the many other quan-
tifiers of non-Markovianity that have been introduced in recent years. Every one of the
witnesses which we will enumerate copes with different quantum dynamical properties
and therefore, depending on the situation or the model considered, one can be more suit-
able than the others. Just to mention few examples: the trace-norm criterion introduced
above does not witness non-Markovianity encoded in the non-unital part of the dynam-
ics, which corresponds, in the finite dimensional case, to an affine transformation of the
generalized Bloch vector [57]; the RHP non-Markovianity measure may not be accessed
because the evolution of the quantum system can be approached only by fully numerical
methods and therefore full process tomography would be infeasible; the dimension of
the Hilbert space of the open quantum system is infinite and therefore the trace norm
can prove a formidable (though in general not impossible) task to be evaluated analyti-
cally, maximization problem left aside. All of them however share one common leitmotif,
which is that they are monotonic quantities under the action of completely positive and
trace preserving maps.

3.2.3.1 Bloch Volume

A geometrical quantifier of non-Markovianity has been introduced in [16] by Lorenzo,
Plastina and Paternostro, which is based on the change in the volume of the set of acces-
sible states of the evolved open quantum system. Remarkably, this method applies well
both in finite-dimensional systems and in quantum Gaussian systems.

In the case of a N—dimensional system, the statistical operator p can be equivalently

expressed in terms of the generalized Bloch vector = (1o, r), whose entries {r; }é\z , are

N2-1

given by the Hilbert-Schmidt scalar product of p with the orthonormal basis {G;},2, ",
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with Gy = 1g5/vN and {Gj}j-\ffl = {ujk,vjk, w}/V2 being the traceless, hermitian

generators of the Lie algebra SU(N)

wjk = 17) (k[ 1k) Gl oge = =i (1) (kI = [R) (1)

l
2
W= T () Gl =1+ +1), 1<j<k<N, 1<I<N-1. (357)
Jj=1

In agreement with Eq.(2.36), also any linear map A acting on the system can be repre-

sented as a N? x N2 matrix A(t,ty) with entries
Aji(tto) = Tr |G At 10) [Gi] | (3.58)
and physically represents an affine transformation of the Bloch vector

At to) = (C (t’lto) N (2 t0)> = r(t) = A(t, to)r(to) + <(t, o) [V, (3.59)

where A(t, 1) is responsible for rotations and shrinks while c(t, ty) for translations. In
particular, the determinant of the matrix A(¢,t), i.e. |A(¢t,t0)|, describes the change in
the volume of the set of dynamically accessible states.

In the case of Gaussian systems, a similar line of reasoning applies. Making reference
to the notation introduced in Subsection 3.2.1.1, the covariance matrix o relative to an
n—mode bosonic system state evolves in a Gaussian channel according to Eq.(3.40). In
full analogy with the treatment of N —dimensional quantum systems above discussed,
this evolution equation can be written as an affine transformation on R4’

S(t()) — S(t) = M(t, to)S(to) + Z(t, to), (360)

where we have chosen a basis {Gj}?ggfl and where s;(t) = Tr(o(t)G,], M;i(t,to) =
Tr[XT (¢, t9)G X (t,t0)Gy] and finally Z;(t,to) = Tr[Y(¢,t0)g;]. Upon the replacement
F(t,to) — M(t, to), same physical considerations made above holds true for Gaussian
states.

In both these cases, the main point is that the volume of the dynamically accessible states
|A(t,to)| decreases monotonically with time as long as the quantum dynamical map
is CP-divisible. Sticking to the definition (3.5) of non-Markovian quantum dynamics,
any temporary regrowth in this determinant during the evolution is a signature of non-
Markovianity. It is however worth stressing that this figure of merit, alongside with the
trace-distance based one introduced by Breuer, Laine and Piilo in [11] is insensitive to
any non-Markovianity due to translations, i.e. which are encoded in the vector c(¢, t).

3.2.3.2 Relative Entropy and Quantum Mutual Information

Given two statistical operators p'2, their Von-Neumann relative entropy is defined as

S(p" || p*) = Tr [p'logp'] — Tr [p' log p?] . (3.61)
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Though clearly not being symmetric in its arguments, this quantity has many interest-
ing properties [21, 37] among which the so-called Klein’s inequality S (p* || p?) > 0 (the
equality sign holds iff p! = p?), which allows to interpret it as a measure of the distin-
guishability between quantum states, and the contraction property under the action of
completely positive and trace preserving maps A(t, ty) [50, 58], i.e.

S (A(t,to)p" | At,t0)p?) < S (p* |l p%) - (3.62)

In light of this, it is clear that the relative entropy becomes a monotonic contraction in
the case of a quantum Markovian process according to CP-divisibility criterion (3.5) and,
on the other hand, becomes a witness of non-Markovianity if, at some intermediate evo-
lution time, it temporarily regrowths [59]. Other relative entropies than the Von Neu-
mann’s one, such as the Renyi entropy [60] or the Tsallis entropy [61], have also been
proposed as they share the same contractivity property under completely positive and
trace preserving maps.

Another witness of non-Markovianity is represented by the quantum mutual informa-
tion defined as

I(psa) = S(ps) + S(pa) — S(psa), (3.63)

S(p) = —Tr [pln p| being the Von-Neumann entropy of state p. Here A is a label denot-
ing an ancillary state which has been coupled to the quantum system of interest. This
quantity, which can be equivalently rewritten as the relative entropy

L(psa) = S(psalps @ pa), (3.64)

measures the total amount of correlations between system and environment. It follows
from the contractivity property of the relative entropy mentioned above that, if we apply
a local quantum channel on the system which describes a decoherent evolution due to
the coupling with an environment, we have

L(psa(t)) = 1((A(t,to) @ La)psa)
=S ((At,to) ® La)psa | (At to)ps) ® pa) < S(psalps ® pa) = L(psal(to)).  (3.65)

3.2.3.3 Entanglement

A different measure of non-Markovianity which shares the same perspective as the pre-
vious one is the entanglement-based one. The figure of merit in this case is given by an
entanglement monotone, which is a measure for entanglement-type of correlations which
onset between the open quantum system of interest and an ancilla and that cannot in-
crease (nor be generated) under the action of local operations and classical communi-
cation (LOCC). Since quantum channels acting locally on the system A(¢,¢y) ® 14 are
particular examples of LOCC, any temporary regrowth in the time-behavior of the en-
tanglement monotone Eg 4 is a signature of violation of the CP-divisibility and thus in
turn, according to Def.(3.5), of non-Markovianity. Building on this considerations, in [13]
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the following measure for the degree of non-Markovianity has been proposed

: (3.66)

t1
Jg=AFE dt
E -I-/ i

to

‘ dEsa(t)

,where AE = Eg4(t1) — Esa(to). It is worth mentioning that a relationship between the
amount of entanglement generated by a given non-Markovian dynamics (according to
this definition) and the destruction of accessible information can be found in [62].

3.2.3.4 Fidelity and Bures distance

Especially in the context of continuous-variable systems, the computation of the previous
measures, except the one by Torre, Roga and Illuminati and the one by Lorenzo, Plastina
and Paternostro introduced above, proves a formidable task. It is mainly for this reason
that the following witnesses, which are presented in these last paragraphs, have been
introduced.

The first one relies on the so-called Fidelity between two quantum states p} and p%, de-

2
,/\/pgpg\/gb . (3.67)

This quantity is directly related to a distance on the set of statistical operators S(5¢),
known as Bures distance [63],

Dg(ps, p3) = \/2 [1 - \/F(p}g,p%)], (3.68)

interpreted by Uhlmann [58] as a generalization of transition probabilities for pure states
to the case of statistical operators, which gives an estimate of the distance between two

fined as

Floh %) = (Tr

quantum states. Among the many important properties of the Fidelity (and of the Bures
distance as well), the crucial one for the present purposes is, once again, its monotonicity
under the action of completely positive and trace-preserving maps, i.e.

F(A(t,to)ps(to), AL, to)pz(to)) > F(ps(to), pa(to)), (3.69)

which traduces the condition that two states subject to the action of the same quantum
channel can only decrease their mutual distinguishability. Remarkably, the expression
of the fidelity for arbitrary quantum Gaussian states have been recently found [64, 65],
which depends only on the vectors of mean values and on the covariance matrices.

The non-Markovianity measure based on the fidelity is consequently given by [66]

N(A) = max = /}R+ (‘CZF(P,U' - CZF(P,t)) : (3.70)

where the maximization is performed on the full set of parameters P that characterize
the pair of Gaussian quantum states.
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3.2.3.5 Quantum Fisher Information and Quantum Interferometric Power

The last two related witnesses of non-Markovianity have been introduced in the context
of local quantum estimation theory, where the aim is to infer the value A € A that char-
acterizes the system of interest (in the sense that it labels the quantum state, giving rise
to a one-parameter family of statistical operators {py}) but which cannot be measured
directly. A measurement of a different but somehow related observable X is then carried
out independently n times and a post - process of the outcomes, representing the exper-
imental sample space 2, = {z1,...,z,}, is performed by means of the introduction of
a suitable function, called estimator, A 2, — A. In this framework, a result of capital
importance is represented by the Cramér - Rao Theorem [67], according to which the
variance Var()) of any such estimator ) is bounded from below

1

Var(\) > ————

(3.71)
with II, denoting the POVM representing the quantum measurement of the observable

X and where )
[0 (Tr [T p5])]
Tr [ILzpa]

F(I, p) = / da (3.72)

is the so-called Fisher Information (FI). The maximization over all possible measurement
schemes II, of the FI leads to the so-called Quantum Fisher Information (QFI) [68-70]

(em —en)®,
em + €én

T (po)=max F(Ily, pr) = Tr [L(px) pa] =4 3 S| (Ls @ Ha) [¢n)[*,

€m Té:>0
(3.73)

which represents the ultimate bound (at least in the case of parameter-independent mea-
surement schemes [71]) to the precision in parameter estimation. In Eq. (3.73), the oper-
ator L(p)) denotes the symmetric logarithmic derivative operator defined implicitly by
the equation

(L(px)pr + paL(pr)) - (3.74)

The QFI is related to the concepts discussed in the previous paragraph since it can be
shown that corresponds to the infinitesimal Bures distance between two quantum states
px and py4sy belonging to the same one-parameter family {p)}, i.e.

D 2
T(px) = 4 lim [W] , (375)

with psa = >, en|én) (¢n]. In other words, this quantity thus measures the sensitiv-
ity of the change in the states for infinitesimally small changes in the parameter A [70].
From Eq. (3.73) it descends immediately that, since the Bures distance is a monotonic
contraction under the action of completely positive and trace-preserving maps, also the
QFI shares this behavior, therefore posing as a suitable candidate to witness the non-
Markovianity of the reduced dynamics in the same fashion as Eq. (3.70). In other words,
the time derivative of the QFI 0,7 (px(t)) can be considered [72] and the regions where it
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shows to be positive correspond to non-Markovian behavior according to Definition 3.5.
The sum of these positive contributions can be also employed to give an estimate of the
amount of non-Markovianity of the underlying dynamics. Finally we note that, interest-
ingly, any eventual increment in the QFI immediately results, in light of Eq. (3.71), in a
decrement in the variance (uncertainty) of the estimator \ and thus, equivalently, in an
increment of the information about the parameter .

Another QFI - based witness of non-Markovianity is the one recently introduced in [73],
based on another metrological figure of merit called Quantum Interferometric Power (QIP).
The latter measures in a quantitative way the ability to estimate, according to black-box
interferometry, a local phase shift in a worst case scenario with a bipartite system (system
+ ancilla) [73-75]. The Hamiltonian generating the evolution of the ‘system + ancilla’
compound is given by

Hsa =15 @ Ha, (3.76)

whose spectrum is a priori unknown, so that a black-box operation U} = ei**4 is im-
printed in the ancilla after the transformation. While, as stated above, for any bipartite
state psa and any local Hamiltonian # 4 the variance of any estimator \ is bounded
from below by the Quantum Fisher Information .7 (py ), the lack of information about the
generator H 4 implies that the most significant figure of merit is the QIP, defined as the
minimum QFI over all possible local Hamiltonians # 4 with non-degenerate spectrum
[69]

1.
Q(psa) = 7 inf T (p¥1). (3.77)

where the 1/4 prefactor has been inserted for convenience to compensate the factor 4 in
the expression of the QFI (3.75).

The QIP has many properties, among which it vanishes for zero-discord states from the
perspective of the ancilla, is invariant under local unitary operations and reduces to an en-
tanglement monotone for pure quantum states [69]. Most remarkably for the present aim
is its monotonically decreasing behavior under completely positive and trace-preserving
maps acting locally on the system. Moreover, analytic expressions for the QIP can be
found both in the cases of the system being a qubit [69] or a Gaussian states undergoing
a local Gaussian channel [76]. In the first case the result reads

Q(psa) = Smin [M], (3.78)

where ¢, [M] is the smallest eigenvalue of the 3 x 3 matrix of entries

€ — € 2
S e (s @ Ha) 60 (Gl (08 @ HA) [B) s (BT9)

em + en

1

m,n:em—+en>0

with 0123 = 0,,,. being the Pauli matrices.
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In the case of Gaussian states undergoing Gaussian evolutions, provided the two-mode
covariance of the system + ancilla matrix in the standard form reads

0SA = (;/XT g):

a = diag(a, a), B = diag(b,b), v = diag(c,d), a,b>1,c>|d[>0  (3.80)

(every two-mode covariance matrix can be transformed to a standard form by means of
local symplectic operations, i.e. change of basis), the QIP can be expressed as

Cs + 03 +C,C. (3.81)

2C,

Qg (o54) =

where

Co=(L+L)Y 1+ +1I3— 1) - I7,
Cy = (14 — 1)(1 + I + 1o+ 215+ 14),
C, = (_[2 + 14)(1112 — I4) + [3(1 + Il)(212 + Ig), (382)

with I; 5 3 4 being the symplectic invariants of the covariance matrix

I, =deta, Iy = detf,
I3 = dety, Iy =detoga. (3.83)

In order to understand how to exploit the QIP in order to witness and quantify the non-
Markovianity in the reduced dynamics of a quantum system S, consider that the latter,
apart from being initially correlated to an ancilla A according with previous statements,
is also coupled with an environment E (which does not interact with the ancilla ), so that
the total Hamiltonian is now of the form

H="Hs+Hp+Hse+ Hsa, (3.84)

with the first three terms completely generic and the last one given by Eq. (3.76). More
specifically, within this framework, the role of the ancilla is that of a measuring appa-
ratus for the open system. The evolution of the system S is then determined by a CPT
dynamical map A(¢,0) and thus the evolution of ps4(t) can be written as

psa(t) = (A(,0) ® U2) psal0). (3.85)

Using this contractivity property of the QIP and its above - mentioned invariance un-
der the action of local unitary operations, it is straightforward to see that, according to
Def.(3.5), a dynamics is non-Markovian if there exists some intermediate time ¢ and at
least some initial state of the bipartite system such that

d
712 (psa) > 0. (3.86)
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In the same fashion as [11, 13-16, 18, 77], the consequent measure is then given by

1 d d
orp = o 5 [ e (| G050 + 50050, (387)
R+

psa(0) 2
where the maximization is carried out over all possible initial states for the bipartite
system. We stress again that initial correlations (more specifically non-classical ones) are
needed between the system and the ancilla in order for the QIP to not be zero.









Characterization of two-time correlation
functions: the quantum regression
theorem

The word ‘regression” had his original meaning in the framework of classical stochastic
processes, where, as stated at the beginning of Chapter 3, a process is uniquely deter-
mined by the infinite hierarchy of n-time joint probability distributions (3.2). In this
context, the expression "regression” indicated the possibility to reconstruct, starting from
the first element of this hierarchy P (xo, to), the ‘successive’” element, and consequently
the entire family.

The first one that has introduced the so-called regression hypothesis, has been Lars On-
sager in 1931 in his papers [78, 79], in the setting of classical statistical mechanics near
equilibrium (linear response regime), where he stated (as a conjecture) that "the average
regression of fluctuations will obey the same laws as the corresponding macroscopic irreversible
process’. This means for example that the correlation in temperature fluctuations in a clas-
sical gas and the respective heat satisfy the same equation, which is a Fourier diffusive
equation. Such conjecture has been successively demonstrated to hold, in the classical
realm, exploiting the so-called fluctuation-dissipation theorem introduced by Callen and
Welton in [80].

In 1968/1969, Melvin Lax showed how it was possible, for an atom weakly coupled to an
electromagnetic field, to access two-time correlation functions of system operators hav-
ing knowledge of the mean values (see articles [81]); this procedure, applied for the first
time to a quantum system, had been named by Lax as 'quantum regression procedure’,
due to its analogy in the final intention of the technique with Onsager’s work.

This lexicon lead however to misleading interpretations on the analogy between the
works by Onsager and Lax which, going beyond the intents of the author as Lax him-
self stressed in [82], contributed to spread the impression among the scientific commu-
nity that the procedure outlined by Lax was the quantum version of Onsager’s regres-
sion procedure, although instead being only a prescription, valid under the physical

53
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approximations characterizing the specific quantum model considered by him, to access
multi-time correlation functions from the knowledge of single-time expectation values,
i.e. mean values.

To clarify this puzzle Ford and O’Connell published a series of articles, some of which in
a sort of repartee with Lax [83, 84], in which they showed, on the one hand, that the cor-
rect quantum version of Onsager regression procedure leads to the so-called quantum
fluctuation-dissipation theorem [85-88], meanwhile identifying, on the other hand, with
the specific assumptions and approximations involved in the specific model analyzed by
Lax the intimate reason for the successful application of his quantum regression proce-
dure.

Meanwhile, inspired by the results obtained by Lax with the use of his quantum regres-
sion theorem, several authors [21, 45, 89, 90], dealt with the problem to mathematically
settle down the conditions under which such a regression procedure for obtaining multi-
time correlation function for mean values was appropriate in the quantum setting; they
called it Quantum Regression Theorem, maintaining, for the same motivations that induced
Lax to call his procedure this way (see above), the terminology introduced in [81].

4.1 The quantum regression theorem

In Chapter 2 we introduced and discussed the concepts of quantum dynamical map and
master equation, which allow to describe the dynamics of a reduced system’s statistical
operators and, consequently, to access the mean values of any system’s observables Og.
In order to fully characterize the statistical properties of a quantum system, however,
the sole knowledge of the latter is not sufficient and the expectation value of products of
system’s observables at different times is required. These quantities are known as multi-
time correlation functions, and their relevance, beside being conceptual and fundamental,
pours also into practical situations, since they are often related to measurable quantities.
A very well-known example is in fact represented by the fluorescence spectrum of the
electromagnetic field emitted by an atom which is the Fourier transform of a two-time
correlation function of radiation modes operators [21, 22]

Despite their relevance however, multi-time correlation functions often represent a formi-
dable task to be accomplished, due to the fact that the knowledge of the full system+environ-
ment dynamics is required, a generally too demanding request in the context of open
quantum systems theory. The quantum regression theorem represents in this regard the
easiest route to determine two-time correlation functions since it allows, whenever valid,

to reconstruct two-time correlation functions from the knowledge of mean values. It is
therefore important to clearly understand the conditions which guarantee the quantum
regression theorem to apply, especially in relation to the concept of non-Markovianity.
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4.1.1 Multi-time correlation functions

Here we will introduce the concept of multi-time correlation functions. A proper defini-
tion can be given, following [45], in terms of a multi-time sequence of generalized mea-
surements performed on the quantum system under consideration. A two-step version
of this multi-time measurement protocol for the special case of selective measurements
will be also employed in Chapter 5 to obtain the full statistics of generic observables.

Definition 4.1. The most general form for a measurable multi-time correlation function
is given by

<A1<81) NN Am(sm)Bn(tn) e Bl (t1)> =Tr [Bn(tn) e Bl(tl)p(to)Al(Sl) e Am(sm)] 5
(4.1)

where p describes the initial state of a system of interest, { A;(t;)}j=1,...m and { By (tx) }k=1,...

are arbitrary system’s operators belonging to B(.%’) and evolved according to the Heisen-
berg picture with respect to the full Hamiltonian

Aj(ty) = U5, t0) A;U (¢, to), (4.2)

and where s,,, > ... > 51 > 0,1, > ... > t; > 0. The order between the sequences of the
s; and t; is not specified at this level.

The demonstration that this is the most general form achievable can be found in Chapter
2.3 of [45]. Upon a further time-ordering of the combined set of times {s1,...,sm, 1,
...,t,} into a new sequence of ¢ < n + m elements ! {ry,...,r,}, Equation (4.1) can be
rewritten as [21, 22, 45]

<A1(51) e Am(sm)Bn(tn) e Bl(tl» =Tr [‘I)qU(tq, tqfl)(I)qflU(tqfl, tq72)
Pgo - Ultz, t1) 21U (t1,t0)p(t0)], (4.3)

where we have introduced the superoperator ®; through its action on a generic w €
T(H)

Aw, ifry =t; #s;forsomei=1,..., mandeveryj=1,...,n
Opw] = wBj, ifry=s;#t;forsomej=1,...,nandeveryi=1l,...,m , (44)

AwBj, ifr, =t; =sjforsomei=1,..., mand somej=1,...,n

and where we have removed the square brackets, for easiness of notation, assuming that
the super-operators always act on anything standing to their right.

In what follows we will deal, for the sake of simplicity, with two-time correlation func-
tions, but in principle higher correlation functions can be considered (and reconstructed
by means of the quantum regression theorem, if valid). Given a generic system initially
described by a statistical operator p and evolving according to some unitary operator

!The number g of elements of the time-ordered set can be smaller than n+m since, for somei =1,...,m
and j =1,...,n, one can have s; = t;.
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Ul(t, to), the two-time correlation function of generic operators O, Oz € B(5¢) is defined
as

<01 (t + T)Oz(t)> =Tr [UT (t + 7, tQ)OlU(t + 7, to)UT(t, to)OQU(t, to)p(to)] s (45)

with 7 > 0. By exploiting the ciclicity property of the trace, Equation (4.5) can be re-
expressed as
(O1(t 4 7)02(1)) = Tr [O1 x(7, 1)], (4.6)

where
X(1,t) = U(t +7,1) (O2p(t)) UT(t 4 7,1) (47)

represents a trace-class operator sometimes referred to as effective statistical operator [91],
even though it does not belong to S(.7¢) since its trace is not equal to 1 any more.

4.1.2 Two-time correlation functions and the quantum regression theorem

Consider a quantum system of interest S interacting with an environment E such that
the evolution of the composite system is given in terms of a unitary operator U (t,ty) =
e~ Mt—10) with i = Hg @ 1g + 1g @ Hi + Hsr. Moreover, assume that the initial state
of the overall system is factorized

psk(to) = ps(to) ® pE, (4.8)

with pg fixed, and that the reduced dynamics can be described in terms of a collection of
tamily of CPTP maps of the form

A(Ls)::ajexp[jctdrﬁ(rﬂ , (4.9)

with T being the chronological time ordering operator and £(7) representing the in-
finitesimal generator in time-dependent Lindblad form (2.105), such that

d —
{th(t, s) = L(A(L, 5), i s (4.10)

A(S, 8) =1 S5
The mean value of a generic system’s operator A € B(.#5) can thus be determined as

(A(t)) = Trs [AA(t, to)ps(to)] (4.11)
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as well as its evolution equation, which reads

@A) = T4 ps)

= —Treg[AA(t ¢
p rs [AA(t, to)ps]

= Trg [A (C;i/\(t»to)ﬂsﬂ
= Trg [AL(t)A(t, to)ps]

= Trs [£'(t)AA(t, o) ps]
= Trg [£/(1) A ps(1)] | 4.12)

where £'(t) is the adjoint map of L(t) as defined in Equation (2.28).

Given two open system’s operators, A® 1 and B ® 1 g, their two-time correlation func-
tion is then defined as

(A(t+7)B(t)) = Trse [UT(t +7,t0) (A@ 1) U(t+7,t0)UT (t,10) (B @ 1) U(t, to) pse(to)
= Trg [Axs(T,1)], (4.13)

where we have introduced the reduced effective statistical operator

xs(1,t) = Trg [x(7,8)] = Tri [U(t vrt) (Bolppse®) U+ 0], (414)

Now, suppose that we can describe the evolution of xs(7,t) with respect to T with the
same dynamical maps A(¢, s) which fix the evolution of the statistical operator, i.e.

t) = A(t t 0,t
{xw,) (t+7.1)xs(0,1), @15)
xs(0,t) = Bps(t).
If this is the case, then the two-time correlation function (4.13) can be written as
(At +7)B(t)) = Trs [AA({ + 7, 1)xs(0,1)] (4.16)

and its evolution equation becomes

%@4(75 + T)B(t)> = %Trs [A XS(T, t)]

d
= %TIIS [A A(t + 7, t)XS(Oa t)]

= Trg [A <jTA(t + 7, t)xs(0, t))}

=Trg [AL(T)A(t + 7,t)xs(0,1)]
= Trg [L'(H)[A] A(t + 7,t)xs(0,1)]
=Trg [£'(1)[A] xs(7,1)] . (4.17)
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It is immediately evident a formal similarity between Equations (4.11) and (4.16) (or
equivalently between Equations (4.12) and (4.17)), upon the substitution ps(0) — xs(0,
t). Under the above requirement, the two-time correlation functions can thus be fully
determined by the sole knowledge of the dynamical map which determines the evolu-
tion of the statistical operator or equivalently of the mean values.

The validity of Equation (4.16) can be identified with the validity of the quantum regression
theorem and, from now on, we will use the subscript ¢rt to denote the two-time correla-
tion functions evaluated through Equation (4.16).

It is very important to stress that all the procedure relies on Equation (4.15), which re-
quires that each and every assumption made in order to derive the dynamics of pg(t)
can be legitimately made also to get the evolution of xg(7,t) with respect to 7 [92]. In
particular, the hypothesis of an initial total product state in Equation (4.8) is translated
into the hypothesis of a product state at any intermediate time ¢,

pse(t) = ps(t) ® pE. (4.18)

The physical idea is then that the quantum regression theorem holds whenever the
system-environment correlations due to the interaction can be neglected [89].

Note that this condition will never be strictly satisfied as long as the system and the en-
vironment mutually interact, but it should be understood as a guideline to detect the
regimes in which Equation (4.16) provides a satisfying description of the evolution of
the two-time correlation functions. More precisely, Diimcke [93] demonstrated that the
exact expression of the two-time (multi-time) correlation functions, see Equation (4.5),
converges to the expression in Equation (4.16) in the weak coupling limit and in the sin-
gular coupling limit. As well-known, in these limits the reduced dynamics converges to
a semigroup dynamics [29, 94]. Nevertheless, the correctness of a semigroup description
of the reduced dynamics is not always enough to guarantee the accuracy of the quantum
regression theorem [83, 95]. More in general, the investigation of a more precise link be-
tween a sharply defined notion of Markovianity of quantum dynamics and the quantum
regression theorem represents the goal of the present Chapter.

It is worth stressing that the quantum regression theorem provided by Equation (4.16)
can be equivalently formulated in terms of the differential equations satisfied by mean
values and two-time correlation functions, as was originally done in [81]. For the sake of
simplicity, let us focus on the finite dimensional case J¢5 = CY and consider a reduced
dynamics fixed by the family of maps {A(¢)},.,, and a basis {E;}; 2 of linear opera-
tors on C, such that the corresponding mean values fulfil the following coupled linear
equations of motion [90]

%@(t» =D GyO(E;(1)), (4.19)
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with the initial condition (E;(t))|=0 = (£;(0)). In this case, the quantum regression
theorem is said to hold if the two-time correlation functions satisfy [21, 92]

%(Ei(t + D) E()gre = > Gt + THE(t + ) Er(t) )gre (4.20)
J

with the initial condition

(Eit + 7) ER(t))grilr=0 = (Ei(t) Ex(1))- (4.21)

In the following Sections, we will consider two specific models of open quantum systems
which allow the analytic evaluation of the exact two-time correlation functions obtained
from the full unitary evolution (E;(t + 7)Ej(t)), see Equation (4.5). In such models we
will compare these quantities with the same ones predicted by the quantum regression
theorem (E;(t + 7)Ej(t)) 4+ and we will quantify the error made by using the latter pro-
cedure by computing the relative error

(At +7)B(t))grt

Z=11- AGTIBO | (4.22)

Note that, in general, this quantity is different for each couple of system’s operators
and thus one should calculate it for every couple of operators in the basis {E;};  n2
and perform a maximization over them. Nevertheless, in the following analyses it will
be enough to deal with a single couple of system’s operators, which fully encloses the
violations of the quantum regression theorem for the models at hand.

4.2 The pure-dephasing spin-boson model

In this section, we take into account a model whose full unitary evolution can be exactly
evaluated [21, 96], so as to obtain the exact expression of the two-time correlation func-
tions, to be compared with the expression provided by the quantum regression theorem.
This model is a pure-decoherence model, in which the decay of the coherences occurs
without a decay of the corresponding populations. Indeed, this is due to the fact that the
free Hamiltonian of the open system Hgs ® 1 commutes with the total Hamiltonian Hr
[21].

42,1 The model

Let us consider a two-level system linearly interacting with a bath of harmonic oscilla-
tors, so that the total Hamiltonian is

Wy .
H=Hs+Hp+Hsp = 0. 01p+1s® ;wkb;bk + Zk: o, ® (gkb; + gkbk) . (4.23)
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with w, being the energy gap between the two levels of the system (in units of /, which
is henceforth set to 1 for convenience), o, being the z-Pauli matrix and k labels the envi-
ronmental bosonic mode relative to the frequency wy, and creation-annihilation operators
bl by.

k>

Since we will be interested in evaluating expectation values of system’s operators, we
move to the more convenient interaction picture with respect to the free Hamiltonian
‘Hs + HE, according to which the interaction Hamiltonian reads

Hop(t) = M) gy g emiHsTHE Z g, ® (gkb + gibi(t )) (4.24)
An analytic expression for the total evolution operator in the interaction picture

t
U(t) = T exp [—i/o dsr}:lsE(S)} (4.25)

can be found by exploiting Magnus series expansion [97] and noticing that the commu-
tator between the interaction Hamiltonian at two different times is a c-number function

ﬁSE(t),ﬁSE(t)} = [2ilgil* sin (wi(t — )] (1s @ 1) = =2i¢(t —t)).  (4.26)
k

This allows to truncate Magnus expansion at second order (every higher order contribu-
tion in fact vanishes) thus giving

U(t) = exp [—; /Ot dty /Ot dt2O(t, — to) [ﬁSE(tl),ﬁSE(tQ)H - exp [—i /Ot dt’ﬂw(t')}

= exp [z /Ot dt, /Ot dto®(t) — t2)((t — 752)] - exp [—i /Ot dt’ﬁw(t')}

= Oy (1), (4.27)

where the first factor is a global phase factor which is irrelevant to the forthcoming anal-
ysis and the second factor is the unitary operator

1 *
V(t) = exp 502 ® Ek (ozk(t)bz — ak(t)bk>] , (4.28)
with ,
1— ezwkt
ar(t) = 29— (4.29)
W,

Its action on a generic state of the composite system |j) ® |¢) (with |¢) € % and |j) €
Hs j=0,1)reads

V(t) (13 ® |8)) = exp (1 @16) = NSA ((-17 ) 16),

(4.30)

0. @Y (an(tb] - ai(t)br)
k
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where we have introduced the multi-mode displacement operator [43]
=1 o) =TT exp Bt — Bt . (4.31)
k k

where 3 denotes the infinite dimensional vector with components /. The single-mode
displacement operator D(f}), widely employed especially in quantum optics due to its
intimate relation with coherent states [43, 46, 98, 99], has, among others, the following
properties which will be useful for forthcoming purposes

(i)
DY(Br) = D(—Br), (4.32)

(ii)
D(By) D(vk) = D(Bg + i) €m0, (4.33)

By making use of Equations (4.30), (4.32) and (4.33), it is easy to see that
ps(t) = Tre |U(1) (ps(0) © pi) U (1) (4.34)

1
= 2 s e T [V (1) (il @ o) V(8)]

: HD ( 06'62(75)> PE I;IDT ((_1)j ak;”)]

Z pS r] |T‘ ]| Trg

r,j=0
= mzl:[)[ps(())]m I7) (j| Trg [A ((—1)3'“%) A ((—1)T%) ,oE)] . (4.35)

It is straightforward to show that, by virtue of property (4.33) of the displacement oper-
ator, the following relation holds

AT A(C) S ) =0 1+ (-0 A(-Der),  (436)

and, consequently, the quantity under the trace over the environment in Equation (4.34)
can be written as

Trg [A (D7 S A (075 pp)] = Tes [0y - 1+ (1= 6n) A ((-1)7 @) )
=0+ (1= 6,5) Tre [A (1) ) pi] -
(437)

Substituting this expression into Equation (4.34) and moving back to Schrédinger picture
finally leads to the expression of the reduced system’s state

1

ps(t) =D [ps(0)]r;I7) (il (5m-+(1—5 j) e et g A (- pE) (4.38)

r,g=0
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which can be conveniently visualized in matrix form as

—iwst
ps(t) = A(t,0)ps(0) = (pmf(oto)ew P 0”(216 > (4.39)

where the decoherence function v(t) is given by

v(t) = Tre [A(ou)ps] - (4.40)

4.2.2 The master equation

This Subsection is devoted to derive the time-local master equation governing the re-
duced system’s dynamics

dps(t)

dt

To achieve this goal, we follow the construction discussed in Chapter 2 Subsection 2.2.3.
The starting point is to find the representation of the dynamical map A(¢,0) on the basis
{Eag}g /23;10 given by Equation (2.36), in order to be able to use Equation (2.82). The latter
can be obtained with straightforward calculations from Equation (4.39) and reads

= Kror(t) ps(t). (4.41)

A(t,0) = (4.42)

0 0 0 -1

From Equation (4.42), through Equation (2.82) we then get the expression of the time-
local generator 7, (t) on the same basis, i.e.

Krcr(t) = (4.43)

2>
s@‘@
| N |
o O o O

Since the dynamical map A(¢,0) is trace and hermiticity preserving, we can moreover
apply the construction put forward in Chapter 2 Subsection 2.2.4.1 to further specify the
structure of the master equation. According to (2.86), we choose the following Hilbert-
Schmidt basis

Is _ L (10) oe 1100 o (0 s (00) g
2 v2\0 1 2 v2\0 -1 00 10



Chapter 4. Characterization of two-time correlation functions: the quantum regression theorem 63

and perform the change of basis (2.40) from { E, 3} g=1,... 4 t0 { Fag}a g=1,..4, which leads
to K'rop(t)

Re Dﬂ 0 0 —ilm D%]
Kror®=| o+ o0 . (4.45)
iIm Dﬁiﬂ 0 0 —Re [Vm

Making use of Equations (2.88), (2.89) and (2.90), it is then straightforward to prove that
the master equation can be written as

d e(t)

st =~ Do, ps(r) + 20

>}

(UZPS (t>az - ,OS(t)) 9 (4'46)

where

€(t) =ws —Im [(h(t)tg(hj] (4.47)

and the so-called dephasing function D(t) is

dry(t)/dt
v(t)

In the following, we will focus on the case of an initial thermal (Gibbs) state of the envi-
ronment

Dlt) = e | | =-gmhol (1.48)

ZE

relative to the inverse temperature 5. Moreover, we will take the continuum limit of en-

p(0) = pg = . Zp=Tig [, (4.49)

vironmental modes: given a frequency distribution f(w) of the bath modes, we introduce
the spectral density J(w) = 4f(w)|g(w)|?, so that one has [21]

v(t) = exp [— /OOO dw J(w) coth <62w> 1_(:0:):(&)0} , (4.50)
and hence €(t) = wy and
D(t) = / ” dw J(w) coth (52"") sin (W) 4.51)
0 w

4.2.3 Measures of non-Markovianity
4.2.3.1 General expressions

For this specific model, all the definitions of Markovianity given in Chapter 3 are actually
equivalent [100]. This is due to the fact that there is only one operator contribution in the
time-local master equation (4.46), corresponding to the dephasing interaction.

For what concerns the estimators of the degree of non-Markovianity, we will explicitly
calculate the one introduced by Breuer, Laine and Piilo (BLP, see Subsection 3.2.2) and the
one by Rivas, Huelga and Plenio (RHP, see Subsection 3.2.1).) It is in fact interesting to
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consider both of them since, as will be evident later, their numerical values are in general
different and, more importantly, they depend in a different way on the parameters of the
model.

Let us start by evaluating the BLP measure. The trace distance between two reduced
states evolved through Equation (4.39) is given by

D(t,p§*) = /03 + 6. 1A (1) 2 (452)

where 8, = ply — pd, and 6. = p{; — p?, are the differences between, respectively, the
populations and the coherences of the two initial conditions p} and p%. The couple of
initial states that maximizes the growth of the trace distance is given by the pure orthog-
onal states p}f = |¢+) (Y+|, where |¢py) = % (l0) £1]1)), and the corresponding trace
distance at time ¢ is simply |y(¢)|. The BLP measure therefore reads

N = Zlv )= [v(am)]) (4.53)

where Q. = J,,, (am, bp,) is the union of the time intervals in which |y(¢)| increases. The
BLP measure is different from zero if and only if d|v(¢)|/dt > 0 for some interval of time,
which is equivalent to the requirement that the dephasing function D(t) in Equation
(4.46) is not a positive function of time, i.e., that the CP-divisibility of the dynamics is
broken, Sec. 3.2.1. As anticipated, for this model .#" > 0 <= .# > 0. Furthermore, given
a pure dephasing master equation as in Equation (4.46), one has [13] g(¢) = 0if D(t) > 0
and g(t) = —D(t) if D(t) < 0, so that, see Equation (4.48),

S = Z (Iny(bm)| = [y(am)]) (4.54)

where the a,, and b,, are defined as for the BLP measure.

4.2.3.2 Zero-temperature environment

In order to evaluate explicitly the non-Markovianity measures, we need to specify the
spectral density J(w). In the following, we assume a spectral density of the form

S

J(w) = Ao 8, (4.55)

where X is the coupling strength, the parameter s fixes the low frequency behaviour
and () is a cut-off frequency. The non-Markovianity for the pure dephasing spin model
with a spectral density as in Equation (4.55) has been considered in [101, 102] for the
case A = 1. We are now interested in the comparison between non-Markovianity and
violations of the quantum regression theorem, so that, as will become clear in the next
section, the dependence on A plays a crucial role. In particular, we consider the case of

low temperature, i.e., 5 > 1, so that coth (%“) ~ 1. The dephasing function in this case



Chapter 4. Characterization of two-time correlation functions: the quantum regression theorem 65

reads, see Equation (4.51),

= Msin sarctan
Ds(t) = 0+ (Qt)2)% ( tan (2t)) , (4.56)

with I'(s) the Euler gamma function. The latter can be expressed in a more elegant form
by exploiting the identities

sin (arctan(x)) = \/1”172 ,cos (arctan(x)) = \/1172 (4.57)
x x
together with
sin (sx) = (Z) (cos(z))F (sin(x))* ¥ sin (g(s - k)) , (4.58)
k=0

so that one is left with

AQL (s s ke k ok
DS(t):WHé?t)W[k:o @(m)s (i~ () >]

)\QF S . s - s
::zm1+(gg%SK1+WQﬂ — (1 —iQt)’]

Im [(1 +iQt)*]

= \Qr 4.
M) eyt (459
With analogous calculations, the decoherence function can be written as
B Re[(14it)57Y
vs(t) = exp [—)\F(s -1) <1 T A+ @) . (4.60)

As before, let 2 be the union of the time intervals for which D(¢) < 0, i.e., equivalently,
|7(t)| increases. The number of solutions of the equation D(t) = 0 grows with the param-
eter s: for s = 1,2 the dephasing function is always strictly positive, while for s = 3 and
s = 4 there is one zero at t3 = g and tj = & respectively. Indeed, if the number of zeros
is odd, D(t) is negative from its last zero to infinity, while if the number of zeros is even,
it approaches zero asymptotically from above. As a consequence, the two measures of

non-Markovianity are equal to zero for s = 1, 2 and, to give an example, one has for s = 3

MO) = lim 0] = ()] = et — e
. wg A
A0) = Jim I p(0)] ()] = 5, (4.61)
and, analogously, for s = 4
—2) —5A A
M(A) =e e 2%, (N = 3 (4.62)

In Fig. 4.1 (a) and (b), we report, respectively, the BLP and the RHP measures of non-
Markovianity as a function of ), for different values of s.
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FIGURE 4.1: (Color online) (a) BLP measure of non-Markovianity .#;()), see Equation

(4.53), and (b) RHP measure of non-Markovianity .#;()\), see Equation (4.54), as a func-

tion of the coupling strength ) for increasing values of the parameter s. In both panels

the curves are evaluated for s = 3 (black thick solid line), s = 3.5 (blue solid line), s = 4

(magenta dashed line), s = 4.5 (green dashed thick line), s = 5 (red dot-dashed line)
and s = 5.5 (orange dotted line).

The behaviour of the two measures is clearly different. The RHP measure is a mono-
tonically increasing function of both A and s: the increase is linear with respect to the
former parameter and exponential with respect to the latter. On the other hand, for ev-
ery fixed s, there is a critical value of the coupling strength \*(s), which is smaller for
increasing s, that separates two different regimes of the BLP measure: for A < \*(s), the
non-Markovianity measure increases with the increase of the system-environment cou-
pling, while for A > A\*(s) it decreases with the increase of the coupling. Analogously,
there is a threshold value s*(\) of the parameter s, which is higher for smaller values of
A, such that the BLP measure increases for s < s*(\) and decreases for s > s*(\), see
also Fig. 4.2 (a). Incidentally, the maximum value as a function of A\, max) .#5(\), is a
monotonically increasing function of the parameter s. Indeed, the different behaviour of
the non-Markovianity measures traces back to their different functional dependence of
the decoherence function 7,(¢), which is plotted in Fig. 4.2 (b) and (c) for different values
of s and X. One can see how ~,(t) takes on smaller values within [0, 1] for growing values
of A\, while its global minimum decreases with increasing s. Now, while the BLP measure
is fixed by the difference between the values of ~,(t) at the edges of the time intervals
[@m, by in Which 75 (¢) increases, see Equation (4.53), the RHP measure is fixed by the ra-
tio between the same values, see Equation (4.54). Hence, as the coupling strength grows
over the threshold A*(s) or the parameter s overcomes the threshold s*(\), the difference
between b,, and a,, is increasingly smaller, and therefore . #;()) is so. However, the ratio
between b,, and a,, always increases with A and s, as witnessed by the corresponding
monotonic increase of Zs(\).
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FIGURE 4.2: (a) BLP measure of non-Markovianity .#;()), see Equation (4.53), as a func-
tion of the parameter s, for A = 1. (b) and (c¢) Decoherence function +,(¢) as a function
of time for A\ = 0.5 and different values of s (b), and for s = 4 and different values of \

(0).

4.2.4 Validity of regression hypothesis
4.2.4.1 Exact expression versus quantum regression theorem

The exact unitary evolution, Equation (4.27), directly provides us with the average val-
ues, as well as the two-time correlation functions of the observables of the system. In
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view of the comparison with the description given by the quantum regression theorem,
see Sec. 4.1.2, let us focus on the basis of linear operators on C2, orthonormal with respect
to the Hilbert-Schmidt scalar product, given by {]l / V2,0_,04,0, / V2 } Indeed, the first
and the last element of the basis are constant of motion, see Equation (4.39), while the
mean values of o_ and o evolve according to, respectively,

(o-(t)) = ()™ (o-(0)) (4.63)

and the complex conjugate relation. In a similar way, all the two-time correlation func-
tions involving 1/+/2 or o, /+/2 satisfy the condition of the quantum regression theorem
in a trivial way, as at most one operator within the two-time correlation function actually
does not evolve in time.

Setting, for convenience of notation, to = t+7 and t; = ¢, the only non-trivial expressions
are thus the following:

(o (t2)or (tr)) =eT 27 (tg, )2 (0 0y) (1)),

(4 (t2)o—(t1)) =€ 27" (tg, 1) 2" (0.0 ) (1)), (4.64)
where
Yt2, 1) = Trg pi | [ Alak(tz) — ak(tr)) (4.65)
k
and
O(ta,t1) = Y Im [a(ta)on(tr)] . (4.66)
k

Here, to derive (4.64) we used the properties of the displacement operator [103]
A(@)A(B) = Ala + )™ Al(a) = A(-a),
and the equality ((o40-) (1)) = (040-).

We can now obtain the corresponding two-time correlation functions as predicted by the
quantum regression theorem. By Equation (4.63), one has

Sl = (T ) oo @67)

and the complex conjugate relation for (o (t)). The specific choice of the operator basis
has lead us to a diagonal matrix GG in Equation (4.19). Hence, one has immediately

~—

iws(ta—ty) V(E2
v(t
7" (t2
v*(t1

(o—(t2)o+(t1))grt = € (o—(t1)o+(t1)),

~—_

(01 (t2)o_(t1))gre = e™s(t2—t0)

(o4 (1) (1)
(4.68)

The quantum regression theorem will be generally violated within this model, compare
Equation (4.64) and (4.68). We quantify such a violation by means of the figure of merit
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introduced in Equation (4.22), which for the couple of operators o_ and o reads

(o_(t2)o+(t1))grt
(o-(ta)oy(t1))

Z=1- (4.69)

—|1- 7(t2)
y(t1)y(ta, 1 )€t |

4.2.4.2 Quantitative analysis of the violations of the quantum regression theorem

The expressions of the previous paragraph hold for generic initial state of the bath and
spectral density. Now, we come back to the specific choice of an initial thermal bath. The
results in Equation (4.68) are in this case in agreement with those found in [104], where
the two-time correlation functions have been evaluated focusing on a spectral density as
in Equation (4.55) with s = 1, while keeping a generic temperature of the bath. Instead,
we will focus on the case T' = 0 and maintain a generic value of s in order to compare the
behaviour of the two-time correlation functions with the measures of non-Markovianity.

First, note that by using the definition of the displacement operator as well as Equation
(4.29), one can show the general identity

A(Oxk(tg) - Ozk(tl)) =A (Ozk(tg - tl)eiwktl) . (470)

But then, since for a thermal state Trg A(a)pg is a function of |«| only [21], Equation
(4.70) implies
V(t2, 1) = y(t2 — ta), (4.71)

see Egs.(4.65) and (4.40). In addition we have in the continuum limit, see Equation (4.66),

b(ta, 1) = / dw% fsin(wta) —sin(ewtr) —sin(w(ts — 1)) 472)
so that, for J(w) as in Equation (4.55) and using Equation (4.51) in the zero temperature
limit, we get

qbs(tz, tl) = (Dsfl(tQ) — Dsfl(tl) — 'Dsfl(tg — tl))/ﬂ. (4.73)

The identities in Egs.(4.59) and (4.60), along with Egs. (4.71) and (4.73), finally provide us
with the explicit expression of the estimator for the violations of the quantum regression
theorem, see Equation (4.69),

Zs(\) = ‘1 — exp [)\F(s - 1) [1 — (14 iQ(ty — tl))l_s

—(1+1iQt)" 7 + (1 +iQ) %)) |, (4.74)

whose behaviour as a function of A and s is shown in Fig. 4.3 (a) and (b).

The violation of the quantum regression theorem monotonically increases with increas-
ing values of both the coupling strength A and the parameter s. This behaviour is clearly
in agreement with that of the RHP measure of non-Markovianity, see Sec. 4.2.3.2 and
in particular Fig. 4.1. From a quantitative point of view there is, however, some differ-
ence as the estimator Z,(\), at variance with the RHP measure, grows linearly with A
only for small values of s, while it growths faster for s > 3; compare with Fig. 4.1 (b).
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FIGURE 4.3: (a) Z5(\) as a function of the parameter s and of the coupling strength ),
see Equation (4.74), for Qt; = 1 and Qt; = 2. (b) Sections of (a) for s = 2,3, 4.

In any case, the RHP measure appears to be more directly related with the strength of
the violation to the quantum regression theorem, as compared with the BLP measure.
This can be traced back to the different influence of the system-environment correlations
on the two measures. As we recalled in Subsection 4.1.2, the hypothesis that the state
of the total system at any time ¢ is well approximated by the product state between the
state of the open system and the initial state of the environment, see Equation (4.18), lies
at the basis of the quantum regression theorem. This hypothesis is expected to hold in
the weak coupling regime, while for an increasing value of ), the interaction will build
stronger system-environment correlations, leading to a strong violation of the quantum
regression theorem. The establishment of correlations between the system and the en-
vironment due to the interaction plays a significant role also in the subsequent presence
of memory effects in the dynamics of the open system [59, 105, 106]. Indeed, different
signatures of the memory effects can be affected by system-environment correlations in
different ways. In particular, the CP-divisibility of the dynamical maps appears to be a
more fragile property than the contractivity of the trace distance and therefore it is more
sensitive to the violations of the quantum regression theorem. Furthermore, it is worth
noting that the estimator Z,(\) steadily increases with the coupling strength A even for
values of s such that the corresponding reduced dynamics is Markovian according to
either definitions, see for example the blue solid line in Fig.4.3 (b). The validity of the
quantum regression theorem calls therefore for stricter conditions than the Markovianity
of quantum dynamics.

4.3 Photonic realization of dephasing interaction

In the pure dephasing spin-boson model, there is no regime in which the quantum re-
gression theorem is strictly satisfied, apart from the trivial case A = 0. In addition, we
have shown that the strength of the violations of this theorem has the same qualitative
behaviour of the RHP non-Markovianity measure, as they increase with both A and the
parameter s. In this section, we take into account a different pure dephasing model,
which allows us to deepen our analysis on the relationship between the quantum regres-
sion theorem and the Markovianity of the reduced-system dynamics. In particular, we
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show that in general these two notions should be considered as different since the quan-
tum regression theorem may be strongly violated, even if the open system’s dynamics is
Markovian, irrespective of the exploited definition.

4.3.1 The model

Let us deal with the pure-dephasing interaction considered in Ref. [107]. The open sys-
tem here is represented by the polarization degrees of freedom of a photon generated by
spontaneous parametric down conversion, while the environment consists in the corre-
sponding frequency degrees of freedom. The overall unitary evolution, which is realized
via a quartz plate that couples the polarization and frequency degrees of freedom, can
be described as

U(t)lj,w) =™ |j,w)  j=0,1, (4.75)

where |0) = |H) and |1) = |V) are the two polarization states (horizontal and vertical),
with refractive indexes, respectively, ng = ny and n; = ny, while |w) is the environmen-
tal state with frequency w. If we consider an initial product state, see Equation (4.8), with
a pure environmental state pp = |Ug) (¥ |, where

Wy = / o f(w) ) (4.76)

we readily obtain that the reduced dynamics is given by Equation (4.39). Again, we are
in the presence of a pure dephasing dynamics, the only difference being the decoherence
function, which now reads

2(t) = / dio ()| 2, 4.77)

with An = n; — ng. For the rest, the results of Secs. 4.2.1 and 4.2.3 directly apply also to
this model: the master equation is given by Equation (4.46), with ¢(¢) and D(t) as in, re-
spectively, Equation (4.47) (for ws, = 0) and Equation (4.48), while the non-Markovianity
measures are as in Equation (4.53) and Equation (4.54). Analogously, the two-time corre-
lation functions are given by Equation (4.64) with

Y(t2,t1) = y(t2 — t1), P(t2,t1) =0, (4.78)

while the application of the quantum regression theorem leads to the expressions in
Equation (4.68) (with ws; = 0). Hence, the violations of the quantum regression theo-
rem can be quantified by

(o (t2)o+(t1))grt

)
(0 (t2)+ (1)) @)

Z=11-
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4.3.2 Lorentzian frequency distributions
4.3.2.1 Semigroup dynamics

Despite its great simplicity, this model allows to describe the transition between Marko-
vian and non-Markovian dynamics in concrete experimental settings [107, 108]. Different
dynamics are obtained for different choices of the initial environmental state, see Equa-
tion (4.8) and the related discussion, i.e., for different initial frequency distributions, see
Equation (4.76). The latter can be experimentally set, e.g., by properly rotating a Fabry-
Pérot cavity, through which a beam of photons generated by spontaneous parametric
down conversion passes [107]. A natural benchmark is represented by the Lorentzian

distribution
ow

7 [(w — wo)? + (dw)?]’
where éw is the width of the distribution and wy its central frequency, as this provides
a reduced semigroup dynamics [106]. The decoherence function, which is given by the
Fourier transform of the frequency distribution, see Equation (4.77), is in fact

f(w)]? = (4.80)

’Y(t) — e—An((sw—iwo)t‘ (4.81)

Thus, replacing this expression in Egs. (4.47) and (4.48), one obtains a Lindblad equation,
given by Equation (4.46) with €(t) = —Anwy and D(t) = Andw. In addition, y(t2 —
t1) = 7(t2)/~(t1) and hence, as one can immediately see by Equation (4.79), Z = 0.
For this model, as long as the reduced dynamics is determined by a completely positive
semigroup, the quantum regression theorem is strictly valid. Let us emphasize, that this
is the case even if the total state is not a product state at any time ¢. For example if the
initial state of the open system is the pure state |¢)s) = o|H) + 3 |V), with |a|? +|8]*> = 1,
the total state at time ¢ is

psp(t) = / A f () (@™ | H, ) + B [V, ). (4.82)

This is an entangled state, of course unless a = 0 or 3 = 0; nevertheless, the quantum
regression theorem does hold. This clearly shows that for the quantum regression theo-
rem, as for the semigroup description of the dynamics [105, 106, 109], the approximation
encoded in Equation (4.18) should be considered as an effective description of the total
state, which can be very different from its actual form, even when the theorem is valid.

4.3.2.2 Time-inhomogeneous Markovian and non-Markovian dynamics

Now, we consider a more general class of frequency distributions; namely, the linear
combination of two Lorentzian distributions,

F@l=3 Aj0; (4.83)

o mlw = wo)? + (w))?]
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with A; + As = 1. The decoherence function (4.77) is in this case

e*An((swl —1wo,1 )t + re*ATL(&.UQ 71'0.)012)t

y(t) = Trr : (4.84)

with r = ff, while the estimator of the violations of the quantum regression theorem,
see Equation (4.79), can be written as a function of the difference between the central
frequencies, Aw = wp,1 — wo 2, as well as of the difference between the corresponding
widths, Adw = dw; — dws. If we assume that the two central frequencies are equal,
wo,1 = wo2 = wo, the evolution of the two-level statistical operator is fixed by a time-

local master equation as in Equation (4.46), with €(t) = —Anwp and

5W1€—An5w1t 4y 5w2e—An6w2t
efAmSwlt + 7 efAnJngt

D(t) = An (4.85)
The latter is a positive function of time: the reduced dynamics is CP-divisible, see Section
3.2.1, and hence it is Markovian with respect to both the BLP and RHP definitions. In-
deed, now we are in the presence of a time-inhomogeneous Markovian dynamics. Nev-
ertheless, as v(t2 — t1) # 7(t2)/v(t1) the quantum regression theorem is violated, see
Equation (4.79). This is explicitly shown in Fig. 4.4 (a), where Z is plotted as a function
of Adw = dwy — dwy and Ant, with 7 = t5 — ¢t;. With growing difference between the
two widths, as well as the length of the time interval, the deviations from the quantum
regression theorem are increasingly strong, up to a saturation value of the estimator Z.
Contrary to the semigroup case, here, even if the dynamics is Markovian according to
both definitions, the actual behaviour of the two-time correlation functions cannot be

reconstructed by the evolution of the mean values.

(a) (b)

FIGURE 4.4: Violation of the quantum regression theorem, as quantified by the estimator

Z in Equation (4.79) (a) in the time-inhomogeneous Markovian case, wy 1 = wo,2 = wo,

as a function of Adw = dw; — dwy and woeT = wo(ta — t1), for wety = 1 and r = 1; (b) in

the non-Markovian case, dw; = dwas = dw, as a function of Awy = w1 — wp 2 and dw T,
for dwt; = 1 and r = 2; in all the panels An = 1.

Finally, let us consider a frequency distribution as in Equation (4.83), but now with
dw; = dwy = dw and wp1 # woz2. This frequency distribution has two peaks and the
resulting reduced dynamics is non-Markovian [106, 107]. In this case the BLP non-
Markovianity measure (5.115) increases with the increasing of the distance between the



Chapter 4. Characterization of two-time correlation functions: the quantum regression theorem 74

two peaks, while the estimator Z grows for small values of the distance and then it ex-
hibits an oscillating behaviour, see Fig. 4.4 (b). Indeed, for Aw = 0 one recovers the
semigroup dynamics previously described and, accordingly, Z goes to zero. Summa-
rizing, by varying the distance between the two peaks, one obtains a transition from
a Markovian (semigroup) dynamics to a non-Markovian one and, correspondingly, the
quantum regression theorem ceases to be satisfied and is even strongly violated. Never-
theless, the qualitative behaviour of, respectively, the non-Markovianity of the reduced
dynamics and the violation of the quantum regression theorem appear to be different.
In this Chapter, we explored the relationship between two criteria for Markovianity of a

quantum dynamics, namely the CP-divisibility of the quantum dynamical map and the
behaviour in time of the trace distance between two distinct initial states, and the valid-
ity of the quantum regression theorem, which is a statement relating the behaviour in
time of the mean values and of the two-time correlation functions of system operators.
The first open system considered is a two-level system affected by a bosonic environ-
ment through a dephasing interaction. For a class of spectral densities with exponential
cut-off and power law behaviour at low frequencies we have studied the onset of non-
Markovianity as a function of the coupling strength and of the power determining the
low frequency behaviour, further giving an exact expression for the corresponding non-
Markovianity measures. The deviation from the quantum regression theorem has been
estimated evaluating the relative error made in replacing the exact two-time correlation
function for the system operators with the expression reconstructed by the evolution of
the corresponding mean values. It appears that the validity of the quantum regression
theorem represents a stronger requirement than Markovianity, according to either crite-
ria, which in this case coincide but quantify non-Markovianity in a different way and ex-
hibit distinct performances in their dependence on strength of the coupling and low fre-
quency behaviour. We have further considered an all-optical realization of a dephasing
interaction, as recently exploited for the experimental investigation of non-Markovianity,
obtaining also in this case, for different choices of the frequency distribution, significant
violations to the quantum regression theorem even in the presence of a Markovian dy-
namics.

These results suggest that indeed the recently introduced new approaches to quantum
non-Markovianity provide a weaker requirement with respect to the classical notion of
Markovian classical process. Further and more stringent notion of Markovian quantum
dynamics can therefore be introduced, e.g. relying on validity of the quantum regression
theorem [110]. However, the usefulness of such criteria will heavily depend on the pos-
sibility to verify their satisfaction directly by means of experiments, as it is the case e.g.
for the notion of Markovianity based on trace distance, without asking for an explicit
exact knowledge of the dynamical equations.









Characterization of heat dynamics in
non-Markovian open quantum systems

In Chapter 3 we explored in detail the notion of non-Markovianity in quantum systems,
starting from its classical counterpart and discussing its relationship with the manifes-
tation of memory effects in the dynamics. A wide variety of witnesses of quantum
non-Markovianity have been presented, which, dealing with properties of the dynami-
cal maps, allow to link the occurrence of non-Markovianity with specific time-behavior
of physical quantities, such as, for example, distinguishability, interferometric power or
correlations . It comes therefore natural to wonder how other relevant properties or
observables of open quantum systems, maybe possibly endowed also with a thermody-
namic meaning like energy, behave in presence of a dynamics which is non-Markovian
according to the criteria set up above. This also goes in the long-term direction of try-
ing to exploit non-Markovianity for practical purposes, an endeavour which is already
giving results, for example, in quantum engines [111] or in quantum information [112].

Thermodynamics is one of the oldest physical theories and, up to now, has survived all
major revolutions such as the advent of general relativity and quantum mechanics. Its
systematic application to quantum systems is however a relatively recent field of study,
and many of even fundamental notions are still subject of ongoing debates in the sci-
entific community [113]. The leitmotif is again that to try to transpose to the quantum
realm those concepts and theoretical techniques employed to access the thermodynam-
ical properties of classical statistical ensembles, and supporting them with new theo-
retical tools typical of the quantum theory, in a similar fashion with the notion of non-
Markovianity discussed in Chapter 3.

This Chapter will be conceptually divided in two parts, the former devoted to study of
the first law of thermodynamics in non - Markovian open quantum systems and the latter
to the investigation of the second law, with a particular focus on the so-called Landauer’s
principle, which connects the reign of thermodynamics with that of information theory.

In Section 5.1, we will then make a contextualization of the concepts of energy, heat and
work, i.e. the quantities involved in the statement of the first law of thermodynamics. As

77
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will be discussed in detail, the concepts of work and heat will become very subtle in the
realm of quantum mechanics and, in fact, a general and universally accepted consensus
on them still does not exist [113-117]. This is mainly due to the fact that, given a time-
dependent Hamiltonian H(t), its operatorial form at a generic time ¢ will not in general
commute with its version at initial time 7{(0), making it hard, if not impossible, to asso-
ciate an observable in the usual sense (i.e. a self-adjoint operator on the Hilbert space)
with quantities such as work or heat. In order to properly introduce the latter, one com-
mon way is to rely on a different approach, known as full counting statistics, according to
which the variation of these quantities are defined in terms of a two-time measurement
protocol; this will be presented in detail in Section 5.2.

We will then move to the framework of non-Markovian open quantum systems and
introduce in the following Section 5.3, both in the case of a finite - and infinite - dimen-
sional system, the concept of heat backflow , defined roughly speaking as the fraction of
energy which, during a coupled evolution that in a semigroup limiting case would re-
sult in a steady heat flow from the system S to the environment E, flows back from E
to S. The very natural search for a connection between this idea and the notion of non-
Markvianity as information backflow will be also carried out in two explicit models, the
spin - boson for the finite-dimensional case and the quantum brownian motion for the
infinite-dimensional case.

5.1 The first law of quantum thermodynamics: internal energy,
work and heat

Thermodynamics is the discipline which deals with energy exchanges in physical sys-
tems, and separate them into heat and work contributions. Quantum thermodynam-
ics makes reference to the type of systems under considerations, i.e. quantum systems.
There is a vast literature in merit and several dedicated reviews can be found in the
literature [116-121].

Consider a generic quantum system p € S(°) whose evolution is generated by some
possibly time-dependent Hamiltonian #(¢). The variation of the (internal) energy of this
system is simply given by

AU(t) = Tr [H(1)p()] — Tt [H(0)p(0)]. (5.1)

Following standard thermodynamics, Eq. (5.1) is split in two contributions

t
AU() = [ dr - (o)

_ /0 Car (Tr [dZY) p(T)} +Tr [H(T)dz(:)b

- /0 dr [SW(7) +6Q(7)], (5.2)
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where the two quantities

t t

W)= | droWw(r), Q)= [ drdéQ(7) (5.3)
to to

are respectively identified with work and heat. The former is in fact associated with an

experimentally controllable time-variation of the Hamiltonian, while the second is as-

sociated with the uncontrollable evolution of the quantum system and brings along a

variation in the Von - Neumann entropy of the quantum system. It is also conventional

to consider as positive the work which is done on the system. Eq. (5.2) written as

AU(t) =W (t)+ Q(t) (5.4)
is nothing but the expression of the first law of thermodynamics.

Note that in Eq. (5.2) the symbols 6" in front of the infinitesimal work and heat have
been employed to emphasize that both these quantities are not exact differentials. It is in
fact already clear at this level that, while the change in the internal energy only depends
on the initial and final couples (p, ), neither the work nor the heat in general do and,
in fact, no observable for these two quantities can be found in the usual sense, i.e. no

self-adjoint operators O = W, Q can be found such that (O(t)) = Tr [O(t) p(t)} .

In the context of open quantum systems, a system S interacts with an environment £,
usually considered large, according to an Hamiltonian of the form H(t) = Hs(t) + HEe +
Hsk(t), where the time dependence takes into account for an eventual external driving
tield. Note that, since the dynamics of the total system is described by a unitary operator,
we have that

Trsp {[H(t) (M), pse(t)]) } = 0 (5.5)

Trse {/H(t)dpSE(t)] =2

dt h

and thus the the overall system, considered as a whole, satisfies the relations
Qse(t) =0, = Wsp(t) = AUsg(t). (5.6)

The moment however we restrict our attention to the sub-parts of the total system, i.e.
S or E, instead of the whole system SE, concepts such as work or heat immediately be-
come incredibly subtle [114] and a debate on the most proper and meaningful definition
is still ongoing. The main difficulties lie in the role of correlations between S and E,
which do not belong to either of the bare subparts S or E but influence both of them,
though in a very different way. One of such crucial differences lies in the action of the
external force, which is assumed not act on the environment, in agreement both with con-
ventional thermodynamics and open quantum systems theory points of view, where the
environment is usually considered uncontrollable by an experimenter. It is precisely this
the reason which has led many authors to define heat as the following quantity [4, 122]

Qe(t) = Toe [ (pelt) — pe(0)] = [ ar g [ P20 57



Chapter 5. Characterization of heat dynamics in non-Markovian open quantum systems 80

i.e. the fraction of energy which is transferred to the environment. Accordingly, the work
done (by an experimenter) on the environment is zero:

Wi(t) = /O L Trp [dHEpEu)] ~0 (5:8)

dt
and, thanks to the first law, the transferred heat (5.7) also corresponds to the variation in
the environmental internal energy AUg(t) = Qg(t).

Starting from this consideration, one can also define the concepts of work and heat for
the reduced system in the following way. Exploiting in fact Eq. (5.5), we can elaborate
on the expression of Qg (t) as follows

Qs = - [ A [HE dps;(t)}

and define the heat Qs(¢), in light of the relation Qsz(t) =0, as

Qs(t) = —Qg(t) (5.10)

The last equality leads immediately to the definitions of work and internal energy for the
‘system + interaction” as

Ws(t) = /Ot dr Trgg [(;lt (Hs(t) +Hse(t)) pse(t)]|, (5.11)
AUs(t) = Trse [(Hs(t) + Hse(t)) pse(t)] — Trse [(Hs(0) + Hse(0)) pse(0)] . (5.12)

Note that also for the ‘system + interaction” a balance equation in the form of the fist law
applies, i.e.
AUs(t) = Ws(t) + Qs(t). (5.13)

It is important to stress that the correlations which onset during the evolution between
the system and the environment have, in this construction [122], been incorporated into
the system, in the spirit of the above mentioned scenario where the environment repre-
sents an uncontrolled system which only serves as a thermal bath. However, it is easy to
verify that we could have exploited the linearity of the trace and of the derivative in Eq.
(5.2) to split the first law in three parts, according to the terms of the Hamiltonian

(AUs(t) + AUg(t) + AUse(t) = (Ws(t) + We(t) + Wse(t)) + (Qs(t) + Qu(t)+Qse(t))

(5.14)
and consider the “interactions’ between S and E as a separate part of the overall system
(thermodynamically speaking) to which a first law applies

AU;(t) = W;(t) +Q;(t), j=S,E,SE. (5.15)

The identification of the correlations as a third subpart of the overall system, external
to the reduced system and to the environment, and the association of concepts such as
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work and heat to it seem however less intuitive, and thus we will follow the construction
made above in Egs. (5.10) and (5.13).

Finally, it is worth mentioning that, as already stressed before, other different definitions
of work and heat can be associated to the parts composing a composite quantum system;
we will however not make a list of them here since it would lead us out of our purposes,
but the interested reader is referred to [113-115] for discussions in merit.

5.2 Full-counting statistics and two-time measurement protocol

The present Section is devoted to the introduction of the so-called full-counting statistics,
which is a very powerful theoretical tool mainly, but not exclusively, employed in the
endeavour of characterizing the thermodynamical properties of quantum systems. As
the name suggests, it allows to reconstruct, at least in principle, all the cumulants of the
probability distribution of any generic observable of interest of a quantum system. More
specifically, the full-counting statistics of a generic observable A € B(.%) is identified
with its variation over time with respect to its initial value, according to a two-time mea-
surement protocol, and its main importance, as already stressed above, comes into stage
whenever a thermodynamic quantity such as heat or work (which are not observables)
are to be accessed (though of course it is not limited to these quantities but can be applied
to any observable).

Consider then a quantum system described by a statistical operator p € J#, whose evo-
lution is determined in terms of a unitary operator U. Consider moreover an observable
A = At € B(A#), whose eventual time dependence in the Shrodinger picture solely
comes from the action of an external driving force (thus associated with an external
work). We will denote with {a;, |a:)} the family of eigenvalues / eigenvectors of such
observable at time ¢ according to its spectral decomposition A(t) = > a, Ot lar) (ar] =
> _a, @tlla,. The probability distribution p;(Aa) for a change Aa = a; — ao to occur be-
tween time ¢ and initial time 0 can be formally defined in terms of the joint probability

Pt [as; ao) = Tr [ 10,0 (¢, 0) {1 (01T, U (1, 0)1,, (5.16)
as
pi(Aa) = Z 0 (Aa — (ar — ap)) Py [ag; apl, (5.17)
at,ao

where §(-) denotes the Dirac’s delta function. Note that the variable Aa is now a classical
random variable whose distribution at time ¢ is described by p;(Aa). The joint probabil-
ity (5.16), which can be formally regarded to as a two-time correlation function (T14, 114, ),
can be thought to be obtained by means of a two-time measurement protocol of the observ-
able A(t). The latter is usually conceived as follows: at initial time ¢ = 0 the selected
observable whose statistics we want to reconstruct is measured and the outcome ag (be-
longing to the spectrum of A(0)) is obtained as a result. The state of the system, initially
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described by p(0), then collapses in

~ A~

p/(O) _ Haopgo)ﬂao ‘
Trse [Haop(o)}

(5.18)

Immediately after the measurement, at time ¢ = 07, the system is let undergo an evolu-
tion, dictated by the unitary U, up to some generic time ¢, when another measurement
of the observable A(t) is performed again. If this time a; is obtained as an outcome, the
final state describing the system is of the form

1, (0)UtI,
p//(t) _ tU(t7O)p (O)U t

= . N (5.19)
TI“SE HatU(t,O)pl(O)UTHat

The joint probability to have obtained the two outcomes a; at time ¢ and ag at time 0 is
then given by the Born rule and corresponds to (5.16).

In order to obtain all the cumulants of the probability distribution of Aa, thus fully char-
acterizing the statistics of the change in the observable A(t), the cumulant generating
function is introduced as the Fourier transform of the probability distribution, i.e.

O(n,t) = In(e3%), = In / d(Aa) py(Aa)ee, (5.20)

from which the n'"—order cumulant is simply obtained by derivation over the parameter
n

"

((Aa)")y = (—z’)"(fw@(n,tﬂn:o. (5.21)

By substituting the expression of the probability distribution (5.17) in (5.20), we immedi-
ately have that
O(n,t) =In Y =) P, [a;;ag]. (5.22)

at,ao

It is important to stress that the cumulant generating function can be equivalently con-
structed as the real Laplace transform of p;(Aa), i.e.

O(n,t) = In(e” "), = In / d(Aa) py(Aa)e™ A9, (5.23)

from which the cumulants are obtained through

(Ba)), = <1>"§;@<n,t>|n:o. (5.24)

The introduction of (7, t) carries along an important simplification. An important as-
sumption is that the initial state commutes with the observable A(O), ie.

[A(O), p(O)} —0. (5.25)

This condition, though being widely assumed especially when the observable considered
is the energy (as will be shown below in more detail) in which case it would correspond
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to consider an initial state in Gibbs form, is however not strictly necessary, as shown in
[117]. Using the spectral theorem

f(A) =3 f(a)la) al, (5.26)
it is straightforward to prove that Eq. (5.22) can be re-expressed as
O(n,t) = In'Tr [p(n,1)], (5.27)
where the operator
p(1,t) = Uy ya(t,00p(0)U7L, (2, 0) (5.28)

is the initial statistical operator evolved according to the modified evolution operator
U, (t,0) = emADr (¢, 0)e~MAO), (5.29)

It is very important to note that the operator p(n,t) is not a statistical operator since its
trace is not normalized to 1, except than at the initial time where it coincides with p(0).
This fact plays a crucial role, since the full statistics constructed by derivation of the
cumulant generating function ©(7,t) stems, in light of Eq. (5.27), from the non-trace-
preserving character of the modified evolution.

When the parameter 7, usually referred to as counting field parameter, is set to zero n = 0,
we retrieve the usual evolution operator and statistical operator

A A

Un(t7 O)|17=0 = U(t’ 0)7 P(U» t)|77=0 = p(t). (5.30)

Moreover, if the selected observable does not depend on time fl(t)A: A(0) = A, provided
H denotes the Hamiltonian of the system such as U(t,0) = e/t
modified evolution operator equivalently as

, we can express the

A

U, (t,0) = eMAT(t,0)e M4 = =Mt (5.31)
where

T, = eMApemind, (5.32)

5.2.1 Generalized master equation

The FCS formalism illustrated above is particularly useful when applied to an open
quantum system weakly coupled to an environment. In this scenario in fact, if the two-
time measurement protocol is carried out on an observable of the environment, then we
have that Eq. (5.27), which in this case reads

@<777 t) =InTrsg [pSE<777 t)] ’ (533)

becomes
O(n,t) = InTrg [ps(n,t)], (5.34)
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where we have defined the reduced modified density matrix

ps(m,t) = Trg |Uya(t, 0)ps(0)07, (t,0)] (5.35)

The meaning of Eq. (5.34) is the following: in order to reconstruct the full statistics of a
single selected observable of the environment (which in the scenario of open quantum
systems’ theory is usually conceived to be not accessible) we can simply look at its effect
on the evolution of the reduced system. This point of view shares also many similarities
also with the quantum probe framework. The advantage brought by Eq. (5.34) is that,
under the very same assumptions which lead to the expression of a master equation
for the usual reduced statistical operator pg(t), e. g. weak coupling, Born-Markov, et
cetera, a master equation for the modified operator pg(7,t) can be written as well, which
is usually referred to as generalized master equation [117]. We stress however that the
weak coupling assumption, in most cases needed for the master equation to be written
in closed form, is not necessary for the previous results to hold true and in fact we will
see in Section 6.4 an example where the cumulant generating function of the dissipated
heat is reconstructed for a specific model without any assumption on the coupling.

To summarize, the powerfulness and usefulness of this method relies in the fact that,
by solving (analytically or numerically) a master equation for an operator which has the
same degree of complexity of that of the reduced system, we can access the statistics of
an observable of the environment. It is important to notice that this is possible since we
are looking at a single specific observable and not at the general statistical properties of
the environment (i.e. we cannot infer properties of the dynamics of the environmental
state by looking at the reduced system).

By means of the projection-operator technique and second-order time convolutionless
expansion the dynamical generator (see Chapter 2 Section 2.2.2.1), a generalized master
equation (GME) for pg(n,t) can be written for a generic microscopic Hamiltonian of the
form H = Hs +He + Hse [117], with Hy = Hg + HE being the free part and Hsg being
the interaction term. Writing the latter in the following general form [21]

Hsp=) C'ewB"  CeB(#s) B" € B(Ap), (5.36)
k

and assuming that the initial state of the environment pg(0) commutes with the desired
observable A € B(.#%) whose statistics we want to reconstruct, the GME reads

@ s(n.t) = —i[Hs. ps(m,1)]

dt
=3 [ dr [T s (at) + @ -TIps (00 (I
jk
- q)kj(_na T)ijS(Tla t)Ck(_T) - q)kj(_nv T)Cj(_T)PS(% t)Ck:| ’ (537)
where

® (0, 7) = Trp Bgn(t)kaE(O)} (5.38)
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is the generalized environmental correlation function, with
Bi(t) = /AABI()e~ /D4 (5.39)

and B/(t) = eMo! Bie~iot, Note that in the above equations we have omitted the hat
symbol over the operators in order to facilitate the readability. We will conform to this
notation in what follows as well whenever there is no risk of confusion or otherwise
stated. The quantity in Eq. (5.38) reduces to the familiar environmental correlation func-
tion for vanishing values of the counting field parameter 7.

Since the aim of this Chapter is to reconstruct observables of the quantum system en-
dowed with a thermodynamical significance, we will from now on identify the generic
self-adjoint operator A of the above expressions with the energy of the environment Hp,
whose change in time gives the heat.

In this case, the generalized environmental correlation function constructed from the
microscopic Hamiltonian H can be proven to satisfy the following symmetry

with § being the inverse temperature (kg = 1) of the initial bath, which reduces to the
well-known Kubo-Martin-Schwinger (KMS) condition for the usual environmental cor-
relation function [123]

Djp(t) = Dpi(—t — iB). (5.41)

The latter, which is often found in literature in its frequency-domain expression as

Qjp(w) = eﬁ“’(I)kj(—w), (5.42)
with N
gt
Bu(nw) = [ e B, (5.43)

expresses the so called detailed balance condition.

It is worth to consider the form of the GME when the Born-Markov and the secular ap-
proximations are performed on Eq. (5.37). These approximations, are known to lead
from an Hamiltonian microscopic evolution to an effective semigroup description of the
dynamics in the case of the statistical operator of the reduced system [21]; the same im-
plementation of all the passages and considerations that can be found in [21] to the mod-
ified operator pg(n,t) and its GME Eq. (5.37), imply that the dynamics of populations
and coherences of pg(7,t) are decoupled and evolve according to [117]

d . .
%pnn(n,t) = *2WZ Z [q)jk(*wmn)ogzmcﬁmpnn(na t) — q’jk(ﬁawmn)C%mempmm(m t)] )

ik m

d .
apnm(n, t) = — (Com + 1 Qum) prm (0, 1), (5.44)
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where
Ly = 27 Z [ CmmC,]fjn Z ( —wn1)C' Clk;L + @y (wml)CZ@lCﬁn) )
(5.45)
ZZ  dwp Ucﬁck— +ood p Lirlw) ()CJ ,CF (5.46)
Qpm = Wnm — w+ In - w+w Im| > .

where wy,,, = wy, — wyy, is the energy difference (in units of /) between the system’s ener-
gies relative to eigenstates n and m. In order to derive Eq. (5.45), the SokhotskiPlemel;
relation ~

/ dt et = 1(w) + Pé (5.47)
has been used, with §(-) and P being the Dirac’s delta function and the Cauchy Principal
Value respectively. Note that the dependence on the counting field parameter 7 is only
on the population dynamics, while the coherences undergo an exponentially damped
evolution.

5.3 Heat backflow in weakly-coupled discrete- and continuous-
variables systems

In the present Section our aim is to characterize the following quantity

Trp [HEe (pe(t) — pe(0))] (5.48)

in a non-driven open quantum system Z5 weakly coupled to an environment % by
means of FCS formalism. The inclusion of multiple environments attached to the same
system, which forms a widely used model for quantum engines, will result trivial ex-
tension. The absence of an external driving, in light of the considerations made at the
beginning of Subsection 5.2, implies that energy at the end of the two time measurement
protocol commutes with the initial one, and therefore we can make use of Eq. (5.31) in the
following calculations. Note that, in light of Eq. (5.7) and of the related considerations,
we have that the quantity defined in Equation (5.48) is nothing but the heat Q ().

As stated at the beginning of this Section, we consider an open quantum system cou-
pled to an environment, through an interaction Hamiltonian Hgg such that the total
Hamiltonian governing the evolution of the composite system reads H = Ho + HsE,
with Hg = Hs + Hg being the free Hamiltonian. The coupling between S and E will
be considered small such that it allows for a second-order expansion of the dynamical
generator and thus for an closed expression of a time-local master equation for the statis-
tical operator pg(t). In Subsection 5.3.2 we will first deal with finite dimensional systems
dim(#s) = Ng < 400, and then we move to the infinite dimensional case in Subsec-
tion 5.3.3, with the restriction to Gaussian channels. In both cases we will not assume,
at variance with existing literature, the Born-Markov and secular approximations which
would lead, as already stressed, to a time-independent GKSL form of the generator (and
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therefore to a semigroup dynamics), but instead we will take into account a generally
non-Markovian reduced dynamics. This will allow for energy transfers, in the short and
intermediate stages of the coupled evolution, even in the case of absent initial temper-
ature gradient, in striking contrast with the mentioned limiting case previously studied
in [124, 125], which however will be recovered in the long-time limit.

Since we are interested in accessing the statistics of energy, we identify the generic ob-
servable A € B(/%) with the Hamiltonian g and, according to condition (5.25), we
assume the initial state of the composite system to be of factorized form

e PHE
ZE

pse(0) =ps(0) @ pg,  pg= ; (5.49)
with Zg = Trg [e”#%£]. In particular, our attention will be concentrated on the first mo-
ment of the probability distribution of energy, i.e. (Qx(t)):. The same treatment of higher
- order cumulants of this probability distribution will provide an interesting subject for
future studies.

According to the two-time measurement protocol described above, the statistics of en-
ergy can be reconstructed through the cumulant generating function Eq. (5.34), with
ps(n,t) given as the solution of the GME

< pstn.t) = = (0)ps(n. ), (550)

where the time-dependent superoperator =Z"(t) in the second-order approximation has
the form

t

=7(1) [w] = —i [Hs, ] - /

dr Trg { [ Mints Hint(=7), w @ pi(0)], } . (5.51)
0 n

where [Hin(t), Bl, = Hph,, () B—BH,,1(t), with H]] () = e@/2mHed;, (t)e~(/2mMe and

int int int
Hint(t) = eMolH,;, 070t In the expressions above and in the remainder of the thesis,

we remind that we set 2 = 1 and kp = 1 for simplicity.

The formal solution of (5.51) has the form

t
ps(n,t) =T, exp [ /0 dTE”(T)] ps(0), (5.52)

with T indicating the chronological time ordering operator.

In the case of a discrete system described by means of a finite-dimensional Hilbert space,
the Hilbert-Schmidt representation of operators and superoperators (see Chapter 2 Sec-
tion 2.1.1) allows for the following matrix representation of Eq. (5.51)

Ips(n.1)) = T4 exp [ / dranm] 1ps(0) = A7(£,0) o5(0) (553)
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where |ps(n,t)), E"(t) and A"(t,0) denoting, respectively, the vector and matrix forms in
the Hilbert-Schmidt space of the operator pg(n,t), of the dynamical generator ="7(¢) and
of the dynamical map A"(t,0) . We also recall that ps(n,0) = pg(0).

The time-dependent first moment of the energy transfer is then given by

(ah = (1] 525 5.0} (5.54)

where (1| denotes the trace operation in Hilbert-Schmidt space. The above expression
can be rewritten as follows:

(Agq)e = (1] (A(t,0) |ps(0))) =0

9
a(in)
)
a(in)

Note however that

= (1]

(A7(2,0)) [ps(0))),)=o + (1| A"(2,0) (Ips(0))) =0 - (5.55)

(in)

(L] A"(2,0) ps(0))),—o= Trs [(A”(t, 0) \PS(O»]W:(J =Trs [ps(n, )=o) =Trs [ps(t)] =1,
(5.56)
and also

(1] 1ps(0))},=0 = Trs [ps(1,0)jy=0] = Trs [ps(0)] = 1, (5.57)

from which it follows that (1| is a left eigenvector of A"(t,0),i.e. (1| = (1| A"(¢,0). Con-
sequently the state (1] is itself an eigenvector of the dynamical generator Z"(¢) relative
to the eigenvalue 0. Using this fact, the second term in the last line of Eq. (5.55) can be
further elaborated into
(1] A7(2,0) 50— (15 () = (U 50— ps(0)) = 50— ({1l ps(0)) =0, (559
(in) =0 (in) a(in) ’

while the first term can be written as

<n|f)<A"<t 0)) 195(0)) 0 = 11|/

11|/

Upon integration by parts, and using the relations [( fo ar%E oG ) , 2(t, )} = 0 we ob-

IB"(7)
a(in)

Ips(n, ) =0 - (5.59)

A"(t,0) |ps(0)) =0

tain that Eq. (5.59) simplifies into

<]1y/ dr 657(3) lps(1,8)) =0

G ([ a (7<j)):’7< JAT(r, )|Ps(ﬂat)>|n=o

e / 8“ (7,0) 1951, 6) o
— /

(7,0) |ps(n, )>|n:o : (5.60)
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Putting the pieces together, we have that the mean value of the energy of the environ-
ment can be expressed in a compact form as

(Ag), = /O dr(r), (5.61)

where the function _
0" (t) [n=0

9(in)
provides the rate by which the system and its environment exchange energy and, more
specifically, #(t) > (<)0 indicates an increment (decrement) in the environmental energy;,
i.e. an heat flow from the reduced system (environment) to the environment (reduced
system).

0(t) = (1] ps(t)) (5.62)

In the case of continuous variable (CV) systems (see Chapter 3 Section 3.2.1.1) however,
it proves useful to consider the characteristic function (3.38) associated to the operator

PS(77> t) [43/ 46]
X [ps(m, )] (A A°) = XD (A N7 ) = Trg [ps(n, t)ere’ Al (5.63)

with a, a denoting the annihilation and creation operators relative to the system. From
(5.63) it follows immediately that the cumulant-generating function can be written as

@(777@ =InTrg [pS(nvt)] = lnX(n)(anvt)' (5.64)
The time-dependent first moment of the energy transfer is thus given by

axM(0,0,1)

Ag)y = - .
< q>t 6(277) |77—07 (5 65)
and the heat flow per unit of time 6(t) reads
ox" (0,0,
0(t) = M\nzo, (5.66)

a(in)
where the - sign denotes the time derivative.

It can be noticed that the cumulant generating function O(n,t) = In Trg [ps(n, t)] reduces
to the large deviation function [126] according to ¥(n) = lim;—4+-©O(n,t)/t, which is
not time - dependent any more. This in turn means that, whenever well-defined, the
cumulants of the probability distribution in the long - time limit tend to become linear
with time [117, 127], and therefore in particular

(Ag): ~ (Ag)t. (5.67)

This relation, which we will explicitly check in the models considered below, gives a
neat indication of the behavior of the heat flow per unit of time in the long time limit
of the dynamics, as well as in a coarse - grained description of the latter (in any cases,
whenever a GKSL generalized master equation is suitable): the quantity 6(¢) introduced
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in Eq. (5.62) (or (5.66)) becomes a constant function with time, thus physically indicating
a steady heat flow. The latter is achieved by applying a temperature gradient and, in
accordance with the second law of thermodynamics (which we will discuss more thor-
oughly in Section 6.1, goes from the hotter subsystem to the colder one. It is worth of
notice that this long-time analysis of the energy current has been successfully applied
for example in [124, 125] to non-linear (anharmonic) junction systems, which have been
shown to be central components in many quantum thermal machines [128, 129].

5.3.1 Definition and measure

Inspired by the considerations made above, we are naturally led to give the following
definition:

Definition 5.1. Given a system S weakly coupled to an environment £, we speak of time
regions of heat backflow from E to S whenever, considering dynamical situations which in
the Born-Markov semigroup approximation would lead to a non-negative steady energy
transfer from system to environment, we have that at some time ¢

o(t) < 0. (5.68)

Building on this condition, a measure for the total amount of energy which has flown
back from the environment to the system during the evolution is naturally introduced as

+00

(Ao =max 5 [ dt (06 - 6(2). (5:69)
ps(0) 2 Jo

where the maximization procedure is performed to make it a property of the dynamical

map, i.e. independent on the possible choices of initial states of the system. Note that the

integrand of Eq. (5.69) is different from zero if and only if #(¢) assumes negative values

and it represents, in principle, a measurable quantity.

Despite the formal similarity which may appear between this quantifier and some of
non-Markovianity estimators introduced in Chapter 3 [11, 13, 130], it should not be con-
fused with an alternative non-Markovianity measure, rather providing only an estimate
of the heat backflow .

A final important comment about this definition of heat backflow deserves to be made.
Since the latter is defined as, roughly speaking, the fraction of heat which, during the
evolution, flows out of the environment, the ’system” we speak about when we write
expressions such as ’heat backflow from E to S’ is more precisely the open quantum
system including the interaction term, as discussed in Section 5.1. In other words, we
cannot know whether the energy which leaves the environment and which is witnessed
by the negativity of 6(¢) and estimated by Eq. (5.69), has gone to the bare reduced sys-
tem or has been stored in the interaction term. In order to further distinguish which one
of these two contributions is the effective receiver of the heat flowing from the environ-
ment, one should calculate explicitly the time behavior of the change in the free system’s
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Hamiltonian (A#g); and of the change in the interaction Hamiltonian (AHsg):. The
problem however is that the latter quantity is almost never accessible in the context of
open quantum system’s theory, since it involves the knowledge of the environment’s
evolution alongside as that of the system’s. We will therefore restrict our attention to the
weak coupling scenario which, beside allowing the calculation of the (modified) statis-
tical operator as solution of a closed master equation, allows to consider the interaction
term negligible with respect to the contributions of the free Hamiltonians and granting
us the possibility to identify the bare system S with the receiver of the heat backflow con-
tributions. In the second example which we will analyze in detail, the case of a quantum
brownian particle, we will be able to reconstruct both these quantities thanks to a fully
numerical - simulation approaChapter This will allow us to extend our analysis to the
strong coupling regime while being still able to keep track of the separate contributions.

We will now proceed to study this quantity and its relationship with suitable estimators
of non/Markovianity in the following Section, where we will explicitly see applications
to two important and paradigmatic models: the spin boson model for the finite - dimen-
sional case and the quantum brownian motion for the CV case.

5.3.2 The spin-boson model

The spin - boson model is one of the building blocks of open quantum systems’ theory,
and thus has been thoroughly studied in the literature [21, 131-134]. The difference with
the pure-dephasing case already analyzed in detail in Chapter 4 lies in the interaction
term, which is now of the form

How=0.@ B, Bo=Y (o] +gibi), (5.70)
k

which therefore does not commute any more with the free Hamiltonian

Ho = Hs + Hp = %az @lp+1s5® (Z wkb,tbk> . (5.71)
k

At variance with the pure dephasing spin - boson model, where the dynamics was only
on the coherences of the system’s statistical operator and the populations were constants
of motion, this interaction Hamiltonian provokes the evolution of both the coherences
and the populations. Note that, at this level, we have not assumed the rotating-wave
approximation and consequently the counter-rotating terms > 5, 04 ® bL and ), 0_®by
are still present.

Having assumed weak coupling between the two - level system and the bosonic bath,
a closed generalized master equation of the form (5.37) can be written for this model
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at second order perturbation expansion [117, 125], whose analytical solution can be ap-
proached, due to the finite dimensionality of the quantum system, moving to the Hilbert-
Schmidt representation. In this space, the conditional density operator pg(7,t) is repre-
sented by the vector |pg(n, 1)) = (ol (), pll, (£), p75 (), P, ()", where

pL(t) = Trs {alps(n.t)} (5.72)

and {oa}a=0,1,23 = {|0)(0],]0) (1],[1) (0], |1) (1]} (note that the subscript 'S” has been
dropped to the components of the Hilbert - Schmidt vector for readability). Concretely,
if Oyps(n,t) = Z"(t)ps(n,t), the dynamical generator, regarded as a linear map on the
space of linear operators on C?, is represented by a 4 x 4 matrix Z"(t), whose entries are
given by [125]

Vi(r) 0 0 Wi(r)

- B t 0 Yi(r) Z1(7) 0

B2(t) = — /O dr 0 Z§ ") ij o | (5.73)
W'r) 0 0 V()

All the quantities appearing in (5.73), defined below, are nothing but linear combinations
of the environmental correlation function Eq. (5.38)

®(r) = Trp {BeBe(—7)pE}, (5.74)
and read
Vi(r) = cI’(T)ejFi"JOT + @(—T)eii“’oT,
WX(r) = = [B(r — ™0™ + (=7 — x)eFo07]
Yi(7) = 2Re [®(7)] eT07
ZX(r) = = [®(1 = X) + ®(—7 — x)] e (5.75)

We stress again that the familiar master equation describing the evolution of the statis-
tical operator in the spin-boson model [21, 134, 135] can be obtained from Eq. (5.73)
simply by setting the counting field parameter = 0. Moreover, upon introducing the
Bloch vector v(t) defined as

ps(t) = 5 (o +v(1) @), vj(t) = Trs [ogps(0)], (0= (02 0y,02)7) . (576)

the master equation for vanishing values of the counting field parameter 7 give rise to
the following differential equations for the Bloch vector

%v(t) =A(t)v(t) + b(t), (5.77)
where
0 —wyp 0 0
A(t) = | wo+ aye(t) a.:(t) 0 , b(t) = 0 , (5.78)

0 0 Azz (t) bz (t)
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with
t t
aye(t) = ;/0 dr Dy(7) sin(woT), a..(t) = —;/0 dr Dy (1) cos(woT), (5.79)
and
t
b.(t) = —2/ dr Do (T) sin(woT). (5.80)
0

We note that a Bloch representation could have been introduced also for the modified
operator pg(n,t) as

ps(,0) = 5 (w(O)12 + V(1) - ), 681

where now a fourth component vy (t) = Trs [ps(n, t)] has to be taken into account due to
the fact that the trace of pgs(7, t) is not equal to 1 at every time any more.

A crucial role in the definition of the environmental correlation function ®(¢) is played

by the spectral density
|9k |

J(w) = —(w —w 5.82

(«) ; 2oy D = wn), (5.82)

which contains information about both the distribution of bath modes and their interac-

tion strength with the system. In the limit of a continuous distribution of environmental

modes, the spectral density can be given in terms of a smooth function J(w), which is

usually taken to have a power-law behavior for low-frequencies and a cut-off function

for large values of w. The environmental correlation function can be written in terms of
the spectral density as

o(r) = /0 ™ J(w) [coth (;) cos(wr) — i sin(wr)

2Tk

- % (Di(7) — iDa(r)), (5.83)

where T denotes the environmental temperature, the Boltzmann and Planck constants
have been set equal to one kg = h = 1, and the functions D;(7) and D(7), respectively
known as noise and dissipation kernels [21], read

+00 +oo
Dy (1) = 2/ dwlefp(w,Q,Tg) cos(wT), Dao(T) = 2/ dwJ(w)sin(wt)  (5.84)
0 0
where, in the noise kernel expression, we have introduced the effective spectral density

Jopr(w,Q,T) = J(w) coth <w> . (5.85)
2Tg

The substitution of (5.73) in Eq. (5.62) leads to the following expression for the heat flow

per unit of time

0(t) = [wi(t) —w- ()] poo(t) — we (1), (5.86)
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where we have used the fact that poo(¢) + p11(t) = 1 and where we have defined the

quantity
0

wy (1) = a(iX)/o ds W(s)

In order to determine the full statistics of energy according to the two-time measurement
protocol described above, it is clear from Eq. (5.86) that only the populations of the
modified operator pg(n,t) are needed. Moreover, it is clear from (5.73) that the dynamics
of the coherences is decoupled from the one of the populations.

(5.87)

x=0

It is therefore more convenient to introduce the vector |pg(t)) = (poo(t), p11(t))” and the
2 x 2 matrix Z4(t) obtained extracting the elements of Z7=(¢) relative to |p/})

_ arlt) —a_(t)
Eq(t) = , 5.88
d(t) (—a+(t) a_(t) ) ( )
where a (t) = — fg drVi (1) and where we have used the relation
Wi (1) = =V (7). (5.89)

The differential equation for the ground-state population pgo(t) therefore reads

L poolt) = () + a(1)poo(t) — a_ (1), (5.90)

whose formal solution has the form

t t r
poo(t) = elo 47427 (poo<0> - / dra_(r)e” b ds““(s)) (5.91)
0
with
az:(t) = ay(t) +a—(t) (5.92)

being one of the right eigenvalues of Z;(t). It is important to notice that, for reasons of
computation-time advantages, it is better to express the quantity a_(t) as

a-(t) = 5 (ase(t) +bo(1)) (5.93)

where a..(t), given by Eq. (5.79), and

t
b.(t) = —2/0 dr Da(T) sin(woT), (5.94)

have been usually employed in the treatment of the spin-boson model [21, 134]. In fact,
while both a.(¢) and a_(t) can only be numerically accessed for a wide variety of spec-
tral densities, the quantity b.(¢) can be in those cases analytically solved. This splitting of
the nonhomogeneous term a_(t) (5.90) into a numerical part a..(t) and an analytic term
b.(t) (5.93) thus allows for shorter computation times.

Before proceeding further with the calculation of the heat backflow measure, it is inter-
esting to perform the Born-Markov and secular approximation and look at the long -
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time limit semigroup resulting limit of the dynamics. The matrix (5.88) which governs
the evolution of populations in this case takes the form

=n _ [~In(wo) T'(1+n(wo))
—a,LT — < 'n(wo) —-I'(1+ n(wo))> ’ (5.95)

where I' = 27.J(wp). This expression can be immediately obtained by making use of the
relation (5.47). As a consequence, the long-time limit version of the energy flux per unit
of time 017 (t) can be found. In fact, since

= 0 = drWx = Il 5.96
W, LT = [8(1){)/0 T +(7')] — = —wol' (1 + n(wo)) (5.96)

and 5 . )
w— LT = [a(zx)/o drW* (7’):| o = wan(wo), (597)

the expression for 1,7 (t) becomes

Orr(t) = [wi,or(T) — w- £7(7)] poo(T) — w4 L7 ()

= —wol" (1 + 2n(wo)) poo,L7(t) + wol (1 + n(wo)) = WO%pOO,LT(t)' (5.98)

The integral form of this expression gives the following result

(Aq)t,LT = wo (poo,rT(t) — poo(0)), (5.99)

which expresses the fact that, under this approximated dynamical regime, the mean
value of the variation in the environmental energy is just equal and opposite to the vari-
ation in the system’s internal energy.

Interestingly, Eq.(5.99) is no longer true if we do not perform these approximations but
we consider the dynamical generator as given by Eq. (5.73). First of all in fact, since
0P(£7 — Xx)
a(ix))

0D(£7)
=+ 220
or

x=0

(5.100)

it becomes possible to re-express both the terms w. (t) — w_(t) and w4 (t) which appear
in (5.86) in the following equivalent form:

w+(t)—w_(t):2/ dr (0-D1(7)) sin(wot),
0
w+(t):/0d7' (0rD1 (7)) sin(wot) —/0 dr (07 D2(1)) cos(wot). (5.101)

An integration by parts of the quantities above, using both the boundary conditions
D;(0)sin(0) = 0 and D2(0) = 0 and Egs. (5.90), (5.79), (5.93), and (5.80), then gives

w4 (t) — w—(t) = 2D1(t) sin(wot) + woa(t),
w4 (t) = Dy (t) sin(wot) — Da(t) cos(wot) + woa—(1), (5.102)
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from which immediately follows that

o0(t) = wo%ﬂoo(t) + f(1), (5.103)
where
f(t) = =dp(t)D1(t) sin(wot) + Da(t) cos(wot), (5.104)

Note that, for simplicity, we have denoted with dp(t) = p11(t) — poo(t) the difference in
the system’s populations. The first term on the right-hand side of Eq. (5.103) corresponds
to the time derivative of the change in the free system’s energy, since it is proportional
through the fundamental system energy wy (we remind that 2 = 1) to the fraction of
the system’s population that moves to the ground state. The second term, f(t), is in-
stead a combination of elementary oscillating functions and environmental kernels: the
first contribution is driven by the noise kernel D;(t) and also depends on the solution
for the ground-state population of the system pgo(t), at variance with the second which
is proportional only to the dissipation kernel, therefore also being independent of the
temperature of the bath.

The integral form of (5.103) can also be considered

(Ag)t = wo (poo(t) — poo(0)) + F (1), (5.105)

where F(t) = fot dr f(7). Equation (5.105) shows that the variation in the environmental
energy, obtained in this case as the FCS mean (Ag), is given by the sum of two dis-
tinct contributions, at variance with its long-time semigroup limiting version (5.99). The
tirst term on the right-hand side is in fact equal and opposite to the variation of the re-
duced system’s energy, but there is an additional contribution which depends both on
the detailed structure of the environment, and on the coupling between system and en-
vironment through the dissipation and noise kernels. As explicitly shown above, in the
long-time semigroup limit this additional contribution vanishes since f(t) goes to zero
according to the behavior of both dissipation and noise kernel as given by (5.109), and
will be responsible for energy exchanges also with subsystems at equal initial tempera-
tures.

5.3.2.1 Numerical evaluation of the heat backflow measure

In this section we illustrate and discuss the results of the numerical evaluation of the
measure of heat backflow (5.69) for the considered model as a function of the different
parameters characterizing the dynamics.

In what follows, we will consider the initial state of the reduced system to be of the form
ps(0) = 27 (J0) (0] + /T 1) | Z =14+, (5.106)

which is a Gibbs state relative to an effective temperature T's, here chosen to be greater
than or equal to the environmental one. Eq. (5.106) is equivalent to ask that the initial
state of the qubit is diagonal in the system’s free Hamiltonian eigenbasis, i.e. ps(0) =
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po [0) (0] 4+ p1 |1) (1| with |0) , |1) being the eigenstates of Hg = wyo./2. Since pg + p1 =1,
any such state can be recast in Gibbs form (5.106) for a certain specific temperature 7Ts.
The motivation behind this restriction of the possible choices of initial states is suggested
by the structure of the equations of motion (5.73): since, in light of the latter, the evolution
of the populations and of the coherences are decoupled from each other and since the
coherences do not enter the expression of #(¢), any initial state with nonzero coherence
is equivalent for the purpose to a diagonal state. The constraint

Ts > Tr (5.107)

on the two initial temperatures instead traduces the condition, involved in the state-
ment of the definition for the occurrence of heat backflow , that the temperature gradient
would cause, in the semigroup limiting approximation, a steady and unidirectional heat
flow from the system in favour of the environment. If Eq. (5.107) is dropped, then heat
flows from the environment to the system would occur due to the temperature gradient,
thus tampering its connection with the insurgence of memory effects in the dynamics
and preventing to properly speak of heat backflow according to the definition we gave
above.

Furthermore, we will consider the spectral density to assume the form
J(w) = dwe™ @, (5.108)

which shows an Ohmic behavior at low frequencies, a linear dependence on the cou-
pling strength ), and finally an exponential cutoff part. Note that this functional form
corresponds to the s = 1 case of the Ohmic-dependent spectral density considered in the
analysis of the pure-dephasing spin-boson model studied in Chapter 4. An analytic form
for the noise and dissipation kernels (5.109) can be found and reads (see Appendix A of
[136] for a proof)

Dy(r) = 2 92(1(?();27_)21)2 + 2T Re [W <TE(1;2LMT)>” ’
AINQPT

Dy(1) = (5.109)

(1+ (Q7)2)%’
with ¢/(z) being the derivative of the Euler digamma function ¢ (z) = I''(z) /T'(2).

Figure 5.1 shows the time evolution of the ground-state population pgo(¢) (a) and the heat
flow per unit of time 6(t) as given by (5.86) (b) in the weak-coupling limit A = 0.1 and
in units of wy, for Q = 0.4wy, Ts = 5wg, and different values of the environmental tem-
perature T /wy = 1, 3, 5. Solid lines in Fig. 5.1 refer to the solutions obtained from the
second-order time-convolutionless expansion of the generator, while the dashed lines
denote the ones obtained in the Born-Markov approximation. It is clear from these plots
that the time behavior of the solution of the ground-state population, pgo(t), is related
to the time behavior of the heat flow per unit of time 6(t): Both quantities, in fact, show
a transition from oscillating to monotone behavior at almost the same time. We find
that the oscillations of the exact solution (solid lines) of both quantities almost disappear
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FIGURE 5.1: (Color online) (a) Time evolution of the ground-state population pgo(t) for

2 = 0.4wp, A = 0.1, and T's = 5wy, for different values of the environmental temperature

Tg/wo = 1, 3, 5. The dashed lines refer to the Born-Markov approximation, while the

solid lines refer to the time evolution obtained by the time-convolutioness GME. (b)

Time evolution of (t)/wy (s~!) for the same parameters values and specific choice of

initial Gibbs states. One can notice that above a certain temperature gradient between
system and environment the heat backflow disappears.

in the long-time limit and superimpose the asymptotic value determined by the Born-
Markov approximated solutions (dashed lines). The markedly different behaviors of
solid and dashed lines in short and intermediate time, however, neatly show the inade-
quacy of Born-Markov approximation apart from the long-time limit case. An interesting
property of the heat flow is represented by the first positive peak of §(t), which can be
observed even when the initial temperatures of the reduced system and of the environ-
ment are equal to each other; see Fig. 5.1(b). Such peak is a general feature due to choice
of the initial factorized state (5.106), which is essential in order to have a well-defined
dynamical map [21], but represents a non-equilibrium preparation with respect to the
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total system
e—'Hs/T E_HE/T e—H/T

pse(0) = 7 ® 70 # Z (5.110)

with Zg and Zg being the partition functions of the reduced system and environment

respectively and Z being the partition function of the composite system S + E. This
factorized non-equilibrium initial preparation is known to lead [137, 138] to an energy
exchange between system and environment which takes place on short time scales due to
the establishment of proper system-environment equilibrium correlations. Moreover, it
can be noticed from Fig. 5.1 (b) how the value of the first local minimum of 6(¢) decreases
for decreasing values of the difference T — T, attaining its lowest value for T = T5s.
Strong numerical evidences suggest that this trend is maintained for all values of the rel-
evant parameters A, 2, Tg, thus making it possible to conclude that heat backflow (5.69)
[i.e., the area of the negative region of §(¢)] is maximized by the choice of having initial
system and environment at the same temperature. This fact can be understood consid-
ering the fact that in this case there is no initial temperature gradient which favours an
asymmetric flow of energy from the hotter subsystem, which considering Eq. (5.107) is
the reduced system, to the colder one, in this case the environment, thus opposing the
direction of the heat backflow from E to S.

We have thus evaluated the amount of heat backflow , as estimated by Eq. (5.69); the
result (Aq)pack (2, TE) is given in Fig. 5.2, for the value of the coupling strength A = 0.1
and for values of the parameters (2/wy, T /wp) in the range (0.2, 5) x (0.2, 5). We remark
that the values of the amount of heat backflow , given in units of wy, are represented on
a color-bar scale for better visualization.

The calculation has been explicitly carried out by numerically evaluating the integral
(5.69) over a fine grid of 2500 points, where the upper limit of time integration has been
chosen to be equal to 100w, L After such time interval, in fact, the heat flow per unit of
time 6(t) superimposes, for this value of the coupling strength, the Born-Markov solu-
tion, i.e., oscillation of 0(t) as well as negativity regions are no longer significant. Finally,
the maximization over the initial system state has been performed by setting the effective
temperature T's of the system to be equal to the environmental one Tx. Moreover, the
upper limit in the integral (5.69) has been chosen to be equal to 100w; :

In order to understand the behavior of the heat backflow shown in Fig. 5.2, one has to
consider in some detail the dependence on the relevant parameters €2 and Tr of both
the maximum and the correlation time of the noise and dissipation kernels D;(¢) and
Dy (t), as given by (5.109). These behaviors are shown in Figs. 5.3 (a), (b), (c), where the
correlation time of noise kernel can be inferred from the width of the ratio D;(t)/D1(0).
More precisely the observed vertical gradient in Fig. 5.2 can be traced back to the varying
amplitude of the noise kernel, whose maximum increases with growing temperature [see
Fig. 5.3(a)], where one has to compare the initial value of the solid lines with the one of
the dashed lines relative to the same (2. Similarly, the observed horizontal gradient in Fig.
5.2 is mainly determined by the correlation time of the noise kernel, which decreases with
growing cutoff frequencies; see Fig. 5.3(b). For fixed temperature T, the correlation time
of the noise kernel decreases for growing values of the cutoff frequency, so that for very
large €2 the bath has a very short correlation time, which, in turn, is known to lead to
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FIGURE 5.2: (Color online) Plot of the heat backflow (Aq)pacr (2, Tx) in units of wy as

given by Eq. (5.69), for values of the parameters (Q2/wo, Tr/wo) in the range (0.2,5) x

(0.2,5). The coupling constant is chosen to be A = 0.1. The effective system temperature
Ts has been chosen equal to Tz in order to maximize the oscillations of 6(t).

a semigroup dynamical regime. This last horizontal trend, however, is compensated in
the low-temperature region by the opposite behavior of the amplitude of the dissipation
kernel which increases with growing cutoff frequency; see Fig. 5.3(c).

Finally, in order to explain the region of parameters where the heat backflow is sup-
pressed (black region in Fig. 5.2), we have to consider the behavior of the effective spec-
tral density. In particular J.f¢(w, Q2, Tr) possesses one maximum wyy,q, with respect to its
w—dependence, around which the dominant environmental modes are distributed. Fol-
lowing the discussion in [134], which is recovered more thoroughly in SubSection 5.3.2.2,
if such maximum w4, identified by the condition 0, J.rf(w,Q,TE) = 0, is equal to the
system’s transition frequency wy, then one has the resonance condition

%Jeff(W,Q,TE)W:wO = 0. (5.111)
Figure 5.4 displays the absolute value of 0,,Jcff(w, 2, TE) |y, for all the values (€2/wo,
Tg/wp) in the range (0.2, 5) x (0.2, 5), displayed on a colored scale, showing the deviation
from the resonance condition (5.111), denoted by the white curve in the plot. It is imme-
diate to see that heat backflow is almost suppressed (black region in Fig. 5.2) whenever
these deviations are small, i.e., when the resonance condition approximately holds.

It is however fair to notice that this argument seems to fail for very small values of the
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FIGURE 5.3: (Color online) (a) Time evolution of the noise kernel for different choices

of the cutoff frequencies 2 and temperature 7. (b) Time evolution of the environmen-

tal correlation function, inferred from the width of the noise kernel, normalized by its

maximum value (attained at time ¢t = 0) for T = 5 and different choices of cutoff fre-

quency (2. (c¢) Time evolution of the dissipation kernel for different choices of the cutoff
frequencies €.
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couple (Q/wo, Tr/wo). In this tiny region of parameters however we may have encoun-
tered two sources of numerical issues, which might have led to a systematic error in the
solution. The first one is that both the noise and dissipation kernels (and consequently all
the derived quantities) oscillate very fast as these parameters enter this area; the second
one is that the amount of heat backflow is very tiny because the change in the environ-
mental energy, for these values of parameters, is increasingly small. The combination
of these two effects might have been the cause for witnessing the small coloured area
around the origin of Fig. 5.2. Similar considerations have been made in [135] for the
calculation of the trace distance and the consequent measure of non-Markovianity. More
refined numerical integration techniques (we employed Mathematica built-in functions
and integration strategies) could be considered to improve the investigation of this re-
gion of dynamical parameters.
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FIGURE 5.4: (Color online) Plot of the absolute value of J,,Jcff(w, Q, Tk)|w=w,, for A =

0.1 and values of the cutoff frequency and environmental temperature (£2/wq, Tx/wo) in

the range (0.2,5) x (0.2, 5). The black region of this plot, which has to be compared with

the one in Fig. 5.2, indicates those values of the parameters for which the resonance

condition (5.111) approximately holds, while the white curve denotes those for which
(5.111) strictly holds.

Our analysis further provides a tool to identify the parameters region in which the heat
backflow shows a maximum value. From Fig. 5.2 it is, in fact, evident that this condition
is reached for high values of the temperature T and for values of the cutoff frequency {2
around the system proper frequency wy.
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5.3.2.2 Relationship with non-Markovianity of the reduced dynamics

In the present Section we discuss in detail the connection between the heat backflow
measure between a reduced system and its environment, obtained in the FCS formalism,
and the concept of non-Markovianity.

Among the different criteria and estimators of non-Markovianity listed in Chapter 3, we
concentrate our attention on the trace-distance based one introduced by Breuer, Laine,
and Piilo [11], due to its clear physical interpretation as occurrence (and measure) of
information backflow from E to S. We recall that the latter corresponds to the case ¢ = 1/2
of Eq. (3.55) and reads

1
Hrp(A) = max / loBLp(®)] + opLp(t) dt, (5.112)
Ps (tO) R+
where
d 1d ,
opLp(t) = 0jg=1/2(t) = afmt(tﬂq:lp(t) =5u | ps(t) = ps() |1 - (5.113)

In the case of a two - level system, the quantity Lin(t),—1/2(t) = (1/2) || pg(t) — p3(t) II1
can be conveniently expressed in terms of the associated Bloch vector as

i (O)g=12(0) = $Trs [| (v () = vE() - o]

= 2 Vi) — 3], (5.114)

where the fact that the two real eigenvalues of (v§(t) — v(t)) - o were =+ |[vi(t) — vi(t)|
was used in the last line. For the spin - boson model, following [134, 135], we will ap-
proximate the integral in Eq. (5.112) with the sum of the differences of the trace norm
at various time steps upon introducing a suitable binning of the time axis and choosing
an optimal couple of initial states (upon which we will comment hereafter for the case at
hand)

NpLp(Q,Tg) ~ Z [Lint (t)1g=1/2(tix1) = Tine () jq=1/2(t:)] , (5.115)
with every term I (t)|,=1/2(t:) explicitly evaluated by numerically solving the differen-
tial equations for the Bloch vector’s components (5.77). Note that we have made substi-
tuted the abstract dependence of the non-Markovianity measure on the dynamical map
A with the dynamical parameters (€2, Tz) which characterize it for the model under con-
sideration.

In order to compare the result with the above calculations made for the heat backflow
measure, the same choice of spectral density (5.108) has been made and the result has
been plotted for the same range of parameters as in Fig. 5.2, i.e. (/wo,Tr/wo) in the
range (0.2,5) x (0.2,5) and A = 0.1. We note that in [134], the authors employed a
Lorentzian cutoff instead of an exponential one [see our Eq. (5.108) and their Eq. (19)];
after re - evaluating the non-Markovianity measure ./ ({2, Tx) with the current spectral
density and comparing both results, it has turned out that no substantial changes have
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occurred, thus confirming the conjecture that the information backflow does not signifi-
cantly depend on the high-frequency part of the spectrum [102], at least in the case of a
bosonic bath. The couple of initial states p!(0) and p?(0) used is the one that maximizes
(5.112) which has been chosen in accordance with [134], namely those with associated
Bloch vectors v!(0) = (0,1,0)” and v2(0) = (0, —1,0)T. Note that these couple of initial
states are antipodal points of the Bloch sphere [56] with respect to the z = 0 - plane,
meaning that their distinguishability is written in their coherences.

Figure 5.5 shows .4 (Q, Tg) for A = 0.1 and for the above mentioned values of the pa-
rameters. Moreover, the upper limit in the integral (5.115) has been chosen equal to
t = 100wy ' as for calculating the quantity plotted in Fig. 5.2.

5
0.1
4
0.01
3
T
—£ 0.001
Wy
2
104
1 10~
0.2
0.2

10-¢

.Q/(,()O

FIGURE 5.5: (Color online) Plot of the non-Markovianity measure .4 (2, Tx) up to inte-
gration time ¢ = 100w, !, for A\ = 0.1 and for values of the parameters (2/wy, T /wo) in
the range (0.2,5) x (0.2,5). The white line corresponds to the resonance curve (5.116),
which provides an approximate estimate of the region of Markovianity of the dynamics

First of all, a comparison with Fig. 3 of [134] shows that, even in this case, the high-
frequency part of the spectrum does not affect significantly the non-Markovianity mea-
sure. This can be understood by reasoning that, for large values of the cutoff frequency
2 (~ 10wp), the spectral density can be approximated with J(w) ~ Aw, this leading
to a Markovian dynamics [21]. On the other hand, for decreasing values of the cut-
off frequency (2 the amount of non-Markovianity, in general, increases, the only excep-
tion being represented by the region of parameters in which the resonance condition
(5.111) holds. Such condition expresses the requirement of local flatness of the effective
spectral density around the system’s transition frequency, and describes a curve in the
(Q, Tg) plane called resonance curve along which a predominantly Markovian regime
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is expected and found [134]. In the case here considered of exponential cutoff, the reso-
nance curve, plotted in Fig. 5.5 as a white line, reads

Tg

Qres(TE) = 5 (5116)
T wi
w—’j — Cosech (ﬁ)

and it is evident how it continues to retrace well the observed Markovian region at low
temperatures of the bath.

A comparison between Figs. 5.2 and 5.5 clearly shows that the amount of non-Markovianity
of the dynamical map as measured by (5.115) and the amount of heat backflow as quanti-
tied by (5.69) are connected to each other. First of all, in fact, for every value of the cutoff
frequency (2, both quantities increase with increasing values of the temperature, this be-
ing related to the fact that in this model, when Tg grows, the lower frequency part of
the effective spectrum J.¢¢(w, 2, Tg) is enhanced. Moreover, both the non-Markovianity
and the heat backflow measures generally increase for decreasing values of the cutoff
frequency. This is due to the fact that the correlation time of the noise kernel reduces for
growing values of (2, so that the correlation function of the bath is almost § correlated
in time, which leads to a semigroup (and therefore Markovian) dynamics. Finally, as al-
ready highlighted before, both quantities are strongly related to the resonance condition
(5.111). In particular, while the non-Markovianity measure (5.115) vanishes only when
(5.111) holds strictly, the heat backflow is suppressed even when (5.111) is approximately
satisfied. This result, together with the one discussed above in the Born-Markov regime,
makes it possible to conclude that in a Markovian regime heat backflow is suppressed.
The opposite is, however, in general, not true; namely, the absence of heat backflow does
not imply absence of information backflow, thus preventing a one-to-one relation be-
tween these two concepts, as expected from both a mathematical and a conceptual point
of view.

The occurrence of heat backflow, in conclusion, appears in this model as a stricter condi-
tion than non-Markovianity. On the other hand, however, for values of the parameters
? and T for which the amount of non-Markovianity is significant, it becomes possible
to measure a backflow of energy, as witnessed by the colored region in Fig. 5.2. We also
stress that the relationship between the amount of heat backflow and non-Markovianity
has to be intended at the level of the respective measures (5.69) and (5.115), which are
properties of the dynamical map uniquely determined by the choice of the parameters A,
2, and Tg. The connection we have found between non-Markovianity and heat backflow
measures can finally represent a powerful hint in relation to the practical usefulness of
non-Markovianity: It is, in fact, clear from this result that a convenient engineering of
the reservoir such to achieve non-Markovianity [139] allows to have heat backflow and
therefore to treat the environment as a potential quantum energy buffer.

5.3.3 The quantum brownian motion

We now apply the outlined formalism to a quantum harmonic oscillator linearly coupled
to an infinite number of bosonic modes, i.e. the so-called Quantum Brownian Motion
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(QBM). The Hamiltonian of the composite system has the form H = Hg + Hg + Hint,
with:
W
,HS:?O (aTa+1/2) 3 HE‘ :zk:wkbltbk, HSE :X®BE‘7 (5117)

where % is set to 1, a,a’ denote the system’s annihilation and creation operators, B is
the same as in Eq. (5.70), X = 27Y2(a + af) (P = 271/%i(a! — a)), wy, stands for the
energy of the kth bosonic mode and g, is the coupling strength between the mode and
the system. In the weak coupling limit the master equation for the modified statistical
operator pg(n,t) reduces to

ips(n,t) = —i[Ms, ps(n,t)]

dt
— [ s X C8)0500026) + st X () X0
—Xps(n, ) X (=s)@(=s —n) — X(=s)ps(n,t) X (s —n)], (5.118)
where
O(s) = Trg [BeBp(~s)pe],  @(s—n) = Trg BB (=s)ps|,  (5.119)

with BEE_”) = el/2mHe Bpe~(/2)THe  Using the fact that X (t) = X cos(wot) + P sin(wot)
in the interaction picture with respect to Hg, after some calculations Eq.(5.118) can be
re-expressed as

@ pstn,t) = 2(0) los(n, 0] + £4(1) [ps (. 1) (5.120)
where
E()[]=—i[Hs, ] = A@) [X, [X, ]| +11() [X, [P]] + %T(t) [X2,] —in(t) [X,{P,}]
(5.121)
is the usual dynamical generator [131, 133] with
A(t) = % /0 " dsDy(s) cos(wos).,  TI(H) = % /0 " 45Dy (s) sin(wos).
(t) = % /0 dsDy(s)sin(wos),  r(t) = /0 dsDs(s) cos(wos),
Di(t) = ®(t) + B(—t),  Da(t) = i (®(t) — B(—1)), (5.122)

while the non-trace preserving superoperator £,(t) [-] is given by

L) =fi®a-a+f-(t)a'-al +gr(t)a -a’ +g_(t)a -q, (5.123)
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with
fx(n,t) = ;/t dsADgn)(s)eiiwos, (5.124)
0
g+(n,t) = 1/t ds (ADgn)(s) cos(wps) £ ADén)(s) sin(wgs)> , (5.125)
2 Jo
ADYY(8) = DY (1) = Dia(t),
DIV (t) = @t =)+ @(~t—n), DY) =i(®(t—m) = (~t—m)).  (5126)
After performing the secular approximation [140], one is left with
d
%pS(Th t) = _Z.wo |:G/Ta/7 PS(777 t):|
A A(t) —
- (B9 ata pstro} - (BOF1) {ad psnn)
+ (A®) + (1) + g+ (n,0) aps(n, )a’ + (A(H) = 7(t) + g-(n,1)) a’ ps(n, t)a,
(5.127)

where the term proportional to r(¢) has been considered negligible, which is justified in
the weak-coupling limit as long as the environmental cut-off frequency remains finite
[131]. As shown in the previous Section, in order to obtain pg(7,t), we move to the
correspondent Fokker-Planck differential equation for its characteristic function x"(q,
p, t) [92]. This is done with for following set of formal substitutions

ap «— —\2 [8q +1i0, + % (¢ + zp)] X (q,p, 1), (5.128)
atp \}5 :3q — 0, — % (q- ip): X" (q.p,t), (5.129)
pa +— _\}i [aq + 0, — % (q+ ip)] X" (q,p,1), (5.130)
pal «— \}5 :aq —i8p + % (q— ip): X" (q,p,1), (5.131)
which lead to express the various operatorial terms in (5.127) as

alap «— —% [aq — 0 — é (q— ip)] (% + i0p + % + Z2p> X" (q,p,1),

pata i =5 0,+i0, ~ 5 a+in)| (3= 0, + £ = ) @)

= [afa, p| i (48, = p0) X" (0. p.), (5.132)

{aTa, p} — - (agq 02 1 - QQIPQ) ™ (g, p, 1), (5.133)
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aalpimr =3 [0, +i0,+ 3 o+ )] (0,10, 2+ L) i)
padt e =3 [0, ~ 0+ 5 (o= )] (0,10, £ L) e
N [aaT, ,0} — <8§q + 02, —1— qzl‘pQ> X (g, p, 1), (5.134)
and finally
apat s —% <a§q cor 4 L ZPZ 14 qd,+ pap) 7 (q,p, 1), (5.135)
a'pa +— _% <53q + 0, + - Zp2 —1—q0, - p3p> X" (q,p,1). (5.136)

Putting all these results together, we obtain the differential equation

¢+ p?
1
+ (Va(m,t) = ¥(t)) (404 + pdy) + Va(n, )} X" (a, p,1), (5.137)

X a.0,0) = L 00, — 05) = Vil ) (02, + 03) — (2(0) + V(0. 0)

where we have introduced the quantities

(97(77715) :l:ng(nvt)) : (5138)

N |

Via(n,t) =

Due to the quadratic nature of the Hamiltonian (5.117), the Gaussian shape of the char-
acteristic function is granted [43, 46, 141] and thus an educated ansatz is

X" (g,p,t) = W(n, ) exp [z (¢,p)" (Xm(”’t)> - % (q,p)" <UXx(77a t) pr(mt)> (q)] 7

Pm(TI?t) UPX(nat) UPP(nat) p
(5.139)

where (X,,(1,1), Pn(n,t)T = (Trs [ps(n,t)X], Trs [ps(n,t)P])T and, o(n,t) is the co-
variance matrix (which is symmetric). Finally, ¥ (7, t) represents a time-dependent am-
plitude which is not conserved during the evolution due to the action of the non trace-
preserving superoperator £, (t)[-]. Having assumed this ansatz for the characteristic
function x( (¢, p, t), Eq.(5.66) can be expressed as

OV (n,t)
)
Plugging (5.139) into (5.137) and separating the different moments of g and p, it is straight-

forward to show that the evolution equation for the mean values X,,(t), Py, (t) as well as
for the off-diagonal elements of the covariance matrix o x p(t) = opx(t) has the following

o(t) = l=o. (5.140)

structure:
3

atOi(t) = Z GZ']'OJ' (t), Oj = {Xm, P, O'Xp} . (5.141)

j=1
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Note that the heat flow per unit of time 6(¢) is uniquely determined by the time-dependent
amplitude ¥ (7, t) Eq. (5.140), which only depends on the diagonal matrix elements of
the covariance matrix, see Eq. (5.142). The evolution equation for the latter, in turn,
can be seen to be decoupled from one for the off-diagonal elements of the covariance
matrix (coherences). This indicates that, for the case at hand, it is sufficient to consider
initial thermal states relative to an effective temperature T's which must be chosen to be
greater or equal to the initial environmental temperature T to ensure the energy back-
flow is not in the direction of the temperature gradient [2]. In this case we have that
oxp(0) = Xn(0) = P,(0) = 0, and thus oxp(t) = Xn(t) = Pn(t) = 0 Vt. Moreover
we have that oxx(n,t) = opp(n,t) = o(n,t) [43, 46, 141]. The number of evolution
equations for the Gaussian parameters therefore reduce to two, namely

OV (n,t) = U(n,t) (2Vi(n, t)o(n,t) + Va(n,t)), (5.142)
o (n,t) = % [2A(t) + Vi(n, £)] + 2 [Va(n, t) — v(t)] o(n,t) + 2Vi(n, t)o?(n,t)  (5.143)
We stress that, since lim,,_,o V;(n,t) = 0(j = 1,2), we have

80(0,¢) = 0 (5.144)
8:0(0,8) = A(t) — 29()o (0, 1). (5.145)

which leads to the well-known solution for the characteristic function [131-133, 142]

q2 +p2

x(q,p,t) = exp [— U(O,t):| , (5.146)
with .
5(0,) = e~2Jo 457() <a(0,0)—|— / dsA(s)leosd”(T)>. (5.147)
0

Some further calculations lead to the final expression for the heat flow per unit of time
Eq.(5.140) that can be expressed as

0(t) = 20(0,t) (;Dg(t) cos(wot) + wofy(t)) + %Dl (t) sin(wot) — woA(t), (5.148)

where we have used that ¥(0,¢) = 1 and where the diagonal element (0, ¢) of the co-
variance matrix is the solution of Eq. (5.144) with the initial condition ¢(0,0) = 1/2(1 +
2N (Ts)), with N(Ts) = [exp(1/Ts) — 1]~ (T's being the effective system’s initial temper-
ature). Asin [2], in order to properly speak of heat backflow , T’s is chosen to be greater or
equal to the initial environmental temperature 7z, condition that would lead to a steady
non-negative mean energy transfer from the reduced system to the environment in the
Born-Markov semigroup limiting case.

5.3.3.1 Numerical evaluation of the heat backflow measure

In conformity with the choice made for the spin - boson model, we assume the spectral
density characterizing the environmental correlation function to be of Ohmic form with
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exponential cut-off (5.108).

Note that the initial effective temperature 75 of the system must be chosen to be greater
or equal to the initial environmental temperature Tg to ensure the heat backflow is not
in the direction of the temperature gradient [2].

In Fig. 5.6(a) we show the heat flow per unit of time 6(t) as given by Eq. (5.148), in the
weak coupling limit A = 0.01 and in units of wy, for Q@ = 0.25wq, Tr = wp and for three
different values of the effective system’s temperature T's /wy = 1, 2, 3.

(a)
O/wy (571
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FIGURE 5.6: (Color online) Time evolution of: (a) 6(t) and (b) ¢(¢), in units of wy, for
Q = 0.25wp, A = 0.01 and T = wp and for different values of the initial system’s
temperature T's /wy = 1, 2, 3.

An interesting feature of the heat flow is represented by the first positive peak of 0(t),
which can be observed even when the initial temperatures of the reduced system and of
the environment are equal to each other. Such peak, which was observed also in the case
of a spin-boson model [2], is a general feature due to the choice of dealing with an initial
factorized state, which is essential in order to have a well-defined dynamical map [21]. In
fact, even if system and environment are in Gibbs form relative to the same temperature
T,ie. psp(0) = E_Zi/T ® 6_25 T with Zg and Zg, being the partition functions of the re-
duced system and environment respectively, the state does not represent an equilibrium
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preparation [2, 137, 138]. In particular, the contribution of the interaction Hamiltonian is
absent before ¢t = 0, i.e. when the first measurement of the environmental energy in the
two-time measurement protocol outlined above is performed. The switching on of the
interaction term results in a net heat flow both into the environment and into the system
that takes place at the early stage of the coupled evolution. In fact, if we compute the
change in the system’s energy

(Atg) = Trg [Hs (ps(t) — ps(0))] = 0(0,¢t) — (0,0), (5.149)

we still observe a first positive peak in its time-derivative ¢(t) = %(AHQ, as shown
in Fig. 5.6(b) [138]. The last equality in Eq. (5.149) has been obtained by noting that
(Hs)t = %(XQ + P?); = o(0,1).

It is also interesting to consider the time behavior of the change in the mean values of the
energies of the environment (Ag); Eq. (5.65) and of the system (A% s); Eq. (5.149). While
the latter is always a positive quantity, it turns out that the energy of the environment,
for different values of cut-off frequency and initial temperatures, shows in the weak
coupling regime a decrease over time with respect to its initial value, given g = Ts. This
lower energy value persists in the long time limit. Being in the weak coupling regime,
we can assume the final state of the composite system to be effectively factorized, with
an environmental reduced density matrix that can therefore be cast into a Gibbs form
relatively to an inverse temperature which is lower than the initial one. In this sense one
could speak of a non-externally induced cooling effect.

Finally, from the analysis of Fig. 5.6(a), it emerges how the heat backflow measure, i.e.
the area of the negative region of (), is maximized for Ty = TJg; strong numerical
evidences suggest that this trend is maintained for all values of the relevant parameters
A, €, Tg. This fact, in agreement also with what happens in the case of a spin-boson
model [2], can be understood considering that there is no initial temperature gradient
when the two temperatures initially match, this favouring a more symmetric situation
of energy exchange. Exploiting this result, we can then evaluate the amount of heat
backflow , as estimated by Eq. (5.69).

In Fig. 5.8 we show the behaviour of the heat backflow measure (Ag)p,cr With respect
to its dependence on the various parameters \, 2, Tr(= Ts) in the range A € [0.01, 0.1].
In such weak coupling regime the measure turns out to be monotonically increasing
with the coupling strength and possesses a non trivial behavior with respect to the cut-
off frequency : for intermediate values of the initial temperatures Tr = Ts, (Aq)back
decreases for large €2, while for very low temperature (T = Ts = 0.25wy) there seems to
be an almost linear increment of the latter with (2.

5.3.3.2 Heat backflow in the strong coupling regime

Here we present a numerical approach to calculate the quantities (Ag)p.cr and 6(¢), de-
fined in Egs.(5.69) and (5.66) respectively, in the QBM without relying on the FCS. The
results obtained this way will encompass both the dynamical regimes of weak coupling,
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FIGURE 5.7: (Color online) Time evolution of: (a) (Aq); and (b) (AEg), in units of wy,

for Q = 0.25wg, A = 0.01 and T = Ts = wy. Note that the final value of the internal

energy of the environment is lower than its initial value, meaning that the environment
has cooled down.

where we will show the agreement with those obtained in the previous Section 5.3.3,
and of strong coupling. The essential starting point of this method [143] is to consider
the environment as composed by an arbitrary but finite number N of bosonic modes, so
that the total Hamiltonian (5.117) is now represented by a (N + 1) x (/N + 1) matrix of

the form
_PTP

H +XTMX, (5.150)

with X = (Xl, Xg, 'y XN, XN+1)T and P = (Pl, Pg, 'y PN, PN+1)T, where XN+17 PN+1
denote the position and momentum operators of the reduced system while the remain-
ing N operators refer to the environmental modes. Finally, the matrix M has elements
M, ; = %12 fori=1,-N,Mpyyi1 N1 = % and M; n41 = M4, = —%. We point out that
the QBM studied in the previous Section is retrieved when we take the limit N — +o0, in
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FIGURE 5.8: (Color online) heat backflow measure as a function of the coupling strength
A for different values of the parameters 2 and T, which characterize the dynamical map.

which case however the numerical approach is not treatable. Since Eq.(5.150) is quadratic
in position and momentum it can always be diagonalized by means of an orthogonal
transformation O [143], i.e. M = ODO? with D a diagonal matrix made of the eigen-
values {v/2d; }i—1,. n+1 (often referred to as eigenfrequencies) of M. By moving to the new
coordinates X = OTX and P = OTP, referred to as normal modes, we can express

Eq.(5.150) as
N+1

_ Lso | oo
H = ; 5 (PP+d2x?), (5.151)
which leads to a free evolution
X;(t) = X(0) cos (dgt) + Pzd(()) sin (d;t) , (5.152)
Pi(t) = —d; X (0) sin (d;t) + P;(0) cos (d;t) . (5.153)

Finally, coming back to the original picture and defining the diagonal matrices Cos, Sin
and D with elements Cos;; = cos (d;t), Sin;; = sin (d;t) and f)m- = d, respectively, we
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get the exact evolution of the position and momentum operators

N-+1
Xi(t) = > [MEX()X;(0) + M () P;(0)] ,
el
Pit) = [MIX()X;(0) + MEP(6)P;(0)]
j=1
(5.154)

where MXX (1) = MPP(t) = O Cos O, M*”(t) = O Sin D~ O” and finally M"¥ (¢) =
O SinD O Building on (5.154), we can straightforwardly obtain the time-evolution of
the mean values of the energy of the environment (#g); = 2 S, ((X?); + (P?);) and
of the system (Hg); = 5 ((X3,1)¢ + (P%,1)¢), as well as their time derivatives 6(t) and

(t)-

We stress that Eq. (5.154) requires no assumption but the finite number of harmonic
oscillators. This gives rise to a different evolution at very long times (longer the higher is
N), when the dynamics in the case of the finite environment leads to Poincaré revivals.
However, since no weak coupling or secular approximations are involved in this exact
numerical approach, it is possible to extend our study of heat backflow for this model
also to the strong coupling regime A > 0.1, while confronting the numerical evidences
with the analytical predictions in the weak coupling regime. Building on Eq. (5.154), we
can straightforwardly obtain the heat flow per unit of time 6(¢), which we plot in Fig.
5.9(a) having chosen N = 150 modes in the environment for the simulation. We have
chosen this value for N because we have observed that all the results do not change with
higher numbers of bath modes. Also, the Poincaré recurrence time is well beyond the
considered propagation time.

Fig. 5.9(a) clearly shows that in the weak coupling regime the numerical solution (solid
line) retraces perfectly the predictions of the analytical approach based on the full-coun-
ting statistics (dashed line), while for strong coupling the difference between the two
becomes marked, see Fig. 5.9(b). Having () as a result of the numerical simulation and
by means of Eq. (5.69), it is then immediate to obtain the heat backflow measure, which
we show as a function of A and of 2 in Figs. 5.9(c) and (d) respectively. Note that the
range of the coupling strength in Fig. 5.9(c), being A € [0.01, 1.8], encompasses also the
strong coupling regime; looking at the lower bottom-left corner, i.e. for A € [0.01, 0.1],
we can see that we recover the results obtained using the analytic approach shown in
Fig. 5.8.

It is evident from Fig. 5.9(c) the existence of a threshold value of the coupling strength
A* (2, Tr) above which the heat backflow measure vanishes. It can be shown that this
behavior is maintained for any value of the cut-off frequency and temperature, proving
therefore a general feature of the dynamics of this model. In order to understand this
result, we make use of Eq. (5.154) to calculate all the separate contributions to the total
mean energy, i.e the time-evolution of the change in the mean values of the energy of the
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FIGURE 5.9: (Color online) Time behavior of the heat flow per unit of time 6(¢) in units
of wy for @ = 0.25wy, T = Ts = wp and coupling strength A = 0.01 (@) and A = 1
(b). The solid lines refer to the solution obtained with the numerical method, while
the dashed lines are the curves predicted by the analytical approach relying on the FCS
methods. Plot of the heat backflow measure in units of wy as a function of the coupling
strength A for Q2 = 0.25wq (¢) and as a function of the coupling strength € for A = 1
(d), for three different values of the initial temperatures: Tg = T's = 0.25w (green line),
T =Ts = 0.5w (red line) and Ty = T's = wp (blue line). These curves were produced
by means of the numerical simulation with N = 150 environmental bosonic modes.

environment N
%Z Ve + (P2)y) — ((X2)o + (P)0)] s
i=1
of the system
(AEs); = % (KRt + (PRaa)) = (XRga)o + (PRsado)] (5:155)

and finally of the interaction Hamiltonian (AHy);.

Fig. 5.10 shows these three different contributions for Q@ = 0.25wp and T = Ts = wy
in the cases of weak coupling A = 0.01 (top three plots) and of strong coupling A =
0.8 (middle three plots) and A = 1.8 (bottom three plots), the latter corresponding to a
situation for which the heat backflow measure vanishes. The heat backflow contributions
correspond to the time regions where the mean internal energy of the environment [red
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FIGURE 5.10: Separate contributions to the time behavior of the mean total energy in

units of wy, for Q = 0.25wg, T = T's = wy. The top three panels (a-c) refer to the weak

coupling case A = 0.01, the middle three (d-f) to A = 0.8 and finally the bottom three

(g-i) to strong coupling A = 1.8 > A*. (a), (d) and (g) Mean values of the change in

the environmental Hamiltonian Eq. (5.65); (b), (e) and (h) Mean values of the change

in the system Hamiltonian Eq. (5.149); (c), (f) and (i) Mean values of the change in the
interaction Hamiltonian.

curves in panels (a), (d) and (g)] temporarily decreases. The measure introduced in Eq.
(5.69) is just the sum of all these contributions.

Fig. 5.10 shows the different time behavior of the average energy of the environment
[panels (a), (d) and (g)]. In particular, in the weak coupling regime the latter decreases,
see Fig. 5.10(a), this leading to the cooling effect previously put into evidence using FCS
methods. An opposite behavior is observed in the strong coupling, where the change
in the average energy of the environment increases with time, see Fig. 5.10(d) and (g).
For strong coupling the three contributions become of the same order of magnitude, at
variance with what happens in the weak coupling case, where the change in the system’s
internal energy and in the mean value of the interaction Hamiltonian were roughly an
order of magnitude bigger than the change in the environmental energy. An analysis
of these two cases shows then that in the weak coupling the time-variation of (AEg);,
which is always positive in our setup, is due both to the switching on of the interaction
Hamiltonian at ¢ = 0% (after the energy measurement on the environment in the two-
time measurement protocol) but also to the backflow of energy from the environment,
which, despite at the same initial temperature, loses to it a part of its energy. In the
strong coupling regime this no longer happens, and the increment in the mean system’s
energy is only due to (A% );, which becomes dominant and ceases energy also to the
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environment, thus opposing the occurrence of heat backflow which is in fact very much
reduced and eventually, when the threshold coupling strength \*(§2, T) is reached and
overcome (bottom three panels), stops.

5.3.3.3 Relationship with the non-Markovianity of the reduced dynamics

Here we study the parameter dependence of the non-Markovianity in this QBM setting
and compare it with the behaviour of the heat backflow. To this purpose, we consider
a recently introduced measure of non-Markovianity [76], based on the time behaviour
of the Quantum Interferometric Power (QIP) in the case of Gaussian states evolving
through Gaussian channels, see Chapter 3 Subection 3.2.3.5, also referred to as Gaus-
sian Interferometric Power. Employing the quantum Fisher information, the GIP mea-
sures the ability to estimate, according to black-box interferometry, a local phase shift in
a worst case scenario with a two-mode Gaussian probe [74, 75] characterizing the state
of the reduced system plus an ancilla.

While the non-Markovianity measure .#o(A) [76] includes a maximization over all pos-
sible initial two-mode Gaussian states:

Ao(A) = maxAF (A),

Osa

+00
AEW) = % / dt (12(6)] + 2(1)) , (5.156)
0

NG (M) represents a (more easily computable) lower bound for the latter. Analytic ex-
pressions for .45 (A) for the QBM in the weak coupling and secular approximation are
given in [74] for two important classes of initial two-mode Gaussian states: the mixed
thermal states (MTS) and the squeezed thermal states (STS), respectively characterized

by covariance matrices of the form

YIS = fe2n (;i ii) o8 =k (;2 12) : (5.157)

where x; 2 = diag(z1 2, 21,2) with 212 = cosh (2r; 2) and where y; = diag(y1,y1), y2 =
diag(y2, —y2) with y; 2 = sinh (2r12). In these expressions k = v + 1/2, with r being
the strength of the Gaussian operations, r; the squeezing parameter and v the average
number of thermal photons.

Fig. 5.11 shows 4§ as a function of the coupling strength A and as a function of the
cut-off frequency €2 for fixed values of the remaining parameters T, k and r ».

A comparison between Fig. 5.11 and Figs. 5.8 and 5.10 clearly highlights common fea-
tures between the amount of non-Markovianity of the dynamical map as measured by
(5.156) and the amount of energy backflow as quantified by (5.69) once they are seen
as functions of the parameters which determine the dynamical map describing the dy-
namics (i.e. A\, and Tg), i.e. after the maximization procedure which makes them in-
dependent from the choice of initial state of the system. It turns out in fact that .4
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FIGURE 5.11: (Color online) Plots of the non-Markovianity measure JVQ‘T for the class of

STS (blue lines) and of MTS (red lines), with k1 » = 1, 1 = 2 = 0.658 (otherwise stated),

as function of A [panels (a) and (b)] and of the cut-off frequency [panels (c) and (d)] for

fixes values of the remaining parameters. In particular: (a) 2 = 0.25wy and T = 0.25wy;

(b) Q = 0.25wp and Tr = wp; (c) A = 0.01 and T = 0.25wp and 71 = 10~2; (d) A = 0.01,
TE = W and ry ="T9 = 0.22.

and (Aq)pecr present a very similar dependence on the cut-off frequency: in the low-
temperature T = 0.25wy and weak-coupling A = 0.01 regime they both show a mono-
tonic increase with (2, see Figs. 5.11(c) and green curve of Fig. 5.8(b), while for increasing
values of the environmental temperature, both vanish above a certain value of the cut-
off around Q ~ 0.4wy [see Figs. 5.11(d) and 5.10(d)]. This behavior can be explained by
remembering that, for increasing values of the cut-off 2, the environmental correlation
function (5.74) becomes progressively more sharply correlated in time, this leading to a
limiting reduced dynamics which is that of a semigroup, thus Markovian. For very small
values of the environmental temperature, memory effects however persist for larger val-
ues of the cut-off frequency, as witnessed by (5.156) and shown in Fig. 5.11(c).

Our results moreover show that the property of a reduced dynamical map to be non-
Markovian does not in general guarantee the occurrence of energy backflow. This can
be seen by looking at the behavior of the energy backflow quantifier and of the non-
Markovianity measure in their dependence on the coupling strength: the former in fact
vanishes once a certain threshold A\*(2, Tg) is reached, see Fig. 5.10(a), above which the
dynamics is still non-Markovian, see Fig. 5.11(a) and (b). Also in their dependence on the
cut-off frequency, see Figs. 5.10(b) and 5.11(d), the value of {2 below which the dynamics
is still non-Markovian is slightly larger than the same threshold for the occurrence of
energy backflow.
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These considerations allow to conclude that the occurrence of energy backflow appears
as a stricter condition than non-Markovianity, in agreement with [2]. (A¢q)pqcr has turned
out, in fact, to be different from zero for values of the parameters \,Q, T for which
the dynamics is non-Markovian, vice versa vanishing whenever the reduced dynamics
becomes Markovian.

In conclusion, using the FCS formalism obtained in terms of a two-time measurement
protocol, we have studied in this Chapter the mean value of the energy exchange be-
tween a system of interest, both of finite and infinite dimensions, and its environment
in the framework of the second-order time-convolutionless GME, introducing a suit-
able condition and quantifier for the occurrence of heat backflow from the environment
back to the system. We have then applied this construction firstly to the spin-boson
model and secondly to the quantum brownian motion. In both cases, we have chosen
an Ohmic spectral density with exponential cutoff to describe the distribution of bosonic
bath modes and their interaction with the open quantum system. Direct evaluation of
the mean value of heat and of the heat backflow measure have shown that for certain
values of the parameters determining the dynamics (i.e. the environmental temperature
TE, the cut-off frequency 2 and the coupling strength ), the heat can actually flow back
from the environment to the system. We have finally considered suitable estimators of
non-Markovianity which were suitable for the models considered and discussed their
relationship with the heat backflow measure. These comparative analyses have shown
that non-Markovianity allows for the observation of heat backflow while Markovianity
prevents it: occurrence of heat backflow poses therefore itself as a stricter condition to be
fulfilled than non-Markovianity.






Landauer’s principle in non-Markovian
open quantum systems

In the previous Chapter we focused our attention on the study of the dynamics of heat
in relation with the first law of thermodynamics. The discussion in this Chapter will still
have the heat as one of the main quantities under investigation, though instead from an
angle revolving around the second law of thermodynamics in the context of open quan-
tum systems. In particular, we will discuss in detail the proper statement of the so-called
Landauer’s principle in this context, which states that, in order to irreversibly erase some
information from a system (quantified through its entropy) an expenditure of heat (thus
dissipated) is required. This deep result, which therefore involves and binds together the
tields of quantum thermodynamics and quantum information theory, will be recalled in
Section 6.2 in its original statement by Landauer and improved by a purely quantum cor-
rection due to the finite size of the environment which performs the erasure [4]. Finally,
we will discuss the introduction of a new family of lower bounds to the mean dissipated
heat in Landauer’s fashion, showing how a direct application to an interesting and not
studied physical finite-dimensional quantum systems proves that they can be tighter
than both Landauer’s result and its finite-size-corrected improvement. Remarkably, the
techniques employed to derive these bounds will be based on the same FCS analysis
presented in Section 5.2, making therefore possible to apply them, at variance with the
usual Landauer’s bound, also to the scenario of non-equilibrium quantum systems.

6.1 The second law of quantum thermodynamics in open quan-
tum systems

In the previous Chapter we studied the first law of thermodynamics in the quantum
realm, where we focused on the concepts of energy, heat and work. In particular, we
introduced the so-called full counting statistics formalism, by means of which we recon-
structed the mean value of the change in the environmental energy in a non-Markovian
regime according to a two-time measurement protocol.

121
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In this Chapter we will deal with the second law of thermodynamics in the framework of
open quantum systems. In particular our attention will be drawn by the Landauer’s prin-
ciple, a theoretical result of paramount importance only recently adapted to the quantum
scenario, which not only can be seen as a more fundamental formulation of the second
law, but also bridges the world of thermodynamics with the one of information theory.
In this regard, we will show how the application of the very same full-counting statis-
tics and two-time measurement protocol techniques can lead to a new family of lower
bounds to the mean dissipated heat in an environmental-assisted erasure of information
in Landauer’s fashion, which can prove to be tighter than the latter (at least for finite
dimensional systems) when applied to a specific model.

Let us consider an open quantum system scenario, where a system S interacts with an
environment E so that the total Hamiltonian describing the evolution of the composite
system is given by H = Hs + HE + Hsge. The total state at the initial time is assumed to
be factorized

pse(0) = ps(0) @ pg, (6.1)

with pg = e PM5/Z and Zg = Trg [e7#M&]. First of all, the second law of thermo-
dynamics is very well-known to be intimately related with the concept of irreversibility,
which inevitably brings along the notions of fluctuation theorems and micro-reversibility.
Since Boltzmann's work, several attempts have been made to find a microscopic deriva-
tion of the second law, the main difficulty in this task being that the most natural can-
didate, the von Neumann entropy S(psg) = —Trse [pse Inpsg| represents a constant
of motion (in absence of an external driving field). However, it is precisely this time
invariance which naturally induces a splitting of the change in the system’s entropy
S(ps)(t) = —Trg [ps(t) In pg(t)], which instead is a function of time, in two contributions:
an entropy flow and an entropy production. Consider in fact that

—Trse [pse(t) In pse(t)] = —Trse [pse(0) In pse(0)] = —Trs [ps(0) In ps(0)]=Trz [pg In pg]

(6.2)
where we used the additivity of the von Neumann entropy for product states. In light of
this relation, since we are interested in the manifestation of irreversibility in the reduced
system, we have that [122]

AS(t) = S(ps)(0) — S(ps(t)) = Trs [ps(t) In ps(t)] — Trs [ps(0) In ps(0)]
= Trsp [pse(t) Inps(t)] — Trsk [pse(t) Inpse(t)] + Tre [pg In pgl
= Trsp [pse(t) In (ps(t) @ pg)] — Trse [pse(t) npse(t)] — Tre [(pe(t) — ps) Inpgl .
6.3)

By inserting the explicit expression of the initial environmental state (which is in Gibbs
form), it is easy to see that the last term is equal to

Trg [(pE(t) — pg) Inpgl = —BQE() = —AS,(t) (6.4)

with Qg(t), defined in Equation (5.7), being the change in the environmental energy,
i.e. the heat. The latter quantity is thus associated to the reversible change in the system’s
entropy. The first two terms in Equation (6.3) are nothing but a quantum relative entropy
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between the total state at time ¢ and the product state which was prepared at initial time
t=0

S(pse®)ll (ps(t) © ps)) = Trsw [pse(t) n psr(t)~Trse [pse(t) In (ps(t) @ pg)] = —ASi(2).

(6.5)
Due to Klein’s inequality [21, 144], this contribution, commonly referred to as entropy pro-
duction, is always non-negative, i.e. AS;(t) > 0, with the equality being saturated if and
only if no correlations between system and environment build up during the evolution.
To summarize, one has therefore the relation

AS(t) = ASy(t) + AS, (1), (6.6)

which highlights the splitting of the entropy change in a reversible and an irreversible
contribution [122]. Equation (6.6) can also be cast in an equivalent form [4], which has
the merit to be more clearly connected to the so-called Landauer’s principle, which we
will discuss in a short while. In order to do that, given the marginals pg, pr of a generic
state psp, we recall the definition of mutual information

I(ps : pE) = S(ps) + S(pe) — S(pse), (6.7)

which is a broadly employed concept in quantum information theory to characterize, for
example, the amount of correlations between a system and an environment (or an ancilla)
or, when maximized over all possible separable states, to calculate Holevo’s channel
capacity [145]. This quantity naturally comes into stage when we consider the change in
the environmental entropy ASg(t) = S(pe(t)) — S(pg) alongside with the system’s one.
In fact

—AS(t) + ASg(t) = S(ps(t)) — S(ps(0)) + S(pe(t

)
(pe(t)) = S(pse(t)) = I(ps(t) : pu(t)), (6.8)

where we have used the additivity property in the case of product states and the invari-
ance of the total entropy. The property of the mutual information to be a non-negative
quantity, i.e. I(ps(t) : pe(t)) > 0, can be seen as another statement of the second law of
quantum thermodynamics. We will go back to this expression of the second law in the
following Subsection, showing how it relates with the Landauer’s principle.

Before moving to that however, it is worth to finally discuss the relationship between the
entropy contributions in Equation (6.6) and the first law of quantum thermodynamics
(5.4). To this aim, recall the discussion made in Section 5.1 about the first law in the
framework of open quantum systems and consider in particular the quantities defined in
Egs. (6.7), (6.10) and (5.13). In light of Equation (6.6), if we introduce the non-equilibrium
free energy of the 'system + interaction’

AFs(t) = AUs(t) — B7AS(), (6.9)
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we have that the entropy production (6.5) corresponds to
ASi(t) = B(W(t) = AF()), (6.10)

which is known in the literature also as the dissipated work associated with an entropy
increase in the system during an irreversible process [146].

6.2 The Landauer principle and the environmental-assisted era-
sure protocol

Thermodynamics has been unavoidably related to information theory since Maxwell
seemed to show that the bare knowledge about a system allows to extract work from the
system, thus apparently violating the second law. This paradox, known as Maxwell’s
demon, is the result of a thought experiment where a box full of a gas and partitioned
in the middle is monitored by a demon who can get information about the microscopic
details of all the particles. The demon controls a small gate in the partition and selec-
tively opens the gate to let fast particles pass to the left box and slow particles to the
right box. Since the velocity of the particles is related to their temperature, this process
creates a temperature gradient between the two chambers of the box, at no expenditure
of work, in violation of the second law. Moreover, this temperature gradient can in turn
be exploited to extract work.

The resolution to this apparent paradox came from Landauer [23] and Bennett [147-149],
who realized that the amount of work needed to prepare the demon’s memory to store
the information about the particles at the beginning of the procedure or, equivalently, to
erase the demon’s memory about the information he acquired about the particles at the
end of the procedure precisely matches and compensate the extracted work, thus restor-
ing the second law of thermodynamics. In other words, Landauer recognized that any
information erasure from the information-bearing memory causes entropy to flow (and
thus heat) to the non information-bearing system. If the latter acts at inverse temperature
3, then a dissipated heat

BQe = AS (6.11)

is dissipated in the process, with AS denoting the entropy decrease in the memory. The
inequality (6.11) is known as Landauer’s bound and represents a lower bound to the mean
dissipated heat in an erasure protocol scenario. It is only very recently that a solid math-
ematical background was given for this protocol to be valid in the quantum scenario,
where a quantum counterpart of the Landauer’s bound can be studied. In [4] the au-
thors provided the minimal setup in which they proved and improved Landauer’s lower
bound to the mean dissipated heat, which are

e both the information - bearing degree of freedom, i.e. the memory or system S
and the non - information - bearing one, i.e. the environment or reservoir E, are
described in terms of Hilbert spaces .75 and #%;
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e the environment is initially described in terms of a thermal state pg = e °"= /Zp,
with Hg being a self-adjoint Hamiltonian operator on J#z, f € [—o0, +00] its in-
verse temperature and Zg = Trg [e_BHE ] ;

e the total initial state is uncorrelated psg(0) = ps(0) ® pg;

e the evolution of the overall system S + E is given in terms of an unitary operator,
ie. pse(t) = U(t,0)pse(0) UT(t,0).

This set of assumptions is minimal in the sense that, whenever anyone of them is dropped,
Landauer’s bound can be violated, as reported in the literature [4]. More specifically, the
first and last assumptions imply that all the parts involved in the erasure process are de-
scribed quantum mechanically and that no other third part plays any role. The violation
of the assumption of no initial correlations between system and environment is proven
to lead in some cases to violations of the Landauer’s bound. Moreover, this assumption
is in line with the point of view of many thermodynamical protocols, such as error cor-
rection or quantum computing, where the memory register is taken to be independent of
the reservoir. Finally, the assumption of dealing with an initial reservoir in Gibbs form
is essential for two reasons: the first and more practical one is to have a well-defined
inverse temperature 3 entering the Landauer’s principle; the second one is that thermal
states are in fact the only completely passive states (i.e. states from which one cannot
extract work by means of unitary operations [150]) and its drop can lead to violations of
Landauer’s bound [4].

Within this framework, we can now prove the following Theorem by Reeb and Wolf by
using the quantities introduced in Egs. (6.6) and (6.7)

I(ps(t) : pp(t)) + AS(t) = ASp(t)
= —Trg[pe(t) npp(t)] + Trg [ps In pg)
= —Trg [pp(t) npe(t)] + Tre [psIn pg] — BTre [Hepe(t)]
=—D(pet)|lps) + BQE(?), (6.12)

with Qg(t) defined as in Equation (5.7). This result is the equality form of Landauer’s
principle, from which the lower bound to the mean dissipate heat Qg(t) is derived by
simply using the argument that both the relative entropy D(pr(t)||ps) and the mutual
information I(ps(t) : pr(t)) are non-negative quantities of their argument

BRE(t) = AS(t) + I(ps(t) : pe(t)) + D(pe(t)|lps) = AS(1). (6.13)

We stress that the equality in Equation (6.13) can be proven to be equivalent to Equation
(6.6) [4], thus explicitly showing the deep link between the second law of thermodynam-
ics and Landauer’s principle.

The above relation allows to evaluate how much the Landauer’s bound deviates from the
value Qg (t) = AS(t). From Equation (6.13) it follows immediately that the heat flow
equals the change in system’s entropy if and only if I(ps(t) : pe(t)) = D(pe(t)||ps) =0,
being both these quantities non - negative. These requirements are however equivalent
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to impose that pse(t) = ps(t) ® pp(0), ie. Qp(t) = AS(t) = 0 at any time. In light
of such considerations, only trivial evolutions lead to the saturations of the Landauer’s
bound in the case of a finite dimensional system, thus suggesting that tighter versions
of fQE(t) > AS(t) can be found. The interested reader is referred to [4] for details and
proofs of this tighter lower bound to the mean dissipated heat. It is worth of stress that,
while for AS(t) > 0 the above bound is tight, for processes which increase the system'’s
entropy the bound is not tight. In the next Subsection, following a rather radically differ-
ent approach with respect to Landauer’s and Reeb-Wolf’s, we will derive a new family
of lower bounds to the mean dissipated heat which will be valid also in the context of
non-equilibrium systems and moreover which will be tight irrespectively of the sign of
AS(t).

6.3 Full - counting statistics approach to a lower bound to the
mean dissipated heat

We will present here the derivation of a new one-parameter family of lower bounds to
the mean dissipated heat which, within the framework of the erasure protocol illustrated
above, are also valid in a non-equilibrium scenario and improve both Landauer’s and
Reeb - Wolf’s results.

To achieve this goal, the first observation is that the dissipated heat Qg(t) entering
the Landauer’s bound (6.13) can be studied relying on the two-time measurement pro-
tocol of the environmental energy discussed in Chapter 5 Section 5.2, i.e. Qg(t) =
Trg [He (pr(t) — pg)], where we have already assumed ps = e #"Z/Zp as the initial
environmental state according to Reeb-Wolf setup.

The starting point is the cumulant generating function (5.23) for the heat Q (), which is
given by

O(n,B,t) =In(e "9"), = In / dQr p(Qp)e "9E, (6.14)

where, for future convenience, we have decided to made explicit reference to the inverse
temperature 3 of the bath, which enters through the initial environmental state pg. The
key observation is to notice that the C:)(n, B,t) is a convex function with respect to the
counting parameter 1 [126]. This can be proven exploiting Holder’s inequality which,
given a measure space (£, 3, i), states that, for all measurable function f, g on €,

1 1
I o I f Il g llgs 0<gq,p <1, ];+;=1, (6.15)
where
I F = ( / du|f|’") Vr € [1, +0). (6.16)

If the measure 4 is, as in our case, a probability measure, then (6.15) is equivalent to

(fl) < (UFIP)7 ({gl)7 . (6.17)
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By exploiting the property of the logarithm to be convexity preserving, we immediately
have that

é([am + (1 —a)ne],B,t) = ln(e*[a"ﬁ(lfa)nz]Q)t
< Oéln<e_7hQ>t + (1 — Oé) ln<e_772Q>t = Oé(:)(nl, B,t) + (1 — 0‘)(:)(77275,15), (6.18)

where we used Equation (6.17) with the substitution « <+ 1/p, (1 — a) <+ 1/q. Equation
(6.18) expresses the convexity of the cumulant generating function. If we combine this
property, equivalently expressed as [151]

~ 0 ~
6(77757t) > 778777@(777 6at)|7]=0a (619)

with the fact that, in light of Equation (5.24),

0 ~
QE(t> = _%@(n7ﬁat)|n=0> (620)
we immediately obtain a one-parameter family of lower bounds for the mean dissipated
heat Qg (t) which, for positive values of 7, reads

BQE(D) = 00,5, = By(0), 1>0, (6:21)
We stress that the derivation of this result relies only on the assumptions taken into ac-

count in the erasure protocol setup.

This family of lower bounds can be understood as follows. The left hand side of Equation
(6.21) is, apart from the factor j3, the derivative of the cumulant generating function,
evaluated for n = 0 and changed of sign. The right hand side instead, for small enough
7, can be seen as the incremental quotient, taken for positive increments, of the cumulant
generating function around the origin n = 0.

On the one hand, for n — 0 one therefore recovers the actual derivative and the bound is
saturated. This fact implies that this bound is always asymptotically tight to the mean dis-
sipated heat () irrespectively of its sign, in the sense that for any possible dissipated
heat there exist a process and a suitable value of the parameter 1 such that the difference
BQE(t) — B4(t) < 4 (5 > 0) at any time.

On the other hand, for n = /5 one remarkably obtains the Landauer’s bound derived in
[152]. If we substitute in fact the counting parameter 1 with 5 in the generating function
Equation (6.14), we obtain that

OBA = (792, = Trp [U(t,0) (ps(0) @ 1p) UT(£,0)| , (6.22)
which corresponds to the result Equation (6) of [152]. Note however that C:)(B, B,t) no

longer represents a proper cumulant generating function of the moments of the heat
distribution, i.e. the average dissipated heat (Q);, for example, could not have been
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obtained as

Qu(t) fﬁ@ﬁ%o, (6.23)

because of the additional dependence on 3 of the initial state of the environment. Nev-

ertheless, the application of Jensen’s inequality as in [152] allows to access Qg(t), this
leading to the lower bound found in that reference

BY = —6(8,8,t) = nTrg |U(t,0) (ps(0) @ 15) U1, 0)} . (6.24)

6.3.1 Relationship with non-unitality of the environmental channel

It is interesting to consider the relationship that the new family of lower bound Bg(t) for
n = f3 has with the degree of non-unitality of the channel, which governs the evolution
of the environmental state. The latter condition is in fact expressed by the request that

> AAL(t) = 1p, (6.25)
k

where the various Ay(t) = A;(t) = /A; (i|]U(¢,0) |j) denote the Kraus operators for
the environment obtained from the usual evolution operator U (t,0), {|j) , A;} being the
eigenstates and eigenvalues of the initial density matrix of the system, i.e. pg(0) =
>_;Aj 1) (il To show this connection, we have to consider the expression of the cu-
mulant generating function

é(n,ﬁ,t) = InTrgg [e_("/z)HEU(t,O)e("/Q)HEpSE(O)e(”/Q)HEUT(t, O)e_("/Q)HE . (6.26)

Exploiting the ciclicity of the trace and the condition [e™/?=  ps] = 0, we have that

é(na /87 t) =In TrSE

e—(B—mHEe

-e_BHE

— InTrsp BB (1, 0) (ps(()) ® e-<ﬁ—n>HE) Ut 0)]

— InTrsp _(]15 ® pg) e(ﬁgn)HEU(t, O)e*(ﬁzfn)HE (PS(O) ® ]lE) e*(ﬁ;mrHEUT(t’O)e(ﬁgn)HE}
— InTrop |(1s ® pg) Us—y(t,0) (ps(0) @ 1) (Uﬁ_n(t,()))*] , (6.27)
where (B=m) (B—=mn)

Us_y(t,0)= e 2z HEU(L,0)e 2 75, (6.28)

As a result of (6.27), we get

O(n, B,t) = InTrg [psA"(t)], (6.29)

with
A"(t) = Trg [Uﬁ,n(t, 0) (ps(0) ® 1) (Up—y(t, 0], (6.30)
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where Ug_, (t,0) = e~ (1=AMe/2{7 (¢, 0)e(=F)He/2 represents the evolution conditional to
the two-time measurement of the environmental energy. Equation (6.29) puts into evi-
dence the peculiar role of the = 3 choice: for this value of the counting field parameter
in fact we find that the operator defined in Equation (6.30) reduces to

AP(t) = Trp [U(t, 0) (ps(0) ® 1) UT(t,0) (6.31)
=" Ap(t) AL (). (6.32)
k

In light of Egs. (6.21) and (6.25), it is immediate to see that if the environmental map
is unital the new family of lower bounds vanishes. In the erasure protocol framework
here considered however, the dynamical map Ag : pg — pg(t) is by construction non-
unital, since the dissipative dynamics inevitably perturbs the initial Gibbs state of the
environment in order to erase information stored in S [152].

To relate these concepts more quantitatively, we introduce the following figure of merit
which gives an estimate of the degree of non-unitality of the map Ag

NE(t) =] AP(t) = 1g ||, (6.33)

where || - || denotes the Frobenius norm.

6.3.2 Relationship between the new family of lower bounds and the «—Rényi
divergence

Coming back to the generic 7 case, it is also worth noticing that, in the case the open
system starts in the maximally mixed state p5(0) = 1g, the newly found family of lower
bounds B, (t) can be written in terms of a quantum Rényi divergence. The latter quantity
is defined as follows

1

Sa(pllo) = ——InTr [p*o'™?],  a€(0,1)U(l,+o0). (6.34)

The assumption p5(0) = 15/Ng is actually considered from the very beginning in many
discussions of the Landauer’s principle [153, 154] as well as in the original derivation
by Landauer himself [23], with the target state of the process being instead a pure state.
According to the above notation, in such process AS(t) = S(ps(0)) — S(ps(t)) is there-
fore positive and so is the mean dissipated heat. It is important in fact to keep in mind
that,contrary to intuition, the information here refers to the entropy of a system and thus
to its uncertainty. It is for this reason that Landauer therefore referred to the erasure
process as a process which leads to an increase of certainty in the system’s state [23, 120].
To see the above mentioned relation, we first re-write the cumulant generating function
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C:)(n, B,t) as follows

O(n, B,t) = InTrsp [e-WDHE (2, 0)eM/DHE (5g(0) @ pg) e WD ey (2, O)Gf(n/mE}

6_(18_77)HE
=W Trsp e U(1,0) | ps(0) ® ——— | U'(t.0)

T | (159 (C5 )3 ) U(t0) (ps0) 0 () F ) Ute0)]
(6.35)

If we then assume that pg(0) = 1g/Ng, we have that

U(t,0) (ps(0) ® (o)~ # ) U1(1,0) = Ny "U(1,0) (p5(0) @ ps)'# UT(1,0)

=

_% 1 17%_ —B 1-1
Ny " (U(t,0) ps(0) @ psUt(1,0)) 7 = Ny (psi()) 7, (6.36)

where we have exploited the unitarity of U (¢, 0) to insert (1— %) resolutions of the identity
1sg = UT(t,0)U(t,0). It is therefore immediate to see that

iSIS

601 5.6) = Trse [(ps(0)? (pse)*H] = (= 1) 8y (e llosz(®) . 637)

g

_n
where we have moved the factor Ny ” to the first term appearing in with in the trace in
e~ BHE n

Equation (6.35), i.e. (]15 ® (T)%)' to give (pS(O) ® (#) ] ) The mean dissipated
heat is then lower bounded by

BQE(t) > BY(1) pa(o)o1a = (f - 1) Sy (psi(0)]psi(t)) (6.38)

n
B

We note in passing that a fluctuation relation for the heat distribution can be immediately
obtained from (6.37) simply by substituting the value n = 3 in the expressions and em-
ploying the definition of the cumulant generating function

(eOBBDY, = (e=FREM), = 1. (6.39)

Equation (6.38) can be re-written by making use of the skew-symmetry of S, (p||o):

Salpllo) = —=

Sl—Oé(UHp)? \V/O[ ?é 07 1 ) (640)

l—«

as
BRE(t) = BL (1) ps0)=15 = S1-1 (pse®)llpse(0)),  ¥n € (0,8) U (B,+oc].  (641)
This last expression, in combination with the properties [155-157]

Sa(pllo) >0, Vp,o0 >0, Va € (0, 4+00], (6.42)
Salpllo) > Ss(ollo),  Ya> 4, (6.43)
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allows us to conclude that
BQE()ps0)=15 = 0, for any vy > 0, (6.44)

thus in accordance with the original observation by Landauer mentioned above that the
mean dissipated heat in this particular case is always non - negative (with the equality
being reached only for trivial dynamics).

Finally, the following interesting relation can be found for this particular choice of initial
system’s state

BQp(t) = lim Sy (pse(?)llsp(0)) = D (pse(®)llpss(0)), (6.45)
where D (o||p) = —Tr [0 In o] + Tr [0 In p| is the relative quantum entropy between the total

state of the composite system at time ¢ and the total state at initial time ¢ = 0. Since the
latter is factorized, we have that [21]

D (pse(t)|lpse(0)) = S(ps(0)) +S(pg) — S(pse(t)), (6.46)

is thus the mean dissipated heat is in this case a measure of the change of the von-
Neumann entropy resulting from the traces over the subsystems S and £, thus providing
a measure for the corresponding information loss.

6.4 The XX-coupled pumped V-system

6.4.1 The model

Here we show the application of our results to an original model consisting of a three
level V-system |0), |1), |2), where the |0) —|1) transition is externally pumped by a laser
with frequency €2; while the transition between |0) — |2) is dictated by the interaction
with the environment, a two-level system, through an X X-type interaction. Moreover
both the environmental qubit and the |0) — |2) transition feel an external magnetic field
along the z direction. See Fig. 6.1.

A straightforward generalization of this model, which we have called XX-coupled pumped
V-system, is obtained by considering the environment made of a chain of two-level sys-
tems coupled through XX-interactions, which however can be tackled only through nu-
merical simulations as the size increases. Despite quantitative changes, the qualitative
behavior of the thermodynamical quantities of interest is however already captured by
the analytically-solvable case of a single-spin environment and for this reason we will
study it in detail.

This model is moreover interesting since it has not (to the best of our knowledge) been
studied in the literature and represents a non-trivial variant of the well-known spin-
chain model investigated, for example, in [152, 158, 159]. The latter, in fact, consists of
a qubit instead of a three-level system and the coupling is again through an X X-type
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interaction (which has the property to preserve the number of excitations). Its wide

applications range from quantum simulations to quantum information.

Moreover, it is intuitively clear that the presently considered model reduces to the one
consisting of two spins just mentioned in the particular situation where the pump
is switched off and the system starts in the excited state |2) (2|, thus leaving with an
effective two-level system interacting through an XX coupling with another spin. This
result will be rigorously confirmed below, this way providing an useful check between

the results obtained in this model and those derived in [152].

FIGURE 6.1: The XX-coupled pumped V-system. The |0) — |1) transition of the open

system is externally pumped by a laser with frequency €2; while the transition between

|0) — |2) is dictated by the interaction with the environment, a two-level system, through

an X X-type interaction. Moreover both the environmental qubit and the |0) — |2) tran-
sition feel an external magnetic field along the = direction.

The total Hamiltonian is given by H = Hgs +HEr +Hx x +Hsr (with F denoting the laser

field), with

Ms=BSY, Hp=DBo., Hxx=J (5 @0 +5,®0,), Hsr=D" E (647)

where 0, 0., 0, denote the Pauli matrices for the environmental qubit,
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and finally D* = dS? + ¢*S%, with S% = 1 ($20 + i5.°), is the dipole operator and
E=c+e",withe =i} >\ ,(y/2mwk/V)er(k)br(k), is the electric field of the laser
in the Shrodinger picture [21]. We remind that we have chosen for simplicity 7 = kg =1
and continue to do so henceforth.

6.4.2 The master equation

In the present Section we derive an exact master equation in the interaction picture for
the evolution of the reduced system’s statistical operator by applying the concepts pre-
sented in Chapter 2 Sections 2.2.3 and 2.2.4.1.

First of all we move to the interaction picture with respect to the free Hamiltonian Hg +
H . In this case the interaction terms become

Hxx(t) +Hsp(t) = J (S ®op + 520 © o)) + D*(t) - E(t), (6.48)
where we have used the fact that
S2(t) ® 04 (t) + S (t) @ oy (t) = S ® 00 + S2° @ 0y, (6.49)

and where explicitly

on(t) "E(t)=d- §e—i(wo+B)t5€O +d .g*ez‘(wo+B)tS_2i_0
+d- ée_i(wO_B)tSEO +d*- §ei(w0_3)t530. (650)

By assuming the so-called rotating-wave approximation (RWA), which amounts to drop
the fast oscillating terms in the previous expression, and choosing the frequency of the
external field to match with the magnetic field, i.e. wo = B, we are left with

DX(t)- E(t) = 01520 + Q; 8%, (6.51)

where Q1 = |1]e!® = d* - ¢ is the Rabi frequency. In what follows, we will also choose
the phase of the external field in order for §2; to be real, so that

Hxx(t) + Hep(t) = J (52 @0y + S2° @ 0y) + 01520 @ 1. (6.52)

By direct exponentiation of the Hamiltonian (6.52), the overall unitary evolution operator
U(t,0) governing the evolution of the composite system can be analytically found and

reads
1 0 0 0 0 0
dcos(tw)JJ?2+03  2J(cos(twr)—1)Q 2iJ sin(tw1)
0 2J (cos(tw1)—1)Q1 4J2+cos(twr )22 0 _isin(tw1)Q 0
U(t, O) = w% w% w1 ,
0 0 0 cos (t£21) 0 —isin (t02)
0 2] sii(twl) . ZSin(iUil)Ql 0 cos (twl) 0
0 0 0 —isin (t€2) 0 cos (t€21)

(6.53)
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where wy = /Qf + 4J2 represents a Rabi frequency modified by the coupling J. Note
that the above expression is given by assuming the following lexicographic order to ex-
pand the vectors |¥) € % ® #5 = (]21),20),]11),]10),|01), |00))T, where the first
digit refers to the the V-system while the second to the environmental qubit.

In order to find the time-local master equation

9 pst) = Kren(Dps(t), (659

i.e. determining the time-local generator governing the evolution of the V-system, we
need, first of all, to find the quantum dynamical map A(¢,0). Consider to this purpose
that the initial state of the composite system is of factorized form psg(0) = ps(0) ® pg,

ps(0) = [Wo) (Tol,  [Wo) = cos() |0) + sin() sin(a) [1) + sin() cos(a) [2),  (6.55)

and ]
pg=pl0) 0+ (1 —p) 1), p= 3 (1+tanh(8B)) . (6.56)

This choice is also in accordance with the assumptions made in the erasure protocol
mentioned at the beginning of Section 6.2. We have then that

ps(t) = Trig [U(1,0) (ps(0) @ pg) U' (1, 0)|

1
= > [ GIVI=pU0)]1) ps(0) (1] V1= pU(£,0)3)
=0
+ (Gl VU0 [0) ps(0) 0] VAU (£,0) )
1
= > Kij(t)ps(0) KL (#), (6.57)
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with K;;(t) = /1 —3p+ j(2p — 1) (il U(t,0) |j) being the Kraus operators. Inserting the
explicit expression of the unitary operator (6.53), these operators read

\/;T)(w%fSJZSinZ (le)) 0 0
Wi
Koo(t) = 0 Vpeos (tQy)  —iy/psin (tQy) | >
0 —iy/psin (tQ1)  /pcos (tQ1)
0 0 0
Koy (t) _ 2J\/ﬁ(cosu()1%w1)fl)§21 0 0 ,
. QiJ\/ﬁ;jn(twﬂ 0 0
0 QJ\/H(COSQ(twl)fl)Ql _ 2iJy/T—psin(tw:)
wy w1
Kio(t) = |0 0 0 ;
0 0 0
v1I—0p 0 0
Ki1(t) = 0 V1 —pcos (twr) —i—vkj)sgll(udl)m . (6.58)
0 _W/mpsinlte) T o (fwy)

w1

We now consider an basis of £ (C*) which is orthonormal with respect to the Hilbert-
Schmidt product and satisfies the constraints (2.86). The latter is represented by the
eight Gell-Mann matrices {);},—1,... g, which form a basis for the su(3) algebra [16], plus
the identity

1 _ i
L (100 ? 7 ? 7 0
)\0:73 O 1 0 ,)\1: ﬁ O 0 ,)\2: ﬁ 0 0 B
001 0 0 0 0 0 0
1 1 A
5 0 0 0 0 0 0 -7
Ma=1]0 —% 0] M= (1) 0 0], =0 0 0 [,
0 0 0 7 00 5 00
00 0 00 0 % 0 0
1 7 1
Xe= |0 (1) Gl =0 0 =] A= 0 % O (6.59)
0 % 0 0 & 0 0 0 _\/g

By means of Equations (6.58) and (6.59), we can immediately find the expression of the
9 x 9matrix A associated to the representation of the quantum dynamical map A(t,0) on
basis { £} (2.36)

. (6.60)

1
Agp = Trg {)\L (Z Kl-j(t))\gKiTj(t))

1,j=0

By exploitingA, whose explicit expression we prefer to leave out due to its length, the
matrix form of the time-local generator Ky, on the same Hilbert-Schmidt basis is read-
ily obtained by means of Equation (2.82).

Since the dynamical map was obtained from the overall unitary evolution operator, it
is by construction trace and hermiticity preserving and completely positive. We can
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therefore exploit these properties to better specify the structure of the time-local master
equation (6.54) as shown in Subsection 2.2.4.1. Firstly, we need to express the time-local
generator on the basis { F,,3} (2.38), a task straightforwardly carried out by applying the
change of basis (2.40). This leads to the 9 x 9 matrix K’.,; with entries [K/.~;]as, by
means of which a master equation in the form of (2.95) can be expressed. We give the
result in the case of an initially cold environment (case 8 — +00), which reads

400 = =i [7101.0)] + r(0) (G- @006 (1) - HEL OG-0 0001 )

T da() (H (p(t) ' (1) - ;{Hut)H_(t),p(t)}) . (661)

where
0 00
") =0 [0 0 1 (6.62)
010
is the effective Hamiltonian obtained through Equation (2.93), where
2J2[1 — cos (w1t)]
dy o(t) = b(t b2(t) + 4a?(t t)=
12(t) = b(t) ¥ (t) +4a*(t), a(t) w? —4J2[1 — cos (wit)]’
4J%w si
b(t) = JZwy sin (wyt) (6.63)

© w?—4J2[1 — cos (wit)]

are the only two non-zero eigenvalues of the submatrix K’ rcr obtained from K/, by
removing the first row and column and where, finally, the Lindblad operators G_(¢) and
H_(t) are the corresponding eigen-operators

G_(t) = —v_(t) |1) (2] + i /1 =02 () |0) (2] = —v_(t)o?! + iy /1 — 02 (£)0?°,  (6.64)

H_(t) = v (t) [1) (2] +iy/1 = v2(1) [0) (2] = v4 ()0 +iq/1 — 02 (1), (6.65)
V2a(t)
\/ b(t) (b(t) + /1a2(0) + b2(t)) + 4a2(t)

(6.66)

vy (t) ==+

have been obtained through Equation (2.96).

We stress that the operators G_(t) and H_(t) are normalized to 1 and mutually orthogo-
nal with respect to the Hilbert-Schmidt product, i.e. Trg [GT_ H_ (t)} = 0.

If the pump Q; is switched off, the function a(t) vanishes while b(t) — 2.J tan (2Jt), thus
leaving with the following master equation

%p(t) = 2J tan (2Jt) (G%Op(t)aio — ;{030030,;)(75)}) , (6.67)

which describes an amplitude damping involving the |0) — |2) transition [37, 152, 158].
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Finally note that the dynamical map A(t,0), despite being CPTP by construction, is not
CP-divisible since the time-dependent damping rates d; »(t) can assume both positive
and negative values.

6.4.3 The dissipated heat statistics and new lower bound

In this Subsection we will evaluate the quantities introduced in Subsection 6.3 for the
model at hand. First of all, we note that the passage to the interaction picture leaves the
expression of consider the cumulant generating function ©(7, 8,t) defined in Equation
(6.14) unchanged. This is readily seen by exploiting (6.26), the ciclicity property of the
trace and the relation [Hg, Hg] = 0:

O(n, B, )=InTrgp [e—(n/QWE Uo(t, 0)U;(t,0)e 2 i g 1 (0)e DM (£, 0)U (8, 0)e = (/2

=InTrsg [e—W DHEYL(L,0)eMDHE pg p(0)eMDHEUT (L, 0)e ™0/ 2)%;;} . (6.68)

Every quantity derived from the latter, consequently, do not depend on the picture cho-
sen either.

We then employ the unitary operator in interaction picture (6.53) in expression (6.68)
in order to obtain the cumulant generating function and the Landauer bound B{(t).
The cumulant generating function ©(n, §,t) and the mean dissipated heat Qg (t) can be
found analytically for a generic initial state of the system (6.55). Since their expressions
are however quite lengthy, we give them in Appendix A, reporting here only their form
for the choice ps(0) = |2) (2|, which corresponds to the choice § = 0, ¢ = 7/2:

16.J2Q3e 2B sint (4Lt) + 4J%e 2B sin? (wt)

4
2wy

O(n, 8,t) = log ([1 + tanh(8B)]

2
{1+ tanh(8B) (4.2 cos (w14t) +09)%1 - tanh(ﬁB)) | (6.69)
2wy 2
2 G2 (w1 CAT2 G2 (wi 2
Q(t) = [1 + tanh(8B)| 16BJ* sin ( 3 t) [wil;] sin ( 5 t) + wl] . 670)
1

Both these quantities are always positive for every value of the parameters J, 2;, B and
at every time ¢.

Fig. 6.2 clearly shows that, for decreasing values of the ratio /3, the bound increasingly
approaches the blue curve representing 3(Q):, which can be calculated analytically for
this model using Equation (6.20). We stress that the red line in Fig.(6.2), correspondent
to the choice n = 3, reproduces the Landauer lower bound obtained in [152]. By taking
instead larger values of 7/, the bound increasingly approaches to zero.

By means of the analytic expression of the unitary evolution operator U(t,0) (6.53), the
Kraus operators for the environmental channel A, can be found simply by taking the par-
tial trace over the system. The quantifier of the non-unitality degree of the environmental
channel, given by the Frobenius norm of the difference between A%(t) = 3~ Ak(t)AL(t)
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FIGURE 6.2: The blue line represents 3(Q);, while the other lines are the bound B,

for several different values of the counting parameter. In particular, the red line corre-

sponds to the choice n = 8 which reproduces the Landauer’s bound Bg also considered
in [152]. The other parameters have been fixedto J =1, B=1, 8 = 10and ©; = 0.1.

and the identity 15 can be expressed in a closed form. In the case pg(0) = |2) (2| it
reduces to V37 sin? )y )
16v/2J7 sin” (%+t) |—4.J7sin” (¢
Ni(t) = sin? () [4)7sin” () +ei] (6.71)
w1

By direct confrontation of Egs. (A.4) and (6.71), it follows that

V2

Ne() = T tanh(3B)

Qe(t), (6.72)
which however holds true only for the choice ps(0) = |2) (2|. In general however, this
quantity is always positive and vanishes whenever the coupling .J goes to zero, or when-
ever the argument of the sin? goes to zero (which happens when the two degrees of
non-unitality as well as the family of lower bounds and dissipated heat go to zero).

In Fig. 6.3 we plot the behavior of the rescaled non-unitality SN g (black line) against the
dissipated heat and the lower bound for n=§ in the cases of cold, 5 =10, and relatively
hot, 8 =1, environment. It is evident that the zeros and the maxima of the three curves
are attained at the same times.

A remarkable feature that occurs in Fig. 6.3 (a) is the cusp appearing in B, when the dis-
sipated heat is maximized. Here, the environment qubit is effectively in the ground state
when §=10. At the cusp, the bound is as close as possible to the actual dissipated heat.
Contrarily, when =1, we see these features are smoothed out and the dissipated heat
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FIGURE 6.3: Mean dissipated heat 5(Q); (top-most blue curve), rescaled non-unitality
BNEg(t) (middle, black curve) and the lower bound BY, for = 3 (bottom-most red
curve). Inboth panelswefix B=J=1,Q; =0.1and (@ 8 =10(b) 8 = 1.

is significantly reduced. Furthermore, the bound is now a smoothly varying function,
closely tracking the same functional form SQg(t).

This behavior can be explained by studying the populations, p%, pil, p%, of the V-
system, shown in Fig. 6.4 for the same parameters used in Fig. 6.3. Focusing on panel (a),
and recalling that we always assume our system is initialized in ps(0) = |2) (2|, we see
that, as the the system evolves, the population of the |2) state is completely transferred
to the |0) state. The point at which both Qg(t) and B, are maximized corresponds
exactly to when p%? = 0. At this point all of the energy initially contained in the system
is ‘emptied” into the environment qubit, which due to being initially in its ground state
is able to accept and store all of this energy. When § = 1, panel (b), the situation is
markedly different due to the fact that the environment is comparatively warm, with a
sizeable population initially in the excited state. In this case, the environment is unable
to store all the energy initially in the system. Therefore the population p%* cannot reach
0 and the dissipated heat is accordingly reduced.
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FIGURE 6.4: Dynamics of the populations, p%’ (dashed, orange), p' (dashed, black), and
p# (solid, purple). of the three-level system. (a) For B=1, /=1, =10 and O, =0.1. (b)
As for the previous panel except S=1.
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FIGURE 6.5: Difference, D, between the maximum of the mean dissipated heat and
maximum of the lower bound B}, for 7 = /3 as a function of the pump frequency Q;.
Here we take J =1, B =1, and 8 = 10. Inset: As for main panel except setting 8 = 1.

Closer examination of the cusp in Fig. 6.3 (a) reveals a peculiar feature. Defining

D = Max; | 8Qx(t) — B (t)] , 6.73)

as the difference between the maximum dissipated heat and maximum of the bound,
we find that for the same parameters in Fig. 6.3 (@), D = In2. In Fig. 6.5 we examine
the quantity in (6.73) more closely and we see there exists a ‘critical” pump strength. If
the environment is initially cold, 3 = 10, then for ©; < 2J we find D is constant and
always In2. This occurs because in this regime, the population of p% is always able to
reach exactly 0. If 2 > 2J then the pump begins to dominate the dynamics. Now, due
to the strong pumping of the |0) — |1) transition, some of the population is trapped in
the system and the p?? population is never completely empty. We see a sudden increase
in D, due to the fact that for 2; > 2J the bound is significantly reduced compared to
the dissipated heat. Interestingly the same qualitative behavior persists even when the
environment is initially warm, 8 = 1. In the inset we see that for 2; < 2J, D is again
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constant and only changes when €2 > 2.J.

In conclusion, in this Chapter we have derived a new family of lower bounds to the mean
dissipated heat in an environmental-assisted erasure protocol scenario, i.e. a framework
where the fundamental Landauer’s principle holds. This has been achieved using full-
counting statistics methods introduced in Chapter 5 Section 5.2 and so the results are
valid also in a non-equilibrium setting. The obtained family of lower bounds can be
shown to be asymptotically tight by construction to the mean dissipated heat, at vari-
ance with Landauer’s and Reeb-Wolf’s bounds which in general are not always tight.
The latter however are more related to the quantum information point of view while our
result sticks more to the side of thermodynamics. We have moreover shown an applica-
tion of this construction on an interesting open quantum system, for which we also have
provided an analytical solution. This model consisted of a three-level V-system in which
one energetic transition was externally pumped by a laser field, while the other transition
is coupled to a two-level system through an XX-interaction. As stressed at the beginning
of Section 6.4, the choice of an environment made of a single spin was motivated also by
the fact that it provides benchmark results for the case of an environment consisting of a
spin-chain, where the inter-spin couplings is dictated by an XX-interaction. The latter is
planned to be tackled by means of a numerical simulation in the near future.






Conclusions

In this work, several different properties of open quantum systems have been investi-
gated within a non-Markovian dynamical regime. In particular, we started exploring
the validity of the quantum regression theorem, which allows to reconstruct multi-time
correlation functions, and then moved to the field of quantum thermodynamics, where
we studied the concept of heat in non-driven open quantum systems, firstly by charac-
terizing its flow and then by bounding from below its dissipation in an erasure-protocol
setup.

The first two Chapters of the Thesis were dedicated to introduce all the open quantum
systems’ notions later employed. In particular, in Chapter 2 we thoroughly discussed
the characterization of the dynamics of a reduced system in terms of quantum dynami-
cal maps and of master equations, with a particular emphasis on their time-local expres-
sions. Moreover we showed how to derive the latter given the knowledge of the former
(and vice versa), and discussed how the properties of quantum dynamical maps (such
as, for example, trace and hermiticity preservation, complete positivity, CP-divisibility...)
are reflected into constraints on the structure of the respective master equations. Ex-
plicit applications of this have been carried out in Chapters 4 and 6, where expressions
for the exact time-local master equations have been derived for a pure-dephasing spin-
boson model and for an externally pumped V-system coupled to a single-site spin chain
through an XX interaction.

In Chapter 3 we concentrated on one of the leitmotifs of this work, namely the notion
of non-Markovianity, in particular showing how the main criteria in the quantum realm,
which have been introduced in the last decade, have their natural classical counterparts
in sufficient conditions of non-Markovianity within the framework of stochastic pro-
cesses. Several estimators for the degree of non-Markovianity have been presented and
discussed, the reason being that, even though they all share the same goal to quantify the
amount of memory effects in a reduced dynamics, each one of them has different proper-
ties which make them more or less suitable for the model at hand. Actually, even consid-
ering a single open quantum system, the evaluation of several of these estimators could
be useful since they capture distinctive aspects related to non-Markovian dynamics. This
fact has been explicitly shown for the pure-dephasing spin-boson system discussed in

143
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Chapter 4, where the measure by Rivas, Huelga and Plenio and the one by Breuer, Laine
and Piilo have been calculated. The former identifies the violation of the CP-divisibility
of the family of dynamical maps as the signature of non-Markovian reduced quantum
dynamics. The latter relies instead on the variation of the distinguishability between two
reduced states, quantified in terms of the trace distance, whose eventual non monotonic
behavior is interpreted in terms of an information backflow from the environment to the
open system. Despite the criteria for the occurrence of non-Markovianity all coincide
for this model, these two estimators quantify the degree of non-Markovianity behavior
differently with respect to the parameters characterizing the family of dynamical maps.

In Chapter 4 we explored the relationship between the above mentioned criteria of non-
Markovianity and the validity of the quantum regression theorem which is a statement
relating the behaviour in time of the mean values and of the two-time correlation func-
tions of system operators. After giving a clear ground for the quantum regression theo-
rem, we explicitly calculated all the quantities for two specific models. The first open sys-
tem considered was a pure-dephasing spin-boson model and the second one consisted
in a photonic-realization of a dephasing interaction. For a class of spectral densities with
exponential cut-off and power law behaviour at low frequencies we have studied the
onset of non-Markovianity as a function of the coupling strength and of the exponent
determining the low frequency behaviour, further giving an exact expression for the cor-
responding non-Markovianity measures. The deviation from the quantum regression
theorem has been estimated evaluating the relative error made in replacing the exact
two-time correlation function for the system operators with the expression reconstructed
by the evolution of the corresponding mean values.

Results have shown that the validity of the quantum regression theorem represents a
stronger requirement than Markovianity. The same conclusions have been shown to
hold also in the second open quantum system considered, namely an all-optical real-
ization of a dephasing interaction, which has been recently exploited in order to exper-
imentally investigate the non-Markovianity. Also in this model, for different choices
of the frequency distribution, significant violations to the quantum regression theorem
were observed even in the presence of a Markovian dynamics.

In Chapters 5 and 6 we focused on the concept of heat in non-driven open quantum
systems. Borrowing and employing the full-counting statistics formalism from quantum
thermodynamics, we studied the time behavior of its mean value in presence of a non-
Markovian dynamical regime and we introduced a new family of lower bounds for its
dissipation in an erasure-protocol scenario. In the case of semigroup dynamics, it was
known that the heat flow turns out to be a monotonic function of time from the hotter
to the colder subsystem and vanishes when the initial temperature gradient is absent. In
particular, a positive rate of heat exchange would indicate an energy flow from system
to environment while a negative rate would mean the opposite, i.e. a heat flowing from
the environment towards the open system. In this work we have investigated how the
mean heat flow behaves in a non-Markovian dynamical regime. Results have shown
that, interestingly, the heat flow becomes an oscillating function of time, which can even
change its sign and, interestingly, is different from zero even if the system and the en-
vironment start at the same temperature. Starting from dynamical situations which in
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the Born-Markov semigroup limit would lead to a non-negative steady heat flow, we
were naturally lead to introduce a notion of heat backflow from the environment to the
system as the fraction of heat which corresponds to temporarily negative regions of the
heat flow. A measure for the total amount of heat flowing out of the environment was
then built upon this definition and characterized both for finite-dimensional and infinite-
dimensional Gaussian open quantum systems. In order to make the latter a property of
the quantum dynamical map only, a maximization over all possible initial states of the
system has been incorporated in its definition. Interestingly, numerical evidences have
shown that this maximum is achieved whenever the system and the environment start
at the same temperature, a condition which, as stressed above, would imply no energy
flow in the Born-Markov semigroup limiting case. A thorough analysis of the heat back-
flow measure has been carried out in two relevant models, representatives of the two
above mentioned classes of open systems: the so-called spin-boson model, which is a
two-level system coupled to a bosonic bath through a position-position interaction, and
the quantum Brownian motion, which differs from the latter in the fact that it is an har-
monic oscillator instead of a qubit. An analytic insight of all the quantities of interest has
been achieved for both these models in the weak coupling regime, where the dynamics
of the open system was approximated by a second-order time-convolutionless master
equation. In the case of the quantum bronwian motion, an extension to the strong cou-
pling regime has been performed by relying on a numerical approach which, with the
only assumption to deal with a large but finite number of environmental modes, allowed
for exact simulations of the equation of motions and, thus, characterization of the time
behavior of heat flow. The obtained results have allowed to characterize the dependence
of energy exchanges in these non-driven open quantum systems and, in particular, to
pinpoint the regions of relevant parameters where the heat backflow was absent or max-
imum.

The heat backflow measure is reminiscent of a sort of memory effect by virtue of its con-
struction and physical meaning and furthermore vanishes in the case of a semigroup,
thus Markovian, dynamics. For these reasons we were naturally led to investigate the
relationship between it and suitable non-Markovianity estimators. Results confirm the
intuition that the occurrence of heat backflow, being the latter a specific observable and
thus representing only one possible contribution of information backflow, represents a
stricter condition than non-Markovianity. Otherwise stated, on the one hand an heat
backflow from the environment to the system can be observed for those values of the
relevant parameters such that the dynamics is non-Markovian, while, on the other hand,
a Markovian evolution prevents any observation of the latter. In the case of the spin-
boson moreover, a physical explanation and a more stringent connection between the
heat backflow measure and the trace-distance based non-Markovianity measure intro-
duced by Breuer, Laine and Piilo has been found due to their mutual relationship with
the so-called resonance condition. The latter in fact corresponds to a region of dynamical
parameters where the spectral density at resonance is almost locally flat, thus mimicking
a white-noise spectrum which is notoriously Markovian. Around this curve also the heat
backflow measure is practically absent.
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Finally, Chapter 6 was devoted to show how to derive, by means of full-counting statis-
tics formalism, a novel family of lower bounds to the mean dissipated heat, which are
always asymptotically tight, in a generic (and thus also non-Markovian) erasure-protocol
scenario. The latter calls for the notorious Landauer’s principle, which fundamentally
express the second law of thermodynamics by bounding from below the mean dissi-
pated heat with the information erasure in the system, quantified through the variation
of its entropy. An explicit application of this construction has been shown for an open
quantum system consisting of a three-level V-system, externally pumped by a laser on
one of its two transitions and coupled on the other transition to a spin chain through an
XX interaction. Analytical exact solutions for the dynamics of this model has also been
obtained.

In conclusion, this work of Thesis, whose content is collected in [1-3, 5], has been hinged
on the investigation of multi-time correlation functions and thermodynamical quantities,
such as heat, in a non-Markovian open quantum systems scenario, with the goal to better
understand their behavior in the presence of memory effects in the reduced dynamics.

7.1 Outlook

First of all, it is worth to mention that, concerning the topics studied in Chapter 4, other
studies have followed [1], such as [91, 160], where projector-operator techniques were
employed to derive the equations of motion for the effective density operator (4.14), in
order to characterize the contributions leading to the violations to the quantum regres-
sion procedure. It would be interesting to perform further studies along these lines such
as employing the projection operator technique to operators evolved in Heisenberg pic-
ture as in [161]. This formal apparatus would hopefully lead to a more clear relationship
with the non-Markovianity criteria. In this regard, in the same philosophy adopted in
Chapter 3, further investigation between regression procedure and classical Markovian
processes should be worth considering, in order to better characterize their quantum
counterparts.

Entering the realm of quantum thermodynamics, there is a plethora of interesting follow-
up of the topics introduced and analysed in Chapters 5 and 6. Here we report some of
them, which we plan to deal with in our future research. To begin with, while in [2, 3]
we have been interested in characterizing the time-behavior of the first cumulant (mean
value) of heat, higher-order cumulants can also be considered using the full-counting
statistics formalism [162, 163], making it possible to discuss, for example, bunching prop-
erties of bosons in the presence of heat backflow. Another aspect to further carry on and
clarify is a more precise statement of the relationship between the occurrence of heat
backflow and of non-Markovianity. With this aim, other spectral densities such as (4.55)
and, of course, other models than the spin-boson and the quantum brownian motion de-
serve to be considered, in order to make more general statements. Another challenging
but very interesting research would be to apply these studies to more complex quantum
systems such as, for example, the biological ones. Among the many difficulties that are
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involved when dealing with such systems is the fact that a detailed microscopic knowl-
edge of them is usually not feasible, thus preventing the possibility to reconstruct the
heat generating function by means of a two-time measurement protocol.

Finally, several aspects related to the newly introduced family of lower bounds, also ob-
tained by means of full-counting statistics methods, can be developed. As we stressed in
Chapter 6 in fact, this family of bounds is always asymptotically tight to the mean dissi-
pated heat and, remarkably, reduces to the lower bound obtained in [152] for a specific
value of the counting field parameter. This latter case, although bearing a clear physical
meaning in terms of the degree of non-unitality of the map which evolves the state of
the environment, is not guaranteed to outperform Reeb and Wolf’s bound nor even Lan-
dauer’s original contribution AS. A more systematic study of the relative performances
of these three bounds with respect to the possible initial conditions of the open system
represent an ongoing project. Preliminary results carried out on finite-dimensional sys-
tems similar to the one considered in Chapter 6 but subject to random interaction Hamil-
tonians seem to suggest that Landauer’s as well as Reeb and Wolf’s bounds provide a
more faithful bound whenever the open quantum system starts in a more mixed state,
while the bound in [152] outperforms the other two whenever the purity of the state in-
creases. Finally, an important goal would be to provide concrete strategies which would
allow to experimentally access this new lower bound and to test it against Landauer’s.






Analytic solutions for the heat statistics in
the XX-coupled pumped V-system

In this Appendix we provide the explicit expressions of the cumulant generating function
©(n, B,t) (6.14) and of the mean dissipated heat (5.7) for the model considered in Chapter
6 Section 6.4 and for a generic initial system state of the form

ps(0) = [Wo) (Wol,  [Wo) = cos(¢) |0) + sin(¢) sin(a) [1) + sin(¢) cos(a) [2). (A1)

By exploiting the overall unitary evolution operator in interaction picture (6.53), we have
that a direct calculation of Equation (6.26) leads to the following result for the cumulant
generating function

O(n,B,t) =In [—; cos?(a) sin?(¢)(tanh(SB) — 1)

20 (25in2(0)sin? (1/IP2 +-08) I cos®(a)(tan (B) + 1))
+

4J%2 + 02
1 5in?(g)) sin? (t 472 + Q%) 02 sin?(a)(tanh(8B) — 1)
- 42+ 3
. e 2B (—2e2B1 (42 + Q3) cos?(¢) (tanh(8B) — 1) cos? (t 4J% + Q%))
4J% 4+ OF

e2B (87202 cos?(a) sin?(¢) (tanh(BB) + 1) sin* (%t 4J2 + Q%))
(472 + 3)?

+
(472 +03)?

(23 (472 + 03) cos?(g) sin? (1 /22 + 0F ) ) )
(472 +03)

(A.2)
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1 cos?(a) sin?(¢) (tanh(B8B) + 1) <4J2 cos (t 4J2% 4+ Q%) + Q%) 2

' (472 + 07

2J2e2B1(tanh(BB) — 1) (4Q% sin?(a) sin?(¢) sin* (%t 4J2 + Q%))
- (472 + 03)°

2.J2e2B0 (tanh(8B) — 1) ( (472 + 2) cos?(¢) sin? (t 42 Q%))
+ 2

(472 4+03)

+ %(tanh(,BB) +1) (Sin2(a) sin?(¢) cos? (1) + cos?(¢) sin’ (tQ1))
+ %(tanh(BB) +1) (sin®(a) sin®(¢) sin® (£Q1) + cos?(¢) cos (Qlt))} . (A.3)

By means of Eq.(6.20) the average dissipated heat is given by

Qrt) = (4J% + Q%)‘2 [4BJ2 (— tanh(5B) (4 sin?(¢) sin® (;M)

<Q§ sin?(ov) sin? (;M) + cos?(a) <2J2 cos <t\/m> +2J% + Q%))

+ (4% + 2) cos () sin? (q/ﬂ)

+ cos(2) sin?(¢) sin? (;M) ((Q? — 4% cos (q/ﬂ) —4J2—3Q%>
(472 + Q2) (3cos(26) + 1) sin® <t\/m> ﬂ . (A4)

Note how both the mean dissipated heat and the family of lower bounds depend, along-
side with the inverse temperature 3 characterizing the initial Gibbs state pz, on the choice
of the initial state of the system. This is an important indication that this choice plays an
important characterizing role in the erasure protocol; this aspect however is the subject
of further ongoing study.
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