
UNIVERSITÀ DEGLI STUDI DI MILANO 
 
 

DIPARTIMENTO DI SCIENZE FARMACOLOGICHE E 
BIOMOLECOLARI 

 
CORSO DI DOTTORATO IN 

SCIENZE FARMACOLOGICHE SPERIMENTALI E CLINICHE 
CICLO XXIX 

 

 

Thromboxane Prostanoid Receptor: function, 
activation and possible target for cardiovascular 

protection 
BIO/14 

 
 
 

 
Tutor 
Prof. Angelo SALA 
 
Coordinatore del Corso di Dottorato 
Prof. Alberto CORSINI 

 
 

Silvia CARNEVALI 
Matr.  R10563 

 
 

 
 
 
 

A.A. 
2015-2016 



	



 

 
 

I 

 

Index 
 

Abstract..…………………………………………………………………………......1 

Riassunto……………………………………………………………………………..3 

Introduction……………………………………………………………………….....5 

Arachidonic acid cascade and eicosanoids………………………………………...5 

Prostanoids: Prostaglandins And Thromboxane……………………………………...6 

Thromboxane A2…………………………………………………………………......8 

Leukotrienes………………………………………………………………………....10 

Iso-Eicosanoids……………………………………………………………………...11 

Epoxyeicosatrienoic Acids And Dihydroxyeicosatrienoic Acids…………………...12 

Pharmacological Modulation of Arachidonic Acid……………………………...13 

NSAIDs: Nonsteroidal anti-inflammatory drugs……………………………………13 

COXIB………………………………………………………………………………14 

Arachidonic acid metabolites receptor…………………………………………...15 

G protein-coupled receptors (GPCRs)……………………………………...…….18 

Thromboxane A2 receptor…………………………………………………………...19 

The highly conserved E/DRY motif………………………………………………22 

ERY motif in TP receptor…………………………………………………………24 

The equilibrium models between receptor, ligands and G-proteins……………26 

Classical Model……………………………………………………………………...26 

Ternary Complex Model…………………………………………………………….27 

Extended Ternary Complex Model………………………………………………….28 

Cubic Ternary Complex Model……………………………………………………..30 

Aim of the Study…….……………………………………………………………..33 

Results………………………………………………………………………………34 

Cloning of TPα WT, TPα E129V and TPα R130V in the FRET vectors…………...35 

TPα receptor expression and cellular localization…………………………………..35 

Western Blot Analysis………………………………………………………………36 



Index 
 

 
 

II 

Functional assays……………………………………………………………………37 

Gq-dependent signaling of TPα WT and mutants no-pep receptors………………...37 

Gs-dependent signaling of TPα WT and mutants no-pep receptors………………...39 

Basal FRET signaling of TPαWT, TPαE129V and TPαR130V no/q/s-pep sensors..41 

COXIB-FIRST PART: Lumiracoxib derived compounds ……...………………….43 

Chemistry……………………………………………………………………………43 

Physico-chemical characterization of compounds…………………………………..44 

Inhibition of TP receptor functional activity in human platelets……………………46 

Inhibition of TPα functional activity in HEK293…………………………………...48 

COX-2/COX-1 selectivity…………………………………………………………..49 

COXIB-SECOND PART: RC 0 Derivates....………………………………………..52  

Inhibition of TP receptor functional activity in human platelets for RC 0 derivatives 

compounds…………………………………………………………………………..52 

COX-2/COX-1 selectivity for RC 0 derivatives compounds………………………...53 

Discussion…………………………………………………………………………..56 

Overall Conclusions………………………………………………………………..64 

Materials and Methods…………………………………………………………….65 

References…………………………………………………………………………..85 

 

 

 

 

 

 

 

 



 

 
 

1 

 

Abstract 
 
In the last few years cardiovascular diseases are considered one of the major cause of 

death, and one of the main player is TXA2 (Thromboxane A2), a product of 

arachidonic acid metabolism generated from the activity of thromboxane synthase on 

prostaglandin H2 intermediate via cyclooxygenase (COX). TXA2 is responsible for 

platelets activation and aggregation, thrombus formation, and thus it can cause stroke 

and myocardial infarction. TXA2 exerts its actions through the TP receptor, a widely 

expressed GPCR (G protein coupled receptor) present in many cell types among 

different organ systems. During my thesis I worked to shed light on the mechanism 

of activation of TP receptor WT (wild type), and two of its mutants (TPαE129V and 

TPαR130V) of the highly conserved motif E/DRY, in order to assign each receptor 

state to the CTC (Cubic Ternary Complex) model. In particular, using the new 

technique SPASM (Systematic Protein Affinity Strength Modulation), the goal was 

to understand the conformational state of TPαWT and mutants in basal condition, i.e. 

their coupling or uncoupling states with G proteins. The results obtained suggest that 

TPαE129V (SAM-super active mutant) is in an ‘active-like’ conformation 

corresponding to the RG state (inactive, coupled to G protein), on the contrary, 

TPαR130V (loss of function mutant) seems to display an inactive R conformation 

(uncoupled to G protein), as envisioned by CTC model. 

The study of TPα receptor induced us to consider a second focus in my thesis: TPα 

receptor as a possible target for new chemical entities with both COX-2 selectivity 

(COXIB) and TP antagonist activity. New compounds were obtained modulating the 

structure of existing drugs (lumiracoxib and RC 0) to obtain novel multitarget 

NSAIDs (Nonsteroidal Anti-inflammatory Drug) endowed with balanced COXIB 

and TP receptor antagonist properties. Antagonistic activity on the TP receptor was 

examined for all compounds by evaluating the inhibition of platelets aggregation 

induced by the stable TXA2 receptor agonist U46619. COX-1 and COX-2 inhibition 

were assessed in human washed platelets (challenged by the calcium ionophore 
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A23187) and human lympho-monocytes suspension (stimulated with 

lipopolysaccharides), respectively. COX selectivity was determined by calculating 

IC50 values ratio (COX-2/COX-1) obtained from concentration-response curves. 

Among the lumiracoxib derivatives, the tetrazole compound 18 and the 

trifluoromethan sulfonamido-isoster 20 were the more active antagonists at the TP 

receptor, preventing human platelet aggregation and intracellular signalling, with 

pA2 values statistically higher than lumiracoxib. Comparative data regarding COX-

2/COX-1 selectivity showed that while compounds 18 and 7 were rather potent and 

selective COX-2 inhibitors, compound 20 was somehow less potent and selective for 

COX-2. Among the RC 0 derivatives, of particular interest resulted compounds SWE 

74, CP 7 and CP 8, because they demonstrated to be fairly selective for COX-2 

enzyme, but they appeared to be the weakest TP receptor antagonists among the 35 

compounds tested. On the other hand, the last compound of interest was SWE 96, a 

molecule possessing a good activity on TPα receptor, but lacking selectivity in term 

of COX-2 inhibition, that is behaving like traditional NSAIDs. All the other 

derivatives tested were not selective COX-2 inhibitors and/or did not inhibit platelet 

aggregation. 

Taking advantage of what we learned in terms of structural requirements for COX-2 

selective inhibition and TP antagonism, additional studies will certainly be carried 

out to improve the pharmacodynamic profile of these molecules before a careful 

evaluation can be considered in an in vivo animal model. 
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Riassunto 
 
Negli ultimi anni i disturbi cardiovascolari sono considerati una delle principali 

cause di morte, e uno dei principali protagonisti è TXA2 (Trombossano A2), un 

prodotto del metabolismo dell’acido arachidonico generato dall’attività della 

trombossano sintasi sull’intermedio prostaglandina H2 via cicloossigenasi (COX). Il 

TXA2 è responsabile dell’attivazione e aggregazione piastrinica e della formazione di 

trombi, può quindi causare ischemia e infarto del miocardio. Il TXA2 esercita la sua 

attività attraverso il recettore TP, una GPCR (recettore accoppiato alla proteina G) 

ampiamente espressa e presente in molti tipi di cellule in diversi sistemi 

d’organismo. Durante la tesi, ho lavorato per chiarire il meccanismo di attivazione 

del recettore TP nativo (WT) e di due suoi mutanti (TPαE129V e TPαR130V) 

appartenenti al motivo altamente conservato E/DRY, al fine di assegnare ciascuno 

stato recettoriale al modello CTC (Cubic Ternary Complex). In particolare, usando la 

nuova tecnica SPASM (Systematic Protein Affinity Strength Modulation), l’obiettivo 

consisteva nel capire lo stato conformazionale del TPαWT e dei mutanti in 

condizioni basali, i.e. il loro stato di accoppiamento o non accoppiamento con le 

proteine G. I risultati ottenuti suggeriscono che il mutante TPαE129V (SAM-Super 

Active) sia in una conformazione “active-like”, corrispondente allo stato RG 

(inattivo accoppiato alla proteina G); al contrario, il mutante TPαR130V (loss of 

function) sembra porsi in una conformazione inattiva, R (non accoppiato alla 

proteina G), come risulterebbe dal modello CTC. 

Lo studio del recettore TPα ci ha indotto a considerare un secondo obiettivo nella 

mia tesi: il recettore TPα quale possibile bersaglio per nuove entità chimiche che 

posseggano sia selettività verso l’enzima COX-2 (COXIB), sia un’attività di 

antagonismo verso il recettore TP. I nuovi composti sono stati ottenuti modulando la 

struttura di farmaci esistenti (lumiracoxib e RC 0) per ottenere nuovi FANS (Farmaci 

Antinfiammatori Non Steroidei) dotati di antagonismo al recettore TP e selettività 

COX-2 bilanciate fra loro. L’attività antagonistica verso il recettore TP è stata 
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misurata per tutti i composti valutando l’inibizione dell’aggregazione piastrinica 

indotta dall’analogo stabile del trombossano A2 (U46619). Le inibizioni verso COX-

1 e COX-2 sono state valutate rispettivamente in piastrine lavate umane (stimolate 

con calcio ionoforo A23187) e in sospensione di linfo-monociti umani (stimolati con 

lipopolisaccaride). La selettività verso COX-1 o COX-2 è stata determinata 

calcolando il rapporto dei valori di IC50 ottenuti dall’analisi delle rispettive curve 

concentrazione-risposta. Tra i derivati del lumiracoxib, i più potenti antagonisti del 

recettore TP erano il composto tetrazolico 18 e il trifluorometano sulfonamidico-

isoestere 20, che riducevano l’aggregazione piastrinica e il ‘signaling ‘ intracellulare, 

con valori di pA2 statisticamente superiori a quelli calcolati per il lumiracoxib. La 

selettività COX-2/COX-1 calcolata ha mostrato che, mentre i composti 18 e 7 erano 

inibitori di COX-2 abbastanza potenti e selettivi, il composto 20 era invece meno 

potente e selettivo verso COX-2. Tra i derivati della molecola RC 0 (35 composti), 

sono risultati essere di particolare interesse i composti SWE 74, CP 7 e CP 8, perché 

sono piuttosto selettivi verso l’enzima COX-2, ma tra i più deboli antagonisti del 

recettore TP. D’altra parte, l’ultimo composto di interesse si è rivelato essere SWE 

96, una molecola che ha perso selettività in termini di inibizione COX-2, 

comportandosi quindi come i tradizionali FANS, ma dotato di una buona attività sul 

recettore TPα. Tutti gli altri derivati analizzati si sono dimostrati essere o inattivi nei 

confronti dell’aggregazione piastrinica e/o non selettivi verso l’enzima COX-2. 

Avvantaggiandoci delle conoscenze acquisite in termini di requisiti strutturali, 

necessari per avere sia selettività COX-2 sia antagonismo TP, siamo consapevoli 

che, prima di prendere in considerazione una scrupolosa valutazione in modelli 

animali in vivo, saranno necessari ulteriori studi per migliorare il profilo 

farmacodinamico di queste molecole.  
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Introduction 
 

Arachidonic acid cascade and eicosanoids 
Arachidonic Acid (AA) is a 20-carbon unsaturated fatty acid (AA 5, 8, 11, 14-

eicosatetraenoic acid) that is present in all mammalian cell. This 20 carbon fatty acid 

with four double bonds was first isolated and identified from mammalian tissues in 

1909 by Percival Hartley (Hartley, 1909). 

AA is released from membranes by the activation of phospholipases A2 (PLA2 

induced by an elevation in the cytosolic concentration of Ca2+) and it is converted 

into many biologically active mediators called “eicosanoids” when cells are 

stimulated by mechanical trauma, oxidative stress, or by specific cytokine, growth 

factors, and pro-inflammatory mediators (such as histamine, bradykinin and 

vasopressin) (Corey et al., 1980). The control of AA release from membranes has 

undergone several paradigm shifts with the continuing identification of new PLA2 

members (Six and Dennis, 2000). Despite this, type IV cytosolic PLA2 (cPLA2) 

remains the key player for eicosanoid production because it has been demonstrated 

that cells lacking cPLA2 are generally devoid of eicosanoid synthesis (Funk, 2001). 

Eicosanoids are “autacoids”, that are chemical transmitter substances produced by 

cells of the body and released in the extracellular compartment where they act in the 

immediate surroundings by binding specific membrane receptor and modulating 

many biological functions. Eicosanoids’ half-life is very short and they are not stored 

within the cells, but are synthesized de novo from membrane-released AA when cells 

are activated, acting as autocrine and paracrine lipid mediators (Funk, 2001). 

The biological active compounds derived from free AA can be classified in four 

major groups: prostanoids, leukotrienes, iso-eicosanoids and epoxyeicosatrienoic 

acids and dihydroxyeicosatrienoic acids (Fig. 1).  
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Prostanoids: Prostaglandins And Thromboxane  
Prostanoids are formed by the action of prostaglandin G/H synthase, also called 

cyclooxygenase (COX), on AA. COX, an evolutionarily conserved enzyme, exists as 

two distinct isoforms, COX-1 and COX-2. The crystal structures of COX-1 and 

COX-2 are remarkably similar, with one notable amino acid difference that leads to a 

larger “side-pocket” for substrate access in COX-2 (Smith et al., 2000). COX-1, 

constitutively expressed in most cells, is the dominant source of prostanoids with 

house keeping functions, such as gastric epithelial cytoprotection and hemostasis. 

COX-2, induced by cytokines, stress, and tumor promoters, is the most important 

source of prostanoids formation in inflammation (Smyth et al., 2009), but is also 

continuously expressed in cells such as endothelial cells and few other cell types. 

COX-1 and COX-2 function as homodimers, and perhaps heterodimers (Yu et al., 

2006), inserted in the endoplasmatic reticulum and the nuclear membrane with the 

substrate binding pocket precisely oriented to take up and transform AA into the 

unstable cyclic endoperoxides PGG2 and PGH2 (Smyth et al., 2009). Downstream 
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isomerases and synthases complete the conversion and the biosynthesis of the 

unstable PGG2 and PGH2 into TXA2 and D, E, F, and I series prostaglandins (PGs).  

Of particular interest, COX-1 couples preferentially, but not exclusively, with 

thromboxane synthase, prostaglandin F synthase, and with the cytosolic 

prostaglandin E synthase (PGES) isozymes, while on the other hand COX-2 prefers 

prostaglandin I synthase (PGIS) and microsomal (m) PGES isozymes, both of which 

are induced by cytokines and tumor promoters (Smyth et al., 2009).  

Under a physiological and pathological point of view, prostanoids are important 

players in many events, such as inflammation, cardiovascular system, platelets 

activation, atherothrombosis events and renal function.  

During the inflammatory response, prostanoids biosynthesis is significantly 

increased and both PGE2 and PGI2 are the predominant pro-inflammatory 

prostanoids. Both markedly enhance edema formation and leukocyte infiltration by 

promoting blood flow in the inflamed area through a potent vasodilating effect. 

Finally, the chemotactic function of PGD2, a major product of mast cells, contributes 

to inflammation in allergic responses, particularly in the lung (Smyth et al., 2009).  

In the cardiovascular system it is known that prostanoids do not circulate and do not 

impact directly systemic vascular tone because of their short half-life. However, they 

may modulate local vascular tone at the site of their formation and affect systemic 

blood pressure through effects on the kidney. Finally PGF2α is a potent constrictor of 

both pulmonary arteries and veins in humans, while TXA2 is a vasoconstrictor in the 

whole animal and in isolated vascular beds (Smyth et al., 2009). 

It is well known that activated platelets synthesize TXA2, further amplifying platelet 

shape change, activation and recruitment (FitzGerald, 1991). The total biosynthesis 

of TXA2 is augmented in clinical syndromes involving platelet activation, including 

unstable angina, myocardial infarction and stroke. Mature platelets express only 

COX-1, although megakaryocytes and immature platelet forms also express COX-2 

(Rocca et al., 2002). Finally, PGI2 is a potent inhibitor of platelet activation, 

synthesized by COX-2, and to a less degree by COX-1, in vascular endothelial and 

smooth muscle cells. 

In atherosclerosis, an inflammatory cardiovascular disease, unstable or ruptured 

plaques can result in intravascular thrombosis leading to severe clinical 
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complications. Individual prostanoids are associated with opposite effects in 

atherothombosis. In mice it has been shown that suppression of TXA2 biosynthesis, 

as well as TP antagonism or deletion of the TP receptor, retards atherogenesis (Egan 

et al., 2005; Kobayashi et al., 2004); conversely, PGI2 appears atheroprotective 

(Egan et al., 2004). The effects of PGE2 on atherotrombosis appear to be more 

complex: deletion or inhibition of mPGES-1 markedly reduces inflammatory 

responses in several mouse models, and mPGES-1 deletion also reduces 

atherogenesis in fat fed hyperlipidemic mice (Wang et al., 2006). Interestingly, in 

addition to the expected depression of PGE2 production, deletion of mPGES-1 also 

increases the biosynthesis of PGI2. 

Renal PGs, especially PGE2 and PGI2, but also PGF2α and TXA2, perform complex 

and intricate functions in the kidney (Breyer and Breyer, 2000; Hao and Breyer, 

2007). Both COXs are typically expressed in renal tissue and it is known that COX-2 

derived prostanoids increase medullary blood flow and inhibit tubular sodium 

readsorption while COX-1 derived products promote salt excretion in the collecting 

ducts (Smyth et al., 2009). 

 

Thromboxane A2  
Thromboxane A2 (TXA2), as previously reported, arises from the conversion of 

PGH2 by thromboxane synthase (TXS), a P450 cytocrome enzyme, that is present in 

lungs, spleen and macrophages (Needleman et al., 1976). When TXA2 is formed 

from PGH2 by TXS, 12-L-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and 

malondialdehyde (MDA) are also simultaneously produced (Haurand and Ullrich, 

1985; Shen and Tai, 1986). The molar ratio between these products are 1:1:1. TXA2 

is extremely labile as a result of its strained oxetane ring; its half-life in the blood 

stream is about 30-40 seconds but it appears to be more stable at pH 9-10. TXA2 is 

rapidly converted by non-enzymatic addiction of a molecule of water yielding TXB2, 

which is lacking biological activity (Armstrong and Wilson, 1995). 

Finally, TXS was first found in platelets as a microsomal enzyme (Needleman et al., 

1976) and it was then reported also in several other tissues (Sun et al., 1977) like 

lung, platelets, kidney, stomach, duodenum, colon and spleen.  
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Physiological and Pathophysiological functions of thromboxane A2  

TXA2 activity is mediated through the specific G protein-coupled, thromboxane-

prostanoid receptor (TP) that is expressed on the plasma membrane of the cells. Only 

cells that express the TP receptor are able to respond to TXA2. Indeed, platelets, 

which are the major producer of TXA2, also express the TP receptor, and represent 

the biological system where TXA2 exerts the most important functional role.  

Indeed, the TP-TXA2 system plays a critical role in hemostasis by representing a 

major factor in platelet activation: TXA2 synthesis and subsequent TP receptor 

activation lead to platelet shape change, adhesion and secretion, which in turn lead to 

platelet aggregation, promote thrombus formation and cause additional TXA2 

formation. When occurring in the lumen of critical vascular beds, these events may 

lead to acute myocardial infarct or stroke (Nakahata, 2008). 

TXA2 is also a potent contractile agent of vascular smooth muscle cells (Yamamoto 

et al., 1993), thus leading to vasoconstriction, and for this reason has also been 

involved in hypertension (Geoffroy et al., 1989; Liel et al., 1993). In addition to 

vascular smooth muscles, TXA2 causes contraction of different types of smooth 

muscles, including bronchial (Devillier and Bessard, 1997) or intestinal smooth 

muscles (Schultheiss and Diener, 1999), and TXA2-induced contraction of bronchial 

smooth muscles may, in some instances, contribute to asthma (Martin et al., 2001).  

TXA2, and TP have an important role in pro-inflammatory events also occurring in 

endothelial cells. TXA2 enhances the surface expression of adhesion proteins, such as 

intracellular adhesion molecule-1 (ICAM-1), and TXA2 is involved in endothelial 

cell migration and angiogenesis (Daniel et al., 1999). 

However, in normal conditions TXA2 pro-aggregatory and vasoconstricting activity 

is balanced by PGI2 that, upon binding to its receptor IP, promotes anti-aggregatory 

and vasodilating activities (Kawabe et al., 2010).   

TXA2 is also involved in nephritis and nephrotic disease of kidney, and may play a 

role in the allergic response in asthma, rhinitis and atopic dermatitis (Nakahata, 

2008).  
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Leukotrienes 
Leukotrienes (LTs) are formed by the action of 5-lipoxygenase (5-LO) on AA 

released from membrane phospholipids. There are at least six different types of 

mammalian lipoxygenases, which are named according to the carbon position at 

which a single oxygen molecule is incorporated. Among them, 5-LO, expressed 

mainly in granulocytes, macrophages and mast cells, is the most studied one 

(Samuelsson et al., 1987). AA is first oxidized at the C-5 position by the dual 

enzymatic activity of 5-LO to yield 5-HpETE followed by an unstable intermediate, 

leukotriene A4 (LTA4); 5-HpETE acts in concert with five-LO-activating protein 

(FLAP) in a Ca2+ dependent manner. LTA4 is either converted into LTB4 by LTA4 

hydrolase or conjugated to reduced glutathione by leukotriene C4 synthase to yield 

cysteinyleukotriene (CysLT) 4 (LTC4). LTC4 is then exported from the cell and 

converted into LTD4 and LTE4, the most stable CysLT (the cysteinyleukotrienes are: 

LTC4, LTD4 and LTE4), by extracellular peptidases (Liu and Yokomizo, 2015). 

LTs are involved in various inflammatory diseases, including asthma, allergic 

rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic 

obstructive pulmonary disease (Ohnishi et al., 2008). 

Asthma is a complex and chronic disorder of the airways that is characterized by 

airflow obstruction, allergic airway inflammation, and airway hyperresponsiveness. 

Airway inflammation plays a critical role in the pathogenesis of asthma, which is 

characterized by the infiltration of inflammatory cells such as neutrophils, 

eosinophils, and lymphocytes. Studies performed in asthmatic patients suggest a 

potential role for LTB4 (Csoma et al., 2002; Wenzel et al., 1995) and, even if the real 

role of LTB4 remains unclear, it is thought to be a proinflammatory mediator that is 

responsible for the recruitment, activation, and survival of leukocytes, including 

neutrophils and eosinophils (Bruijnzeel et al., 1990; Sumimoto et al., 1984). CysLTs, 

on the other hand, being the most potent known bronchoconstrictors in humans are 

thought to play a pivotal role in the pathogenesis of acute and chronic asthma. 

Indeed, in addition to their bronchoconstricting activity, CysLTs also play an 

important role in airway remodelling by promoting the proliferation of airway 

smooth muscle cells and epithelial cells, and by increasing collagen deposition 

(important feature of chronic asthma) (Hay et al., 1995).  
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Allergic rhinitis is believed to share a common pathophysiology and 

immunopathology with asthma, and symptoms of allergic rhinitis, including itching, 

sneezing and nasal obstruction can coexist with, and have an effect on, bronchial 

asthma (Peters-Golden et al., 2006). Most of the cells involved in pathophysiology of 

allergic rhinitis produce and release CysLTs. Moreover, severe nasal obstruction in 

patients with seasonal allergic rhinitis is associated with increase excretion of urinary 

LTE4 (Higashi et al., 2003). Finally, given that peripheral blood neutrophils isolated 

from patients produce more LTB4 after calcium ionophore stimulation than those 

isolated from healthy controls (Sousa et al., 2002), also LTB4 may play a role in this 

pathology.   

 

Iso-Eicosanoids  
Iso-eicosanoids represent a growing family of eicosanoid isomers, generated non-

enzymatically from lipid peroxidation of esterified AA. They include 

isoprostaglandins or isoprostanes of the D2, E2 and F2α series, isothromboxanes and 

isoleukotrienes (Maclouf et al., 1998). Of particular interest are the isoprostanes 

because they may have a role in cardiovascular disease.  

Isoprostanes are generated in vitro as well as in vivo, primarily independent of COXs 

activity, via free radical-induced peroxidation of unsaturated fatty acid (Morrow et 

al., 1990a). Under physiological conditions, these prostaglandin-like compounds can 

only be detected as esterified at very low concentrations, in the nanomolar range, or 

as free compounds in the picomolar range in biological fluids, for example plasma 

and urine (Morrow et al., 1990b). In condition of oxidative stress, the burst of free 

radical formation leads to a significant increase in isoprostane levels (Morrow et al., 

1992; Morrow et al., 1990b).  

Isoprostanes are formed in situ on arachidonoyl-containing lipids and then 

subsequently released in free form into the circulation via an enzyme-dependent 

mechanism (Morrow et al., 1992; Morrow et al., 1994). Even if seems that this 

process is dependent on the activity of PLA2, little is known about the mechanisms 

responsible for the secretion of isoprostanes from intracellular space to the 

extracellular milieu. Once reached the systemic circulation, isoprostanes, such as 8-

iso-PGF2α, are partially metabolized by mechanisms involving, for example, 
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peroxisomal β-oxidation (Schwedhelm et al., 2000). Finally, isoprostanes and 

isoprostane metabolites are freely filtered in the glomerular apparatus of the kidneys 

and excreted in urine (Bauer et al., 2014).  

Experimental data strongly suggest that isoprostanes signalling is exclusively 

regulated via the interaction with the TP receptor. In the context of isoprostane/TP 

signalling, an association of TP receptors with G-proteins such as Gq, Gi and G11 has 

been described (Acquaviva et al., 2013; Kinsella et al., 1997). Moreover some 

experimental results from in vitro studies indicate that isoprostanes are partial 

agonists at TP receptors and that the biological activity of isoprostanes may be 

additionally mediated via an isoprostane-specific receptor. However, so far, no 

molecular evidence has been found for the existence of such an isoprostane-specific 

receptor (Audoly et al., 2000; Bauer et al., 2014; Benndorf et al., 2008).  

Isoprostanes participate in oxidative injury by modulating platelet activation and 

adhesion (Minuz et al., 1998). In addition to altered platelet behaviour, isoprostanes 

enhance the interaction of monocytes with ECs (Huber et al., 2003; Leitinger et al., 

2001) and this process is mediated by TP receptor-dependent activation of PKA and 

p38 (Huber et al., 2003; Leitinger et al., 2001). Finally, it has been described that 

high concentrations of isoprostanes cause a significant vasoconstriction of a wide 

range of different blood vessels (Kromer and Tippins, 1996; Sakariassen et al., 2012; 

van der Sterren and Villamor, 2011).   

 

Epoxyeicosatrienoic Acids and Dihydroxyeicosatrienoic Acids 
Epoxyeicosatrienoic acids (EET) are epoxide derivates of arachidonic acid. They are 

formed by cytochrome P450 (CYP) epoxygenases and function as lipid mediators. 

Each CYP epoxygenases produce several regioisomers, with usually one 

predominant form. Epoxidation can occur at any of the four double bonds of AA, 

giving rise to four regioisomers, 5,6-, 8,9-, 11,12-, and 14,15-EET. As the 

regioisomers have a number of similar metabolic and functional properties, they are 

generally considered as a single class of compounds (Spector, 2009) responsible for 

autocrine and paracrine effects (Larsen et al., 2008). 

EETs are synthesized in the endothelium and activate large-conductance Ca2+-

activated K+ channels, causing hyperpolarization of the vascular smooth muscle and 



Introduction 
 

 
 

13 

vasorelaxation (Campbell and Falck, 2007). Thus, EETs function as an endothelium-

derived hyperpolarizing factor (EDHF) in a number of vascular beds, including the 

coronary and renal circulation, producing decrease in blood pressure (Carroll et al., 

2006). After all, EETs have beneficial and positive effects: it has been reported that 

EETs promote anti-inflammatory and antiapoptotic actions in the endhotelium 

(Larsen et al., 2007) and in kidney (Imig, 2005) and also 11,12- and 14,15-EET are 

cardioprotective during reoxygenation of ischemic myocardium, decreasing infarct 

size (Gross et al., 2008; Seubert et al., 2007). 

Dihydroxyeicosatrienoic acids (DHETs) are formed by the activity of soluble 

epoxide hydrolase (sEH) on EETs. DHETs are known to attenuate many of the 

functional and positive effects of EETs, but no specific function has so far been 

detected (Spector and Norris, 2007). For this reasons the inhibition of sHE is being 

evaluated as a mechanism for increasing and prolonging the beneficial actions of 

EETs. However, some caution is suggested by the findings that 11,12-DHET 

activates Ca2+ activated K+ channels in coronary artery myocytes and induces 

coronary vasodilatation (Lu et al., 2001). The sHE inhibitors were initially developed 

as antihypertensive agents (Chiamvimonvat et al., 2007), but recent data indicate that 

they may also prevent cardiac hypertrophy (Xu et al., 2006), decrease vascular 

smooth muscle proliferation (Ng et al., 2006), improve renal hemodynamics (Roman, 

2002), and decrease hypertensive renal damage (Huang et al., 2007; Spector and 

Norris, 2007). 

 

 

Pharmacological Modulation of Arachidonic Acid 
NSAIDs: Nonsteroidal anti-inflammatory drugs 
NSAIDs are among the most commonly prescribed medications purchased over the 

counter to treat acute and chronic pain and inflammation associated with a range of 

medical condition (Pawlosky, 2013). It is estimated that NSAIDs are prescribed to 

about 25% of Canadians for short-term use, but overall use is likely much higher 

with over-the-counter availability (Pawlosky, 2013). 

The main mechanism of the analgesic and antipyretic action of NSAIDs appears to 

be prostaglandin biosynthesis inhibition. 
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Like any medication, the benefits of NSAIDs should be considered in tandem with 

the potential adverse effects. Side effects range from the mild and common to the 

severe and infrequent: dyspepsia, gastric or duodenal ulceration, sodium retention 

and subsequent hypertension, as well as increased incidence on cardiovascular 

adverse event (like infarct and stroke). These are the results of the homeostatic role 

of COX-1 enzyme, being responsible for the production of prostaglandins and 

thromboxane, which are involved in routine physiological functions such as 

gastroprotection, platelet aggregation and renal blood flow. 

The most widely known NSAID is Aspirin, the only NSAID known to react binding 

covalently (and time-dependently) with the cyclooxygenases. Aspirin acetylates Ser-

529 in COX-1 (Ser-516 in COX-2), inhibiting irreversibly its enzymatic activity. 

This unique feature, which, together with the limited capacity of platelets for de novo 

protein synthesis, is responsible for the inhibition of platelet TXA2 biosynthesis even 

when used at sub-optimal doses for its anti-inflammatory action, and underlies 

aspirin’s position as the only COX inhibitor with proven cardioprotective activity 

(Patrono et al., 2001). 
 

COXIB 
In the early 1990s, when it was proven that there were two COX isoforms, it was 

proposed that the analgesic, anti-pyretic and anti-inflammatory effects of non-

steroidal anti-inflammatory drugs (NSAIDs) could be attributed to COX-2 inhibition, 

whereas the anti-thrombotic effects, as well as the unwanted renal and 

gastrointestinal (GI) side effects, might be dependent upon COX-1 inhibition (Rovati 

et al., 2010). Thus, NSAIDs, that were initially classified on the basis of their 

chemical and pharmacological properties, were later reconsidered mainly on their 

COX-1/2 selectivity (Grosser et al., 2006; Warner et al., 1999). Indeed, it was the 

beginning of a new era for the non steroidal anti-inflammatory drugs: the opportunity 

to selectivity target one of the two isoforms gave rise to a wide research, aimed at the 

identification of a safer NSAID, particularly in terms of gastrolesivity and renal 

function (Masso Gonzalez et al., 2010; Pal and Hossain, 1985). The research was, 

therefore, focused on COX-2-selective drugs (COXIBs), considered as second 

generation NSAIDs (FitzGerald and Patrono, 2001) that would retain the anti-
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inflammatory and analgesic activities without blunting the gastroprotection sustained 

by COX-1-derived mucosal PGE2 synthesis (Cannon and Breedveld, 2001; DeWitt, 

1999). As platelet COX-1 was demonstrated to be the major responsible for pro-

aggregating TXA2 synthesis, a marked COX-2 inhibition was considered to be an 

ideal choice, because gastrointestinal (GI) bleeding that often accompanied the lack 

of cytoprotection was also amplified by the suppressed formation of TXA2 (Whittle, 

2003), and the resulting altered hemostasis. 

However, while on one side a large number of clinical trials, VIGOR (Bombardier et 

al., 2000), CLASS (Silverstein et al., 2000), TARGET (Schnitzer et al., 2004) largely 

confirmed a GI safer profile by COXIBs, on the other side increasing evidence for 

potential cardiovascular (CV) risk associated with COXIBs emerged (Howard and 

Delafontaine, 2004), mainly ascribed to a COX-2-dependent inhibition of the 

antiaggregating endothelial-derived prostacyclin (PGI2) (McAdam et al., 1999). The 

so called ‘balance-tipping’ or “imbalance” theory, suggested that any drug that 

reduces endothelial COX-2-derived PGI2, without affecting platelet COX-1-derived 

TXA2, will predispose to a prothrombotic state (Fitzgerald, 2004). As a consequence 

of this unanticipated but potentially serious side effect, rofecoxib from Merck and 

valdecoxib from Pfizer were withdrawn from the market (FitzGerald, 2007; Grosser 

et al., 2006). 

Nevertheless, it remained open the possibility to use a new and safer 

pharmacological approach combining the anti-inflammatory activity of COXIBs 

together with a cardioprotective component (Rovati et al., 2010). 

 

 

Arachidonic acid metabolites receptor 
All AA metabolites exert their biological effects by binding to G protein-coupled 

receptors (GPCRs). In particular two receptors have been identified for LTB4: the 

BLT1 and BLT2, and similarly for CysLTs the CysLT1 and CysLT2 receptors have 

also been characterized. Concerning the prostanoids, a single gene product has been 

identified for prostacyclin and PGF2α: the I prostanoid receptor (IP) and the F 

prostanoid receptor (FP) respectively, while are known four distinct PGE2 receptors 
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(the EP1-4), two PGD2 receptors (DP1 and DP2) and two T prostanoid receptors for 

(TPα and TPβ) for TXA2. 

LTB4 exerts its biological effects through its two GPCRs expressed on the surface of 

cells. BLT1 is the high-affinity LTB4 receptor, BLT2 is its low affinity receptor and, 

in human genome, the genes that encode these receptors are located in very closed 

proximity to each other (Kamohara et al., 2000; Yokomizo et al., 1997; Yokomizo et 

al., 2000). The human LTB4R gene encodes a BLT1 protein comprising 352 amino 

acid residues (NCBI Reference Sequence: NP_858043) and it shares relatively high 

sequence homology with BLT1 of other species; similarly, BLT2 is also highly 

conserved, showing 92% homology with murine BLT2 at the amino acid level 

(Iizuka et al., 2005; Kamohara et al., 2000; Yokomizo et al., 2000). BLT1 is 

predominantly expressed on leukocytes (granulocytes, monocytes, macrophages, 

eosinophils, dendritic cells, mast cells and differentiated T-cells) (Serhan and 

Prescott, 2000), whereas human BLT2 is ubiquitously expressed throughout the body 

(Kamohara et al., 2000; Yokomizo et al., 2000). Finally, several studies showed that 

BLT1 and BLT2 couple to Gi- and/or Gq-proteins, depending on the particular cell 

type (Brink et al., 2003; Kamohara et al., 2000; Sabirsh et al., 2004; Yokomizo et al., 

1997). These two GPCRs activate various kinases, which, in turn, phosphorylate 

downstream signalling molecules. 

Recent molecular cloning and functional studies of CysLTs receptors have provided 

new insights into their biological function(s). The human CysLT1 gene is located on 

the X chromosome (Xq13-Xq21) and encodes a protein of 337 amino acids (Lynch 

et al., 1999). The gene encoding human CysLT2 is located on chromosome 13q14 

and the open reading frame encodes a protein of 347 amino acids (Heise et al., 2000; 

Nothacker et al., 2000). The homology between the two human receptor subtypes is 

only 31%. It has been demonstrated that CysLT1 mRNA is expressed in normal lung 

smooth muscle cells and interstitial macrophages, but little or no expression is 

detected in normal airway epithelial cells; CysLT1 expression has been detected also 

in eosinophils, monocytes, macrophages and pre-granulocytic CD34+ cells isolated 

from normal peripheral blood (Figueroa et al., 2001; Lynch et al., 1999). CysLT2 in 

humans is expressed at high levels by the spleen and peripheral blood leukocytes, as 

well as in coronary smooth muscle cells, endothelial cells, Purkinje fiber cells, and 



Introduction 
 

 
 

17 

human umbilical vein endothelial cells (HUVEC) (Heise et al., 2000; Kamohara et 

al., 2001; Nothacker et al., 2000; Takasaki et al., 2000). Uniquely, this receptor is 

also expressed in the heart, adrenal gland, in the brain and in the spinal cord (Heise et 

al., 2000; Nothacker et al., 2000). Taken together, these findings suggest that the 

expression of CysLT receptors is regulated by various cytokines, and it is intimately 

associated with the pathogenesis of many allergic diseases (Liu and Yokomizo, 

2015).  

As previously reported prostanoid receptors are pharmacologically classified into 

those specific for TX, PGI, PGE, PGF, or PGD, designed TP, IP, EP, FP, and DP 

receptors, respectively, with EP receptors being further divided into four subtypes 

identified as EP1, EP2, EP3, and EP4 (Coleman et al., 1994; Kennedy et al., 1982). 

All receptors are G protein-coupled, rhodopsin-type receptors with seven 

transmembrane domains and each is encoded by a distinct gene. The different 

variants of EP3, that are generated by alternative splicing of exons encoding the 

carboxyl-terminal tail, were also identified and these isoforms show similar ligand 

binding characteristics but distinct signal transduction properties. In addition to this 

family of E prostanoid receptors, there is also a separate receptor for PGD2 (Hirai et 

al., 2001). This receptor, called CRTH2, was originally cloned as an orphan receptor 

expressed in T helper (Th) 2 lymphocytes and it has been shown to bind PGD2 with 

an affinity as high as that of the DP receptor. CRTH2 belongs to the family of 

chemokyne receptors and mediates chemotaxis of Th2 lymphocytes as well as of 

eosinophils and basophils in response to PGD2 (Narumiya, 2007).  

Several studies revealed that the eight types or subtypes of prostanoid receptors can 

be divided into three groups on the basis of their modes of signal transduction: IP, 

DP, EP2 and EP4 mediate an increase in the intracellular level of cAMP and have 

been classified as ”relaxant” receptors; TP, FP and EP1 induce elevation of 

intracellular Ca2+ and have been denoted as “contractile” receptors; EP3 elicits a 

decrease in the intracellular concentration of cAMP and has been termed an 

“inhibitory” receptor (Narumiya et al., 1999). This functional grouping of prostanoid 

receptors is based on the coupling of each receptor to only one of the three signalling 

pathways, increase or decrease in the intracellular cAMP level or elevation in the 

intracellular Ca2+ concentration; it does not exclude the possibility that these 
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receptors are able to couple to more than one G protein and therefore to different 

signal transduction pathways (Narumiya, 2007). It has been suggested that the 

prostanoid receptors might be ubiquitously distributed throughout the body because 

of the wide range of prostanoid actions, and northern blot analysis and in situ 

hybridization studies revealed that, even within the same organ, transcripts of 

different receptor genes were distributed differentially.  

 

 

G protein-coupled receptors (GPCRs) 
GPCRs represent the largest superfamily of receptors in mammalian genome with 

about 850 members. Out of this number about 350 receptors are potentially drug 

targets, but for about 100 GPCRs, the so called orphan receptors, neither the 

endogenous ligand nor the physiological function are yet known (Fredriksson et al., 

2003; Lagerstrom and Schioth, 2008). GPCRs are responsible for signal transduction 

from the extracellular space to the inside of the cells. Since GPCRs are involved in 

mediating cell signal processes, they are implicated in many diseases and are the 

targets of a number of drugs used therapeutically. It has been estimated, that about 

60% of all prescription drugs today target GPCRs (Schoneberg et al., 2004), being 

developed for just 50 established GPCR targets out of all the known members of this 

family, making GPCRs one of the most important class of current pharmacological 

targets. 

Several classification systems have been used to sort out this superfamily. Some 

groups the receptors considering their ligand, and others using both physiological 

and structural features. One of the most frequently used classification system lists the 

receptors based on sequence and structural similarity; using this approach these 

receptors can be clustered into 5 families: class A, the rhodopsin family (701 

members); class B the secretin family (15 members); class C, the glutamate family 

(15 members); the adhesion family (24 members), the frizzled/taste family (24 

members). 

The first high resolution three dimensional GPCR crystal structure is that of 

rhodopsin, solved in 2000 with a resolution of 2.8 A. This structure came from the 

three-dimensional crystal of bovine rhodopsin and confirmed the general architecture 
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of the seven transmembrane helices. The three dimensional structure of GPCR has 

been hardly obtained, but in 2008, using x-ray crystallography, the structure of A2α 

adenosine, β1 and β2-adrenergic receptors (AR) have been solved at high resolution.  

The GPCR proteins are also called seven transmembrane (7TM) receptors because of 

their common structural signature of seven hydrophobic α-helices that cross the 

plasma membrane connecting, by alternating intracellular and extracellular loop 

(ICLs and ECLs), the extracellular amino terminus and the intracellular carboxyl 

terminus. GPCRs share the greatest homology within the TM segments. The most 

variable structures among the family of GPCRs are the carboxyl terminus, the 

intracellular loop spanning TM5 and TM6, and the amino terminus.  

Although structural similarity of GPCRs, the natural GPCR ligands are very 

different, ranging from subatomic particles (a photon), to ions (H+ and Ca++), to small 

organic molecules, to peptides and proteins.  Indeed the ligands of the GPCRs have 

different nature: they could be ions, organic odorants, amines, peptides, proteins, 

lipids, nucleotides, and even photons are able to communicate through these proteins. 

The location of the ligand binding domains for many GPCRs has been determined 

and, while many small organic agonists bind within the TM segments, peptide 

hormones and proteins often bind to the amino terminus and to extracellular 

sequences joining the TM domains.  

GPCRs are able to functionally bind different kinds of G proteins with their 

intracellular domains (both the COOH terminus and the intracellular loops), and 

therefore, we can observe a great diversity in the functional coupling of the GPCRs 

with a number of alternative signaling pathways, interacting directly with a number 

of other proteins.  

 

Thromboxane A2 receptor 
The thromboxane prostanoid (TP) receptor is a G-protein coupled receptor and is 

classified as family A of GPCR, the rhodopsin family. It derives its name from its 

preferred endogenous agonist, TXA2, even if it is activated also by other AA 

derivates, such as isoprostanes and 20-hydroxyeicosatetraenoic acid (20-HETE). 
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In 1989, Narumiya and colleagues purified for the first time the human TP protein, 

following the development of specific agonists and antagonists in the 1980s 

(Ushikubi et al., 1989). Based on the sequence of the purified protein, a seven-TM/G 

protein coupled receptor, human TP cDNA was cloned from placenta (Hirata et al., 

1991). Later Raychowdhury, Yukawa, Collins, McGrail, Kent and Ware (1994) 

(Raychowdhury et al., 1994) cloned another human TP cDNA from human 

endothelial cell differing from the first only in its C-terminus; this cDNA represents 

alternative splicing products of the TXA2 receptor gene. Now, the TP originally 

cloned from human placenta is called TPα (composed by 343 amino acids in length), 

and the TP originally cloned from endothelial cells is called as TPβ (407 amino acids 

in length) (Nakahata, 2008). The cDNA encoding TPα and TPβ represent alternative 

splicing products of the TP gene, which is located at chromosome 19p13.3. It is 

present as a single copy, spans over 15 kb and contains 3 exons divided by 2 introns 

(Nusing et al., 1993).  

Gαq, G
12-13

, Gαi and 
Gαs 
Binding site

Ligand binding 
site 

Fig. 2 Amino acid sequences of TPα and TPβ showing the position of the highly 
conservative ERY motif at the N-terminal end of the second intracellular loop. The 
different cytoplasmatic C-terminus end of TPα and TPβ are shown. The blocked area 
represents plasma membrane with seven putative transmembrane domains (modified from 
Capra V., et al. 2004 and Nakahata N., et al. 2008). 
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Comparison of the two receptor isoform sequences reveals that even though the first 

328 amino acids are the same for both (Raychowdhury et al., 1994), the β isoform 

exhibits an extended C-terminal cytoplasmic domain (Fig. 2). Because of their amino 

acids sequences the ligand binding sites are assumed to be identical in both splice 

variants. Therefore, differences in function between TPα and TPβ must be derived 

from the difference in their C-terminal regions.  

Although a detailed analysis of the protein expression of TPα and TPβ should be 

necessary, the mRNAs for both splicing variants have been detected in most tissues 

and cells, including platelets, placenta, vascular smooth muscle cells, brain, small 

intestine and thymus (Miggin and Kinsella, 1998). However, it is worth noting that 

expression of each TP isoform transcript is not equal within or across different cell 

types. Thus, while platelets express high concentrations of the TPα mRNA, they 

possess only residual mRNA coding the TPβ (Habib et al., 1999). 

Historically, TP receptor involvement in blood platelet function has received the 

greatest attention. Nevertheless, it is now clear that TP receptors exhibit a wide 

distribution in different cell types and among different organ systems (Nakahata, 

2008). Over the years, different biological roles for TP receptor signaling have been 

established in both homeostatic and pathological processes. Thus TP receptor 

activation is thought to be involved in thrombosis/hemostasis, modulation of the 

immune response, acute myocardial infarction, inflammatory lung disease, 

hypertension, nephrotic disease, etc.. Based on this consideration, attempts have been 

made to define the distinct signaling pathways by which TP receptors elicit their 

biological and pathological effects. In this regard, it is well documented that TP 

receptors have the capacity to activate a multitude of different signaling cascades 

which regulate cellular ion flux, cytoskeletal arrangement, cell adhesion, motility, 

nuclear transcription factors, proliferation, cell survival, and apoptosis. They are 

known to couple to at least four G proteins, which in turn activate numerous 

downstream effectors, including second messenger systems such as IP3/DAG, 

cAMP, small G proteins (Ras, Rho), phosphoinositide-3 (PI3) kinase, as well as 

protein kinase C (PKC) and protein kinase A (PKA) (Nakahata, 2008).  

Furthermore, it has also become apparent that the signaling preferences between 

these different TP receptor-mediated pathways vary in both cell- and organ-specific 
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manner. Consequently, TP receptor activation in one cell type may lead to quite 

different signaling events than its activation in other cell types (Miggin and Kinsella, 

1998).  

 

 

The highly conserved E/DRY motif  
As discussed above, despite the primary structure of the GPCRs is characterized by a 

common structural motif of 7TM regions, there is no evidence of an overall sequence 

homology. Nevertheless, is possible to identify a number of highly conserved stretch 

of residues such as the triplet of amino acids glutamic acid/aspartic acid-arginine-

tyrosine. This so called E/DRY or DRY motif is located at the boundary between 

TM3 and ICL2 of class A GPCRs (rhodopsin family) and is thought to play a central 

role in regulating GPCR conformational states (Rovati et al., 2007) (Fig.2). 

Moreover, it has been proposed that there are two different subgroups of receptors 

within class A GPCRs that make different use of the E/DRY motif, independently of 

the G protein type (Gs, Gi, or Gq) to which the receptor couples. In phenotype 1 

receptors (P1-type), the consensus picture, derived in part from the rhodopsin 

structure, is that the basic arginine (denoted residue 3.50) forms stable intramolecular 

interactions with the neighboring aspartic acid or glutamic acid (3.49) and/or with 

another charged residue (6.30) on helix 6 (Ballesteros et al., 2001; Teller et al., 

2001), thereby constraining GPCRs in the inactive (R) conformation. In particular, 

the crystal structure of the ground state of rhodopsin indicates that the arginine is 

engaged in a double salt bridge with the adjacent glutamic acid (3.49) and with the 

glutamic acid (6.30) on helix 6 (Palczewski et al., 2000; Teller et al., 2001). 

Mutation of the glutamic acid/aspartic acid of the E/DRY motif has been proposed to 

induce a conformational change that rearranges the arginine from its polar pocket, 

resulting in the ability of some GPCRs to adopt an active conformation (R*) 

(Cotecchia et al., 2002; Scheer et al., 1996; Scheer et al., 1997a). Thus, this first 

phenotype is characterized by an increase of agonist-independent basal receptor 

activity (constitutive activity CA), upon mutation of glutamic acid/aspartic acid 3.49 

(constitutive active mutant, CAM). Example of receptors members of this subgroup 
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are: α1-adrenergic receptors (α1-AR), β2-AR, α2-AR and vasopressin type II 

receptors (V2R) states (Rovati et al., 2007). 

The second phenotype (P2-type) does not exhibit increased CA upon mutation of 

E/D3.49 (constitutive inactive mutant, CIM). Nonetheless mutations can still affect 

receptor function as glutamic acid/aspartic acid non conservative (i.e., charge-

neutralizing or hydropathy-reversing) mutations have a number of effects that 

support an important role in stabilizing receptor conformation. Receptors part of this 

P2-type group are: rhodopsin, muscarinic M1 and M5, cannabinoid 2 (CB2R), α2A-

AR, V1AR, and also TP. 

Finally, it has been demonstrated that nonconservative mutations of R3.50 show 

variable effects on function of P1-type receptors, but invariably exert strongly 

disruptive effects on P2-type receptor activity. This correlation between the effects of 

glutamic acid/aspartic acid and arginine mutations within P1 and P2 groups of 

receptors is a key aspect of this phenotypic division. It is interesting that R3.50 

mutations also show two patterns of effects on agonist binding. The first (in P1-type 

receptors) preserves high-affinity agonist binding and G protein coupling, whereas 

the second (in P2-type) disrupts high-affinity agonist binding and, conceivably, G 

protein coupling (examples TP and α2A-AR) (Rovati et al., 2007). The effect of 

nonconservative R3.50 mutations in P2-type GPCRs to disrupt receptor function 

concomitant with the decreased agonist affinity, is in agreement with the loss of G 

protein coupling.  

There is an apparent paradox between the increased or unchanged agonist affinity 

and loss of function. There are two possible explanations for this: R3.50 may serve as 

an effector for G protein activation as suggested by Acharya and Karnik (1996) and 

Chung et al., 2002 (Acharya and Karnik, 1996; Chung et al., 2002a) or, alternatively, 

it mutation may produce a “constitutively desensitized” phenotype, reported as loss-

of-function mutant due to decreased expression at the plasma membrane (Barak et 

al., 2001).   
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ERY motif in TP receptor  
In TP receptor, as in the vast majority of class A (rhodopsin family) GPCRs, is 

present the highly conserved sequence Glu/Asp-Arg-Tyr triplet of residues. In 

particular, in TP receptor, this motif is composed by residues E129, R130 and Y131 

and, like in all receptor where it is present, it is located between the TM3 and the 

ICL2. Of interest Arg (R 3.50) is conserved in 96% of the receptors of this class 

(Mirzadegan et al., 2003), suggesting a central role for this residue in the transition 

from the inactive to the active state of the receptor. Indeed, the central R3.50 forms a 

network of interactions with the adjacent E3.49 (E129) (intrahelical salt bridge) and 

with another residue in position 6.30, i.e. E240, (interhelical hydrogen bridge) that is 

thought to lock and to stabilize the receptor in its inactive conformation (R). The 

ligand interaction, with the ligand binding site in the extracellular domain of the 

receptor, induces a conformational change that disrupt the constrains of the ionic 

lock between TM3 and TM6 and cause the activation of the receptor (R*), which, in 

turn, start the signal transduction (Rovati et al., 2007). 

In TP receptor the glutamic acid in position 129 (E3.49) is able to maintain receptor in 

the inactive states (R) likely through a salt bridge with the near arginine 130 (R3.50), 

and has a role in maintaining the receptor in the functional tridimensional state. 

Indeed, non-conservative mutations of E3.49 (E129V) generated a receptor with 

increased efficacy and potency after agonist activation, but without any increase in 

CA compared to WT. In addition, this mutant clearly showed an increased affinity 

for full and partial agonists (Ambrosio et al., 2010; Capra et al., 2004). For these 

characteristics, this active variant has been named SAM (superactive mutants) 

(Ambrosio et al., 2010; Capra et al., 2013). This phenomenon has already been 

observed for α2AAR (Chung et al., 2002b) and m1AchR (Lu et al., 1997) and it has 

been interpreted as a possible conformational change in the agonist-binding pocket. 

E129V represents a good example of a mutation in the E/DRY motif that does not 

increase basal activity, while augmenting agonist-stimulated receptor signaling. 

These results led us to hypothesize a conformational change of the receptor toward 

an ‘active-like’ conformation. Interestingly, a conservative mutation in this position, 

E129D, having conserved hydropathic characteristic, had no effect in terms of TP 

receptor functionality.  
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We also previously studied mutant at position 3.50. Non conservative mutation of 

R3.50 (R130V) resulted in receptors with no increased in CA, but with a statistically 

significant impairment in agonist-induced total IP production (loss of function 

phenotype), demonstrating that this residue is indeed important for receptor 

functionality (Capra et al., 2004). Conservative mutations, such as R130K, did not 

affect receptor signaling. Interestingly, R130V mutant showed a loss of high affinity 

agonist binding (Capra et al., 2004). Thus, these data, the loss of function phenotype 

and the loss of the high-affinity agonist binding, suggest a ‘defective’ G protein 

coupling. This might be ascribed either to disruption of the physical interaction 

between receptor and G protein or to a reduced receptor affinity for its cognate G 

protein. However, the exact role of Arg in the E/DRY motif is still under discussion: 

it has been suggested that Arg may catalyze GDP release (Acharya and Karnik, 

1996) or may be involved in receptor isomerization (Scheer et al., 2000), but it is 

also possible that this residue is directly involved in G protein recognition and 

coupling (Burstein et al., 1998; Chung et al., 2002b).  

In conclusion, the ERY motif in TP receptor is directly involved in governing G 

protein coupling/recognition. Hence, mutations of the E129 residue do not induce 

CA, whereas agonist-induced responses might be altered in a mutation-specific 

manner. Indeed, some nonconservative mutants might yield receptors with more 

efficient signaling properties, an observation that seems to suggest a conformational 

change toward an ‘active-like’ conformation. On the other hand, the central arginine 

of the ERY motif seems to be more directly involved in receptor-G protein 

coupling/recognition, so that nonconservative mutations of this residue invariably 

impair agonist-induced receptor responses and, accordingly, reduce affinity for 

agonist binding. Finally, it has been suggested the essential role of the hydropathic 

characteristic of the residues involved in G protein-receptor binding: substitutions 

with residues having conserved hydropathic characteristic (E129D and R130K) had 

no effect on TP receptor functionality (Moro et al., 1993; Scheer et al., 1997b; Wess, 

1998). 
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The equilibrium models between receptor, ligands and G-

proteins  
As already discussed, heptahelical receptors represent the most versatile form of 

transmembrane signaling protein and one of the largest families of potential targets 

for pharmacological drugs (Lefkowitz, 2007). Therefore, it is not surprising the 

widespread interest in the mechanism(s) by which GPCRs mediate their effects. In 

the late 80’s, the concept of drug-receptor went through a big change with: 1) the 

recognition that receptors exhibit constitutive activity in the absence of agonist, 2) 

the parallel discovery of inverse agonists, and 3) analysis of pharmacological data 

obtained by mutated receptors with molecular biology. This led to a number of 

receptor theories of increasing complexity with the intent to reconcile experimental 

data to mathematical models. The first mathematical model that try to describe the 

mechanism of action of GPCR is based on Clark's theory “the occupancy theory”, 

the second level of model complexity is the ternary complex model (TCM), and 

some years after, with new pharmacological discoveries, was postulated the extended 

ternary complex model (ETC). Finally the cubic ternary complex model (CTC) is 

now under discussion. 

Despite the explosion of GPCR crystal structures of both active (R*) and inactive (R) 

receptor states (more than 30 structures from Class A, B, C and Frizzled), little 

additional progress has been made in unraveling the mechanism(s) through which 

GPCR become active (Bhattacharya and Vaidehi, 2014), as well as in providing a 

full account of the ensemble of basal and active states (Audet and Bouvier, 2012). 

Indeed, one of the most intriguing and complex issues regarding receptor function 

and activation is the definition of the conformational landscape of different receptor 

states (Deupi and Kobilka, 2010) and describing them with a mathematical model. 

Thus, it's important trying to reconcile biochemical, structural and theoretical data on 

GPCR conformations and try to understand in particular the role of highly conserved 

E/DRY motif.  
 

Classical Model 
The simplest mechanistic model of receptor–ligand equilibrium is Clark’s classical 

model (1937) (Clark, 1937). Clark’s model consists of two elements: a ligand, A, and 
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a receptor, R. The receptor is assumed to possess a single site for the binding of the 

ligand. Following the laws of mass action, a receptor and a ligand combine to form a 

receptor–ligand complex, AR. Two receptor species are present—the free and 

inactive receptor R, and the receptor–ligand complex AR at equilibrium. The 

presence of these two species defines the extent of the classical model’s complexity.   

Classical model was modified by Ariëns (Ariëns, 1954) and Stephenson 

(Stephenson, 1956) to accommodate antagonists and partial agonists action and 

represents the simplest mechanistic models of ligand-receptor interaction.  

 

Ternary Complex Model 
In 1980, DeLéan and colleagues introduced the next step of model complexity: the 

Ternary Complex Model (TCM), in which the components that interact are three—a 

ligand, a receptor, and a transducer. This is the first theoretical model of receptor 

function that included auxiliary membrane-associated proteins, in this case the G 

proteins. Evidence for the importance of G proteins in receptor function dates back to 

Rodbell et al. (1971) (Rodbell et al., 1971), who demonstrated that the hormonal 

stimulation of the AC receptor-linked system is dependent upon the presence of 

GTP. Subsequently, Sternweis et al. (1981) (Sternweis et al., 1981) isolated a 

membrane-bound protein with GTPase activity, a guanine nucleotide-binding protein 

or G- protein that acts as an intermediary between receptor and effector. Thus, in the 

adenylyl cyclase (AC) system the role of the hormone is indirect, the hormone acts 

on the receptor that acts on the G protein that acts on an effector system. For such G 

protein mediated receptor systems, the classical model has been proven to be 

inadequate (Kenakin and Morgan, 1989; Leff et al., 1990).  

In the TCM, receptors possess two binding sites: one for the ligand, A, and one for 

the G-protein, G. This model generalized the classical model by allowing receptors 

to interact with ligands as well as G proteins. In its full version, the ternary complex 

at equilibrium is comprehensive of four receptor species: R, AR, RG, and ARG 

(Weiss et al., 1996a) (Fig. 3A). The TCM formulated by DeLéan accommodates for 

a complex (non monotonic binding curves) behavior for agonists and partial-

agonists, but not for antagonists, that could not be explained with existing theories 

(De Lean et al., 1980b). Essentially, agonists bind the receptor R with low affinity 
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and the receptor-G protein complex (RG) with high affinity.  

 

Extended Ternary Complex Model 
At the beginning of the ‘90s, Samama and colleagues were working on β2-adrenergic 

receptor and replaced four amino acids of C-terminal portion of the third intracellular 

loop. These amino acids were substituted with residues derived from the 

corresponding region of the αIB-AR and were chosen to mirror the replacements 

previously found to constitutively activate the αIB-AR.  This conservative 

substitution leads to agonist-independent activation of the AC. The mutant receptors 

exhibited (Samama et al., 1993b) : 

- an increased basal activity, more than three times higher than the wild type; 

- an increased affinity for agonists, correlated with their intrinsic activity at the wild-

type receptor, and which does not depend on G protein interaction; 

- an increased potency of agonists for stimulation of CA; 

- an increased intrinsic activity of partial agonists.   

Fig. 3 The Ternary Complex Model. (A) the classical form of TCM. H= hormone; 
R=receptor; G= G protein. (B) in the proposed modified version of TCM, R undergoes an 
allosteric transition with a constant J which leads to the formation of an R* intermediate. 
The latter, in turn, interacts with the other components H and G, in a fashion similar to R in 
the classical form of the model (from Samama P., et al. 1993). 

	  A B 
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 Therefore, the almost simultaneous discovery of Constitutive Active Mutant 

(CAMs) receptors (Cotecchia et al., 2002; Kjelsberg et al., 1992; Robinson et al., 

1992) and inverse agonist (Costa and Herz, 1989; Costa et al., 1992) led to the idea 

that the active state is an intrinsic property of the receptor itself rather than of RG 

complex. This made it apparent that a ligand-driven isomerization step was necessary 

and the receptor activity depended on the equilibrium between inactive (R) and 

active (R*) receptor species, as postulated by the two-state model of ligand-gated ion 

channel receptors (Del Castillo and Katz, 1957). The properties of these mutant 

receptors can not be adequately rationalized within the theoretical framework of the 

TCM, which postulates that: receptor activation requires the agonist-promoted 

formation of an active “ternary” complex among agonist, receptor, and G protein (De 

Lean et al., 1980a). 

Based on such experimental results, Samama and colleagues, by combining the two-

state receptor model with the TCM, formulated the Extended Ternary Complex 

Model (ETC) (Lefkowitz et al., 1993; Samama et al., 1993a) (Fig. 3B). 

In this model, six receptor species exist at equilibrium, R, R*, HR, HR*, R*G, and 

HR*G (R= receptor; H= hormone/ligand; G= G protein). In the ETC, receptor 

activation is a necessary precondition for G-protein coupling. The receptor can exist 

in equilibrium between two conformations, R and R*. Only the R* is able to bind the 

G protein, so that HR*G is the only possible ternary complex formed, and R* can be 

regarded as the “active state” (Samama et al., 1993a). 

Thus, two additional constants determine the formation of the ternary complex J and 

β:  

J, dimensionless, describes the spontaneous isomerization R↔ R*;  

β, is also a dimensionless constant that describes the extent to which the binding of H 

affects this equilibrium.  

In this model, the capacity of ligand to induce the formation of the ternary complex 

depend on two factors: its ability to facilitate the transition of R to the active state 

R*, which is gauged by the constant β, and its ability to stabilize the ternary complex 

HR*G, gauged by the constant α. While β only depends on ligand and receptor, α 

also depends on the G protein. Thus, the overall molecular efficacy of the ligand H is 

now given by the product αβ. In Fig. 3B αβ = [HR’G][R]/[HR][R*G], which means 
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that αβ is an equilibrium constant describing the implicit exchange reaction: 

[HR]+[R*G]  [HR*G]+[R]. Thus, the larger αβ is, the more likely it is to find H 

associated in the productive ternary complex [HR*G], rather than in the inactive 

binary complex [HR].  

It is worth examining how this extended TCM is related to previous models of 

hormone action. If J grows to a very high value, all receptors exist in the R* state, 

and the model contracts to the TCM in the usual form (lower loop of Fig. 3B). If M 

assumes a very small value (or, equivalently, if G = 0, i.e. in the absence of G protein 

or presence of GTP), the model becomes analogous to the so-called allosteric 

receptor model for a monomeric receptor (upper loop), proposed by several 

investigators (Del Castillo and Katz, 1957).  

Indeed, in a single receptor protomer context (no dimers), ETC describes the receptor 

interaction with the four orthosteric ligand types, i.e. agonists, partial-agonists, 

antagonists and inverse agonists. Within this context, agonists (full or partial) shift 

the equilibrium in favour of R* promoting activation of the receptor, while inverse 

agonists shift the equilibrium in favour of R inhibiting basal activity. Antagonists 

will show no preference for the two states of the receptor, thus leaving the 

equilibrium unaltered and the receptor activity unaffected. This model has several 

advantages, as it describes different receptor states when the receptor is ligand bound 

and it allows for selective affinity for different receptor species (as the TCM), but 

also allows for efficacy to be vectorial, i.e. positive (a > 1) or negative (a < 1) 

(Kenakin, 2004), providing an explanation for CA. 

 

Cubic Ternary Complex Model 
The ETC had rapidly evolved in the Cubic Ternary Complex model (CTC) described 

by Weiss and colleagues (Weiss et al., 1996a; Weiss et al., 1996b; Weiss et al., 

1996c), mainly because ETC is thermodynamically incomplete. The CTC model is 

an equilibrium model that generalizes traditional binary mass action occupancy 

models of receptor–ligand interactions. CTC is symmetric, comprehensive with 

respect to several other previous pharmacological models, and can be generalized to 

equilibrium involving multiple ligands (including biased agonists), G proteins (or 

other transducers) and receptors. Furthermore, based on the principle of free energy 
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coupling (Weber, 1972), CTC is thermodynamically complete as it describes all the 

possible three-ways interactions between receptor, ligand and G protein.  

In its most general form, the CTC model represents a membrane system consisting of 

multiple receptor types that interact with a diverse set of transducer molecules (G-

proteins) and ligand molecules (hormones). In the CTC model each receptor is 

allowed to bind to only one G-protein and/or hormone at a time, but different 

receptors are allowed to compete for G-proteins and ligands. Thus, G-proteins and 

ligands are envisioned as forming a common pool accessible to each receptor. In 

addition, each receptor can exist in two distinct conformations, active and inactive, 

each of which is able to interact with ligand and G-protein.  

The assumption of the CTC model is that: 

i. Receptors have two distinct binding sites: an external site accessible to agonists 

and antagonists, and an internal site available to G proteins; 

ii. External ligands (agonists and antagonists) and G proteins exist in separate phases 

and do not encounter each other; 

iii. Receptors exist in two states with respect to their ability to activate G proteins 

and initiate biological responses: active and inactive; 

iv. The interactions of external ligands, G proteins, and receptor activation states are 

assumed to be governed by the laws of mass action; 

v. All possible two-way and three-way interactions between external ligands, G-

proteins, and receptor activation states are assumed to be potentially significant and 

are represented by coefficients in the model. 

 

Fig. 4 Transformations allowed in CTC model (Ri=inactive receptor; Ra= activated receptor; 
A=ligand; G=G protein) (from Weiss J.M., et al. 1995).  
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Let Ri and Ra denote the inactive and active conformations of a receptor R. Let A 

denote a ligand and G a G protein. The basic building block of the cubic ternary 

complex model consists of eight distinct types of receptor species: Ri, Ra, ARi, ARa, 

RiG, RaG, ARiG, and ARaG. A geometric representation of the model can be 

obtained by identifying each vertex of a cube with a different receptor species. The 

edges of the cube define all the allowed transitions between receptor species (Fig. 

5A).  

It is not obligatory in the CTC that ligand binding and receptor activation occur 

together: ligand can bind without activating the receptor and receptors may 

spontaneously activate without previously binding to ligand. 

Allowable transformations include:  

i. change of receptor state, inactive to active or vice versa;  

ii. binding or dissociation of G-protein; 

iii. binding or dissociation of ligand.  

In this geometric representation, each transformation is a transition between pairs of 

species occupying parallel faces of the cube. The three sets of parallel faces of the 

cube correspond to the three allowed transformations (Fig. 4).  

Each face of the cube consists of a set of receptor species sharing a common feature. 

The shared feature thus provides a label for that face. Using this scheme, the six 

faces of the typical cubic building block can be labeled as the inactive face, active 

face, G protein face, G protein-free face, ligand face, and ligand-free face (Fig. 5A).  

Fig. 5 (A) Schematic view of the cube; (B) CTC model with equilibrium association 
constants (from Weiss J.M., et al. 1995 and 1996).  
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Aim of the Study 
 

GPCRs regulate virtually all known physiological processes in mammals (Lefkowitz, 

2007), and the high number of drugs that target these receptors as agonists or 

antagonists recognize their significance to the current clinical practice of medicine 

(Tyndall and Sandilya, 2005). Moreover, from a molecular-structure point of view, 

an emerging opinion from several studies is that GPCRs are not simple “on-off” 

switches but adopt a continuum of conformations (Bockenhauer et al., 2011). 

Aim of the first part of my thesis work was to focus on the molecular mechanisms of 

TP activation, in particular the role of GPCR structural conformations in G protein 

selection and, possibly, to position the conformational states of the two ERY motif 

mutants TPαE129V and TPαR130V within a mathematical framework such as the 

CTC model, a thermodynamically complete model by which all the possible three-

ways interactions between receptor, ligand and G protein are described. 

In the second part of my project we considered the possibility to combine a TP 

antagonist component to a COXIB. Hopefully, the new pharmacological agent, with 

a selective COX-2 inhibitory activity and balanced TP antagonistic activity, would 

able to provide protection against the potentially harmful TP receptor activation by 

mediators sensitive and insensitive to aspirin/NSAIDs, such as the platelet-derived 

TXA2 and the nonenzymatic product isoprostanes.  New compounds were obtained 

modulating the structure of lumiracoxib, a highly potent COXIB (Rordorf et al., 

2005), in collaboration with professor Massimo Bertinaria (University of Torino), 

and also modulating the structure of a well known NSAID (RC 0), in collaboration 

with doctor Eugen Proschak, professor at the Frankfurt University. 
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Results 
 

An emerging view from several studies is that GPCRs are not simple “on-off” 

switches, but rather they adopt a continuum of conformations (Bockenhauer et al., 

2011). One of the focuses of my thesis was to assess the TPα, WT and mutants 

(TPαE129V and TPαR130V), coupling with their cognate G proteins in order to 

identify different conformational states of TP receptor. 

A useful method to directly link ligand-specific changes in GPCR conformations to 

differential downstream responses is based on a recently developed technique, 

termed SPASM (Systematic Protein Affinity Strength Modulation), a FRET based 

method able to distinguish between G protein binding from G protein activation 

(Malik et al., 2013). The SPASM sensors involve the fusion of a native peptide from 

the C terminus of a Gα subunit to the C terminus of the intact GPCR. Each SPASM 

sensor contains, from N to C terminus: a GPCR, mCitrine (FRET acceptor), ER/K 

linker, mCerulean (FRET donor), and a 27-amino acid peptide (x-pep where x 

denotes the type of Gα subunit q and s) derived from the α5-helix of the Gα C 

terminus. With these sensors high FRET signal is generated when Gα C terminus 

binds GPCR (active conformation, donor and acceptor in close proximity), while low 

FRET signal is expected when GPCR is in its inactive conformation (Gα C terminus 

doesn’t bind GPCR and mCit is not close to mCer). In addition, we generated a 

construct lacking the 27 amino-acid peptide from Gα, but containing only FRET 

donor and acceptor fluorophores (called ‘no-pep’), which was used to test the 

functionality of our constructs in second messenger generation experiments (inositol 

phosphate levels and cAMP accumulation) and to measure background (non specific) 

FRET in FRET experiments (Malik et al., 2013). 
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Cloning of TPαWT, TPαE129V and TPαR130V in the FRET vectors 

In order to apply this technique to our system of interest, we cloned HA TPαWT, HA 

TPαE129V and HA TPαR130V genes in the three different pCDNA5/FRT vectors 

all containing acceptor and donor sequence, but each containing the specific 27 

amino-acid C terminal sequence of Gαq, Gαs and no Gα (kindly provided by Dr 

Sivaraj Sivaramakrishnan, Michigan University). Thus, we obtained 9 FRET based 

SPASM sensors: 3 no-pep (sensors control), 3 q-pep and 3 s-pep, one for each 

receptor, i.e. TPαWT, TPαE129V and TPαR130V. 

 

TPα receptor expression and cellular localization 

The following step was to control the correct plasma membrane localization of each 

sensor in transiently transfected HEK293-T cells. To do this, we take advantage of 

one of the fluorescence probe (donor) present in the SPASM vectors. Indeed, we 

analysed the intensity of emitted fluorescence of transfected cells by fluorescence 

microscopy. After 30h-32h from transfection with the different plasmids, HEK293-T 

cells were excited with light at 492nm and emission fluorescence signal was 

recorded at 500-600nm (these are the specific wavelengths for the FRET acceptor 

mCitrine). The fluorescent signal was compared with cells visualized by halogen 

light to verify the transfection efficiency, proteins expression level and to control 

plasma membrane localization.  

TP
α 

R
13
0V

 
TP
α 

E1
29
V

 
TP
αW
T 

no-pep q-pep s-pep 

Fig. 6 TPα  SPASM sensors localization at the plasma membrane in HEK293-T live cells.  
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As shown in figure 6, the WT ‘no-pep’ construct is well expressed in term of 

transfection efficiency (number of cells transfected) and in term of level of protein 

expression. In particular it is possible to observe that the fluorescence signal is 

homogeneous in almost 40% of the cells, moreover the fluorescence is mainly 

localized at the plasma membranes. As far as the q-pep and s-pep fusion proteins is 

concern, despite the intensities of fluorescence constructs are similar to TPα WT ‘no-

pep’, however a weak signal is also present inside the cytoplasm. This result is likely 

due to proteins retention, thus creating inclusion bodies that do not allow the correct 

translocation of the protein to the plasma membrane.  

We also analysed the fluorescence of 3HA TPαE129V and 3HA TPαR130V no-pep, 

q-pep and s-pep receptors (Fig. 6). As expected, both ‘no-pep’ constructs were well 

expressed at the cell membranes, but as for TPα WT constructs, again the q-pep and 

s-pep of the two mutant proteins were less expressed at the plasma membrane, while 

a fluorescence signal was also present into the cytoplasm. Finally, as an internal 

control, we also visualized the fluorescence in mock-transfected cells, and, as 

expected, no fluorescence signal was indeed present (data not shown). 

Thus, from these observations we can affirm that each point mutation doesn’t modify 

protein localization, but the presence of the Gαq and Gαs peptides cause a weak 

formation of inclusion bodies into the cytoplasm.  

 

Western Blot Analysis 

To support the fluorescent imaging observations, HEK293-T cells, individually 

transfected with the different SPASM sensors, were subjected to SDS-PAGE 

separation and western blot analysis using anti-HA antibodies. Western blot analysis 

is a useful technique to detect protein expression, and can provide both qualitative 

and semi-quantitative data. Thus, we prepared membrane enriched cellular fractions 

(27000 g), a preparation that can give also information of the correct cellular 

localization of our constructs. As it is clear from figure 7, the molecular weight 

(MW) of each sensor is about 110 kDa, as predicted from amino acid sequences. In 

addition,  it is possible to observe two distinct bands at 100 and 120 kDa 

respectively, the higher one probably representing a glycosylated form of the 
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receptor. Intensity of the bands confirms that the proteins are well expressed in 

membrane, despite the presence of the SPASM probes and a partial retention into the 

cytoplasm. Of particular interest is the signal of the three 3HA TPαE129V sensors in 

which the intensities of the glycosylated forms are weaker compared to the 

corresponding WT signals. This data seem to confirm an increased difficulty for the 

mutated receptor to localize at the plasma membrane. As for 3HA TPαR130V 

sensors, the figure 7 clearly shows that while the 3HA TPαR130V ‘s-pep’ signal is 

quite similar to that of ‘no-pep’ sensor, the intensity of the two bands corresponding 

to the q-pep fusion protein are both weaker than the ‘no-pep’ and ‘s-pep’ constructs, 

confirming an impairment also for this construct to be correctly translated and 

localized at the plasma membrane.   

 

Functional assays 	  

Gq-dependent signaling of TPα WT and mutants no-pep receptors 	  

To check the pharmacological profile of our constructs, we compared the 

functionality of WT and mutant TPα receptors with our ‘no-pep’ SPASM sensors by 

performing U46619-induced total IP concentration-response curves. As mentioned 

before, only the ‘no-pep’ fusion proteins are able to activate the signal transduction 

pathway, while in the ‘q-pep’ and ‘s-pep’ sensors the presence of the specific Gα 
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Fig. 7 Western blot analysis for 3HA TPαWT and mutants SPASM sensors identification in 
enriched membrane samples of HEK293-T cell transiently transfected. 



Receptor EC50  
(nM ± %CV) 

TPαWT 93.4 ± 47 

TPαWT no-pep 155 ± 20 

TPαE129V 8.9 ± 41 

TPαE129V no-pep 13 ± 66 

TPαR130V 70 ± 45 

TPαR130V no-pep 816.6 ± 90 

Fig. 8 Concentration-response curves of agonist induced total IP formation in HEK293-T cells 
expressing TPαWT, TPαE129V and TPαR130V with and without SPASM no-pep sensors. IP 
accumulation was measured after incubation of increasing concentrations of U46619 agonist for 30 
min. Values of EC50 were obtained by simultaneous analysis with the Prism computer program of at 
least three independent experiment each performed in duplicate. EC50 values were obtained by 
simultaneous analysis performed using GraphPad Prism 4.00. Curves are computer-generated. 

Tab. 1 EC50 IP values of TPαWT, TPαE129V and TPαR130V with and without SPASM no-pep 
sensors. 

TP! WTTP! WT TP! E129VTP! E129V TP! R130VTP! R130V TP! WT nopepTP! WT nopep TP! E129V nopepTP! E129V nopep TP! R130V no pepTP! R130V no pep
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component at the C terminus competitively inhibit the coupling of the receptor with 

the endogenous G proteins. Computer-assisted analysis of total IP formation (Fig. 8) 

shows that HEK293-T cells transiently expressing the WT and E129V TPα respond 

to U46619 stimulation with a marked elevation of total IPs (6 fold increase over 

basal) while, as expected, cells expressing the R130V mutant respond poorly to the 

same agonist (about 2 fold increase over basal). Furthermore, U46619 potency at the 

two mutants reflect the SAM and the loss of function nature of TPαE129V and 

TPαR130V, respectively. In fact, about a 10 fold difference in EC50 values was 

found between TPαWT and TPαE129V mutant (93.4 nM ± 47 %CV and 8.9 nM ± 

41 %CV, respectively), while EC50 value of TPαR130V is not statistically different 

from that of WT receptor (70 nM ± 45 %CV), in line with results previously 

published by us (Ambrosio et al., 2010; Capra et al., 2013; Capra et al., 2004). 

Similar results have been obtained for the different ‘no-pep’ SPASM sensors: EC50 

values of 155 nM ± 20 %CV, 13 nM ± 66 %CV and 817 ± 90 %CV for TPα WT, 

TPα E129V and TPαR130V, respectively (Tab. 1). Overall, these experiments 

confirm that each ‘no-pep’ TPα SPASM sensor respond to U46619 stimulation 

similarly to the corresponding TPα receptors control constructs. 

 

Gs-dependent signaling of TPα WT and mutants no-pep receptors 	  

To further expand the observations about TPαWT and mutants Gq signal transduction 

pathways, we investigated if IP accumulation behaviour was maintained also at the 

level of the secondary TPα transductional pathway, i.e. the coupling of the TPα to 

heterotrimeric Gαs protein. For the same reason as for IP assay, we can test only the 

‘no-pep’ constructs in comparison to receptors without the SPASM sensors. Thus, 

TPα receptor was assessed for its ability to induce cAMP accumulation following 

stimulation with increasing concentrations of the stable TXA2 analogue U46619. 

Figure 9 shows the concentration-response curve of agonist-induced cAMP 

production in cells expressing human TPαWT, E129V and R130V mutants in the 

presence of 100 µM of the Ca2+ chelator BAPTA/AM to prevent non-specific 

activation of adenylate cyclase (AC). Computer assisted analysis of U46619-induced 

concentration-response curve for TPαWT receptor revealed an EC50 value of 147 nM 
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Tab. 2 U46619 induced cAMP accumulation: EC50 values in HEK293-T cells transiently 
transfected with TPαWT, TPαE129V and TPαR130V with and without SPASM no-pep sensors.	
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Fig. 9 Concentration-response curves of agonist-induced total cAMP production in HEK293-T 
cells expressing the TPαWT, TPαE129V and TPαR130V with and without SPASM no-pep sensors. 
cAMP was measured in basal condition or after stimulation with increasing concentrations of the 
agonist (U46619) for 10 min. EC50 values were obtained by simultaneous analysis performed using 
GraphPad Prism 4.00. Curves are computer-generated.	


Receptor EC50  
(nM ± %CV) 

TPαWT 147 ± 86 

TPαWT no-pep 187 ± 28 

TPαE129V 37.2 ± 34 

TPαE129V no-pep 16.7 ± 93 

TPαR130V 94 ± 97 

TPαR130V no-pep 111± 57 
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± 86 %CV. As expected, TPαE129V mutant was found to be more potent than the 

WT receptor, with an EC50 value lower than that of the TPαWT (37.2 nM ± 34 

%CV), again substantiating it classification as a SAM and in line with results 

previously published by us (Ambrosio et al., 2010). On the other hand, the EC50 

value of TPαR130V was 94 nM ± 97 %CV, similar to the WT receptor. All the 

SPASM “no-pep” sensors have a comparable EC50 of their respective control: 187 

nM ± 28 %CV, 16.7 nM ± 93 %CV, 111 nM ± 57 %CV for TPαWT no-pep, 

TPαE129V no-pep, TPαR130V no-pep, respectively.  

In term of efficacy, the Emax value of TPαWT and TPαE129V were similar (38 

pmol/mg prot. ± %CV and 33 pmol/mg prot.  ± 3 %CV, respectively), again in line 

with the results obtained in term of total IP accumulation. The efficacy of 

TPαR130V (12.5 pmol/mg prot.  ± 7 %CV) was about three fold lower compared to 

the WT, confirming its classification as a loss of function mutant.  Furthermore, 

unlike in the IP assay, all the SPASM sensor efficacy values were lower than their 

controls (Tab. 2): 22 pmol/mg prot. ± 2 %CV TPαWT no-pep (p < 0.01), 18 

pmol/mg prot.  ± 5 %CV TPαE129V no-pep (p < 0.01) and 5.8 pmol/mg prot. ± 5 

%CV TPαR130V no-pep.  

In conclusion, these experiments demonstrate that each ‘no-pep’ TPα SPASM sensor 

can activate the TPα secondary Gs signal pathway similarly to the corresponding 

control receptors. However, the significant reduction in maximal efficacy showed by 

the different SPASM sensors let us hypothesize that the presence of SPASM 

construct can negatively influence the protein activity, further decreasing the 

efficiency in Gs coupling. 

 

Basal FRET signaling of TPαWT, TPαE129V and TPαR130V no/q/s-pep 

sensors 

The SPASM sensors are designed for FRET-based detection of GPCR conformations 

that favour G protein interactions. Several studies have shown that peptides derived 

from the Gα C terminus interact with the GPCR following stimulation with canonical 

agonist (Hamm et al., 1988; Rasenick et al., 1994), and that, ligand-stimulated GPCR 

preferentially interacts with a particular Gα C terminus (Conklin et al., 1993; 
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Fig. 10 Basal FRET measurement of TPαWT and ERY mutants no-pep, q-pep and s-pep. (a) FRET 
Ratio (mCitrine/mCerulean, 525nm/475nm) of TPαWT and ERY mutants no-pep. (b-c) Specific 
FRET, that is Gq/Gs-pep FRET signal subtracted of the corresponding no-pep value, of TPαWT 
and ERY mutants q-pep and s-pep, respectively.  ** p < 0.01 vs TPαWT.   
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Receptor SPECIFIC FRET 
(525nm/475nm) ± SD 

TPαWT q-pep 0.162 ± 0.037 

TPαR130V q-pep 0.186 ±0.028 

TPαE129V q-pep 0.262 ± 0.034** 

TPαWT s-pep 0.169 ± 0.018 

TPαR130V s-pep  0.200 ± 0.019 

TPαE129V s-pep 0.240 ± 0.034** 

Receptor FRET Ratio  
(525nm/475nm) ± SD 

TPαWT no-pep 0.73 ± 0.025 

TPαR130V no-pep 0.71 ± 0.02 

TPαE129V no-pep 0.72 ± 0.03 

Tab. 3 FRET Ratio values of TPαWT, TPαE129V and TPαR130V no-pep sensors. 

Tab. 4 Specific FRET of TPαWT, TPαE129V and TPαR130V q-pep and s-pep sensors. 

** p < 0.01 vs TPαWT   
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Conklin et al., 1996). Thus, the Gα C terminus peptides used in this study are 27 

amino acids long, essentially encompassing the entire α5-helix of a specific Gα 

subunit (Oldham and Hamm, 2008). This particular length of the peptide is used to 

potentially preserve the α helical structure of the G protein C terminus. 

FRET-based detection involves excitation of sample at 430nm (mCerulean-FRET 

donor excitation wavelength), and recording emission from 450nm to 600nm (475nm 

and 525nm are the emission peaks of mCerulean (donor) and mCitrine (acceptor), 

respectively). 

Thus, we compared basal FRET signal, in term of acceptor/donor ratio 

(525nm/475nm), in absence of agonist of the three control ‘no-pep’ TPα receptors. 

As expected, no difference in the FRET ratios were observed (0.73 ± 0.03 SD; 0.71 ± 

0.02 SD and 0.72 ± 0.03 SD for TPαWT, TPαR130V and TPαE129V ‘no-pep’ 

constructs, respectively) (Fig. 10 and Tab. 3). Next, we recorded basal FRET signal 

of TPαWT and mutant receptors with ‘q-pep’ and ‘s-pep’ peptide in term of specific 

FRET, i.e. FRET ratio of TPα q/s-pep subtracted of the FRET ratio of its 

corresponding ‘no-pep’ constructs. Specific FRET values measured for TPαWT q-

pep, TPαR130V q-pep and TPαE129V q-pep (Fig. 10b) are reported in table 4. 

Interestingly, mutant specific FRET value calculated for TPαE129V q-pep is 

statistically higher (p < 0.01) compared to WT (0.262 ± 0.034 and 0.162 ± 0.037 

respectively), suggesting that TPαE129V mutant is somewhat more pre-coupled to 

its cognate Gq protein. Similar results were obtained for TPαE129V s-pep (Tab. 4). 

Indeed, specific FRET values calculated are 0.169 ± 0.018 SD, 0.200 ± 0.019 SD and 

0.240 ± 0.034 SD for TPαWT, TPαR130V and TPαE129V respectively (Fig. 10c). 

 

 

COXIB-FIRST PART: Lumiracoxib derived compounds 

Chemistry 

Compounds 7 (2-[(2-chloro-6-fluorophenyl)amino]-5-methyl-benzoic acid) and 32 

(2-(((4-chlorophenyl)sulfonyl)amino)-5-methyl-benzoic acid) were synthesized 

according to the procedure  described in Hoxha et al., 2016 (Hoxha et al., 2016). The 
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synthesis of lumiracoxib analogue 7 was accomplished as previously described 

(Bertinaria et al., 2012). Briefly, the Chan-Lam coupling was used by reacting 2-

amino-5-methylbenzoic acid with 2-chloro-6-fluorophenylboronic acid in the 

presence of 1,8-diazabicylo-[5,4,0]undec-7-ene (DBU) and a stoichiometric amount 

of copper acetate in dioxane solution. Compound 32 was synthesized by reacting 2-

amino-5-methylbenzoic acid with 4-chlorobenzensulfonyl chloride in the presence of 

excess Na2CO3 in water at 60 – 80 °C. The product was isolated and recrystallized 

from ethanol. Compounds 18 (N-(2-Chloro-6-fluorophenyl)-4-methyl-2-(1H-

tetrazol-5-ylmethyl)-benzenamine) and 20 (N-[[2-[(2-Chloro-6-fluorophenyl)amino]-

5-methylphenyl]methyl]-1,1,1-trifluoromethanesulfonamide) were obtained as 

previously reported (Bertinaria et al., 2012) (Fig. 11). 

 

Physico-chemical characterization of compounds 

The compounds selected for this study present most of the structural characteristics 

predicted for lumiracoxib analogs suitable as COX-2 inhibitors from a recent in 

silico study (Bartzatt, 2014). Their structures contain: 1) two aromatic rings; 2) at 

least two oxygen atoms (with the exception of compound 18); 3) at least one 

carboxyl group or a carboxyl isosteric group; 4) at least one -OH or -NHn group. 

Fig. 11 Chemical structures of reference compounds naproxen, lumiracoxib and terutroban, as well as 
of the newly synthesized compounds 7, 18, 20, and 32. 
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Inspection of data reported in table 5 evidences that the topological polar surface 

area (tPSA) of the studied compounds is similar or higher than that of lumiracoxib; 

in particular, the value of tPSA for the tetrazole analog 18 (61.1) is very close to the 

mean value found for a set of 36 NSAIDs (63.2) and of lumiracoxib analogs (70.5) 

(Bartzatt, 2012; Bartzatt, 2014). The measured solubility indicates that 18 is more 

soluble than lumiracoxib both in simulated gastric fluid and in phosphate buffered 

saline. Its solubility double that of the reference drug when the simulated gastric  

fluid is considered as the medium. This may be an advantage following oral 

administration. Derivatives 7 and 32 also show a similar solubility with respect to 

lumiracoxib at physiological pH, their solubility is slightly lowered when the pH is 

brought down to 1.5. Compound 20 is the least soluble derivative of the series at pH 

7.4, nevertheless it retains a fair solubility in simulated gastric fluid medium (0.59 

fold that of lumiracoxib). 

The pKa values of 7, 18 and 32 are slightly higher than that of lumiracoxib. 

Derivative 20 presents a significantly lower acidity with respect to that of the 

reference drug, this property reflects in a distribution coefficient measured at pH 7.4 

greater than 3.5, consequently 20 is more lipophilic than lumiracoxib in 

physiological condition. Compounds 7 and 18 are 1.56 and 1.34 fold more lipophilic 

than lumiracoxib and this may favour cellular permeability. All the compounds were 

Compound 
 tPSAa Solubility 

(µM) ±SD pKa ±S.D.b clog P c logD7.4 ±S.D.d 

  (Å2) SGF PBS      
Lumiracoxib 49.3 23.4 ±0.7 442.1 ±21.4 4.15 ±0.03e 4.66 1.19 ±0.05 

7 49.3 8.7 ±0.1 440.2 ±3.9 4.31 ±0.05 5.84 1.86 ±0.03 
18 61.1 54.1 ±5.4 533.9 ±16.2 4.85 ±0.01e 4.85 1.60 ±0.03 
20 58.2 13.9 ±1.6 60.7 ±2.3 6.70 ±0.01e 6.16 > 3.5 
32 83.5 19.3 ±4.9 553.1 ±15.0 4.33 ±0.01 4.54 0.87 ±0.04 

Tab 5. Topological polar surface area (tPSA), solubility in simulated gastric fluid (SGF) and 
phosphate buffered solution (PBS), dissociation constants and lipophilicity descriptors of compounds 
under study.  

a
 Topological polar surface area values calculated using ChemBioDraw v.12 CambridgeSoft. 

b
 Data obtained by potentiometric titration (SIRIUS GlpKa). 

c
 Values calculated by using Bio-Loom for Windows v.1.5 BioByte Corp. 

d
 Data obtained by shake-flask method. 

e 
According to ref. (Rao and Oprian, 1996). 
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also shown to be stable in human serum with > 98 % unchanged form detected after 

24 h incubation (data not shown). From this preliminary characterization we could 

assume that the tetrazole derivative 18 shows the best drug-like properties among the 

compounds of this series. 

 

Inhibition of TP receptor functional activity in human platelets 

A series of newly synthetized compounds, i.e. compound 18, 20, 7, and 32, as well as 

a non-selective COX inhibitor (naproxen) and a potent and selective COX-2 inhibitor 

(lumiracoxib) (Fig. 11) were studied for TP receptor antagonism in platelets from 

healthy human volunteers. The extent of aggregation was detected by Born-

turbidimetric assay. Blood was collected in the presence of 100 µM acetylsalicylic 

acid to render the platelets unresponsive to the challenge with arachidonic acid (1-3 

µM), but fully responsive to the calcium ionophore A23187 (3 µM; data not shown). 

Representative traces of washed platelet aggregation obtained with 0.1 µM of the 

stable TXA2 analogue U46619 in the presence of increasing concentrations (0.3-

20 µM) of compounds 18 and 20 are portrayed in figure 12. When platelets were 

Fig. 12 Representative original traces of acetylsalicylic acid-treated human platelets demonstrating 
the effect of compounds 18 and 20 on the TP-dependent aggregation. Washed platelets were 
challenged with 0.1 µM U46619 (arrow) in the presence of vehicle (0.2 % DMSO) or the indicated 
concentrations of compounds 18 (a) and 20 (b). Each aggregation was registered for 5 minutes.  

 U46619 
↓ 

vehicle 

0.3 µM 
1 µM 

3 µM 

10 µM 
20 µM 

↓ 
U46619 

vehicle 

20 µM 
10 µM 
3 µM  

1 µM 
0.3 µM 

a) b) 
 Compound 18  Compound 20 
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challenged with increasing concentrations of U46619, a concentration-dependent 

platelet aggregation occurred, which revealed a potency value of 59 nM ± 19 %CV 

(Fig. 13), in perfect agreement with our previous results (Selg et al., 2007). This 

response was thus truly independent of endogenous TXA2 formation. The sensitivity 

of platelets to U46619 did not change during the time required for the experiment 

and none of the tested compounds caused any aggregating response by itself. Figure 

12 also shows the inhibition curves of U46619-induced (0.1 µM) platelet aggregation 

due to increasing concentrations of the newly synthetized  compounds as well as the 

reference compounds. Table 6 reports their respective pA2 values calculated 

accordingly to equations 1-3 (see Methods section). Among the different molecules 

tested, compounds 18 and 20 were found to be the most potent in terms of TXA2 

antagonism with pA2 values comparable to that of diclofenac, but, at least for 

compound 20, statistically different from that of lumiracoxib (pA2 = 5.9, 95% CI - 

Confidence Interval 5.4-6.4 for compound 20 - pA2 = 5.0, 95% CI - Confidence 

Interval 4.7-5.2 for lumiracoxib).  

Fig. 13 Antagonism of human platelet aggregation induced by U46619 by the indicated compounds. 
Concentration-response curves of U46619-induced washed platelet aggregation from human blood 
and inhibition curves of: naproxen (a), lumiracoxib (b), compound 18 (c) compound 20 (d), 
compound 7 (e) and compound 32 (f). EC50’s were calculated using a four parameters logistic model, 
while pA2’s were calculated accordingly to the set of equations 1-3 as described in Materials and 
Methods. Values shown represent platelet aggregation (mean ± SE) expressed as % maximal 
aggregation induced by 0.1 µM U46619. Blood was treated with 100 µM acetylsalicylic acid. 
Experiments have been performed at least three times in duplicates. All curves shown were computer 
generated.  
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Inhibition of TPα functional activity in HEK293 

All compounds were also tested for their ability to inhibit the total inositol phosphate  

(IP) production following classic TP receptor coupling with Gq. The human TPα 

receptor transiently expressed in HEK293 cells was activated by the stable TXA2 

analogue U46619 (0.1 µM, 30 min) in the absence and presence of 30 min 

pretreatment with increasing concentrations of the reported antagonists (Fig. 14). TP 

receptor activation by U46619 resulted in a robust increase in total IP production 

with a calculated EC50 of 29.3 nM ± 10 %CV, as previously reported (Ambrosio et 

al., 2010; Capra et al., 2013; Fanelli et al., 2011). No response has been obtained 

from mock-transfected cells. The pA2 values calculated for each compound are 

presented in table 6. It is worth notice here that the results obtained in total IP 

production inhibition are in full agreement with those obtained in aggregation 

studies. Compounds 18 and 20 were again the most potent molecules, with pA2 

values similar to that of diclofenac and both statistically different from that of 

lumiracoxib (pA2 = 5.5, 95% CI, 5.2-5.8 for compound 18 - pA2 = 5.7, 95% CI, 5.4-

6.0 for compound 20 - pA2 = 4.6 95% CI, 4.1-5.1 for lumiracoxib), in good 

agreement with affinity binding data previously obtained in HEK293 cells 

(Bertinaria et al., 2012). 

 
Compound 

pA2 ± %CV 

Human washed platelet 
aggregation 

Total IP production in HEK293 
cells 

Lumiracoxib 5.0 ± 2.5 4.6 ± 5.2 

Diclofenac 5.4 ± 4.9 5.3 ± 4.7 
Naproxen 4.1 ± 2.5 3.9 ± 16.3 
Terutroban 9.4 ± 4.1 9.3 ± 2.8  
18 5.6 ± 3.5 5.5*± 2.2 
20 5.9* ± 4.1 5.7* ± 2.3 
7 5.0 ± 1.8 4.9 ± 5.1 
32 4.8 ± 2.4 4.8 ± 2.5 

* 95% CI vs. lumiracoxib, see results 

Tab. 6 TP receptor antagonism at human washed platelet aggregation and total IP production in 
transfected HEK293 cells. pA2 values were determined by measuring inhibition of aggregation 
response to the stable agonist U46619. 
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COX-2/COX-1 selectivity 

Newly synthesized compounds should maintain the COX-2 selectivity of the parent 

lumiracoxib and therefore their capacity to act as COX-2 inhibitors was determined 

on isolated human lympho-monocytes following treatment with acetylsalicylic acid. 

COX-2 expression was stimulated overnight with 10 µg/mL of lipopolysaccharide, 

and the PGE2 produced was determined by enzyme immunoassay and mass 

spectrometry, whereas COX-1 inhibitory activity was determined in washed human 

platelets as TXB2 production, measured by mass spectrometry.  

All the compounds tested inhibit the COX-2 enzyme in a concentration-dependent 

manner with lumiracoxib and diclofenac displaying the highest absolute potency 

(Tab. 7), while compound 32, containing the 4-chlorobenzensulfonamide moiety 

present in the very potent TP receptor antagonist terutroban (Simonet et al., 1997), 

-12 -10 -8 -6 -4 -2
0

2

4

6

8

10
U46619
Naproxen

a)

Log, [M]

-12 -10 -8 -6 -4 -2
0

2

4

6
U46619

Lumiracoxib

Log, [M]

b)

-12 -10 -8 -6 -4 -2
0

2

4

6

8

Cp 18
U46619

c)

Log, [M]

-12 -10 -8 -6 -4 -2
0

2

4

6
U46619

Cp 32

Log, [M]

f)

-12 -10 -8 -6 -4 -2
0

2

4

6
U46619

Cp 7

e)

Log, [M]
-12 -10 -8 -6 -4 -2

0

2

4

6

Cp 20

U46619

d)

Log, [M]

Fig. 14 Antagonism by the indicated compounds of total IP production induced by the TXA2 analog 
U46619 in HEK cells transiently transfected with the alpha isoform of the human TP receptor. 
Concentration-response curves of U46619-induced total IP production and inhibition curves of 
naproxen (a), lumiracoxib (b), compound 18 (c), compound 20 (d), compound 7 (e), and compound 
32 (f), obtained in the presence of 0.1 µM U46619. EC50’s were calculated using a four parameters 
logistic model, while pA2’s were calculated accordingly to the set of equations 1-3 as described in 
Materials and Methods. Values shown represent the mean percentage of fold increase over basal ± 
SE. Experiments were performed at least three times in duplicate. All curves shown were computer 
generated.  
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being the less potent molecule of the series (Tab. 7). Among the other molecules, the 

tetrazole derivative 18 and compound 7 inhibited COX-2 in a very similar way with  

potencies of 0.014 and 0.025 µM, respectively, while compound 20 showed a 

potency similar to that of naproxen (Fig. 15 and Tab. 7). 

Diclofenac displayed by far the highest potency as COX-1 inhibitor in washed 

platelets, with values in the nM range, followed by naproxen (Tab. 7). Once again 

the tetrazole derivative 18 and compound 7 behaved very similarly with IC50 values 

of 13.2 µM and 25.5 µM, respectively, while this time compound 20 showed an IC50 

of 16.1 µM, close to that of 18 and 7; compound 32, resulted inactive in terms of 

COX-1 inhibition (Fig. 15 and Tab. 7). 

Naproxen and lumiracoxib were expected to be, respectively, the less and the most 

selective COX-2 inhibitors (Fig. 15 and Tab. 7) in perfect agreement with previously 

published data summarizing the selectivity profiles of various NSAIDs, including 

COXIBs (Fig. 16) (FitzGerald and Patrono, 2001). Furthermore, figure 15 and table 

7 clearly indicate that compounds 18 and 7 are the most selective COXIBs among 

the multitarget molecules synthetized. Of notice, the sulfonamide derivative 20, 

despite being only about 40 times more selective for COX-2 with respect to COX-1 

inhibition at calculated IC50, presented a very steep slope of the concentration-

response curve (Hill coefficient >>1). This characteristic has no direct impact on the 

Therapeutic Index of the molecule, and, thus, on its safety, but rather suggest that it 

is possible to find a dose of compound 20 that is selective for COX-2. Thus, at 

Compound COX-2 inhibition 
IC50 (µM) ± %CV 

COX-1 inhibition 
IC50 (µM) ± %CV 

COX-2/COX-1 
selectivity 

Lumiracoxib 0.0035 ± 26 3.22 ± 22 910 
Diclofenac 0.0011 ± 30 0.0083 ± 6.2 7.6 
Naproxen 0.19 ± 66 0.11 ± 10 0.58 

Terutroban inactive at 10 µM N.D. - 
18 0.014 ± 23 13.2 ± 22 942 
20 0.42 ± 32 16.1 ± 6 38 
7 0.025 ± 46 25.5 ± 10 1020 

32 1.20 ± 45 inactive at 60 µM - 

Tab. 7 COX-2 and COX-1 inhibitory activities determined by in vitro assay in lympho-monocytes 
and washed human platelets.   

N.D. - Not Determined 
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Fig. 15 Inhibition of COX-1 and COX-2 activity by the indicated compounds in comparison to the 
reference compounds naproxen and lumiracoxib (a). COX-1 activity was assessed in terms of 
inhibition of TXB2 production induced by calcium ionophore in human washed platelets; COX-2 
activity was assessed in terms of inhibition of PGE2 production induced by LPS in isolated human 
monocytes. Data are expressed as percent inhibition of TXB2 or PGE2 release versus untreated 
controls. Error bars represent mean ± SE of at least three independent experiments, each performed in 
duplicate. 
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Fig. 16 COX-2/COX-1 selectivity. IC50 values obtained for the various compounds are plotted to 
appreciate their selectivity: the diagonal line indicates equivalence, therefore compounds with high 
selectivity for COX-2 over COX-1 are plotted below the line. 
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concentrations ten times its IC50 for COX-2 inhibition, about 95% of COX-2 is 

inhibited, while no inhibition of COX-1 is observed (Fig. 15c). 

 

 

 COXIB-SECOND PART: RC 0 Derivates 

Inhibition of TP receptor functional activity in human platelets for RC 0 

derivatives compounds 

A group of newly synthesized RC 0 derivatives, as well as RC 0, were studied for TP 

receptor antagonism in platelets from healthy human volunteers. Washed platelets 

were stimulated with 0.1µM of the stable TXA2 analogue U46619, and the extent of 

aggregation was detected by Born-turbidimetric assay for 5 minutes. The sensitivity 

Fig. 17 Concentration-response curves of human platelet aggregation induced by 0.1µM U46619. 
SWE 96-61-74, RC 0 (reference compound), CP 22-4-2-3-7-8 and SWE94 EC50 were calculated using a 
four parameters logistic model. Values represent mean ±SE, expressed as % maximal aggregation. 
Experiments have been performed at least three times in duplicates. EC50 were obtained by a 
nonlinear regression sigmoidal dose-response curve performed using GraphPad Prism 4.00. All 
curves shown were computer generated. 
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of platelets to U46619 did not change during the time required for the experiment, as 

assessed at regular intervals, and none of the tested molecules caused any 

aggregation response by itself. 

Table 8 reports the IC50 values of the inhibition curves of U46619-induced (0.1µM) 

platelets aggregation due to increasing concentration of the newly synthesized 

compounds as well as the reference compound RC 0. Among the different molecules 

tested, compounds SWE 96-61, belonging to the same class of molecules, and CP 2-3-

4-22, belonging to a second set of molecular group (in green in the table), in term of 

RC 0 substituents, were found to be more potent TXA2 antagonists than RC 0 with 

lower IC50 values (Fig. 17). Among these compounds, SWE 96 is clearly the most 

potent molecule screened, being also more potent than reference compound RC 0 

(SWE 96 IC50: 0.039µM (0.02-0.79) against RC 0’s IC50 0.84µM (0.65-1.09). 

 

COX-2/COX-1 selectivity for RC 0 derivatives compounds 
The goal of newly synthesized compounds is to maintain or improve the COX-2 

selectivity of the parent RC 0 that is to act as COX-2 selective inhibitors. This activity 

was determined on isolated human lympho-monocytes suspension. COX-2 

expression was stimulated overnight with 10 µg/ml of LPS, and the PGE2 produced 

was determined by LC/MS/MS analysis, whereas COX-1 inhibitory activity was 

assessed in washed human platelets determining TXB2 production following the 

stimulation with 2 µM of calcium ionophore A23187 for 10 min. TXB2 production 

was quantified by LC/MS/MS analysis.  

All the compounds tested inhibited the COX-2 activity in a concentration-dependent 

manner with RC 0 displaying a potency, in term of IC50, of 0.11 µM (0.06-0.19). 

Compounds SWE 74-68-86 resulted more potent than RC 0 (in red in Tab. 8), with 

IC50 of 0.05µM (0.04-0.07), 0.01µM (0.002-0.01) and 0.04µM (0.03-0.07) 

respectively, but unfortunately SWE 68 and SWE 86 lacked the required selectivity, 

showing IC50 for COX-1 inhibition of 0.01µM (0.008-0.011) and 0.05µM (0.04-0.06) 

respectively. Of particular interest resulted the compounds SWE 74, CP 7 and CP 8, in 

which the IC50 for the inhibition of PGE2 production were 0.05 µM (0.04-0.07), 0.54 

µM (0.44-0.65) and 1.8 µM (1.34-2.39) respectively, while their potency in term of 

COX-1 inhibition, i.e. TXB2 production, were 5.82 µM (3.25-10.4), 123 µM (76-
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197), 19 µM (15,4-23,5) respectively (Fig. 18). Indeed, based on their activities 

against COX-1 and COX-2 these three RC 0 derivatives could be described as 

COXIB, because the ratio between the IC50s for COX-1 and COX-2 was higher that 

25.  
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Fig. 18 COX-1 and COX-2 inhibition. EC50 were obtained by a nonlinear regression sigmoidal dose-
response curve performed using GraphPad Prism 4.00. compared to the reference compound RC 0. 
COX-1 activity was assessed in term of inhibition of TXB2 production induced by calcium ionophore 
in human washed platelets; COX-2 activity was assessed in terms of inhibition of PGE2 production 
induced by LPS in isolated human lympho-monocytes suspension. Data are expressed as percent 
inhibition of TXB2 and PGE2 release versus untreated controls. Error bars represent mean ± SE of at 
least three independent experiments, each performed in duplicate. 
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Compound 
(a) 

Aggregation 
IC50 (µM) 

(b) 
PGE2 

IC50 (µM) 

(c) 
TXB2 

IC50 (µM) 

(d) 
PGE2/TXB2 

Oxaprozin 0.84 0.11 0.61 0.18 
SWE96 0.04 0.75 0.79 0.95 
SWE61 0.11 0.31 0.14 2.21 
SWE74 28.85 0.05 5.82 0.01 
SWE95 0.53 0.49 0.56 0.88 
SWE27 0.65 0.99 0.08 12.38 
SWE101 0.71 0.51 1.19 0.43 
SWE50 1.94 0.43 0.64 0.67 
SWE47 2.50 3.70 5.74 0.64 
SWE41 0.80 0.27 0.36 0.75 
SWE37 2.14 1.13 0.29 3.90 
SWE60 1.03 0.92 1.25 0.74 
SWE68 2.74 0.01 0.01 1.44 
SWE73 0.46 1.50 0.98 1.53 
SWE86 2.02 0.04 0.05 0.84 
SWE87 0.68 1.40 0.77 1.82 
SWE100 1.47 8.23 4.81 1.71 
SWE104 1.75 0.57 0.94 0.61 
SWE105 0.85 0.22 0.18 1.22 
SWE11 12.79 4.19 4.55 0.92 
SWE21 2.39 3.25 2.12 1.53 
FK40 1.01 0.10 0.02 5.00 
AF872 43.13 0.13 0.098 1.33 
SWE102 10.36 7.81 8.34 0.94 
FEK30 1.02 0.99 3.05 0.32 
FEK36 1.19 3.29 5.55 0.59 
FEK42 1.64 2.49 7.22 0.34 
CP2 0.20 2.37 0.22 10.77 
CP3 0.27 3.96 0.18 22.00 
CP4 0.19 12.28 3.22 3.81 
CP7 6.03 0.57 123.3 0.00 
CP8 8.73 1.79 19.06 0.09 
CP15 3.27 87.42 11.62 7.52 
CP5 0.80 16.31 1.90 8.58 
CP21 0.94 81.45 8.61 9.46 
CP22 0.18 9.03 35.37 0.26 

Tab. 8 (a) Human washed platelets TPα receptor antagonism: inhibition of U46619 induced 
aggregation. (b-c) COX-2 and COX-1 activities determined by in vitro assay for detection of PGE2 
and TXB2 in lympho-monocytes suspension and washed human platelets, respectively. (d) COX-2 
and COX-1 IC50 ratio. 	  
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Discussion  
 
Cardiovascular disease (CVD) is a highly prevalent pathology, and one of the major 

cause of death in recent years. It was estimated that 17.5 million people died for 

CVDs in 2012, representing 31% of all global deaths (WHO, World Health 

Organization). 

In CVD pathologies, one of the main player is TXA2, a product of AA metabolism 

arising from the activity of TXS on COX-derived PGH2 intermediate. TXA2 is the 

major agonist of TPα receptor, which is expressed in prevalence in platelets 

membrane and in many other tissues and cells like smooth muscle cells of the vessel, 

lung, kidney and spleen. From a patophysiological point of view, TPα mediates 

platelet activation and aggregation, thrombus formation and vascular constriction, 

and indeed it can cause stroke and myocardial infarction.  

TPα is a GPCR of the rhodopsin family, and, as the vast majority of proteins in this 

class, it has a highly conserved triplet of amino acids (Glu/Asp-Arg-Tyr), the so 

called E/DRY motif, located at the boundary between TM3 and ICL2. As discussed 

above, these residues received considerable attention with respect to the regulation of 

GPCR conformational states. 

In the first part of my thesis, we tried to shed light on the mechanism of activation of 

GPCRs and on the different conformational states they can adopt, since an emerging 

view from several studies has postulated that GPCR are not simple “on-off” 

switches, but rather adopt a continuum of conformations (Bockenhauer et al., 2011). 

The focus of this part of my thesis was therefore to assess the TPαWT and its 

mutants (TPαE129V and TPαR130V) for their coupling with the cognate G protein 

in order to identify possible different states of the different constructs and verify if, 

in basal condition, they exist in a conformational state that was already theorized in 

the CTC model of Weiss and colleagues. Furthermore, because the comprehension of 

the TP mechanism of activation will help to define its role in CVDs, in the second 

part of my thesis we focused our attention on the identification of new compounds 
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targeting both TPα and the COX-2 enzyme (a key player in inflammatory, fever and 

pain events) in order to obtain a new pharmacological class of agents possessing both 

a selective COX-2 inhibitory activity (COXIB-second generation of NSAIDs) and a 

TP antagonist activity. The combination of these two properties should, hopefully, 

allow us to identify a new nonsteroidal anti-inflammatory drug with the same gastro-

intestinal safety of COXIB, but devoid of their potential CV side effects (Rovati et 

al., 2010). 

As for the first goal of my thesis, i.e. to explore TPα mechanism of action, we used 

the FRET based SPASM technique, a novel tool useful to detect the ligand- or 

mutation-induced stabilization of GPCR conformations that promote interactions 

with G proteins in live cells (Malik et al., 2013), thus capable to distinguish between 

G protein binding from G protein activation. 

Before performing the basal SPASM experiment, i.e. in the absence of agonist, we 

validated the nine fusion proteins obtained from the cloning of TPαWT and the two 

mutants TPαE129V and TPαR130V in the three different SPASM sensors, in term of 

cellular localization and functionality. As expected, laser scanning fluorescence 

microscopy confirmed the correct localization at the plasma membrane, despite the 

Gαq and Gαs sensors showed some protein retention, as evidenced by the presence of 

inclusion bodies into the cytoplasm (Fig. 6). This result is not totally unexpected as 

the SPASM sensors, composed by the FRET acceptor mCitrine and the donor 

mCerulean, also encompass the 27 amino acids of Gαq or Gαs C terminus, which 

might prevent the normal and correct folding of the TPα receptor. Indeed, western 

blot analysis of cell membrane enriched samples confirmed that each SPASM 

sensors is found in the correct cell fraction and has the expected molecular weight 

(Fig. 7). However, the significant reduction of the density of the higher molecular 

weight band in TPαE129V construct, likely to represent a glycosylated form of the 

receptor, with respect to WT seems to confirm a grater difficulty for the mutated 

receptor to reach the plasma membrane. 

The last step of sensors validation was to perform the functional assays: we 

compared the functionality of WT and mutant TPα receptors with the respective ‘no-

pep’ SPASM sensors by constructing U46619-induced total IP and cAMP 

concentration-response curves in order to test Gαq and Gαs signal transduction 
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pathway, respectively. As discussed above, only the ‘no-pep’ fusion proteins are able 

to activate the signal transduction pathway, while in the ‘q-pep’ and ‘s-pep’ sensors 

the presence of the specific Gα component at the C terminus competitively inhibit 

endogenous G protein interactions. In both functional assay the potencies and the 

efficacies of each SPASM sensor were comparable to that of the corresponding TPα 

construct without the SPASM component and there was no change in the 

functionality of the receptor, thus confirming the gain and the loss of function nature 

of TPαE129V and TPαR130V, respectively (Fig. 8-9). 

After SPASM sensors validation, FRET experiments were performed with both ‘q-

pep’ and ‘s-pep’ sensors. As shown in figure 10 all TPα no-pep fusion proteins 

(TPαWT, TPαE129V and TPαR130V no-pep) showed the same basal FRET signal. 

Unexpectedly, TPαE129V q-pep specific FRET value resulted significantly higher 

than the one calculated for the WT and R130V receptors (Fig. 10b). Similar 

behaviour has been obtained for TPαE129V s-pep (Fig. 10c). Indeed, these results 

seem to indicate that TPαE129V mutant, in absence of any agonist stimulation, is 

somewhat more pre-coupled to its cognate Gq and Gs proteins than TPαWT and 

TPαR130V. Considering that TPαE129V is characterized by high agonist binding 

affinity and by an agonist-induced increased efficacy and/or potency in signaling 

without any increase in basal activity, i.e. SAM (Capra et al., 2004), it is possible to 

postulate that this mutant, in basal condition, is in a RG state (inactive coupled to G 

protein), as postulated by the CTC model. On the other hand, TPαR130V confirms to 

be a typical loss of function mutant, indeed reflecting the R (inactive, uncoupled 

form to G protein) conformational state of the CTC model. 

Considering that the mutant SPASM constructs TPαR130V ‘q-pep’ and ‘s-pep’, and 

even more the TPαE129V ‘q-pep’ and ‘s-pep’ are somewhat retained in the 

cytoplasm, to confirm our SPASM data we are planning to apply another FRET-

based technique, i.e. the “acceptor photobleaching fluorescence resonance energy 

transfer”, to our SPASM sensors. In this case FRET measurements will be performed 

before and after the laser-induced acceptor photobleaching, and have the unique 

advantage over the conventional FRET of assaying only surface receptors (Konig et 

al., 2006). In this type of analysis, fluorescence emission by a donor fluorochrome is 

quenched due to direct transfer of excitation energy to an acceptor fluorochrome. 
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Upon laser-induced acceptor photobleaching, this FRET is blunted and the donor 

signal is de-quenched, meaning that there was energy transfer, and, thus, close 

proximity between donor and acceptor fluorophores. On the other hand if the donor 

intensity does not increase after acceptor photobleaching, it means that there was no 

energy transfer, and thus, no proximity between donor and acceptor. Since this 

technique assumes to measure FRET in a defined cell area using laser scanning 

confocal microscopy, this will, hopefully, overcome the problem of protein retention 

of Gαq and Gαs SPASM sensors. Indeed, selecting specific plasma membrane area, 

the FRET signal detected with this technique will be related only to the proteins with 

correct folding and correct cellular localization. This technique has been recently 

used to study homodimerization of TPα receptor in our lab (Capra et al., 2016), and 

has been demonstrated to generate highly reproducible results compared to 

conventional FRET.  

In the second part of my thesis work, I focused on the identification of new 

antinflammatory compounds targeting TPα and COX-2 enzyme. Our working 

hypothesis is that the addition of a TP antagonist component to a COXIB may 

provide protection against all the harmful activities of a classical COXIB due to its 

inhibition of endothelial cell-derived PGI2 production without affecting platelet-

derived TXA2 synthesis (McAdam et al., 1999). In addition, the presence of a 

receptor antagonist will also prevent TP activation by mediators insensitive to aspirin 

or other NSAIDs, such as the nonenzymatic products of AA metabolism 

isoprostanes. 

Today, there is no safe NSAIDs and their main side effects include GI and renal 

toxicity (Salvo et al., 2011). COXIB therapy is currently used in chronic pain control 

in selected patients with higher risks of GI complications but lower risk of CV events 

as an alternative to conventional NSAIDs associated to gastroprotective therapy. 

However, these subjects will experience an increased CV-risk as a result of the 

selective inhibition of endothelial PGI2 production, potentially exposing them to 

serious CV events. Therefore, there is still an unmet need for an adequate pain 

therapy combined with minimal GI damage and CV toxicity. In addition, traditional 

NSAIDs are known to interfere with the cardioprotective effect of low-dose aspirin, 

somehow endangering the benefit of their association (Catella-Lawson et al., 2001). 



Discussion 
 

 
 

60 

Finally, a number of TXA2 biosynthesis inhibitors and/or receptor antagonists have 

been developed and studied, showing their ability to provide additional CV 

protection on top of that of aspirin (Cayatte et al., 2000; Sakariassen et al., 2012), 

even though they have always suffered from being perceived as a more expensive 

alternative to the economical and active aspirin. In particular, the potent and selective 

TP antagonist terutroban (Gaussem et al., 2005) has been shown to be an effective 

antithrombotic agent in peripheral arterial disease (Fiessinger et al., 2010) and to 

improve endothelial function in atherosclerotic patients (Lesault et al., 2011). 

Somehow unexpectedly, the PERFORM Phase III clinical trial with terutroban in 

patients with cerebral ischemic events did not meet the predefined criteria for non-

inferiority to aspirin, while showing similar rates of primary endpoint between the 

two drugs (Bousser et al., 2011). 

We recently reported a full in vitro pharmacological characterization (Hoxha et al., 

2016) of selected molecules from a series of lumiracoxib derivatives previously 

synthetized in collaboration with the University of Torino (Bertinaria et al., 2012). 

The non-selective first generation NSAID naproxen, the most selective COX-2 

inhibitor lumiracoxib and the TP antagonist terutroban have been considered as 

reference compounds. Among the molecules tested, the tetrazole derivative 

compound 18 and the trifluoromethansulfonamido-isoster compound 20, are the most 

active and present a fairly balance between COX-2 inhibitory activity and TP 

receptor antagonism. However, TP receptor inhibitory potency remain in the 

micromolar range, preventing, at this stage, a real in vivo relevance for these 

molecules. The data generated during my thesis work have shown that compounds 7 

and 32 did not possess better TP antagonist properties than the reference compound 

lumiracoxib, while losing most of their potency as COX inhibitors albeit preserving 

COX-2 selectivity. The replacement of 2-fluoro-6-chloro-phenyl substituent present 

on the amino nitrogen in compound 7 with the p-chlorophenylsulfonyl substructure, 

typical of terutroban, generated compound 32 where two phenyl rings are linked by a 

sulfonamide group instead of the classic amino group. However, this modulation did 

not meet our expectations, as compound 32 did not show better properties with 

respect to compounds 18, 20 and 7. These data suggest that COX-2 selectivity might 

be determined by the presence of the 2-amino-5-methyl benzen carboxylic acid 



Discussion 
 

 
 

61 

moiety, while potency could be regulated by the nature of the substituent present on 

the amino nitrogen. The first observation is in agreement with literature data 

highlighting the importance of methyl substitution for COX-2 selectivity (Blobaum 

and Marnett, 2007).  

On the other hand, compounds 18 and 20 have gained in TP receptor antagonist 

activity, with compound 20 statistically different from lumiracoxib in both inhibition 

of human platelets aggregation and IP generation in a transfected system, despite still 

far from required values for an in vivo application. These functional results are in 

good agreement with affinity binding data previously reported for these compounds 

(Bertinaria et al., 2012), and support the strategy of isosteric replacement of the 

carboxylic function of lumiracoxib, either with linear or cyclic substructures for the 

successful generation of molecules endowed with improved TP antagonism. 

Compound 18 and particularly compound 20 displayed better balanced activities, 

better approaching the ideal value of 1 of the ratio between the calculated potencies 

at both pharmacological targets when compared to lumiracoxib or diclofenac. 

However, compound 20 lost most of its COX-2 inhibitory activity and COX 

selectivity compared to compound 18, suggesting that a higher acidity of carboxylic 

acid isoster is needed to maintain a high level of COX-2 inhibition. Concerning 

COX-2 activity, it is interesting to note that shortening the alkyl chain connecting the 

acidic moiety to the benzene ring reflects in a loss of activity (see derivative 7 and 

lumiracoxib). This observation clearly indicates that the acidic moiety should be 

separated from the benzene ring by one carbon atom to reach optimal binding to 

COX-2 pocket, in agreement with the postulated binding pose of diclofenac and 

lumiracoxib at the COX-2 binding site (Rowlinson et al., 2003). Interestingly the 

distance of the acidic unit from the benzene ring might also influence the antagonism 

at the TP receptor (compare derivatives 18 and 20 vs 7 and 32 in table 6). The 

stringent structural requirements for COX-2 inhibition are apparently in contrast with 

the need of compounds endowed with more flexible and extended structures, which 

proved more efficient as TP receptor antagonists. In this context, the use of different 

carboxylic acid bioisosters, together with docking studies on both COX-2 and TP 

receptor models could be envisaged for the development of new molecules (Ballatore 

et al., 2011; Yamamoto et al., 1993). 
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Thus, despite compounds 18 and 20 have gained in TP receptor antagonist activity, 

they are still far from the required values for an in vivo application. However, the 

information derived from the characterization of this first series of molecules has 

been used as the starting point of a new strategy to design more potent molecules that 

might change the way we treat chronic inflammatory diseases. 

Thus in collaboration with Goethe University in Frankfurt, we started to design and 

test a second class of compounds which are, in fact, derivatives of a different NSAID 

that we will call RC 0. From a docking study, conducted by professor Proschak, it 

seems that RC 0 could be a good scaffold to make a new drug able to target both 

COX-2 and the TP receptor. This compound has been shown to be effective and well 

tolerated in the clinical management of signs and symptoms of adult rheumatoid 

arthritis, osteoarthritis, ankylosing spondylitis and soft tissue disorders such as 

bursitis and tendonitis. Even if the literature shows that RC 0 can produce mild 

gastrointestinal complaints such as nausea, diarrhoea, constipation and occasionally 

vomiting similar to other NSAIDs, this drug exhibits a good tolerability profile, in 

both healthy human subjects and in patients with inflammatory painful disorders. 

Furthermore, RC 0 possesses many positive characteristics, for example it has a high 

oral bioavailability (95%) and it has a long plasma half-life (about 50-60 hours), 

which allows a once a day administration. Moreover, RC 0 is >99,5% bound to 

albumin and the quote of unbound RC 0 is increased at higher concentrations after 

single or repeated doses. This increase in free (unbound) RC 0 results in an increase 

in clearance. Finally, RC 0 is metabolised in the liver by oxidative and conjugative 

pathways and is eliminated by the renal and faecal routes. These dual metabolic and 

elimination pathways may reduce the risk of disproportionate drug accumulation and 

toxicity even when RC 0 is used in the elderly and compromised patients. Thus, these 

findings seem to corroborate our choice to use RC 0 as a starting structure for further 

development.   

Among the 35 compounds tested so far, compounds SWE 74, CP 7 and CP 8 are of 

particular interest because of their profile as COXIB; in particular, SWE 74 shows an 

IC50 ratio (COX-2 vs COX-1 inhibition) lower than RC 0, that therefore makes it 

more COX-2 selective than reference compound; CP 7 and CP 8 resulted weaker than 

RC 0 in term of COX-2 inhibition, but, in particular for CP 7, their activity against 
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COX-1 was almost absent. This means that it could be possible to use higher 

concentration without inhibiting COX-1 enzyme, and therefore avoiding GI side 

effects. Unfortunately all these compounds were the weakest TP receptor antagonist 

among the compounds tested. Finally, SWE 96 showed a behaviour that was the 

opposite of that characterizing the previous group: in fact its IC50 for the antagonism 

of the TP receptor is 20 fold lower than RC 0, but it lacks selectivity for the COX-2 

enzyme. 

In light of the structural information gathered from all the compounds tested, and 

again in collaboration with professor Eugen Proschak and colleagues, the next step 

of this project will be to develop a new chemical entity presenting a good balance of 

the COXIB activity and the TP receptor antagonism, for further testing in an in vivo 

model. 
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Overall Conclusions 
 
Despite the recent explosion of GPCR crystal structures of both active (R*) and 

inactive (R) receptor states, a lot of work will still be necessary to fully unravel the 

mechanism(s) through which they become active, as well as in providing a full 

account of the ensemble of basal and active states. Clearly more structural work will 

be necessary to fully understand the highly regulated process of receptor activation, 

but the results of this thesis work supports the CTC as the minimum model to explain 

the complex pharmacological behaviour of GPCRs in general, and of TP receptor 

and its mutants in particular. From the results of my first project it is possible to 

postulate that the TPαE129V (SAM) is in an ‘active-like’ conformation 

corresponding to the RG state (inactive, coupled to G protein) as already suggested 

for the β2-AR (Adrenergic receptor). On the contrary, TPαR130V (loss of function 

mutant) seems to display an inactive R conformation (uncoupled to G protein), as 

envisioned by CTC model. 

In addition, considering the role of TXA2-TP system in CVDs, the elucidation of the 

mechanism/s of TP activation could represent the basis for the design of new 

multitarget antinflammatory compounds. For this reason, the second focus of my 

thesis was to investigate the TPα receptor as a possible target for new chemical 

entities possessing both TP antagonist and selective COX-2 inhibitory activities.  

The results presented demonstrate that modification of existing drugs (lumiracoxib or 

RC 0) can lead to new bivalent multitarget molecules with obvious advantages in 

their pharmacological profiles: a higher TP antagonist potency and a more balanced 

COX-2 selectivity. 

Even if further studies will be necessary to improve the pharmacodinamic profile of 

these molecules before a careful evaluation can be considered in an in vivo animal 

model, the information relative to the structural requirements for TP antagonism and 

COX-2 selective inhibition provide an important starting point for the successful 

development of a new family of GI- and cardiovascular-safe NSAIDs. 
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Materials and Methods 
 

Abbreviations 
BFB                Bromophenol blue (3′,3″,5′,5″tetrabromophenolsulfonphthalein) 

bp  bais pair 

kb  Kilobases 

DMEM Dulbecco’s modified Eagle’s medium 

DTT  Dithiothreitol 

EtBr  Etidium Bromide 

FBS  fetal bovine serum  

HEK293T (ATCC® CRL-3216™) human embryonic kidney  

I-BOP            (1S*) -7-[3- [3-hydroxy-4- (4-iodophenoxy) -1-butenyl]- 7- oxabicyclo  

                        [2.2.1] hept-2-yl]-5 heptenoic acid 

IP  inositol phosphate  

KDa  KiloDalton 

SDS  sodium dodecyl solphate  

Tris  hydroxy-methyl-aminomethane 

HBSS  Hanks Balanced Salt Solution 

U46619          ([1R-[1α,4α,5β(Z),6α(1E,3S*)]]-7-[6-(3-hydroxy-1-octenyl)-   

                       2 oxabicyclo[2.2.1]hept-5-yl]-5-heptenoic acid) 

SQ29,548     ([1S-[1α,2α(Z),3α,4α]]-7-[3-[[2-[(phenylamino)carbonyl]-hydrazino]  

                      methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid) 

 

Materials 
Buffers and media 
- SDS RUNNING GEL 10% 

 4.05 ml H2O  

 3.35 ml Acrylamide/Bis solution 30% (19:1) 
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 2.6 ml LOWER buffer 

 10 µl TEMED 

 100  µl ammomium persolfate (AP) 10%  

- SDS STACKING GEL 

 6.4 ml H2O  

 1 ml Acrylamide/Bis solution 30% (19:1) 

 2.6 ml UPPER buffer 

 10 µl TEMED 

 50 µl ammomium persolfate (AP) 10% 

- LOWER BUFFER: 1.5M Tris + 0,4% SDS pH=8.8 

 17.17 g Tris 

 0.2 g SDS 

 Distilled water up to 100 ml  

 HCl until pH=8.8 

-UPPER BUFFER: 0.5 M TRIS + 0.4% SDS pH=6.8 

 3.02 g Tris 

 0.2 g SDS 

 Distilled water up to 50 ml  

 HCl until pH=6.8 

-AP 10% 

 20 mg AP + 200 µl H2O 

-SDS-PAGE ELECTRODE BUFFER (10X):  

 144.7 g Glycin (1.92 M) 

 30.3 g Tris Base (0.25M) 

 10 g SDS (1%) 

 Distilled water up to 1 L  

-SDS-PAGE BLOTTING BUFFER (1X): 

 17.29 g Glycin (192 M) 

 3.63 g Tris Base (0.025M) 

 240 ml MetOH  (20%) 

 Distilled water up to 1.2 L  

  



Materials and Methods 
 

 
 

67 

-Laemmly Buffer 10X (10 L): 

302.8 g Tris Base  

 1440.3 g Glycin  

 Distilled water up to 10 L  

-Sample Buffer: 

 3 ml Tris-Cl (1M) 

 1 g SDS  

 5 ml glycerol  

 20 mM DTT 

-Pounceau S:  

 0.2 % Pounceau S 

  3% Acetic acid  

-TBS (1X): 

 2.423 g Tris 20mM 

 29.22 g NaCl 500mM 

Distilled water up to 1L 

-TBS-T: 

 TBS 1X  

 0.1 % Tween 20  

-TBS-T 5% milk: 

PBST 1X  

 5% non fat dry milk  

-DNA ladder  

 60 µl DNA Ladder (New England Biolabs) 500ng/µl   

 100 µl Blu 6X for DNA  

 440 µl Distilled water  

-Bromofenol Blu 6X for DNA 

 0.25% BFB  

 30% glycerol 

-Cracking solution (2X) 

 100 mM NaOH 

 10 mM EDTA pH=8 
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 1% SDS  

 10% glycerol 

 BFB  

-Buffer A  

HEPES-buffered saline  

0.2% dextrose (w/v) 

500µM ascorbic acid 

1.5 µg ml-1 aprotinin 

1.5 µg mL-1 leupeptin at pH 7.45.  

 

-HBSS -/- (1X) 

 5.3 mM KCl 

0.4 mM KH2PO4 

138 mM NaCl 

4.1 mM NaHCO3 

0.3 mM Na2HPO4 

-HBSS +/+ (1X) 

 HBSS -/- 1X 

 1.2 mM CaCl2 2H2O 

 0.5 mM MgCl2 6H2O 

 0.4 mM MgSO4 7H2O 

-Lysis A 

 0.2% NaCl 

-Lysis B 

 1.6% NaCl 

 0.2% Sucrose 

 

[d4]PGE2 and [d4]TXB2 deuterated standards were from Cayman Chemical 

(Ann Arbor, MI)  

PGE2 enzyme immunoassay- kit were from Cayman Chemical (Ann Arbor, MI) 

Anion exchange resin AG 1X-8 (formate form, 200–400 mesh) 
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Growth medium  
• Growth medium for E. coli:  

LB-Broth, LB Bouillon 

10 g/L Tryptone  

5 g/L Yeast extracts 

5 g/L NaCl  

LB Ampicillin 0.1 µg/µl 

LB Agar: LD + 1% Agar  

• Growth media for HEK293-T cells: 

• DMEM (Dulbecco's Modified Eagle Medium, Gibco. Thermo Fisher-USA) 

supplemented with 10% FBS and Hepes 20mM. Medium was or was not 

supplemented with Penicillin/Streptomicin. 

• Inositol-free Dulbecco’s modified Eagle’s medium (DMEM) was obtained from 

ICN Pharmaceuticals Inc. (Costa Mesa, CA). 

 

Transfection medium and reagents 
• Opti-MEM® (Thermofisher, MA, USA): rReduced-Serum Medium is an improved 

Minimal Essential Medium (MEM) that allows a reduction of Fetal Bovine Serum 

supplementation by at least 50% with no change in growth rate or morphology.  

• Lipofectamine® 2000 (Thermo Fisher, MA, USA), it is a transfection Reagent that 

has been shown to effectively transfect the widest variety of adherent and suspension 

cell lines. 

• X-tremeGENE™ 9 DNA Transfection Reagent (Sigma Aldrich Co, St Luis, USA) 

is a polymer reagent for transfecting common cell lines. X-tremeGENE 9 DNA 

Transfection Reagent is a blend of lipids and other components supplied in 80% 

ethanol, filtered through 0.2 µm pore size membrane, and packaged in glass vials. 
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Cell lines 

Cell line used is HEK293-T (ATCC® CRL-3216™): an ephitelial human embryonic 

kidney cell line. Originally referred as 293tsA1609neo, is a highly transfectable 

derivative of human embryonic kidney 293 cells, and contains the SV40 T-antigen. 

This cell line is competent to replicate vectors carrying the SV40 region of 

replication. It has been widely used for retroviral production, gene expression and 

protein production.  

HEK293-T cells were cultured in DMEM containing 10% FCS and kept at 37°C in a 

humidified atmosphere of 95% air and 5% CO2. Medium was supplemented with 

20mM HEPES and 50units/ml penicillin, 100µg/ml streptomycin.   

Transfections were performed using the Lipofectamine 2000 or X-tremeGENE™ 

reagent following manufacturer’s instructions. Briefly, cells were plated into tissue 

culture dishes in order to obtain a 50–60% confluence at the time of transfection. 

Transfection has been done with an optimized 2:1 Lipofectamine /DNA ratio or 10µl 

X-tremeGENE TM/2µg DNA. 

 

Bacterial strains and plasmids 
Epicurian Coli (E. Coli) chemical DH5α competent cells were from ThermoFisher, 

Invitrogen company. 

Genotype: F- Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rk-, 

mk+) phoA supE44 λ-thi-1 gyrA96 relA1. 

MAX Efficiency® DH5α™ Competent Cells are a well-known, versatile strain that 

can be used in many everyday cloning applications. In addition to supporting 

blue/white screening, recA1 and endA1 mutations in DH5α™ cells increase insert 

stability and improve the quality of plasmid DNA prepared from minipreps. 

Features of MAX Efficiency® DH5α™ Competent Cells include: transformation 

efficiency up to 1 × 10
9
 transformants/µg plasmid DNA, high plasmid yield from the 

DH5α™ (endA1) E. coli strain, Blue/white screening capable (lacZΔM15), Greater 

insert stability due to the presence of recA1.  

The Φ80lacZΔM15 marker provides α-complementation of the β-galactosidase gene 

from pUC or similar vectors, and can therefore be used for blue/white screening of 
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colonies on bacterial plates containing Bluo-gal or X-gal. DH5α™ cells are capable 

of being transformed efficiently with large plasmids, and can also serve as a host for 

the M13mp cloning vectors if a lawn of DH5α-FT™, DH5αF′™, DH5αF′IQ™, 

JM101, or JM107 is provided to allow plaque formation. These cells are suitable for 

the construction of gene banks or for the generation of cDNA libraries using 

plasmid-derived vectors. 

 

Oligonucleotides 
TPα (KpnI-) for:  CCTGGGGCTGCTGGTGACCGGAACCATCGTGGTGTCCCAGC 

TPα (KpnI-) rev:  GCTGGGACACCACGATGGTTCCGGTCACCAGCAGCCCCAGG 

HindIII-3HA for: CCGCCGAAGCTTATGTACCCATACGATGTTCC 

KpnI-TPα rev: CCGCCGGGTACCCTGCAGCCCGGAGCGCTGC 

TPα (KpnI-) seq1for: ATTACCCTGGAGGAGAGACG 

TPα (KpnI-) seq2for: CCTGGCTGCCGTCTCTGTCG 

TPα (KpnI-) seq3rev: GATACCCAGGTAGCGCTCTG  

TPα (KpnI-) seq4for: CGCTACACCGTGCAATACCC 

 

Plasmids 
pcDNA5 plasmid is a mammalian centromeric expression vector composed by 5446 

bp. In the sequence is present the CMV promoter, ampicillin and neomycin-

resistance markers.  

 

pSC3.2 (pcDNA3 3HATPαWT KpnI-) 

Centromeric vector derived from pcDNA3 3HATPαWT. It has been created by site-

directed mutagenesis in order to delete the restriction enzyme sequence for KpnI.  

 

pSC4.4 (pcDNA5 3HATPαWT KpnI- no pep) 

Centromeric vector derived from pcDNA5 β3AR_mCit_10nm_mCer_nopep.  
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3HATPαWT KpnI- amplified by PCR from pSC3.2, digested with HindIII/KpnI, has 

been cloned in pCDNA5 β3AR_mCit_10nm_mCer_nopep, previously digested with 

HindIII/KpnI.  

 

pSC5.4 (pcDNA5 3HATPαWT KpnI- q pep) 

Centromeric vector derived from pcDNA5 β3AR_mCit_10nm_mCer_nopep.  

3HATPαWT KpnI- amplified by PCR from pSC3.2, digested with HindIII/KpnI, has 

been cloned in pCDNA5 β3AR_mCit_10nm_mCer_qpep, previously digested with 

HindIII/KpnI.  

 

pSC7.1 (pcDNA5 3HATPαWT KpnI- s pep) 

Centromeric vector derived from pcDNA5 β3AR_mCit_10nm_mCer_nopep.  

3HATPαWT KpnI- amplified by PCR from pSC3.2, digested with HindIII/KpnI, has 

been cloned in pCDNA5 β3AR_mCit_10nm_mCer_spep, previously digested with 

HindIII/KpnI. 

 

pSC10.1 (pcDNA3 3HATPαE129V KpnI-) 

Centromeric vector derived from pcDNA3 3HATPαE129V. It has been created by 

site-directed mutagenesis in order to delete the restriction enzyme sequence for KpnI.  

 

pSC11.1 (pcDNA5 3HATPαE129V KpnI- no pep) 

Centromeric vector derived from pcDNA5 β3AR_mCit_10nm_mCer_nopep.  

3HATPαE129V KpnI- amplified by PCR from pSC10.1, digested with HindIII/KpnI, 

has been cloned in pCDNA5 β3AR_mCit_10nm_mCer_nopep, previously digested 

with HindIII/KpnI.  

 

pSC12.2 (pcDNA5 3HATPαE129V KpnI- q pep) 

Centromeric vector derived from pcDNA5 β3AR_mCit_10nm_mCer_qpep.  

3HATPαE129V KpnI- amplified by PCR from pSC10.1, digested with HindIII/KpnI, 

has been cloned in pCDNA5 β3AR_mCit_10nm_mCer_qpep, previously digested 

with HindIII/KpnI.  
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pSC7.1 (pcDNA5 3HATPαE129V KpnI- s pep) 

Centromeric vector derived from pcDNA5 β3AR_mCit_10nm_mCer_spep.  

3HATPαE129V KpnI- amplified by PCR from pSC10.1, digested with HindIII/KpnI, 

has been cloned in pCDNA5 β3AR_mCit_10nm_mCer_spep, previously digested 

with HindIII/KpnI. 

 

pSC19.2 (pcDNA3 3HATPαR130V KpnI-) 

Centromeric vector derived from pcDNA3 3HATPαR130V. It has been created by 

site-directed mutagenesis in order to delete the restriction enzyme sequence for KpnI.  

 

pSC20.1 (pcDNA5 3HATPαR130V KpnI- no pep) 

Centromeric vector derived from pcDNA5 β3AR_mCit_10nm_mCer_nopep.  

3HATPαE129V KpnI- amplified by PCR from pSC19.2, digested with HindIII/KpnI, 

has been cloned in pCDNA5 β3AR_mCit_10nm_mCer_nopep, previously digested 

with HindIII/KpnI. 

 

pSC21.1 (pcDNA5 3HATPαR130V KpnI- q pep) 

Centromeric vector derived from pcDNA5 β3AR_mCit_10nm_mCer_qpep.  

3HATPαE129V KpnI- amplified by PCR from pSC19.2, digested with HindIII/KpnI, 

has been cloned in pCDNA5 β3AR_mCit_10nm_mCer_qpep, previously digested 

with HindIII/KpnI. 

 

pSC22.2 (pcDNA5 3HATPαR130V KpnI- s pep) 

Centromeric vector derived from pcDNA5 β3AR_mCit_10nm_mCer_spep.  

3HATPαE129V KpnI- amplified by PCR from pSC19.2, digested with HindIII/KpnI, 

has been cloned in pCDNA5 β3AR_mCit_10nm_mCer_spep, previously digested 

with HindIII/KpnI. 

 

RECOMBINANT DNA TECHNIQUES: 

Polymerase chain reaction (PCR) 
PCR is carried out using plasmid DNA as template. In this work it has been used Pfu 

Ultra II polymerase (Agilent technologies).  
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The reaction mix contain:  

 10 ng DNA template 

5 µl DNA polymerase buffer 1X 

 1 µl oligonucleotides 20 pmoles each  

 5µl dNTPs 2 mM each 

1 unit DNA Polymerase  

 2,5 µl DMSO 

Water up to 50µl  

 

Reactions are performed using iCycler Thermal Cycler (Biorad) in these conditions:  

 1. first denaturation 5 min at 95°C 

2. denaturation 30 sec at 95°C 

3. annealing 1 min at the Tm of the oligonucleotides  

 4. extension 2 min per kb at 72°C  

 5. repeat steps from 2 to 4 for 30  times  

 6. final extension 10 min at 72°C  

Tm is the melting temperature. Conditions can be modified according to the 

oligonucleotides used.  

 

Site-directed mutagenesis PCR 
We used kit “QuickChangeTM Site-Directed Mutagenesis Kit” provided by 

Stratagene.  

The reaction mix contain: 

 10 ng plasmidic DNA 

 5 µl DNA Polymerase buffer 10X  

 1 µl oligonucleotides (125 ng/µl) 

 5 µl dNTPs 2 mM each 

 1 µl Turbo DNA Polymerase (2,5 U/µl ) 

 water up to 50 µl   

Reactions are performed using iCycler Thermal Cycler (Biorad) in these conditions: 

 1. first denaturation 30 sec at 95°C 

2. denaturation 30 sec at 95°C 
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3. annealing 1 min at 55°C 

 4. extension 2 min per kb at 72°C  

 5. repeat steps from 2 to 4,  18 times 

After the end of reaction, the mix are digested with 1µl of DpnI (10 U/µl) for 1  hour 

at 37°C.  

  

DNA digestion with restriction enzymes and DNA purification 
DNA is digested with specific endonucleases in the conditions suggested by Thermo 

Fisher Scientific. Samples are added 1/6 of the volume of BFB solution (6X: 0.25% 

BFB in 30% glycerol), before loading on agarose gel (0.8%-2%). DNA is visualized 

by Ethidium bromide at the final concentration of 5 mg/ml. To identify the size of 

the DNA fragments, it is loaded a Molecular Weight Marker by New England 

Biolabs. DNA is purified from agarose gel using the Gel Extraction Kit (Promega). 

 

Ligation 
A suitable amount of digested DNA and cleaved vector are ligated using Quick 

ligase (New England Biolabs). 

 

Preparation of competent cells and transformation of E. coli 
E. coli DH5αTM is inoculated into 10 ml of LB medium and grown overnight at 37 

°C without agitation. The day after the culture is inoculated into 1 L of LB and 

grown at 37 °C with agitation until the O.D (l=600 nm) reach 0.4-0.5. At this point 

cells are kept on ice for 10 minutes, centrifuged at 6000 rpm for 15 minutes at 4 °C 

and washed two times with 1 L and 500 ml respectively of water ice-cold. 

Competent cells are fractioned in 50 µl aliquotes and stocked at -80° C. To transform 

these cells 0.5-1 mg of DNA is added (30 minutes in ice). The bacteria was then 

subjected to thermic shock at 37 °C for 1 minute or 42 °C for 30 seconds. Cells were 

transferred again on ice for 2 minutes. Finally, cells are grown in 1 ml of LB medium 

(without antibiotics) for 1 h at 37 °C and subsequently plated on selective solid 

medium. Cells are grown overnight at 37 °C.  
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Cracking procedure of plasmidic DNA extraction from E. coli  
Cracking procedure is a quick protocol to test the presence of plasmid into E. coli 

cells. Cracking solution was prepared and can be stored at RT up to 2 months. 25 µl 

of deionized water was transferred into eppendorf tubes (1.5 ml) for each colony of 

interest. The colony is picked up using p200 pipette and resuspended in deionized 

water. 25 µl of cracking solution was added, and quickly mixed by vortex. The 

solution was incubated at RT for 5 minutes and then visualized in gel agarose. 

 

Plasmidic DNA preparation from E. coli  
QIAfilter Plasmid Kits by Qiagen (Hilden, Germany): cells were grown o/n in 3 ml 

of LB+Ampicillin liquid media, extraction was performed following the standard 

protocol provided. An optimal DNA concentration is about 800 ng/ml. 

 

Preparation of cell membranes for western blotting analysis 
HEK293-T cells were plated in p100 plates of 60 cm2 area. The day after, 

transfection was performed when HEK293-T were at 30% confluence. After two 

days from transfection, cell membranes preparation was performed for western 

blotting analysis.  HEK293-T cells were washed one time with 5 ml PBS (4°C - non 

sterile). Cells were resuspended in 800 µl 10 mM Hepes supplemented with 

Complete 1x (protease inhibitor cocktail tablets provided by Roche) and scraped on 

ice. Cells were then collected into potter. Plates w ere washed with 800 µl 10 mM 

Hepes supplemented with Complete 1x and, again, collected into potter. Samples 

were pottered and centrifuged at 800 g 4°C, 10 minutes. Supernatants were 

transferred in tubes, centrifuged at 27000 g, 4°C for 30 minutes and pellet were  

resuspended into Hepes 10 mM + Complete 1x. Samples are stored at -80 °C.   

 

SDS-PAGE and WESTERN BLOT 

SDS-PAGE was performed with 6% acrylamide/bis-acrylamide gel (30%) for equal 

amounts of proteins in each sample; electrophoresis was performed in SDS-PAGE 

running buffer. Proteins were electro-transferred on nitrocellulose membrane 

(Biorad) in a Transfer buffer overnight at 40mA or 2 hours at 180mA. Nitrocellulose 

filters were saturated with 5% non-fat dry milk in TBST for 1 hour and incubated 
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with primary antibody in 3% non-fat dry milk o/n at 4°C. Filters were washed six 

times with TBST (5 minutes) and were incubated with secondary antibody again in 

5% non-fat dry milk. Filters were washed again six times with TBST, the 

chemioluminescence reaction was performed and the signals were detected with 

Clarity™ Western ECL Blotting Substrates (Thermo Fisher Scientific) through 

ODYSSEY Fc LI-COR.  

Anti-HA antibody (anti-HA) and secondary antibodies anti-mouse were both diluted 

1:3000.  Stripping of membrane was performed for actin detection. Membranes were 

incubated for 10 minutes at RT with glycine 0.1 M, then with TRIS 0.1 M for 10 

minutes at RT. After that, membranes were washed 2 times with TBS-T (10-15 

minutes each washing) and saturated with 5% non-fat dry milk in TBST (1 hour). 

Membranes were incubated with primary antibody (Anti-actin) in 3% non-fat dry 

milk o/n at 4°C. Membranes were washed six times with PBST for 5 minutes each 

and were then incubated with secondary antibody (Anti-mouse) again in 5% non-fat 

dry milk. Membranes were washed six times with TBS-T for 5 minutes and finally 

visualized using Clarity™ Western ECL Blotting Substrates through ODYSSEY Fc 

LI-COR. 

 

Western blot antibodies: 

Primary antibody: Dilution Secondary antibody (SIGMA) Dilution 

a-HA (Biolegend) 1:3000 GAM 1:3000 

a-actin 1:5000 GAM 1:3000 

 

 

Total Inositol Phosphate (IP) determination  
The functional activity of the receptor was assessed 48h after transfection by 

measurement of the total inositol phosphates (IP) accumulation 

(phosphatidylinositol 3, 4, 5-trisphosphate). Indeed if the agonist binds the receptor, 

it becomes in active state. Confluent cells were labeled with 0.5 µCi of [myo-2-3H] 

inositol (17 Ci/mmol - PerkinElmer Life and Analytical Sciences, Boston, MA) for 

24 h in serum-free, inositol-free DMEM (ICN Pharmaceuticals Inc., Costa Mesa, 

CA) containing 20 mM HEPES, pH 7.4, and 0.5% (w/v) Albumax I. Cells were 
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washed and incubated with serum-free, inositol-free DMEM containing 25 mM LiCl 

for 10 min and then incubated with different concentrations of U46619 (Cayman 

Chemical, Ann Arbor, MI). After 30 min, the reaction was stopped by aspiration of 

the supernatant and the addition of 0.75 ml of 10 mM formic acid. After 30 min of 

incubation at room temperature, the solution was collected in 3 ml of 5 mM NH4OH, 

pH 8 to 9, and separated with an anion exchange AG 1X-8 column, formate form, 

200 to 400 mesh (Bio-Rad, Hercules, CA). Free inositol and glycerophosphoinositol 

were washed with 40 mM ammonium formate/formic acid buffer at pH 5, and total 

IP were eluted with 4 ml of a 2 M ammonium formate/formic acid buffer at pH 5. 

250 ml aliquots of the total IP fraction were counted by liquid scintillation.  

 

cAMP Assay 

cAMP assay detects cAMP accumulation: it was performed 48 hours after 

transfection using cAMP HTRF Cis Bio, UK. In briefly, confluent cells at 37°C were 

washed with PBS 1x, cells are incubated for 1 hour at 37°C with 5mM EDTA in 

PBS. Cells then are centrifuged at 1000rpm for 5 minutes and resuspended into 1ml 

of DMEM. Cells are counted and plated into 96 wells plates (100 000cell/well into 

100 µl/well). The day after, cells are preincubated with 100 µM BAPTA/AM for 60 

min, washed with PBS and finally stimulated with different concentrations of the 

U46619 for 1 hour. Cells are treated with cAMP-D2 and anti-cAMP cryptate in 

stimulation buffer SB (SB 1 mM IBMX into physiological buffer) for 1 hour at RT. 

Reaction runs at 4°C for 1 hour, follow by 1 min centrifugation at 1000 rpm. 

Supernatants were finally assayed immediately after collection according to the 

manufacturer’s instructions: λ excitation=320 nm and the λ of emission detected are 

620nm and 665 nm. 

 

Live Cell Microscopy  
Cells were imaged with Axiovert 200 (ZIESS) microscope equipped with a Fluoarc 

N HBO 103 lamp and AxioCam HRm device camera (Photometrics). Cells were 

imaged on 6 well plates, 32 h after transfection. 
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FRET Measurements	  
FRET spectra were generated by exciting cells at 430 nm (spectral band pass, 8 nm), 

and scanning emission from 450–600 nm (band pass, 4 nm) on a FluoroMax- 4 

fluorometer (Horiba Scientific). For mCitrine-only measurements, cells were excited 

at 490 nm (band pass, 8 nm), and emission was recorded from 500–600 nm (band 

pass, 4 nm). Each sample, resuspended in buffer A, 37 °C, was collected within 30 

min. 

 

Live Cell FRET Ratio  
OD measurements were taken for untransfected and transfected cells in buffer A; 

appropriate volumes of media were added to achieve an A600 nm reading of 0.3 

(Bio-Rad SmartSpec Plus Spectophotometer, 3-mm path length, quartz cuvette). The 

corrected fluorescence emission spectra were normalized to mCerulean emission 

(475 nm). ‘FRET ratio’ was obtained by calculating ratio mCitrine (525 

nm)/mCerulean (475 nm). 

 

Isolation of human platelets and analysis of platelet aggregation.   
CPD-anticoagulated human blood (Citrate Phosphate Dextrose solution: sodium 

citrate, dihydrate, 26.3 g/L; dextrose, monohydrate, 25.5 g/L; citric acid, anhydrous 

3.27 g/L; monobasic sodium phosphate, monohydrate, 2.22 g/L) was collected 

following informed consent from healthy volunteers of both genders aged from18 to 

60 years that had no history of CV disease. Blood was treated with 100 µM 

acetylsalicylic acid and 25 ml buffy coat was centrifuged at 280 g for 15 min at room 

temperature to obtain platelet-rich plasma (PRP), which was further centrifuged at 

650 g for 10 min at room temperature. The pelleted platelets were suspended in 8 ml 

washing buffer (mM composition: citric acid monohydrate 39, glucose monohydrate 

5, KCl 5, CaCl2 2, MgCl2 x 6H2O 1, NaCl 103, pH 6.5), centrifuged at 650 g for 15 

min at room temperature, and finally resuspended in 15 ml of Hank’s Balance Salt 

Solution (HBSS): CaCl2·2H2O 0.185 g/L; KCl 0.40 g/L; KH2PO4 0.06 g/L; 

MgCl2·6H2O 0.10 g/L; MgSO4·7H2O 0.10 g/L; NaCl 8.00 g/L; NaHCO3 0.35 g/L; 

Na2HPO4 0.048 g/L; D-glucose 1.00 g/L). The concentration was adjusted at 

approximately 2x108 cell mL-1 and platelet aggregation was assessed with a Chrono-
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Log aggregometer (Mascia Brunelli, Milano, Italy), using the Born Turbidimetric 

assay at 37°C in a 0.5 mL sample. After incubation with drug or vehicle Dimethyl 

sulfoxide (DMSO), maximum 0.2%, v:v) for 5 min at 37°C, platelet aggregation was 

induced by U46619 (0.1 µM) under continuous stirring and monitored for 5 minutes. 

Experiments were repeated at least in triplicate using platelets from different 

subjects. The anti-aggregating activity of each compound emerged by comparison 

with a control aggregation, recorded immediately before and after drug testing due to 

the inter-subject variability of the platelet response to the agonist challenge. 

 

COX-2 inhibitory activity (lympho-monocytes)  
The study of COX-2 activity was carried out in a lympho-monocytes HBSS 

suspension, in order to avoid compound binding to plasma-protein. Lympho-

monocytes were isolated from buffy coat (diluted in NaCl 0.9% 1:1) Ficoll-Paque 

gradient density centrifugation (400 g for 30 min at 10°C); enriched cell ring was 

collected and twice saline washing (280 g for 15 min at 10°C) performed to remove 

the remaining suspended platelets. Soon after, a lysis buffer  (NaCl 0.2% 

weight/volume, w/v) was added to remove the remaining erythrocytes, immediately 

balanced with an equal volume of equilibrating solution (NaCl 1.6% + saccharose 

0.2%, w/v). Lympho-monocytes were then resuspended in HBSS and COX-2 

inhibition was evaluated quantifying PGE2 production in 24h LPS challenged 

preparations pretreated (30 min, 37°C) with increasing concentration of the tested 

compound. PGE2 determination was carried out by EIA, according to the 

manufacturer’s instructions, or mass spectrometry as described below. 

 

COX-1 inhibitory activity (human platelets) 
Human platelets were recovered from PRP after centrifugation at 650 g for 15 min at 

room temperature. Their concentration was adjusted at 2 x 108 cells mL-1. Platelets 

were treated with increasing concentration of the tested compounds, and incubated at 

37°C in a Dubnoff bath for 30 min. In order to stimulate the TXB2 production by 

platelet degranulation, 2µM calcium ionophore A23187 was added to each test tube 

sample for 10 min at 37° C. Following centrifugation at 15000 g for 5 min, TXB2 
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production was evaluated in the supernatant by mass spectrometry as described 

below.  

 

Mass spectrometry determination of eicosanoids 
PGE2 and TXB2 concentrations were evaluated by liquid chromatography-tandem 

mass spectrometry using the isotopic dilution of the deuterated internal standards 

[d4]PGE2 and [d4]TXB2.  Briefly, samples were spiked with internal standards and an 

aliquot injected into a liquid chromatograph Agilent 1100 (Agilent Technologies, 

Santa Clara, CA). Chromatography was carried out using a reverse phase column 

(Synergi 4 µm Hydro-RP, 150x2 mm; Phenomenex, Torrance, CA). The column was 

eluted with a linear gradient from 25 to 100% solvent B (Methanol: Acetonitrile, 

65:35) over 10 min (Solvent A: 0.05% acetic acid pH 6 with ammonia). The effluent 

from the High-performance liquid chromatography (HPLC) column was directly 

infused into an API4000 triple quadrupole operated in negative ion mode, monitoring 

the following specific transitions: m/z 351>271 for PGE2, m/z 355>275 for 

[d4]PGE2, m/z 369>169 TXB2 and m/z 373>173 for [d4]TXB2. Quantitation was 

carried out using standard curves obtained with synthetic standards (Cayman 

Chemical, Ann Arbor, MI). 

 

Determination of dissociation constants 
The ionization constants of compounds were determined by potentiometric titration 

with the GLpKa apparatus (Sirius Analytical Instruments Ltd., Forest Row, East 

Sussex, UK) as previously described (24). Briefly, because of the low aqueous 

solubility, compounds required titrations in the presence of MeOH as co-solvent: at 

least five different hydro-organic solutions (ionic strength adjusted to 0.15m with 

KCl) of the compounds (20 mL, ca. 0.5 mM in 20–60 wt% MeOH) were initially 

acidified to pH 1.8 with 0.5N HCl; the solutions were then titrated with standardized 

0.5N KOH to pH 12.2 at 25°C under N2. 

The apparent ionization constants in the H2O–MeOH mixtures (psKa) were obtained 

and aqueous pKa values were calculated by extrapolation to zero content of the co-

solvent, following the Yasuda–Shedlovsky procedure (Avdeef et al., 1993). 
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Determination of lipophilicity descriptors 
Calculated partition coefficients of compounds in neutral form (clog P) were 

obtained by using Bio-Loom for Windows v.1.5 (BioByte Corp. Claremont, CA, 

USA). 

The distribution coefficient at pH 7.4 (log D7.4) of the compounds between n-octanol 

and water was experimentally obtained by shake-flask technique at room 

temperature. In the shake-flask experiments phosphate 50 mM buffer with ionic 

strength adjusted to 0.15 M with KCl, was used as aqueous phase; the organic (n-

octanol) and aqueous phase were mutually saturated by shaking for 4 h. The 

compounds were solubilised in the buffered aqueous phase at a concentration of 

about 0.1 mM and an appropriate amount of n-octanol was added. The two phases 

were shaken for about 20 min, by which time the partitioning equilibrium of solutes 

is reached, and then centrifuged (1100 g, 10 min). The concentration of the solutes 

was measured in the aqueous phase by HPLC. Each log D value is an average of at 

least six measurements. All the experiments were performed avoiding exposure to 

light. 

 

Solubility assessment in phosphate buffered saline (PBS) and simulated 

gastric fluid (SGF) 
The solubility of compounds 7, 18, 20, 32 and lumiracoxib was studied in simulated 

gastric fluid (SGF-without pepsin) and phosphate buffered saline (PBS) 0.05 M to 

evaluate the solubility of compounds in acid (pH 1.5 for SGF) and neutral conditions 

(7.4 pH for PBS) to simulate the gastric and the body fluid environment respectively 

(Table 5) (Kerns et al., 2008). 

Stock solutions of compounds lumiracoxib, 7, 18, 20 and 32 (10 mM) were prepared 

in DMSO. Eight point calibration standards (1, 5, 10, 20, 50, 100, 200 and 500 µM) 

were prepared from each 10 mM stock solution by dilution in HPLC mobile phase 

and analyzed by HPLC. 100 µL of each test compound (stock solution 10 mM in 

DMSO) were added to 1900 µL of PBS and SGF in glass tubes in triplicate and 

shaken for 90 min at 100 rpm at room temperature. The samples were filtered using 

0.45 µL PTFE filters and analysed by HPLC. 
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HPLC analysis were performed with a HP 1100 chromatograph system (Agilent 

Technologies, Palo Alto, CA, USA) equipped with a quaternary pump (model 

G1311A), a membrane degasser (G1379A), a diode-array detector (DAD) (model 

G1315B) integrated in the HP1100 system. Data analysis was processed using a HP 

ChemStation system (Agilent Technologies). The analytical column was a Tracer 

Excel C18 (250×4.6 mm, 5 µm; Teknokroma). The mobile phase consisting of 

acetonitrile/HCOOH 0.1% 70/30 (v/v) at flow-rate = 1.0 mL/min. The injection 

volume was 20 µL (Rheodyne, Cotati, CA). The column effluent was monitored at 

254 nm and 280 nm referenced against a 800 nm wavelength. Quantitation of 

compounds was done using calibration curves of compounds; the linearity of the 

calibration curves was determined in a concentration range of 1-500 µM (r2 > 0.99). 

 

Stability in human serum 
A solution of each compound (10 mM) in DMSO was added to human serum (from 

human male AB plasma, USA origin, sterile-filtered, Sigma-Aldrich) preheated at 

37°C; the final concentration of the compound was 100 µM. Resulting solution were 

incubated at 37 ± 0.5°C and at appropriate time intervals (2, 6, 24 hours) 300 µL of 

the reaction mixture was withdrawn and added to 300 µL of acetonitrile containing 

0.1% trifluoroacetic acid in order to deproteinize the proteins. Sample was sonicated, 

vortexed and then centrifuged for 10 min at 2150 g, The clear supernatant was 

filtered by 0.45 µm PTFE filters (Alltech) and analyzed by RP-HPLC with method 

previously described for solubility assessment. 

 

Statistical analysis 
pA2 were calculated accordingly to the following set of equations as described in 

Prism 5 (GraphPad Software Inc., San Diego, CA):  

1) Agonist response = Bottom + (Top-Bottom)/(1+10^((LogEC50-X)*HillSlope)) 

2) Antagonist response = Bottom+(Top-Bottom)/(1+(Antag/FixedAg)^HillSlope) 

3) Antag = (10^LogEC50)*(1+((10^X)/(10^(-1*pA2)))^SchildSlope) 

Where X is the Log concentration of the agonist, Bottom is the response when X = 0, 

Top is the response for an infinite concentration of X, EC50 is the concentrations of 

the agonist that produce half of the response, Hill Slope is the slopes of the curves, 
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FixedAg is the initial fixed concentration of the agonist used in the determination of 

the antagonist inhibition curve. The concentration-response curves of platelet 

aggregation were analysed by Prism-5 software utilizing the four-parameter logistic 

model as described in the ALLFIT program (De Lean et al., 1978). Parameter errors 

are all expressed in percentage coefficient of variation (% CV) and calculated by 

simultaneous analysing at least three different independent experiments performed in 

duplicate or triplicate. P<0.05 was set as the statistical level of significance. All 

curves shown are computer generated. 
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