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Abstract. In this paper we introduce a new notion of starlikeness for a class of
functions of hypercomplex variable and give several analytic equivalent conditions,
which resemble the analogous ones in the holomorphic case. Furthermore we also give
a characterization of starlikeness in terms of non-vanishing of a suitable analogue of
Hadamard product which also generalizes the similar results in the complex analytic
case.
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1. Introduction

The notion of starlikeness has a central role in many different subjects of geometry
and topology and is particularly important in geometric function theory. This very
rich topic has been investigated in several papers (see [3] and the references therein)
often following different approaches by many mathematicians, also in the hypercomplex
setting (see [4],[5]). In the present paper we introduce a new definition of starlikeness
for a class of functions of hypercomplex variable, which is inspired by a geometric point
of view and which aims at providing tools for a generalization of the usual notions in
the conformal and holomorphic setting.
Assume that K is an associative, unitary real algebra with division.

Definition 1.1. Assume f is an injective slice–regular function in the unit ball B(0, 1)
of K such that f(0) = 0. Then we say that f is starlike with respect to 0 if and only if,
for any real r such that 0 ≤ r < 1, then (1 − t)f(B(0, r)) ⊆ f(B(0, r)) for any real t
with 0 ≤ t ≤ 1.

Since the class of functions we investigate can be regarded as (right) hypercomplex
analytic functions, the characterization of the geometric aspects of starlikeness we intro-
duce can be provided in terms of inequality conditions or using an approach involving
the power series expansions.

In both cases, the results obtained generalize the corresponding ones in the complex
holomorphic or analytic cases.

In particular, after applying the regular product ∗ as introduced in [8] for slice–regular
functions, we are able to prove
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Proposition 1.2. Assume f is a slice–regular starlike function in the unit ball B(0, 1)
in K, such that f(0) = 0 then

(1.1) <e [(qf ′(q)) ∗ f(q)−∗] > 0

Finally, with a suitable application of the Hadamard product ∗H in the hypercomplex
case, if we denote by SK the sphere of imaginary units of K, i.e. SK = {q ∈ K : q2 = −1},
we obtain this generalization of the result in [10]

Proposition 1.3. If a slice–regular function f : B(0, 1) → H such that f ′(0) = 1 is
starlike with respect to 0 then for any s ∈ R and for any I ∈ SK it turns out that

(1.2) q−1[f(q) ∗H [(1− q)−2(q(1− sI) + q2sI)] 6= 0

or equivalently, if g is any primitive of q−1f(q),

(1.3) q−1[g(q) ∗H (1− q)−3(q(1− sI) + q2(1 + sI)) 6= 0.

Viceversa, if for a slice–regular function f and any primitive g of q−1f(q) conditions
(1.2) or (1.3) hold, then f is starlike with respect to 0.

2. Background and Preliminary Results

Let Ω be a topological vector space over R.

Definition 2.1. A subset E ⊂ Ω is said to be starlike or star-shaped with respect to a
point w0 ∈ E if the linear segment joining w0 to every other point w ∈ E lies entirely
in E. In formula, E is starlike with respect to w0 ∈ E if and only if, ∀w ∈ E, ∀t ∈
R, 0 ≤ t ≤ 1, tw + (1− t)w0 belongs to E.

Definition 2.2. A subset E ⊂ Ω is said to be convex if it is starlike with respect to
each of its points; i.e. the linear segment joining any two points in E lies entirely in E.

In the present section we mainly deal with subsets of the topological vector spaces
over R such as RN or CN for some N ∈ N, which turn out to be also equipped with the
standard Euclidean (Hermitian) product (respectively).

Definition 2.3. Let f : X → Y be a function and assume Y is a topological vector
space over R. We say that f is a

• starlike function if f(X) is a starlike set in Y (with respect to a point f(x0));
• convex function if f(X) is a convex set in Y .

Remark 2.4. The notion of starlikeness and convexity for sets or functions is invariant
for rigid motions in a topological vector space.

Assume X and Y are open sets in RN or CN (for some N ∈ N) such that 0 ∈ X.
We may always assume that f(0) = 0, since otherwise one can consider f1 = f − f(0).
With this in mind, the condition of starlikeness for f with respect to 0 ∈ f(X) can be
also summarized in the following way
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(2.1) (1− t)f(X) ⊆ f(X) ∀t ∈ [0, 1]

which allows us to use the following notation

(2.2) (1− t)f ≺ f

(commonly adopted for subordination relation of functions) and say that the function
h, with h(t, x) = (1− t)f(x), is subordinate to f .

If in addition we assume that f : X → Y is an injective starlike function (such that
f(0) = 0) then the function

(2.3) Φt(x) := f−1((1− t)f(x))

is well-defined; furthermore, if f is a continuous function, so is Φ. With B(0, r) we
indicate the open disc in X centered at the origin of radius r, namely B(0, r) = {x ∈
X : |x| < r}. We observe that Φ0(x) = x for any x ∈ X and if

Ar := f(X ∩B(0, r))

for a positive r, then (1− t)Ar ⊆ Ar and hence

Φt(Ar) = f−1((1− t)Ar) ⊆ f−1(Ar) = X ∩B(0, r);

in other words, if |x| = r1 < r and x ∈ X then |Φt(x)| ≤ r1 = |x|. Furthermore, since
for t 6= 0, (1 − t)Ar ⊂⊂ Ar it follows that |Φt(x)| = |x| if and only if t = 0, which
actually means Φ0(x) = x. Therefore we can summarize the previous considerations in
the following

Lemma 2.5. If h(t, x) = (1− t)f(x), is subordinate to f and f is injective in an open
set of RN or CN (for some N ∈ N) containing 0 and such that f(0) = 0, then the
function Φt(x) := f−1((1− t)f(x)) is well defined and it turns out that

(2.4) ||Φt(x)|| ≤ ||x||
where || · || is the (induced) Euclidean norm. Furthermore, equality in (2.4) holds if and
only if t = 0; in other words ||Φt(x)|| = ||x|| implies Φt(x) = x (which can actually
occur if and only if t = 0).

3. The complex holomorphic case

In this section we’ll primarily consider the case of holomorphic starlike and convex
functions in the complex plane. In particular, our attention will be focused on (normal-
ized) holomorphic starlike and convex functions which are injective in B(0, 1) = {z ∈
C : |z| < 1}. The choice of this peculiar domain of definition is not restrictive, since,
by the Riemann’s Mapping Theorem, any simply–connected, open and connected set of
C different from the entire complex plane C is biholomorphic to B(0, 1).
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We recall that in this setting an open and connected complex set is also called a
domain of C and an injective holomorphic function is commonly said to be a univalent
function or a schlicht function.

Finally, for our purposes, we can always assume that a univalent function f : B(0, 1)→
C is such that f(0) = 0 and f ′(0) = 1. Indeed, if f is univalent (hence f ′(0) 6= 0) then
so is

z 7→ f(z)− f(0)

f ′(0)
.

We then introduce the class of (normalized) functions

S := {f : B(0, 1)→ C, f injective, holomorphic and such that f(0) = 0 and f ′(0) = 1} .

For univalent complex functions in S, the notions of starlikeness and convexity with
respect to 0 can be stated in a more analytic way, since one can apply the conformal
properties of holomorphic functions to study the plane curves t 7→ %eit and t 7→ f(%eit)
for suitable choices of radius %.

We summarize the main results in the following (see e.g. [9])

Theorem 3.1. Given f ∈ S, then

• f is starlike with respect to 0 if and only if <e
{
zf ′(z)

f(z)

}
> 0 for any z ∈ B(0, 1);

• f is convex if and only if <e
{

1 +
zf ′′(z)

f ′(z)

}
= <e

{
(zf ′(z))′

f ′(z)

}
> 0 for any

z ∈ B(0, 1).

Additionally we might need the introduction of more refined definitions, namely for a
real α with 0 ≤ α < 1

• f is starlike with respect to 0 of order α if and only if <e
{
zf ′(z)

f(z)

}
> α > 0 for

any z ∈ B(0, 1);

• f is convex of order α if and only if <e
{

1 +
zf ′′(z)

f ′(z)

}
= <e

{
(zf ′(z))′

f ′(z)

}
> α > 0

for any z ∈ B(0, 1).

We observe that the condition of convexity for f can be equivalently obtained from the
conditon of starlikeness for the function z 7→ zf ′(z). We then introduce these classes of
functions

S∗ := {f ∈ S, f starlike with respect to 0} C := {f ∈ S, f convex}

S∗α := {f ∈ S, f starlike with respect to 0 of order α}
4



Cα := {f ∈ S, f convex of order α} .
Clearly

S∗0 = S∗, S∗α ⊂ S∗ for positive α

C0 = C, Cα ⊂ C for positive α

and

C ⊂ S∗ ⊂ S.
Furthermore we notice here that if f ∈ S∗, then the function Φ as in (2.4) turns out

to be holomorphic in z and such that Φt(0) = 0 for any t ∈ [0, 1].
Since, traditionally, a holomorphic function with positive real part (or equivalently

such that f(z) ∈ H+ := {z ∈ C : <e(z) ≥ 0}) is known as a Carathéodory function,
we introduce also the class of functions

P := {f : D→ H+, f holomorphic and such that f(0) = 1} .
Therefore we can also say that a univalent function f is such that

(1) f ∈ S∗ if and only if z 7→ zf ′(z)

f(z)
belongs to P

(2) f ∈ C if and only if z 7→ 1 +
zf ′′(z)

f ′(z)
=

(zf ′(z))′

f ′(z)
belongs to P

(3) f ∈ C if and only if z 7→ 1 +
zf ′′(z)

f ′(z)
− α =

(zf ′(z))′

f ′(z)
− α belongs to P

(4) f ∈ C if and only if z 7→ zf ′(z) belongs to S∗.

An interesting application of the classical Schwarz Lemma implies a geometric charac-
terization for convex and starlike univalent functions, known as Theorem of Study (see
[9])

Theorem 3.2. A univalent function f : B(0, 1)→ C such that f(0) = 0 is starlike with
respect to 0 if and only if, for any real r such that 0 ≤ r ≤ 1, f(B(0, r)) is a starlike set
with respect to 0. A univalent function f : B(0, 1)→ C such that f(0) = 0 is convex if
and only if, for any real r such that 0 ≤ r ≤ 1, f(B(0, r)) is a convex set.

Similarly, it follows directly from Schwarz Lemma that, whenever f is a univalent
function from the unit disc B(0, 1) to C and starlike with respect to 0, then Φ(t, z) =
f−1((1− t)f(z)) is a Schwarz function for any t, with 0 ≤ t ≤ 1, namely for any given
t, with 0 ≤ t ≤ 1 the function Φ(t, z) is holomorphic in B(0, 1) and

Φ(t, 0) = 0 and |Φ(t, z)| ≤ |z| ∀z ∈ B(0, 1).
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4. The analytic case

Given two analytic functions f, g whose power series are

f(w) =
∑
n

wnan, g(w) =
∑
n

wnbn

where an and bn belong to a ring (R,+, ·), we say that f = g if and only if an = bn for
any n. Furthermore, we can define the Hadamard product of the analytic functions f
and g in the following way

f ∗H g(w) :=
∑
n

wnan · bn.

It turns out that the Hadamard product of analytic functions is an analytic function. In
general the Hadamard product is not commutative, however if the ring R is a unitary
ring of unit 1R for ·, the function w 7→

∑
nw

n · 1R is the neutral element for the
Hadamard product. It will be also denoted by (1 − w)−1. Furthermore if the ring is a
field, then any function f(w) =

∑
nw

nan with an different from the neutral element 0R
for + in R, has an inverse for the Hadamard product given by

w 7→
∑
n

wn(an)−1.

In addition to that, if f(w) =
∑

nw
nan we consider the following operations for analytic

functions:

• wpf(w) =
∑

nw
(n+p)an with p ∈ Z

• f ′(w) =
∑

nw
n−1nan where nan = an + an + . . .+ an︸ ︷︷ ︸

n−times

• af(w) =
∑

nw
n(a · an) with a ∈ R.

Remark 4.1. The function f ′ is said to be derived from the function f or to be the
derivative of f

It follows that

(4.1) (a+R b)f(w) = af(w) + bf(w),with a, b ∈ R.

(4.2) wf ′(w) ∗H g(w) = f(w) ∗H wg′(w)

and

(4.3) (wf ′(w))′ = f ′(w) + w(f ′)′(w).

Therefore if a0 = 0R and a1 = 1R then

(4.4) (wf ′(w))′ = f ′(w) + w(f ′)′(w) = f ′(w) ∗H

(∑
n

wn−1n1R

)
and hence there is no k ∈ R such that
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(4.5) (wf ′(w))′ = kf ′(w)

Furthermore, given f(w) =
∑

nw
nan , if, for any n there exists cn such that

cn + cn + . . .+ cn︸ ︷︷ ︸
(n+1)−times

= an

then F (w) =
∑

nw
n+1cn has the property

F ′(w) = f(w)

and the function F is called a primitive of f .

5. The regular case

Assume that K is an associative, unitary real algebra with division. As for the case
K = C, if q ∈ K we denote by <eq the real part of q; in the same way, the conjugate of
q will be denoted by q := 2<eq − q.

Each algebra K can be regarded as a normed topological vector space, after introduc-
ing |q|2 = qq ∈ R as the norm of an element q of the algebra. Therefore if q 6= 0, then
q−1 = |q|−2q; since the center of K coincides with R there is no ambiguity in writing
q−1 as |q|−2q or as q|q|−2 so we often adopt the notation q/|q|2 which will be applied in
general for a fraction when the divisor is a real number (different from zero).

In this setting it is possible (see [8])) to introduce a notion of regularity for functions
defined in any open ball B(0, r) = {q ∈ K : |q| < r} (and, more in general, in
some axially symmetric domain) of K which corresponds to the one of holomorphicity
in the complex case. For this class of regular functions, called slice–regular functions,
most of the results valid for holomorphic functions are extended, but many other new
phenomena may occur (the interested reader could refer to [8]). In particular slice–
regular functions are characterized to be analytic functions with coefficients on (say)
the right; namely f is slice–regular in B(0, r) ⊂ K if and only if there exists a converging
power series

∑
n q

nan with an ∈ K for any n ∈ N such that

f(q) =
∑
n

qnan.

The notions of derivative (and primitive) functions can be naturally introduced for
slice–regular functions, therefore, this class of functions perfectly fits for our purpouses.

For the sequel it will be important the introduction of a “regularized” multiplication
between converging regular power series, i.e. representing a slice–regular function.

Definition 5.1. Let f(q) =
+∞∑
n=0

qnan and g(q) =
+∞∑
n=0

qnbn be given power series with

coefficients in K whose radii of convergence are greater than R. We define the regular

product of f and g as the series f ∗ g(q) =
+∞∑
n=0

qncn, where cn =
n∑
k=0

akbn−k for all n.
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It is not difficult to see that f ∗ g is a slice-regular function defined in the open
ball B(0, R). Furthermore, the regular product is extended for slice–regular functions
defined on a general axially symmetric domain1 Ω in the following way

f ∗ g(q) =

 0 if f(q) = 0

f(q)g(f(q)−1qf(q)) otherwise.

Remark 5.3. Note that the regular product of two power series is completely different
from the Hadamard product.

Definition 5.4. For a regular function f : B(0, R)→ K having power series expansion
+∞∑
n=0

qnan we define the regular conjugate f c and the symmetrization or symmetrized f s

of f as

f c(q) =
+∞∑
n=0

qnān,

f s(q) = f ∗ f c(q) = f c ∗ f(q) =
+∞∑
n=0

qnrn

with rn =
n∑
k=0

akān−k ∈ R.

Definition 5.5. Let f : B(0, R) → K be a slice–regular function and suppose f 6≡ 0.

Then the regular reciprocal of f is the (slice–regular) function f−∗ =
1

f s(q)
f c defined

on B \ Z(f s), where Z(f s) is the zero set of the symmetrized function f s.

Regular reciprocals are well–defined slice–regular functions whose power series expan-
sions are converging in their domains of definition.

Recently, some attempts to generalize the notion of convexity and starlikeness from
the holomorphic case to the class of quaternionic valued functions have appeared (see
[4],[5],[6]). In this paper we follow a different approach and give the following

Definition 5.6. Assume f is an injective slice–regular function in the unit ball of K
such that f(0) = 0. Then we say that f is starlike with respect to 0 if and only if, for
any real r such that 0 ≤ r < 1, then (1 − t)f(B(0, r)) ⊆ f(B(0, r)) for any real t with
0 ≤ t ≤ 1.

1If we denote by SK the sphere of imaginary units of K, i.e. SK = {q ∈ K : q2 = −1}, then every
non real element q can be written in a unique way as q = x + yIq, with Iq ∈ SK and x, y ∈ R, y > 0.
We will refer to x = <e(q) as the real part of q and y = Im(q) as the imaginary part of q.

Definition 5.2. Let Ω ⊆ K be a domain in K; we say that Ω is an axially symmetric domain if, for
all x + Iy ∈ Ω, the whole sphere x + SKy is contained in Ω.
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In analogy with the complex holomorphic case we introduce the following classes of
slice–regular functions

SK := {f : B(0, 1)→ K, f injective, slice− regular and such that f(0) = 0 and f ′(0) = 1} .

S∗K := {f : B(0, 1)→ K, slice− regular starlike with respect to 0}

PK := {f : B(0, 1)→ K, f slice− regular such that <ef > 0; f(0) = 1} .

5.1. Inequality conditions for starlikeness. Despite the similarity with the complex
holomorphic case, the assumption of starlikness allows us only to define the function
Φ(t, q) = f−1((1 − t)f(q)) for any real t with 0 ≤ t ≤ 1 when q ∈ K, but in general
one cannot prove any regularity (beside continuity) for Φ(t, q) in q (for a given t, with
0 ≤ t ≤ 1) even though f is assumed to be a slice–regular function. However, also in
the complex holomorphic case, one has to ask for conditions on regularity with respect
to t; so in this setting we need to prove a lemma which generalizes the one in [11] for
holomorphic functions.

Lemma 5.7. With the above given notations (and assumptions) for f ∈ S∗K and Φ,
assume there exists a positive % such that the limit

(5.1) lim
t→0+

Φ(0, q)− Φ(t, q)

t%

exists; call it ω%(q). Then, for q 6= 0,

(5.2) <e(q−1ω%(q)) ≥ 0.

Proof. Define, for q 6= 0,

Ψ(t, q) := 2q(q + Φ(t, q))−1(q − Φ(t, q));

it follows from Lemma 2.5 that the function Ψ is well-defined.
Furthermore, q−1Ψ(t, q) = 2(q + Φ(t, q))−1(q − Φ(t, q)) and hence

<e(q−1Ψ(t, q)) = 2<e((q + Φ(t, q))−1(q − Φ(t, q)) =

= 2<e((q(1 + q−1Φ(t, q))−1(q(1− q−1Φ(t, q))) =

= 2<e((1 + q−1Φ(t, q))−1(1− q−1Φ(t, q))).
9



Put α := q−1Φ(t, q)); since

<e(q−1Ψ(t, q)) = 2<e((1 + α)−1(1− α)) =

=
(1 + α)(1− α) + (1 + α)(1− α)

|1 + α|2
= 2

1− |α|2

|1 + α|2
from (2.4) we conclude that

(5.3) <e(q−1Ψ(t, q)) ≥ 0.

Finally we have

lim
t→0+

q−1Ψ(t, q)

t%
= lim

t→0+

q−12q(q + Φ(t, q))−1(q − Φ(t, q))

t%
=

= lim
t→0+

[
2(q + Φ(t, q))−1 (q − Φ(t, q))

t%

]
;

we recall that Φ(0, q) = q for any q, therefore, using the assumption on the existence of

lim
t→0+

(q − Φ(t, q))

t%
= ω%(q) and (5.3) we obtain that

<e(q−1ω%(q)) ≥ 0.

�

Let H(t, q) := (1− t)f(q) then

H(t, q)−H(0, q) = −tf(q).

Therefore, H(t, q) −H(0, q) is a slice–regular function for any t; moreover there exists
the limit

lim
t→0+

H(t, q)−H(0, q)

t
= −f(q).

Now f(Φ(t, q)) = H(t, q) and f(Φ(t, q))− f(q) = H(t, q)−H(0, q). On the other hand
as in [2]

f(Φ(t, q))− f(q) = (Φ(t, q)− q) ∗Rf
Φ(t,q)(q)

with
lim
t→0+

Rf
Φ(t,q)(q) = f ′(q).

So

lim
t→0+

f(q)− f(Φ(t, q)))

t
= f(q) = lim

t→0+

q − Φ(t, q)

t
∗Rf

Φ(t,q)(q) = ω1(q) ∗ f ′(q)

where, from Lemma 5.7, <e q−1ω1(q) ≥ 0. With this in mind we conclude that

0 ≤ <e [q−1f(q) ∗ f ′(q)−∗] = <e [f(q) ∗ q−1 ∗ f ′(q)−∗] =

= <e [f(q) ∗ (f ′(q) ∗ q)−∗] = <e [f(q) ∗ (qf ′(q))−∗]
10



Note that f ′(q) 6= 0 due to injectivity of f . Moreover observe that the real part of a
slice–regular function satisfies the maximum/minimum principle (see [8] p.108) hence
the previous inequality is strict.

We can moreover assert that the function (qf ′(q)) ∗ f(q)−∗ ∈ PK i.e.

(5.4) <e [(qf ′(q)) ∗ f(q)−∗] > 0

which is in complete analogy with the complex holomorphic case. This follows from

Lemma 5.8. Let Ω be an axially symmetric domain and let f : Ω→ K be a slice–regular
function. If <ef > 0 in Ω then <e(f−∗) in Ω′ := Ω \ Z(f s).

Proof. The function f−∗ is well defined on Ω′, where the following formula holds

f−∗(q) = f(T (q))−1

with T (q) := f c(q)−1qf c(q) which sends Ω′ to itself. Now recalling that q−1 = |q|−2q̄ we
obtain

<e (f−∗(q)) = <e (f(T (q))−1) = |f(T (q))|−2<e (f(T (q))) > 0.

�

We have therefore proved

Proposition 5.9. Assume f is in S∗K then

q−1f(q) ∗ f ′(q)−∗ ∈ PK.

or analogously

(5.5) qf ′(q) ∗ f(q)−∗ ∈ PK

We can also prove the converse of the previous proposition, namely

Proposition 5.10. Assume that f is in SK and is such that q−1f(q) ∗ f ′(q)−∗ ∈ PK.
Then f belongs to S∗K.

Proof. Take q ∈ B(0, r) and consider (1 − t)f(q). For |t| < ε, with ε sufficiently
small, there exists v(t, q) ∈ B(0, r) such that f(v(t, q)) = (1 − t)f(q) since f is a local
diffeomorphism. Observe that v(0, q) = q from the univalence of f . Now, as proved in
[2], we have

f(v(t, q))− f(v(0, q)) = −tf(q) = (v(t, q)− q) ∗Rf
v(t,q)(q)

thus
v(t, q)− q = −tf(q) ∗Rf

v(t,q)(q)
−∗

and
∂v

∂t
(t, q)|t=0 = −f(q) ∗ f ′(q)−∗.

Therefore
v(t, q) = v(0, q)− f(q) ∗ f ′(q)−∗t+ g(t)
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where lim
t→0+

g(t)

t
= 0.

Using the assumption on the positivity of the real part of q−1f(q) ∗ f ′(q)−∗ we get that
|v(t, q)| is decreasing in t in an open neighborhood of 0. In fact

lim
t→0+

|v(t, q)|2 − |v(0, q)|2

t
=

= lim
t→0

(v(0, q)− f(q) ∗ f ′(q)−∗t− g(t))(v(0, q)− f(q) ∗ f ′(q)−∗t+ g(t)))− |q|2

t
=

= −2<e qf(q) ∗ f ′(q)−∗ = −2|q|2<e q−1f(q) ∗ f ′(q)−∗ ≤ 0.

Hence each point of the ray (1 − t)f(q) for 0 < t ≤ 1 is the image of a point v(t, q) ∈
B(0, r) for each q such that |q| ≤ r ≤ 1. We conclude that, for any r < 1, f(B(0, r)) is
starlike with respect to 0, so f is starlike. �

5.2. Hadamard conditions for starlikeness. Assume f is in S∗K and f ′(0) = 1.
Under these hypotheses, the (slice–regular) function q−1f(q) is well defined, since if
f(q) =

∑
n≥1

qnan then

q−1f(q) =
∑
n≥1

qn−1an.

Let g be a primitive of q−1f(q); in other words, if g(q) =
∑
n≥1

qnbn then g′(q) = q−1f(q).

This condition implies that nbn = an for any n ≥ 0. In particular, since a0 = 0 and
a1 = 1 then b0 = 0 and b1 = 1.

Definition 5.11. We say that a slice–regular function g in the unit ball, such that
g(0) = 0 and g′(0) = 1 is convex iff

<e
(
(qg′)′(q) ∗ g′(q)−∗

)
> 0.

We have the following results which generalizes the one in [10]

Lemma 5.12. If a function f is in S∗K and f ′(0) = 1 then any given primitive g of
q−1f(q) is convex.

Proof. Since

<e
(
(qg′(q))′ ∗ g′(q)−∗

)
= <e

(
1 + qg′′(q) ∗ g′(q)−∗

)
=

= <e
(
1 + (qf ′(q)− f(q)) ∗ f(q)−∗

)
= <e

(
qf ′(q) ∗ f(q)−∗

)
> 0

we conclude that g is convex. �

Proposition 5.13. If a function f is in S∗K and f ′(0) = 1 then for any s ∈ R and for
any I ∈ SK it turns out that

(5.6) q−1[f(q) ∗H [(1− q)−2(q(1− sI) + q2sI)] 6= 0
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or equivalently, if g is any primitive of q−1f(q),

(5.7) q−1[g(q) ∗H (1− q)−3(q(1− sI) + q2(1 + sI)) 6= 0.

Viceversa, if for a slice–regular function f and any primitive g of q−1f(q) conditions
(5.6) or (5.7) hold, then f ∈ S∗K and g is convex.

Proof. Note that

q−1[g(q) ∗H (1− q)−3(q(1− sI) + q2(1 + sI)) =

= q−1[g(q) ∗H q(1− q)−3((1− sI) + q(1 + sI)) =

= q−1[g(q) ∗H q(1− q)−3(2q(1 + q)sI + (1− q)(1− sI + 2qsI)) =

= q−1[g(q) ∗H q(1− q)−3(2q(1 + q)sI + q−1[g(q) ∗H q(1− q)−2(1− sI + 2qsI)) =

= q−1[g(q) ∗H q[(1− q)−2(q(1− sI) + q2sI)]′]

Using equation (4.2) it then follows that

q−1[g(q) ∗H q[(1− q)−2(q(1− sI) + q2sI)]′] =

= q−1[qg′(q) ∗H [(1− q)−2(q(1− sI) + q2sI)] =

= q−1[f(q) ∗H [(1− q)−2(q(1− sI) + q2sI)],

so we conclude that condition (5.6) is equivalent to condition (5.7).
Now from the starlikeness of f it turns out that g is convex, then

<e[(qg′)′(q) ∗ (g′(q))−∗] > 0;

from normality conditions on f it also follows that

(qg′)′(q) ∗ (g′(q))−∗|q=0 = 1

and from

g(q) = q +
∑
n≥2

qnbn

we have

(qg′)′(q) = 1 +
∑
n≥2

n2qn−1bn =

= g′(q) ∗H
∑
n≥1

nqn−1 = g′(q) ∗H (1− q)−2.

Hence,
13



<e[(qg′)′(q) ∗ (g′(q))−∗] > 0

is equivalent to

(qg′)′(q) ∗ (g′(q))−∗ 6= sI

for any s ∈ R and for any I ∈ SK or to

(qg′)′(q) + g′(q)sI 6= 0

which can be also written as

g′(q) ∗H ((1− q)−2 + (1− q)−1sI) 6= 0

thanks to associativity property of the Hadamard product and the notation adopted for
the neutral element of Hadamard product. Finally, from

g′(q) ∗H ((1− q)−2 + (1− q)−1sI) = g′(q) ∗H ((1− q)−2(q(1− sI)− q2sI)

we conclude our proof. �

The authors are also looking for possible new characterizations of other classes of
functions of hypercomplex variable and for their applications to the proof of other
statements. In this sense, a version of the solution of the Bieberbach conjecture for
starlike functions of hypercomplex variable will be given in a forthcoming paper.
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[6] S. Gal, J. O. Gonzàlez-Cervantes, I. Sabadini, On Some Geometric Properties of Slice

Regular Functions of Quaternion Variable, arXiv:1410.2623
[7] G. Gentili, C. Stoppato, D. Struppa, Regular functions of a quaternionic variable, Springer

Monographs in Mathematics, Springer, Heidelberg, 2013.
[8] G. Gentili, D. Struppa, A new theory of regular functions of a quaternionic variable, Adv.

Math., 216, 279–301 (2007).
[9] R. Remmert, Theory of complex functions, Graduate Texts in Mathematics, 122, Springer-Verlag,

New York, 1991.
[10] H. Silverman, E.M. Silvia, D. Telage,, Convolution Conditions for Convexity, Starlikeness

and Spiral–Likeness, Math. Z., 162, 125–130, (1978).
[11] T. J. Suffridge, The principle of subordination applied to functions of several variables, Pacific

J. Math., 33, 241–248 (1970).
14
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