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ABSTRACT
Mercury is the unique known planet that is situated in a 3:2 spin-orbit resonance nowadays.
Observations and models converge to the same conclusion: the planet is presently deeply
trapped in the resonance and situated at the Cassini state 1, or very close to it. We investigate the
complete non-linear stability of this equilibrium, with respect to several physical parameters,
in the framework of Birkhoff normal form and Nekhoroshev stability theory. We use the same
approach we have adopted for the 1:1 spin-orbit case with a peculiar attention to the role
of Mercury’s non-negligible eccentricity. The selected parameters are the polar moment of
inertia, the Mercury’s inclination and eccentricity and the precession rates of the perihelion
and node. Our study produces a bound to both the latitudinal and longitudinal librations (of
0.1 rad) for a long but finite time (greatly exceeding the age of the Solar system). This is
the so-called effective stability time. Our conclusion is that Mercury, placed inside the 3:2
spin-orbit resonance, occupies a very stable position in the space of these physical parameters,
but not the most stable possible one.

Key words: methods: analytical – celestial mechanics – planets and satellites: dynamical evo-
lution and stability – planets and satellites: individual: Mercury.

1 IN T RO D U C T I O N

Mercury is the target of the BepiColombo mission, one of ESA’s
cornerstone space missions, carried out in collaboration with
the Japanese Aerospace Agency (JAXA). The spacecraft will be
launched in 2017 and the orbit phase around Mercury is planned in
2024 (please refer to the BepiColombo webpage on the ESA web-
site, http://sci.esa.in/bepicolombo, for updated information). Mer-
cury has a peculiar feature: it is the only planet in the Solar system
that is locked in a spin-orbit resonance, and the only object in the
Solar system trapped in a 3:2 resonance. Indeed, the Moon and
most of the regular satellites of the giant planets are found in 1:1
spin-orbit resonance.

The unique situation of Mercury can partly be explained by its
large orbital eccentricity, see e.g. Colombo & Shapiro (1966), Cor-
reia & Laskar (2004) and Celletti & Lhotka (2014). A more realistic
tidal model has been used in Noyelles et al. (2014), where the au-
thors demonstrate that capture in 3:2 resonance is possible on much
shorter time-scales than previously thought.

These spin-orbit locked positions are usually named the (general-
ized) Cassini states (1–4) and can be suitably described in terms of
celestial dynamics, see e.g. Colombo (1966), Peale (1969), Beletskii
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(1972) and Ward (1975). For an extension of the theory including
the polar motion, see also Bouquillon, Kinoshita & Souchay (2003).

The presence of a spin-orbit resonance allows us to link the ob-
servational data of the orbital and rotational states with interior
structure models, this is, for Mercury, the so-called Peale’s experi-
ment, see Peale (1976).

The first observational confirmation of the Cassini State 1 for
Mercury is due to Margot et al. (2007). Earth-based radar ob-
servations have confirmed its presence with high accuracy, see
e.g. Margot et al. (2012), where the authors demonstrate that
the angle between the spin axis and the orbit normal, com-
monly referred to as obliquity, is consistent with the equilibrium
hypothesis.

The same value of the obliquity was also determined by ob-
servational results from the NASA space mission MESSENGER
that has also validated the 3:2 spin-orbit resonance to high ac-
curacy, see Mazarico et al. (2014). The most recent value of the
obliquity is ε = 2.06 ± 0.16 arcmin, the orbital period is given
by To = 87.969 216 879 d ±6 s and the spin period is Ts =
58.646 16 ± 0.000 011 d, that gives a ratio of about 3:2 to great
accuracy.

It has been shown in Peale (2005) that small free oscillations
around the exact equilibrium of the spin-orbit resonance are damped
due to dissipative forces (mainly tidal effects and core-mantle fric-
tion) on a time-scale of 105 yr. Any effect that may bring Mer-
cury away from exact spin-orbit resonance, like impacts, or any
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mechanism that may change Mercury’s internal mass and momenta
distribution will be counteracted on relatively short time-scales. It
is therefore reasonable to think that Mercury is currently situated at
exact resonance or very close to it.

The question arises concerning the stability of the equilibrium
itself in absence of dissipative forces to separate the influence of
conservative non-linear effects from dissipative ones that act on
shorter time-scales. The stability of the spin-orbit resonances has
been numerically investigated in e.g. Celletti & Chierchia (2000),
Celletti & Voyatzis (2010) and Lhotka (2013) by means of stability
maps. The non-linear stability of the Cassini states, in the 1:1 spin-
orbit resonance, has been investigated in detail in Sansottera, Lhotka
& Lemaı̂tre (2014), by means of normal forms and Nekhoroshev-
type estimates. However, such an investigation of the non-linear
stability is still lacking for Mercury. We aim to carry out this study
in this paper. In particular, we are interested in the long-term non-
linear stability: our goal is to produce a bound to both the latitudinal
and longitudinal librations over long but finite times, namely an
effective stability time.

Let us stress that in this work we consider a realistic model in
the mathematical sense. Indeed, we are able to obtain significative
analytic estimates on the stability time using the real physical pa-
rameters. However, in order to obtain a better physically realistic
model, one should also take into account dissipative effects and
planetary perturbations.

The long-term stability of perturbed proper rotations (rotations
about a principal axis of inertia) in the sense of Nekhoroshev has
been shown in Benettin, Fasso & Guzzo (2004). Furthermore, the
authors suggest that their results may possibly be extended to the
case of spin-orbit resonances. With our study we are able to demon-
strate the long-term stability for motions that are trapped in a
spin-orbit resonance and in particular the possible application of
Nekhoroshev theory to Mercury.

We are able to give a definitive answer: the generalized Cassini
state 1, realized in terms of the 3:2 resonance, is practically stable
on long time-scales. However, we also demonstrate that the actual
position of Mercury, in the parameter space, is placed in a very
stable region, while not the most stable one. Indeed, altering some
physical parameters, namely the polar moment of inertia factor, the
inclination, the eccentricity and the precession rates of the peri-
helion and node, we found that the stability may change from a
marginal amount to orders of magnitude, depending on the quantity
of interest.

This paper represents an extension of our previous work, devel-
oped for the 1:1 spin-orbit problems, see Sansottera et al. (2014),
to the case of the 3:2 resonance and in particular to Mercury. The
presence of a non-negligible value for the eccentricity is a new as-
pect of the model to take into account. The mathematical basis of
our work is represented by the Birkhoff normal form (1927) and the
Nekhoroshev theory (1977, 1979).

Our approach is reminiscent of similar works on the same line,
see e.g. Giorgilli, Locatelli & Sansottera (2009), Giorgilli, Locatelli
& Sansottera (2010) and Sansottera, Locatelli & Giorgilli (2013),
in which the authors gave an estimate of the long-time stability for
the Sun-Jupiter-Saturn system and the planar Sun-Jupiter-Saturn-
Uranus system, respectively.

This work is organized as follows: we introduce the spin-orbit
model and its Hamiltonian formulation in Section 2. In Section 3,
we describe an algorithm for the evaluation of the effective stability
time via Birkhoff normal form. The application of our study to
Mercury is presented in Section 4, while the physical interpretations
and the possible extensions are reported in Section 5.

2 TH E MO D EL

We consider Mercury as a triaxial rigid body whose principal mo-
ments of inertia are A, B and C, with A ≤ B < C. We denote by
m and Re, the mass and equatorial radius of Mercury, respectively;
and by m0 the mass of the Sun.

We closely follow the notation adopted in Sansottera et al. (2014),
that was also used in some previous studies on the same subject,
see e.g. Henrard & Schwanen (2004) for a general treatment of
synchronous satellites, D’Hoedt & Lemaitre (2004) and Lemaitre,
D’Hoedt & Rambaux (2006) for Mercury, Noyelles, Lemaitre &
Vienne (2008) for the study of Titan, Lhotka (2013) for a symplectic
mapping model and Noyelles & Lhotka (2013) for an investigation
concerning the obliquity of Mercury during the BepiColombo space
mission. Thus we refer to the quoted works for a detailed exposition
and we just report here the key points so as to make the paper
quite self-contained. First, we briefly recall how to express the
Hamiltonian in the Andoyer–Delaunay set of coordinates, then we
introduce the simplified spin-orbit model that represents the basis
of our study.

2.1 Reference frames

The usual description of the spin-orbit motion requires four basic
reference frames having their common origin in the centre of mass
of Mercury, see D’Hoedt & Lemaitre (2004). Namely, we need:
(i) the inertial frame, (X0, Y0, Z0), with X0 and Y0 lying in the
ecliptic (or Laplace) plane; (ii) the orbital frame, (X1, Y1, Z1), with
Z1 perpendicular to the orbit plane; (iii) the spin frame, (X2, Y2, Z2),
with Z2 pointing to the spin axis direction and X2 to the ascending
node of the equatorial plane in the ecliptic plane; (iv) the body
frame, (or figure frame), with Z3 pointing into the direction of the
axis of greatest inertia and X3 of smallest inertia. In order to link the
different frames, we define ν01 as the direction along the ascending
node of (X0, Y0), in the plane (X1, Y1), and ν23 as the direction of
the ascending node between the planes (X2, Y2) and (X3, Y3).

We introduce two Euler angles: (i) the inertial obliquity, K, that
is the angle between the axes Z0 and Z2; (ii) the wobble, J, between
the axes Z2 and Z3. Moreover, we define the angles for the rotational
motion: (i) the spin node, hs, between X0 and X2, measured in the
plane (X0, Y0); (ii) the figure node, gs, between ν23 and X3, measured
in the plane (X2, Y2); (iii) the rotation angle, ls, between ν23 and X3,
measured in the plane (X3, Y3).

For the orbital dynamics, we introduce: (i) the longitude of the
ascending node, �, that gives the direction of ν01 measured in
the plane (X0, Y0); (ii) the inclination, i, being the angle between
the axes Z0 and Z1; (iii) the perihelion argument, ω, that defines the
direction of the pericentre X1 in the plane (X1, Y1).

We report in Fig. 1 the four reference frames and the angles
defined above. On its basis we introduce the Andoyer–Delaunay
canonical variables.

2.2 Andoyer–Delaunay variables

We use the modified Andoyer variables in order to describe the
rotational motion:

L1 = Gs, l1 = ls + gs + hs,

L2 = Gs − Ls, l2 = −ls,

L3 = Gs − Hs, l3 = −hs, (1)
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Figure 1. The four reference frames and the relevant angles related to the
Andoyer (left) and Delaunay (right) canonical variables. See the text for
more details.

where Gs denotes the norm of the spin angular momentum, Ls =
Gscos J and Hs = Gscos K.

For the orbital motion, we use the modified Delaunay variables,
namely

L4 = Lo, l4 = M + ω + �,

L5 = Lo − Go, l5 = −ω − �,

L6 = Go − Ho, l6 = −�, (2)

with Lo = m
√

μa, Go = Lo

√
1 − e2 and Ho = Gocos i. As usual,

μ = G(m + m0) where G is the gravitational constant, a is the semi-
major axis, e the eccentricity, i the inclination and M the mean
anomaly. Let us remark that L5 and L6 are related to the eccentric-
ity, e, and inclination, i, respectively. From now on, we assume that
the spin axis is aligned with the line of figure, i.e. J = 0, and that
we can neglect motion related to the conjugated variables (L2, l2).
Indeed, the polar motion of Mercury is assumed to be very small,
see e.g. Noyelles, Dufey & Lemaitre (2010). Taking into account
the 3:2 spin-orbit resonance, we introduce the resonant variables
� = (�1, �3), σ = (σ 1, σ 3) by using the generating function

S3:2 = �1

(
l1 − 3

2

(
l4 + l5

)
+ l5

)
+ �3 (l3 − l6) .

Thus we get

�1 = L1, σ1 = l1 − 3

2

(
l4 + l5

)
+ l5,

�3 = L3, σ3 = l3 − l6. (3)

Here, σ 1 and σ 3 refer to the longitudinal and latitudinal libra-
tions, respectively, around the exact resonant state, placed at σ 1 =
σ 3 = 0.

In our model, the orbital ellipse of Mercury is assumed to be
frozen but uniformly precessing due to the interactions with the
other planets of the Solar system. We keep fixed the semimajor
axis, the eccentricity and the inclination: this corresponds to fixing
the values of L4, L5 and L6. Denoting by n the mean motion, by ω̇

the mean precession rate of the argument of perihelion, by �̇ the
mean regression rate of the ascending node and, without loss of
generality, setting t0 = 0 as the time of the perihelion passage of
Mercury, we have the trivial equations of motion for the conjugated
angles: l4 = nt, l5 = ω̇t and l6 = �̇t . In this setting, the generating
function S3: 2 is a function of time. Therefore, in order to express
the Hamiltonian in the resonant variables, we have to add also the
time derivative of the generating function, ∂S3:2/∂t .

2.3 Hamiltonian formulation

Let us denote byHs andHo the rotational and orbital kinetic energy,
respectively, then the kinetic part reads

T = Hs + Ho + ∂S3:2

∂t

= �2
1

2C
− 3

2
n�1 − �1ω̇ + (�3 − �1) �̇,

where C is the Mercury’s largest moment of inertia.
The dominant contribution of the gravitational potential is mainly

due to two spherical harmonics: C20 = A+B−2C

2 mR2
e

and C22 = B−A

4 mR2
e
.

Thus we consider the potential energy

V = −Gmm0R
2
e

r3
(C20P20(sin ϕ) + C22P22(sin ϕ) cos 2λ), (4)

where P20, P22 are the Legendre polynomials and ϕ, λ are the
colatitude and longitude of Mercury, respectively, with λ measured
eastwards from X2 (X3). The expression of the potentialV , defined in
the figure frame, into the inertial frame is straightforward. Following
the approach developed in Noyelles & Lhotka (2013), we write V
in terms of the resonant variables and perform an average over the
mean orbital longitude l4. We denote by 〈V〉 the averaged potential
and we refer to the previous paper for all the details. We just stress
that here, as an extension to Noyelles & Lhotka (2013), we consider
an expansion in the eccentricity up to order 8, while we only keep
the time-independent harmonics in the definition of 〈V〉, namely the
〈V20〉 and 〈V22〉 terms, defined there.

Denoting by 〈T〉 the averaged kinetic energy and introducing the
averaged Hamiltonian 〈H〉 = 〈T 〉 + 〈V〉, the equations of motion
read

�̇ = −∂〈H〉
∂σ

, σ̇ = +∂〈H〉
∂�

. (5)

Setting σ = 0 we look for the equilibrium �∗ = (
�∗

1 , �∗
3

)
by

solving the equations

f1 (�) ≡ ∂〈H〉
∂�1

∣∣∣∣∣
σ=0

= 0, f2 (�) ≡ ∂〈H〉
∂�2

∣∣∣∣∣
σ=0

= 0, (6)

namely the Cassini state 1.
Let us remark that, expressing f1(�) and f2(�) as functions of

(Gs, K) one obtains an implicit formula for the obliquity ε = i − K
in terms of the system parameters, see Noyelles & Lhotka (2013).
Precisely, setting c = C/(mR2

e ), at the equilibrium, the following
equation holds true

c = n sin(ε) (C20H20 cos(ε) + C22H22(cos(ε) + 1))

�̇ sin(i − ε)
(

2�̇ cos(i−ε)
3n

+ 2ω̇
3n

+ 1
) , (7)

where H20 and H22, truncated at order 8, are given by

H20 = −1 − 3e2

2
− 15e4

8
− 35e6

16
− 315e8

128
,

H22 = 7e

2
− 123e3

16
+ 489e5

128
− 1763e7

2048
. (8)

This relation will be useful for the physical interpretation of the
results in terms of fixed ε. Let us remark that equation (7) represents
a generalization of the one in Peale (1981).

3 STA BI LI TY AT THE CASSI NI STATE

We now aim to study the stability properties of the Cassini state.
To be more specific, our goal is to give an estimate of the effective
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stability time around the equilibrium point. Hereinafter we follow
the exposition given in Sansottera et al. (2014) for the 1:1 spin-orbit
problem.

We perform a translation in order to put the equilibrium at the
origin and an expansion of the averaged Hamiltonian in power series
of (�, σ ), namely

H (�, σ ) = H0(�, σ ) +
∑
j>0

Hj (�, σ ), (9)

where Hj is a homogeneous polynomial of degree j + 2 in (�, σ ) .
In the latter equation the quadratic term, H0, has been put apart from
the other terms of the Hamiltonian in view of its relevance in the
perturbative scheme.

3.1 The untangling transformation

The quadratic part of the Hamiltonian reads

H0(�, σ ) = μ�1�1
�2

1 + 2μ�1�3
�1�3 + μ�3�3

�2
3

+ μσ1σ1
σ 2

1 + 2μσ1σ3
σ1σ3 + μσ3σ3

σ 2
3 .

We perform the so-called untangling transformation, see Henrard
& Lemaı̂tre (2005), that permits to get rid of the mixed terms. Thus,
in the new coordinates, H0 takes the form

H0(�′, σ ′) = μ′
�′

1�′
1
�′2

1 + μ′
σ ′

1σ ′
1
σ ′2

1 + μ′
�′

3�′
3
�′2

3 + μ′
σ ′

3σ ′
3
σ ′2

3 .

Let us remark that if both μ′
�′

1�′
1
μ′

σ ′
1σ ′

1
and μ′

�′
3�′

3
μ′

σ ′
3σ ′

3
are positive,

as it happens in our case, the quadratic part of the Hamiltonian
represents a couple of harmonic oscillators.

It is now useful to perform a rescaling and introduce the polar
coordinates,

�′
1 = √

2U1/U
∗
1 cos(u1), σ ′

1 = √
2U1U

∗
1 sin(u1),

�′
3 = √

2U3/U
∗
3 cos(u3), σ ′

3 = √
2U3U

∗
3 sin(u3), (10)

where

U ∗
1 =

√
μ′

�′
1�′

1
/μ′

σ ′
1σ ′

1
and U ∗

3 =
√

μ′
�′

3�′
3
/μ′

σ ′
3σ ′

3
.

Thus, the quadratic part of the Hamiltonian is expressed in action-
angle variables as

H0 = ωu1U1 + ωu3U3,

where ωu1 and ωu3 are the frequencies of the angular variables
u1 and u3, respectively. Again, we use the shorthand notations
U = (U1, U3) , u = (u1, u3) and ωu = (ωu1 , ωu3 ).

In these new coordinates, the transformed Hamiltonian can be
expanded in Taylor–Fourier series and reads

H (0)(U, u) = ωu · U +
∑
j>0

H
(0)
j (U, u), (11)

where the terms Hj are homogeneous polynomials of degree
j/2 + 1 in U, whose coefficients are trigonometric polynomials
in the angles u .

Mathematically speaking, the Hamiltonian (11) describes a per-
turbed system of harmonic oscillators, where the perturbation is
proportional to the distance from the equilibrium. We now aim
to investigate the stability around this equilibrium in the light of
Nekhoroshev theory, introducing the so-called effective stability
time.

3.2 Effective stability via Birkhoff normal form

Following a quite standard approach, we first construct the Birkhoff
normal form for the Hamiltonian (11) and then give an estimate of
the stability time.

The Hamiltonian is in normal form at order r if

H (r)(U, u) = Z0(U ) + · · · + Zr (U ) +
∑
s>r

R(r)
s (U, u), (12)

where Zs, for s = 0, . . . , r , is a homogeneous polynomial of degree
s/2 + 1 in U and in particular is zero for odd s. The unnormalized
remainder terms R(r)

s , for s > r, are homogeneous polynomials of
degree s/2 + 1 in U, whose coefficients are trigonometric polyno-
mials in the angles u .

It is well known, see e.g. Giorgilli (1988), that the Birkhoff nor-
mal form at any finite order r is convergent in some neighbourhood
of the origin, but the analyticity radius shrinks to zero when the order
r → ∞ . Therefore, we look for stability over a finite time, possibly
long enough with respect to the lifetime of the system. More pre-
cisely, we want to produce quantitative estimates that allow us to
give a lower bound of the stability time.

We pick two positive numbers R1 and R3, and consider a polydisc
��R centred at the origin of R

2, defined as

��R = {
U ∈ R

2 : |Uj | ≤ �Rj , j = 1, 3
}

,

� > 0 being a parameter. We consider a function

fs(U, u) =
∑

|l|=s+2,k∈Z2

fl,k U l/2 sin

cos
(k · u),

which is a homogeneous polynomial of degree s/2 + 1 in the actions
U and depends on the angles u. We define the quantity |fs|R as

|fs|R =
∑

|l|=s+2,k∈Z2

|fl,k|Rl1/2
1 R

l2/2
3 .

Thus we get the estimate

|f (U, u)| ≤ |f |R �s/2+1, for U ∈ ��R, u ∈ T
2.

Given U (0) ∈ ��0R , with �0 < �, we have U(t) ∈ ��R for t ≤ T,
where T is the escape time from the domain ��R. The Hamiltonian
(12) is in Birkhoff normal form up to order r, thus we have

|U̇ | ≤ |{U,H (r)}| =
∑
s>r

|{U,R(r)
s }| ≤ d|{U,R(r)

r+1}|R �r/2+1,

with d ≥ 1. In fact, after having set � smaller than the convergence
radius of the remainder series, R(r)

s for s > r, the above inequality
holds true for some value d.

The latter equation allows us to find a lower bound for the escape
time from the domain ��R, namely the time when physical librations
exceed the given threshold,

τ (�0, �, r) = � − �0

d|{U,R(r)
r+1}|R �r/2+1

, (13)

which, however, depends on �0, � and r. We stress that �0 is the
only physical parameter, being fixed by the initial data, while � and
r are left arbitrary. Indeed, the parameter �0 must be chosen in such
a way that the domain ��0R contains the initial conditions of the
system. In order to achieve an estimate of the escape time, T(�0),
independent of � and r, we introduce

T (�0) = max
r≥1

max
�>0

τ (�0, �, r), (14)

which is our best estimate of the escape time. We define this quantity
as the effective stability time.
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Table 1. Mercury’s physical parame-
ters. See the beginning of Section 4 for
detailed references for the parameters.

M 1.988 43 × 10+30 kg
J2 5.031 × 10−5

C22 8.088 × 10−6

C/mR2
e 3.49 × 10−1

Re 2439.7 km
m 3.301 04 × 1023 kg
a 5.790 91 × 10+7 km
e 2.056 30 × 10−1

i 1.500 98 × 10−1 rad
ω̇ 1.341 18 × 10−7 rad yr
�̇ −5.233 90 × 10−8 rad yr
n 7.1229 × 10−2 rad yr

4 A P P L I C ATI O N TO M E R C U RY

We now apply the algorithm described in the previous section to
Mercury and evaluate the effective rotational stability time as a
function of some relevant physical parameters.

The expansion of the Hamiltonian function and all the transfor-
mations needed to put the Hamiltonian in the form (11) have been
done using the WOLFRAM MATHEMATICA software, while the high-order
Birkhoff normal form, up to the order r = 30, has been computed
via a specific algebraic manipulator, i.e. X�óνoς , see Giorgilli &
Sansottera (2011).

In the actual calculations we take as reference values the physi-
cal parameters reported in Table 1, where M, m, R are taken from
http://ssd.jpl.nasa.gov/?planet_phys_par, we use J2 and C22 given
in Smith et al. (2012), and C/mR2

e is obtained by Peale’s for-
mula (or equation 7) on the basis of the data provided in Mazarico
et al. (2014). Mean orbital elements (J2000) for a, e are taken from
http://ssd.jpl.nasa.gov/txt/p_elem_t2.txt. Standish E. M. ‘Keplerian
Elements for Approximate Positions of the Major Planets’, Solar
System Dynamics Group, JPL. We use the value of the inclination
defined with respect to the Laplace plane, i = 8◦

. 6, see e.g. Yseboodt
& Margot (2006), instead of the ecliptic. Finally, we compute ω̇ (�̇)
from the precession period of the perihelion (128 kyr), and the re-
gression period of the ascending node (328 kyr), respectively. Since
our results rely on a qualitative study we removed non-significant
digits from Table 1.

In Fig. 2, we plot the logarithm of the effective rotational stability
time of Mercury, log10T(�0), versus the distance from the equilib-
rium, �0. We recall that �0 = 0 corresponds to the Cassini state,
while increasing values of �0 allow oscillations around the equilib-
rium point. The highest normalization order, namely r = 30, gives
the best estimate. Nevertheless, already at order r = 20 we reach an
effective stability time greatly exceeding the estimated age of the
Universe, being of the order of 1010, in a domain �R that roughly
corresponds to a libration of 0.1 rad. Since the actual librations
of Mercury around exact resonance are smaller, we conclude that
the spin-orbit coupling of Mercury in a 3:2 spin-orbit resonance is
practically stable for the age of the Universe.

4.1 Sensitivity to physical parameters

In this section we investigate the dependency of the effective stabil-
ity time on the following Mercury’s physical parameters: the polar
moment of inertia, c, the precession rate of the perihelion argument,
ω̇, the mean regression rate of the ascending node, �̇, the eccentric-
ity e and the inclination i. Precisely, we consider 11 equally spaced
different values of each parameter in the ranges

(i) c ∈ [0.3, 0.4] ;
(ii) ω̇ ∈ [1 × 10−7, 2 × 10−7] (rad d−1) ;
(iii) �̇ ∈ [−9 × 10−8, −4 × 10−8] (rad d−1) ;
(iv) e ∈ [0, 0.4] ;
(v) i ∈ [0.05, 0.2] (rad) .

The ranges are chosen in order to include possible variations of
the orbital elements due to planetary perturbations, see e.g. Laskar
(2008). The choice for polar moment of inertia c is motivated to
include a variety of possible interior structure models, from a thin
shell to a homogenous sphere.

For each choice of parameters we compute the effective stability
time (14) using the procedure outlined above. As a by-product we
also compute numerically the equilibrium point �∗ using equation
(6). From equation (1) we then get the corresponding value of the
inertial obliquity, namely K∗, from which we obtain the observable
obliquity defined as ε∗ = K∗ − i. For testing purpose we cross-
check ε∗ with solutions directly obtained from equation (7). We
notice that the knowledge of specific values of ε for different given
parameters allows us to relate the information about the stability
time with observations, i.e. the current observed value for Mercury
ε = 2.06 arcmin. We present our results by means of contour plots,
see Figs 3–12. In each plot we report the logarithm of the estimated
stability time, log10T, in colour-code: blue (bottom of colour leg-
end) represents the smallest stability time; yellow (top of colour
legend) refers to the largest one. We mark the actual position of
Mercury, in the parameter space, by a black dot. In addition, we
draw a white curve through the sub-space of parameters that lead to
ε = 2.06 arcmin. This curve turns out to be smooth and in perfect
agreement with the one obtained directly from equation (7). On its
basis we also plot (dashed, black) contour-curves corresponding to
ε = 2.06 arcmin ± 5 per cent in order to investigate the sensitivity
of ε on the parameters.

The qualitative description of our results concerning the stability
time is as follows:

(i) the stability time is mostly influenced by the inclination as we
can see from Figs 3 to 6;

(ii) the stability time is only moderately influenced by changing
the following parameters: the polar moment of inertia (see Figs 7–8),
the mean regression rate of the ascending node (see Figs 7 and 9),
and the eccentricity (see Figs 10–12);

(iii) the precession rate of the perihelion argument does not seem
to play a major role on the stability time as we can see in Fig. 8
or 12.

We now discuss in more detail the relations of the stability time, T,
and of the equilibrium obliquity, ε∗, on specific system parameters
and only summarize in Table 2 the outcome of our computations,
where we report the ranges of the effective stability time and obliq-
uity, for all the different choices of the parameters.

The stability times, in Figs 3–6, increase from 1012 to 1032 yr
for increasing inclination in the range 0.05 ≤ i ≤ 0.2, and are
only marginally influenced by the parameters on the abscissae. The
obliquities turn out to increase for increasing |�̇| and i in Fig. 3
(the largest value of ε is found in the upper-left corner). In Fig. 4,
the values for ε increase for decreasing e and increasing i (being
again largest in the upper-left corner). Obliquities do increase for
increasing c and i in Fig. 5, while ε stays constant for varying ω̇ in
Fig. 6 but increases again for increasing i.

The strong influence of the orbital inclination of Mercury is
also present in the obliquity ranges (see Table 2): for small i we
find 0.52 arcmin ≤ ε ≤ 0.68 arcmin while for large i we find
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Figure 2. Estimated effective stability time, T(�0), versus normalized distance from the equilibrium point, �0. The time unit is the year. The three lines
correspond (from bottom to top) to three different normalization orders: r = 10 (blue), r = 20 (pink) and r = 30 (red).

Figure 3. Stability time: �̇ versus i (see text for more details).

Figure 4. Stability time: e versus i (see text for more details).

2.73 arcmin ≤ ε ≤ 4.72 arcmin. The effect of the parameters on
the abscissae generally turn out to be small compared to changes in
inclinations. For the remaining cases, the stability time ranges from
log10 T = 26.80 (large c and small e) to log10 T = 28.02 (large c and
large |�̇|). For these cases the smallest ε are still two to three times
larger than for the previous one (ranging from 1.27 to 1.77 arcmin)
while the maxima turn out to be of the same order as before (ranging
from 2.36 to 4.54 arcmin).

Figure 5. Stability time: c versus i (see text for more details).

Figure 6. Stability time: ω̇ versus i (see text for more details).

We remark that the role of inclination i on the stability time is
related to the role of ε and K through the relationship ε = K − i. The
application of formula (7) for constant parameters of Mercury, but
varying i, shows that with increasing i we find increasing ε. Making
use of formula (7) again, we find larger ε for larger values of c, ω̇

and �̇ (keeping all remaining parameters constant). We carefully
checked in Figs 3–9 that maxima of the stability time correspond
to maxima of obliquity ε. Moreover, we find that inclination i most
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Figure 7. Stability time: c versus �̇ (see text for more details).

Figure 8. Stability time: c versus ω̇ (see text for more details).

Figure 9. Stability time: �̇ versus ω̇ (see text for more details).

Figure 10. Stability time: c versus e (see text for more details).

Figure 11. Stability time: �̇ versus e (see text for more details).

Figure 12. Stability time: ω̇ versus e (see text for more details).

effectively increases obliquity ε in equation (7) being consistent
with our result. Contrary, the role of e on the stability time is
different: we find better stability for special values of e within
0.085 ≤ e ≤ 0.1 (see Figs 10–12). Moreover, increasing e gives
smaller ε from equation (7). We conclude that not only the role of e
on the realization of the 3:2 resonance is special, but e has a special
role on the stability of the resonance too.

Let us stress that the role of the eccentricity e is quite subtle: a
non-zero value is needed in order to ensure the existence of a 3:2
resonance, but the eccentricity plays also the role of a perturbing
parameter. In our study we assume that Mercury is placed in its
actual position, thus close to the 3:2 resonance, and just change the
value of the eccentricity, focusing only on the perturbation character
of the parameter.

5 C O N C L U S I O N S A N D O U T L O O K

We have investigated, analytically, the non-linear stability of Mer-
cury’s 3:2 spin-orbit resonance. In particular, we have shown that
Mercury is currently placed in a very stable position in the param-
eter space. Our study produces a strong bound on the longitudinal
and latitudinal librations over long, but finite times: we find that
libration widths up to 0.1 rad stay bound for times exceeding the
age of the Universe.

However, from the results presented in the previous section, Mer-
cury does not seem to occupy the most stable configuration. Indeed,
increasing the polar moment of inertia, c, and the inclination, i,
or increasing the mean regression rate of the ascending node |�̇|
allows us to get better estimates.

Our conclusions are valid on the basis of parameters that are rele-
vant for Mercury. The possible instability of spin-orbit resonances,
induced by non-linear perturbations, has been shown in e.g. Pavlov
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Table 2. Summary of stability times and obliquity ranges for different param-
eter sets used to obtain Figs 3–12.

Set εmin ( arcmin) εmax ( arcmin) log10Tmin (yr) log10Tmax (yr)

�̇ × i: 0.52 4.72 12.00 32.00
e × i: 0.55 3.49 12.00 32.00
c × i: 0.59 3.13 12.00 32.00
ω̇ × i: 0.68 2.73 12.00 32.00
c × �̇: 1.35 4.07 27.86 28.02
c × ω̇: 1.77 2.36 27.87 27.98
�̇ × ω̇: 1.57 3.55 27.91 27.96
c × e: 1.42 3.02 26.80 28.00
�̇ × e: 1.27 4.54 27.20 28.00
ω̇ × e: 1.66 2.63 27.20 28.00

& Maciejewski (2003), Breiter et al. (2005) and Celletti & Voyatzis
(2010). In the latter study, the authors find that the motion close
to the 3:2 resonance, in the symmetric case (A = B), is essentially
regular, while a chaotic layer may appear increasing the asymmetry
parameter (S ≡ (B − A)/C) and the eccentricity e.

In our computations we have, at most, S � 10−4 for c = 0.3.
Thus, our analytic estimates of the effective stability time are in
complete agreement with the results in Celletti & Voyatzis (2010).
In fact, our value of S is one order of magnitude smaller compared
to the chaotic region numerically determined.

The regularity of the motion of Mercury has also been confirmed
in Pavlov & Maciejewski (2003), where the authors find a soft
transition from a stable periodic motion to the unstable one in the
3:2 spin-orbit resonance. The authors also give an upper estimate
for the ellipticity (dcr = 3(B − A)/C) of Mercury: dcr � 0.19626.
Again, in our application, the ellipticity lies well beyond dcr.

It is interesting to note that, in our study, the role of the precession
rate of the perihelion argument, ω̇, and the eccentricity, e, on the
3:2 resonance stability is smaller compared to the one of �̇ and c.
This result should be worthwhile to be investigated further.

Our study is based on a simplified model where the orbital ellipse
of Mercury is kept constant, but precessing in the node and peri-
helion. Additional perturbations that may act on semimajor axis,
orbital eccentricity and inclination may induce further perturba-
tions on the rotational motion of Mercury. Furthermore, it would be
interesting to extend our study to be able to include internal effects.
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