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Introduction
 The Arda River section is located in northern Italy near the town of Castell’Arquato at the 
margin of the northern Appennines facing the Po plain. It starts at the bridge immediately to the 
East of the town of Castell’Arquato and extends northward along the banks of the Arda River 
for 300 stratigraphic meters exposing marine to continental deposits in which some faunistic re-
maing have been found.
 Aside from a few paleoecological studies (Dominici, 2001; 2004), the Arda section has not 
been studied in detail, especially with regard to the chronostratigraphy. In this study, we genera-
te an age model of sedimentation for the Arda section by integrating magnetostratigraphy with 
nannofossil data for comparison with other sections from the literature that document the mari-
ne-continental transition in the greater Po basin (Muttoni et al., 2003; 2011; Scardia et al., 2006; 
2009; 2012; Gunderson et al., 2012; 2014; Pinti et al., 2001). This transition, which occurred 
during the late Early Pleistocene at the onset of enhanced glacial/interglacial activity, is thought 
to mark the time when Europe became stably populated by a renewed mammal fauna (Galerian) 
characterized by far-traveled immigrants, because, possibly for the first time in the Pleistocene, 
vast and exploitable new ecosystems were generated along a newly formed continental Po-Da-
nube migration gateway, as recently described in Muttoni et al. (2014; 2015) (Figure 7).

 185 cylindrical 10  cm cores specimens were subjected to thermal demagnetization, magne-
tic properties (Fig 2) and the NRM was measured after each demagnetization step in a shielded 
room. Standard least-square analysis (Kirschvink, 1980) was used to calculate magnetic compo-
nent directions from vector end-point demagnetization diagrams, and standard Fisher statistics 
was used to analyze the mean component directions
 We interpret the magnetic polarity stratigraphy by means of correlation to the Pleistocene 
geomagnetic polarity time scale of Gradstein et al. (2012). Starting from the top, the uppermost 
normal polarity interval is interpreted as a partial record of the (early) Brunhes Chron with base 
set at 0.781 Ma, in agreement with previous studies from the Po Plain indicating continental se-
dimentation during the Brunhes Chron (e.g., Muttoni et al., 2003; Scardia et al., 2012). Procee-
ding downsection, the second normal polarity interval from about 240 m to 223 m is interpreted 
as the Jaramillo Subchron (0.99–1.07 Ma), the third normal polarity interval from about 113 m 
to 92 m has been interpreted as the Olduvai Chron (1.77–1.95 Ma), whereas the intervening re-
verse polarity intervals have been interpreted as the Matuyama Chron (Fig. 2I). A lowermost 
normal polarity interval recorded from 23 m to 12 m has been conservatively excluded from ma-
gnetostratigraphic interpretation because it straddles a stratigraphic interval with faults (Fig. 
2A) associated with high susceptibility and NRM intensity values (Fig. 2C, D).
 This magnetostratigraphic interpretation is augmented with nannofossil data from three 
samples collected in the uppermost transitional-marine level at 275 m (Fig. 2A). Helicosphaera 
sellii, small Gerphyrocapsa spp., and Reticulofenestra asanoi whose finding indicates sedimen-
tation of the uppermost transitional-marine level at 275 m during a generic time interval compri-
sed between 1.14 and 0.91 Ma (Raffi, 2002; Rio et al. 1990), in substantial agreement with the 
magnetostratigraphic interpretation.
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 We created an age versus depth plot for the Arda River section by using magnetostrati-
graphy and correlation with the δ O record of Shackleton (1995), which is substantially consi-
stent with the more recent record of Lisiecki and Raymo (2005) (Fig. 5). Five magnetochronolo-
gic tie points have been used: the Matuyama–Brunhes boundary, top and base Jaramillo, top and 
base Olduvai. The last occurrence of R. asanoi (0.91 Ma; Raffi, 2002) provides an upper age 
limit for the transitional-marine level at 275 m, which is considered to have deposited during the 
MIS 25 highstand (~0.95 Ma) (Fig. 5).

According to the above, the proposed age model implies that:
 1) The long-term sediment accumulation rate between the base of the Olduvai and the 
base of the Jaramillo is of ~15 cm/ky (=150 m/Ma); this represents the average between faster 
turbidite and slower hemipelagic sedimentation typical of this part of the section. The base of 
the section should be older than 1.95 Ma (= base Olduvai) and younger than the top of the Gauss 
(2.58 Ma), which was not found in the studied section but recorded in the nearby and older Sti-
rone section (Mary et al., 1993; Channell et al., 1994). 
 2) The FO of Artica islandica at 103 m within the Olduvai has an interpolated age of 1.85 
Ma in agreement with a radiometric (He/Th) age of 1.81 ± 0.1 Ma on corals from a level imme-
diately above the FO of A. islandica in the Santerno section (northern Apennines) as reported by 
Kukla et al. (1979) (Fig. 5).
 3) The transition from marine to fully continental conditions, represented by the regressi-
ve sequence starting with littoral sands at 200 m and evolving into the first fluvial conglomera-
tes at 237 m, may correspond to the MIS 30 regression and lowstand at ~1.04 Ma within the Ja-
ramillo.
 4) The mammal bed with remains of Sus strozzii, Stephanorhinus hundsheimensis, Ursus 
rodei, Pseudodama cf. farnetensis, Bison sp., Hippopotamus sp., and Praemegaceros sp. is ap-
proximately dated to the MISs 27–29 interval centered at ~0.99 Ma (Fig. 5).
 5) The uppermost fluvial conglomerate at 275 m, immediately above the last transitio-
nal-marine ingression with R. asanoi attributed to MIS 25 (~0.95 Ma), presumably deposited 
during the profound glacioeustatic lowstand culminating with MIS 22 at ~0.9 Ma, which marks 
the first most prominent continental glaciation of the Pleistocene (Muttoni et al., 2003) (Fig. 5). 
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 We used data from the Arda River section in conjunction with data from the nearby coeval 
Stirone (Gunderson et al., 2013; 2014) and Enza (Gunderson et al., 2012) rivers sections, as well 
as data from the Monte Poggiolo section (Muttoni et al., 2011), to reconstruct the timing of the 
marine-continental transition in this part of the greater Po basin (Fig. 6A). While the critical 
stratigraphic interval comprised between the Olduvai and the Jaramillo is substantially reduced 
in the Stirone river section (only 20 m-thick) probably due to the syn-depositional growth of the 
Salsomaggiore thrust between 1.8 and 1.0 Ma (Gunderson et al., 2012; 2013), the correlations 
of the more complete Arda, Enza, and Monte Poggiolo sections allow to estimate that the mari-
ne-continental transition was in these sections slightly diachronic: while marine conditions per-
sisted at Monte Poggiolo in the early part of the post-Jaramillo Matuyama, in the western part 
at Arda and Enza, littoral sediments started to deposit during MIS 30 in the Jaramillo (Fig. 6A). 
Persistent continental to transitional conditions were first established along the ~230 km-long 
studied transect between Arda and Monte Poggiolo only at the MIS 22 low-stand and the ensu-
ing MIS 22/MIS 21 sea level rise and MIS 21 high-stand at ~0.85 Ma (Fig. 6A). 
 A similar situation has been observed in several deep cores across the northern part of the 
Po basin (Scardia et al., 2006; 2012). While the western cores displayed continental sedimenta-
tion since the pre-Jaramillo Pleistocene (e.g., RL3 Fig. 6B), it is only since MISs 22–20 that 
continental sedimentation was established in the more eastern cores (e.g., RL2, RL1). It appears 
therefore that a first major jump eastward of the coastline was attained along the studied portion 
of the Po basin in consequence of the MIS 22 lowstand (Fig. 6C). MIS 22 represents the first 
major northern hemisphere continental glaciation of the Pleistocene (Shackleton et al., 1976; 
Berger et al., 1993; Shackleton, 1995; Head et al., 2005; Muttoni et al., 2003; Scardia et al., 
2006; 2012) occurring during the so-called late Early Pleistocene climate Revolution (EPR), a 
term that substitutes for the often-used term Middle Pleistocene revolution (e.g., Berger et al., 
1993) in deference to modern time-scales in which the base of the Middle Pleistocene is placed 
at the Brunhes–Matuyama boundary (Head et al., 2005). The EPR regression centered at MIS 
22 had profound implication for the full opening of the Galerian migration pathway, as descri-
bed hereafter.
 The mammal association recovered at Arda in levels attributed to MIS 27–29 at ~0.99 Ma 
is characterized by mixed Villafranchian and Early Galerian taxa. The Villafranchian Sus stroz-
zii is commonly regarded to have been present in the Italian peninsula up to the Early Pleistoce-
ne pre-Jaramillo (>1.07 Ma) Farneta faunal unit (Gliozzi et al., 1997; Masini et al., 2007), while 
our data indicates its presence up to ~0.99 Ma at the top of the Jaramillo. The occurrence of 
Bison sp. more evolved than previous Eobison and Ursus rodei represents the entrance in the 
Italian peninsula of new taxa. U. rodei may have immigrated from central Europe, where it was 
found at Untermassfeld (Germany) in levels attributed to MIS 31 at the base of the Jaramillo 
(Kahlke et al., 2011). It is however only when fully continental conditions were established in 
the Po basin during the EPR regression that the Galerian revolution could take place in its full 
extent with a total rejuvenation of the fauna. At that time is recorded the entrance in Europe of 
far-traveled guests: megaherbivores requiring large dietary grass supply such as the straight-tu-
sked elephant (Elephas antiquus), the steppe mammoth (Mammuthus trogontherii), the red deer 
(Cervus elaphus acoronatus) are among the most representative species of the far-traveled Ga-
lerian elements that entered the Italian peninsula and Europe in general during the EPR since 
around 0.9 Ma (Muttoni et al., 2014; 2015 and references therein), and hence shortly after the 
Arda fauna with its mixed Villafranchian and Early Galerian elements. 
 Muttoni et al. (2014) speculated that large mammals, and possibly hominins with them, 
may have migrated to Europe starting at around 0.9 Ma because the EPR generated for the first 
time in the Pleistocene vast and exploitable ecosystems for African and Asian mammals espe-
cially along a conjunct Po-Danube Gateway connecting southern Europe with the Balkans (Fi-
gure 7). These new environments were characterized by stable continental lowlands with open 
grassland vegetation and reduced woody cover during the onset of glacial/interglacial transi-
tions (starting with MIS 22/MIS 21). Our data from the Arda section confirms that the progressi-
ve infill of the Po basin driving the transition from marine to fully continental environments was 
established only during the EPR since MIS 22 in the same magnetochronologic window that is 
believed to include also some of the best-dated sites with evidence of the first entrance in 
Europe of far-travelled megaherbivore immigrants (e.g., Muttoni et al., 2015). This is also the 
same magnetochronologic window of the earliest peopling of Europe (Muttoni et al., 2010; 
2011; 2014), albeit we acknowledge that the debate concerning the age of the first stable peo-
pling of Europe, whether before – and therefore detached from – the ecologic and climatic tur-
nover of the EPR (e.g., Carbonell et al., 2008; Toro-Moyano et al., 2013), or as its direct conse-
quence (Muttoni et al., 2013; 2014; 2015) remains a matter of debate.
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Figure 1: Geological map of the Castell’Arquato village area in the northern Apennines with indication of the Arda
                River section (left panel); detailed topographic map of the sampled section with location of the main 
                magnetic polarity reversals (right panel).

Figure 2: Stratigraphy and paleomagnetic data. A: Stratigraphic sequence; B: key fossil occurrences; C: Magnetic Susceptibility; 
                D: NRM; E: Demagnetization temperature window of the characteristic magnetic component
                (ChRM); F: Declination of the ChRM; G: Inclination of the ChRM; H: Latitude of the Virtual Geomagnetic Pole of the ChRM; 
                I: Magnetic Polarity (black is normal, white is reverse).

Figure 3: Vector end-point demagnetization diagrams of
                representative samples plotted aside the Arda 
                stratigraphic sequence. Full symbols are projections
                on the horizontal plane and open symbols in the vertical
                plane. Demagnetization temperatures are expressed in °C.

Figure 4: Equal area projection of the characteristic
                (ChRM) component vectors in in situ and 
                tilt corrected coordinates. Full symbols 
                represent down-pointing vectors (normal 
                polarity), open symbols represent up-
                pointing vectors (reverse polarity).

Figure 5: Age model of sedimentation of the Arda
               section correlated to the geomagnetic 
     polarity time scale (GPTS) of Gradstein et
     al. (2012) placed aside the δ18O record of
     Shackleton (1995) scaled to the glacio-
    eustatic drop at the last glacial maximum 
    time (Fairbanks, 1989).

Figure 6: (A) Correlation of the Arda section of this study with the Enza (Gunderson et al., 2014)
                and Monte Poggiolo (Muttoni et al. (2011) sections from the northern Apennines margin 
                (= south Po basin). IMO 1= Imola Sands 1; IMO 2= Imola sands 2; IMO 3= Imola sands 3;
                AEI= Lower Emilia Romagna Synthem. (B) Correlation of deep cores (RL1, RL2, and RL3) 
               from the northern part of the Po basin (Scardia et al., 2006; 2012). (C) Paleogeography of the
                Po basin at the first major regression of the coastline in consequence of the MIS 22 lowstand 
                during the late Early Pleistocene climate Revolution (EPR).

Figure 7 - Paleogeographic scenario of the migration-with-herds hypotesis of earliest expansion of hominins and large mammals from the Gates of Europe into 
      Europe across the Danube-Po gateway during the EPR (Muttoni et al. 2014).
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