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Abstract

We develop a new general method for computing the decomposition type of the normal
bundle to a projective rational curve. This method is then used to detect and explain an
example of a reducible Hilbert scheme parametrizing all the rational curves in Ps with
a given decomposition type of the normal bundle. We also characterize smooth non-
degenerate rational curves contained in rational normal scrolls in terms of the splitting
type of their restricted tangent bundles and compute their normal bundles.

1. Introduction

The projective rational curves C ⊂ Ps of degree d form a quasi-projective irreducible subsche-
me Hrat

d,s of the Hilbert scheme of Ps. Any of these curves is the image of a birational map

f : P1 → Ps, defined up an automorphism of P1. If one restricts oneself to rational curves with
ordinary singularities, one may classify these curves by considering the splitting types as a direct
sum of line bundles of the vector bundles f∗TPs and Nf = f∗TPs/TP1 , commonly called the
restricted tangent bundle and the normal bundle of the curve C, respectively. It is well known that
the classification of rational curves by the splitting type of f∗TPs produces irreducible subvarieties
of Hrat

d,s; see [Ver83, Ram90]. One can also look at [AR15] for a geometric characterization of
rational curves with a given splitting of f∗TPs and at [Iar14] for related results in the commutative
algebra language.

Since the early eighties of the past century, a natural question about rational curves in
projective spaces has been whether the subschemes of Hrat

d,s characterized by a given splitting

of Nf are irreducible as well. This has been proved to be true for rational curves in P3, see
[EvdV81, EvdV82, GS80]. The irreducibility problem has also been shown to have a positive
answer for the general splitting type of Nf , see [Sac80], and more recently other results related
to this problem have been obtained in [Ran07] and [Ber14]. However, the general irreducibility
problem remained open.
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In this paper we show that the irreducibility problem has a negative answer in general,
producing the first known example of a reducible Hilbert scheme of rational curves characterized
by a given splitting of Nf . In order to achieve this, we develop a new general method to compute
the spaces of global sections H0Nf (−k) and therefore the splitting type of Nf .

1.1 Notation and summary of results

A rational curve C ⊂ Ps is a curve that can be birationally parametrized by a regular map
f : P1 → Ps. We will always assume that C is non-degenerate, that is, not contained in any
hyperplane H ⊂ Ps, and of degree d > s with s > 3; in particular, we are excluding the
well-known case of the rational normal curves. Let IC be the ideal sheaf of C in Ps; then the
normal sheaf of C is the sheaf NC = HomOC

(IC/I2
C ,OC). Recall also that the tangent sheaf of a

noetherian scheme X over Spec(C) is defined as TX = HomOX
(Ω1

X/C,OX). Taking the differential
of the parametrization map f produces an exact sequence

0→ TP1
df→ f∗TPs → f∗NC .

When C has ordinary singularities, df is a vector bundle embedding and the sequence

0→ TP1
df→ f∗TPs → f∗NC → 0

is exact and identifies f∗NC as the quotient bundle f∗TPs/df(TP1). We will write f∗NC = Nf and
call this vector bundle the normal bundle to C. Therefore we will assume that C is irreducible
and with ordinary singularities when we will be dealing with the normal bundle Nf associated
with a given parametrization f : P1 → C.

Given a multiset of s− 1 integers c = c1, c2, . . . , cs−1, ordered in such a way that

c1 > c2 > · · · > cs−1 ,

we will denote by Hc the Hilbert scheme of irreducible degree d rational curves with ordinary
singularities C ⊂ Ps that can be birationally parametrized by a map f : P1 → Ps such that the
normal bundle Nf splits as Nf =

⊕s−1
i=1 O(ci + d+ 2).

Let U ∼= C2 be a 2-dimensional vector space and P1 = P(U) its associated projective line.
Let SdU be the dth symmetric product of U . Let νd : P(U) → P(SdU) be the dth Veronese
embedding, and let us consider the rational normal curve Cd = νd(P(U)).

Our main general result is Theorem 4.1. After representing, up to projective transformations,
a degree d rational curve as the projection of Cd from a vertex P(T ) ⊂ P(SdU), we prove an
identification of the spaces of global sections H0Tf (−d− 2− k) and H0Nf (−d− 2− k) with the
spaces kerD ∩ (SkU ⊗ T ) ⊂ SkU ⊗ SdU and kerD2 ∩ (SkU ⊗ T ) ⊂ SkU ⊗ SdU , respectively,
where D is the first-order transvectant operator, that is, D = ∂x⊗ ∂y− ∂y⊗ ∂x, with x, y a basis
of U and ∂x, ∂y the dual basis, acting by derivation. By means of this result one can relate the
splitting types of Tf and Nf with the position of the vertex P(T ) with respect to the rational
normal curve Cd.

In Section 6 we introduce and discuss our example of a Hilbert scheme Hc of rational curves
C ⊂ P8 of degree d = 11 with exactly two irreducible components of dimension 98 whose
general points represent smooth rational curves, therefore providing a counterexample to the
above-mentioned irreducibility problem.

In Section 7, Theorem 7.3, we give a characterization of smooth rational curves contained
in rational normal scrolls in terms of the splitting type of their restricted tangent bundles and
compute their normal bundles. The same theorem also shows how to construct these curves as
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Normal bundles of rational curves

projections of a rational normal curve.

2. Rational curves as projections of a rational normal curve

Given a C-vector space W , we denote by P(W ) the projective space of 1-dimensional subspaces
of W . More generally, we denote by Gr(e+ 1,W ) or Gr(e,P(W )) the Grassmannian of (e+ 1)-
dimensional subspaces of W , or equivalently, of e-dimensional linear subspaces of P(W ). If T ⊆W
is an (e + 1)-dimensional subspace, we will denote its associated point in Gr(e,P(W )) by [T ]
or [P(T )]. Accordingly, if w ∈ W is a non-zero vector, we will denote its associated point by
[w] ∈ P(W ).

Let U ∼= C2 be a 2-dimensional vector space and P1 = P(U) its associated projective line.
Let SdU be the dth symmetric product of U . Let νd : P1 → P(SdU) = Pd the dth Veronese
embedding, defined by νd(p) = [pd]. We set Cd = νd(P1), which is the rational normal curve
given by the set of pure tensors in SdU . For any b > 1, we denote by Secb−1Cd the closure of the
set of [τ ] ∈ P(SdU) such that τ = pd1 + · · ·+ pdb , for [pi] ∈ Cd distinct points, that is, the (b− 1)st
secant variety of Cd.

Let C ⊂ Ps = P(V ) be a non-degenerate rational curve of degree d. For the next considera-
tions we will not need to assume that C has ordinary singularities. The normalization map
νC : P(U)→ C is the restriction of a map f : P(U) → Ps such that f∗OPs(1) = ν∗COC(1) =
OP1(d). The map f is defined by an injection f∗ : H0OPs(1) = V ∗ ↪→ H0OP1(d) = SdU∗ such
that f∗(V ∗) spans OP1(d) at any point of P1. Let us set

T = f∗(V ∗)⊥ ⊂ SdU , e+ 1 = dimT = d− s .

Then one sees that the map f∗ can be identified with the dual of the map SdU → SdU/T
∼=→

V . In particular, up to a linear isomorphism, we identify Ps and P(SdU/T ), and the map f
and the composition f = πT ◦ νd, where πT : P(SdU) 99K P(SdU/T ) is the projection of the
vertex P(T ). We want to underline the fact that for any ψ ∈ Aut(Ps), the curve C ′ = ψ(C) is
obtained by changing f∗ : V ∗ → SdU∗ into g∗ = f∗ ◦ψ, with ψ ∈ GL(V ∗) a linear automorphism
representing ψ. Hence the space T = f∗(V ∗)⊥ is not affected by such a transformation. This
means that one has a natural bijection between the set of orbits of maps f : P1 → Ps under the
left action of PGL(s+ 1) and the set of projection vertexes P(T ) obtained as above.

We recall that the condition that f∗(V ∗) spans OP1(d) at any point of P1 is equivalent to
P(T ) ∩ Cd = ∅, and the fact that f is birational to the image corresponds to the fact that
P(T ) ∩ Sec1Cd is finite.

The discussion above shows that the Hilbert scheme Hrat
d,s of rational curves in Ps is set-

theoretically described as the set of images of rational maps πT ◦ νd composed with projective
transformations of Ps, with the extra condition that the map πT ◦ νd : P1 → Ps is birational to
the image. More precisely, for V the open subset of [T ] ∈ Gr(e+ 1, SdU)) such that P(T )∩Cd is
empty and P(T ) ∩ Sec1 T is finite, we see that there exists a map

V × PGL(s+ 1)→ Hrat
d,s

mapping ([T ], φ) ∈ V × PGL(s+ 1) to the curve C = φ(πT (Cd)), and this map is surjective.

2.1 PGL(2)-action on the space of vertexes P(T )

Let us fix a map f = πT ◦νd : P1 → Ps, associated with a vertex P(T ) as in the construction above.
Let us consider an automorphism φ ∈ PGL(2). We will denote with the same letter φ a fixed
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representative of the given automorphism as an element of GL(2). One observes that the d-fold
symmetric product Sdφ of the map φ acts on SdU by the action on generators (Sdφ)(ld) = φ(l)d,
and one can define the induced action on the Grassmannian Gr(e+1, SdU) by [T ] 7→ [(Sdφ)(T )].
Now, let us consider the composition

fφ = f ◦ φ−1 : P1 → Ps .

One has the following formula:

fφ = π(Sdφ)(T ) ◦ νd . (2.1)

Indeed, we know that f is determined by the subspace T⊥ ⊂ SdU∗; let us write T⊥ = 〈g0, . . . , gs〉.
Then fφ is determined by W = 〈g0◦φ−1, . . . , gs◦φ−1〉, and by the GL(2)-invariance of the duality
pairing SdU∗ ⊗ SdU → C, one immediately sees that W = (Sdφ)(T )⊥ ⊂ SdU∗.

Above, we saw that the space of maps f : P1 → Ps that birationally parametrize a non-
degenerate rational curve C ⊂ Ps of degree d is identified with V × PGL(s + 1), by mapping
([T ], φ) to f = φ ◦ (πT ◦ νd). We then showed that the right PGL(2)-action on this space of maps
can be identified with the left action of PGL(2) on V × PGL(s + 1) defined by its left action
on V.

2.2 Irreducibility criteria and dimension formulas

To show the irreducibility of a subscheme HP ⊆ Hrat
d,s defined by a geometric property P on

rational curves C ⊂ Ps, it will be sufficient to prove the irreducibility of the subvariety VP of
those [T ] ∈ Gr(e+ 1, SdU) such that the curve C = πT (Cd) satisfies property P . Indeed, in that
case VP × PGL(s + 1) → HP is onto, with irreducible domain. To compute dimHP from the
map π : VP × PGL(s + 1) → HP , one applies the following result, which is almost obvious and
very well known in the special case HP = Hrat

d,s, but which we will need in the more general form
stated here.

Proposition 2.1. With the notation set above, if VP is irreducible, then HP is irreducible of
dimension dimHP = dimVP + dim PGL(s+ 1)− 3.

Proof. From the above discussion it follows that the fiber over an arbitrary [C] ∈ HP is

π−1([C]) = Orb([T ])× Stab(C) ,

with Orb([T ]) the orbit of [T ] under the action of PGL(2) on the Grassmannian Gr(e+ 1, SdU)
and Stab(C) ⊂ PGL(s + 1) the group of projective transformations preserving C. First, we
consider the case when dim Orb([T ]) < 3 = dim PGL(2), that is, when [T ] is fixed by some
1-dimensional subgroup of PGL(2). The 1-dimensional subgroups of PGL(2) either fix one point
[x] ∈ P1 and contain the translations group acting on the basis x, y as (x, y) 7→ (x, y+ αy), with
α ∈ C, or fix two points [x], [y] ∈ P1 and contain the group (x, y) 7→ (x, λy), with λ ∈ C∗. Any
subspace T ⊂ SdU fixed by a group of the first type must contain the pure tensor [xd], and
hence [T ] 6∈ V. A space fixed by a subgroup of the second type is necessarily monomial; that
is, T = 〈xν0yd−ν0 , . . . , xνeyd−νe〉. One can see that such a space gives a point [T ] ∈ V, that is,
P(T )∩Sec1Cd = ∅ if and only if d−2 > ν0 > · · · > νe > 2, and hence it can exist if d−3 > e+1.
In this case one sees dim Orb(T ) = dim PGL(2)− dim Stab(T ) = 2.

Now, we consider the cases when dim Stab(C) > 0. A classical reference for this class of curves,
called the algebraic Klein–Lie curves, or algebraic W -curves, is for example [EC34, libro V, § 24].
In a suitable coordinate system, any 1-dimensional subgroup of PGL(s + 1) whose orbits in Ps
are not lines takes the form t 7→ diag(tµ0 , . . . , tµs), with µi ∈ Z normalized and ordered such that
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0 = µ0 6 · · · 6 µs. Its orbits t 7→ (α0t
µ0 : · · · : αstµs) represent non-degenerate rational curves of

degree d if and only if the integers µi are distinct, αi 6= 0 for all i = 0, . . . , s and µs = d. Hence
there exists only a finite number of possible choices of such integers µ0, . . . , µs for a fixed d, that is,
a finite number of non-degenerate degree d Klein–Lie curves in Ps up to projective equivalence.
All of them can be obtained up to projective equivalence as projections C = πT (Cd) in the
following way. For any fixed basis x, y ∈ U consider the vertex P(T ) generated by monomials
xν0yd−ν0 , . . . , xνeyd−νe , with e + 1 = d − s and {ν0, . . . , νe} = {0, . . . , d} \ {µ0, . . . , µs}. Then
C = πT (Cd) is a curve parametrized as t 7→ (tµ0 : · · · : tµs) with respect to the basis (x̄µi ȳd−µi)
of SdU/T . Hence we have found that non-degenerate rational curves with dim Stab(C) > 0 come
from those vertexes P(T ) with dim Orb([T ]) = 2 that were already analyzed above. In all those
cases one has

dimπ−1([C]) = dim(Orb(T )× Stab(C)) = 2 + 1 = 3 .

In any other case one has dim Orb(T ) = 3 and dim Stab(C) = 0.

2.3 A classification of the projection vertexes P(T )

Let us consider a non-zero subspace T ⊆ SdU , with d > 2. Let us denote by x, y a basis of U and
by u, v the dual basis in U∗. Recall that u, v may be identified with ∂x, ∂y acting as linear forms
on U , and an arbitrary element ω ∈ U∗ will be written ω = α∂x + β∂y for suitable α, β ∈ C. We
define

∂T = 〈ω(T ) |ω ∈ U∗〉 . (2.2)

We remark that if U = 〈x, y〉, then ∂T = ∂xT + ∂yT . One observes that in the trivial case T =
SdU , we have ∂T = Sd−1U . One can see that this is the only possible case when dim ∂T < dimT ,
either as an easy exercise or as a consequence of Proposition 2.3 below.

We also introduce the space ∂−1T ⊂ Sd+1U defined in the following way:

∂−1T =
⋂
ω∈U∗

ω−1(T ) . (2.3)

In this case we have ∂−1T = ∂−1
x T ∩ ∂−1

y T . Of course one has ∂−1SdU = Sd+1U .

For g ∈ Sd+bU we introduce the vector space

∂b(g) =
〈
∂bxg, ∂

b−1
x ∂yg, . . . , ∂

b
yg
〉
⊆ SdU . (2.4)

By convention, we set ∂b(g) = 0 if b = −1.

2.4 The numerical type of a subspace T ⊂ SdU

We will need the following notation and results from the article [AR15].

Definition 2.2. We will say that a proper linear space P(S) ⊂ Pd is Cd-generated if P(S) is
generated by its schematic intersection with Cd. Setting a + 1 = dimS, we will also say in this
case that P(S) is (a+1)-secant to Cd. We will say that a vector subspace S ⊆ SdU is Cd-generated
if P(S) is Cd-generated.

Notation. Given a proper subspace T ⊂ SdU , we denote by ST the smallest subspace containing
the schematic intersection P(T ) ∩Cd as a subscheme. We set a = dimST − 1 = dimP(ST ), with
the convention that dim ∅ = −1.

Proposition 2.3 ([AR15, Theorem 1]). Let T be a proper subspace of SdU . Let ST be as defined
above. Then dim ∂ST = dimST . Moreover, if we define r = dim ∂T − dim(T ), then r > 0 and
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either r = 0 and in this case one has T = ST and T is Cd-generated, or r > 1 and there exist
forms f1, . . . , fr, with fi ∈ Pd+bi \ Secbi Cd+bi for i = 1, . . . , r, with b1 > · · · > br > 0, such that
T and ∂T are the direct sums

T = ST ⊕ ∂b1(f1)⊕ · · · ⊕ ∂br(fr) ,

∂T = ∂S ⊕ ∂b1+1(f1)⊕ · · · ⊕ ∂br+1(fr) .

The (r + 1)-uple (a, b1, . . . , br) is uniquely determined from T . A space T as above exists if and
only if a > −1, bi > 0 for all i = 1, . . . , r and a+ 1 +

∑
(bi + 2) 6 d.

Definition 2.4. We say that a subspace T as in Proposition 2.3 has numerical type (a, b1, . . . , br).
If ST = 0, that is, P(T ) ∩ Cd = ∅, then a = −1 and we will say T that has type (b1, . . . , br).

Let us also recall the following result from [AR15].

Proposition 2.5 ([AR15, Proposition 5]). Assume that T ⊆ SdU has type (a, b1, . . . , br), so
that it has a decomposition

T = ST ⊕
r⊕
i=1

∂bi(fi)

satisfying the requirements of Proposition 2.3. Then ∂−1(ST ) = S∂−1T and dim ∂−1(ST ) =
dimST = a+ 1, and there exists a decomposition

∂−1T = ∂−1ST ⊕
⊕
i : bi>1

∂bi−1(fi) .

In particular, ∂−1T has type (a, b1 − 1, . . . , br1 − 1) with r1 = max(i : bi > 1).

2.5 The splitting type of the restricted tangent bundle of rational curves

The main result of [AR15] about the splitting type of the restricted tangent bundle f∗TPs , that
we will write as Tf for short, of a parametrized rational curve f : P1 → Ps is the following.

Proposition 2.6 ([AR15, Theorem 3]). Assume that f : P1 → Ps is obtained by projecting the
rational normal curve Cd from a vertex P(T ) with T of type (b1, . . . , br). Then r 6 s and the
splitting type of Tf is

Tf = OP1(b1 + d+ 2)⊕ · · · ⊕ OP1(br + d+ 2)⊕Os−rP1 (d+ 1) .

We also recall the restricted Euler sequence

0→ OP1 → (SdU/T )⊗OP1(d)→ Tf → 0 ,

from which one gets deg Tf = (s+ 1)d.

3. Review of some SL(U)-invariant operators

In this section we will review some well-known invariant operators between spaces of tensors on U
or U∗, for the convenience of the reader and for later reference. Invariance will mean GL(U)-
or SL(U)-invariance.

3.1 The duality pairing

The duality pairing is the natural pairing SdU∗ ⊗ SdU → C that identifies either of the two
spaces as the dual of the other. It may be defined by considering any element of SdU∗ as a
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differential operator on SdU . More precisely, if x, y ∈ U and u, v ∈ U∗ are dual bases, then one
has the formula

f(u, v) ∈ SdU∗ , l = λx+ µy ∈ U ⇒ f
(
ld
)

= d!f(λ, µ) .

3.2 General contractions

The contraction maps

SkU∗ ⊗ SbU → Sb−kU ,

defined for any 0 6 k 6 b, or the analogous maps interchanging U and U∗, can be interpreted
in a way similar to that given in 3.1 by letting the tensors in SkU∗ act on SbU as differential
operators. The following formulas are straightforward consequences of the definition of the action
of f ∈ SkU∗ as a differential operator:

f(lb) =

(
b

k

)
f(lk)lb−k , (3.1)

f(η(g)) = (ηf)(g) , ∀ f ∈ SkU∗, ∀ η ∈ U∗ , ∀ g ∈ Sb+1U . (3.2)

3.3 The multiplication maps

The multiplication maps are the maps m : SiU ⊗ SjU → Si+jU , or the same with U∗ in the
place of U , defined on pure generators by m(li ⊗ hj) = lihj .

3.4 The polarization maps

The polarization maps are maps pk : Sd+kU → SkU ⊗ SdU proportional to duals of the multi-
plication maps m : SkU∗ ⊗ SdU∗ → Sd+kU∗, with proportionality factor determined such that
m(pk(f)) = f for any f ∈ Sd+kU . For this reason, the polarization maps are always injective.
The maps pk are uniquely defined by

pk(l
d+k) = lk ⊗ ld .

One has the following well-known closed formula for pk in terms of a fixed basis x, y for U :

pk(f) =
(deg f − k)!

deg f !

k∑
i=0

(
k

i

)
xk−iyi ⊗ ∂k−ix ∂iy(f) . (3.3)

3.5 The multiplication by ξ = x⊗ y − y ⊗ x
The multiplication by ξ = x⊗ y − y ⊗ x is an SL(U)-invariant element of U ⊗ U , which indeed
generates the irreducible subrepresentation of GL(U) given by U∧U ⊂ U⊗U . The multiplication
by ξ acts in the following way:

ξ : Si−1U ⊗ Sj−1U → SiU ⊗ SjU .

Observe that for any k 6 d one has the direct sum decomposition

SkU ⊗ SdU = pk
(
Sd+kU

)
⊕ ξpk−1

(
Sd+k−2U

)
⊕ · · · ⊕ ξkp0

(
Sd−2kU

)
. (3.4)

Here we set SiU = 0 if i < 0. This decomposition is equal to the Pieri decomposition of SkU⊗SdU
as a GL(U)-representation, for which we refer to [FH91]. Note that grouping the terms in (3.4)
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in a suitable way, one obtains

SkU ⊗ SdU = pk
(
Sd+kU

)
⊕ ξ
(
Sk−1U ⊗ Sd−1U

)
, (3.5)

SkU ⊗ SdU = pk
(
Sd+kU

)
⊕ ξpk−1

(
Sd+k−2U

)
⊕ ξ2

(
Sk−2U ⊗ Sd−2U

)
. (3.6)

3.6 The operator D = Dx,y = ∂x ⊗ ∂y − ∂y ⊗ ∂x
The operator D = Dx,y = ∂x⊗∂y−∂y⊗∂x is classically know as the first-order transvectant; see,
for example, [Olv99, Definition 5.2]. If (x′, y′) = (x, y)A is a new basis for U , then the operator
D transforms as Dx′,y′ = (detA)−1Dx,y; see [Olv99, formula (5.3)]. In particular, D is invariant
with respect to the SL(U)-representation on U∗⊗U∗. In this article we will consider the following
actions of D as a differential operator:

D : SkU ⊗ SdU → Sk−1U ⊗ Sd−1U .

The operator D satisfies the following property.

Lemma 3.1. For any τ ∈ Sk−1U ⊗ Sd−1U one has

D(ξτ) = (d+ k)τ + ξD(τ) .

Moreover, one has D(pk(f)) = 0 for any f ∈ Sd+kU .

We omit the proof, that can be achieved by a direct computation, reducing oneself to the
case τ = xk−1 ⊗ yd−1 by linearity and SL(2)-invariance. One consequence of the lemma above is
the following.

Corollary 3.2. For any d, k > 1 or d, k > 2, respectively, the following sequences are exact:

0→ pk(S
d+kU)→ SkU ⊗ SdU D→ Sk−1U ⊗ Sd−1U → 0 ,

0→ pk(S
d+kU)⊕ ξpk−1(Sd+k−2U)→ SkU ⊗ SdU D2

→ Sk−2U ⊗ Sd−2U → 0 .

Proof. We start with the first sequence. The fact that the sequence is a complex is the second
statement of Lemma 3.1. By the first statement of Lemma 3.1 and by (3.4) and (3.5), the
operator D maps the subspace ξ(Sk−1U ⊗ Sd−1U) of the space SkU ⊗ SdU = pk(S

d+kU) ⊕
ξ(Sk−1U ⊗ Sd−1U) onto Sk−1U ⊗ Sd−1U . The exactness in the middle also follows from the
decomposition (3.5). The proof of the exactness of the second sequence is very similar. One first
shows

D2
(
pk
(
Sd+kU

)
⊕ ξpk−1

(
Sd+k−2U

))
= 0

by applying Lemma 3.1 twice. Then the exactness follows from (3.4) and (3.6) in a way similar
to that for the first sequence.

In a different vein, one can use the operator D2 to produce the invariant map

SkU ⊗ SbU∗ D2

−→ Sk−2U ⊗ Sb+2U∗ . (3.7)

In this map, the tensor D2 = ∂2
x ⊗ ∂2

y − 2∂x∂y ⊗ ∂x∂y + ∂2
y ⊗ ∂2

x acts by contraction on the SkU -

components and by multiplication on the SbU∗-component. Later, we will need the following
result.

Proposition 3.3. The map (3.7) has maximal rank for any b > 0 and k > 2.
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Proof. We use the identification φ : U∗ → U that maps α∂x + β∂y to −βx + αy. Note that φ
is SL(2)-invariant, as φ ∧ φ maps ∂x ∧ ∂y to y ∧ (−x) = x ∧ y. Then for any i, j > 0, the map
1⊗ Sj(φ) : SiU ⊗ SjU∗ → SiU ⊗ SjU is a isomorphism. We can rewrite the map (3.7) in terms
of these identifications as follows:

SkU ⊗ SbU δ2−→ Sk−2U ⊗ Sb+2U ,

with δ2 = ∂2
x ⊗ x2 + 2∂x∂y ⊗ xy + ∂2

y ⊗ y2 = (∂x ⊗ x+ ∂y ⊗ y)2, acting as before by contraction

on SkU and by multiplication on SbU . Now the fact that δ2 has maximal rank is a consequence
of the following more general result.

Lemma 3.4. For any (n + 1)-dimensional C-vector space V = 〈x0, . . . , xn〉 and any k > a and
b > 0, for δ = (∂x0 ⊗ x0 + · · ·+ ∂xn ⊗ xn), the map

SkV ⊗ SbV δa−→ Sk−aV ⊗ Sb+aV (3.8)

has maximal rank.

The result above is already known; for example, one can see that it is a consequence of [Re12,
Theorem 2]. However, we find it more convenient to give a new proof here, since we did not find
any clear reference for the statement above in the existing literature.

Sketch of proof. We use the invariance of δ and the Pieri decompositions of SkV ⊗ SbV and
Sk−aV ⊗ Sb+aV as SL(V )-modules. As is well known,

SkV ⊗ SbV =

min(k,b)⊕
i=0

S(k+b−i,i)V , (3.9)

where S(k+b−i,i)V is the SL(V )-irreducible tensor space resulting by applying to V the Schur
functor associated with the Young diagram with two rows of lengths k+ b− i and i, respectively.
One has the similar decomposition

Sk−aV ⊗ Sb+aV =

min(k−a,a+b)⊕
i=0

S(k+b−i,i)V . (3.10)

Note that if b 6 k−a, then all the summands S(k+b−i,i)V appearing in (3.9) also appear in (3.10)
and, on the other hand, if b > k − a, then all the summands in (3.10) appear in (3.9). Then the
proof is complete if one shows that for any summand appearing in both the formulas above, the
composition

S(k+b−i,i)V ↪→ SkV ⊗ SbV δa−→ Sk−aV ⊗ Sb+aV � S(k+b−i,i)V

is non-zero and hence an isomorphism. It is well known that the first invariant inclusion identifies
S(k+b−i,i)V as the subspace of SkV ⊗ SbV generated by tensors of the form ξ1 · · · ξif , where the

ξj are tensors of the form xh ⊗ xk − xk ⊗ xh and f ∈ pk−i(Sk+b−2iV ) ⊂ Sk−iV ⊗ Sb−iV . Then
one observes the fundamental fact that δ(xh ⊗ xk − xk ⊗ xh) = 0. Since δ is a derivation on
the commutative ring S•V ⊗ S•V , one deduces that δ commutes with xh ⊗ xk − xk ⊗ xh and
hence δa(ξ1 · · · ξif) = ξ1 · · · ξiδa(f). Then one concludes by the observation that f = pk−i(g) and
one can easily check that δa(f) = δa(pk−i(g)) = pk−i−a(g), up to some non-zero rational factor.
Hence the map δa is non-zero when restricted to S(k+b−i,i)V .
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3.7 The invariant embeddings ψk : U ⊗ Sd+k−1U → SkU ⊗ SdU

We define the invariant embeddings ψk as the compositions

U ⊗ Sd+k−1U
1⊗pk−−−−→ U ⊗ SkU ⊗ Sd−1U

m̃−−−−→ SkU ⊗ SdU,

where m̃ is the multiplication of the first and the third tensor components of U ⊗SkU ⊗Sd−1U .
The maps ψk are obviously SL(U)-invariant. We will show that the maps ψk are invariant em-
beddings for any k > 1.

Proposition 3.5. For any d > 2 and k > 1, the map ψk is injective and

ψk
(
U ⊗ Sd+k−1U

)
= ker

(
D2 : SkU ⊗ SdU → Sk−2U ⊗ Sd−2U

)
,

where the map above is set to be the zero map in the case k = 1.

Proof. We use the decomposition U ⊗ Sd+k−1U = p1(Sd+kU)⊕ ξSd+k−2U , which is a particular
case of (3.5). Since the two summands are irreducible representations of SL(U) and the map ψk
is SL(U)-invariant, to show the injectivity of ψk it will be sufficient to show that ψk is non-zero
on the summands p1(Sd+kU) and ξSd+k−2U . We will achieve that by computing ψk on some
special elements of these summands.

For l ⊗ ld+k−1 ∈ p1(Sd+kU) we see that

ψk
(
l ⊗ ld+k−1

)
= m̃

(
(1⊗ pk)

(
l ⊗ ld+k−1

))
= m̃

(
l ⊗ lk ⊗ ld−1

)
= lk ⊗ ld ∈ pk

(
Sd+kU

)
⊂ SkU ⊗ SdU .

Now, let us consider the element ξxd+k−2 = x⊗xd+k−2y− y⊗xd+k−1 ∈ ξSd+k−2U . We compute
separately ψk(x⊗ xd+k−2y) and ψk(y ⊗ xd+k−1). One finds easily

ψk
(
y ⊗ xd+k−1

)
= xk ⊗ xd−1y .

From formula (3.3) one has

pk(x
d+k−2y) =

(d− 1)!

(d+ k − 1)!

(
xk ⊗ ∂kx(xd+k−2y) + kxk−1y ⊗ ∂k−1

x ∂y
(
xd+k−2y

))
=

(d− 1)!

(d+ k − 1)!

(
(d+ k − 2)!

(d− 2)!
xk ⊗ xd−2y + kxk−1y ⊗ (d+ k − 2)!

(d− 1)!
xd−1

)
=

1

d+ k − 1

(
(d− 1)xk ⊗ xd−2y + kxk−1y ⊗ xd−1

)
.

Hence one obtains

ψk
(
x⊗ xd+k−2y

)
=

1

d+ k − 1

(
(d− 1)xk ⊗ xd−1y + kxk−1y ⊗ xd

)
.
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Then we find

ψk
(
ξxd+k−1

)
= ψk

(
x⊗ xd+k−2y

)
− ψk

(
y ⊗ xd+k−1

)
=

1

d+ k − 1

(
(d− 1)xk ⊗ xd−1y + kxk−1y ⊗ xd

)
− 1

d+ k − 1

(
(d+ k − 1)xk ⊗ xd−1y

)
=

k

d+ k − 1

(
xk−1y ⊗ xd − xk ⊗ xd−1y

)
= − k

d+ k − 1
ξ
(
xk−1 ⊗ xd−1

)
∈ ξpk−1

(
Sd+k−2U

)
.

The calculations made above show that ψk restricts to a non-zero SL(U)-invariant map on
p1(Sd+kU) and ξSd+k−2U . In particular, by the SL(U)-irreducibility of these spaces, one gets

ψk
(
p1

(
Sd+kU

))
= pk

(
Sd+kU

)
,

ψk
(
ξSd+k−2U

)
= ξpk−1

(
Sd+k−2U

)
,

proving the global injectivity of ψk. Moreover, applying Corollary 3.2, one has

ψk
(
U ⊗ Sd+k−1U

)
= pk

(
Sd+kU

)
⊕ ξpk−1

(
Sd+k−2U

)
= kerD2 .

4. A new setup for computing the cohomology of Nf

From now on we will assume that f : P1 → Ps parametrizes a rational curve with ordinary
singularities and that f = πT ◦ νd, so the parametrized curve arises as projection of the rational
normal curve Cd from a vertex P(T ). Let us recall the operator

D2 : SkU ⊗ SdU → Sk−2U ⊗ Sd−2U

discussed in Section 3. We state the main theorem of this article, whose proof will be given at
the end of this section.

Theorem 4.1. For any k > 1 one has

h0Tf (−d− 2− k) = dim
(

kerD ∩
(
SkU ⊗ T

))
,

h0Nf (−d− 2− k) = dim
(

kerD2 ∩
(
SkU ⊗ T

))
.

4.1 Euler sequence and its consequences

Let C ⊂ Ps be a degree d rational curve with ordinary singularities. As in the notation above
we assume that there is a parametrization map f : P1 → Ps obtained by projecting the rational
normal curve Cd from a vertex P(T ) ⊂ P(SdU). Since f = πT ◦νd, we have Ps = P(SdU/T ). Note
also that the natural inclusion (SdU/T )∗ ⊂ SdU∗ identifies (SdU/T )∗ and T⊥. Hence we can set

dimT = e+ 1 , dimT⊥ = s+ 1 = d− e .
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We have a commutative diagram

OP1
=−−−−→ OP1y y

0 −−−−→ U ⊗OP1(1)
J(f)−−−−→ (T⊥)∗ ⊗OP1(d) −−−−→ Nf −−−−→ 0y y yid

0 −−−−→ TP1
df−−−−→ Tf −−−−→ Nf −−−−→ 0 .

Indeed, if the map f : P1 → P((T⊥)∗) = Ps is given in coordinates by

f(u : v) = (g0(u, v) : · · · : gs(u, u)) ,

with gi(u, v) ∈ SdU∗, then the map J(f) : U ⊗OP1(1)→ (T⊥)∗⊗OP1(d) in the diagram above is
given fiberwise by the differentials df |(u,v) : T(u,v)(CP1)→ Tf(u,v)(CPs) of the map f : CP1 → CPs
between the associated affine cones. Hence it has associated matrix

J(f) =

∂ug0(u, v) ∂vg0(u, v)
...

...
∂ugs(u, v) ∂vgs(u, v)

 .

Let us consider the exact sequence

0→ U ⊗OP1(1)→
(
T⊥
)∗ ⊗OP1(d)→ Nf → 0 . (4.1)

From this sequence we get

degNf (−d− 1) = −(d− e) + 2d = d+ e .

Writing, as in the introduction,

Nf = OP1(c1 + d+ 2)⊕ · · · ⊕ OP1(cs−1 + d+ 2) (4.2)

with c1 > · · · > cs−1, we see that

s−1∑
i=1

(ci + 1) = d+ e ,

s−1∑
i=1

ci = 2(e+ 1) . (4.3)

Taking the cohomology exact sequence from (4.1) we obtain, for any k > d+ 1,

H0Nf (−k) ↪→ U ⊗H1OP1(1− k)→ (T⊥)∗ ⊗H1OP1(d− k)� H1Nf (−k) . (4.4)

If k = d + 1, one obtains H0Nf (−d − 1) ∼= U ⊗ H1OP1(−d). Let us now consider the cases
k > d + 2. We have T⊥ = 〈g0, . . . , gs〉, and we denote by g∗0, . . . , g

∗
s the dual basis of the gi in

(T⊥)∗ = SdU/T . Recall that if we write U∗ = 〈u, v〉, with u, v the dual basis of x, y ∈ U , then
the first non-zero map in (4.1) is defined by x⊗ l 7→

∑
i g
∗
i ⊗ l∂ugi and y ⊗ l′ 7→

∑
i g
∗
i ⊗ l′∂vgi,

for any local sections l, l′ of OP1(1).

As is well known, by Serre duality one can identify the spaces H1OP1(1−k) and H1OP1(d−k)
appearing in the exact sequence (4.4) with (H0OP1(k−3))∗ = Sk−3U and (H0OP1(k−d−2))∗ =
Sk−d−2U , respectively. Moreover, it is well known that any sheaf map OP1(1− k)

σ→ OP1(d− k)
associated with a global section σ ∈ H0OP1(d − 1) = Sd−1U∗ induces a map H1OP1(1 − k)

σ→
H1OP1(d − k) between the cohomology spaces that, under the identifications above, can be
written as the linear map Sk−3U

σ→ Sk−d−2U defined by letting σ act as a differential operator
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on Sk−3U . In our case the sheaf map U ⊗OP1(1− k)→ (T⊥)∗ ⊗OP1(d− k) arising from (4.1),
after the identifications U ∼= C2 and T⊥ ∼= Cs+1 by means of the mentioned bases x, y and
g0, . . . , gs can be seen as a sheaf map O2

P1(1 − k) → Os+1
P1 (d − k) whose components have the

form OP1(1 − k)
∂ugi→ OP1(d − k) and OP1(1 − k)

∂vgi→ OP1(d − k). The induced maps on the H1

cohomology spaces are therefore ∂ugi : S
k−3U → Sk−2−dU and ∂vgi : S

k−3U → Sk−2−dU , acting
as differential operators of order d− 1.

From the discussion above it follows that one can compute H0Nf (−k) as the kernel of the
linear map

U ⊗ Sk−3U →
(
T⊥
)∗ ⊗ Sk−d−2U (4.5)

defined by x⊗f 7→
∑

i g
∗
i ⊗(∂ugi)(f) and y⊗f ′ 7→

∑
i g
∗
i ⊗(∂vgi)(f

′), where ∂ugi, ∂vgi : S
k−3U →

Sk−2−dU act as differential operators of order d − 1. Let us compute the kernel H0Nf (−k) of
the linear map (4.5).

The space H0Nf (−k), seen as a subspace of U⊗Sk−3U , is the space of tensors x⊗f0+y⊗f1 ∈
U⊗Sk−3U such that (∂ugi)(f0)+(∂vgi)(f1) = 0 ∈ Sk−d−2U for all i = 0, . . . , s. This is equivalent
to imposing that f0(P∂ug) + f1(P∂vg) = 0 for any g ∈ T⊥ and any P ∈ Sk−d−2U∗. This is
equivalent to saying that

P (f0)(∂ug) + P (f1)(∂vg) = 0 (4.6)

for any P ∈ Sk−d−2U∗ and any g ∈ T⊥. By applying the version of formula (3.2) with the roles
of U and U∗ interchanged and recalling that the elements x, y ∈ U act as ∂u, ∂v on C[u, v],
respectively, one sees that for any φ ∈ Sd−1U and any g ∈ SdU∗ one has φ(∂ug) = (xφ)(g) and
similarly φ(∂vg) = (yφ)(g). Hence we can rewrite (4.6) in the following form:

(xP (f1) + yP (f2))(g) = 0 , ∀ g ∈ T⊥ , ∀P ∈ Sk−d−2U∗ ,

which means

xP (f1) + yP (f2) ∈ T , ∀P ∈ Sk−d−2U∗ . (4.7)

Notation. The calculations made above hold for any k > d + 2. We find it convenient, from
now on, to redefine k to be what was first k − d− 2. Accordingly, we set, for any k > 0,

Tk =
{
x⊗ f0 + y ⊗ f1 ∈ U ⊗ Sd+k−1U |xP (f0) + yP (f1) ∈ T, ∀P ∈ SkU∗

}
.

Hence we can summarize the discussion above in the following result.

Proposition 4.2. Under the notation above, we have the following relation for any k > 0:

H0Nf (−d− 2− k) = Tk . (4.8)

The following proposition collects some facts that will be needed later, as well as some first
applications of the result above.

Proposition 4.3. Assume that Nf has a splitting of the form (4.2). Then the following hold:

(i) One has h0Nf (−d− k − 2) =
∑

i : ci>k
(ci − k + 1) for any k ∈ Z.

(ii) Setting f(−k) = h0Nf (−d− k − 2) for any k ∈ Z, one has

#{i | ci = k} = ∆2f(−k) = f(−k)− 2f(−k − 1) + f(−k − 2) .

(iii)
∑s−1

i=1 (ci + 1) = d+ e = d+ dimP(T ).

(iv)
∑s−1

i=1 ci = 2(e+ 1) = 2 dimT .
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(v) cs−1 > 0.

Proof. Items (i) and (ii) are easy and well known. The relations (iii) and (iv) coincide with
formulas (4.3) and therefore have already been proven.

From Proposition 4.2 we have the identification

H0Nf (−d− 2) =
{
x⊗ f1 + y ⊗ f2 ∈ U ⊗ Sd−1U |xf1 + yf2 ∈ T

}
,

and therefore we see that

H0Nf (−d− 2) ∼= m−1(T ) ⊂ U ⊗ Sd−1U , (4.9)

where m is the multiplication map m : U ⊗ Sd−1U → SdU . Now, the kernel of m is given by the
tensors of the form x⊗ yh− y ⊗ xh, with arbitrary h ∈ Sd−2U . Then one has

h0Nf (−d− 2) = dimm−1(T ) = d− 1 + dimT = d+ e . (4.10)

On the other hand, by (4.3) we know

d+ e = h0Nf (−d− 2) =
∑
i : ci>0

(ci + 1) >
s−1∑
i=1

(ci + 1) = d+ e .

This implies c1 > · · · > cs−1 > −1. We will also need to know the value of h0Nf (−d − 1). This
is obtained from the exact sequence (4.1), from which it easily follows that H0Nf (−d − 1) ∼=
U ⊗ H1OP1(−d) and hence h0Nf (−d − 1) = 2(d − 1). Now, applying fact (ii) for k = −1 and
using relations (iii) and (iv) and the above calculation of f(1) = h0Nf (−d − 1), we see that
#{i | ci = −1} = 2(d−1)−2(d+ e) + 2(e+ 1) = 0, which completes the proof of relation (v).

4.2 Completion of the proof of Theorem 4.1

Proof of Theorem 4.1. We start with the part of the statement about Tf . At the beginning of
[AR15, Section 6.2, p. 1334] we showed the equality

h0Tf (−d− 2− k) = dim ∂−kT .

Moreover, from Corollary 3.2 we know pk(S
d+kU) = kerD ⊂ SkU ⊗ SdU . Then one finds

kerD ∩
(
SkU ⊗ T

)
= pk

(
Sk+dU

)
∩
(
SkU ⊗ T

)
= pk

({
f ∈ Sd+kU | ∂k−ix ∂iy(f) ∈ T, ∀ i = 0, . . . , k

})
∼= ∂−kT.

Hence we find the equality h0Tf (−d− 2− k) = dim(kerD ∩ (SkU ⊗ U)).

Now, we prove the statement about Nf . By Proposition 4.2 we know

H0Nf (−d− 2− k) = Tk

with Tk ⊆ U ⊗ Sd+k−1U the subspace consisting of those elements x ⊗ f0 + y ⊗ f1 such that
xP (f0) + yP (f1) ∈ T for any P ∈ SkU∗. This is equivalent to the condition

x∂k−ix ∂iy(f0) + y∂k−ix ∂iy(f1) ∈ T , ∀ i = 0, . . . , k .

Recall that by formula (3.3) one has

ψk(x⊗ f0 + y ⊗ f1) = m̃(x⊗ pk(f0) + y ⊗ pk(f1))

= const ·
k∑
i=1

(
k

i

)
xk−iyi ⊗ (x∂k−ix ∂iy(f0) + y∂k−ix ∂iy(f1)) .
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Therefore, by the definition of Tk, we have

x⊗ f0 + y ⊗ f1 ∈ Tk ⇐⇒ x∂k−ix ∂iy(f0) + y∂k−ix ∂iy(f1) ∈ T ∀ i = 0, . . . , k ,

⇐⇒ ψk(x⊗ f0 + y ⊗ f1) ∈ SkU ⊗ T .

On the other hand, by Proposition 3.5, one has ψk(x ⊗ f0 + y ⊗ f1) ∈ Im(ψk) = kerD2 and ψk
is injective for k > 1. Hence for any k > 1 one has

H0Nf (−d− 2− k) ∼= Tk
ψk∼= kerD2 ∩

(
SkU ⊗ T

)
.

5. Some general consequences of Theorem 4.1

5.1 The dimension h0Nf(−d− 2− k) for k = 0, 1, 2

Proposition 5.1. The spaces H0Nf (−d− 2− k) have the following dimensions for k = 0, 1, 2:

k = 0 : h0Nf (−d− 2) = d− 1 + dimT ,

k = 1 : h0Nf (−d− 3) = 2 dimT ,

k = 2 : h0Nf (−d− 4) = 3 dimT − dim ∂2T .

Proof. The case k = 0 is the formula (4.10) and has already been discussed.

The case k = 1 is a consequence of the degree of Nf and was already established by the
formulas (4.3), but it also follows from the fact that D2 = 0 on the space U ⊗SdU and therefore,
by Theorem 4.1, one has H0Nf (−d− 3) ∼= U ⊗ T .

Finally, for k = 2, by Theorem 4.1 we have to compute

dim
((
S2U ⊗ T

)
∩ kerD2

)
= dim kerD2

∣∣
S2U⊗T .

Note that dim(S2U ⊗ T ) = 3 dimT , and hence the claim on h0Nf (−d − 4) follows if we show
that D2(S2U ⊗ T ) = ∂2T . We know

D2
((
ax2 + bxy + cy2

)
⊗ τ
)

= 2aτxx − 2bτxy + 2cτyy .

By choosing τ ∈ T and a, b, c appropriately, one sees that τxx, τxy, τyy ∈ D2(S2U ⊗ T ) and
since these elements generate ∂2T , one obtains ∂2T ⊆ D2(S2U ⊗ T ). The converse inclusion is
obvious.

Corollary 5.2. The number of summands equal to OP1(d+ 2) in the splitting type (4.2) of Nf
is equal to d− 1− dim ∂2T .

Proof. This follows immediately from Proposition 4.3(v) applied to k = 0 and the dimensions
computed in Proposition 5.1.

5.2 Some general results on h0Nf(−d− 2− k) with k > 3

The computation of kernels and images of the maps

D2 : SkU ⊗ T → Sk−2U ⊗ Sd−2U

for k > 3 may be not easy for an arbitrary T . Sometimes one can reduce this computation to the
case of subspaces of smaller dimension. This is possible by means of the following easy lemma.

Lemma 5.3. Assume that for a given decomposition T = T1⊕T2 one also has ∂2T = ∂2T1⊕∂2T2.
Then for any k > 2 the map D2 : SkU ⊗T → Sk−2U ⊗Sd−2U is the direct sum of its restrictions
to SkU ⊗ Ti for i = 1, 2. In particular its rank is the sum of the ranks of the two restrictions.
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Proof. This is immediate, since the image of res(D2) : SkU ⊗ Ti → Sk−2U ⊗ Sd−2U is contained
in Sk−2U ⊗ ∂2Ti for i = 1, 2.

From Lemma 5.3 one deduces the following result.

Proposition 5.4. Assume T = ∂b1(f1)⊕· · ·⊕∂br(fr), of type (b1, . . . , br), and that ∂T has type
(b1 + 1, . . . , br + 1). Let us denote by

D2
i : SkU ⊗ ∂bi(fi)→ Sk−2U ⊗ ∂bi+2(fi)

the restriction of D2 for any i = 1, . . . , r. Then the maps D2
i have maximal rank for any i =

1, . . . , r, and the rank of D2 : SkU ⊗ T → Sk−2U ⊗ Sd−2U is the sum of their ranks.

Proof. In view of Lemma 5.3 we only need to show that D2
i has maximal rank for any i = 1, . . . , r.

Note that by Proposition 2.3 the assumption that the type of ∂T is (b1+1, . . . , br+1) in particular
implies dim ∂bi+2(fi) = bi+3 for all i, hence one has an isomorphism Sbi+2U∗ → ∂bi+2(fi) defined
by Ω 7→ Ω(fi) for any Ω ∈ Sbi+2U∗. Recall also that since T has type (b1, . . . , br), one knows
dim ∂bi(fi) = bi+ 1, and hence one has an isomorphism SbiU∗ → ∂bi(fi) defined in the same way
as above. Under these isomorphisms, the maps D2

i are identified with the map (3.7) with b = bi
and hence, by Proposition 3.3, they have maximal rank.

As an application of the result above, we compute the normal bundles of rational curves
obtained from vertexes T of the most special type, that is, T = ∂e(g) with g ∈ P(Sd+e)\SeceCd+e.

Proposition 5.5. If the curve C ⊂ Ps is obtained from a vertex T of numerical type (e), that
is, T = ∂e(g) with g ∈ P(Sd+e) \ SeceCd+e, then

Nf = O2
P1(d+ e+ 3)⊕Od−e−4

P1 (d+ 2) .

Proof. One can apply Proposition 5.4 and find

h0Nf (−d− 2− k) = max(0, (k + 1)(e+ 1)− (k − 1)(e+ 3)) = max(0, 2e+ 4− 2k) .

Setting f(−k) = h0Nf (−d−2−k) for k > 0, as in Proposition 4.3, we see that the sequence f(−k)
is

d+ e, 2e+ 2, 2e, . . . , 2, 0, . . . .

Its second difference is

d− e− 4, 0, . . . , 0, 2, 0, . . . ,

where the last 2 appears at the place k = e+1. Hence, by Proposition 4.3, one has (c1, . . . , cs−1) =
(e + 1, e + 1, 0, . . . , 0), with s − 1 = d − e − 2. By formula (4.2), we obtain the stated splitting
type of Nf .

6. Example of a reducible Hilbert scheme of rational curves
with fixed normal bundle: Hc with c = (2, 2, 1, 1, 0, 0, 0)

This section is dedicated to the construction of the first known example, to our knowledge, of
a reducible Hilbert scheme of rational curves with a given splitting type of the normal bundle.

As in the introduction, we will denote by Hc the Hilbert scheme of degree d irreducible,
non-degenerate rational curves in Ps, with ordinary singularities and with normal bundle with
splitting type

⊕
OP1(ci + d + 2). We will consider the case c = (2, 2, 1, 1, 0, 0, 0); therefore we

have s − 1 = 7. Moreover, from
∑

(ci + 1) = 13 = d + e and
∑
ci = 6 = 2(e + 1) we get e = 2
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and d = 11; that is, we are dealing with rational curves of degree 11 in P8. More precisely, we
are dealing with parametrized curves of degree 11 in P8 with splitting type of the normal bundle
given by

Nf = O2
P1(15)⊕O2

P1(14)⊕O3
P1(13) .

These curves are obtained, up to a projective transformation in P8, as projections of the rational
curve C11 = ν11(P1) ⊆ P(S11U) from a 2-dimensional vertex P(T ), so that

dimT = e+ 1 = 3 .

We recall that the knowledge of the (s − 1)-uple (c1, . . . , cs−1) is equivalent to the knowledge
of the dimensions of the spaces H0Nf (−d − 2 − k) = Tk. In our case these dimensions are the
following:

dimT0 =
∑
i : ci>0

(ci + 1) = 13 , dimT1 =
∑
i : ci>1

ci = 6 ,

dimT2 =
∑
i : ci>2

(ci − 1) = 2 , dimT3 =
∑
i : ci>3

(ci − 2) = 0 ,

dimTk = 0 , ∀ k > 3 .

We also recall that Tk ∼= ker(D2 : SkU ⊗ T → Sk−2U ⊗ ∂2T ) for all k > 1. Since the vertex P(T )
must not intersect C11, we have only three possibilities for the numerical type of T , namely the
type (2), the type (1, 0) and the type (0, 0, 0). We can immediately rule out the type (2) by the
following argument. By Proposition 5.1 one has

dim ∂2T = dimS2U ⊗ T − dimT2 = 7 . (6.1)

If T is of type (2), then T = ∂2(f) for some polynomial f ∈ S13U and hence ∂2T = ∂4(g), which
has dimension at most 5. Therefore we are left with the possibilities that T has type (1, 0) or
(0, 0, 0).

6.1 Curves from spaces T of type (1, 0)

We will show that from a general vertex T of type (1, 0) we always obtain a curve with splitting
of the normal bundle corresponding to c = (2, 2, 1, 1, 0, 0, 0). Recall that such a vertex has the
form

T = ∂(f)⊕ 〈g〉 ,

with sufficiently general f ∈ P(S12U) and g ∈ P(S11U), where the latter is determined by T up
to an element of ∂(f). Hence the dimension of the space of such T is given by dimP(S12U) +
dimP(S11U/∂(f)) = 12+9 = 21. The same conclusion can be reached by means of the dimension
formula provided by [AR15, Theorem 2].

Now, we know that a general T ⊂ S11U of type (1, 0) has ∂T of type (2, 1). This may be shown
starting from a particular T , for example T = 〈x3y8, x4y7, x7y4〉 = ∂(x4y8)⊕ (x7y4), from which
we get the direct sum decompositions ∂T = ∂2(x4y8)⊕ ∂(x7y4) and ∂2T = ∂3(x4y8)⊕ ∂2(x7y4).
Then one can extend the result to a general T of type (1, 0) by lower semicontinuity of dim ∂2T .
Hence for a general T of type (1, 0) we find dim ∂2T = dim ∂T + 2 = 7, as required by (6.1).
In particular, one obtains ∂2T = ∂3(f) ⊕ ∂2(g) and for any k > 2 the map D2 : SkU ⊗ T →
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Sk−2U ⊗ ∂2T can be written as the direct sum of the maps

D2 : SkU ⊗ ∂(f)→ Sk−2U ⊗ ∂3(f) ,

D2 : SkU ⊗ (g)→ Sk−2U ⊗ ∂2(g) .

By construction one has dim ∂(f) = 2, dim ∂3(f) = 4, dim(g) = 1 and dim ∂2(g) = 3, hence one
has the identifications SiU∗ ∼= ∂i(f) for i = 1, 3 and SjU∗ ∼= ∂j(g) for j = 0, 2. By means of
these identifications the maps above become

D2 : SkU ⊗ U∗ → Sk−2U ⊗ S3U∗ ,

D2 : SkU ⊗ S0U∗ → Sk−2U ⊗ S2U∗ ,

where D2 now operates as in Proposition 3.3. Hence the maps have maximal rank. For k = 3 the
map D2 : S3U⊗∂(f)→ U⊗∂3(f) has domain of dimension 8 and codomain of dimension 8, hence
is an isomorphism. The map D2 : S3U⊗(g)→ U⊗∂2(g) has domain of dimension 4 and codomain
of dimension 6; hence it is injective. In conclusion, we obtain T3 = 0, and hence also Tk = 0 for
all k > 3. So we get the dimensions of the spaces Tk that correspond to c = (2, 2, 1, 1, 0, 0, 0). By
Proposition 2.1 we have obtained an irreducible subscheme of Hc of dimension 21+dim PGL(9)−
dim PGL(2) = 98.

We observe that the general curve in the subscheme of Hc just defined is a smooth rational
curve. Indeed, this is equivalent to showing that a general P(T ) with T of type (1, 0) as above
does not intersect Sec1C11. Let us fix [g] ∈ P11 \ Sec1C11; then the dimension of the cone over
Sec1C11 with vertex [g], defined as the join J = J([g],Sec1C11), is dimJ = 4. Let us define

J ′ =
{

[f ′] ∈ P
(
S12U

)
| ∃ω ∈ U∗ : [ω(f ′)] ∈ J

}
.

Then one finds dim J ′ 6 6; indeed, J ′ =
⋃
q∈J,ω∈P(U∗) P(ω−1(q)). Therefore there exists an

[f ] ∈ P12 \ J ′. Then one can conclude that for a general T = ∂(f)⊕ 〈g〉 one has

P(T ) ∩ Sec1Cd = ∅ .

6.2 Curves from spaces T of type (0, 0, 0)

Unlike the previous case of T of type (1, 0), it will not be true that a general T ⊆ S11U of type
(0, 0, 0) can produce a rational curve in Hc. Instead, we will show that the space of all T of type
(0, 0, 0) whose general element produces curves in Hc is a proper irreducible subvariety of the
space of all T of type (0, 0, 0).

Now, we have dim ∂T = dimT + 3 = 6. Recall that to obtain a curve in Hc one must have
dim ∂2T = 7. Hence, under the notations of Proposition 2.3, the space ∂T has type (a, b1) with
dim ∂T = a+ 1 + b1 + 1 = 6, that is, (a, b1) = (a, 4− a).

Case a = −1. One has a = −1 if and only if P(∂T ) does not intersect C10 ⊂ P(S10U), so
we see that ∂T has type (b1) = (5), that is, ∂T = ∂5(g) for some [g] 6∈ Sec5C15 ⊂ P15 and hence
∂2T = ∂6(g) has dimension 7, as required.

We compute the dimension of the variety of the spaces T under consideration. We observe
that for a fixed general [g] ∈ P(S15U), any sufficiently general T ⊆ ∂−1T = ∂4(g) will have
type (0, 0, 0) and ∂T = ∂5(g). One can first show the claim for a special pair g, T , for example
g = x8y7 and T = 〈x4y7, x6y5, x8y3〉. Then the result holds for general g, T by semicontinuity,
more precisely by the upper semicontinuity of dim ∂−1T , which is equal to 0 if and only if T
has type (0, 0, 0), by Proposition 2.5. Hence we can find spaces T meeting our requirements in
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a dense open subset of Gr(3, ∂4(g)), whose dimension is dim Gr(3, ∂4(g)) = 6. Moreover, since a
general T ⊂ ∂4(g) constructed as above has ∂T = ∂5(g), the space 〈g〉 = ∂−5(∂T ) is uniquely
determined by T . Hence the final count of parameters for spaces T as above is the following:

dimP
(
S15U

)
+ dim Gr(3, 5) = 15 + 6 = 21 .

Case a > 0. By Proposition 2.3 a general T of type (a, 4− a) has the form

∂T =
〈
p10

0 , . . . , p
10
a

〉
⊕ ∂4−a(g)

for a suitable [g] 6∈ Sec4−aC14−a ⊂ P(S14−aU). Note that the C10-generated part of ∂T is uniquely
determined by ∂T and hence by T ; that is, the points p0, . . . , pa are uniquely determined. On
the other hand, g is determined only modulo W = 〈p14−a

0 , . . . , p14−a
a 〉. We have

T ⊆ ∂−1∂T =
〈
p10

0 , . . . , p
10
a

〉
⊕ ∂3−a(g) ,

which is again a space of dimension 5, uniquely determined by T . However, we now have
[g]∈P(S14−aU/W ), which gives us 13 − 2a parameters. Hence a dimension count similar to the
one above provides us with a number of parameters equal to 13−2a+a+1+dim Gr(3, 5) = 20−a.
So in the case a > 0 we find a variety of vertexes P(T ) of smaller dimension than in the case
a = −1. Since we are looking for components of Hc of maximal dimension, we will be satisfied if
we get one such component from the case a = −1.

So we have reduced ourselves to showing that a general T of type (0, 0, 0) with ∂T of type (5)
produces a curve in Hc. Note that from the known data d = 11, dimT = 3 and dim ∂2T = 7 we
already have dimT0 = d+dimT = 13, dimT1 = 2 dimT = 6 and dimT2 = 3 dimT−dim ∂2T = 2.
From the characterization of c = (2, 2, 1, 1, 0, 0, 0) in terms of the dimensions of the spaces Tk,
we will get a curve in Hc from the vertex T if and only if dimT3 = 0. By semicontinuity, if we
show this for a special T of type (0, 0, 0) and ∂T of type (5), then the same will hold for such T
in general. We take the same example as above.

g = x8y7, T =
〈
x8y3, x6y5, x4y7

〉
.

Notation. To simplify calculations, we denote by [h] any fixed non-zero rational multiple of the
polynomial h. Similarly, [h] + [g] will denote a fixed linear combination of h and g with non-zero
rational coefficients.

We compute T3 as the kernel of D2 : S3U ⊗T → U ⊗ ∂2T . In particular, we will get T3 = 0 if
we show that the image of that map has dimension 12. Recalling that D2 = ∂2

x ⊗ ∂2
y − 2∂x∂y ⊗

∂x∂y + ∂2
y ⊗ ∂2

x, we see the following:

D2
(〈
x3, x2y, xy2, y3

〉
⊗
〈
x8y3

〉)
=
〈[
x⊗ x8y

]
,
[
y ⊗ x8y

]
+
[
x⊗ x7y2

]
,
[
y ⊗ x7y2

]
+
[
x⊗ x6y3

]
,
[
y ⊗ x6y3

]〉
,

D2
(〈
x3, x2y, xy2, y3

〉
⊗
〈
x6y5

〉)
=
〈[
x⊗ x6y3

]
,
[
y ⊗ x6y3

]
+
[
x⊗ x5y4

]
,
[
y ⊗ x5y4

]
+
[
x⊗ x4y5

]
,
[
y ⊗ x4y5

]〉
,

D2
(〈
x3, x2y, xy2, y3

〉
⊗
〈
x4y7

〉)
=
〈[
x⊗ x4y5

]
,
[
y ⊗ x4y5

]
+
[
x⊗ x3y6

]
,
[
y ⊗ x3y6

]
+
[
x⊗ x2y7

]
,
[
y ⊗ x2y7

]〉
.

The space D2(S3 ⊗ T ) is generated by the 12 elements shown on the right-hand sides of the
equalities above. After taking suitable linear combinations of them, they are reduced to the
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following set of generators:[
x⊗ x8y

]
,
[
y ⊗ x8y

]
+
[
x⊗ x7y2

]
,
[
y ⊗ x7y2

]
,
[
y ⊗ x6y3

]
,[

x⊗ x6y3
]
,
[
x⊗ x5y4

]
,
[
y ⊗ x5y4

]
,
[
y ⊗ x4y5

]
,[

x⊗ x4y5
]
,
[
x⊗ x3y6

]
,
[
y ⊗ x3y6

]
+
[
x⊗ x2y7

]
,
[
y ⊗ x2y7

]
.

After this simplification, one can easily see that the 12 generators are linearly independent. This
completes the proof that T3 = 0.

Finally, we observe that in the given example of T = 〈x8y3, x6y5, x4y7〉 one has

T⊥ =
〈
u11, u10v, u9v2, u7v4, u5v6, u3v8, u2v9, uv10, v11

〉
,

and since the elements of given basis of T⊥ serve also as the components of a parametrization
map f = πT ◦ νd : P1 → Ps, one easily sees that the parametrized curve is smooth. Hence the
general curve in the same component of Hc is also smooth.

Conclusion. We have found that for c = (2, 2, 1, 1, 0, 0, 0) the Hilbert scheme Hc is the union
of two irreducible components, each of dimension equal to 21 + dim PGL(9)− dim PGL(2) = 98,
by Proposition 2.1. One component has general point representing a smooth rational curve
constructed from a general vertex T of type (1, 0) with ∂T of type (2, 1). The other component
has general point representing smooth rational curves constructed from a general vertex T of
type (0, 0, 0) with ∂T of type (5). We also observe that, by Proposition 2.6, the restricted tangent
bundles are the following (setting d = 11):

f∗TPs = OP1(d+ 3)⊕OP1(d+ 2)⊕O6
P1(d+ 1) for T of type (1, 0) ,

f∗TPs = O3
P1(d+ 2)⊕O5

P1(d+ 1) for T of type (0, 0, 0) .

On the other hand, for any [C] ∈ Hc one has

Nf = O2
P1(d+ 4)⊕O2

P1(d+ 3)⊕O3
P1(d+ 2) .

Remark 6.1. One may note that the decomposition type given above has the form Nf = F ⊕
O3

P1(d+2) with F = O2
P1(d+4)⊕O2

P1(d+3) of almost balanced type, and hence Nf has the most
general possible type among the vector bundles on P1 of the same rank and degree and with
summand O3

P1(d+ 2). Therefore the same counterexample discussed in this section also gives the
following.

Example 6.2. The variety parametrizing the rational curves of degree d = 11 in P8 with normal
bundle Nf with three summands of degree d+ 2 = 13 is reducible.

This is actually a counterexample to [Ber14, Theorem 4.8]. It seems that in the preparatory
results leading to Theorem 4.8, especially Lemma 4.3, the author has overlooked his own more
detailed treatment of the same results given in his Ph.D. thesis [Ber11], where more restrictive
hypotheses are given. In [Ber11], Theorem 4.8 of [Ber14] is stated as Theorem 3.4.16, which in
turn is deduced from Theorems 3.3.9 and 3.4.10. Our counterexample corresponds to the case
n = 11, d = 8, k = 3, r = 2 and ρn,kr = 3 in the author’s notation, and it is not covered by
Theorems 3.3.9 and 3.4.10 of [Ber11].

7. Smooth rational curves in rational normal scrolls

In this section we will characterize smooth rational curves contained in rational normal scroll
surfaces in terms of the splitting type of their restricted tangent bundles Tf , and we will also
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compute the splitting type of their normal bundles Nf . Our main result can be viewed as a ge-
neralization of [EvdV81, Propositions 5 and 6], where the authors characterized smooth rational
curves contained in a smooth quadric in P3 by their restricted tangent bundles and computed
their normal bundles. The general purpose of this section is to illustrate the idea that especially
the splitting type of Tf may have a deep impact on the extrinsic geometry of the curve C ⊂ Ps.

Notation. Following the notation of [Har77, II, Section 7], we denote by P(E) the projective
bundle associated with a vector bundle E on P1 of rank t > 1. Recall that an epimorphism
of vector bundles Cs+1 ⊗ OP1 → E defines a regular map g : P(E) → Ps such that, for H the
pullback of an hyperplane of Ps, one has degHt−1 = deg E = deg∧tE . If the map g : P(E)→ Ps
is birational to the image, then, setting S = Im(g), one finds degS = deg E .

Let C ⊂ Ps be a smooth non-degenerate rational curve of degree d, biregularly parametrized
by a map f : P1 → Ps which, as discussed in preceding sections, we can assume of the form
f = πT ◦ νd up to a projective transformation of Ps. As usual we will set dimT = e + 1 and
s = d − e − 1. Throughout this section we will assume s > 3 and d > s + 1, that is, T 6= 0. We
first study a sufficient condition for C to be smooth.

Lemma 7.1. Let T = ∂e(g) be a vertex of type (e). Then the curve C = πT (Cd) is smooth if and
only if g ∈ P(Sd+eU) \ Sece+1Cd+e.

Proof. Our strategy of proof will be to show that when T has type (e), the curve C is smooth
if and only if ∂T has type (e+ 1). Indeed, by Proposition 2.3 one sees that ∂T = ∂e+1(g) being
of type (e+ 1) is equivalent to [g] 6∈ Sece+1Cd+e. Note that the point [g] ∈ P(Sd+eU) such that
∂T = ∂e+1(g) has type (e + 1) is unique, since one sees that 〈g〉 = ∂−e−1(∂T ) by iteratively
applying Proposition 2.5.

The condition that C is smooth is given by P(T ) ∩ Sec1Cd = ∅. Observe that T being
of type (e) in particular implies P(T ) ∩ Cd = ∅ and dimP(∂T ) = dimP(T ) + 1. Hence the
space P(∂T ), which a priori is the join P(〈ω(T ) | [ω] ∈ P(U∗)〉), in this case is also the union
P(∂T ) =

⋃
ω∈U∗ P(ω(T )). Then one has P(∂T ) ∩ Cd−1 6= ∅ if and only if there exist ω ∈ U∗ and

l ∈ U such that [ld−1] ∈ P(ω(T )). Setting 〈m〉 = ω⊥, this is equivalent to saying that in P(T )
there exists an element of the form [λld + µmd] if [m] 6= [l] and an element of the form [ld−1n] if
[m] = [l]. This is equivalent to the condition P(T )∩ Sec1Cd 6= ∅, that is, to C not being smooth.

Therefore, we have shown that C is smooth if and only if P(∂T )∩Cd−1 = ∅, that is, S∂T = 0,
with the notation of Proposition 2.3. Moreover, for T = ∂e(g), one has ∂T = ∂e+1(g) and
∂2T = ∂e+2(g), hence dim ∂2T − dim ∂T 6 1. Then, by Proposition 2.3 applied to the space ∂T ,
we see that C is smooth if and only if ∂T has type (e+ 1).

Remark 7.2. Note that the open set P(Sd+eU) \ Sece+1Cd+e is non-empty and of dimension
d+ e = 2d− s− 1 if and only if dim Sece+1Cd+e = 2e+ 3 6 d+ e− 1, which is true, as we are
assuming s = d− e− 1 > 3.

Now, we can state and prove the main result of this section.

Theorem 7.3. Let us assume that C is a non-degenerate irreducible smooth rational curve of
degree d > s + 1 with parametrization map f = πT ◦ νd : P1 → C ⊂ Ps. Then the following
conditions are equivalent:

(i) The vertex T is of type (e), that is, T = ∂e(g) with [g] ∈ P(Sd+eU) \ Sece+1Cd+e.

(ii) Tf = OP1(d+ 2 + e)⊕Os−1
P1 (d+ 1).
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(iii) The curve C is contained in a smooth rational normal scroll S ∼= P(E) ⊂ Ps, with E =
OP1(α)⊕OP1(β), where α, β > 0 and α+ β = s− 1.

Moreover, under any of the conditions above, the following also hold:

(1) The rational normal scroll containing C is uniquely determined by C.

(2) The normal bundle Nf has splitting type Nf ∼= O2
P1(d+ e+ 3)⊕Os−3

P1 (d+ 2).

Proof. (i) ⇐⇒ (ii). By Proposition 2.6 one sees that T has type (e), that is, T = ∂e(g) with
[g] 6∈ SeceCd+e if and only if Tf = OP1(d+2+e)⊕Os−1

P1 (d+1). Since we are assuming C smooth,
by Lemma 7.1 one actually has [g] 6∈ Sece+1Cd+e.

(ii)⇒(iii). We set V = T⊥ and recall the restricted Euler sequence appearing in the second
column of the diagram of Section 4.1:

0→ OP1 → V ∗ ⊗OP1(d)→ Tf → 0 .

From this sequence and the existence of the sub-line bundle OP1(d + 2 + e) → Tf , we deduce
a commutative diagram with exact rows and columns

0 −−−−→ OP1(−d) −−−−→ E∗ −−−−→ OP1(e+ 2) −−−−→ 0y∼= y y
0 −−−−→ OP1(−d) −−−−→ V ∗ ⊗OP1 −−−−→ Tf (−d) −−−−→ 0y y

Os−1
P1 (1)

∼=−−−−→ Os−1
P1 (1) ,

where E∗ is defined as the preimage of OP1(e+ 2) in V ∗ ⊗OP1 . Dually, we get a exact sequence
0 → Os−1

P1 (−1) → V ⊗ OP1 → E → 0. It immediately follows that E has splitting type E ∼=
OP1(α)⊕OP1(β) with α, β > 0 and α+ β = s− 1. Moreover, the sheaf map V ⊗OP1 → OP1(d)
that is naturally associated with f is the composition of the sheaf epimorphisms V ⊗OP1 → E →
OP1(d). Let us set Y = P(E). Then the sheaf epimorphism V ⊗OP1 → E provides a map Y → Ps
whose image S is a ruled surface of minimal degree s− 1, and the existence of the factorization
V ⊗OP1 → E → OP1(d) shows that the curve C is contained in S as the image of a section C̃ of
the P1-bundle Y → P1. We only have to show that α, β > 0. Indeed, if for example α = 0 and
β = s− 1, then S is a cone over a rational normal curve in Ps−1; more precisely, the map Y → S
contracts the unique curve C0 of Y with C2

0 = 1 − s to the vertex of the cone S. In this case

the section C̃ ⊂ Y has divisor class C̃ ≡ C0 + dF , with F a fiber of Y → P1, and intersection
number C̃ · C0 = d + 1 − s > 2 for d > s + 1. Hence C cannot be smooth for d > s + 1. This
argument excludes the case of the cone; therefore E = OP1(α)⊕OP1(β), with α+ β = s− 1 and
α, β > 0. In this case one also sees that the map Y → P1 is an embedding, that is, Y ∼= S, so S
is a smooth rational normal scroll.

(iii)⇒(ii). Assume C ⊂ S ⊂ Ps, with S a smooth rational normal scroll. In particular, S is
isomorphic to a rational ruled surface P(E), embedded in Ps by means of a surjection of vector
bundles V ⊗OP1 → E . The fact that degS = s− 1 is equivalent to deg E = s− 1. The fact that
C ⊂ S ∼= P(E) is a section of the projection map P(E) → P1 implies the existence of a sheaf
epimorphism E → OP1(d) such that the epimorphism V ⊗ OP1 → OP1(d) associated with the
embedding C ⊂ Ps factors as V ⊗OP1 → E → OP1(d). Setting L = ker(E → OP1(d)), we see that
L ∼= OP1(s − 1 − d) = OP1(−e − 2). Now, we can dualize all the sheaf morphisms that we have
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introduced so far, obtaining a diagram of the form

0 −−−−→ OP1(−d) −−−−→ E∗ −−−−→ OP1(e+ 2) −−−−→ 0y∼= y y
0 −−−−→ OP1(−d) −−−−→ V ∗ ⊗OP1 −−−−→ Tf (−d) −−−−→ 0 .

(7.1)

That is, we have obtained a sheaf embedding OP1(d + e + 2) → Tf . Since deg Tf = (s + 1)d =
(s− 1)(d+ 1) + d+ e+ 2 and the degree of any summand OP1(δ) in a splitting of Tf is at least
d+ 1, we can conclude that Tf has the form stated in condition (ii).

Proof of statement (1). After fixing homogeneous coordinates on Ps, the last row of the dia-
gram (7.1) is uniquely determined by the parametrization map f : P1 → Ps, since this map defines
uniquely the sheaf embedding OP1(−d)→ V ∗⊗OP1 . Hence it is determined by C up to the action
of PGL(2) = Aut(P1). Moreover, there exists only one sheaf embedding OP1(e+ 2)→ Tf (−d)
for the given splitting type Tf = OP1(d + e + 2) ⊕ Os−1

P1 (d + 1). Hence the sheaf embedding
E∗ → V ∗ ⊗ OP1 in the diagram (7.1) is also uniquely determined by C up to the action
of PGL(2) on P1. This means that the parametrization map P(E) → S ⊂ Ps is uniquely de-
termined by C, up to the (equivariant) action of PGL(2) on P(E) → P1. Hence S is uniquely
determined by C.

Proof of statement (2). The stated formula for the splitting type of Nf is an immediate
consequence of Proposition 5.5.

Remark 7.4. There is a classical connection between the property of a non-degenerate irreducible
curve C of sufficiently high degree of being contained in a rational normal scroll and the number of
independent quadric hypersurfaces containing C. Indeed, one has the following result, essentially
due to Castelnuovo.

Proposition 7.5. A non-degenerate and irreducible curve C ⊂ Ps of degree d > 2s + 1 has
h0IC(2) 6 (s − 1)(s − 2)/2. If in addition C is smooth and rational, the equality holds if and
only if C is contained in a smooth rational normal scroll of dimension 2.

Sketch of proof. Let Γ = C ∩H be a general hyperplane section of C, which is in general linear
position. Then, from the exact sequence

0→ IC(1)→ IC(2)→ IΓ,H(2)→ 0 ,

one finds h0IC(2) 6 h0IΓ,H(2). By a classical argument of Castelnuovo, any 2s − 1 points of Γ
impose independent conditions on the quadrics of H ∼= Ps−1, hence h0IΓ,H(2) 6 h0OH(2)− 2s+
1 = s(s+ 1)/2− 2s+ 1 = (s− 1)(s− 2)/2, proving the stated inequality.

If the equality holds, then Γ imposes exactly 2s− 1 conditions on the quadrics of H ∼= Ps−1,
and since degH > 2s + 1 = 2(s − 1) + 3, one can apply Castelnuovo’s lemma as in [GH78,
Chapter 4, p. 531], and conclude that Γ is contained in a unique rational normal curve of Ps−1.
Hence, by the arguments in the proof of the lemma in [GH78, Chapter 4, pp. 531–532], either
the curve C is contained in a rational normal scroll or s = 5 and C is contained in a Veronese
surface in P5. When C is a smooth rational curve, we can exclude that S is the Veronese surface
ν2(P2) ⊂ P5, because any non-degenerate smooth curve C ⊂ S would come from a smooth curve
of degree at least 3 of P2, hence cannot be rational. Therefore we are left with the case of S a
rational normal scroll. As in the proof of the implication (ii)⇒(iii) of Theorem 7.3, it is easy to
see that S is smooth. The converse follows from the fact that a rational normal scroll S ⊂ Ps is
contained in (s− 1)(s− 2)/2 independent quadrics.
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We conclude this section with a discussion of the relevance of the smoothness assumption in
Theorem 7.3. Indeed, one can see that the implication (iii)⇒(ii) of Theorem 7.3 is false if one
does not assume C to be smooth. To this purpose, one can find counterexamples already in P3.
This fact was not explicitly observed in [EvdV81], where the case s = 3 of Theorem 7.3 was
proved. Here it is such an example.

Example 7.6. Let us consider g : P1 → P1 × P1 defined by

g(u, v) =
(
u2 : v2;u3 : v3

)
and compose it with the Segre embedding P1 × P1 → P3 so as to obtain f : P1 → P3 defined by

f(u, v) =
(
u5 : u2v3 : v2u3 : v5

)
.

This is a parametrization of a rational curve C (with two cusps) of degree 5 contained in the
quadric Q ⊂ P3 of equation x0x3 − x1x2 = 0, which is a very simple rational normal scroll.
Therefore C satisfies condition (iii) of Theorem 7.3. Note that C is a curve of divisor class (2, 3)
in P1 × P1, so C is not a section of any of the two P1-bundle structures Q → P1. We have, by
construction,

T⊥ =
〈
u5, u2v3, v2u3, v5

〉
.

One immediately sees that T = 〈x4y, xy4〉 and therefore ∂T = 〈x4, x3y, xy3, y4〉, so that dim ∂T =
dimT + 2. Hence, from Proposition 2.3 and Definition 2.4 one sees that T has numerical type
(0, 0), and by Proposition 2.6 one finds

Tf = O2
P1(7)⊕OP1(6) . (7.2)

This contradicts condition (ii) of Theorem 7.3. Observe that the curve C has no ordinary sin-
gularities, but it can be deformed to a rational curve C ′ ⊂ Q of divisor class (2, 3) with two
nodes. Since the vertex T relative to C has numerical type (0, 0) and this is the general nu-
merical type for subspaces T ⊂ S5U of dimension 2, the vertex T ′ relative to C ′ will have type
(0, 0) as well. Hence the restricted tangent sheaf to C ′ has splitting type as in formula (7.2),
providing a counterexample to condition (ii) of Theorem 7.3 by means of a curve with ordinary
singularities.

Acknowledgements

We thank G. Ottaviani and F. Russo for many stimulating and helpful discussions during the
development of this work.

References

AR15 A. Alzati and R. Re, PGL(2) actions on Grassmannians and projective construction of rational
curves with given restricted tangent bundle, J. Pure Appl. Algebra 219 (2015), no. 5, 1320–1335;
https://doi.org/10.1016/j.jpaa.2014.06.007.

Ber11 A. Bernardi, Normal bundle of rational curves and the Waring’s problem, Ph.D. thesis, Univer-
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