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Abstract

It may be desirable, for various reasons, to establish criteria for SVAR
identification that do not depend on unknown parameters, but only on the
set of restrictions that are imposed on the system a priori on theoretical
grounds.

In the context of linear systems, this was accomplished in Johansen
(1995). This paper extends and amends the approach proposed by Luc-
chetti (2006); we introduce a set of criteria which ensure identification inde-
pendently of unknown parameters for a reasonably general class of models
and discuss its possible generalization.
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1 Introduction

As is well known, Structural VARs have been an essential tool for macroecono-
metrics for over 30 years, since they were introduced by Sims (1980). Identi-
fication issues have been a thorny issue ever since, and were first analyzed in
a systematic way a decade later in the 1992 edition of Amisano and Giannini
(1997).

It may be desirable, for various reasons, to establish criteria for SVAR iden-
tification that do not depend on unknown parameters, but only on the set of
restrictions that are imposed on the system a priori on theoretical grounds. In
other words, our focus will be on what we consider a very important issue:
is it possible to assess identification of a SVAR on the basis of its constraints
alone? Because if it were so, identification would cease to be a property of
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the DGP. Instead, it would be possible to consider identification an inherent
characteristic of the structure that we superimpose onto the data, independent
of the observable evidence. In this case, we would call the model structurally
identified.

In the context of linear systems, this was accomplished in Johansen (1995),
who mostly focused on cointegrated systems, but introduced into the economic
literature a few results from matroid theory which enabled him to draw nec-
essary and sufficient conditions for identification in linear systems in a general
and elegant way.

A similar approach was used in Lucchetti (2006) to analyze identification of
models, such as Structural VARs, in which linear constraints are imposed on a
covariance system. As we will show, the “structure condition” defined in that
article is not sufficient, as claimed. In this paper, we extend and amend the
same approach and introduce a set of criteria which ensure identification in-
dependently of unknown parameters for the most widely used class of models
(the C-model, in Amisano and Giannini’s taxonomy).

In doing so, we also achieve the goal of generalising the approach by Rubio-
Ramirez, Waggoner, and Zha (2010), which has gained a notable popularity in
recent years.

The structure of the article is as follows: in the next section, we examine the
issue of identification and spell out our main result; then, in Section 3, we give
a few examples of application of our criterion. Section 4 extends the results
to the more general AB-model, with some examples discussed in Section 5.
Section 6 concludes and outlines desirable extensions and generalizations of
our present work.

2 Identification in the C-model

2.1 Basic concepts and notation

In this section, we review the identification issue in the C-model variety of
Structural VARs, mainly to establish notation. Following Amisano and Gian-
nini (1997), we call a C model a SVAR of the kind

Φ(L)yt = µt + εt (1)
εt = Cut (2)

in which the n-vector of one-step-ahead prediction errors εt is assumed to be a
linear function of orthogonal structural shocks ut, so that V(εt) = Σ = CC′. In
Amisano and Giannini’s original classification, this can be seen as a special case
of the so-called AB model Aεt = But which is, however, much more seldom
used in its full generality. The vast majority of empirical applications relies on
a structure such as the one displayed in equation (2).

Under normality, the average log-likelihood can be written as

L = const− ln |C| − 0.5 · tr
[
Σ̂(CC′)−1

]
and first-order conditions for maximization are equivalent to

Σ̂ = CC′ (3)
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where Σ̂ is the sample covariance matrix of the VAR residuals; greater gen-
erality can easily be achieved by considering equation (3) simply as a set of
orthogonality relationships of the kind

E

[
εitε jt −

n

∑
k=1

cikcjk

∣∣∣Ft−1

]
= 0,

which makes it possible to extend the present setup to QMLE or GMM estima-
tion if necessary.

As is well known, this problem is underidentified, since if (3) holds, then
also Σ = C∗C′∗ holds, where C∗ = CP and P is an arbitrary orthogonal matrix.

In order to achieve identification, it is necessary to make more qualifications
to the above setup: the traditional solution has been to impose a system of p
linear constraints on C of the kind

Rvec C = d. (4)

A special case of linear restrictions occurs when C is assumed to be lower-
triangular. This was Sims’s (1980) original proposal, and is sometimes called
a “recursive” identification scheme. It has a number of interesting properties,
among which the fact that the ML estimator of C is just the Cholesky decom-
position of Σ̂, the sample covariance matrix of VAR residuals. This has been
the most frequently used variant of a SVAR model, partly for its ease of inter-
pretation, partly for its ease of estimation.

The general case (4), first analyzed in Amisano and Giannini (1997), has
been recently re-assessed and somewhat extended in a recent contribution by
Rubio-Ramirez, Waggoner, and Zha (2010), who provide conditions for global
identification based on linear and some nonlinear restrictions of the parame-
ters. However, their general results are all obtained by considering equation-
by-equation restrictions (which are less general than those expressible via equa-
tion 4); moreover, the rank condition they obtain rely on the availability of the
unknown parameters, which is precisely what we want to avoid.

An alternative identification strategy was introduced by Rigobon (2003),
who suggested to exploit heteroskedasticity to identify simultaneous equation
models without having to impose restrictions on the parametric space.1 This
approach has been extended to SVAR models by Lanne and Lütkepohl (2008)
and generalized in Bacchiocchi (2014), Bacchiocchi (2016) and Bacchiocchi and
Fanelli (2015), who combine heteroskedasticity and structural breaks with the
traditional approach of imposing restrictions on the parameters of the model.

In this paper, we focus on the traditional identification strategy and we
leave generalizations for future work; as a consequence of equation (4), the
vector c = vec C can be written as

c = Sθ + s (5)

where θ is the vector containing the q = n2 − p free parameters (assumed
variation-free). This setup is more general than it looks, since it can also han-
dle long-run constraints of the kind proposed by Blanchard and Quah (1989)

1The idea that heteroskedasticity can be helpful in identifying econometric models has been
originally proposed by Sentana and Fiorentini (2001) in a factor model context, that could be ex-
tended to SVAR models too.
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or King, Plosser, Stock, and Watson (1991). However, it cannot be used with
more exotic identification schemes such as inequality-based ones like in Uhlig
(2005).

As argued in Amisano and Giannini (1997) and Lucchetti (2006), local iden-
tification is tied to the rank of the matrix

H = R(I ⊗ C)D̃n (6)

being full; in this case, D̃n is a n2 × n(n−1)
2 matrix whose columns span the null

space of the duplication matrix Dn (see Magnus, 1988).2 Note that, in the case
of exact identification, this matrix is square; introducing extra restrictions adds
extra rows, but the number of columns, which only depends on n, remains
unchanged.

This introduces a necessary and rather obvious order condition by which
the number of linearly independent restrictions p must be at least n(n−1)

2 . How-
ever, as is well known, the order condition is necessary but not sufficient. Ev-
idently, the elements of H depend on the unknown parameters, since the C
matrix is a function of θ, so it would seem that its rank cannot be established
in general, but only on a case-by-case basis for each point in the parameter
space Rq. Lucchetti (2006) introduces an additional condition, called the struc-
ture condition, which is independent of the matrix C and should ensure (to-
gether with the order condition) sufficiency for identification apart from a zero-
Lebesgue-measure set in the parameter space. Unfortunately, there are cases
when this does not work. In the next section, we explain why and provide a
counter-example.

2.2 An example when the structure condition fails

As an illustrative example, consider a case with 4 variables, in which the con-
straints are

c41 = c32 = c23 = c12 = c13 = c14 = 0

Since n = 4, n(n−1)
2 = 6 so the order condition is satisfied. In this particular

case the H matrix in equation 6 is square but singular for any choice of C. As
an example, consider this particular choice for C (non-zero entries are random
uniforms, just for the sake of the example):

C =


0.74 0 0 0
0.40 0.40 0 0.13
0.31 0 0.23 0.86

0 0.65 0.25 0.82


in which we take R to be

R =


0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

 .

2The matrix D̃n can also be defined as a basis for the space of the vectorization of n × n
hemisymmetric matrices, so that any hemisymmetric matrix H has a vectorized form which satis-
fies h = D̃n ϕ for some n (n− 1) /2× i vector ϕ.
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and d = 0. Clearly, the ordering of the rows of R is immaterial for the purposes
of identification. The matrix H, whose rank ought to be full if the model were
identified, is

H =


0.65 0.25 0.82 0 0 0
−0.31 0 0 0.23 0.86 0

0 −0.40 0 −0.40 0 0.13
−0.74 0 0 0 0 0

0 −0.74 0 0 0 0
0 0 −0.74 0 0 0


which is, instead, singular: the set of its three rightmost columns has evidently
rank 2. Following the arguments in Lucchetti (2006), it can be shown that this
implies the existence of an infinitesimal rotation matrix of the form

0 0 0 0
0 0 a b
0 −a 0 c
0 −b −c 0


which, in turn, implies the existence of an orthogonal matrix which rotates,
in a neighborhood of C, the space of structural shocks in an observationally
equivalent way, so to make the system under-identified.

Furthermore, it is also instructive to explore the rank deficiency of H by
considering its rows as well as its columns. First, it should be noted that, under
the above set of restrictions, Σ1,4 = Σ4,1 = 0 identically, since the first and the
fourth rows of C are orthogonal by construction. We conjecture that this leads
to underidentification since the corresponding moment condition on E(ε1,t ·
ε4,t) contains no information on any of the elements in C.

This is mirrored by considering that the top row inH is a linear combination
of the bottom three rows. In terms of identification, the meaning of this fact
is that, given Σ1,4 = 0, the four restrictions on c41, c12, c13 and c14 could be
combined into three linear restrictions on C. Note that this happens despite
none of the linear constraints being linearly dependent on the other ones, as
the constraints matrix R has full row rank.

In Lucchetti (2006), it was argued that checking for the rank ofH is equiva-
lent to considering the existence of solutions to the system

ϕ′D̃′n(I ⊗ R′i)[Sθ + s] = ϕ′Tiθ + ϕ′ti = 0 for i = 1 . . . p (7)

with

Ti ≡ D̃′n(I ⊗ R′i)S (8)

ti ≡ D̃′n(I ⊗ R′i)s (9)

and Ri is a n× n matrix whose vectorization is the ith row of R. In other words,
the system is unidentified at θ if some ϕ 6= 0 exists which satisfies the above
equations for every i. While this is true, the check proposed in Lucchetti (2006)
is flawed, and it is instructive to see why; construct the matrix

T =


R(I ⊗ S1)D̃n
R(I ⊗ S2)D̃n

...
R(I ⊗ Sq)D̃n
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where Si is an n× n matrix whose vectorisation is the i-th column of S; solution
of the system of equations (7) amounts to finding θ and ϕ such that

(θ′ ⊗ Ip)Tϕ = 0;

clearly, this is always possible if the column rank of T is not full, so the structure
condition in Lucchetti (2006) amounts to checking for the rank of T; however,
the equation above may also have solutions if a nonzero ϕ exists such that the
product Tϕ is non-null, but lies in the kernel space of (I ⊗ θ′), that is Sp(θ⊥ ⊗
Ip).

Since the structure condition fails to capture this particular feature of the
model, Lucchetti (2006)’s setup erroneously labels the above model as identi-
fied. In the next sections, we propose some new results that overcome this de-
ficiency, by defining a set of necessary and sufficient conditions for structural
identification.

2.3 The measure of under-identified points in the parameter
space

The next result, already presented in Johansen (1995) for linear systems of
equations and Rubio-Ramirez, Waggoner, and Zha (2010) for global identifi-
cation in SVAR models, helps in practically checking whether a model is effec-
tively identified or not.

Theorem 1. Consider the SVAR model in Eq. (2), with restrictions on the parameters
as described in Eqs. (4)-(5). If the order condition is met, then either H is singular for
all values of θ ∈ Rq or the set of vectors θ that makes it singular has zero Lebesgue
measure.

Proof. H has p rows and n(n−1)
2 columns, so if the order condition p ≥ n(n−1)

2
is met, then the rank of H′H equals that of H. Since C in equation (6) is an
affine function of θ, it follows that the determinant |H′H| is a polynomial of
finite order in θ. As is well known (see Traynor and Caron (2005)), a finite-
order polynomial function Rq 7→ R is either identically 0, or non-zero almost
everywhere. Call Θ0 the set of θ satisfying |H′H| = 0; then either Θ0 = Rq, or
Θ0 ⊂ Rq, where λ(Θ0) = 0, and the claim follows.3

The most powerful consequence of the above theorem is that if one θ exists
such that the model is locally identified at it, then it is locally identified almost ev-
erywhere. This result provides theoretical justification to the standard practice
of checking identification by simply calculating rk(H) for randomly selected
values for the free parameters θ.

Moreover, it should be noted that, by the continuity of the differential func-
tion, if Θ0 ⊂ Rq, there exists some θ∗ /∈ Θ0 in every neighborhood of θ ∈ Θ0,
so the subset of parameter points for which identification is attained is either
empty, or dense in Rq.

3We use λ(·) for Lebesgue measure, as per standard notation.
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2.4 A new necessary condition for structural identification: the
Rado condition

In Johansen (1995) the main result in terms of the identification of the model
as a function of the constraints only, is proved by recurring to two interesting
theorems in classical mathematics and algebra by Hall (1935) and Rado (1942).
In the next theorem we use the same idea and provide a necessary condition for
the structural condition to hold that, in part, overcomes the previous deficiency
in Lucchetti (2006).

Before providing the details, however, it is worth looking at the problem
from a different point of view. Starting from the Amisano and Giannini’s (1997)
H matrix reported in Eq. (6), and working on each single column, we obtain

R(In ⊗ C)D̃nei = Rvec (CHi) = −R(Hi ⊗ In)[Sθ + s], i = 1, . . . , m (10)

where ei is the i-th column of the identity matrix, Hi is a n× n matrix whose
vectorization corresponds to the i-th column of D̃n and, for simplifying the
notation, we fix m = n(n−1)

2 . If we define

Vi ≡ R(Hi ⊗ In)S (11)
vi ≡ R(Hi ⊗ In)s, (12)

the Amisano and Giannini’s (1997)H matrix can also be written as

H = V(θ) =
[

V1θ + v1 V2θ + v2 · · · Vmθ + vm
]

(13)

where V(θ) emphasizes the dependence of H from the unknown parameters
θ. Note that, in the case of d = 0, all the ui-s are zero.4

Now, define Vi = (Vi | vi), i = 1, . . . , m, and consider

V =
[

V1 V2 · · · Vm
]

, (14)

whose size is p × m(q + 1) with m(q + 1) > p. This matrix collects all the
vectors composing Vi and vi, i = 1 . . . m, as defined in Eq.s (11)-(12). The next
theorem restates the structure condition introduced by Lucchetti (2006) simply
as a necessary condition for the identification of the SVAR. Combined with
Theorem 1, if the following condition, that does not depend on the unknown
parameters, is not satisfied, the SVAR model cannot be identified.

Theorem 2. Consider the specification in equations (2)-(3) and the set of restrictions
given by equations (4)-(5), with p ≥ m, where m = n(n−1)

2 . A necessary condition
for the structure condition to hold is that, for all k = 1, . . . , m, and all set of indices:
1 ≤ i1 < i2 < . . . ik ≤ m, then

rk
(
Vi1 | . . . |Vik

)
≥ k. (15)

We call the Rado condition the condition by which the inequalities (15) are si-
multaneously satisfied. Therefore, the SVAR model is structurally identified only if the
Rado condition is met, except for a zero Lebesgue measure set of values for θ.

4This, for example, is the case of recursive identification and is by far the most common setup
in the C model.
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Proof. The theorem directly derives from Theorem 1 and Theorem 6, discussed
in the Appendix. In fact, if the Rado condition holds, then there exists a set of
q× 1 vectors θ1 , . . . , θm such that V(θ) is of full column rank. On the contrary,
if it does not hold, there are no θs, distinct or equal as in Eq. (13), making the
V(θ) matrix of full column rank. The Rado condition is thus necessary for the
identification of the SVAR model.

It is perhaps useful to give an explicit example of the condition on Theorem
2: Consider a trivariate system with 4 restrictions so that n = 3, m = n(n−1)

2 = 3
and p = 4. Theorem 2 states that we first have to check the rank of each single
matrix Vi to be different from zero, then all the matrices of the type

(
Vi1 |Vi2

)
,

that is for (i1, i2) equal to
(1, 2), (1, 3), (2, 3);

the rank of all the above combinations should be at least 2. Finally, we consider
the matrix of the kind

(
Vi1 |Vi2 |Vi3

)
that must have rank 3.

If p ≤ n(n−1)
2 the order condition fails, and the model cannot be identifiable

as there are not enough empirical moments in the covariance matrix Σ to es-
timate the free parameters of the model. If, instead, p ≥ n(n−1)

2 , the number
of imposed restrictions is large enough compared to the number of distinct el-
ements in Σ, and the necessary condition is met. At this stage, the condition
in Eq. (15) becomes a more stringent necessary condition for the identifiability
of the SVAR model than simply counting the number of restrictions, as in the
standard order condition.

As will be discussed in one of the examples in Section 3, the Rado condition
plays an interesting role as it indicates that the model in Section 2.2 cannot be
identified, as instead suggested by the structure condition in Lucchetti (2006).

Remark 1. Differently from Theorem 6, the condition in Theorem 2 cannot
be also sufficient for the (V1θ + v1 , V2θ + v2 , · · · , Vmθ + vm) to be linearly
independent. As shown in the next counter-example, the problem is that we
constraint all the θs to be equal, while in the original Rado’s theorem nothing is
said about these vectors θ1 , . . . , θm. In fact, suppose that the set of constraints
in a trivariate SVAR generates the following matrices

V1 =

 1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



V2 =

 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


V3 =

 0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 ,
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with v1 = v2 = v3 = 0. The Rado condition gives the following results

rk (V1) = 1 ≥ 1, rk (V2) = 3 ≥ 1, rk (V3) = 2 ≥ 1

rk (V1|V2) = 3 ≥ 2 rk (V1|V3) = 3 ≥ 2 rk (V2|V3) = 3 ≥ 2

rk
(

V1 | V2 | V3
)
= 3 ≥ 3

and it is clearly satisfied. There exist, hence, three possible vectors θ1 , θ2, θ3
such that (V1θ1 , V2θ2 , V3θ3) are linearly independent. However, when the
constraint

θ1 = θ2 = θ3 = θ =
(

θ(1), θ(2), θ(3), θ(4), θ(5), θ(6)
)′

is imposed (for some scalars θ(1), . . . , θ(6)), then

V(θ) = (V1θ , V2θ , V3θ) =

 θ(1)

0
0

θ(2)

θ(3)

θ(4)

0
θ(3)

θ(4)


is composed by linearly dependent columns. Although the Rado condition
holds, the rank of V(θ) cannot be full for whatever choice of the 6× 1 vector
θ. This simple counter-example clearly proves that the Rado condition is not
sufficient.

2.5 A new necessary and sufficient condition

Starting from the V matrix introduced in Eq. (14), let define the new matrices
M1, M2, . . . , Mq+1, where the generic one, of dimension (p×m), is

Mi = (V1ei, V2ei, . . . , Vmei) (16)

and collects, side by side, all the i-th columns of V1, V2, . . . , Vm, being ei the
i-th column of the identity matrix Iq+1.5

The next theorem provides a new necessary and sufficient condition for
V(θ) to have full column rank that does not depend on the unknown parame-
ters θ.

Theorem 3. Consider the specification in equations (2)-(3) and the set of restrictions
given by equations (4)-(5), with p ≥ m, where m = n(n−1)

2 . A necessary and sufficient
condition for the structure condition to hold is that there exists a linear combination of
the M1, M2, . . . , Mq+1 defined as in Eq. (16), i.e.

M = λ1M1 + λ2M2 + . . . + λq+1Mq+1 (17)

for some scalars λ1, λ2, . . . , λq+1, such that M has full column rank equal to m.
Therefore, if rk(M) = m, the SVAR model is structurally identified except for a

zero Lebesgue measure set of values for θ.

5If v1 = v2 = . . . = vm = 0, then the number of such new matrices will be q instead of q + 1,
and ei will be the i-th column of the identity matrix Iq.
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Proof. First of all, let indicate with θ(i) the i-th element of the vector of parame-
ters θ. It is worth remembering that the SVAR model is identified if and only if
V(θ), defined in Eq. (13) has full column rank. Focusing on the i-th matrix Mi,
each of its column is multiplied by the scalar θ(i) in the original rank problem
in Eq. (13). If the matrix Mi has full column rank it is possible to find m linearly
independent vectors in V(θ), apart for the trivial case θ(i) = 0, which has, how-
ever, zero Lebesgue measure. This sufficient condition, that does not depend
on θ, however, is not necessary, since some linearly independent vectors can
be detected from the i-th columns of V1, V2, . . . , Vm (i.e. Mi), but some others
from the collection of the other columns. The necessary condition, thus, is that
there must exist at least one linear combination of M1, M2, . . . , Mq+1 that has
full column rank.

For simplicity, consider a linear combination of the first two:

M = λ1M1 + λ2M2.

If M has full column rank m, it means that from V(θ) it is possible to generate
m vectors of the form

λ1M1θ(1) + λ2M2θ(2)

that, for whatever non-null values of the two scalars θ(1) and θ(2), will be lin-
early independent. The generalization to a linear combination involving all
the q + 1 matrices M1, M2, . . . , Mq+1 is straightforward and makes the previ-
ous condition both necessary and sufficient.

The previous theorem provides a necessary and sufficient condition for the
model to be identified that is only based on the imposed restrictions, and that
can be checked before the estimation process. As in Johansen (1995), it can
be said that identification of the SVAR is a characteristic of the model, rather
than being tied to the parameter matrix C. The practical implementation of the
previous condition will be discussed in the following section, through a set of
identified and not identified SVAR models.

3 A few example C-models

The next examples provide some details on the implementation of the identifi-
cation conditions developed in Theorems 2 and 3 presented in Section 2.

3.1 Unidentified bivariate SVAR

This example is analyzed in detail both in Amisano and Giannini (1997) and
in Lucchetti (2006). Consider the following bivariate SVAR model where the
matrix of contemporaneous relations is defined as

C =

(
θ1 θ2
−θ2 θ1

)
.

The structure of the C matrix presents a problem similar to the one dis-
cussed in Section 2.2, i.e. it implicitly imposes a covariance matrix of the re-
duced form as follows

CC′ =
(

θ2
1 + θ2

2 0
0 θ2

1 + θ2
2

)
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where the covariance of the VAR residuals is restricted to be zero and the two
variances are equal. The model thus presents two parameters to be estimated
but only one empirical moment. The matrices of restrictions are

R =

(
1 0 0 −1
0 1 1 0

)
S =


1 0
0 −1
0 1
1 0

 D̃n =


0
1
−1
0

 .

As m = n(n−1)
2 = 1, the unique U1 becomes

V1 = D̃′2
(

I2 ⊗ R′1
)

S =

=

(
1 0 0 −1
0 1 1 0

)
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




1 0
0 −1
0 1
1 0

 =

(
0 0
0 0

)

The order condition is clearly met (m = 1 and p = 2). Using Theorem 2,
however, gives the following condition

rk (V1) = 0 < 1.

The model, thus, cannot be identifiable as the necessary Rado condition does
not hold. This result is trivially confirmed by considering the necessary and
sufficient condition reported in Theorem 3.

3.2 Trivariate Cholesky SVAR

Consider the triangular trivariate SVAR model. Rubio-Ramirez, Waggoner,
and Zha (2010) prove that this model is not simply locally identified, but also
globally. The matrix of simultaneous relations is defined as

C =

 ∗ 0 0
∗ ∗ 0
∗ ∗ ∗


where asterisks (‘∗’) denote unrestricted coefficients. The matrices of restric-
tions can be written as

R =

 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

 , S =



1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1


.

The order condition is clearly satisfied. The V1, V2 and V3 matrices are

V1 =

 1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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V2 =

 0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0


V3 =

 0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0

 .

The rank condition provided by Theorem 2 gives the following results

rk (V1) = 1 ≥ 1, rk (V2) = 1 ≥ 1, rk (V3) = 2 ≥ 1

rk (V1|V2) = 3 ≥ 2 rk (V1|V3) = 2 ≥ 2 rk (V2|V3) = 2 ≥ 2

rk
(

V1 | V2 | V3
)
= 3 ≥ 3

indicating that the necessary condition holds. Moreover, let consider the nec-
essary and sufficient condition of Theorem 3 and define M1, M2, . . . M6 as fol-
lows

M1 =

 1 0 0
0 1 0
0 0 0

 M2 =

 0 0 0
0 0 0
0 0 1

 M3 =

 0 0 0
0 0 0
0 0 0



M4 =

 0 0 0
0 0 0
0 1 0

 M5 =

 0 0 0
0 0 0
0 0 0

 M6 =

 0 0 0
0 0 0
0 0 0


A simple linear combination of M1 and M2 provides a matrix

M = M1 + M2 =

 1 0 0
0 1 0
0 0 1


of full rank, indicating that the model is structurally identified.

3.3 Trivariate SVAR with cross-equation restrictions

Consider the trivariate SVAR model with the following matrix of simultaneous
relations

C =

 ∗ 0 0
∗ ∗ ~
∗ ∗ ~


where asterisks (‘∗’) denote unrestricted coefficients while circled asterisks (‘~’)
denote unrestricted but equal coefficients. This model is extremely interesting
for at least two reasons. Firstly, the restriction c23 = c33 involves parameters of
two different equations, the second and the third. These kind of restrictions are
not allowed in the well-known contribution by Rubio-Ramirez, Waggoner, and
Zha (2010), where only equation-by-equation restrictions can be included. Al-
though in a different framework, cross-equations restrictions are not allowed in
the Johansen (1995) set up. Our methodology, thus, represents an improvement
with respect to the existing literature allowing for more general restrictions.
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Secondly, when verifying the identification of this SVAR model, a largely
diffused econometric software like Eviews immediately says that it is not iden-
tified. However, based on the results of Theorem 1, is effectively the model not
identified, or does the value of θ chosen for checking the identification repre-
sent an isolated point such that the model is not identified in this point but in-
stead is identified almost everywhere in the parametric space? In fact, Eviews
uses the Amisano and Giannini’s approach and calculates by default the rank
ofH at θ = (1, 1, 1, 1, 1, 1)′, for which the rank is not full. However, when se-
lecting the advanced options of randomly generating θ, the SVAR model results
to be identified. Our procedure, that is independent of the selected parameters
θ, but is model-based, has this further advantage with respect to the existing
literature, and can avoid the unpleasant situation of discarding a model when
it is effectively identified almost everywhere in the parametric space.

The matrices of restrictions can be written as

R =

 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 −1

 , S =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1


.

The order condition is clearly satisfied as p = 3 and m = n(n−1)
2 = 3. The V1,

V2 and V3 matrices are

V1 =

 1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



V2 =

 0 0 0 0 0 0
1 0 0 0 0 0
0 1 −1 0 0 0


V3 =

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 −1 0

 .

The rank condition provided by Theorem 2 gives the following results

rk (V1) = 1 ≥ 1, rk (V2) = 1 ≥ 1, rk (V3) = 2 ≥ 1

rk (V1|V2) = 3 ≥ 2 rk (V1|V3) = 2 ≥ 2 rk (V2|V3) = 2 ≥ 2

rk
(

V1 | V2 | V3
)
= 3 ≥ 3

indicating that the necessary Rado condition holds. Concerning the necessary
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and sufficient condition, it can be seen that

M1 =

 1 0 0
0 1 0
0 0 0

 M2 =

 0 0 0
0 0 0
0 1 0

 M3 =

 0 0 0
0 0 0
0 −1 0



M4 =

 0 0 0
0 0 0
0 0 1

 M5 =

 0 0 0
0 0 0
0 0 −1

 M6 =

 0 0 0
0 0 0
0 0 0


and a simple linear combination of M1 and M4 provides a full rank matrix

M = M1 + M4 =

 1 0 0
0 1 0
0 0 1


indicating that the model is structurally identified.

3.4 Unidentified four-variable SVAR

In this section we use the new results in Theorem 2 and Theorem 3 to show
that the unidentified SVAR model described in Section 2.2 can now be cor-
rectly detected. The necessary and sufficient condition for identification in Eq.
(15) suggests to calculate the rank of all possible combinations of the V1, . . . , V6
matrices, where p = 6 indicates the number of restrictions (rows of R). This is
rather boring to do by hand, but is also easy to check automatically, via appro-
priate software.6 Considering the example described in Section 2.2, the rank
condition is verified for singles and pairs of Vi, i = 1, . . . , 6, but fails when we
check

rk (V4 |V5 |V6 ) = 2 ≤ 3

indicating that the model is under-identified, in accordance to the previous
analysis reported in Section 2.2.

Furthermore, if we consider the Mi matrices, not reported here to save
space, for each of them the last three columns present non-null entries only
in the third and fifth rows, preventing thus the construction of three linearly
independent vectors. It is thus impossible to find a full-rank linear combina-
tion of the matrices, indicating that the model cannot be identifiable.

4 Identification in the AB-model

Following the terminology of Amisano and Giannini (1997) and Lütkepohl
(2006), the AB-model considers possible simultaneous relationships among the
observable variables and the structural shocks. Classic empirical applications
using this specification can be found, among many others, in Bernanke (1986),
Blanchard (1989) and Blanchard and Perotti (2002). Concentrating out the dy-
namic part of the VAR, the simultaneous relations are defined by

Aεt = But (18)
6A Gretl code is available from the author upon request.
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where, as before, εt is the one-step-ahead prediction errors, with E (εtε
′
t) =

Σ, and ut collects the standardized and uncorrelated structural shocks. The
specification in Eq. (18) naturally induces a set of non-linear restrictions on the
parameter space given by

AΣA′ = BB′. (19)

The number of parameters, here, is clearly 2n2, while that of empirical mo-
ments remains ‘at most’ n(n + 1)/2, i.e. the number of elements in the es-
timable covariance matrix of the residuals Σ. As a consequence, at least p =
2n2 − n(n + 1)/2 = n2 + n(n − 1)/2 restrictions on the parameters must be
included for identification.

The first systematic contribution in terms of the identification has been pro-
vided by Amisano and Giannini (1997). Write the pa and pb independent re-
strictions on A and B as

Ravec A = ra and Rbvec B = rb, (20)

or equivalently, in explicit form,

vec A = Saθa + sa and vec B = Sbθb + sb; (21)

where θa and θb are of dimension qa × 1 and qb × 1, respectively, and contain
the q = qa + qb free parameters to estimate; Amisano and Giannini (1997) intro-
duce a necessary and sufficient identification condition based on the following
pb × [n(n− 1)/2 + qa] matrix

Rb
(

B⊗ BB′
) [

D̃n

∣∣∣∣ − [A−1 ⊗
(

BB′
)−1
]

Sa

]
(22)

that must have full column rank for the model to be identified. As for the C-
model previously discussed, this matrix depends on the true values of A and
B, that are unknown.

In what follows, we use the intuition in Lucchetti (2006) and check for the
existence of a pair of matrices

A∗ = A + dA = (I + Q) A
B∗ = B + dB = (I + Q) B (I + H)

that are observationally equivalent to A and B in a neighborhood of the two
true matrices A and B.

The two infinitesimal transformation matrices (I + Q) and (I + H) must
obey different requisites: (I + H) should be orthogonal, while invertibility is
sufficient for (I + Q). This implies that, while it is sufficient to consider a sim-
ple infinitesimal non-zero matrix Q 6= 0, H must be an infinitesimal rotation
with H = −H′. The two new matrices of parameters A∗ and B∗ will be admis-
sible if

Rada = Ra (I ⊗Q) (Saθa + sa) = 0
Rbdb = Rb

[
(I ⊗Q) +

(
H′ ⊗ I

)]
(Sbθb + sb) = 0.

where a = vec A and b = vec B. With a little algebra, the identification condi-
tion can be shown to be equivalent to the following system of equations7[

q′ | φ′
]

U(θ) = 0 (23)
7See Lucchetti (2006), pag 247, Eq. (23).
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where

U(θ) =

[
Ua

1θ + ua
1 · · · Ua

pa θ + ua
pa Ub

1θ + ub
1 · · · Ub

pb
θ + ub

pb

0 · · · 0 Tb
1 θ + tb

1 · · · Tb
pb

θ + tb
pb

]
(24)

with

Ua
i = Knn (Ra,i ⊗ In) Sa ua

i = Knn (Ra,i ⊗ In) sa i = 1, . . . , pa
Ub

i = Knn (Rb,i ⊗ In) Sb ua
i = Knn (Rb,i ⊗ In) sb i = 1, . . . , pb

Tb
i = D̃′n

(
In ⊗ R′b,i

)
Sb ub

i = D̃′n
(

In ⊗ R′b,i

)
sb i = 1, . . . , pb.

in which Ra,i and Rb,i, similarly to Ri defined in Section 2.1, are defined such
that their vectorization is equal to the i-th row of A and B, respectively. The ma-
trix Knn is the n2 × n2 matrix defined by the property Knnvec (A) = vec (A′).8

If the system admits as its unique solution the null vector [ q′ | φ′ ] = [ 0 ],
or equivalently, U(θ) has full row rank, then the model is identified. Obviously,
U(θ) is a function of the free parameters θ, and the identification can only be
checked conditionally on the unknown parameters.

4.1 A useful transformation

Starting from Eq. (23), let rewrite U(θ) as follows

U(θ) =
[

U1 . . . Upa Upa+1 . . . Upa+pb

] (
Ip ⊗ θ

)
=

= U
(

Ip ⊗ θ
)

where θ =
(
θ′a | 1 | θ′b | 1

)′, and the generic [(n2 + m)× (q + 2)] matrix Ui can
be defined as

Ui =



 Ua
i | ua

i
... 0

0
... 0

 for 1 ≤ i ≤ pa Ub
i | ub

i
... 0

0
... Tb

i | tb
i

 for pa + 1 ≤ i ≤ pa + pb.

The U(θ) matrix is of dimension (n2 +m)× p where, as before, m = n(n−1)
2 , p =

pa + pb denotes the total number of restrictions and, according to the already
mentioned order condition, p ≥ n2 + m. If the equality holds, then U(θ) will
be squared and potentially exactly identified. On the contrary, if we have more
restrictions than necessary, U(θ) will have more columns than rows, making
problematic the application of the Rado necessary condition as developed in
Section 2.4. In this vein, the next transformation reveals extremely useful for
reconciling the problem with the previous analysis developed for the C-model.

Each row of U(θ) can be written as

e′iU(θ) = [e′iU1θ , . . . , e′iUpθ]

8It can be shown that Knn is symmetric and orthogonal; see for instance Magnus and Neudecker
(1988, p. 46).
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where ei is the i-th column of the identity matrix. Taking the transpose, it is
easily obtained that

U(θ)′ei =

 e′iU1θ
...

e′iUpθ

 =


 e′iU1

...
e′iUp

 θ

 .

Considering all the rows of U(θ), or equivalently, all the columns of U(θ)′, it is
possible to define

V(θ) = U(θ)′ =


 e′1U1

...
e′1Up

 θ · · ·


e′
(n2+m)

U1
...

e′
(n2+m)

Up

 θ


=

[
V1θ | . . . | V(n2+m)θ

]
=

[
V1 V2 · · · V(n2+m)

]
(I ⊗ θ)

= V(I ⊗ θ), (25)

where the p× q generic matrix Vi, with i = 1, . . . , (n2 + m), is defined as

Vi =

 e′1U1
...

e′1Up

 , (26)

and does not depend on the unknown parameters θ.
The matrix V(θ), that is equal to U(θ)′, is of dimension p× (n2 + m) and,

having at least as many rows as column, allows us to use the same strategy
followed for the C-model to provide necessary and sufficient conditions for
the structural-identification of the AB-model.

4.2 The Rado condition for the AB-model

The following theorem extends the results of Theorem 2 to the case of the AB-
model and provides a necessary condition for the identification.

Theorem 4. Consider the specification in Eqs. (18)-(19) and the set of p restrictions
given by Eqs. (20)-(21), with p = pa + pb ≥ n2 + m, with m = n(n−1)

2 and p ≥
n2 + m. A necessary condition for the structure condition to hold is that, for all k =
1, . . . , n2 + m, and all set of indices: 1 ≤ i1 < i2 < . . . ik ≤ n2 + m, then

rk
(
Vi1 | . . . |Vik

)
≥ k. (27)

We call the Rado condition the condition by which the inequalities (27) are simul-
taneously satisfied. Therefore, the AB-model is structurally identified only if the Rado
condition is met, except for a zero Lebesgue measure set of values for θ.
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Proof. The theorem directly derives from Theorem 1, Theorem 2 and Theorem
6, discussed in the Appendix.

The necessary condition provided in Theorem 4, being based on the Vi ma-
trices that do not depend on θ, can be checked before the estimation process
takes places. Moreover, combined with the result in Theorem 1, when it is not
satisfied, the model cannot be identified in any point on the parametric space.

4.3 The new necessary and sufficient condition for the identi-
fication of the AB-model

The next theorem provides a new necessary and sufficient condition for V(θ)
defined in Eq. (25) to have full column rank. As the condition does not de-
pend on the unknown parameters θ, the theorem provides a necessary and
sufficient condition for identification that can be checked before the estima-
tion process. The idea is the same as in Theorem 3. Starting from the V =[

V1 V2 · · · V(n2+m)

]
matrix introduced in Eq. (25), let define the new

matrices M1, M2, . . . , Mq+2, where the generic one, of dimension [p × (n2 +
m), is

Mi = (V1ei, V2ei, . . . , V(n2+m)ei) (28)

and collects, side by side, all the i-th columns of V1, V2, . . . , V(n2+m), being ei

the i-th column of the identity matrix Iq+2.9

Theorem 5. Consider the specification in Eqs. (18)-(19) and the set of p restrictions
given by Eqs. (20)-(21), with p = pa + pb ≥ n2 + m, with m = n(n−1)

2 and p ≥
n2 + m. A necessary and sufficient condition for the structure condition to hold is that
there exists a linear combination of the M1, M2, . . . , Mq+1 defined as in Eq. (16), i.e.

M = λ1M1 + λ2M2 + . . . + λq+2Mq+2 (29)

for some scalars λ1, λ2, . . . , λq+2, such that M has full column rank equal to (n2 +
m).

Therefore, if rk(M) = n2 + m, the SVAR model is structurally identified except
for a zero Lebesgue measure set of values for θ.

Proof. The result immediately follows from Theorem 3.

As for the C-model discussed in Section 2, the previous theorem presents a
necessary and sufficient condition for the identification of the parameters of the
AB-model that only depends on the number and kind of restrictions imposed.
Being independent of the estimated parameters, the condition can be checked
before the estimation process and, when satisfied, guarantees that the SVAR
model will be locally identified almost everywhere in the parametric space.

9As before, if v1 = v2 = . . . = v(n2+m) = 0, then the number of such new matrices will be q
instead of q + 2, and ei will be the i-th column of the identity matrix Iq.
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5 AB-models: two examples

In this section we present two examples on the implementation of the previ-
ously developed strategy to study identification in the general AB-model. The
former is an artificial bivariate model of some theoretical interest; the latter is
a trivariate SVAR model presented by Blanchard and Perotti (2002) in a well-
known empirical application.

5.1 Bivariate AB-model

Consider the bivariate AB-SVAR model in Eq. (18) with

A =

(
1 θ1
−θ1 1

)
B =

(
θ2 0
0 θ3

)
. (30)

The non-linear restrictions implicitly imposed are given by

Σ = A−1BB′(A′)−1

=
1(

1 + θ2
1
)2

 θ2
2 + θ2

1θ2
3 −θ1θ2

2 + θ1θ2
3

−θ1θ2
2 + θ1θ2

3 θ2
3 + θ2

1θ2
2

 .

Global identification dictates that a unique solution exists to the non-linear
system of three equations in three unknowns connecting the empirical mo-
ments in Σ to the parameters θ1, θ2 and θ3. It is interesting to note that the
Rubio-Ramirez, Waggoner, and Zha (2010) approach for checking for global
identification cannot be applied to AB-SVAR models. It is true that this model
could be turned into a C-model, but then identification would rely on a non-
linear, cross-equation constraint, which is also impossible to handle in Rubio-
Ramirez, Waggoner, and Zha’s approach.

Local identification, instead, can be checked by using the result in Theorem
5, when considering the set of restrictions given by

Ra =

 1 0 0 0
0 0 0 1
0 1 1 0

 ra =

 1
1
0

 Rb =

(
0 1 0 0
0 0 1 0

)
ra =

(
0
0

)

Sa =


0
1
−1

0

 sa =


1
0
0
1

 Sb =


1 0
0 0
0 0
0 1

 sa =


0
0
0
0

 .

Checking for the rank of all combinations of indices as discussed in The-
orem 5 shows that the model is locally identified. However, if one imposes
the further restriction that θ2 = θ3, then the relation between the empirical
moments and the parameters becomes

Σ =

 θ2
2

1+θ2
1

0

0 θ2
2

1+θ2
1
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that is similar to the C-model investigated in Section 3.1. As expected, although
the number of restrictions is larger than required, the Rado condition fails and
the model is not identified.

5.2 Blanchard-Perotti AB-model

The following model is inspired by the seminal contribution by Blanchard and
Perotti (2002) on the effects of fiscal shocks to the real economy. They consider
a three-dimensional VAR for taxes, spending and GDP, all in real per capita
terms. Once concentrating out the reduced-form parameters, the model can be
written as 1 0 −a1

0 1 −b1
−c1 −c2 1

 tt
gt
xt

 =

 a3 a2 0
b2 b3 0
0 0 c3

 εt
t

ε
g
t

εx
t

 (31)

where εt =
(

εt
t , ε

g
t , εx

t

)′
is the vector of reduced-form residuals while ut =(

ut
t , ug

t , ux
t

)′
is the vector of uncorrelated unit-variance structural shocks.

The model is clearly not identified as the number of parameters to estimate
exceeds the number of distinct elements in the reduced-form covariance ma-
trix (9 > n(n−1)

2 = 6). For the order condition to hold, then, at least three more
restrictions must be imposed.

Starting from the specification in Eq. (31), here below we consider alter-
native combinations of further restrictions (more or less backed by economic
intuition) and, for each of these, check for the identification of the model us-
ing the necessary and sufficient condition developed in Theorem 5. All the
results are confirmed by the traditional Amisano and Giannini’s approach by
calculating the rank of the matrix in Eq. (22) for randomly generated A and
B. A horizontal bar over a parameter, as in a1, means that the parameter is
calibrated to some non-zero value, usually on the basis of previous studies.

5.2.1 Further restrictions I

b1 = 0 a1 = a1 b2 = 0

or alternatively
b1 = 0 a1 = a1 a2 = 0

This is the specification used by the authors in their empirical application.
In particular, they justify the choice of b1 = 0 by saying that it is not possi-
ble to identify any automatic feedback from economic activity to government
spending. Moreover, the elasticity to output of net taxes (tax minus transfer)
can be calibrated by using external information and thus considered as fixed
within the SVAR framework. Concerning the last restriction, the authors state
that there are no convincing ways to establish a priori, after a simultaneous and
unexpected change in taxes and expenditure, which of the two variables, taxes
and public spending, reacts first. For this reason they present both the results
with b2 = 0 or alternatively a2 = 0.
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These three further restrictions satisfy the necessary order condition of iden-
tification, being p = pa + pb = 7 + 5 = 12 equal to n2 + n(n−1)

2 = 9 + 3 = 12.
Moreover, using the Rado condition defined in Eq. (27), it is possible to show
that, independently of the free parameters, the model is almost everywhere
identified. In fact, given the restrictions b2 = 0 and a1 = â1, the cyclically ad-
justed tax and public spending, t̂t = tt − â1xt and ĝt = gt − b1xt respectively,
can be used as instruments to estimate c1 and c2 in a regression of xt on tt and
gt. Furthermore, the consistently estimated t̂t and ĝt allow to estimate the re-
maining two parameters a2 and b1, provided that, in turn, one of the two is
restricted to zero. Finally, the diagonal elements of the B matrix are the stan-

dard deviations of the estimated structural shocks ut =
(

ut
t , ug

t , ux
t

)′
.

5.2.2 Further restrictions II

b1 = 0 a1 = a1 c1 = 0

or alternatively
b1 = 0 a1 = a1 c2 = 0

This set of restrictions, differently from the previous one, imposes that one
of the two elasticities of output to taxes and public spending is null, i. e. that
output does not respond, within the quarter, to changes in the level of taxes
or spending. Moreover, we consider that both gt and tt react to unexpected
shocks in taxes and spending ut

t and ug
t , respectively.

As before, the number of restrictions satisfies the necessary order condition.
Looking at the sufficiency, instead, the Rado condition is now not supported
by the set of restrictions, indicating that the model is not identified. In fact,
although b1 = 0 and a1 = â1 help consistently estimating c1 and c2, this does
not allow to consistently estimate a2 and b2.

5.2.3 Further restrictions III

b1 = 0 a1 = a1 a2 = b3

In this case, the further restrictions, other than, as before b1 = 0 and a1 = â1,
impose that gt and tt react to ug

t through coefficients of the same magnitude.
This would be a very interesting case to analyse from an economic point of
view because it would describe an economy that, for some reason, follows a
policy of automatic stabilizing certain budget items. For example, during the
recent financial crisis, the Italian budget contained certain tax increases (mostly
excises), that were supposed to be applied automatically and conditionally to
a certain deficit target not being met. This was mainly conceived as a way to
reassure the markets about the commitment by the Italian government to fiscal
discipline, and was repeatedly interpreted as such by Italian and EU authori-
ties in public statements.

From a strictly econometric point of view, this restriction is of particular
interest because it involves coefficients in two different equations; this type of
constraint cannot be handled in the framework proposed by Rubio-Ramirez,
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Waggoner, and Zha (2010), in which cross-equation restrictions are not con-
sidered. And yet, in this scenario, a cross-equation restriction such as a2 = b3
would be very a natural and direct way to translate an institutional feature into
a parametric restriction.

The necessary order condition continues to hold, but differently from the
previous case, now the Rado condition holds too, so the model is locally iden-
tified. This last cross-equation restriction, apart from being interesting from an
economic point of view is in fact indispensable for identifying all the parame-
ters of the model.

6 Conclusions and future directions

In this paper, we have developed a method for checking whether a given SVAR
is identified on the pure basis of the restrictions the covariance matrix is sub-
ject to, independently of its parameters. Therefore, it is possible to investigate
identification prior to estimation. Our analysis is not limited to C-models, but
also extends to the more general AB model.

A very interesting research avenue lies in investigating qualitatively the
possible under-identification issues that derive from the relationship between
observables and parameters; in the example we gave in subsection 2.2, lack of
identification was directly linked to the absence of information contained in
one of the moment conditions (3). It may be possible to derive a formal crite-
rion for detecting such cases by considering which one, of the set of inequalities
(15), fails to hold. The example given in subsection 3.4 looks quite promising
in that respect.

A more difficult open question is whether our theorem can be combined
with extra conditions for checking global identification, rather than local. This
will be the object of future work, as well as the usage of the results presented
here for dealing with the heteroskedastic case and make the analysis in Bac-
chiocchi (2014) more general and rigorous.
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7 Appendix

In order to facilitate the understanding of the proof of Theorem 2 it is useful to
restate Rado’s (1942) theorem, in the form employed in Johansen (1995):

Theorem 6. Suppose you have a collection of matrices M1, M2, . . . , Mn; then, in
order to obtain a set of linearly independent vectors v1, v2, . . . , vn, where vi = Miλi,
a necessary and sufficient condition is that for all k = 1, . . . n and all sets of indices
1 ≤ i1 < ... < ik ≤ n,

rk
[
Mi1 | . . . |Mik

]
≥ k.

This theorem provides a necessary and sufficient condition for having n
linearly independent vectors from the set of matrices M1, M2, . . . , Mn. Put in a
different way, if the theorem holds, then there exist some λ1, λ2, . . . , λn such
that v1, v2, . . . , vn will be linearly independent. By construction, however, our
problem in Section 2.4 fixes all the λs to be equal. This apparently simple differ-
ence, however, is crucial for the Rado condition to be no more sufficient in our
context.
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