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Abstract In this paper we discuss a detailed methodology for dealing with Risk
Parity in a parametric context. In particular, we use the Independent Component
Analysis for a linear decomposition of portfolio risk factors. Each Independent
Component is modeled with the Mixed Tempered Stable distribution. Risk Parity
optimal portfolio weights are calculated for three risk measures: Volatility, modified
Value At Risk and modified Expected Shortfall.
Empirical analysis is discussed in terms of out-of-sample performance and portfolio
diversification.

Keywords Risk parity · Mixed Tempered Stable · Optimization

1 Introduction

Risk Parity is an approach in portfolio management which focuses on allocation
of risk rather than on capital (see Denis et al., 2011, for further details). An op-
timization algorithm based on the risk parity approach requires the formulation
of portfolio total risk in terms of marginal contributions. In this paper we ex-
ploit Euler’s theorem for homogenous functions and express portfolio risk as a
weighted sum of the marginal risk contributions following the approach described
in Tasche (1999). In particular we focus on three standard homogeneous risk mea-
sures: Volatility, Value at Risk (VaR) and Expected Shortfall (ES). For the last
two measures, we consider the modified versions proposed respectively in Zangari
(1996) and in Boudt et al. (2007). Euler’s principle is useful not only for portfolio
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2 Lorenzo Mercuri, Edit Rroji

optimization but also for internal capital allocation as suggested for example in
Mizgier and Pasia (2015).
In this paper we present a general setup for obtaining risk parity portfolios by
modeling directly the underlying independent factors extracted through the In-
dependent Component Analysis (ICA) introduced in Comon (1994) 1. We need
only to model each individual component (IC) because the dependence structure
of factors is captured from the mixing matrix obtained through the algorithm.
Non parametric methods for modeling time series take into account only past re-
alizations of the variables of interest and create a dependence of the results on the
length of the time interval considered. Stability issues for estimates require large
sample sizes (see for example Martellini and Ziemann (2010), Hitaj and Mercuri
(2013) in the context of sample moments applied to the portfolio selection prob-
lem) but on the other hand realizations observed in the farther past can be less
realistic. The use of a parametric distribution is a valid alternative.
Recently a new distribution, named Mixed Tempered Stable distribution (MixedTS
hereafter), has been introduced in Rroji and Mercuri (2015) as a generalization of
the Normal Variance Mean Mixtures (NVMM henceforth as in Barndorff-Nielsen
et al., 1982) substituting the normality assumption with the Tempered Stable dis-
tribution (see Cont and Tankov, 2003). The MixedTS is more flexible in capturing
the higher moments since in the NVMM the sign of skewness depends on the drift
parameter. In the MixedTS, skewness depends also on the tempering parameters
of the Tempered Stable distribution. As shown in Rroji and Mercuri (2015), similar
arguments hold also for kurtosis since for particular choice of the tempering pa-
rameters, the tail behavior of the MixedTS varies from semi-heavy to heavy, while
the tail behavior for the NVMM depends only on the tail behavior of the mixing
random variable. The Value at Risk, computed as a quantile, is less influenced
from extreme values than the ES which depends on the entire left tail though in
the latter a better fit of the MixedTS distribution suggests more reliable estimates
of the risk measure. In addition, through likelihood ratio tests, selection of nested
models is possible in our setup like for example between MixedTS and Variance
Gamma distributions. Another advantage of using the MixedTS is that we do not
need to know a priori if we have to consider a heavy or semi-heavy distribution
for the mixing random variable differently from the NVMM. We show that port-
folio moments, needed in the modified versions of risk measures, are easily derived
based on the hypothesis of MixedTS distributed ICs.
The outline of the paper is as follows. In Section 2 we briefly recall the risk par-
ity approach and its connection with other portfolio optimization methods. The
main results concerning the MixedTS distribution are reviewed in Section 3 while
in Section 4 we analyze the risk parity approach for portfolio optimization us-
ing modified VaR and modified ES. Empirical results are given in Section 5 and
Section 6 concludes the paper.

2 Portfolio construction using the Risk Parity approach

As observed in Maillard et al. (2010), a standard approach like mean-variance
optimization has two drawbacks in practice. First, optimal portfolios seem to be

1 Details and algorithms are given in Hyvarinen et al. (2001).
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Risk Parity for Mixed Tempered Stable distributed sources of risk 3

concentrated in a few assets. Second, small changes in the estimated parameters
give rise to relevant modifications in the optimal portfolio composition as remarked
in Merton (1980). To avoid this lack of stability, researchers proposed several
regularization techniques. The most used are resampling of the objective function
proposed by Michaud (1989) and shrinkage estimators of the covariance matrix
developed in Ledoit and Wolf (2003). Other heuristic approaches like Equally
Weighted (EW), Equal Risk Contributions (ERC) or Minimum Variance (MV)
portfolios put constraints directly on portfolio weights and do not face advanced
programming issues.
Let us consider a linear factor model where the 1 × T vector of portfolio return
r is expressed as a linear combination of the N × T matrix of factors F with the
portfolio exposures β, i.e.:

r = β′F. (1)

The marginal contribution to risk (MRC) of the i-th factor, given a risk measure
R(r), is defined as:

MRCi =
∂R(r)

∂βi
(2)

representing the increment in the portfolio risk for each additional unit of exposure
to the i-th factor for i = 1, . . . , N . The product of the exposure with the marginal
contribution to risk is known as total risk contribution (TRC):

TRCi = βi
∂R(r)

∂βi
. (3)

For homogeneous risk measures portfolio total risk is simply the sum of the TRCs
computed for all factors. Risk parity, as other portfolio optimization rules, identifies
portfolio weights (or exposures) that satisfy a certain criteria. Maillard et al. (2010)
propose to perform the following minimization:

min
β

N∑
i=1

N∑
j=1

(TRCi − TRCj)2

sub

N∑
j=1

βj = 1

βi ≥ 0; i = 1, . . . , N

(4)

where the inequality constraints refer to the no-short selling conditions. It is worth
noting that the objective function in the optimization problem (4) introduces a
penalty when TRCs are different from each other. In this way, the TRCs values
for all factors in the portfolio are quite similar.

3 Mixed Tempered Stable distribution

A random variable (r.v.) Ỹ is a Normal Variance Mean Mixture (as in Barndorff-
Nielsen et al., 1982) if its distribution has the form:

Ỹ
d
= µ0 + µV + σ

√
V Z (5)
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4 Lorenzo Mercuri, Edit Rroji

where µ0, µ ∈ < are constant parameters, Z ∼ N(0, 1) and V is continuously
distributed on the positive half-axis. The main idea behind the MixedTS is to
substitute the normality assumption for the r.v. Z in formula (5) with the Tem-
pered Stable distribution obtained multiplying the density of an α-Stable with
a decreasing tempering function as explained in Cont and Tankov (2003). Tail
behavior changes from heavy, for the α-Stable, to semi-heavy, for the Tempered
Stable, characterized by an exponential instead of a power decay that ensures
the existence of the conventional moments. The Tempered Stable distribution and
the corresponding process have been widely applied in finance for modeling asset
returns for example in Mercuri (2008); Rachev et al. (2011) and in Küchler and
Tappe (2014).

Definition 1 We say that a continuous random variable Y follows a Mixed Tem-
pered Stable distribution if:

Y
d
= µ0 + µV +

√
V X (6)

where X |V ∼ stdCTS(α, λ+
√
V , λ−

√
V ) is Standardized Classical Tempered Sta-

ble distributed. The stdCTS is the Classical Tempered Stable with zero mean and
unit variance as reported in Kim et al. (2010) (see Küchler and Tappe, 2013, for
a survey on the properties of a Classical Tempered Stable distribution and the
associated Lévy process). V is an infinitely divisible distribution defined on the
positive axis.

Defined the logarithm of the moment generating function (m.g.f.) of the r.v. V as:

ΦV (u) = ln [E [exp (uV )]] (7)

and the characteristic exponent of a stdCTS:

LstdCTS (u; α, λ+, λ−) =
(λ+ − iu)α − λα+ + (λ− + iu)α − λα−

α (α− 1)
(
λα−2
+ + λα−2

−

) +
iu

(
λα−1
+ − λα−1

−

)
(α− 1)

(
λα−2
+ + λα−2

−

) ,
the characteristic function of a MixedTS is computed applying the law of iterated
expectation:

E
[
eiuY

]
= E

[
E
[
eiu(µ0+µV+

√
VX)

∣∣∣V ]]
= eiuµ0E

[
e[iuµ+LstdCTS(u; α, λ+, λ−)]V

]
= eiuµ0+ΦV (iuµ+LstdCTS(u; α, λ+, λ−)). (8)

The characteristic function in (8) identifies the distribution at time one of a time
changed Lévy process and the distribution is infinitely divisible. The structure of
the MixedTS allows a dependence of the standard higher moments not only on the
mixing r.v. but also on the Standardized Classical Tempered Stable distribution
parameters.
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Risk Parity for Mixed Tempered Stable distributed sources of risk 5

Proposition 1 The first four central moments of the MixedTS are:

E [Y ] = µ0 + µE [V ]
V ar [Y ] = µ2V ar(V ) + E [V ]

m3 (Y ) = µ3m3 (V ) + 3µV ar(V ) + (2− α)
(λα−3

+ −λα−3
− )

(λα−2
+ +λα−2

− )
E [V ]

m4 (Y ) = µ4m4(V ) + 6µ2E
[
(V − E(V ))2 V

]
+ 4µ (2− α)

λα−3
+ −λα−3

−
λα−2

+ +λα−2
−

V ar(V )

+(3− α)(2− α)
(λα−4

+ +λα−4
− )

(λα−2
+ +λα−2

− )
E [V ] .

(9)

See Appendix (A) for details on the derivation of the moments. As observed in
Rroji (2013), for V ∼ Γ (a, σ2), the MixedTS has as special cases some well-known
distributions in modeling financial returns. In particular, for α = 2 we get the
Variance Gamma distribution (see the definition in Madan and Seneta (1990) and
estimation in Loregian et al. (2012)). The Standardized Classical Tempered Stable
is obtained fixing σ = 1√

a
and taking the limit as a goes to infinity. If the mixing

r.v. V is Gamma distributed, we get explicit formulas for the right hand side
quantities in (9) since:

E [V ] = aσ2

V ar [V ] = aσ4

E
[
(V − E(V ))2 V

]
= E

[
(V − E(V ))3

]
+ E(V )V ar(V ) =

2√
a
a3/2σ6 + a2σ6

E
[
(V − E(V ))3

]
=

2√
a
a3/2σ6

E
[
(V − E(V ))4

]
=

(
3 +

6

a

)
a2σ8.

Remark 1 If V ∼ Γ (a, σ2) and Ṽ ∼ Γ (a, 1), the scale property of the Gamma r.v.
ensures that:

V
d
= σ2Ṽ ,

from where we notice that the definition in (6) is equivalent to:

Y
d
= µ0 + µ̃Ṽ + σ

√
Ṽ X̃ (10)

where µ̃ = µσ2 and X̃ ∼ stdCTS(α, λ+σ
√
V , λ−σ

√
V ). The definition of NVMM

in (5) with the MixedTS definition in (10) suggest a similar structure for the two
distributions.

Once we have the characteristic function φY of a r.v. Y , the distribution function
of the r.v. Y denoted with FY (y) is computed using the Inverse Fourier Transform,
i.e.:

FY (y) =
1

2
− 1

2π

∫ +∞

−∞

[
e−ityφY (t)

]
it

dt.

Let us now suppose Y to be the vector of returns of an asset or of a portfolio. The
Value at Risk at the confidence level α is obtained by inverting the distribution
function:

V aRα(Y ) = −F−1
Y (α).
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6 Lorenzo Mercuri, Edit Rroji

Under the assumption of existence for the E (Y ), the Expected Shortfall is com-
puted using the formula:

ESα(Y ) = E [Y | Y ≤ −V aRα(Y )] = −V aRα(Y )− 1

α

∫ −V aRα(Y )

−∞
FY (u) du.

For an application of the univariate MixedTS in risk measurement using see Mer-
curi and Rroji (2014a).

4 Parametric risk decomposition

Let R(r) be a positive homogeneous risk measure. Applying Euler’s theorem as in
Tasche (1999) we get:

R(r) =
N∑
i=1

βi
∂R(r)

∂βi
=

N∑
i=1

TRCi (11)

where the Total Risk Contribution of the i-th risk factor is defined in equation (3).
In particular the TRCi for the risk measures considered in this paper are listed
below based in the linear model in (1).

– For the Volatility, defined as R(r) =
√
β′Σβ, we get:

TRCi =
(Σβ)i√
β′Σβ

βi (12)

where Σ is the variance-covariance matrix of the factors.
– For the Value-at-Risk as in Gouriéroux and Laurent (2000):

TRCi = −E [Fi |r = V aRα(r) ]βi. (13)

– For the Expected Shortfall as in Tasche (2002):

TRCi = −E [Fi |r ≤ −V aRα(r) ]βi. (14)

The computation of the total risk contribution for a given factor is easy in the
historical approach2 but this method has been criticized in Boudt et al. (2007)
for the Value at Risk and the Expected Shortfall. Indeed the high estimation
error in the historical approach, especially for small sample size, is reflected into a
larger variation in the simulated future values compared to those generated from
a correctly specified parametric distribution.
In a non-Gaussian parametric framework, the modified VaR proposed in Zangari
(1996) and the modified ES developed in Boudt et al. (2007) both preserve the
homogeneity property and they can be easily computed once the multivariate
moments of the factors are available. In our approach, starting from (1), portfolio

2 For the Value at Risk and the Expected Shortfall, the historical approach involves the
following steps. Start with a data matrix containing in the first row the vector r while the
others are the N vectors with the realized returns for each factor. Then, sort all rows of the
data matrix in ascending order of the first row.
Looking at the first row estimate the portfolio V aRα (r) at the confidence level α. Marginal
contributions are then computed on the sorted rows using the sample estimators in (13) and
(14).
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Risk Parity for Mixed Tempered Stable distributed sources of risk 7

return is a weighted average of factor returns. The mean vector for the factors is µ
while Σ is their variance-covariance matrix of dimension N ×N . The co-skewness
matrix for the factors:

M3 = E[(F − µ)(F − µ)′ ⊗ (F − µ)′] (15)

is of dimension N ×N2 while their co-kurtosis matrix is of dimension N ×N3:

M4 = E[(F − µ)(F − µ)′ ⊗ (F − µ)′ ⊗ (F − µ)′] (16)

where ⊗ denotes the Kronecker product. The second, third and fourth order cen-
tered moments of the returns in vector r are computed respectively as:

m2 = β′Σβ
m3 = β′M3(β ⊗ β)
m4 = β′M4(β ⊗ β ⊗ β).

(17)

The skewness (skew) and kurtosis (kurt) are defined based on the centered mo-
ments, respectively:

skew =
m3

m
2
3
2

(18)

and
kurt =

m4

m2
2

− 3. (19)

In order to compute Σ, M3 and M4 and consequently the centered moments,
we need the multivariate distribution for the factor returns F or their dependence
structure by means of a copula function. Here we face the problem from a different
point of view, that is, we look for the underlying independent factors that generate
the observed returns. In practice, the ICA analysis Hyvarinen (1999) applied to
the factors simplifies the computation of Σ, M3 and M4 since it yields:

F = AS (20)

where in S = [s1.....sN ]′ we have the ICs and A is the mixing matrix to be
estimated. The procedure is based on the maximization of a non Gaussian measure
computed for each component as for example the negentropy. Each signal is then
modeled using the MixedTS, i.e.:

si ∼ µi0 + µiV i +
√
V iX̃i. (21)

As shown in Appendix B, the computation of the elements in the matrices Σ, M3

and M4 is quite easy and fast due to the independence of the ICs. In particular,
we get: 

Σik =
∑N
j=1 aijakjσ

2(sj)

M ikl
3 =

∑N
j=1 aijakjaljskew(sj)

M iklm
4 =

∑N
j=1 aijakjaljamjkurt(sj).

(22)

where aij is the ij-th element of the mixing matrix A. The quantities σ2(sj),
skew(sj) and kurt(sj) denote respectively variance, skewness and kurtosis of the
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8 Lorenzo Mercuri, Edit Rroji

j-th IC. Computed the moments and co-moments, we use them in the modified
VaR definition introduced in Zangari (1996):

mV aRα(r) = −β′µ−
√
m2Φ

−1(α) +
√
m2C(zα, skew, kurt) (23)

where the quantity:

C(zα, skew, kurt) =

[
−1

6
(z2α − 1)skew − 1

24
(z3α − 3zα)kurt+

1

36
(2z3α − 5zα)skew2

]
(24)

corrects the Gaussian VaR by considering skewness (skew) and kurtosis (kurt)
of the return vector r and zα = Φ−1(α). Observe that with Φ we denote the
distribution of a standard normal while its inverse is the quantile. Modified ES,
introduced in Boudt et al. (2007), is a linear transformation of the expected value of
the returns below the α Cornish-Fisher quantile where the second order Edgeworth
expansion of the true distribution G2 is considered. It is computed as:

mESα(r) = −β′µ−
√
m2EG2

[z |z ≤ gα ] (25)

with gα = G−1
2 (α). The extended formula is:

EG2
[z |z ≤ gα ] = − 1

α

{
φ(gα) +

1

24

[
I4 − 6I2 + 3φ(gα)

]
kurt+

1

6

[
I3 − 3I

]
skew

+
1

72

[
I6 − 15I4 + 45I2 − 15φ(gα)

]
skew2

}
(26)

where

Iq =


∏q/2
j=1(

∏q/2
j=1 2j∏i
j=1 2j

)g2iα φ(gα) + (
∏q/2
j=1 2j)φ(gα) for q even∏q∗

j=0(
∏q∗
j=0(2j+1)∏i
j=0(2j+1)

)g2i+1
α φ(gα)− (

∏q∗

j=0(2j + 1))φ(gα) for q odd.

(27)
and q∗ = q−1

2 . The partial derivatives formulas for the centered moments are:
∂m2

∂βi
= 2 (Σβ)i

∂m3

∂βi
= 3 [M3(β ⊗ β)]i

∂m4

∂βi
= 4 [M4(β ⊗ β ⊗ β)]i

(28)

Partial derivatives in (28) allow us to obtain the total risk contribution for modified
VaR using the following formula:

∂mV aRα(r)

∂βi
= −µi −

∂m2

∂βi

1

2
√
m2

Φ−1(α)

+
∂m2

∂βi

1√
m2

[
− 1

12
(z2α − 1)skew − 1

48
(z3α − 3zα)kurt+

1

72
(2z3α − 5zα)skew2

]
+
√
m2

[
−1

6
(z2α − 1)

∂skew

∂βi
− 1

24
(z3α − 3zα)

∂kurt

∂βi
+

1

18
(2z3α − 5zα)skew

∂skew

∂βi

]
.(29)
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Risk Parity for Mixed Tempered Stable distributed sources of risk 9

Total risk contribution for modified ES is expressed through a similar formula
given in Boudt et al. (2007). The derivative of (25) requires straightforward but
long calculations that can be implemented directly using standard algebra in any
programming language.
In Figure 1 we give a detailed sketch of the entire procedure described in this
paper.

Insert here Figure 1.

Through the ICA algorithm, we get the linear decomposition in (20) which rules
out the possibility of having errors due to incorrect specification of the multivari-
ate distribution for factors. There remain three sources of error in the procedure:
the fitting of each IC distribution, the approximation quality of the modified risk
measure and the minimization problem in (4). Empirical results in Rroji and Mer-
curi (2015) suggest a better fit of the MixedTS compared to the VG distribution.
A detailed discussion on how well modified VaR and modified ES approximate
respectively VaR and ES is given in Boudt et al. In particular they find that the
approximation error increases for extreme skewness and excess kurtosis. Modified
ES is more sensitive to extreme deviations from normality than modied VaR, and
therefore should only be used in the case of moderate deviation from normality.
An alternative portfolio optimization problem based on the computation of partial
derivatives of homogeneous risk measures is defined in Kim et al. (2012). Instead of
a linear decomposition of factors, they consider a multivariate Normal Tempered
Stable distribution for modeling asset returns. Variation of portfolio risk measure
is approximated through marginal risk contributions using first order Taylor ex-
pansion while in our approach an approximation is used directly in the definition of
modified VaR and modified ES. The idea of these models is not simply to extract
optimal portfolio weights based on advanced mathematical tools, as for example
in Babaeia et al. (2015) that look at the optimization problem as a multi-objective
mixed integer programming, but also to manage risk allocation.

5 Empirical analysis

In the first part of this section we empirically investigate the ability of the MixedTS
in capturing tail behavior through a comparison with the historical approach in
the computation of risk measures for univariate time series. Then we apply the pro-
posed methodology based on the hypothesis that the extracted ICs are MixedTS
distributed.
We consider a dataset composed by daily log returns, for the period going from
24/06/2010 to 10/07/2013, of the Vanguard fund (VFIAX) and ten sector in-
dices: Utility, Telecommunications, Materials, Information Technology, Industrial,
Health, Financial, Energy, Consumption Staple and Consumption Discretionary.
The VFIAX fund replicates the performance of the S&P500 index and the weights
reflect market capitalization of the constituent sector indices. In Table 1 we report
the main statistics of the dataset.

Insert here Table 1.
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10 Lorenzo Mercuri, Edit Rroji

We fit the MixedTS distribution to the log returns, computed using the entire
dataset, of the VFIAX fund and compare the historical VaR and ES with modi-
fied VaR and modified ES using respectively the formulas in (23) and in (25). The
confidence level parameter α ranges in the interval (0.01; 0.1). From Figure 2 we
observe that for α < 0.08 the historical VaR is lower than the modified VaR com-
puted using the MixedTS. Notice that from its definition ES is highly influenced
by extreme values. We consider the comparison with the empirical (or robust) ES
introduced in Cont et al. (2010)) that is a trimmed mean since for 0 < α1 < α < 1
it reads:

ESEmpiα (Y ) =
1

(α− α1)

∫ α

α1

V aRu(Y )du. (30)

Insert Figure 2.

We move now to the portfolio optimization problem. We consider the returns of
the VFIAX fund as a linear combination of the returns of ten sector indices based
on model (1) and perform an ICA analysis on the factor returns for the period
from 24/06/2010 to 24/06/2011. The output of this algorithm is the mixing matrix
in Table 2.

Insert here Table 2.

We fit the MixedTS to each independent component as in (21). The fitted
parameters obtained through maximum likelihood estimation are reported in Table
3. Particular attention deserves the parameter α since for α = 2 we get the Variance
Gamma distribution. We notice that only the fourth and the fifth components can
be modeled with the Variance Gamma while the others behave differently. The
first four moments of each component are computed once we have the parameters.

Insert here Table 3.

Insert here Figure 3.

We compare out-of-sample performance of the VFIAX fund with the three risk
parity portfolios based respectively on Volatility, modified VaR and modified ES.
We consider 250 closing prices as in sample data and the following 50 closing prices
as out of sample data starting from 24/06/2011 till 10/07/2013 in rolling windows.
In Table 4 we find mean of the out-of-sample log returns respectively of the S&P500
index, the VFIAX fund index, and of the three risk parity portfolios. First we
give the results for each out-of-sample window and then the mean and standard
deviation of all out-of-sample results. In Figure 3 we depict the composition of the
four portfolios at on June 24th 2011.

Insert here Table 4.

In Figure 4 we display the cumulative out-of-sample performance of two port-
folios: the VFIAX fund and the risk parity portfolio when the risk measure con-
sidered is the modified ES.
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Insert here Figure 3.

Insert here Figure 4.

The Gini index G defined as:

G =
1

N − 1

(
N + 1− 2

(∑N
i=1(N + 1− i)yi∑N

i=1 yi

))
(31)

where the observations are ordered, i.e yi ≤ yi+1, is used for measuring diversifi-
cation. The Gini index for equally weighted portfolios equals 0 and 1 when all the
weight is given to one asset, i.e for perfectly concentrated portfolios. In Table 5
we report the Gini index G for each window in the rolling analysis.

Insert here Table 5.

We notice that risk parity portfolios based on the two risk measures, Volatility
and modified ES, are less concentrated almost in all windows. The VFIAX fund
weights follow the market capitalization of the sectors in the S&P500 reflected in
the Gini index values.

6 Conclusion

In this paper we describe the steps required in a parametric risk decomposition
framework. The idea of applying the ICA analysis on the factors and modeling each
source signal with the MixedTS distribution gives rise to the possibility of having
analytical formulas for the portfolio return moments and flexibility in capturing tail
behavior. This approach can be applied to any setup that considers a homogeneous
risk measure. In order to make an investment decision we have to consider both
performance and portfolio concentration. Based on our results, we have that risk
parity portfolios are less concentrated and show better out-of sample performances
than the passive strategy of investing the entire wealth on the VFIAX fund. We
also observed that the decision of which risk measure to consider is not so relevant
in terms of portfolio composition. Risk parity portfolios based on modified VaR
resulted to be more concentrated than the alternative portfolios here considered.
Finally, some remarks on possible future research starting from this paper are
listed below. One can generalize the proposed procedure into a dynamic context
through the use of heteroscedastic models, for instance a GARCH with MixedTS
noise for modeling each independent component. Another possible extension is the
introduction of a multivariate MixedTS distribution based on similar structures
of multivariate NVMM already existing in literature.

Appendix A Proof of Proposition 1

We recall that the formula for the cumulant of order n of the Standardized Tem-
pered Stable r.v. X with parameters (α, λ+, λ−) derived in Kim et al. (2010) is:

cn (X) = Γ (n− α)
(
λα−n+ + (−1)n λα−n−

)
C, n ≥ 2
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12 Lorenzo Mercuri, Edit Rroji

where the constant C is fixed in order to ensure the standardization condition, i.e:

C =
1

Γ (2− α)
(
λα−2
+ + λα−2

−

) .
In the following we show how to compute the first four moments of the MixedTS
defined in (6). The mean is computed directly as:

E [Y ] = µ0 + µE [V ] ,

while the variance is:

V ar [Y ] = E

{[
µ (V − E(V )) +

√
V X

]2}
= E

{
µ2 (V − E(V ))2 + V X2 + 2µ (V − E(V ))

√
V X

}
.

Exploiting the linearity and the iteration property of the expected value, we get
the variance of the MixedTS as a function of the first two moments of the mixing
r.v. V computed as:

V ar [Y ] = µ2V ar(V ) + E
[
V E

(
X2 |V )

]
= µ2V ar(V ) + E [V ] .

The third central moment is:

m3 (Y ) = E

{[
µ (V − E(V )) +

√
V X

]3}
= E

{[
µ3 (V − E(V ))3 + 3µ2 (V − E(V ))2

√
V X + 3µ (V − E(V ))V X2 + V 3/2X3

]}
.

It is easy to show that:

E
[
σµ2 (V − E(V ))2

√
V X

]
= 0,

from where we get:

m3 (Y ) = µ3m3 (V ) + 3µE
[
(V − E(V ))V X2

]
+ E

[
V 3/2X3

]
.

Since:
E
[
(V − E(V ))V X2

]
= V ar(V )

and

E
[
V 3/2X3

]
= E

[
V 3/2E

(
X3 |V )

]
= E

V 3/2
Γ (3− α)

(
λα−3
+ + (−1)3 λα−3

−

)
Γ (2− α)

(
λα−2
+ + λα−2

−

) V α/2−3/2

V α/2−2/2


= (2− α)

(
λα−3
+ − λα−3

−

)
(
λα−2
+ + λα−2

−

)E [V ] ,
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Risk Parity for Mixed Tempered Stable distributed sources of risk 13

the third central moment depends on the first three moments of the mixing random
variable V :

m3 (Y ) = µ3m3 (V ) + 3µV ar(V ) + (2− α)

(
λα−3
+ − λα−3

−

)
(
λα−2
+ + λα−2

−

)E [V ] .

For the fourth central moment we start from its definition:

m4 (Y ) = E

{[
µ (V − E(V )) +

√
V X

]4}
= µ4k (V ) + 4E

{[
µ3 (V − E(V ))3

√
V X

]}
+ 6E

{[
µ2 (V − E(V ))2 V X2

]}
+ 4µE

{[
(V − E(V ))V 3/2X3

]}
+ E

[
V 2X4

]
.

and observe that since:

E
[
(V − E(V ))V 3/2X3

]
= (2− α)

λα−3
+ − λα−3

−

λα−2
+ + λα−2

−
V ar(V )

E
[
V 2X4

]
= E

[
V 2E

[
X4 |V

]]
= E

V 2Γ (4− α)

Γ (2− α)

(
λα−4
+ + λα−4

−

)
(
λα−2
+ + λα−2

−

) V α/2−2

V α/2−1


= (3− α)(2− α)

(
λα−4
+ + λα−4

−

)
(
λα−2
+ + λα−2

−

)E [V ] ,

the fourth central moment of the MixedTS depends on the first four moments of
the r.v. V . Indeed:

m4 (Y ) = µ4m4(V ) + 6µ2E
[
(V − E(V ))2 V

]
+ 4µ (2− α)

λα−3
+ − λα−3

−

λα−2
+ + λα−2

−
V ar(V )

+ (3− α)(2− α)

(
λα−4
+ + λα−4

−

)
(
λα−2
+ + λα−2

−

)E [V ] .

Appendix B Moments using ICA

From the independence of the ICs, the formula of the ik-th element of the variance-
covariance matrix Σ of factors reads:

Σik = E [{Fi − E [Fi]} {Fk − E [Fk]}]

= E


N∑
j=1

aij (sj − E[sj ])




N∑
j=1

akj (sj − E[sj ])




=
N∑
j=1

aijakjσ
2(sj).
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The element M ikl
3 is:

M ikl
3 = E [{Fi − E [Fi]} {Fk − E [Fk]} {Fl − E [Fl]}]

= E


N∑
j=1

aij (sj − E[sj ])




N∑
j=1

akj (sj − E[sj ])




N∑
j=1

alj (sj − E[sj ])




=
N∑
j=1

aijakjaljskew(sj).

The element M iklm
4 is computed as:

M iklm
4 = E [{Fi − E [Fi]} {Fk − E [Fk]} {Fl − E [Fl]} {Fm − E [Fm]}]

=
N∑
j=1

aijakjaljamjkurt(sj).

Mean Std Skewness Kurtosis Max Min
VFIAX 5.22E-04 0.0111 -0.4990 7.4284 0.0463 -0.0690
COND 7.93E-04 0.0119 -0.5873 6.4336 0.0472 -0.0690
CONS 5.67E-04 0.0076 -0.4175 6.0214 0.0332 -0.0390
ENRS 4.77E-04 0.0145 -0.4215 6.8501 0.0687 -0.0864
FINL 4.00E-04 0.0159 -0.3977 7.9692 0.0789 -0.1052
HLTH 6.69E-04 0.0096 -0.4605 6.7295 0.0456 -0.0540
INDU 5.08E-04 0.0129 -0.4854 6.3092 0.0495 -0.0711
INFT 4.31E-04 0.0121 -0.2512 5.2089 0.0445 -0.0596
MATR 3.73E-04 0.0147 -0.3828 5.9989 0.0593 -0.0756
TELS 5.25E-04 0.0096 -0.2754 5.5523 0.0426 -0.0550
UTIL 3.07E-04 0.0086 -0.1836 7.2391 0.0414 -0.0563

Table 1 Main statistics of the VFIAX fund and of the Sector Indices for the period
24/06/2010-10/07/2013.

Mixing Matrix
-0.0113 0.0024 -0.0040 0.0029 -0.0016 -0.0009 -0.0078 -0.0033 0.0012 -0.0022
-0.0066 0.0010 -0.0007 0.0038 -0.0039 -0.0004 -0.0029 -0.0005 0.0015 -0.0002
-0.0140 0.0007 -0.0069 0.0008 -0.0062 0.0013 -0.0072 -0.0023 0.0051 0.0023
-0.0173 0.0010 -0.0091 0.0050 -0.0030 0.0037 -0.0034 -0.0037 0.0039 -0.0040
-0.0095 0.0011 -0.0039 0.0032 -0.0032 -0.0004 -0.0048 0.0019 0.0004 -0.0010
-0.0117 -0.0004 -0.0053 0.0037 -0.0038 0.0019 -0.0085 -0.0014 0.0040 -0.0031
-0.0103 0.0032 -0.0053 0.0024 -0.0005 -0.0024 -0.0069 -0.0009 0.0061 -0.0017
-0.0128 0.0022 -0.0074 0.0000 -0.0068 0.0004 -0.0078 -0.0021 0.0046 -0.0043
-0.0091 -0.0036 -0.0017 0.0022 -0.0026 -0.0026 -0.0018 -0.0012 0.0016 -0.0011
-0.0095 0.0000 0.0017 0.0009 -0.0025 0.0011 -0.0019 0.0009 0.0014 -0.0006

Table 2 Mixing Matrix obtained applying the ICA algorithm on the matrix whose vectors
are the historical time series of log returns from 24/06/2010 to 24/06/2011 of the ten sector
indices of the S&P500.
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Inputs:

rp

[ r1,p . . . rt,p . . . rT,p ] =

β
′

[ β1 . . . βi . . . βN ]

F







︸ ︷︷ ︸

ICA:

F =

A︷ ︸︸ ︷





S︷ ︸︸ ︷





Modeling Components:

si = µ0,i + µiVi +
√
ViX̃i ∀ i

Vi ∼ Γ
(
ai, σ

2
i

)

X̃i|Vi ∼ stdCTS
(
αi, λ+,i

√
Vi, λ−,i

√
Vi

)

Parameters Estimation:

µ0,i, µi, σi, ai, αi, λ+,i, λ−,i ∀ i

Factor Moments:

Σ, M3, M4

Centered Moments:

m2, m3, m4, skew, kurt

∂m2

∂βi
,
∂m3

∂βi
,
∂m4

∂βi

∂mV aR

∂βi

TRCi = βi
∂mV aR

∂βi

⇓
minβ

∑
i,j (TRCi − TRCj)

2

Fig. 1 Main steps required in parametric risk parity portfolio construction. Start with a linear
factor model for portfolio returns as in (1). Based on (20), use the ICA algorithm. Each ICs
si for i = 1, .., N is then modeled using the MixedTS distribution as described in (21). The
fitted parameters on the time series of each si are used for the computation of the moments
in (22). Marginal risk contribution formula in (29) (for the modified VaR) requires the partial
derivatives of the centered moments in (28). The last step for the portfolio construction is the
optimization problem in (4).
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Hist ES
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Fig. 2 In the upper plot Value at Risk of the VFIAX fund index is computed for the period
24/06/2010 - 10/07/2013 for α ∈ (0.01 : 0.1) using both the historical approach and the
formula in (23) for MixedTS distributed log returns. In the lower plot both historical and
MixedTS based ES in (25) for α ∈ (0.01 : 0.1) together with the empirical (robust) ES for
α1 = 0.005 are reported.

I II III IV V VI VII VIII IX X
µ0 0.0989 0.1915 1.0361 -0.0555 0.4227 0.5418 0.9911 0.7190 0.3449 0.7476
µ -0.0719 -0.0745 -0.3914 0.0579 -0.0674 -0.0991 -0.1763 -0.1094 -0.0688 -0.1386
σ 0.6847 0.5991 0.5766 0.5132 0.3285 0.4095 0.3798 0.3729 0.4490 0.4705
a 2.1983 2.5824 2.6360 3.8144 6.6537 6.0530 5.8454 6.3537 5.0876 5.0049
α 0.8740 1.7955 0.6383 2.0000 1.9904 0.0594 0.0100 1.5698 0.0100 0.1282
λ+ 1.1631 1.3175 1.2307 1.2924 1.2891 1.5148 1.9890 1.6767 1.6033 1.8090
λ− 1.2186 1.4375 2.1308 2.9084 2.9103 2.6869 2.4690 4.0004 2.5576 2.4291
LogLik -354.4313 -342.0764 -371.4771 -403.3216 -403.7799 -374.1327 -344.5811 -494.5449 -336.7657 -360.1470

Table 3 MixedTS fitted parameters of the independent components obtained by applying the
ICA algorithm to the matrix containing the returns from 24/06/2010 to 24/06/2011 of the ten
sector indices of the S&P500.

S5COND Idx

S5CONS Idx

S5ENRS Idx

S5FINL Idx

S5HLTH Idx

S5INDU Idx

S5INFT Idx

S5MATR Idx

S5TELS Idx

S5UTIL Idx

Fund Weights

S5COND Idx

S5CONS Idx

S5ENRS Idx

S5FINL Idx

S5HLTH Idx
S5INDU Idx

S5INFT Idx

S5MATR Idx

S5TELS Idx

S5UTIL Idx

Variance Weights

S5COND Idx

S5CONS Idx

S5ENRS Idx

S5FINL Idx

S5HLTH Idx
S5INDU Idx

S5INFT Idx

S5MATR Idx

S5TELS Idx

S5UTIL Idx

VaR Weights

S5COND Idx

S5CONS Idx

S5ENRS Idx

S5FINL Idx

S5HLTH Idx
S5INDU Idx

S5INFT Idx

S5MATR Idx

S5TELS Idx

S5UTIL Idx

ES Weights

Fig. 3 Portfolio composition respectively of the VFIAX fund and of the three risk parity
portfolios based on the homogeneous risk measures: Volatility, modified VaR and modified
ES. The fund weights refer to the closing date 24/06/2011 and the risk parity portfolios are
computed at the same date based on the previous year of daily data.
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09/07/201207/02/201217/11/201107/09/201124/06/2011  23/04/2012 19/09/2012 03/12/2012 14/02/2013 30/04/2013 10/07/2013

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Out of Sample Analysis

 

 

VFIAX 

ES RP Port

Fig. 4 Out of sample performance of two portfolios: the VFIAX fund and the risk parity
portfolio when the risk measure considered is the modified ES. The analysis refers to the period
24/06/2011 till 10/07/2013 considering rolling windows of 250 closing prices as in sample data
and the following 50 closing prices as out of sample data.

Out-of-sample results for each window
w mean SPX mean VFIAX mean RPV olatility mean RPV aR mean RPES
1 -0.0213% -0.0209% 0.0278% 0.0312% 0.0302%
2 0.0293% 0.0311% 0.0189% 0.0208% 0.0200%
3 0.2045% 0.2058% 0.1654% 0.1631% 0.1698%
4 0.0290% 0.0289% 0.0235% 0.0229% 0.0231%
5 -0.1132% -0.1102% -0.0876% -0.0895% -0.0934%
6 -0.0920% -0.0867% -0.0442% -0.0455% -0.0491%
7 0.0481% 0.0466% 0.0503% 0.0502% 0.0509%
8 0.1327% 0.1315% 0.1015% 0.1008% 0.1034%
9 0.2913% 0.2940% 0.2467% 0.2473% 0.2564%

10 -0.1267% -0.1275% -0.0672% -0.0672% -0.0719%
Global out-of-sample results

SPX VFIAX RPV olatility RPV aR RPES
mean 0.0382% 0.0393% 0.0435% 0.0434% 0.0439%

s.d. 0.01242 0.01241 0.01090 0.010862 0.011040

Table 4 Mean of log returns for the S&P500, VFIAX fund and risk parity portfolios for three
risk measures: Volatility, modified VaR and modified ES for the rolling windows analysis in the
period 24/06/2011 till 10/07/2013 with 250 closing prices as in sample data and the following
50 closing prices as out of sample data. In the last two rows the mean and standard deviation
(s.d.) of all out of sample results are given.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 Lorenzo Mercuri, Edit Rroji

w GV FIAX GV olRP GV aRRP GESRP

1 0.301 0.194 0.247 0.197
2 0.301 0.166 0.248 0.235
3 0.302 0.178 0.222 0.189
4 0.301 0.194 0.247 0.197
5 0.300 0.198 0.244 0.185
6 0.297 0.200 0.231 0.198
7 0.297 0.186 0.218 0.203
8 0.294 0.181 0.206 0.177
9 0.299 0.193 0.246 0.150
10 0.301 0.179 0.233 0.187

Table 5 Gini index computed for each rolling window, in the period 24/06/2011 till
10/07/2013 with 250 closing prices as in sample data and the following 50 closing prices as out
of sample data, for the VFIAX fund and for the three risk parity portfolios based respectively
on the homogeneous risk measures: Volatility, modified VaR and modified ES.
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