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Abstract — This paper is concerned with theoretical estimates of the refractive-index curves for
quartz, obtained by the Kubo formulse in the classical approximation, through MD simulations
for the motions of the ions. Two objectives are considered. The first one is to understand the role
of nonlinearities in situations where they are very large, as at the a—f structural phase transition.
We show that on the one hand they don’t play an essential role in connection with the form of the
spectra in the infrared. On the other hand they play an essential role in introducing a chaoticity
which involves a definite normal mode. This might explain why that mode is Raman active in
the a phase, but not in the 8 phase. The second objective concerns whether it is possible in a
microscopic model to obtain normal mode frequencies, or peak frequencies in the optical spectra,
that are in good agreement with the experimental data for quartz. Notwithstanding a lot of effort,
we were unable to find results agreeing better than about 6%, as apparently also occurs in the
whole available literature. We interpret this fact as indicating that some essential qualitative
feature is lacking in all models which consider, as the present one, only short-range repulsive

potentials and unretarded long-range electric forces.

Introduction. — A subject of great current interest is
that of a microscopic description of the ferroelectric tran-
sition. It is known that at the transition a divergence of
the dielectric constant e(w) at w = 0 occurs, which in most
cases is understood as corresponding to the fact that the
frequency of an infrared peak goes to zero. On the other
hand, the infrared frequencies are usually studied via a
linear analysis of phonon dispersion relations, while the
nonlinear contribution to the dynamics should be relevant
at the transition to the ferroelectric phase, as should be
near any phase transition. So the problem arises of how
the infrared peaks should be described in a fully nonlin-
ear setting. A description can actually be given through
the study of the time autocorrelation of the polarization
due to the ions, which can be computed in the classical
approximation via molecular dynamics simulations. Com-
putations of this type were indeed performed successfully
in the case of LiF [1], with results that agree with the
experimental data in a surprisingly good way.

At the moment we are unable to study ferroelectrics

through molecular dynamics. So in this paper we limit
ourselves to quartz, which is not a ferroelectric material,
but however presents a divergence in the dielectric con-
stant at the temperature of the a—f transition. We com-
pute here its refractive index curves in the infrared region.
Our main concerns are the dynamical properties of the
system, particularly at the a—f transition, and the quan-
titative agreement between calculated and experimental
spectra in the infrared for a quartz.

As is well known [2], linear analysis shows that quartz
is doubly refractive and that the peaks in its refractive—
index curves correspond to the frequencies of the active
normal modes. Such qualitative results are confirmed by
the present MD simulations for a quartz at high tempera-
tures, even at the transition to the 8 phase, notwithstand-
ing the high nonlinearity of the system. This quantitative
agreement of the nonlinear results with those of the lin-
ear analysis, in particular for the values of the frequencies,
is quite surprising, in view of the large nonlinear contri-
butions. On the other hand, both the linear analysis and
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Fig. 1: Refractive index (real part) versus w for the ordinary
ray, at temperatures 7' = 1K (red line) and 7' = 300K (dark
line). Color online.

our nonlinear study fail in perfectly reproducing the exper-
imental data, as some systematic deviations are observed.
We tried several procedures for choosing the parameters,
both of the linear model and of the nonlinear one, in order
to find a better agreement with the experimental curves.
But there was no way of reducing the relative error below
a threshold of the order of 6%. This fact, too, requires an
explanation. These are the two main results of the present
work.

o quartz parameters

a b c
4.9137 A 4.9137 A 5.4047 A
x Y z
Si  0.4697 0.0000 0.0000
O 0.4133 0.2672 0.1188
[ quartz parameters
a b c
4.9965 A 4.9965 A 5.4546 A
T Y z
Si  0.5000 0.0000 0.0000
O 04157 0.2078 0.1667

Table 1: Geometric parameters for a and § quartz (see text).

The model. — It is known that the primitive cell of
quartz contains nine atoms (three silicon and six oxygen
atoms). Moreover, it has the form of a right prism of rhom-
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Fig. 2: Same as Figure 1 for the extraordinary ray.

boidal basis, corresponding to three basis vectors a, b, c
with a and b forming an angle of 120° and ¢ orthogo-
nal to a and b. In Table 1 we report the lengths of the
three basis vectors at normal conditions of temperature
and pressure (300K and 1 bar), as given by [3], which we
use in our simulations. We also report the fractional co-
ordinates x,y,z (along the three basis vectors) of a silicon
atom and of an oxygen atom, out of which all other coor-
dinates can be generated by symmetry transformations.’
The configuration corresponding to a quartz is thought of
as being the more stable equilibrium configuration of the
system. In order to simulate the crystal, we choose a do-
main D C R? (fundamental box) constituted by 4 x 4 x 4
primitive cells, with a number N = 9 x 43 = 576 of point
particles inside it. Due to the partially ionic character of
the quartz crystal, the point particles have to be endowed
with suitable effective charges, eg for the silicon ion and
eo for the oxygen ion, with the neutrality constraint

2e0 +es=0.

(1)

Thus, Coulomb long range forces come into play and, in
order to take them into account, working however with a
small number N of particles, periodic boundary conditions
are imposed. In addition to the electric forces, short-range
two-body spherically symmetric potentials are introduced,
one for each of the pairs Si-Si, O-O, Si-O. These potentials

1We recall (see [2]) that the space group of « quartz is P3121 or
P3221. Its transformations are the result of a rotation belonging to
the dihedral point group D3 and a translation of a multiple of 2/3-c.
The group has three irreducible representations, usually denoted as
A1 (totally symmetric, one-dimensional), Az (one-dimensional) and
E (two-dimensional).
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Fig. 3: Refractive index (real part) versus w for the ordinary
ray, at temperature T' = 670 K, below the phase transition (red
line), and at T' = 700 K, above it (dark line). The inset exhibits
the new peak at about 455 cm™"' in the 8 phase. Color online.

are taken of a form which is extensively used for quartz,
namely (see [4,5]),
C
U(r) = Ae B — —

76’

(2)

(r being the interatomic distance), with a triple of param-
eters A, B, C a priori different for each pair. In the numer-
ical calculations, for the short-range interactions a cutoff
of 9 A was imposed, while the Coulomb interactions were
dealt with through standard Ewald summations. This pro-
cedure is known to be necessary if the model has to repro-
duce the LO-TO splitting, namely, the splitting between
longitudinal and transverse optical modes. A review of the
short-range potentials employed for quartz can be found
in [6,7].

The masses are taken from the literature, so that to fix
the model there remains a total of 10 free parameters: one
effective charge (for example that of oxygen) and the three
parameters A, B, C of the short-range potential for each
of the three pairs Si-O, O-O, Si-Si. The values of the po-
tential parameters adopted are reported in Table 2, while
we used the values eg = 2.04191 and ep = —1.02096 for
the effective charge (in unit of electron charge) of Si and
O respectively. The parameters were determined by opti-
mization procedures aimed at obtaining the best possible
agreement between the computed refractive index curves
and the empirical ones at 300 K, requiring in addition that
the a structure be stable at that temperature and at larger
(but not too much) temperatures. With the values thus
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Fig. 4: Same as Figure 3 for the extraordinary ray.

determined for the parameters of the model it turns out,
as will be shown below, that the a—f transition occurs at
a temperature of about 7" = 700 K, which is a rather low
value.

A(eV) B (A1) C (eV AS)
Si-O  18207.1 4.88538  135.021
0-O 501.814 2.76745  15.0427
Si-Si  25.3672  1.41444  0.694560

Table 2: Parameters of the short range potential.

The equations of motion were numerically solved using
a Verlet algorithm, with integration step of 2 fs, at sev-
eral values of temperature. Having chosen to work in a
purely Hamiltonian frame, temperature was determined
through the choice of the initial data. In principle this
should be obtained by extracting the data according to a
Gibbs distribution. This being impracticable, we followed
the alternative standard procedure. Namely, one puts the
particles at the « equilibrium point, while their velocities
are extracted from a Maxwell-Boltzmann distribution at
a suitable temperature. Then one lets the system thermal-
ize, which usually takes a time of the order of 2 ps (1000
integration steps), and temperature is eventually identi-
fied through the mean kinetic energy of the ions. Then
one starts computing means and correlations of the rele-
vant quantities.

The refractive—index curves. — The refractive in-
dex is obtained by computing the electric permittivity ten-

p-3



F. Gangemi et al.

sor €;;(w) as a function of frequency, and diagonalizing it
at each given frequency. As expected, two eigenvalues are
found to coincide, and the square root of such a value
is precisely the refractive index of the ordinary ray. The
refractive index of the extraordinary ray is instead the
square root of the remaining eigenvalue.?

The connection with dynamics is obtained through the
susceptibility tensor x;;(w) due to the ions, which is re-
lated to permittivity by

(3)

Here, x° is the contribution of the electrons, which turns
out to be constant in the infrared domain (see [8]). In-
stead, the ions’ contribution y;;(w) is obtained numeri-
cally according to Green-Kubo linear response theory (see
for example [9]) as follows. One considers the polarization
P, which is defined in microscopic terms as

P:éEl:ele,

where V is the volume of the simulation domain (or fun-
damental box), while x; is the position vector of the I-th
ion, of charge e;.

Then at temperature T' one has

gij(w) = 0ij + 4m(xi; (W) +X57) -

(4)

Voot

= kuT o eiiwt<Pi(t)Pj(0)>dt )

Xij (w) (5)
kp being the Boltzmann constant. Here (-) should in
principle be the canonical average. Actually the averages
were estimated as the mean of the time averages calcu-
lated along a certain number (usually 40) of different MD
trajectories, calculated for 200 ps.

A first set of results is illustrated in Figures 1 and 2. In
the first figure we report, vs frequency, the real part of the
refractive index for the ordinary ray at T = 300K (dark
line) and at T'= 1 K (red line). The analogous spectra for
the extraordinary ray are reported in Figure 2. At a tem-
perature as low as T' = 1 K the spectrum is determined
essentially by the linear approximation, so that the peaks
correspond to the frequencies of the normal modes (actu-
ally, those of the so called type As and E; see [2]). The
results show that the spectrum at T'= 300 K does not dif-
fer essentially from that corresponding to 1 K, apart from
a consistent broadening of the peaks and some small shifts
in their frequencies.

A second set of results concerns the behavior of the spec-
tra at the structural a—8 phase transition which, in the
present microscopic model, with the choice made for the
parameters, turns out to occur in a region of tempera-
tures roughly around 7" = 690 K. This will be shown in a
moment. So we computed the refractive-index curves at
T =670K, an T'= 700 K, which are reported in Figure 3

21t may be useful to keep to the following criterion: the eigenvalue
corresponding to the eigenvector with larger component along the c-
axis of the lattice is always associated with the extraordinary ray.
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Fig. 5: Power spectrum (divided by kgT') of the mode w = 232
cm™ !, at temperatures T = 300K (red line) and T = 690K
(dark line). Color online.

for the ordinary ray and in Figure 4 for the extraordinary
ray.

The figures show that, at the transition, the optical
spectra are still dominated by the linear behavior. In-
deed, in both figures the two curves relative to the two
temperatures essentially superpose one another, and one
can notice the same peaks of the previous Figures 1 and
2, just a little more broadened and noisy.

Some differences however show up. The most important
one is the appearance of one more peak (see the inset) in
the S phase at w ~ 455 cm™!, that should correspond to a
normal mode which is only Raman active in the a phase.
In addition, a small peak appears at approximately 200
cm~! in the extraordinary ray, which should presumably
be due to the nonlinearity.

So the harmonic approximation essentially still domi-
nates up to the transition temperature, at least for what
concerns the refractive index. On the other hand we found
that the transition has a relevant effect (in the model con-
sidered in this work) on a normal mode of the system,
that with frequency w = 232 ecm™! (corresponding in our
model to the experimental frequency 207 cm™!), which
was predicted by Saksena [10] to be the soft mode trigger-
ing the transition. Such mode is Raman-active, but not
active in the infrared, and so doesn’t show up in the re-
fractive index curves. In order to exhibit the impact of the
nonlinearity on the dymamics of that mode in our model,
we computed its power spectrum (i.e. the Fourier trans-
form of the time autocorrelation of its amplitude), for two
temperatures, 300 and 690 K. The results are reported in
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Fig. 6: The order parameter u (see eq. 6) as a function of
T. A negative value corresponds to the a quartz phase, while
a positive value corresponds to the 8 quartz phase. A rather
abrupt change is exhibited near T" ~ 690 K.

figure 5. One sees that at 300 K one has, as expected,
a rather sharp peak at about its characteristic linear fre-
quency, with some small broadening, presumably due to
an occuring of some chaoticity in the motion. Instead, at
690 K an overall large chaoticity shows up, extending up
to zero frequency. Moreover, the original peak broadens
and flattens, while a new one shows up at about 75 cm™".
The latter feature seems to remind the form of the exper-
imental Raman spectrum (see the curve at 800 K in figure
1 of [11]) .

The a—f( transition. — The occurrence of the tran-
sition is exhibited in terms of an “order parameter”,
which discriminates between the configurations of the two
phases. Following essentially [12] and [13], we define it as
follows.

Consider the representative position vectors of silicon
and of oxygen, defined through their mean fractional co-
ordinates (i.e., as the averages, over the elementary cells,
of the fractional coordinates of such atoms). Consider
also their time averages (actually a mean of such aver-
ages, taken over several independent simulations), which
we denote by xg, xo. Then consider the position vectors
x§ and x@, defined by the experimental fractional coor-
dinates of silicon and of oxygen for a quartz, taken from
Table 1. Analogously define xg and xg.

Thus the distance d, of the mean configuration of the
system from the equilibrium « configuration is naturally
estimated as

do = 3/ lIxs = X312 + [x0 — x5 ,

and analogously for the distance dg from the equilibrium
configuration. So one can introduce the variable u defined
by
do — d
u=-2>_"° (6)

da,g

where d, g is a normalizing factor, the distance between
the two equilibria, defined in the natural way.

A negative value of u clearly indicates that the atoms
are, in the mean, near to the « configuration, while a
positive value indicates that they are in the mean near
to the [ configuration. The graph of u vs temperature
is reported in Figure 6. One sees that a rather abrupt
passage from a negative to a positive value occurs in a
small region of temperatures about 7" = 690 K, at which a
value of u very near to zero is obtained. Instead a value of
about —0.6 is obtained at T'= 670 K and a value of about
+0.25 is obtained at 7" = 700 K. This shows that at these
temperatures the nonlinear effects become so important
as to trigger a phase transition.

sym.  exp. calc. L Ly e
freq. freq.
1162 1125 -0.1947 0.1903 0
1125 -0.1903  -0.1947 0
1072 1083 0.3479 -0.4105 0
1083 -0.4105  -0.3479 0
795 727 0.3032 -0.1175 0
727 -0.1175  -0.3032 0
697 675 0.1058 0.1061 0
675 -0.1061 0.1058 0
E 450 506 0.4470 0.2172 0
506 0.2172 -0.4470 0
394 359 -0.3075 0.0309 0
359 -0.0309  -0.3075 0
265 258 -0.0010 0.0010 0
258 0.0010 0.0010 0
128 141 0.0435 0.0072 0
141 0.0072 -0.0435 0
1080 1101 0 0 -0.5871
Ag 778 732 0 0 0.3754
495 544 0 0 0.4078
364 358 0 0 -0.4294
1085 1074 0 0 0
Ay 464 474 0 0 0
356 355 0 0 0
207 232 0 0 0

Table 3: Normal modes of a quartz grouped by symmetry. Ex-
perimental frequencies (from [23]) and calculated frequencies in
ecm ™! are reported, together with the calculated components of
the dipole moment p for each mode.

Comparison with the experimental data. — In
Figures 7 and 8 we report both the calculated refractive—
index curves and the experimental ones, taken from [8,14],
for the ordinary and the extraordinary rays respectively,
at 300 K. For both types of rays the experimental and the
calculated curves have the same general aspect: namely,
the number of peaks is the same, and both the intensities
and the broadening are of the same order. Actually the
lowest peak in the theoretical curve corresponds to the
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normal mode at 140 cm ™', which has a vanishingly small
intensity in the data; on the contrary the lowest frequency
peak in the experimental curve is at 265 cm™! and the
corresponding mode in the theoretical curve has a very low
intensity (see the normal modes frequencies in Table 3).

However there is a clear quantitative disagreement, de-
termined essentially by the positions of the peaks. A
similar quantitative disagreement was met in the values
of the elastic moduli (which we computed as a back check
from the values of the parameters adapted to fit the fre-
quencies) following Born and Huang [15]. The values are
reported in Table 4, together with the experimentally mea-
sured values taken from [16]. By inspection one can see
that the computed values differ by a factor of order 2 from
the experimental ones.

C11 C33 C44 C66 C12 C13 C14
872 10.55 5.87 4.00 0.72 1.19 -1.78
449 719 180 1.40 1.70 1.92 -0.90

Table 4: Elastic moduli of quartz in units of 10'° Pa. First row:
experimental data taken from [16]. Second row: computed
values.

As in our model we have ten free parameters, one can
investigate whether a better quantitative agreement can
be obtained by optimizing them, or even by considering
other types of models. We concentrated our attention on
the frequencies of the spectral lines. However, notwith-
standing a lot of effort, we were unable to significantly
improve the agreement.

We now describe the strategy we followed for optimizing
the parameters. The procedure is quite involved, because
we have two objectives. On the one hand the system has
to admit a global equilibrium configuration, periodic with
respect to the primitive cell and furthermore reproduc-
ing the a quartz symmetries. On the other hand we re-
quire that the normal mode frequencies, calculated at the
« equilibrium, reproduce the frequencies observed, both
in the infrared spectra and in the Raman ones.

Our procedure was the following one. To start up, we
consider the experimental crystallographic configuration
of Table 1, given by X ray diffraction, and linearize the
equations of motions at that point. So we can determine
the normal modes frequencies at the corresponding equi-
librium point, as functions of the parameters entering the
potential. In this calculation, the symmetries of the crys-
tal are automatically taken into account in the construc-
tion of the dynamical matrix, because only some compo-
nents are directly calculated, all the others being derived
by symmetry transformations. As a consequence, the
modes are correctly grouped into the three irreducible rep-
resentations of the symmetry group, namely 4 A; modes,
4 Ay modes and 8 degenerate E modes, so that a total of
16 distinct frequencies are obtained. Such properties are
reflected in the components of an electric dipole moment
vector p that we associate to each mode by multiplying the
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Fig. 7: Real part of the refractive index for the ordinary ray as
a function of w, at a temperature of 300 K. Comparison of the
calculated curve (red line) with the experimental data, taken
from ref. [8] (diamonds) and ref. [14] (squares). Color online.

Cartesian displacement of each atom by its effective charge
and summing all the vectors thus obtained (see Table 3).
This gives an easy criterion for the correct identification
of frequencies in the minimization procedure.

Then, for any single set of parameters obtained we de-
termine the corresponding equilibrium position and the
corresponding set of normal mode frequencies. The set of
parameters is accepted if the calculated equilibrium po-
sition is sufficiently near to the experimental one of «
quartz, the frequencies are sufficiently near to the experi-
mental ones, and furthermore the « structure is stable up
to sufficiently high temperatures. No set of parameters
found gave an agreement for the frequencies better than
about 6-7%.

Other attempts were as follows. We started from the
power n = 6 entering (2), letting n be a free parameter,
different for each pair, adapting the cutoff parameter to
each choice. No substantial improvement was obtained.
Then we changed completely the form of the potentials,
using Lennard—Jones ones. But this gave a drastic wors-
ening of the results.

These facts show that the results depend in a very sensi-
tive way on the form of the potentials. In order to bypass
this problem we decided to restrict our studies to the lin-
ear model, assigning as parameters directly the elastic con-
stants. In such a way one even eliminates the constraint
that the elastic constants should be defined in terms of
first and second derivatives of a given potential. However,
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Fig. 8: Same as Figure 7 for the extraordinary ray. Here,
however, the experimental data (diamonds) are taken only from
ref. [8].

no progress was obtained.

As a last resort, we eliminated the neutrality constraint
(1) on the effective charge, by assuming both charges to be
free parameters, but again without substantial improve-
ment.

Actually, in the whole literature we were unable to find
a paper in which the calculated frequencies agree with the
experimental ones, in the mean, better than 3%, which is
the result obtained in the old paper [17]. In such a pa-
per a linear model is considered, which takes into account
also the polarization of oxygen ions as a free parameter.
However, the maximum error was larger than 7%.

For what concerns nonlinear models investigated by MD
simulations (see the review [6]), the situation is worse. The
error is of the order of 7%—-8% for pair potentials (see,
for instance, [18-20]), and does not decrease significantly
when three-body potentials are considered (see [13,21]).

We interpret these facts as indicating that some struc-
tural deficiency is present in all models (including ours)
that have been considered. Such a deficiency was some-
times acknowledged (see for example [22]) and is usually
ascribed to some deficiency in the short range potentials.
Our opinion is instead that a relevant role is played by the
long-range forces, since the main discrepancy concerns es-
sentially the LO-TO splitting, which is due to the long—
range forces. Our conjecture is that a significant improve-
ment could be obtained if one takes into account retarda-
tion, which already proved to be an essential feature for a
microscopic description of polaritons (see [24]).
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