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ABSTRACT

With the help of high-resolution long-slit and integral-field spectroscopy observations, the number of confirmed cases of galaxies
with counterrotation is increasing rapidly. The evolution of such counterrotating galaxies remains far from being well understood.
In this paper we study the dynamics of counterrotating collisionless stellar disks by means of N-body simulations. We show that,
in the presence of counterrotation, an otherwise gravitationally stable disk can naturally generate bending waves accompanied by
strong disk heating across the disk plane, that is in the vertical direction. Such a conclusion is found to hold even for dynamically
warm systems with typical values of the initial vertical-to-radial velocity dispersion ratio σz/σR ≈ 0.5, for which the role of pressure
anisotropy should be unimportant. We note that, during evolution, the σz/σR ratio tends to rise up to values close to unity in the
case of locally Jeans-stable disks, whereas in disks that are initially Jeans-unstable it may reach even higher values, especially in
the innermost regions. This unusual behavior of the σz/σR ratio in galaxies with counterrotation appears not to have been noticed
earlier. Our investigations of systems made of two counterrotating components with different mass-ratios suggest that even apparently
normal disk galaxies (i.e., with a minor counterrotating component so as to escape detection in current observations) might be subject
to significant disk heating especially in the vertical direction.
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1. Introduction

In the early stages of galactic evolution, dwarf galaxy mergers,
tidal interactions with satellites, and gas accretion from cosmo-
logical filaments lead to the formation of giant disk galaxies
made of stellar and/or gaseous subsystems with different an-
gular momentum axes (Conselice et al. 2008; Davis et al. 2011;
Faucher-Giguère et al. 2011; Bluck et al. 2012; Algorry et al.
2014). In such a picture, disk galaxies can be thought of as multi-
spin systems (Rubin 1994; Conselice 2014). In some cases, ro-
tation occurs in distinct planes or even in perpendicular planes,
in configurations that sometimes contain structures that are usu-
ally called inner or outer polar rings (Whitmore et al. 1987;
Moiseev et al. 2011; Moiseev 2012). These systems are interest-
ing laboratories for the investigation of the dynamics of truly
3D matter distributions around galaxies (Sackett et al. 1994;
Combes & Arnaboldi 1996; Khoperskov et al. 2014a). Galaxies
with external elongated but inclined subsystems are rare because
their dynamics would make them evolve away from such condi-
tions (Combes & Arnaboldi 1996). The processes that lead to the
formation of galaxies with subsystems rotating in the same plane
are still under debate (Bertola & Corsini 1999; Corsini 2014, and
references therein). It is generally believed that inclined gaseous
components tend to settle into the main galactic plane, thus
forming corotating or counterrotating systems (Thakar & Ryden
1996). The possibility of accretion of gas and/or stars right onto
the plane of the host galaxy is not to be excluded.

On the observational side, several galaxies with strong
counterrotation have been studied in detail (e.g., see Rubin et al.
1992; Sil’chenko et al. 2009; Katkov et al. 2011, 2013;
Coccato et al. 2015). In turn, from the theoretical point of
view, the evolutionary scenarios mentioned above suggest that
such objects should not be so rare (Algorry et al. 2014). It is
expected that disk galaxies of various morphological types can
host a counterrotating component. The known list of confirmed
cases of systems with counterrotation is often stated to contain
about ten galaxies. This number is bound to increase rapidly,
because of recent progress in integral-field and deep long-slit
spectroscopic observations (Coccato et al. 2011; Pizzella et al.
2014; Coccato et al. 2015; Boardman et al. 2016).

The main issues that justify the great interest in galaxies
characterized by counterrotation are the following:

– the origin of galaxies with counterrotation: processes of
accretion of gas and/or stars;

– the observed physical properties of the counterrotating
components (spatial distribution, kinematics, relative mass,
stellar ages, etc.);

– dynamical and secular evolution of galaxies with
counterrotation.

In this paper we focus primarily on the dynamical evolution of
collisionless stellar systems with counterrotation under different
initial conditions.

By means of a linear WKB (Wentzel-Kramers-Brillouin)
analysis of a fluid model (Bertin & Cava 2006), it has been
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shown that non-axisymmetric perturbations arise in a galactic
disk when two components are rotating with different veloci-
ties, and, in particular, when the two components are in coun-
terrotation. For a disk made of two counterrotating components,
another WKB analysis showed (Lovelace et al. 1997) that the
most unstable perturbations are one-armed leading waves (with
respect to the rotation direction of the heavier component, as-
sumed to be stellar) and that, in general, one-armed instabili-
ties are more important than two-armed instabilities (see also
Gulati & Deep Saini 2016, for nearly Keplerian discs). Then, by
means of 2D simulations (Comins et al. 1997) it was shown that
collisionless counterrotating disks, initially characterized by an
axisymmetric Jeans stability parameter above unity, are subject
to the formation of one-armed patterns.

Obviously, the evolution of galaxies with counterrotation is
expected to depend on the parameter regime associated with the
structure of the disk. Specific ways to interpret the formation of
counterrotating bars (Friedli 1996; Maciejewski 2006), leading
spiral structures (van Driel & Buta 1993), and other phenomena
have been proposed and related to the parameter regimes that
are involved. In general, it is recognized that the free energy
offered by the presence of counterrotation is substantially the
same as that at the basis of the so-called “two-stream instability”,
known and studied in a variety of contexts (Kulsrud et al. 1971;
Marochnik & Suchkov 1971; Mark 1976; Bertin & Mark 1980;
Bertin & Casertano 1982; Araki 1987). By means of N-body
simulations, Sellwood & Merritt (1994) showed the existence of
bending modes directly related to the presence of counterrota-
tion; in their models, various structures arise which are depen-
dent on the initial pressure anisotropy conditions. Counterro-
tation appears to drive the bending instability across the disk
plane in a way that is similar to the driving of the Kelvin-
Helmholtz instability in collisional systems in the presence of
shear flows. Recently Quach et al. (2015) found that a super-
sonic Kelvin-Helmholtz instability can originate in the case of
spatially separate counterrotating components in contact along
an annular region, for which the instability is absent if the per-
turbation is required not to develop in the vertical direction; this
suggests that one very important characteristic of the instabil-
ity of counterrotating disks is its three-dimensional character.
Therefore, in this paper we decided to focus, as our primary ob-
jective, on the dynamical evolution of counterrotating galaxies
across the galactic plane.

Many important questions related to the evolution of counter-
rotating stellar disks have been addressed by Sellwood & Merritt
(1994). In particular, thicker disks are expected to be more sta-
ble; because evolution usually proceeds in the direction of more
stable configurations, it is natural to expect an increase of the
vertical velocity dispersion during the evolution of an unstable
counterrotating disk. However, it appears that a direct quanti-
tative study of the evolution of the vertical-to-radial velocity
dispersion ratio σz/σR for systems with counterrotation has not
been carried out so far.

The σz/σR ratio plays an important role in the disk-halo de-
composition of the kinematics of external galaxies (e.g., see The
Disk Mass Project; Verheijen et al. 2004; Bershady et al. 2011),
because it affects the line-of-sight velocity dispersion, whereas
on the plane the σϕ/σR ratio is expected to be well constrained
by the epicyclic theory. In other words, knowledge or clues about
the σz/σR ratio are important for the general problem of measur-
ing the amount and distribution of dark matter in spiral galaxies.

Commonly used values for the σz/σR ratio vary in the
range 0.4–0.7 (van der Kruit & de Grijs 1999). There is
some growing empirical evidence that the σz/σR ratio varies

monotonically with Hubble type. Namely, it is σz/σR ≈ 0.8
for Sa-type galaxies and decreases down to ≈0.2 for Scd
galaxies (Shapiro et al. 2003; Gerssen & Shapiro Griffin 2012).
This relation has been argued to result from the impact of
various mechanisms of stellar disk heating, related to: stochastic
spiral patterns (Jenkins & Binney 1990; Minchev & Quillen
2006), bar structures (Saha et al. 2010), molecular cloud
relaxation (Spitzer & Schwarzschild 1951; Lacey 1984;
Aumer et al. 2016), disk-halo interaction (Font et al. 2001),
interactions with dark-halo objects (Hänninen & Flynn 2004)
or with black holes (Lacey & Ostriker 1985), heating by
infalling satellites (Benson et al. 2004), and other processes
(van der Kruit & Freeman 2011).

Several studies of the dynamics of thin isolated disks (with-
out counterrotation) have shown that if the disk is too cold in
the vertical direction (with σz/σR < 0.3) it may be subject to
a kind of fire-hose instability. Early investigations were based
on a linear theory (Toomre 1966; Poliachenko & Shukhman
1977; see also Kulsrud et al. 1971). This has been confirmed
by many later articles, by means of analytical investigations
and by N-body simulations that have also explored the condi-
tions of instability in less idealized models (Merritt & Sellwood
1994; Sotnikova & Rodionov 2005; Khoperskov et al. 2010;
Griv 2011; Rodionov & Sotnikova 2013) and extended our un-
derstanding to the nonlinear evolution of such systems. In gen-
eral, it has been shown that the excited bending waves (they
can be axisymmetric or non-axisymmetric) tend to heat up and
to thicken the disk, so as to remove the source of instability;
in some cases the σz/σR ratio has been observed to increase
to values ≈0.7−0.9. Fire-hose related bending of stellar disks
(Sellwood 1996) has also been associated with nonlinear pro-
cesses during bar growth (Raha et al. 1991).

We may state that so far, in relation to the problem of disk
heating and thickening, the attention has been drawn mostly to
collective phenomena associated with fire-hose instabilities or
spiral density waves, and the possible role of counterrotation has
been either ignored or overlooked. The main goal of this paper
is to find the connection between the presence of counterrotation
and the vertical structure of the stellar disk. By means of high-
resolution collisionless N-body simulations, we investigate the
evolution of the vertical-to-radial velocity dispersion ratioσz/σR
in a set of models with different masses and initial conditions for
the pressure tensor.

The paper is organized as follows. In Sect. 2 we describe the
models considered in our numerical simulations, especially in
relation to a basic set of parameters that are expected to charac-
terize their stability properties. In Sect. 3 we present and discuss
the results of our numerical simulations. We start by considering
cases without counterrotation, so as to exclude the interference
of Jeans instability effects from the following runs with counter-
rotation (Sect. 3.1). The general evolution of models with coun-
terrotation is described in detail in Sect. 3.2. The particular be-
havior related to the evolution of the σz/σR ratio is presented
in Sect. 3.3. In the last two sections, Sects. 4 and 5, we ad-
dress some closely related issues and summarize the results of
the paper.

2. Models and parameter regimes

2.1. Setting up the simulations

We consider the full 3D dynamics of two-component stel-
lar disks embedded in a fixed gravitational potential repre-
senting an inactive, axisymmetric dark-matter halo. We used
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the N-body code described in Khoperskov et al. (2014b) where
gravity force in the disk is calculated by the TreeCode Top
Down algorithm (Barnes & Hut 1986). The adopted scheme of
the fourth order provides a sufficiently accurate integration of
the equations of the motion. The code was extensively used to
resolve the issues of spiral-structures formation in pure colli-
sionless systems (Khoperskov et al. 2012a, 2013) and in a com-
bined N-body/hydrodynamical simulation of galaxy evolution
(Khoperskov et al. 2012b, 2016). In the present work the open-
ing angle parameter of the TreeCode algorithm is assumed to
be 0.1. In physical units, the integration step is chosen to be
2 × 104 yr. We consider simulation particles of the same mass
(in the range 103−104 M�) for both components; the total num-
ber of particles is in the range 2−3 × 106.

The initialization starts from a specification of the projected
density distributions Σ1 and Σ2, taken to be exponentially declin-
ing with R, with exponential scale lengths h1 and h2. The relevant
gravitational forces, including the contribution of the fixed halo
potential, are then computed by means of the TreeCode. At this
stage we determine circular velocities and then proceed to assign
the radial velocity dispersions. For each component the radial
velocity dispersion σR(R) is taken to have an exponential profile
with scale length twice that of the corresponding projected den-
sity profile. As a result, for a single isolated disk and a choice of
vertical velocity dispersion σz ∝ σR, this would naturally lead to
a vertical density profile of the cosh−2 (z/z0) form, characterized
by an approximately constant thickness z0, with z0 = σ2

z/(πGΣ).
Obviously, when two different disk components and an exter-
nal halo coexist, the relations mentioned above apply only ap-
proximately (in particular, for each component it is possible to
represent the vertical density profile with an approximate cosh−2

profile in which the projected density determining the related
thickness z0i is the total density Σtot = Σ1 + Σ2). In any case,
starting from the approximate conditions listed above, the verti-
cal equilibrium is generated with the help of a few iterations of
the Jeans equations for the two components (Khoperskov et al.
2001). We are thus able to consider models that are initially char-
acterized by various central surface densities, various exponen-
tial scale lengths, and various initial σz/σR ratios for the two
disk components.

There is no evidence yet of bars and strong spirals in galax-
ies with counterrotation. Typically both components of galaxies
with counterrotation look like lenticular galaxies (Corsini 2014).
Observations suggest that the secondary (less bright) component
is characterized by a line-of-sight velocity dispersion lower than
that of the host component (e.g., see Katkov et al. 2016). These
empirical facts are taken into consideration in our numerical
models that we thus hope are sufficiently realistic. Therefore, to
isolate the effects of counterrotation on the vertical disk heating,
we investigate models where bar instability is suppressed.

2.2. Relative properties of the two disks

To characterize the relative properties of the two components,
we follow the notation introduced by Bertin & Cava (2006; in
the context of a zero-thickness two-fluid model). In particular,
we define the following dimensionless parameters, in which the
index 1 corresponds to the more massive host component and
2 corresponds to the secondary component:

– surface density ratio

α ≡ Σ2/Σ1; (1)

– radial velocity dispersion (“temperature”) ratio

β ≡ σ2
R2/σ

2
R1; (2)

in general, we consider β < 1, that is, we assume that the
secondary component is colder;

– angular velocity ratio

δ ≡ Ω2/Ω1 , (3)

where δ > 0 denotes co-rotating disks and δ < 0 char-
acterizes the case in which the secondary component is
counterrotating.

2.3. Some average properties of the two-component system

To quantify the local and global heating of the two-component
system in the course of the simulations, we proceed in the fol-
lowing way. By using radial profiles of the velocity dispersion
and disk thickness we can calculate one-component radially-
averaged quantities:

〈X1,2〉 =

∞∫
0

2πrX1,2(r)Σ1,2(r)dr
/ ∞∫

0

2πrΣ1,2(r)dr , (4)

where X is the radial velocity dispersion σR, vertical velocity
dispersion σz, vertical to radial velocity dispersion ratio σz/σR,
or vertical disk thickness z; index 1 corresponds to the host com-
ponent, index 2 to the secondary component.

We also introduce two-component averaged quantities:

〈Y〉 = M−1
tot

∞∫
0

2πr [Y1(r)Σ1(r) + Y2(r)Σ2(r)] dr (5)

where Y is the radial velocity dispersionσR, vertical velocity dis-
persion σz, vertical disk thickness z, or vertical to radial velocity
dispersion ratio σz/σR, and the total disk mass is:

Mtot =

∞∫
0

2πr[Σ1(r) + Σ2(r)]dr. (6)

As already noted, in the course of the simulations, when the sys-
tem develops non-axisymmetric features, the above definitions
are meant to include an average with respect to the azimuthal
direction ϕ.

2.4. Parameters relevant to the development of density
waves

With respect to axisymmetric density waves in a one-component
disk, it is well known (Toomre 1964) that fluid and stellar disks
are characterized by a similar definition of the stability parameter
Q, provided that the dispersion σ that in the fluid model enters
through the definition Q = σκ/(πGΣ) be replaced, in the stellar
disk, by ≈σR(π/3.36).

It is also well known that for multi-component systems the
corresponding stability criterion is more complicated. Several
studies have addressed the issue for various cases, given the fact
that each component can be gaseous or stellar (Lin & Shu 1966;
Bertin & Lin 1996; Romeo & Wiegert 2011; Romeo & Falstad
2013; Bertin 2014, and references therein). For a zero-thickness
fluid model of a two-component disk (without counterrotation)
the marginal stability curves in the (λ̂,Q2

1) plane, where λ̂ is
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the relevant dimensionless radial wavelength of the perturbation,
have been calculated for different values of the parameters (α, β)
that define the density and temperature ratios of the two disks
(see Eq. (16.9) in Bertin 2014). By introducing the effective sta-
bility parameter:

Qeff =
Q1

Qmax(α, β)
, (7)

where Qmax(α, β) is the maximum value of the marginal stability
curve, the threshold of axisymmetric Jeans instability then oc-
curs at Qeff = 1. In general, Qmax > 1, because the addition of
a secondary component is destabilizing. For dynamically cou-
pled components the marginal stability curve has a single peak
and its shape remains similar to that of one-component disks.
On the other hand, even a light secondary component, if suffi-
ciently cool, can have a significant impact on the stability of the
combined two-component disk. In other words, each component
can apparently be well on the stable side, with Q1,2 > 1, yet
the combined disk can be gravitationally unstable with respect
to axisymmetric Jeans instability, with Qeff < 1. This general
statement has been proved for both stellar-fluid models and fluid-
fluid models. Under certain circumstances, especially when the
secondary component is too cold, the two components may be-
come dynamically decoupled, which is marked by the fact that
the marginal stability curve changes shape, into a curve with two
peaks.

On the other hand, with respect to non-axisymmetric density-
wave perturbations (Toomre 1981; Bertin 2014, and references
therein), stability depends on a second parameter, which de-
scribes the effects of a new instability mechanism related to shear
(the mechanism is generally called swing or overreflection, and,
for a given value of the azimuthal wavenumber m, it starts to
operate when the disk is sufficiently heavy; e.g., see Eq. (15.33)
in Bertin 2014). Therefore, density waves can be locally unsta-
ble even for relatively large values of Q (e.g., see Fig. 15.9 and
Eq. (15.34) in Bertin 2014). In simulations with co-rotating com-
ponents we then expect that, even if initialized in such a way that
Qeff > 1, some heating should occur in the plane as a result of
spiral activity. In a collisionless disk this heating process may
be partly limited by the presence of Lindblad resonances; how-
ever, this behavior is difficult to reproduce by means of N-body
simulations, because simulations tend to lack the desired resolu-
tion in phase space. In contrast, in simulations with counterrotat-
ing disks, even if by adding a secondary component the mass of
the disk is increased, the heating related to spiral activity due to
overreflection may be less important, because the overreflection
of non-axisymmetric waves, which relies on the presence of co-
herent shear, is likely to be jeopardized by the fact that the added
secondary component rotates in the opposite direction with re-
spect to the primary component.

In Fig. 1 we illustrate the radial profiles of some of the quan-
tities defined above, for model D (characterized by counterro-
tation). In Table 1 we list some properties of the initial models
considered in the simulations that we have performed; the last
three columns provide values of the listed parameters taken at
the radial location R = R∗ where Q1 has its minimum.

In conclusion, for the majority of models we set up the initial
parameters in such a way that Qeff(R) > 1. We also study a case
in which, during evolution, Jeans instability should coexist with
the effects due to counterrotation (model C).

As to the linear stability analysis for tightly-wound non-
axisymmetric perturbations in the plane of the disk related to the
two-stream instability, we may refer to the study carried out by
Bertin & Cava (2006) who examined the dispersion relation of a

Fig. 1. Radial profiles of the initial parameters for model D (with coun-
terrotation). The surface density ratio α, the radial temperature ratio β,
the angular velocity ratio δ, and the axisymmetric stability parameters
Q1(R) and Q2(R) associated with the two components. The curves V̂1,2
are the rotation curves of the two components, in units of 100 km s−1 .

zero-thickness two-fluid model in the WKB (tightly wound) ap-
proximation (see Eqs. (4)–(7) in that article); the general formu-
lation makes the analysis applicable to both cases of co-rotating
and counterrotating components. The analysis demonstrates that
axisymmetric (i.e., m = 0) perturbations do not distinguish the
cases of co-rotating and counterrotating components, with the
stability condition given by (Eq. (7)). To compare the stability of
a disk made of co-rotating components with that of a disk made
of counterrotating components, we set m , 0 (and η ≈ 0.01 for
models with co-rotation and η ≈ −1.4 for models with coun-
terrotation), and consider the solutions of the dispersion relation
(Eq. (4) in Bertin & Cava 2006). For the definition of η, see the
article just cited.

In Fig. 2 we plot the imaginary parts of the solutions of the
dispersion relation for pairs of models differing only in the direc-
tion of rotation of the secondary component. In the co-rotating
case, only one model has a prominent unstable root (model A,
Qeff(R = R∗) < 1), which we interpret to be the result of Jeans
instability. Counterrotation makes all the models locally unsta-
ble. The linear dispersion relation of each model with counter-
rotation has several unstable roots, dependent on the value of m
(or η). The nonlinear evolution induced by all these instabilities
can only be followed by means of simulations.

2.5. Issues related to the stability of bending waves

As to the properties of bending waves, linear stability anal-
yses focusing on the role of the free energy associated with
the relative motion between two components have been car-
ried out in many papers (e.g., see Marochnik & Suchkov 1971;
Bertin & Mark 1980; Bertin & Casertano 1982; Araki 1987). As
with the discussion of the stability given in the previous sub-
section, beyond the simple realization that counterrotation has
a destabilizing role, the main difficulty is to make quantitative
predictions on the resulting nonlinear evolution. Therefore, we
will not discuss further the related issues; instead, we proceed
directly to the results of our numerical simulations.
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Table 1. Initial parameters of different runs.

Model Σ1(R = 0) h2 σR1(R = 0) σR2(R = 0)
σz1

σR1

σz2

σR2
α β Qmax(α, β) Q1(R = R∗) Qeff(R = R∗)

M� pc−2 kpc km s−1 km s−1

A† 750 3 60 35 0.5 0.5 0.5 0.34 1.8 1.44 0.8
B† 750 3 100 35 0.5 0.5 0.5 0.12 2.2 2.2 1.0
C 750 3 60 35 0.5 0.5 0.5 0.34 1.8 1.44 0.8
D 750 3 100 35 0.5 0.5 0.5 0.12 2.2 2.2 1.0
E 400 3 100 35 0.5 0.5 0.5 0.12 2.2 3.96 1.8
G 400 3 60 35 0.5 0.5 0.5 0.34 1.8 2.8 1.5
I01 1050 3 50 50 0.5 0.5 0.1 1 1.08 1.0 1.0
I02 970 3 50 50 0.5 0.5 0.2 1 1.2 1.2 1.0
I03 895 3 50 50 0.5 0.5 0.3 1 1.3 1.3 1.0
I04 830 3 50 50 0.5 0.5 0.4 1 1.4 1.4 1.0
I05 775 3 50 50 0.5 0.5 0.5 1 1.5 1.5 1.0
I07 660 3 50 50 0.5 0.5 0.7 1 1.7 1.7 1.0
I10 525 3 50 50 0.5 0.5 1 1 2.0 2.7 1.4
Kb 750 2 90 30 0.7 0.4 0.5 0.12 1.48 1.48 1.0
Kc 750 5 90 30 0.6 0.2 0.5 0.1 1.51 1.51 1.0

Notes. Models without counterrotation are marked by † (δ = 1). Here Σ1(R = 0) is the central value of the surface density of the primary
component, h2 is the exponential scale length of the density distribution of the second component (for the first component, h1 = 3 kpc), σR1(R = 0)
and σR2(R = 0) are the central values of the velocity dispersion for each component, Q1(R = R∗) is the minimum value of the one-component
stability parameter of the host component, and Qeff(R = R∗) is the effective two-component stability parameter according to Eq. (7) evaluated at
R∗. Initial values of the velocity dispersion ratio for the two components are constant with radius for all models. The definitions of the density ratio
α and of the temperature ratio β are given in the text; also these parameters are generally constant with radius, except for models Kb and Kc, for
which the values listed here are taken at R = R∗, that is, the location where Q1 has its minimum. Model I10 considers the case of exactly equal but
counterrotating disks, which is unlikely to occur in real systems.

Fig. 2. Imaginary part of the solutions of the dispersion relation for two-component disks with η ≈ 0.01 for models without counterrotation (left
frame) and η ≈ −1.4 with counterrotation (right frame), where k̂ and ν are the relevant dimensionless radial wavenumber and the dimensionless
Doppler-shifted frequency, respectively (following the notation of Bertin & Cava 2006).

3. Results of simulations

3.1. Preliminary simulations without counterrotation

Because we wish to identify effects clearly induced by the pres-
ence of counterrotation, we first consider two-component co-
rotating disks (models A and B in Table 1) to find conditions
under which the disk is reasonably free from major instabili-
ties. The effects of possible axisymmetric instabilities in the disk
plane is under control, as can be seen from Fig. 3, where we il-
lustrate the evolution of model A (expected to be locally unstable
with respect to axisymmetric perturbations, Qeff(R = R∗) = 0.8)
and model B (expected to be locally stable with respect to ax-
isymmetric perturbations, Qeff(R = R∗) = 1.0). The values of
Qeff(R = R∗) should be taken as indicative only, because the

definition of this effective stability parameter is taken from a
zero-thickness two-fluid model, whereas the simulations that we
perform aim at describing the 3D behavior of two-component
stellar disks. Because of physical mechanisms that can be traced
to overreflection (or swing; see discussion in Sect. 2.4), multiple-
armed spiral activity is present in both models. Figure 3 also
shows the absence of bending waves. In a few rotation periods
the disk heats up and evolves until phenomena “saturate” (see
details in Laughlin et al. 1997; Khoperskov et al. 2012a). The
disk thickens during evolution, but its vertical structure does not
change much, especially in model B.

In Fig. 4 we show that for model A the radially-averaged
values of the radial velocity dispersion (〈σR1〉, 〈σR2〉, and the
two-component average 〈σR〉), increases from 10–20 up to
50 km s−1 . The radially-averaged disk thickness and velocity
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Fig. 3. Evolution of two-component co-rotating disks: top row illustrates the behavior of model A (Qeff(R = R∗) = 0.8), bottom row describes the
evolution of model B (Qeff(R = R∗) = 1). Edge-on and face-on maps are shown on the same spatial scale. Face-on images have 20 kpc spatial size,
vertical size of edge-on views is equal to 4 kpc.

dispersion ratio do not change significantly during the evolu-
tion even in the unstable model A. This may be due to the rel-
atively large initial velocity dispersion ratio (0.5 for both com-
ponents), well above the critical value 0.3−0.37 for (fire-hose)
bending instabilities (Reshetnikov & Sotnikova 2000). We note
that after several dynamical times the vertical-to-radial veloc-
ity dispersion ratio decreases as a result of heating in the plane
associated with spiral density-wave activity. Such an effect is
well known and has been demonstrated numerically, for ex-
ample, by Gadotti & de Souza (2005), Debattista et al. (2006),
Khoperskov et al. (2012a). Other two-component co-rotating
disks (models F and G) are even more stable, because their ef-
fective stability parameter is larger Qeff(R = R∗) & 1.5 (actu-
ally, for sufficiently large values of Qeff(R = R∗) we expect that
even multi-armed spiral activity would be absent). In principle,
the two-component co-rotating disks might be slightly unstable,
because of the possible influence of the subtle mechanism as-
sociated with the asymmetric drift explored by Bertin & Cava
(2006); however, a quantitative analysis of such effects is beyond
the scope of the present work.

We conclude that, when counterrotation is kept “turned-off”,
our models are generally free from the effects of bending insta-
bilities and strong vertical heating. Therefore, in the following
subsection we can focus on effects that we can safely attribute to
the presence of counterrotation.

3.2. Simulations with counterrotation

We start by considering two-component models with disks char-
acterized by the same parameters as those of the models de-
scribed in the previous section, but in the case when the two
disks are in mutual counterrotation. We pay special attention to
the vertical structure of the disk.

Figures 5 and 6 show the evolution of two very differ-
ent models. Model C is expected to be very unstable, because

counterrotation operates in the presence of a Jeans-unstable sit-
uation (Qeff(R = R∗) = 0.8); in turn, model E is characterized by
Qeff(R = R∗) = 1.8. In both cases we observe the excitation of
bending waves, as well as the formation of various structures in
the face-on view of the plane.

The more unstable model exhibits the formation of a coher-
ent one-armed spiral pattern (see Fig. 5). If referred to the ro-
tation axis of the primary component, the observed structure is
leading, which agrees with the results of the 2D simulations by
Comins et al. (1997). This is likely to occur as a result of the
combined effect of gravitational instability and counterrotation,
because the phenomenon is not observed in model E (see Fig. 6),
for which only symmetric rings are clearly seen in the face-on
view of the disk. In the face-on view of model C, in addition to
the dominant one-armed structure, several small-scale patterns
are present in the primary component. For model C, the exci-
tation of the bending waves starts from the center (see Fig. 5).
At 200 Myr, bending waves are already seen clearly in the cen-
ter, where the initially thin disk rapidly becomes thicker. Fur-
ther evolution and thickening affects the outer regions. Bending
waves appear to propagate with opposite phases relative to the
disk plane in the two components. It is noteworthy that bending
structures are very asymmetric in both components of the disk.

For the gravitationally-stable model E (see Fig. 6), we also
see disk thickening and bending wave excitation. However,
structures across the disk are much more symmetric than in the
previous case. In the face-one view of model E there is only a
ring-like structure.

Ring structures are quite surprising, because the linear WKB
stability analysis of counterrotation would suggest that m = 0
perturbations “do not see” the presence of counterstreaming. To
clarify the origin of the ring-like structures we compare snap-
shots of the evolution of models with various values of Qeff(R =
R∗). In Fig. 7 we show the stellar surface density distributions
for models C, D, G, and E. In all models with Qeff(R = R∗) ≥ 1
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Fig. 4. Evolution of the disk parameters: radial velocity dispersion 〈σR1〉, 〈σR2〉, 〈σR〉 (first row), vertical velocity dispersion 〈σz1〉, 〈σz2〉, 〈σz〉

(second row), vertical-to-radial velocity dispersion ratio 〈σz1/σR1〉, 〈σz2/σR2〉, 〈σz/σR〉 (third row), and disk thickness 〈z1〉, 〈z2〉, 〈z〉 (bottom row);
see Eqs. (4), (5). Blue circles correspond to the secondary (less massive) component, green crosses to the host component, and red squares represent
the two-component averaged values. We recall that the two components in these models are co-rotating.

we see the presence of ring-like structures at 5–6 kpc from the
center. In models with relatively low Qeff(R = R∗) (C and D)
there are also asymmetric structures, whereas in models with
Qeff(R = R∗) > 1 pure ring-like structures are seen. Therefore,
in our models ring formation is not expected to result from Jeans
instability.

In our models rings appear to be associated with the bending
waves, but actually correspond to density waves in both compo-
nents (but seen better in the secondary component). In Fig. 8 we
plot radial profiles of the disk thickness perturbation and surface
density perturbation. For the host component, the surface density
perturbations are rather small. For the secondary component, the
maximum of the disk thickness perturbation approximately coin-
cides with the bending wave maximum and for all models there
is a clear peak approximately at R = 5−6 kpc. For the Jeans-
unstable model C this peak is less prominent because of the pres-
ence of the asymmetric spiral structure. The ring-like structure is
seen clearly as a maximum of the surface density perturbation,
and thus it is a density wave, in all models at R > 6 kpc. In gen-
eral, the ring is located well outside the bending wave maximum,
where nonlinear effects may be more significant. Thus we con-
clude that, in our context, stellar rings tend to form at the outer
edge of the bending wave. There is at least one observed case
of a detected ring in a galaxy with counterrotation. Katkov et al.
(2013) found a ring-like structure in the K-band brightness dis-
tribution of the secondary component of IC 719.

Figure 9 shows velocity dispersions and disk thickness as
a function of time for four simulations with counterrotation. In
contrast to the co-rotating case, there is a clear lack of growth
in the radial velocity dispersion〈σR1〉, 〈σR2〉 (in the disk plane).
Only the vertical velocity dispersion increases as a result of
strong nonlinear bending instability. As a general trend, this im-
plies an increment of the velocity dispersion ratio 〈σz/σR〉 with
time for all models. This growth is quite remarkable, because

the dispersion ratio can reach local values from 0.6−0.7 up to
1−1.5. We recall that for all models we assume the initial value
σz/σR = 0.5 for both components at all radii. In the simulations
we find that the constancy of the ratio breaks down for each com-
ponent, because the radial profile of σz/σR exhibits a significant
gradient at the end of the simulations (see black lines in the third
row of each of the four panels of Fig. 9). Bending waves are
known to be able also to heat up one-component galactic disks,
but in a very slow process (e.g., see Rodionov & Sotnikova
2013). In contrast, two-component disk relaxation is found to
occur in a very short time scale, of about 100–400 Myr.

Bending waves arise initially in the central part of the disk,
forming bell-like structures that propagate to the galactic out-
skirts. While the vertical velocity dispersion increases with time,
the radial velocity dispersion remains basically constant for both
components. Only unstable model C (Qeff(R = R∗) < 1) exhibits
a rather slow growth of 〈σR〉 in the counterrotating component
(blue circles in the top left frame of Fig. 9). Such a process ef-
fectively decreases the velocity dispersion ratio 〈σz2/σR2〉 for
the less massive counterrotating component, but it does not af-
fect strongly the mean value 〈σz/σR〉 of the velocity dispersion
ratio in the entire disk. In conclusion, we find that the vertical dy-
namics (bending waves and the resulting heating in the vertical
direction) is the dominant feature of all models.

3.3. General analysis of systems with counterrotation

The above results were obtained from simulations in which the
disk surface density ratio is α = 0.5; therefore, two thirds of
the total disk mass is in the host disk and one third is in the
secondary, counterrotating component. To extend the parameter
space, we also ran separate simulations with values of the den-
sity ratio in the range α = 0.1−1 (see third group of models in
Table 1). Then we studied two additional models (Kb and Kc),
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Fig. 5. Evolution of the unstable (Qeff(R = R∗) = 0.8) model C in the presence of counterrotation. In this composite figure, the top frames illustrate
the evolution of the host component, the middle frames show the evolution of the secondary counterrotating component, and the bottom frames
display the appearance of the disk obtained by superposition of the two components. The left part of the figure shows an initial snapshot of the
system, whereas the right part illustrates the face-on morphology of the system at time t = 0.7 Gyr. The central part of the figure illustrates the
time-dependent evolution of the vertical disk structure (edge-on view) in the time interval 100−600 Myr, with steps of 100 Myr. Face-on images
have 20 kpc spatial size, vertical size of edge-on views is equal to 4 kpc.

with different initial values of velocity dispersion ratio for the
two components (at R = R∗, σz1/σR1 = 0.7, σz2/σR2 = 0.4 for
the Kb model and σz1/σR1 = 0.6, σz2/σR2 = 0.2 for the Kc
model; see Table 1). In all these models the mean velocity dis-
persion ratio also increases with time up to 〈σz/σR〉 = 0.6−1.2.
The stability parameter Qeff(R = R∗) for these models indicates
that the disk is close to conditions of marginal stability with re-
spect to axisymmetric perturbations in the disk plane, but this
appears to be unrelated to the vertical heating, which is likely to
be associated with the excitation of bending waves.

Since the vertical heating appears to be the most significant
feature of our simulations in the presence of counterrotation, reg-
ularly present in most or all the models that we have considered,

we tried to see whether the amount of heating observed in the
simulations tends to correlate, at the global level, with some
properties of the model in its initial state. In addition to prop-
erties directly related to the parameters considered in Table 1,
we decided to estimate the free energy associated with counter-
rotation in a two-component disk, by introducing the following
dimensionless parameter, based on quantities defined in the ini-
tial state:

ε =

∞∫
0
πrΣ2(r)[(rΩ2(r))2 + σ2

2(r)]dr

∞∫
0
πrΣ1(r)[(rΩ1(r))2 + σ2

1(r)]dr
< 1 , (8)
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Fig. 6. As in Fig. 5, but for model E (Qeff(R = R∗) = 1.8).

Fig. 7. Total stellar surface density distribution in the galactic disk at 700 Myr for the four models with counterrotation. From left to right:
C (Qeff(R = R∗) = 0.8), D (Qeff(R = R∗) = 1.0), G (Qeff(R = R∗) = 1.5), E (Qeff(R = R∗) = 1.8). Each image is 20 kpc across.

A103, page 9 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629032&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629032&pdf_id=7


A&A 597, A103 (2017)

Fig. 8. Radial profiles of relative perturbations of the disk thickness (dashed red line) and surface density (solid black line) for the four models
with counterrotation (same models as in Fig. 7). Top row shows the data for the host component, bottom row for the secondary component of the
simulated galaxy. Blue solid vertical arrows show the position of the bending wave peak. Red dashed vertical arrows show the location of the most
prominent ring structure (see also Fig. 7). In model C, rings are present, but they are connected with the one-armed spiral structure. In all models
the ring structure is strongest in the outer parts of the bending wave.

where σ2 = σ2
R + σ2

ϕ + σ2
z . This parameter measures in dimen-

sionless form the strength of counterrotation, in terms of a ki-
netic energy ratio.

In Fig. 10 we plot the evolved mean velocity dispersion ratio
〈σz/σR〉 (at ≈600–800 Myr) as a function of the kinetic energy
ratio ε (see Eq. (8)) for all the models that we have investigated.
Figure 10 shows a reasonable correlation ε − 〈σz/σR〉, although
significant scatter is present:

〈σz/σR〉 ≈

{
1.6ε + 0.4 , ε ≤ 0.5
1.1 , ε > 0.5. (9)

This interpolating formula covers all the models considered in
the present paper, including models Kb and Kc, characterized by
initial vertical-to-radial velocity dispersion ratio of 0.55 and 0.4.

4. Discussion

Here we briefly comment on possible consequences that may be
relevant to observed galaxies. We have shown that, especially as
a result of thickening and heating induced by bending instabil-
ities, counterrotation can give rise to significant evolution on a
relatively short time scale (200–300 Myr). This evolution is fast
and is not to be confused with the results of other secular pro-
cesses in galaxies (Debattista et al. 2006) and slow Jeans-related
phenomena that may be difficult to disentangle from numerical
relaxation effects (Sellwood 2013). We argue that such fast evo-
lution is expected to take place independently of the formation
scenario that may have led to the “initial” counterrotating sys-
tem and is likely to hold even in different situations, for example
in the case when the secondary counterrotating disk is gaseous;
of course, different physical situations would require the consid-
eration of other processes, such as star formation efficiency and
depletion time, and new simulations should be run to confirm the
general features of the evolutionary process or to identify spe-
cific phenomena related to the presence of gaseous components.

Our simulations point to final states characterized by high
values of the velocity dispersion ratio for both disk components.

It would be interesting to gather independent observational con-
straints on this parameter for individual objects. In turn, this
quantity plays an important role in determining the projected
line-of-sight velocity dispersion σlos and in the disk-halo decom-
position of rotation curves.

The acquisition of a counterrotating component may be more
frequent than generally believed. In turn, the presence of a sec-
ondary counterrotating component at a given epoch may be hard
to detect for a number of reasons, not only because the resulting
evolution is expected to be fast but especially because a relatively
light counterrotating component can easily escape observations.
Thus the mechanism of vertical disk heating discussed in this
paper may have been overlooked. Certainly, from the theoretical
point of view, its occurrence and its impact should be studied
further, because in the past little attention has been paid to it.

5. Conclusions

In this work we have examined the evolution of two-component
collisionless galactic disks by means of numerical simulations.
In the presence of counterrotation, bending waves have been
found to be excited (two-stream instability). The most prominent
and, in a sense, surprising result is that evolution proceeds by ef-
fects that change the three-dimensional structure of the system:

– In the case of counterrotating disks, gravitational instabilities
in the disk plane are less effective (with respect to the case of
two co-rotating disks with similar structure). The instability
in systems with counterrotation develops mostly in the ver-
tical direction. Strong bending instabilities are excited and
lead to a significant increase of the vertical-to-radial veloc-
ity dispersion ratio 〈σz/σR〉. In contrast to other relaxation
processes in one-component disks, the effects noted in this
paper for two-component counterrotating disks occur on the
short dynamical time-scale of about 400 Myr.

– The mean value of the velocity dispersion ratio in the disk is
found to increase up to values close to unity for both counter-
rotating components of the disk. The effect is stronger when
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Fig. 9. Evolution of the disk parameters, in the same format as in Fig. 4, for four models with counterrotation. Black lines in the fourth frame of
each of the four panels show the evolution of two-component averaged values of the velocity dispersion ratio σz/σR at various radii (line thickness
decreases with radial distance from the center).

the free energy associated with counterrotation is larger and
then the effects appear to saturate at 〈σz/σR〉 ≈ 1. For some
parameter regimes, in the central regions the velocity disper-
sion ratio can reach values even higher than unity ≈1.2–1.5
(see Fig. 10).

– The final velocity dispersion ratio is found to change with
radius for both counterrotating components (see Figs. 9
and 10).

– We found that density-wave ring-like structures are driven
by bending instabilities in galaxies with counterrotation.
We clearly demonstrate that the outer edge of the bending

wave is associated with the rings seen in the face-on density
maps.

– A correlation has been found between the final “equilibrium”
velocity dispersion ratio 〈σz/σR〉 and a dimensionless pa-
rameter ε that we have introduced to characterize the strength
of counterrotation. Namely, we found that the 〈σz/σR〉 in-
creases from 0.4 up to 1.0–1.2 in the range ε = 0−0.5. At
larger values of the counterrotation strength (>0.5) the re-
sulting velocity dispersion ratio saturates around unity.

– We argue that vertical disk heating due to bending waves
induced by counterrotation may be a relatively common
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Fig. 10. Mean value of the velocity dispersion ratio 〈σz/σR〉 as a func-
tion of ε at ≈600–800 Myr (filled symbols) in various models; initial
〈σz/σR〉 values are shown by open symbols. Different symbols corre-
spond to different groups of models in Table 1: diamonds for models C,
D, E, G; squares for models I01, I02, I03, I04, I05, I07; triangles for
models Kb and Kc. Model names are shown above the plot. Vertical er-
ror bars correspond to the range of the velocity dispersion ratio, which
changes with radius in the final evolved state.

heating mechanism. Indeed the direct observation of coun-
terrotation may be rare just because the resulting evolution
is fast (as shown in this paper) and because relatively light
counterrotating disks may escape observations.
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