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DTT, dithiothreitol 

GSIR, glucose-stimulated insulin release 
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Abstract 

 

Background 

Understanding the effects of capsule composition and transplantation site on graft outcomes of 

encapsulated islets will aid in the development of more effective strategies for islet 

transplantation without immunosuppression. 

 

Methods 

Here we evaluated the effects of transplanting alginate (ALG)-based microcapsules (Micro) in 

the confined and well-vascularized epididymal fat pad (EFP) site, a model of the human 

omentum, as opposed to free-floating in the intraperitoneal cavity (IP) in mice. We also 

examined the effects of reinforcing ALG with polyethylene glycol (PEG). To allow 

transplantation in the EFP site, we minimized capsule size to 500±17μm. Unlike ALG, PEG 

resists osmotic stress, hence we generated hybrid microcapsules by mixing PEG and ALG 

(MicroMix) or by coating ALG capsules with a 15±2μm PEG layer (Double). 

 

Results 

We found improved engraftment of fully allogeneic BALB/c islets in Micro capsules 

transplanted in the EFP (median reversal time MRT: 1d) vs. the IP site (MRT: 5d, p<0.01) in 

diabetic C57BL/6 mice and of Micro encapsulated (MRT: 8d) vs. naked (MRT: 36d, p<0.01) 

baboon islets transplanted in the EFP site. While In vitro viability and functionality of islets 

within MicroMix and Double capsules were comparable to Micro, addition of PEG to ALG in 
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MicroMix capsules improved engraftment of allogeneic islets in the IP site, but resulted 

deleterious in the EFP site, probably due to lower biocompatibility.  

 

Conclusions 

Our results suggest that capsule composition and transplant site affect graft outcomes through 

their effects on nutrient availability, capsule stability, and biocompatibility.  
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Introduction 

Transplantation of pancreatic islets has shown great promise in achieving insulin 

independence and preventing type-1 diabetes (T1D) complications 1. However, chronic 

immunosuppression is required to avoid rejection and recurrence of autoimmunity following 

transplantation. Chronic immunosuppression causes numerous adverse effects. Additionally, 

despite immunosuppression, 56% of the islet grafts lose function by 3 years after transplantation 

1.  

Immunoisolation of pancreatic islets with biocompatible and permeable capsules may 

improve islet graft survival and allow for the reduction or total elimination of 

immunosuppression 2-7. Despite 3 decades of research, effective clinical islet encapsulation has 

not been achieved for reasons yet to be completely understood. Key capsule parameters, 

including geometry, composition, and transplant site affect the outcome of encapsulated islet 

grafts and the optimal combination of such parameters might lead islet encapsulation to success. 

In this study, we focus on the specific effects of capsule transplant site and composition on graft 

outcomes while keeping a constant geometry (Fig. 1A). We used fixed-diameter spherical 

microcapsules that can be generated with traditional electrostatic droplet generator technology.  

 In order to evaluate the effects of the transplant site, we used alginate (ALG), a material 

that has been widely used for islet encapsulation 8-18. Traditional ALG microcapsule diameters 

range from 600 to 1000µm with most of the volume being islet-free and biologically 

nonfunctional material 19. Large amounts of bulk capsule material represent a barrier for 

transport of critical solutes to the islets, which could lead to core hypoxia and necrosis. 

Furthermore, large diffusion barriers hamper the transport of glucose and insulin through the 

capsule leading to a delay in glucose sensing and insulin secretion of the encapsulated islets 20-22. 
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Finally, large capsule size may increase the volume of transplanted material up to 1000 times for 

capsule diameters of 1000µm in comparison to naked islets with the assumption that only 50% of 

capsules contain islets. Therefore, such volumes have so far limited the transplantation site to the 

intraperitoneal cavity (IP), which, unfortunately, is not an islet-friendly environment 22-25. After 

transplantation in the IP site, capsules fall by gravity and aggregate in the lower abdomen 

worsening transport through the capsule. Here, we ask whether transplantation of minimized 

volumes of encapsulated islets in confined and vascularized sites, like the omental pouch in 

humans (a site we are currently testing in a phase I/II clinical trial with naked islets and chronic 

immunosuppression at the University of Miami Diabetes Research Institute) and the epididymal 

fat pad (EFP) in mice, can ameliorate the outcome of encapsulated allografts and of nonhuman 

primate (NHP) islet grafts in immunodeficient mice.  

Unlike PEG, ALG is susceptible to swelling and rupture after transplantation due to 

osmotic stress leading to loss of immunoisolation and graft rejection26. Here, we ask whether 

transplantation of PEG-ALG hybrid 500µm-diameter micro capsules could ameliorate the 

outcome of encapsulated islet grafts in mice, especially in the IP site, where the graft is exposed 

to higher levels of osmotic pressure and mechanical stress than in the EFP site. 

 

Materials & Methods 

Encapsulation materials. Micro capsules: ultra-pure medium viscosity sodium alginate (UP-

MVG alginate, Novamatrix) at 1.2% w/v gelled with 50mM calcium chloride (CaCl2). MicroMix 

capsules: 1.2% UP-MVG - 5% w/v polyethylene glycol (PEG), functionalized (75%) with 

maleimide groups (PEG-MAL, 10kDa, 8-arms, Jenkem Technology custom synthesis) in 1ml of 
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1.2% UP-MVG solution. Double capsules: 5% w/v PEG-MAL crosslinked with Dithiothreitol 

(DTT, OmniPur, Calbiochem) in a 3:1 molar ratio of DTT to PEG. 

Islet isolation. Animal studies were performed under protocol 13-042. Islets from Male BALB/c 

mice (Jackson Laboratories), Lewis rats (Envigo Laboratories, formerly Harlan) and non-human 

primate baboon (NHP; The Mannheimer Foundation, Inc., Homestead, FL, USA) were isolated 

as described elsewhere27,28. 

Osmotic pressure test. Evaluation of mechanical stability of microcapsules was performed by 

osmotic pressure testing as previously described29.  

Fabrication of Double capsules. 100µl UP-MVG Micro capsules were suspended in 1ml of 5% 

PEG-MAL (water phase). A solution of 50ml light mineral oil (Sigma Aldrich) and 5% Span80 

(Sigma Aldrich) (oil phase) was formed by stirring at 350rpm for 2’. The water phase was added 

drop-by-drop to the center of the oil phase while the oil phase was continuously stirred at 

350rpm. Five minutes after addition of the water phase to the oil phase, the DTT solution in 

DMSO was added to induce PEG-MAL gelation and the stirring speed was increased to 450rpm. 

PEG double coating was allowed to crosslink for 15 minutes and secondary beads were removed 

by filtration through a 250µm strainer (Thermo Scientific).  

In vitro assessment of viability and functionality of encapsulated islets. 

Static glucose-stimulated insulin release (GSIR) was utilized for assessment of islet 

function as previously described30. For viability assessment, naked and encapsulated islets were 

stained with calcein-AM (live cell marker) and ethidium bromide (dead cell marker) (live/dead 

viability kit, Molecular Probes), and imaged with a Leica SP5 inverted confocal microscope.  

Oxygen Consumption Rate (OCR) measurements were performed as previously described31.  
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Engineered fibrin gels. Fibrin gels were engineered for promoting rapid revascularization of 

embedded islets as previously described32.  

Diabetes Induction and Islet Transplantation in Mice. Diabetes was induced in islet recipients 

by a single i.v. injection of streptozotocin (200 mg/kg; Sigma–Aldrich) as previously 

described30. For transplantation in the epididymal fat pad (EFP), 750 IEQ islets were distributed 

uniformly on the surface of the EFP and 20µl of engineered fibrin gels were then pipetted on the 

EFP to cover the islets. Graft function was monitored by measuring nonfasting blood glucose 

values. Reversal of diabetes was considered when mice maintained at least 3 consecutive blood 

glucose readings < 250mg/dL after islet transplantation. Graft rejection was considered when at 

least 3 consecutive blood glucose readings > 250mg/dL were detected in those mice that reversed 

diabetes following islet transplantation. For intraperitoneal (IP) islet transplantation, islets were 

injected into the peritoneal cavity in a total volume of approximately 0.2 ml. Transplantation in 

the renal subcapsular space (KD) was performed as previously described 30.  

Additional information on Materials & Methods can be found in SDC, 

http://links.lww.com/TP/B339. 

 

Results 

Minimizing the volume of ALG microcapsules for transplantation in confined and 

vascularized sites 

We aimed at reducing the total volume of the encapsulated islet graft by (i) minimizing 

the diameter of the capsules while keeping a homogenous size distribution and (ii) maximizing 

islet-loading density while maintaining coating completeness. Keeping the ALG concentration 

ACCEPTED



  

(1.2% w/v), the potential difference (8.8 kV) and the flow rate (10µl/min) constant, the average 

capsule diameter was decreased from 749±35 µm to 279±29 m by reducing the needle internal 

diameter from 0.6 mm to 0.17 mm (Table 1). Pancreatic islets have a diameter of 50 to 350m. 

Therefore, we chose 0.4 mm and not 0.17 mm as the internal diameter of the needle to 

encapsulate the islets. By reducing the flow rate of the alginate solution from 50 to 10 l/min 

while keeping the potential difference (8.8 kV) and the internal diameter of the needle (0.4 mm) 

constant, we were able to decrease the average capsule diameter from 651±12 µm to 526±48 m 

(Table 1, Fig. 1B).  

During the encapsulation process, we compared 3 different islet-loading densities: 500, 

1500, and 3000 IEQ suspended in a volume of 100µl ALG (final islet density: 5k, 15k, and 30k 

IEQ/ml, respectively). We found that the 5k IEQ/ml density led to the highest percentage of cell-

free capsules while the 30k IEQ/ml density results in multiple islets per capsule (Fig. 1C). Live / 

Dead staining and confocal imaging showed that capsules generated with 15k IEQ/ml islet 

density had higher cell viability than capsules with 30k IEQ/ml islet density (Fig. 1D). We also 

found that 15k IEQ/ml microencapsulated islets had similar GSIR function as to naked islets 

(Fig. 1E-F) in addition to homogeneous diameters (median 525µm, Fig. 1G).  

We concluded that by using an electrostatic droplet generator, we could reduce the 

volume of standard alginate microcapsules to values that allowed transplantation in the EFP site 

in mice without impairing viability and function of encapsulated pancreatic islets. 
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Determining the effects of the transplantation site on engraftment and long-term function 

of ALG microcapsules in murine allografts and application to NHP islet grafts in 

immunodeficient mice 

In order to increase the pro-angiogenic potential of the EFP site we used a hydrogel that 

allows for extended release of pro-angiogenic factors and their synergistic signaling with 

extracellular matrix-binding domains in the posttransplant period 32. We found that 750 IEQ 

naked islets reversed diabetes within 6 days (median reversal time, MRT: 1 day) after 

transplantation in the engineered EFP site while they did not reverse diabetes after 

transplantation in the IP site in fully MHC-mismatched chemically induced diabetic recipients 

(MRT: undefined p<0.01) (Fig. 2A-B). As expected naked islets promptly rejected within 27 

days in the EFP site (median survival time, MST: 17 days). The same number of islets enclosed 

in ALG Micro capsules and implanted in the engineered EFP site reversed hyperglycemia as 

efficiently as naked islets (MRT: 1 day, p=0.22) (Fig. 2A-B) but, unlike naked islets, islets in 

Micro capsules were able to maintain euglycemia for more than 100 days (MST: undefined, 

p<0.01) in absence of immunosuppression (Fig. 2A-C). This confirms the effectiveness of ALG 

Micro capsules in preventing immune rejection. When implanted in the IP site, unlike naked 

islets, 750 IEQ encapsulated islets were able to reverse diabetes within 7 days (MRT: 5 days, 

p<0.001) but they did so with less efficiency than in the EFP site (p<0.01) (Fig. 2A-B). Finally, 

in the IP site, microencapsulated islets showed a trend towards decreased survival when 

compared to transplants in the EFP site (MST: undefined, p=0.08) (Fig. 2C).   

Grafts retrieved 100 days after transplantation showed that the majority of the 

microcapsules analyzed (n=5-7) were intact. The islets within the capsules retrieved from the 

EFP site had no evidence of degranulation as determined by histological analysis (Fig. 2D) and 
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showed well-preserved architecture and strong insulin staining (Fig. 2E-F). This is indicative of 

long-term maintenance of islet viability. Conversely, islets within the capsules that were 

retrieved from the IP site showed central necrosis (Fig. 2D, arrows). Evident vascularization was 

observed in the peri-graft tissue in close proximity but not within the implanted capsules in the 

EFP site as assessed by CD31 immunofluorescence staining and confocal microscopy (Fig. 2E). 

Lack of CD3+ T cells and B220+ B cells capsule infiltration (Fig. 2F) indicates that incomplete 

survival of capsules in the IP site was not due to loss of immunoisolation. 

We conclude that transplantation of islets in ALG microcapsules with minimized volume 

in a highly vascularized engineered EFP site improves engraftment and long-term function of 

allogeneic islets when compared to a free floating transplant configuration like the one in the IP 

site.  

Next, we evaluated whether our novel transplantation approach could be translated to 

transplantation of a marginal mass of baboon NHP islets in immunodeficient and chemically 

diabetic NOD-scid mice. We found that baboon islets could be encapsulated in Micro capsules 

with the same protocol we optimized for rodent islets (Fig. 2G). More importantly, we found 

improved engraftment of 750 IEQ baboon islets in Micro capsules (MRT: 8d) vs. 1000 IEQ 

naked (MRT: 36d, p<0.01) islets transplanted in the EFP site. Grafts retrieved 30 days after 

transplantation showed that islets within Micro capsules had no evidence of degranulation as 

determined by histological analysis in comparison to naked islet grafts (Fig. 2J), which is 

indicative of maintenance of islet viability. 
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Design, Fabrication and in vitro evaluation of PEG-ALG hybrid MicroMix and Double 

capsules 

We found that unlike PEG, ALG capsules were not resistant to osmotic stress – ie capsule 

size increased within minutes of incubation either in saline or in H2O and dissolved within 60 

minutes (Fig. 3A-B). More importantly, addition of PEG to ALG capsules improved the 

mechanical stability of ALG capsules (Fig. 3A-B).  

Next, we fabricated MicroMix capsules (Fig. 3C) with the protocol previously optimized 

for ALG Micro capsules (Fig. 1) and Double coating of ALG Micro capsules with PEG 

(Double) by a new double emulsion method (described in the method section and Fig. 3D). We 

optimized the emulsion parameters to minimize the thickness of the PEG double coatings and the 

percentage of PEG-only secondary beads in order to maintain reduced graft volume and good 

biocompatibility 33. Immunostaining with an anti-PEG antibody confirmed that PEG was 

uniformly distributed throughout the capsules in the MicroMix configuration while it was absent 

in the ALG capsules (negative control) and it formed a thin, uniform layer (15±2 μm thick) on 

100% of the Double capsules (Fig. 3E). Spherical shape, average diameter, and size distribution 

of MicroMix and Double capsules were comparable to Micro capsules (Fig. 3F-H). Viability 

(Fig. 3I), GSIR (Fig. 3J, p>0.05) and oxygen consumption rate (OCR, Fig. 3K) of islets 

encapsulated in Micro, MicroMix and Double capsules were also comparable.   

We concluded that reinforcement of ALG microcapsules with PEG improved capsule 

stability to osmotic stress without affecting capsule geometry or in vitro viability and function of 

encapsulated islets.  
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Determining the effects of capsule composition on the outcome of PEG-ALG encapsulated 

islet allografts in mice 

 

IP site 

When implanted in the IP site, islets within MicroMix capsules engrafted faster (MRT: 2 

days) than islets within Micro capsules (MRT: 5 days, p<0.05) and naked islets (MRT: 

undefined, p < 0.01) (Fig. 4A-B). Survival of islets within MicroMix capsules (MST: undefined) 

was comparable to islets within Micro capsules (MST: undefined, p=0.77) (Fig. 4C). Islets 

within Double capsules reversed diabetes only in 4/6 mice and showed some delay in reversal 

(MRT: 12 days), although not significantly different to islets within Micro (p=0.15) and 

MicroMix capsules (p=0.07). Survival of islets within Double capsules was comparable (MST: 

94.5 days) to islets within Micro (p=0.8) and MicroMix (p=0.62) capsules (Fig. 4C).  

Histological analysis of grafts that survived more than 100 days after transplantation 

revealed that the majority of Micro and MicroMix capsules did not present fibrotic outgrowths, 

capsule damage, and/or fracture (Fig. 4D). On the other hand, Double capsules were covered 

with a 2-layer-thick cell overgrowth and presented scattered pockets of inflammatory cells in a 

portion of the explanted capsules. Islets within Double capsules were fragmented and had a loss 

of pericapsular membrane, which is indicative of compromised viability and central necrosis 

(Fig. 4D). Immunofluorescence staining confirmed a higher proportion of insulin positive cells 

in islets enclosed in Micro and MicroMix capsules vs. Double capsules (Fig. 4E-F). Lack of 

macrophage (MAC2+, Fig. 4E), T and B cell (CD3+ or B220+, respectively, Fig. 4F) deposition 

and penetration in all the capsule compositions suggested that capsules were immunoisolating. 
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We concluded that addition of PEG to ALG capsules in the MicroMix but not the Double 

configuration improved islet engraftment in the IP site while long-term islet survival was 

comparable.  

 

EFP site 

In the EFP site, islets within MicroMix capsules reversed diabetes slightly slower (MRT: 

1.5 days) than islets in Micro capsules (MRT: 1 day, p<0.05) but comparable to naked islets 

(p=0.75) (Fig. 5A-B). Graft survival within MicroMix capsules (MST: 79 days) was inferior to 

Micro capsules (MST>100 days, p<0.05) and not statistically different than naked islets (MST: 

17 days, p=0.19) (Fig. 5C). Islets within Double capsules (MRT: undefined and only in 2/6 

recipient mice) reversed diabetes less efficiently than naked islets (p<0.01), Micro (p<0.01), and 

MicroMix capsules (p<0.05) (Fig. 5A-B). Finally, islets within Double capsules (MST: 19 days) 

displayed poor survival in comparison to Micro capsules (p<0.05), but was not significantly 

different from MicroMix (p=0.53) or naked islets (p=0.75) (Fig. 5C).  

Histological analysis of grafts surviving for more than 100 days after transplantation 

demonstrated that Micro and MicroMix capsules were intact and their spherical shape was 

preserved (Fig. 5D). Insulin staining of islets within Micro and MicroMix capsules revealed 

absence of either degranulation or central necrosis in Micro and MicroMix capsules indicating 

maintenance of overall viability (Fig. 5E-F). Host reaction at the capsule interface was slightly 

higher in MicroMix vs. Micro capsules as indicated by a 1 layer-thick cell overgrowth on the 

surface of MicroMix capsules (Fig. 5D). On the other hand, the host inflammatory response to 

Double capsules was markedly higher as shown by the thicker cellular overgrowth on the surface 

of those capsules (Fig. 5D). Islets within double capsules were fragmented and viability was 
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compromised (Fig. 5E). Lack of macrophages (MAC2+, Fig. 5E), T and B cells (CD3+ or B220+, 

respectively, Fig. 5F) deposition or penetration in all the capsule compositions indicates that 

capsules were immunoisolating. 

Next, we examined whether lower biocompatibility of MicroMix and Double capsules in 

comparison to that of Micro capsules was responsible for the reduced islet function. After 

implantation of empty capsules in the EFP, we found that Micro capsules displayed high 

biocompatibility with minimal cellular overgrowth and collagen deposition as assessed by 

trichrome staining (Fig. 5G). Inflammatory responses to MicroMix capsules (Fig. 5H) were 

stronger than Micro with slightly higher surface overgrowth. Double capsules, instead, displayed 

thick cellular overgrowth and fibrotic capsule formation on their surface (Fig. 5I).  

Overall, we found that the addition of PEG as a reinforcement material to improve ALG 

stability (MicroMix) showed a benefit in improving islet engraftment when capsules were 

implanted in the free-floating configuration in the IP site but not in the EFP site. In the EFP 

confined and highly vascularized site, where the encapsulated islets were placed in direct contact 

with host tissue, the biocompatibility of the capsule material appeared to be slightly worse and 

likely affected graft outcome.  

 

Discussion 

The success rate of microencapsulated islet allogeneic transplants in preclinical models is 

encouraging, but lack of translatability of preclinical results in effective clinical protocols is a 

current hurdle. Gaining a better understanding of the reasons for variability of preclinical results 

may help identify more effective strategies for better outcomes in future clinical trials.  
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The rationale for the work presented here was that capsule geometry, composition, and 

transplant site are the main determinants of the outcome of the encapsulated islet graft. Transport 

of nutrients to avascular islets relies on passive diffusion. Because diffusion rate depends on the 

diffusion distance, reducing the capsule diameter from 800µm to 500µm, as we successfully 

achieved, likely improved transport of nutrients including oxygen, to the islet core, positively 

impacting islet viability and GSIR function. Nutrient consumption rate inside the capsule is 

proportional to the number of cells. By comparing the effects of different islet loading densities 

we concluded that a 15k IEQ/ml (3%) loading density was a good compromise between 

minimizing graft volume and maximizing islet viability. This result represents an improvement 

over traditional loading densities (0.8-1.5%).  

Reducing the capsule diameter from 800µm (64-fold increase in graft volume compared 

to naked islets) to 500µm (15.6-fold increase in graft volume compared to naked islets) was 

associated with a 4-fold reduction of the total volume of the encapsulated islet graft and allowed 

us to transplant encapsulated islets in the confined and highly vascularized EFP site. This 

allowed us to evaluate the importance of the transplant site in promoting engraftment and long-

term survival of encapsulated islets. We have previously shown that presence of pro-angiogenic 

gels improves the outcome of naked islet grafts in the EFP site 32. Here we evaluated the 

potential beneficial effects of transplanting encapsulated islets in a confined site with the highest 

pro-angiogenic potential (with inclusion of pro-angiogenic gels) vs. a site where encapsulated 

islets remain free-floating and cannot get revascularized (IP). Delays in oxygen transport to the 

islet core in the IP site might have caused the central necrosis phenomenon that we observed in 

encapsulated islets in the IP but not the EFP site. The fibrotic overgrowth of Double capsules due 

to poorer biocompatibility observed histologically might have caused a delay in glucose and 
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insulin diffusion through the peritoneal membrane and the capsule and caused loss of a portion 

of the islet graft. This in turn might be the reason for longer reversal time and the presence of 

more pronounced blood glucose fluctuations that were observed for Double capsules in the IP 

site. Lack of T and B cell recruitment and infiltration into the capsules in all conditions further 

confirmed that reduced long-term graft survival was not due to lack of immunoisolation and 

immune rejection of transplanted islets, but was likely dependent on islet death because of 

insufficient transport of nutrients.  

Transplantation in the EFP site may not only enhance nutrient transport due to the 

proximity of host vessels to the encapsulated graft, but also may provide protection from 

mechanical stress at the implant site by confining the graft between 2 mesothelial layers and 

preventing shear stress due to graft displacement. Both enhanced nutrient transport and 

protection from mechanical stress are determining factors for long-term survival of encapsulated 

islets. We found that the more stable MicroMix capsules improved islet engraftment in the IP site 

where higher mechanical protection is needed but not in the EFP site where higher stability may 

not be critical for islet function, and where capsule biocompatibility may play a predominant role 

in determining the outcome of the encapsulated graft. Conversely, Double capsules did not show 

any improvement in islet engraftment and long-term function over ALG capsules in the IP site.  

In fact, they had worse outcomes in the EFP site. This is likely due to the fact that any beneficial 

effects of higher stability conferred by PEG double coatings may not outweigh the observed poor 

biocompatibility. This is in contrast with our previous studies on conformal coating 

encapsulation with PEG hydrogels where we did not observe such high fibrotic reaction to thin 

and conformal PEG coatings. Potentially, worse biocompatibility of Double coatings may come 

from the presence of secondary particles generated by the double emulsion technology. 
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Secondary particles are smaller and therefore less biocompatible than 500µm capsules 33. 

Furthermore, worse biocompatibility of PEG Double coatings may be due to the larger surface 

area and total volume of PEG double coatings vs. conformal coatings, as well as the different 

transplant site (EFP and IP here vs. the kidney capsule in 30). 

 While the improvement to achieve normoglycemia in mice transplanted in the EFP vs. 

the IP site was a matter of a few days, this could be due to the relatively high dose of islets 

transplanted in each mouse.  While a few days might seem trivial in mice, the difference in 

diabetes reversal of a few days with full islet mass may translate into a dramatically bigger effect 

when suboptimal islet doses are transplanted in larger animals and humans. This is supported by 

our results from transplantation of a marginal mass of NHP islets in the EFP site of 

immunodeficient mice showing diabetes reversal and sustained function of baboon islets within 

Micro capsules optimized to minimize the graft volume. Further work is required to validate our 

approach and begin to understand the effects of islet encapsulation in autoimmune models of 

diabetes where additional challenges may require further modifications of our transplantation 

protocol.  

Our results suggest that future clinical trials should be designed to determine whether 

transplantation of encapsulated islets in clinically relevant confined and vascularized sites, like 

the omentum, might increase the efficacy of encapsulated islet grafts in humans. We anticipate 

that application of our findings to improved capsule geometries where coating thickness is 

minimized will provide additional improvement to the outcome of encapsulated islet grafts and 

will benefit the field of islet transplantation.  
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Figure Legends 

Figure 1. Optimizing fabrication of ALG Micro capsules to minimize the volume of 

encapsulated islet grafts. (A) Schematic of our approach to determine the effects of capsule 

composition and transplant site on encapsulated graft outcomes. (B) Diameter distribution 

(n=300) of cell-free 1.2% UP-MVG microcapsules (ALG) fabricated with the optimized 

parameters (Table 1, bold).  (C-D) Phase contrast images (C) and confocal images of live 

(green) /dead (red) stained (D) ALG microcapsules fabricated with optimized fabrication 

parameters (Table 1, bold) and loading density of pancreatic islets from Lewis Rats equal to 5k, 

15k, and 30k IEQ/ml and compared to Naked islets; scale bars 100μm; nuclei: blue. (E-F) 

Glucose-stimulated insulin release (GSIR) of islets encapsulated in optimized fabrication 

parameters (Table 1, bold). Micro capsules loaded with 15k IEQ/ml rat islets (green) are 

compared to naked islets (black). N=3 aliquots of 100 IEQ per conditions from a minimum of 

n=3 independent experiments. Absolute values of insulin concentration in supernatants after 

incubation in low glucose (L1), high glucose (HG) and low glucose (L2) (E), and stimulation 

indexes (F) are indicated. (G) Diameter distribution (n=253 capsules from n=7 independent 

experiments) of islet-containing 1.2% UP-MVG microcapsules (ALG) fabricated with the 

optimized parameters (Table 1, bold). 

 

Figure 2. Effects of transplantation site on the outcome of islet allografts encapsulated in 

optimized ALG microcapsules (Micro) without immunosuppression. The free-floating 

intraperitoneal (IP) site is compared to the confined and vascularized epididymal fat pad 

(EFP) site. (A) Blood glucose of STZ-induced diabetic C57BL/6 mice transplanted with 750 

IEQ naked in the EFP (black, n=15) or IP (grey, n=8) sites or 750 IEQ microencapsulated 
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(Micro) in the EFP (green, n=7) or IP (orange, n=5) sites; all islets from fully MHC-mismatched 

BALB/c mice donors. (B) Percentage of mice that reversed diabetes after transplantation. (C) 

Percentage survival of allografts that reversed diabetes after transplantation. (D-F) Histological 

evaluation of EFP grafts and of capsules retrieved from the IP site by intraperitoneal lavage, 

fixed in formalin, embedded in paraffin, and thin sliced (5µm). Shown are grafts that reversed 

diabetes and maintained euglycemia for more than 100 days. In H&E stained sections (D) arrows 

point at areas of islet central necrosis. Scale bars 100µm. Confocal images: host vessels (CD31+, 

red), macrophages (MAC2+, green) and beta cells (INS+, cyan) are shown in panel E; T cells 

(CD3+, red), B cells (B220+, green) and beta cells (INS+, cyan) are shown in panel F. Nuclei are 

counterstained with DAPI (grey). Scale bar 150µm; (G) Phase contrast images of baboon islets 

encapsulated in Micro capsules fabricated with optimized fabrication parameters (Table 1, bold) 

and loading density of 15k IEQ/ml and compared to Naked islets. Scale bars 200μm; (H) Blood 

glucose of STZ-induced diabetic NOD-scid mice transplanted with 1000 IEQ naked (black, n=5) 

or 750 IEQ microencapsulated (Micro, green, n=4) islets in the EFP and compared to 1000 IEQ 

(light grey) and to 2000 IEQ (dark grey) naked islets transplanted in the kidney capsule (KD) 

controls; all islets from baboon non-human primate donors. (I) Percentage of mice that reversed 

diabetes after transplantation of baboon islets. (J) Histological evaluation of EFP grafts of naked 

vs. Micro encapsulated in the EFP site analyzed 30 days after transplantation in diabetic NOD-

scid mice. Scale bars 200µm. 

 

Figure 3. Design, fabrication and in vitro evaluation of PEG-ALG hybrid MicroMix and 

Double capsules compared to ALG Micro capsules. (A-B) Osmotic pressure resistance of cell-

free ALG capsules (Micro) compared to PEG capsules and ALG-PEG capsules (MicroMix). 
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Percentage of intact Micro (n=30) vs. PEG (n=30) vs. ALG-PEG (n=30) capsules after exposure 

to 2hrs ddH2O followed by saline buffer for 60 minutes (A) and % intact capsule dependence on 

time exposure to saline (B). (C) Schematic of ALG Micro vs. hybrid ALG-PEG Micromix 

capsules, where PEG and ALG are interlaced, and Double capsules, where PEG is added to the 

ALG Micro capsule as a thin external layer. (D) Schematic of the emulsion procedure for 

fabrication of Double capsules. (E) Representative phase contrast (top) and confocal images 

(bottom) of Lewis rat islets enclosed in Micro, Micromix and Double capsules stained with anti-

PEG antibodies (green). Nuclei are counterstained with Hoechst (blue). Thickness of double 

capsules was quantified on n=12 capsules and was found to be 15±2 μm. Scale bars 100 µm. (F-

H) Diameter distribution of islet-containing MicroMix (blue, F) and Double (purple, G) capsules 

and direct comparison with Micro capsules (H, p>0.05). In panel H, statistical analysis of the 

measured values is presented in the table next to the graph. (I) Viability assessment by live 

(green) and dead (red) staining via confocal imaging of Lewis rat islets enclosed in Micro, 

Micromix, and Double capsules 48 hours after encapsulation. Nuclei are counterstained with 

Hoechst (blue). Scale bar 100 µm. (J) Glucose-stimulated insulin release (GSIR) of Lewis rat 

islets encapsulated in Micro (green), MicroMix (blue), Double (purple) capsules and compared 

to naked islets (black). Absolute insulin secretion and stimulation index are indicated. N=3 

aliquots of 100 IEQ per conditions from a minimum of n=3 independent experiments. (K) 

Oxygen consumption rate (OCR) normalized to total DNA content of Lewis rat islets 

encapsulated in Micro (green), MicroMix (blue), Double (purple) capsules and compared to 

naked islets (black); n=3 per condition.  
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Figure 4. Effects of composition of PEG-ALG capsules on the outcome of islet allografts in 

the IP site without immunosuppression. ALG Micro capsules are compared to PEG-ALG 

hybrid MicroMix and Double capsules containing islets and to naked islets. (A) Blood glucose of 

STZ-induced diabetic C57BL/6 mice transplanted with 750 IEQ naked (grey, n=7) or 

encapsulated in Micro (orange, n=4), or MicroMix (blue, n=4), or Double (purple, n=6) capsules 

in the IP; all islets from fully MHC-mismatched BALB/c mice donors. (B) Percentage of mice 

that reversed diabetes after transplantation. (C) Percentage survival of allografts that reversed 

diabetes after transplantation. (D-F) Histological evaluation of grafts retrieved from the IP site 

by intraperitoneal lavage, fixed in formalin, embedded in paraffin, and thin sliced (5µm). Shown 

are grafts that reversed diabetes and maintained euglycemia for more than 100 days. In H&E 

stained sections (D) arrows point at areas of islet necrosis. Scale bars 100µm. Confocal images: 

host vessels (CD31+, red), macrophages (MAC2+, green) and beta cells (INS+, cyan) are shown 

in panel E; T cells (CD3+, red), B cells (B220+, green) and beta cells (INS+, cyan) are shown in 

panel F. Nuclei are counterstained with DAPI (grey). Scale bar 150µm. 

 

Figure 5. Effects of composition of PEG-ALG capsules on the outcome of islet allografts in 

the EFP site without immunosuppression. ALG Micro capsules are compared to PEG-ALG 

hybrid MicroMix and Double capsules and to naked islets. (A) Blood glucose of STZ-induced 

diabetic C57BL/6 mice transplanted with 750 IEQ naked (black, n=15) or encapsulated in Micro 

(green, n=7), or MicroMix (blue, n=4), or Double (purple, n=6) capsules in the EFP; all islets 

from fully MHC-mismatched BALB/c mice donors. (B) Percentage of mice that reversed 

diabetes after transplantation. (C) Percentage survival of allografts that reversed diabetes after 

transplantation. (D-F) Histological evaluation of EFP grafts fixed in formalin, embedded in 
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paraffin, and thin sliced (5µm). Shown are grafts that reversed diabetes and maintained 

euglycemia for more than 100 days. In H&E stained sections (D) arrows point at area of host 

reactivity. Scale bars 100µm. Confocal images: host vessels (CD31+, red), macrophages 

(MAC2+, green) and beta cells (INS+, cyan) are shown in panel E; T cells (CD3+, red), B cells 

(B220+, green) and beta cells (INS+, cyan) are shown in panel F. Nuclei are counterstained with 

DAPI (grey). Scale bar 150µm. (G-I) Biocompatibility of cell-free Micro (G), MicroMix (H) 

and Double (I) capsules in the EFP site: H&E staining (top) and Masson’s Trichrome (bottom), 7 

days after implantation. Scale bar 100µm. 

Table Legends 

Table 1 

Average diameter and standard deviation (SD) of cell-free ALG microcapsules (Micro) as a 

function of the Needle internal (ID) and external (OD) diameter (top) and the ALG extrusion 

flow rate (bottom) in the electrostatic droplet generator process. The parameters that we varied 

are highlighted in grey and the parameters that we chose for studies with islets are highlighted in 

bold. 
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Table 1 

Needle Diameter 
Micro  Diameter (µm) (mm) 

OD ID  Average  SD 
0.7 0.17 279 29 
0.7 0.4 500 17 
0.9 0.6 749 35 

    
    

    Alginate Flow Rate Micro  Diameter (µm) 
 (μl/min)  Average  SD 

5 526 48 
10 502 8 
25 621 16 
50 651 12 
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Supplemental Materials & methods 

Materials and methods 

Encapsulation materials.  

For Micro capsule fabrication, ultra-pure medium viscosity (>200 mPa*s) sodium alginate 

composed of 60% guluronate units (UP-MVG alginate, Novamatrix) was dissolved overnight in 

Hank's Balanced Salt Solution buffer without calcium and magnesium ions (HBSS w/o Ca2+ 

Mg2+, Gibco) to a working concentration of 1.2% w/v. 50mM calcium chloride (CaCl2) gelation 

solution was prepared by dissolving 5.55mg CaCl2, 2.09mg 3-(N-Morpholino) propanesulfonic 

acid 4-Morpholinepropanesulfonic acid (MOPS), 25.5mg D-mannitol and 0.25mL Tween 

(Sigma-Aldrich) in 1L Milli-Q H2O. The final osmolarity of the gelation solution was 300 

mOsm, iso-osmotic with cells.  

For MicroMix capsule fabrication of 1.2% UP-MVG - 5% PEG-MAL final composition, a 

solution of 5% (w/v) polyethylene glycol (PEG), functionalized (75%) with maleimide groups 

(PEG-MAL, 10kDa, 8-arms, Jenkem Technology custom synthesis) was obtained by dissolving 

50mg of PEG-MAL in 1ml of 1.2% UP-MVG solution.  

For Double capsule fabrication, PEG-MAL was dissolved in HBSS w/o Ca2+ Mg2+ at 5% w/v 

concentration. The crosslinking solution for the PEG component of MicroMix capsules was 

prepared by dissolving 2.31mg of Dithiothreitol (DTT, OmniPur, Calbiochem) in 1ml HBSS w/ 

Ca2+, Mg2+, in order to obtain a 3:1 molar ratio of DTT (two reactive groups) to PEG (8-arm 

75% functionalization - six reactive groups). The DTT cross-linking solution for the Double 

capsules was prepared by dissolving 102mg DTT in 333μl Dimethyl sulfoxide (DMSO, Sigma), 

which gives a final concentration of DTT in the 50ml emulsion of 2mg/ml in order to obtain a 

3:1 molar ratio of DTT to PEG.  

ACCEPTED



  

Islet isolation  

Male BALB/c mice (Jackson Laboratories) and Lewis rats (Envigo Laboratories, formerly 

Harlan) were housed in virus antibody free (VAF) rooms in micro isolated cages and exposed to 

a 12-h light/dark cycle with ad libitum access to autoclaved food and water. Mice were used as 

islet donors at 10-12 weeks of age. Rats were used as islet donors at 250-280g weight. Animal 

studies were performed under protocols reviewed and approved by the University of Miami 

Institutional Animal Care and Use Committee (protocol 13-042). Islets were isolated by liberase 

(Roche) digestion followed by purification on Euroficoll density gradients (Mediatech), as 

described elsewhere 1. Protocols were optimized with rat islets because of the higher isolation 

yield per animal. 

Non-human primate baboon (NHP; The Mannheimer Foundation, Inc., Homestead, FL, USA) 

islets were isolated using previously described methods 2.  

All islets were cultured in CMRL 1066  (Mediatech) supplemented with 10% FBS (Gibco), 1% 

penicillin–streptomycin (Gibco), 2.5% 1M HEPES and 1% L-glutamine (Gibco). 

 

Optimization of encapsulation parameters for fabrication of cell-free and islet-loaded 

Micro and MicroMix capsules.  

An electrostatic droplet generator (Nisco) was utilized to fabricate alginate Micro and MicroMix 

capsules. Voltage differences between needle and gelling solution in the collection vessel, 

alginate solution flow rate, and cell-loading density were varied to minimize capsule size. 1.2% 

UP-MVG  (Micro) or 1.2% UP-MVG - 5% PEG-MAL (MicroMix) hydrogel precursor solutions 

were extruded through a blunt stainless steel needle using a syringe pump (Harvard Apparatus, 

Holliston, MA) and a 3mL plastic syringe (BD). Three needles with internal diameters equal to 
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0.17, 0.4, and 0.6 mm and external diameters of 0.7, 0.7, and 0.9 mm respectively were 

evaluated. A potential difference between 8.8 and 10kV was applied between the needle and the 

CaCl2 gelling solution. A distance of 2 to 4cm between the needle and the gelling solution was 

tested; the flow rate of hydrogel precursor solutions was varied between 5 to 50l/min. After 

extrusion, Micro and MicroMix capsules were allowed to cross-link in the CaCl2 bath for 10 

minutes3. Next, the ionically gelled microcapsules were washed 3 times in HBSS w/ Ca2+, Mg2+, 

whereas MicroMix capsules were washed only once in HBSS w/ Ca2+, Mg2+, followed by the 

addition of 1ml of DTT solution for 1 minute to cross-link the PEG-MAL network. MicroMix 

capsules were then washed three times in HBSS w/ Ca2+, Mg2+. A sample of 30 microcapsules 

from each cell-free run was taken (n=3) and the capsules were imaged using a light microscope 

(LEICA DMIL, Germany). Images were processed with Image J (National Institute of Health) to 

determine capsule diameter. For encapsulation, isolated pancreatic islets were suspended in 

100l of 1.2% UP-MVG alginate (Micro) or in 1.2% UP-MVG - 5% PEG-Mal (MicroMix) 

hydrogel precursor solutions. Three islet loading densities were evaluated: 5,000, 15,000 and 

30,000 IEQ/ml. The islet suspensions in the hydrogel precursor solutions were extruded through 

a 0.4mm diameter needle at 10 l/min by a syringe pump and a voltage difference between the 

needle and the gelling solution of 8.8kV was applied. The diameter of islet-containing 

microcapsules was measured on a sample of n=15-60 capsules for each encapsulation batch to 

guarantee reproducibility of the encapsulation process. 

 

Fabrication of PEG Micro capsules 

5% PEG (75% functionalized PEG-maleimide 10kDa 8arms, Jenkem) capsules were obtained by 

adapting a previously reported method 4. The method consists of hand-pipetting PEG (pre-mixed 
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with DTT at pH 4-5) into polypropylene glycol (PPG, Sigma) containing 0.02% triethanolamine 

(Sigma) and 10% Span-80 (Sigma) followed by purification by hexane extraction of the oil phase 

4. The process is designed to promote PEG crosslinking and mold the capsules into spheres of 

comparable size and geometry to alginate Micro capsules.  

 

Osmotic pressure test 

Evaluation of mechanical stability of microcapsules was performed by osmotic pressure testing 

as previously described 5. ALG Micro and PEG-ALG MicroMix capsules were resuspended in 

Hank’s balanced salt solution (HBSS, 270-305 mOsm/kg). Thirty capsules for each formulation 

were hand-picked and transferred to 10 wells of a 24-well-plate (3 beads/well). Capsule diameter 

was imaged with a Leica light microscope and measured with Leica Application Suite. Then, the 

HBSS supernatant was removed and  the capsules were incubated for 2 hours at 37°C in 

1ml/well of ddH2 (0 mOsm/kg). At the end of this incubation period, capsules were imaged, the 

supernatant was removed and replaced with 1 ml/well saline-10mM HEPES (308 mOsm/kg) 

supplemented with 1 drop/well of trypan blue. Percentage of fractured or swollen capsules was 

quantified over the following 2 hours.  

 

Fabrication of Double capsules: double coating of Micro capsules with PEG by emulsion 

technology.  

To fabricate Double capsules, 100µl of UP-MVG Micro capsules were suspended in 1ml of 5% 

PEG-MAL (water phase). A solution of 50ml light mineral oil (Sigma Aldrich) and 5% Span80 

(Sigma Aldrich) (oil phase) was formed by stirring at 350rpm for 2’. The water phase was added 
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drop-by-drop to the center of the oil phase while the oil phase was continuously stirred at 

350rpm. Five minutes after addition of the water phase to the oil phase, the DTT solution in 

DMSO was added to induce PEG-MAL gelation and the stirring speed was increased to 450rpm. 

PEG double coating was allowed to crosslink for 15 minutes  while stirring as previously 

reported4. Then Double capsules were extensively washed with HBSS w/ Ca2+, Mg2+ and 

secondary beads were removed by filtration through a 250µm cell strainer (Thermo Scientific). 

In order to increase the efficiency of purification of Double capsules from secondary cell-free 

PEG-MAL beads, the fabrication protocol was further optimized. First, the initial stirring speed 

was increased from 350 rpm to 400 rpm. Then, the water phase was added to the oil phase and 

stirred at 400 rpm. Four minutes later, the stirring speed was further increased to 500 rpm for one 

minute before adding the DTT solution. Finally, the capsules were extensively washed with 

HBSS w/ Ca2+, Mg2+.  

 

In vitro assessment of viability and functionality of encapsulated islets. 

Static glucose-stimulated insulin release (GSIR) was utilized for assessment of islet function. 

GSIR was performed to compare in vitro function of encapsulated islets to uncoated islets (naked 

control) as previously described 4. Briefly, islet aliquots per conditions (100 IEQ; n=3) were 

loaded within a Sephadex (G-10; GE Healthcare) slurry into microchromatography columns 

(BioRad) and incubated in low-glucose (LG) Krebs buffer (2.2mM or 40mg/dL D-glucose, 

Sigma) for 1 h at 37°C for equilibration and pre-incubation. This was followed by sequential 

incubations for 1 h each in low glucose (LG, 2.2mM or 40mg/dL), high glucose (HG, 16.7mM or 

300mg/dL), and again LG buffer. At the end of each incubation period, 1mL of eluate was 

collected by adding 1mL of LG solution to each column. Insulin concentrations (ng/ml) in eluted 
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samples were assessed by rat or mouse ELISA (Mercodia). GSIR results were presented as 

absolute values of insulin concentration in eluates from stimulation with LG1, HG, and LG2, and 

as stimulation indexes (GSIR Index, calculated as the ratio of insulin released after exposure to 

HG to insulin released after exposure to LG1). Indexes shown are the average of a minimum of 

n=3 independent experiments and have been normalized to their naked control indexes.  

For viability assessment, naked and encapsulated islets were stained with calcein-AM (live cell 

marker) and ethidium bromide (dead cell marker) (live/dead viability kit, Molecular Probes), and 

imaged with a Leica SP5 inverted confocal microscope.  Z-scans of up to 200µm volumes were 

performed (Slice thickness, 5μm). 

Oxygen Consumption Rate (OCR) measurements were performed as previously described 6. 

Briefly, aliquots of approximately 500 IEQ (n=3) were used for measurements of OCR in 

temperature controlled, sealed and stirred microchambers (Instech Co., Plymouth Meeting, PA, 

http://www.instechlabs.com). Oxygen consumption rate per unit time was quantified as in the 

following equation: OCR = Δ[O2]/Δt * V, where OCR is the cellular oxygen consumption rate in 

mol/m3
*s and Δt is the change in time in seconds, Δ[O2] is the change in oxygen concentration 

in moles, and V is the chamber volume in liters. After measurements were completed, cells were 

collected from the chambers, solubilized in the DNA extraction buffer provided by the 

manufacturer, and DNA was extracted following manufacturer’s protocol using the DNAeasy 

Blood and Tissue Kit (Qiagen). DNA was quantified using the Quant-iT PicoGreen assay 

(Invitrogen). Cell number was estimated using a previously reported value of 6 pg of DNA per 

single cell. Total tissue volume was then derived using the calculated cell number and single cell 

volume using the following equation: V = 4/3 N π R
3 where V is the total tissue volume, N is the 
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cell number, and R is the average radius of the cells, 5 * 10-6 m. Data are presented as OCR 

normalized to total DNA content. 

 

Engineered fibrin gels 

Fibrin gels were engineered for promoting rapid revascularization of embedded islets as 

previously described 7 generating pro-angiogenic resorbable scaffolds for naked and 

encapsulated islets. For this study, pro-angiogenic resorbable scaffolds comprised 

- 2µM (102µg/ml) of fibronectin (FN) fragment, containing an integrin-binding domain 

(FN 9-10), a growth factor (GF)-binding domain (FN 12-14) and a fibrin binding 

substrate for factor XIIIa, synthesized as previously described 8, kindly provided by Dr. 

Jeffrey Hubbell 

- 8mg/ml human fibrinogen depleted of fibronectin, plasminogen, and von Willebrand 

factor (Enzyme Research Laboratories, South Bend, IN, USA) 

- 17µg/ml aprotinin (Sigma-Aldrich) 

- 2U/ml human thrombin (Sigma-Aldrich)  

- 8U/ml factor XIIIa (Fibrogammin; Behring, Marburg, Germany) 

- 2.5mM CaCl2 in HEPES buffer (Sigma) 

- 101nM (25ng/gel) human platelet-derived growth factor-BB (PDGF-BB, carrier-free 

from R&D Systems) 

- 130nM (50ng/gel) human vascular endothelial growth factor-A165 (VEGF-A165, carrier-

free from R&D Systems) 
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Diabetes Induction and Islet Transplantation in Mice.  

Diabetes was induced in islet recipients, C57BL/6 mice, by a single i.v. injection of 

streptozotocin (200 mg/kg; Sigma–Aldrich). Mice were considered diabetic after three 

consecutive readings of blood glucose >350mg/dL. For transplantation of either naked islets or 

microcapsules in the epididymal fat pad (EFP), a small cutaneous incision, followed by a small 

muscular incision, were performed on the abdomen of recipient mice under general anesthesia 

(isoflurane). The EFP was then gently exposed and flattened. 750 IEQ naked islets were 

collected from the culture dish with a Hamilton syringe, pelleted by gravity, and distributed 

uniformly on the surface of the EFP while microcapsules containing 750IEQ were distributed on 

the EFP with a spatula. To immobilize the islets to the EFP membrane and enhance graft 

revascularization, 20µl of engineered fibrin gels were then pipetted on the EFP to cover the 

islets. Fibrin gelation was allowed to occur in situ, resulting in cell immobilization within the 

pro-angiogenic fibrin scaffolds and in close contact to the host vascular supplies provided by the 

EFP membrane. An EFP pocket was created by wrapping the islets plus the scaffold-containing 

EFP. GF-free and FN fragment-free fibrin glue was used to seal the ‘EFP pocket’ and prevent 

unwrapping during long-term implantation. The EFP pocket containing the graft was gently 

placed back in the abdominal cavity of the mouse  then proceeded to suture the muscle and the 

skin.  

Graft function was monitored by measuring non-fasting blood glucose values using portable 

glucometers (OneTouch Ultra 2; LifeScan). Reversal of diabetes was considered when mice 

maintained at least three consecutive blood glucose readings < 250mg/dL after islet 

transplantation. Graft rejection was considered when at least three consecutive blood glucose 

readings > 250mg/dL were detected in those mice that reversed diabetes following islet 
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transplantation. To confirm graft function and exclude pancreas regeneration in mice that 

reversed diabetes after transplantation, EFP grafts were removed 100 days after transplantation 

and mice were monitored until return to hyperglycemia was reached.  

For intraperitoneal (IP) islet transplantation, a small incision in the skin followed by an incision 

along the linea alba of the peritoneum were performed under general anesthesia (isoflurane). 

Naked islets and islets-containing microcapsules were suspended in HBSS w/ Ca2+ Mg2+, 

collected with a 1ml micropipette, and injected into the peritoneal cavity in a total volume of 

approximately 0.2 ml. Muscle and skin were then sutured. After sacrificing the mice by cervical 

dislocation, capsules were retrieved by intraperitoneal lavage with HBSS w/ Ca2+ Mg2+.  

Transplantation in the renal subcapsular space (KD) was performed as previously described 4. 

Briefly, a small incision in the back of the mouse was performed under general anesthesia 

(isoflurane) and the kidney was exposed. A microsurgical scissor was then used to make a small 

incision in the kidney capsule. The islets were collected using a Hamilton syringe and pelleted in 

a PE-50 tubing, which was then connected to the syringe and used to gently distribute the islets 

under the capsule. Kidney capsule was cauterized and muscle and skin sutured.  

 

Graft histological evaluation  

Formalin-fixed grafts were embedded in paraffin, sectioned (5μm), and processed for standard 

H&E histology or for immunofluorescence. Antigen retrieval (sodium citrate buffer) was 

performed before proceeding with immunofluorescence staining. For immunofluorescence 

staining, samples were permeabilized in 0.2% Triton X-100 (Sigma) at RT for 5-10 min, then 

blocked in 2% bovine serum albumin (Sigma) and 10% serum (Sigma) of the host of the 

secondary antibody in phosphate buffered saline (PBS, Invitrogen) for 90 min at RT. Primary 
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antibodies were prepared at working concentrations in 2% BSA in PBS and tissue sections were 

incubated overnight at 4°C. Secondary antibodies were purchased from Molecular Probes 

(Eugene, OR) and prepared at 1:200 working concentration in 2% BSA in PBS. Tissue sections 

were incubated for 1 hr at RT. 4’,6 diamino-2-phenilindole (DAPI; Molecular Probes) was used 

for nuclear staining. Islets were identified by insulin+ beta cells (guinea pig, 1:100; cat# A0564, 

Dako, Carpinteria, CA). Blood vessels were identified by CD31+ (rabbit, 1:20, cat# AB28364, 

Abcam, Cambridge, MA). Macrophages were identified by Mac2 (rat, 1:500, cat# CL8942AP, 

Cedarlane, Burlington, NC), T cells by CD3 (rabbit, 1:500, cat# CMC10317022, Cell Marque, 

Rocklin, CA) and B cells by B220 (rat, 1:200, cat# 14-0452-82, eBioscience, San Diego, CA). 

Images were acquired with a Leica DMIRB microscope for histological staining or with a Leica 

SP5 inverted confocal microscope for fluorescence imaging and processed with the Leica 

Application Suite software and ImageJ 3D (National Institutes of Health). 

 

Statistics. Prism 5.0 (Graphpad, San Diego, CA) was used for statistical analysis. Unless 

otherwise noted, data are presented as mean ± SD. Statistical comparisons were based on 

Student’s t-test (two groups comparison) or analysis of variance (ANOVA) with Tukey post-hoc 

test for pairwise comparisons (for >2 groups comparisons). A confidence level of 95% was 

considered significant. Actuarial survival curves and log-rank test were used to compare diabetes 

reversal and graft survival amongst experimental groups. The statistical significance of 

differences between more than two groups for GSIR and cytotoxicity assay was analyzed by 

post-hoc Dunn’s multiple comparison test. 
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