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Abstract 

 

The c-MYC oncogene encodes the transcription factor Myc, which regulates a large number 

of biological processes and is overexpressed in a large number of cancers. When 

overexpressed, Myc binds to almost all open promoters but only regulates specific subsets 

of genes. We investigated this issue in three systems where Myc is overexpressed: 3T9MycER 

fibroblasts, Eµ-myc B cells and tet-MYC liver cells, through an approach integrating 

different types of next generation sequencing data, such as DNase-seq footprinting, ChIP-

seq and RNA-seq, with motif analysis and machine learning methods (random forest). In 

particular, the DNase-seq technique can detect genome-wide open chromatin regions 

(DNase hypersensitive sites or DHSs) and sites where a transcription factor (TF) is bound 

(footprints). In order to analyse the DNase-seq footprinting data in our systems, we 

developed a novel pipeline that carries out a step-by-step analysis of the raw DNase-seq 

data, and outputs DHS and TF footprints. To select the best footprint caller for the pipeline 

we carried out a benchmarking study comparing two footprint calling algorithms DNaseR 

and Wellington on ENCODE data. The Wellington algorithm, scored consistently best both 

in terms of specificity and sensitivity and therefore it was chosen for our pipeline. We 

overlapped genome wide the footprints identified by the pipeline with matches of a PWM 

library, obtaining a list of footprinted PWMs. Then, we used this list as a series of features 

to carry out pairwise classifications of the upregulated, downregulated and not-deregulated 

subsets of genes in the three systems. A PWM that classifies the data with a large enough 

Area Under the Curve (AUC) pointed to a TF possibly selectively binding with Myc in a 

subset of genes only. We first applied a single feature classifier assessing the performance 

of each of the PWMs one by one, and we found that single PWMs only provided a limited 

classification of the gene subsets. We then turned to a random forest classifier that considers 
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combinations of all the features. This strategy provided a good separation of the data sets 

(AUC>0.7) and identified some candidates, such as Nrf1/Nrf2 (Eµ-myc T up), Tead factors 

(Eµ-myc T and tet-MYC up), E2f4 (Eµ-myc T up) and E2f1(Eµ-myc T and tet-MYC up), that 

could potentially act with Myc in regulating specific subsets of genes. 
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Chapter 1  

 

Introduction 

 
1.1 Epigenetics   

The eukaryotic DNA forms complexes with proteins called “chromatin”. These proteins are 

mostly histone proteins which are of five major types: H1, H2A, H2B, H3 and H4 to form 

DNA-histone complexes termed the “chromatin”. Additionally, chromatin also contains 

many different types of nonhistone chromosomal proteins which carry out a number of 

different activities, including DNA replication and gene expression (Cooper, 2000). Changes 

to these histones or the DNA, such as covalent modification of the histone (addition of acetyl, 

methyl or phosphate groups) or methylation of the cytosines are collectively known as 

‘epigenetic marks.’ These modifications control the structure of the chromatin and its 

accessibility by interacting with various binding proteins, transcription factors, and 

chromatin remodelling complexes that affect and regulate transcription (Jaenisch and Bird, 

2003). The field of Epigenetics involves the study of these changes in the structure of the 

chromatin or the DNA that do not affect the DNA sequence itself. 

1.1.1 Acetylation and methylation 

Among the different histone modifications known, the two most widely studied are 

acetylation and methylation. Histone acetylation of the lysine residues at the N terminus of 
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histone proteins is commonly known to mark open and active chromatin regions (Taylor et 

al., 2013; Verdone et al., 2005). The histone acetyltransferase (HATs) and deacetylase 

enzymes (HDACs) are responsible for this addition of the acetyl group to the lysine residues. 

Histone lysine methylations on the other hand, are found on histones H3 and H4 which can 

be added by methyltransferases (HMTs) and removed by demethylases. These modifications 

can have different effects depending on the position of the methylated amino acid and the 

number of methyl groups added. For example, histone 3 lysine 4 methylation (H3K4me) and 

histone 3 lysine 4 trimethylation (H3K4me3) are usually associated with gene activation, 

whereas histone 3 lysine 9 di- and tri-methylation (H3K9me2 and H3K9me3) and  histones 

3 lysine 27 tri-methylation (H3K27me3) have been associated with gene inactivation (Peters 

et al., 2002; Vakoc et al., 2005; Zhang et al., 2012). Therefore, studying the distribution of 

these modifications can be useful in determining transcriptional activity of these regions.  

 

Acetylation and methylation marks can also be used to identify regulatory regions such as 

promoters and enhancers. Promoters are cis-regulatory elements that define when the 

transcription of a gene takes place and are found directly upstream to the transcription start 

site (TSS). Enhancers too are cis-regulatory elements but are found at varying distances from 

the TSS of the gene they regulate, either up- or down-stream. When enhancers are bound by 

transcription factors they can enhance the activation of associated gene (Shlyueva et al., 

2014). Promoters are usually marked by H3K4me3 while enhancers are mainly marked by 

H3K4me1, and both are also marked by H3K27ac when activated (Bonn et al., 2012; 

Dunham et al., 2012; Rada-Iglesias et al., 2011). H3K9me3 is usually found on 

transcriptionally silent heterochromatin regions (Peters et al., 2002) whereas H3K27me3 is 

found on euchromatin regions (Simon and Kingston, 2009). H3K27me3 can mark both 

promoters and enhancers and does not co-occur with H3K27ac on the same histone. Many 
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studies have used histone mark profiles to predict enhancers positions (Arnold et al., 2013; 

Bonn et al., 2012; Ernst et al., 2011; Kharchenko et al., 2011; Rada-Iglesias et al., 2011; 

Shen et al., 2012) and these predictions have been shown to agree well with enhancer activity 

assays (Arnold et al., 2013; Bonn et al., 2012; Heintzman et al., 2007).  

 

Given the important role that these histone marks play in the regulation and expression of 

genes it is not surprising that aberrant patterns of these marks have been reported in many 

different cancers (Dawson and Kouzarides, 2012; Halkidou et al., 2004; LeRoy et al., 2013; 

Müller et al., 2013; Song et al., 2005).  Many HATs such as, CBP, p300 and MOZ and 

MORF can form chimeric fusion proteins that arise from chromosomal translocations often 

associated with leukaemia (Yang, 2004).  

 

HDAC4 is frequently downregulated in gastric tumors, HDAC1 somatic mutations have 

been detected in some dedifferentiated human liposarcomas (Taylor et al., 2011), and a 

frame-shift mutation leading to a dysfunctional HDAC2 expression has been observed in 

human epithelial cancers (Ropero et al., 2006). Aberrant targeting of HDACs is therefore, 

thought to be involved in the silencing of tumour-suppressor genes (West and Johnstone, 

2014). 

 

The dysregulation of HMTs too can contribute to the pathogenesis of different types of 

cancers by causing aberrant histone methylations (Michalak and Visvader, 2016).  For 

example, deregulation of the HMT, enhancer of zeste homologue 2 (EZH2) leads to aberrant 

patterns of the H3K27me3 which has been linked to poor patient outcome (Oh et al., 2014).   

1.1.2 Transcription factors 
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Epigenetics also involves the study of the transcription factor (TF) binding and nucleosome 

positioning on the DNA and their effect on gene-regulation. Many transcription factors bind 

to their target genes and recruit co-regulators by recognizing a specific short sequence called 

the ‘binding motif’ (Jaenisch and Bird, 2003) to regulate the expression of the genes. 

Transcription factors can bind to both promoter and enhancer regions and interact with other 

bound transcription factors and recruit RNA polymerase II. They can also act as pioneer 

factors to open the chromatin, thus making the DNA accessible (open chromatin) to other 

proteins and transcription factors (Soufi et al., 2015).  

 

 Role of the transcription factor Myc in cancer 

A cell is governed by regulatory pathways composed by a large number of proteins and 

genes interacting in a complex, combinatorial manner. Large-scale analyses of these 

regulatory networks have statistically characterized their structure and led to the 

identification of ‘master regulators’ and conserved functional modules (recurring regulation 

patterns) (Alon, 2007). One of these master regulators is the c-myc oncogene, which plays a 

key role in the development of many types of cancers (Ciriello et al., 2013) where a number 

of regulatory pathways are disrupted. The c-myc gene encodes the transcription factor Myc, 

that is overexpressed in many cancers (Gabay et al., 2014; Land et al., 1983). The Myc 

transcription factor regulates the normal proliferation, development and apoptosis, functions 

that become aberrantly regulated when Myc is overexpressed (Meyer and Penn, 2008). For 

years, it was known that Myc acts as a general amplifier of transcription by targeting all 

active promoters and enhancers. However, recent studies have shown that (Sabò et al., 2014; 

Walz et al., 2014) Myc specifically activates and represses transcription of distinct gene sets, 

leading to changes in cellular state that can in turn lead to a global increase in gene 

expression. 
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The deregulation of MYC usually occurs through 3 main mechanisms: insertional 

mutagenesis, chromosomal translocations and gene amplification. These mechanisms are 

described below: 

 

 Insertional mutagenesis 

The expression of MYC can be activated through retroviral promoter insertion. This is a 

frequently observed oncogenic mutation in retrovirally induced tumours, and mainly induces 

haematopoietic tumours like erythroleukaemias and T-cell lymphomas (Meyer and Penn, 

2008; Payne et al., 1982).  

 

Chromosomal translocation 

In Burkitt’s lymphomas, the MYC gene is translocated to the immunoglobulin Ig heavy 

chain locus leading to its overexpression. This translocation event was modelled in the Eµ-

myc mouse model that develop B-cell lymphoma by Adams et al. (Adams et al., 1985). 

  

Amplifications 

The MYC gene has been found to be amplified in many cancers such as colon cancer and 

leukaemia where the cancer cells can contain multiple copies of MYC (Alitalo et al., 1983; 

Collins and Groudine, 1982; Dalla-Favera et al., 1982). In contrast to chromosomal 

translocations in haematopoietic cancers, activation of the MYC genes by amplification is 

commonly detected in solid human tumours (Meyer and Penn, 2008). 

 

In addition to the mechanisms described above, de-regulation of Myc can also occur through 

mutations of upstream regulators. For example, adenomatous polyposis coli (APC) which 

forms a part of the Wnt/β-catenin pathway is mutated at a very high frequency in sporadic 
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colorectal cancer. The silencing of APC leads to the overexpression of Myc which leads to 

uncontrolled cell division (Sioson et al., 2014; Renoll and Yochum, 2014). 

 

Among the different systems have been developed to study the mechanisms by which the 

deregulation of MYC leads to tumour development, in this thesis, we consider the systems 

described below: 

 

i. 3T9MycER model 

The 3T9MycER are a mouse fibroblasts cell line containing the mycER transgene which 

encodes for a chimeric protein made of the human MYC and the hormone-binding domain 

of the estrogen receptor. This protein is constantly expressed in the 3T9MycER cells, but only 

becomes active upon addition of the synthetic estrogen OHT (4-hydroxy tamoxifen) to the 

medium. Upon OHT binding, the fusion proteins translocate into the nucleus, where Myc 

binds to DNA and changes the expression of its target genes (Eilers et al., 1989; Littlewood 

et al., 1995). The activation of the mycER takes place very rapidly and a high amount of 

Myc can be detected bound to the DNA by Chromatin Immunoprecipitation (ChIP) after 

only 4 hours of treatment with OHT (Sabò et al., 2014).  This system provides a very 

convenient way to study the direct regulation of target genes by Myc as it is not affected by 

the complex layers of interactions that occur in tumour cells that make it difficult to study 

the Myc specific responses.  

 

ii. Eµ-myc mouse model 

In almost all cases of Burkitt’s lymphoma, the MYC gene is translocated to the 

immunoglobulin heavy chain locus. Adams et al. 1985, constructed a transgenic mouse 

model that reproduces this tranlocation in vivo called the Eµ-myc mouse model. The c-MYC 
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oncogene in these B-cells is placed under the control of the intronic enhancer of the Ig heavy 

chain, and is therefore constitutively expressed in the B cell lineage. The transgenic mice 

carrying this system develop B-cell lymphomas with a mean latency of 12-16 weeks of age 

(Adams et al., 1985). This Eµ-myc system therefore serves as a model to study the effects of 

Myc overexpression during B-cell lymphoma progression. 

 

iii. tet-MYC 

The tet-MYC/LAP-tTA transgenic mice conditionally express the c-MYC proto-oncogene 

in liver cells (Kistner et al., 1996). In these mice, the liver activator protein (LAP) promoter 

drives the expression of the tetracycline-controlled trans-activating protein (tTA) in the liver 

in absence of doxycycline and is combined with a tet-regulated c-MYC transgene. These 

Myc-expressing mice develop oncogene-addicted liver tumours but these tumours regress 

rapidly upon the silencing of MYC due to the administration of doxycycline (Cairo et al., 

2008; Kress et al., 2016; Shachaf et al., 2004). Kress et al., 2016, used this reversible system 

to identify the Myc dependent regulatory events in hepatocellular carcinoma. They were able 

to identify distinct sets of genes that were activated and repressed by Myc in carcinomas that 

were no longer deregulated when Myc was turned off (Figure 1). The genes that were 

deregulated in T->Toff are defined as primary MYC-response or MYC dependent genes. 

Whereas, the genes that were deregulated in C->T but not deregulated in T-> Toff are 

defined as secondary MYC-response or MYC independent genes. 
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        Kress et al., 2016 

Figure 1. Venn diagram showing the MYC-induced (left) and MYC repressed (right) genes in 

tet-MYC/LAP-tTA system. were calculated by comparing tumours with control samples (C→T), 

or tumours after to before tet-MYC inactivation (T→Toff). The genes that are deregulated in 

T→Toff are defined as primary MYC-dependent DEG categories. Genes deregulated in C→T but 

not deregulated in →Toff are defined as secondary MYC-response genes. 

1.1.3 Myc dependent gene regulation 

The Myc transcription factor contains a basic helix-loop-helix leucine zipper (bHLHZip) 

domain that binds to DNA in correspondence to the E-box element CACGTG (known as the 

canonical E-box) with high affinity, or to its variants (CANNTG non-canonical E-box) with 

lower affinity. In order to bind to the DNA, Myc forms heterodimers with another bHLHZip 

transcription factor, called Max (Blackwood and Eisenman, 1991). Myc is also known to 

form complexes with the transcription factor Miz1 to down-regulate expression of target 

genes (Varlakhanova et al., 2011; Walz et al., 2014; Wiese et al., 2013).  Myc was also 

shown to coimmunoprecipitate with NF-Y (Izumi et al., 2001) and the peaks of Myc and 

NF-Y were found to overlap significantly in ENCODE data (Fleming et al., 2013). Recently, 

Li et al. 2016 , showed that the FOXR2 transcription factor forms a stable complex with 

Myc and Max to regulate cell proliferation. Myc can therefore bind to different transcription 

factors in addition to heterdimerzation with Max to activate and silence its target genes. 
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Although Myc is known to preferentially binds E-box containing sequences, many studies 

have shown that many Myc-bound promoters lack an E-box element (Kim et al., 2008; Li et 

al., 2003), thus raising the possibility that Myc could bind to the promoters of its target genes 

in other ways as well, such as (i) indirect binding through to another protein that bind directly 

to the DNA also called “piggy backing” or through (ii) non-specific binding to the DNA 

backbone.  

1.1.4 Next generation sequencing methods  

In the last few years, “next-generation”, high-throughput sequencing technologies have 

revolutionized epigenetic studies and made it possible to gather data at a genome-wide scale. 

Nowadays, these techniques allow the mapping of the epigenetic modifications across the 

entire genome with minimum hands-on time (Ku et al., 2011). Among the different types of 

next generation sequencing experiments in this thesis we will be using the ones described 

below: 

 

 ChIP-seq (Chromatin ImmunoPrecipitation-Sequencing) 

The ChIP-seq technique is used to identify histone modifications and the interaction of 

proteins to DNA and is based on the sequencing of the genomic DNA fragments co-

immunoprecipitated with a protein of interest or modified histones. ChIP-seq of transcription 

factors can be used to identify all the binding sites of a transcription factor of interest in the 

genome. ChIP-seq of histone marks on the other hand, are used to study the genome-wide 

patterns of epigenomic modifications in the cells. As described before, these patterns can 

reveal information about the state (active or repressed) and the function of the regulatory 

regions (enhancer or promoters) that they mark.  
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The first step of a ChIP-seq experiment depends on the type of the protein under study 

(Figure 2). In the case of TFs and Pol II the first step is usually to carry out formaldehyde 

crosslinking of the protein with the DNA so that their interaction does not break during 

immunoprecipitation. However, in the case of histone modifications this step is not 

necessary. In the case of chromatin-remodelling enzymes such as HDACs or HATs, an 

additional cross-linking step (using disuccinimidyl glutarate) can be included, to preserve 

protein-protein complexes before cross-linking with formaldehyde. After cross-linking, the 

chromatin is fragmented into pieces of about 150 to 500 bp by sonication.  

 

After fragmentation, the next step is immunoprecipitation, using a specific antibody against 

the protein of interest. The success of a ChIP-seq experiment depends crucially on strong 

enrichment of the chromatin specifically bound by the protein under study. Only antibodies 

that give consistently high enrichment of DNA at a known binding site when compared with 

the DNA immunoprecipitated by a nonspecific control antibody such as anti-IgG and no 

enrichment at negative control sites should be chosen. 

Once a satisfactory enrichment is achieved, the material is sequenced. Finally, the short 

sequenced reads are computationally mapped to the reference genome and regions where 

these reads accumulate are identified: this step is known as peak calling. The number of 

peaks that are identified depends on the algorithm, and in particular the significance 

threshold chosen. The peaks are the regions where the transcription factor binding (in case 

of TF ChIP-seq) or the histone modification (in case of histone mark ChIP-seq) is most likely 

to have occurred. 
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	 	 a		DNA-binding	protein	ChIP-seq								b	Histone	modification	ChIP-seq	

 

       Adapted by permission from Nature Publishing Group: Furey 2012, copyright 2012 

Figure 2. The basic steps involved in (a) transcription factor ChIP-seq experiments (b) Histone 

mark ChIP-seq. The main difference between the two is that the antibody used in the first case is 

targeted against the transcription factor while in the second it is targeted against the histone 

modification. 

 

 RNA-seq 

The RNA-Seq technique is a NGS technology that allows measuring the RNA expression 

levels in a population of cells. In a typical RNA-seq experiment (Figure 3), the first step of 

the procedure is usually the isolation and purification of RNA from a population of cells 

which is then reverse transcribed to create a collection of cDNA fragments. These cDNA 

fragments are then ligated to adapters and sequenced by a high-throughput sequencing 
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method giving short sequences from one end (single-end sequencing) or both ends (paired-

end sequencing). The sequence reads so obtained are usually 30–400 bp in length, depending 

on the sequencing technology used. After the sequencing step, the raw reads are aligned to 

a reference genome creating a genome-scale transcription map that provides information on 

both the transcriptional structure and the level of expression for each gene (Nagalakshmi et 

al., 2008; Wang et al., 2009). 

 

 

      Adapted by permission from Nature Publishing Group: Martin & Wang 2011, copyright 2011    

Figure 3. The basic steps in a RNA-seq experiment. mRNA is extracted from the cells of interest, 

contaminant DNA is removed and the DNA is reverse transcribed into cDNA. These cDNA are 

then ligated with adaptor sequences and sequenced by high throughput sequencing technology. 
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 FAIRE seq  

FAIRE-seq or Formaldehyde-Assisted Isolation of Regulatory Elements is a technique that 

is used to identify open or nucleosome depleted chromatin regions. Nucleosome disruption 

leading to the opening of chromatin is a well-known hallmark of active regulatory chromatin 

in the eukaryotic cells. The procedure for carrying out FAIRE was first demonstrated 

in Saccharomyces cerevisiae (Nagy et al., 2003) and has since been applied to human and 

other mammalian samples too.  

         Adapted by permission from Nature Publishing Group: Furey 2012, copyright 2012 

   

Figure 4. The basic steps in a FAIRE-seq experiment. First, proteins are crosslinked to the DNA 

followed by sonication to obtained smaller fragments of DNA bound to the proteins (mostly histones). 

Finally, the DNA fragments are separated from the proteins mostly histones) using a phenol-chloroform 

extraction method. 
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In this approach (Figure 4), phenol-chloroform extraction method is used on formaldehyde-

crosslinked chromatin. This leads to the segregation of the open chromatin regions into the 

aqueous phase as these regions are less packed by the histones proteins (Brutlag et al., 1969; 

Solomon and Varshavsky, 1985). The DNA fragments are then extracted from the aqueous 

phase to create a cDNA library which is then sequenced. The FAIRE technique can create a 

map of the nucleosome distribution throughout the genome. In addition, the promoters of 

actively transcribed yeast genes were more highly enriched by FAIRE than promoters of 

genes with lower transcription initiation rates (Nagy et al., 2003).  However, this technique 

suffers from a very low signal to noise ratio (Tsompana et al., 2014), an issue that will be 

also described in chapter 3.2. 

 

 DNase-seq and DNase- footprinting 

Similarly to the FAIRE-seq technique, DNase-seq identifies genomic regions where 

chromatin is open and the DNA is accessible to the transcription machinery and the binding 

of transcription factors (TFs) (Song and Crawford, 2010). This method (Figure 5) combines 

the traditional approach of mapping DNase I hypersensitive (DHS) sites with high 

throughput next-generation sequencing: DNase I is used to selectively digest nucleosome-

depleted DNA, whereas closed chromatin is more resistant.  These regions of open 

chromatin are called DNase hypersensitive sites (DHSs), owing to their susceptibility to 

DNase I digestion. DHSs often contain active regulatory elements, including promoters, 

enhancers, silencers, insulators, and locus control regions (Song and Crawford, 2010; Wu et 

al., 1979).  

 

The first step of the procedure is usually the isolation and purifcation of the nuclei from a 

population of cells, to which DNase I is added to digest the DNA. The DNA is then extracted 



 
Introduction 

 

 24 

using a standard phenol–chloroform extraction protocol. A small amount of the digested 

DNA of each digested sample is checked on an agarose gel for the appearance of a smear of 

slightly digested DNA. The DNA fragments are then size selected on an agarose gel or 

sucrose gradient ultracentrifugation and sequenced (Boyle et al., 2008; Hesselberth et al., 

2009). The 5′ end of a sequence tag generated by DNase-seq corresponds to the site of a 

DNase I cut, and regions of enrichment or DHS sites so identified can contain binding sites 

of multiple factors within it.  

 

 

Adapted by permission from Nature Publishing Group: Furey 2012, copyright 2012 

Figure 5. High depth DNase seq and identification of transcription factor footprints. This 

technique uses the DNase I enzyme to cut the chromatin regions that are sensitive to the enzyme 

(open chromatin or DNase hypersensitive sites). The resulting fragments are then enriched using 

size selection followed by cDNA library creation and high throughput sequencing. If the 

sequencing depth is high enough, DNase-seq can also reveal the binding sites transcription factor 

in the DNA. 
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When sequenced at high enough depth (usualluy >200 M reads) this technique can also 

identify small regions (35-50bp) DNase I protection corresponding to the binding sites of 

transcription factors. DNase I footprinting has been applied widely to study the dynamics of 

transcription factor occupancy and cooperativity within regulatory DNA regions of 

individual genes, and to identify cell- and lineage-selective transcriptional regulators. For 

the ENCODE project, researchers applied the DNase-seq technique to study the chromatin 

accessibility and transcription factor binding in various cell types. Thurman et al. 2012,  

carried out DNase-seq in 125 cell and tissue types to identify ~ 2.9 million DHS that 

contained almost all known cis-regulatory elements. Analysis of these DHSs revealed novel 

relationships between chromatin accessibility, transcription, DNA methylation, and 

regulatory factor occupancy patterns. Neph, Vierstra, et al. 2012  carried out high depth 

DNase-seq to identify 45 million transcription factor footprints across 41 diverse cell and 

tissue types. These footprints were used to create an extensive core human regulatory 

network of 475 sequence-specific TFs (Neph et al., 2012b). We will be comparing these 

footprints with the footprint calls from other algorithms in our benchmarking study described 

in Chapter 3.1. 

 

Another technique that is commonly used for identifying open chromatin regions is ATAC-

seq. This is a rapid and sensitive method to identify open chromatin sites (Buenrostro et al., 

2013). However, this method cannot be used to identify TF footprints. DNase-seq, on the 

other hand, that can potentially identify the transcription factor binding sites on the entire 

genome. ChIP-seq experiments can only identify the binding sites of a single transcription 

factor at a time. As mentioned earlier, one of the main goals of my PhD project was to 

identify the binding partners of Myc. In this thesis, we will demonstrate that the DNase-seq 

technique can be used to obtain the complete transcription factor binding map in the genome 
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of the cells of our interest. Although the resolution is not as good as ChIP-seq data, it can 

still provide a good idea about the most important TF-TF interactions in the system (Barozzi 

et al., 2014).  

 

1.1.5 Public datasets 

As described above, the different next generation sequencing technologies that have been 

developed in the recent years make it possible to study the epigenome of an organism in 

detail. The ENCODE Project (Consortium, 2004; ENCODE Project Consortium et al., 2007) 

used these approaches with the goal to create a catalogue of the regulatory elements in human 

cells, studying the epigenomic signatures of cells grown in culture. This was followed by 

the Roadmap Epigenomics Project (Romanoski et al., 2015)  that build on the ENCODE 

project to utilizes different next generation technologies to map DNA methylation, histone 

modifications, chromatin accessibility and small RNA transcripts in stem cells and primary 

ex vivo tissues selected to represent the normal counterparts of tissues and organ systems 

that are often found to be involved in human disease. These projects created a reference 

collection of normal epigenomes that can be used for comparison and integration with 

various other studies. For this thesis, we will be using some of these datasets that will be 

described in the Results chapters. 

 

1.2 Objectives 

The main objectives of this PhD thesis are: 

1.2.1 Identify possible binding partners of Myc in cellular growth 
and lymphomagenesis 
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As described earlier, the transcription factor Myc is an oncogene that is overexpressed in 

many different cancers (Amati et al., 1993; Blackwood and Eisenman, 1991; Lüscher and 

Larsson, 1999; Walhout et al., 1997). When Myc is overexpressed it binds to almost all open 

promoters. Still, it only up- or down-regulates a specific subset of genes (Sabò et al., 2014). 

Moreover, the precise mechanism by which Myc regulates gene expression leading to 

tumorigenesis is not yet fully understood. Therefore, the main goal of this PhD project was 

to identify possible binding partners of Myc, either directly or indirectly (“piggy backing”) 

involved in DNA binding and regulation of gene expression. We apply an approach that 

integrates different NGS data such as high-depth DNase-seq, RNA-seq and ChIP-seq data 

to identify possible binding partners of Myc involved in gene-regulation in the 3 Myc models 

described before: MycER, Eµ-myc and tet-MYC (see sections 3.3-3.5).  

1.2.2 Choosing a DNase-seq footprint caller 

To identify the transcription factor binding footprints from a high depth DNase I seq 

experiment we need to use specialized algorithm called footprint callers. To the best of our 

knowledge, at the time of this study no study had been done to compare the available 

footprint callers. As the footprint calling method play a crucial role in the accuracy of the 

footprint identified, we carried out a benchmarking study to identify the best footprint caller 

that we could use to analyse our DNase-seq data. We tested these methods on ENCODE 

data and assessed the consequences of different footprint calls on the reconstruction of TF-

TF regulatory networks (see section 3.1).   

1.2.3 Developing a pipeline and methods for the analysis of low 
depth and high depth DNase-seq data 

Although many studies had been done including the ENCODE project, at the time of the 

study there was no pipeline for the automation of the steps for identifying transcription factor 
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footprints from high depth DNase seq data. Therefore, an intermediate goal of this PhD 

project was to develop a pipeline that can carry out step by step analysis of the DNase seq 

data from the raw sequencing reads which was essential to achieve the major goal of the 

project (see section 3.2).  
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Chapter 2  

Materials and methods 

i. Benchmarking study of footprint callers  

Digital footprinting (DGF) data and ChIP-seq datasets for TFs in K562 (human myeloid 

erythroleukemia), HepG2 (liver hepatocellular carcinoma) and SkMC (skeletal muscle) cell 

lines were downloaded from the ENCODE project (Consortium, 2004; Thurman et al., 

2012). The FIMO (Grant et al., 2011) tool was used to match footprints to the corresponding 

transcription factors PWMs. Genomic coordinates of the footprints published in (Neph et 

al., 2012a) in K562, HepG2, and SkMC cell lines, based on the same DGF data and obtained 

with the FOS metric (Neph et al., 2012a), were downloaded from 

ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/fo

otprints/. Thresholds on footprint calls for DNaseR (Madrigal, 2013) and Wellington v.0.1.0 

were chosen in order to obtain a number of footprints comparable to (Thurman et al., 2012). 

Only footprints contained in DHSs were considered. Network reconstruction was performed 

according to the procedure described in (Neph et al., 2012a). For each TF, a window of 10 

kbps centered on the RefSeq TSSs was scanned for matches of PWMs in TRANSFAC 

(Matys et al., 2006) using FIMO and overlapped with footprints using BEDOPS. Receiver-

Operator Characteristics (ROCs) and Areas Under the Curve (AUCs) were generated using 

the ROCR package (Sing et al., 2005). The igraph R package (Cs´ardi, 2006) was used to 

compute large-scale properties of the inferred networks and to generate random networks. 
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ii. DNase-seq analysis pipeline 

The pipeline was completely written in R/Bioconductor (R Development Core Team, 2013). 

We used the FASTX toolkit (Pearson et al., 1997) for pre-processing raw FASTQ files. 

Alignment of the reads to the reference genome is carried out using the Burrows Wheeler 

Aligner (BWA) (Li and Durbin, 2009), with standard parameters. DNase-hypersensitive 

sites are identified (DHSs) are identified using the MACS peak caller (Feng et al., 2012) 

with a p-value cut-off of 10-5 and mfold cut-off of 7.3. The Wellington algorithm (Piper et 

al., 2013) is used for calling footprints on the DHS regions obtained from the DHS-calling 

block of the pipeline. The FIMO tool is used for matching footprints to transcription factors 

Motif over-representation analysis is carried using Pscan (Zambelli et al., 2009). De novo 

motif analysis using MEME-chip (Bailey and Elkan, 1994; Machanick and Bailey, 2011). 

 

iii. Integration of MycER and Eµ-myc DNase-seq data with ChIP-seq and RNA-seq 

We used ChIP-seq samples and RNA-seq samples obtained in 3T9MycER and Eµ-myc systems. 

The time-points used in 3T9MycER are 0h and 4h after OHT treatment. In Eµ-myc system, the 

samples used are: B-cells from control mice or (C),  B-cells from pretumoral Eµ-myc mice 

at 5-6 weeks of age (P) and B-cells from Eµ-myc tumour mice at 12-16 weeks of age (T) 

(Sabò et al., 2014). To generate qualitative heatmaps of the overlaps of DHSs with ChIP-seq 

peaks we used the ‘compEpitools’(Kishore et al., 2015) R package. For motif analysis, we 

used MEME (parallel version (Machanick and Bailey, 2011), CUDA-MEME (Liu et al., 

2010), STEME (Reid and Wernisch, 2014) and the command-line version of DREME 

(Bailey, 2011). 
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iv. Single feature and Random forest classification 

Single feature classification of the data was carried out using the ROCR package (Sing et 

al., 2005). List of up, down and no-deg genes were obtained from RNA-seq experiments 

(time-points 0h and 4h for 3T9MycER and C, P, T for Eµ-myc). While for the random forest 

classification we used the ‘cforest’ function from the ‘party’ R package (Hothorn, 2005; 

Strobl et al., 2007). The predictive performance of the models was evaluated using a k-fold 

(k=10) classification approach and the average AUCs were calculated using the ROCR 

package. The relative importance of the features was calculated using the variable 

importance function included in the ‘RandomForest’ function.  

 

2.1 R Functions and methods: 

To provide a way to store the DHS and the related footprint information in one place we 

developed a new S4 R class called the ‘DHS’ class (Figure 6). Each element of an object of 

this class contains 3 slots that are described below: 

 

DHS slot: a Grange object containing the position of a ith DHS in the genome. The length 

of this GRnage in this slot is always 1. 

 

FP slot:  a GRange object containing all footprints that overlap with the ith DHS. The length 

of this GRange can be more than 1because a DHS can often contain multiple footprints. 

 

PWM slot: a list of GRanges containing the PWM matches to each of these footprints (given 

by FIMO). The length of this list is equal to the length of the GRange in the FP slot, where, 

the ith element in the PWM slot corresponds to the PWMs that are matched by FIMO to the 

ith footprint in the FP slot. 
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Figure 6. Example of the structure of one element of a DHS class. It consists of 3 slots: the first 

slot (top) is the “dhs” slot contains is a GRange with the position of the ith DHS on the genome. 

The second slot is the “fp” slot, containing a GRange with the positions of the footprints that 

overlap with the ith DHS. Finally, the third slot is the “PWM” slot, which is a list of GRanges 

containing the PWM matches to each of the footprints in the “fp” slot. 

 

‘DHS class’ specific methods: 

We also developed specific methods for the DHS class that are listed below: 

 

fpUnderSummit: returns the footprint closest to the summit of a given ChIP-seq peak 

(Figure 7). This information can be useful in two ways: first, to estimate the efficiency 

of the footprinting experiment. Most of these footprints under a summit are expected to 

contain the motif of the ChIP-ed transcription factor. Second, if the transcription factor 
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that was ChIP-ed forms dimers or trimers with other transcription factors, we can identify 

the motif of its partner transcription factors in these footprints. 

 

 

Figure 7. Example showing the nearest footprint to a summit 

 

calOpenChromatin: calculates the percentage of open chromatin given a DHS. 

separatePromoters: returns all the elements containing DHSs that are on promoters. 

separateDistals:  returns the elements containing DHSs that are on distal regions. 

calFooprintsOverlaponGR: given a list of GRanges and a DHS object, returns a data 

frame, where each column corresponds to a single PWM class, and the rows the number 

of FP matches to the corresponding PWM class for each GRange.  

 

In addition to the footprint and DHS specific functions, during this PhD I also developed 

functions to facilitate motif analysis. These functions are described below: 

 

submitFIMOjob: given a set of Granges and the specified TF or TFs, runs FIMO (with 

the p-value cut-off 10-4) on all the given set of sequences using the PWMs that 
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correspond to the TFs, reads the output and annotates the result with information about 

the family, class and consensus and returns the output as a GRanges object. 

 

FIMOtoGR: takes in the path of a FIMO output file in the .txt form return the results in 

a Granges format. 

 

motifToSeqLogoHTML: given a list of PWM names, create a HTML page containing 

the list of PWMs and their corresponding sequence logos using the seqLoGo 

(https://github.com/carushi/seqLoGo) and R Markdown. 

 

methodPscan: Given two sets of sequences, one positive set and the other a negative or 

background set in the GRanges format, the method converts them to the FASTA format, 

submits them to PScan to run discriminative motif analysis, carries out multiple testing 

correction (Benjami-Hochberg) and filters the resulting list based on the user provided 

corrected p-value cut-off (default 0.01) and writes it in a .xlsx or .txt format. In case of 

ChIP-seq peaks it also provides the user the option to reduce the size of sequences to a 

small region around the summit for running the analysis. 

 

More details about the materials and methods can be found in the Results chapters 3.1-

3.5. 
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Chapter 3  

Results 
 

3.1 Benchmarking study of footprint callers  

3.1.1 Introduction 

High depth DNase-seq experiments can be used to identify genome-wide regions of local 

DNase I protection (footprints) created by the binding of transcription factors to the DNA. 

The detection of these transcription factor footprints from high depth DNase-seq data 

involves the identification of a specific signature (sharp trough) in the read density and 

requires dedicated algorithms for its detection. One of the first approaches for footprint 

detection was developed and applied to Saccharomyces cerevisae (Hesselberth et al., 2009): 

this method detects short regions of reduced DNase I cleavage density compared to the 

immediately flanking regions. Subsequently, a method was also developed for mammalian 

genomes based on a five-state hidden Markov model (HMM) (Boyle et al., 2011). However, 

a software implementation of the method was not released. This was followed by other 

methods such as CENTIPEDE (Pique-Regi et al., 2011), that uses hierarchical Bayesian 

mixture model to identify genome-wide transcription factor binding sites: first, it matches 

PWMs from a database to a set of genomic sequences and then classifies the matches as 

bound or not-bound based on read counts from DNase-seq data around the PWMs. This 

method therefore only provides the possibility to search for footprints of transcription factors 
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with an already identified PWM. For the ENCODE project, Neph et al. 2012 adapted the 

previous method on yeast (Hesselberth et al., 2009) to carry out digital DNase-seq 

footprinting (high depth DNase-seq) data in human samples. However, the algorithm was 

not released at the time of this study. 

 

The approaches described above were reviewed and compared by Piper et al., 2013, who 

introduced Wellington, an algorithm for footprint detection, which leverages on a 

characteristic pattern of strand imbalance in the sequenced fragments surrounding the 

protein-DNA binding sites. There, Wellington scored best against the previously published 

tools. Another tool, called DNaseR (Madrigal P., 2014) and published on Bioconductor, 

utilizes the Skellam distribution to detect the imbalance between sequencing reads on the 

two strands, thus representing a potential alternative to Wellington.  

 

At the time of developing our DNase-seq pipeline, there were no studies comparing 

Wellington to DNaseR. Therefore, in order to select the best footprint caller for our pipeline, 

we carried out a detailed comparison of the accuracy of the footprint calls given by the two 

methods, as well as those obtained using the FOS (Neph et al., 2012c) and their effects on 

the resulting TF-TF regulatory networks. The results of benchmarking study have been 

published in Barozzi et al., 2014. 

 

3.1.2 Materials and methods 

The performances of DNaseR and Wellington footprint calls were compared using DGF data 

from the K562 (chronic myelogenous leukaemia) cell line. The footprints from Footprint 

Occupancy Score (FOS) on the same cell line (Neph et al., 2012a) were also included in the 
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comparison. Thresholds on footprint calls for DNaseR (Madrigal, 2013) and Wellington 

v.0.1.0 were chosen in order to obtain comparable number of footprints using the two 

methods  (DNaseR: 1,075,979; Wellington: 1,833,281), which was also comparable to the 

number reported by Neph et al. (498,683). ChIP-seq data corresponding to 11 transcription 

factors in K562 cells were downloaded from ENCODE to validate the footprint predictions 

obtained with DNaseR and Wellington. For each TF, a window of 10 kbps centered on the 

RefSeq TSSs was scanned for matches of PWMs in TRANSFAC (Matys et al., 2006) using 

FIMO (Grant et al., 2011) and overlapped with footprints using BEDOPS. Receiver-

Operator Characteristics (ROCs) and Area Under the Curve (AUCs) were generated using 

the ROCR package (Sing et al., 2005). ROC curves are used to visualize the performance of 

a binary classifier; by plotting the false positive rate against the true-positive rate. 

Consequently, the AUC of a ROC curve is a measure of how well a classifier can distinguish 

between the two classes. Network reconstruction was performed according to the procedure 

described in (Neph et al., 2012a). The igraph R package (Cs´ardi, 2006) was used to compute 

large-scale properties of the inferred networks and to generate random networks. 

 

3.1.3 Results 

 Comparison of footprint callers 

Using the digital footprinting datasets in K562 cell line from ENCODE, we followed the 

approach used by Piper et al. 2013 to compare footprints obtained by DNaseR, Wellington 

and  Neph, et al. 2012. First, we extracted the footprints calls on the DHSs in the K562 cell 

line with DNaseR and Wellington and compared them to the set of footprints obtained using 

the FOS metric. While Wellington runs only on the genomic coordinates of the DHSs, 

DNaseR looks for footprints on the entire genome. Hence, to make the tools comparable we 
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restricted the footprint search of DNaseR to the DHSs only. DNaseR consistently identified 

more footprints than Wellington at comparable stringency levels.  

 

 

Barozzi et al, Front. Genet. 2014 

 

Figure 8. Number of footprints called by DNaseR and Wellington at different stringency levels. 

ChIP-seq experiments are used to identify the binding sites of transcription factors to the 

DNA genome-wide. Therefore, the presence of a ChIP-seq peak overlapping a footprint can 

be represent a validation of the presence of a transcription factor on the footprint. We used 

17 binding patterns from ChIP-seq experiments corresponding to 11 TFs in K562 to validate 

the 3 sets of footprint calls obtained using Wellington, DNaseR and FOS. For these 11 TFs, 

we computed the ROCs for the predictions generated by the binding motifs only (Figure 9A) 

and for the three sets of footprint calls mentioned above (Figure 9 B-D). A footprint that 
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overlapped with one of the known binding motifs of a specific TF was considered as a 

prediction corresponding to an actual binding event of the TF.  

 

 

Barozzi et al, Front. Genet. 2014 
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Figure 9.  (A) Receiver-Operator Characteristic (ROC) curves for the predictions provided by the 

binding motifs alone. (B–D) ROCs for the sets of footprints obtained by DNaseR, Wellington and 

for the set used in (Neph, et al. 2012). The kinks in the ROCs of the Neph footprints indicate the 

absence of the data at those cut-offs. (E) AUCs of ROCs obtained using binding motifs alone, 

DNaseR, Wellington and the set used in Neph et al. 2012 for the 17 binding patterns from ChIP-

seq experiments corresponding to 11 TFs in K562 cell line. The Wellington tool shows the highest 

predictive power irrespective of the TF considered. (F) The running times of DNaseR and 

Wellington with respect to decreasing p-value cut-offs. DNaseR ran considerably slower at lower 

p-value cut-offs. 

In figure 9E, we show the global performances of the methods by the AUC of each of the 

ROCs. Irrespectively of the considered TF, the method with the highest predictive power is 

always Wellington. However, it must be noted that the AUC calculated using the FOS score 

(Neph, et al. 2012) might have been underestimated, as we could not perform a more 

permissive footprint call, due to the lack of the required software. Remarkably, for many 

TFs, the overlap of their motifs with DHS coordinates already provided a considerably good 

prediction of their binding sites without the need to consider any footprint information. For 

some of these TFs the prediction was comparable to (USF, NRSF, SPI1, MAX, JUND) or 

better (CTCF) than the footprints calculated in (Neph et al., 2012b). For factors, like CTCF, 

due to its 11 zinc fingers has a highly specific motif and almost always binds to regions 

where its motif is present. On the other hand, the performance of DNaseR remained 

consistently poorer than the other methods, indicating that the majority of the DNaseR 

footprints do not correspond to validated binding sites of a TF. Moreover, the DNaseR calls 

were adding new footprints to the sets of footprints for different significance thresholds that 

did not overlap well with each other; on the other hand, Wellington showed the expected 

behaviour.  
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We compared the running times (Figure 1F) of Wellington and DNaseR on chromosome 19 

for varying significance thresholds. While Wellington consistently ran at approximately the 

same speed, DNaseR ran much slower for permissive calls. 

 

 Robustness and characteristics of the inferred networks 

We used the two sets of footprints to reconstruct the TF-TF regulatory network on K562, 

skeletal muscle cells (SkMC) and HepG2 data as done in Neph et al. (2012). In addition, we 

studied the impact of sequencing depth on the network reconstruction by running Wellington 

on progressively down-sampled alignment files for the three cell lines, and reconstructing 

the corresponding TF-TF networks. The regulatory networks thus obtained were compared 

against each other by counting how often a specific edge is present between each pair of 

nodes. The heatmap in figure 2 displays the edge-to-edge correlation between all pairs of 

samples.  

 

The network reconstruction using footprints called by Wellington or using the FOS score 

provides a better separation of cell types compared to the network obtained from DNaseR 

footprints. In addition, the networks obtained using Wellington with decreasing sequencing 

depth remain very similar. This indicates that most of the footprints that are not identified at 

lower depths are weak footprints that do not correspond to real interactions between TFs 

with their annotated binding preferences. Based on these results we choose Wellington as 

the tool of choice for footprint calling. 
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Figure 10. Heatmap showing the edge-to-edge correlation among the TF-TF networks 

reconstructed with the sets of footprints obtained with DNaseR, Neph, Wellington in three 

different cell lines (K562, SkMC, HepG2). This heatmap compares the relationship between the 

networks obtained in the 3 cell lines that were studied (K562, Hepg2 and SkMC). The suffix 0.7 

and 0.3 in the sample name indicates the networks obtained by down-sampling the reads to use 

70% and 30% of the original reads respectively. Irrespective of the read density, the network 

reconstruction using footprints called by Wellington or using the FOS score provides a better 

separation of cell types compared to the networks obtained from DNaseR footprints.  

3.2 DNase-seq analysis pipeline 

3.2.1 Introduction 

As stated before, the main goal of this thesis was to identify binding partners of Myc in the 

3T9MycER and Eµ-myc using DNase-seq footprinting data. The DNase-seq technique 

identifies genome-wide open chromatin regions and if the sequencing depth is high enough 
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(usually more than 100,000,000 reads) it can also identify small regions of DNase I 

protection (around 30-50bp) due to the binding of a protein such as a transcription factor. 

These regions are called transcription factor footprints. However, at the time of this study 

there were no pipelines that allowed the automation of all the steps from processing raw 

sequencing data to the identification of open chromatin regions (DNase I Hypersensitive 

Sites, or DHS) and footprints, followed by motif analysis. To address this issue, we 

developed a pipeline that automates all data analysis steps for both high-depth and low-depth 

DNase-seq data. The pipeline can also be used to analyze FAIRE-seq (Formaldehyde-

Assisted Isolation of Regulatory Elements), which is another technique used to identify open 

chromatin regions.  

 

3.2.2 Materials and methods 

 DNase-seq pipeline 

The pipeline is written in R/Bioconductor and step-by-step transforms raw FASTQ files 

obtained from Illumina sequencing into DHSs and TF footprints in the standard BED 

(Browser Extensible Data) and bigBed format. In addition, it also provides options for 

running motif analysis on the DHSs and footprints. The pipeline is divided into five blocks 

that are detailed below. 

 

Pre-processing block 

The pre-processing block offers three different options for filtering FASTQ files: reads with 

low quality scores can be 1) discarded, 2) trimmed and/or 3) nucleotides with low quality 

scores can be masked using the FASTX toolkit (Hannonlab.cshl.edu/fastx_toolkit/). The 

filtered reads are then passed on the alignment block. 
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Alignment block 

This block aligns the reads to the reference genome using the Burrows Wheeler Aligner 

(BWA) (Li and Durbin, 2009), with default parameters. The output is stored in the BAM 

format containing the information regarding the alignment of each read.  

 

DHS-calling block 

This block of the pipeline carries out DHS-calling to identify regions of open chromatin 

from the BAM files using the Model-based Analysis of ChIP-seq (MACS2) peak caller 

(Feng et al., 2012) with the user selected p-value cut-off (default 10-4). The outputs of this 

block are the genomic coordinates of the DHSs in the BED and bigBed format. The bigBed 

files can be exported to a genome browser for visualization. 

 

Footprint calling block 

The footprint calling block of the pipeline uses the Wellington algorithm (Piper et al., 2013)  

based the benchmarking to choose the best footprint caller study (chapter 3.1). We use the 

user selected p-value cut-off (default 10-10) to call footprints on the DHSs obtained from the 

previous block. The pipeline outputs the identified footprints in the BED and bigBed format.  

 

Motif analysis block 

The Motif analysis block of the pipeline provides three options, namely:  

 

a. finding over-represented motifs using Pscan (Zambelli et al., 2009) 

This option allows the user to search for motifs that are enriched in a set of sequences 

compared to a background set. The input required for this analysis is a PWM (Position 
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Weight Matrix) library, a set of sequences of interest and a background set of sequences in 

the FASTA format. We use the command line version of the Pscan tool to run this analysis. 

 

b. de novo motif analysis using MEME and DREME  

This option carries out de novo motif enrichment analysis in a set of sequences of interest. 

MEME motif search is based on expectation maximization (EM) algorithm which allows 

parameter estimation in probabilistic models with incomplete data (Bailey and Elkan, 1994; 

Do and Batzoglou, 2008). Although MEME can discover complex motifs, it may require 

long processing times (>24h) depending on the size of the motif and the size of the 

sequences. DREME on the other hand, uses a non-probabilistic regular expression search 

and is optimized to search short motif sequences (4-8 nt long).  It can therefore, search for 

many small motifs on an entire set of DHSs in a relatively short time (< 1h). 

 

The motifs identified by these two tools are matched to a library of known PWMs using 

TOMTOM (Gupta et al., 2007). We then create a union of the motifs found by the two tools 

and the output is stored in an .xlsx or .txt document containing the identified motif and the 

transcription factor matched to the motif.  

 

 

c. Matching footprints to a known motif using FIMO  

The footprints are matched to a corresponding transcription factor using the FIMO (Grant et 

al., 2011) tool: FIMO scans for PWMs from a given PWM library in the footprint sequences 

and returns the matches in a BED format. 

 



  Results: DNase-seq analysis pipeline 
 

 46 

 

Figure 11. DNase-seq pipeline. The pipeline is divided into 5 blocks. In the first block the raw 

FASTQ files from the sequencer are filtered using the FASTX toolkit 

(Hannonlab.cshl.edu/fastx_toolkit/). Next, in the alignment block, the filtered reads are aligned to 

the reference genome using the BWA (Li and Durbin, 2009) aligner. This is followed by the 

identification of the enriched DNase-hypersensitivity sites (DHSs) on the genome using MACS 

(Feng et al., 2012). If the sequencing has sufficient depth, these DHSs are then passed on to the 

footprint identification block to search for footprints of transcription factors using the Wellington 

(Piper et al., 2013) tool. Finally, the footprint sequences are then matched to their corresponding 

transcription factors, by FIMO (Grant et al., 2011). The user can also choose to run de novo motif 

analysis with MEME-ChIP (Machanick and Bailey, 2011) or motif over-representation analysis 

using Pscan (Zambelli et al., 2009) on the DHSs and footprints. The final output of the pipeline 

are the DHSs and footprints matched to PWMs in the BED and bigBed formats. For low depth 

DHS data, the footprint-calling block is skipped and the DHSs can be sent directly to the motif 

analysis block. All the analysis blocks up to the footprint calling block has been integrated in a 

framework for NGS data analysis and management called HTS-flow (Bianchi et al,. 2016). 

 

The motif analysis methods outlined above require a database containing the PWMs 

corresponding to transcription factor binding sites. To create a comprehensive set of PWMs 

for footprint matching by FIMO, we collected 2433 PWMs from different databases like 
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JASPAR (Mathelier et al., 2014), UniPROBE (Newburger and Bulyk, 2009), HOCOMOCO 

(Kulakovskiy et al., 2016), SwissRegulon (Pachkov et al., 2013) as well as other published 

PWM sets as those from Bucher, 1990, Berger et al 2008, Hallikas et al 2006, Wei et al. 

2010, Jolma et al., 2010, Jolma et al., 2013 and Jolma et al., 2015 (includes composite 

motifs). Many transcription factors bind together as a complex and as a result recognize new 

composite sites which vary largely from their individual motifs (Jolma et al., 2015). Jolma 

et al. 2015 applied a technique called consecutive affinity-purification systematic evolution 

of ligands by exponential enrichment (CAP-SELEX) to identify TF-TF pairs that bind to the 

DNA together. They identified 315 TF-TF pairs that recognize 618 heterodimeric motifs, 

which are referred to as “composite motifs”. 

 

It is crucial to note that different transcription factors can bind the same or very similar 

PWMs and the same transcription factor can be associated to similar PWMs. Hence, when 

matching genomic regions to PWMs from multiple databases, we often found multiple 

transcription factors associated to the same genomic region. To remove this redundancy and 

to allow better summarization of results, we calculated the similarity between pairs of PWMs 

in our collection using a Pearson coefficient-based function from the TFBSTools R package 

(Ge, 2015). If the correlation between two PWMs is >= 0.9, they are placed into the same 

class. PWMs that correspond to the same transcription factor are automatically put in the 

same class, irrespective of their similarity score. Using this approach, we classified the 1815 

non-composite motifs into 445 classes and the 618 composite motifs into 295 classes. We 

created an easy to read HTML page containing the name of the PWM, its corresponding 

class (based on similarity), the protein family (based on common evolutionary origin) the 

transcription actor belongs to and the sequence logo for all the 2482 motifs that we collected. 

Figure 4 shows a snapshot of the HTML page. 
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Figure 12. Snapshot of the HTML page containing the list of PWMs collected from various 

sources. The first column contains the name of the PWM, the second contains the name of the 

corresponding transcription factor, the third contains the class of the transcription factor based on 

the similarity between factors, the fourth column contains the name of transcription factor family 

and the fifth column contains the sequence logo corresponding to the PWM. 

 

All the blocks of the pipeline up to the footprint-calling block has been added to HTS-flow 

workflow management system (Bianchi et al., 2016), a framework for NGS data analysis 

and management. 

 

We tested the pipeline on the DNase I seq samples from 3T9MycER system at low depth (2 

replicates each A and B) and high depth (without replicates) in 0h and 4h after OHT 

treatment and in the Eµ-myc system from control (C, non-transgenic mice), pre-tumoral (P, 

an intermediate stage before the development of full-fledged tumours) and the tumoral stage 

(T). The inputs used for the DNase-seq analyses were sonicated genomic DNA samples. 
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3.2.3 Results 

 Application of the DNase-seq pipeline to 3T9MycER and Eµ-myc 

i. Low depth DNase-seq and FAIRE-seq 

We tested the pipeline on low depth DNase-seq and FAIRE-seq data (~ 60M raw reads) in 

the 3T9mycER samples. We obtained an average of 35M uniquely aligned reads in DNase-seq 

and 40M in FAIRE-seq samples (using sonicated genomic DNA as a control). We called an 

average of 36,000 peaks/DHSs in the DNase-seq samples (spanning ~1.7% of the mouse 

genome) and an average of 14,000 peaks for FAIRE-seq (spanning ~0.8% of the mouse 

genome). More than 60% of the peaks called by FAIRE-seq experiment were also included 

in the matched DNase-seq peaks, indicating that the two methods have a significant overlap. 

However, the FAIRE-seq signal was consistently weaker, displaying a lower signal to 

background ratio and thus providing a lower resolution when compared to the DNase-seq 

signal. Due to this poor performance of the FAIRE-seq in comparison to DNase-seq, we 

chose to focus on DNase-seq experiments for our further analysis on Myc dependent gene-

regulation. 
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Figure 13. Screenshot of the genome browser displaying the low depth DNase-seq (in blue) and 

FAIRE-seq (in red) and the input (black) tracks in 3T9MycER 4h A sample.  

 

ii. High-depth DNase-seq (DNase-footprinting) 

As the low depth DNase-seq experiments showed promising results, we decided to follow 

up these experiments with high depth DNase-seq analysis that could identify genome-wide 

footprints of transcription factors. We analysed high-depth DNase-seq sequencing (>400M 

sequencing reads) in 3T9MycER at 0h (before Myc activation) and 4h (after Myc activation) 

time-points and in Eµ-myc on the Control (C), Pre-tumoral (P) and Tumoral (T) samples. 

Using the DNase-seq pipeline (see Chapter 3.2), the number of reads we aligned were 356M 

in 3T9MycER 0h, 357M in 3T9MycER 4h, 312M in Eµ-myc C, 281M in Eµ-myc P and 325M in 

Eµ-myc T. We identified 120,626 and 118,334 DHSs in 0h and 4h 3T9MycER samples, 

respectively. In Eµ-myc, the number of DHSs identified was comparable between C (47,542) 

and P (48,414) and slightly increased to 53,593 DHSs in T sample.  Previous ChIP-seq and 

RNA-seq results in our lab (Sabò et al., 2014) in the Eµ-myc system showed that there is a 

progressive increase in number of Myc binding sites and its mRNA levels from C to P to T. 

The number of DHSs seems to correlate with this increase in this over-expression of Myc. 

It is possible that the over-expression of Myc in the P and T samples indirectly causes the 

opening of new chromatin regions. We characterized the location of these DHSs on the 

genome (Figure 14) and found that the majority of the DHSs in the 3T9MycER samples were 

on genebody and intergenic regions. The DHSs in Eµ-myc samples C and P are distributed 

almost equally between the genebody, intergenic and promoter regions while in the sample 

T there were more DHSs on the intergenic and genebody regions, similar to the 3T9MycER 

samples. This shows that when Myc is expressed at low levels it binds more to open 

promoters but at high level it starts invading also the distal regions (Sabò et al., 2014). 
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Figure 14. Distribution of DHSs (from high-depth DNase-seq experiments) on promoters, 

intergenic regions and genebody for (a) 3T9MycER 0h and 4h (left to right) and (b) Eµ-myc C, P and 

T (left to right). In the 3T9MycER samples we detect a higher percentage of peaks on genebody and 

intergenic regions compared to the Eµ-myc samples. 

Most of the DHSs that we identified earlier in the low depth DNase-seq samples are also 

found in the high depth samples (Figure 15). 
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Figure 15. The overlap of low depth and high depth DHSs in 0h and 4h 3T9MycER. The majority 

of the low depth DHSs (>96%) are also present in the high depth data. 

We obtained 528,137 footprints in 3T9MycER at 0h and 328,715 at 4h. In Eµ-myc, we 

identified 90,452 and 85,841 footprints in C and P respectively, and almost thrice the number 

in T (286,041 footprints). The sample T as mentioned before, is a tumour condition, and 

therefore expected to have more DHSs and footprints compared to the other samples. Figure 

16 shows the tracks of the complete and the per base (reads shortened to a single nucleotide 

base from the 5′ end) signals. The footprints identified by Wellington show a good 

correspondence with the per base signal (Figure 16). 
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Figure 16. Tracks showing the signals of DNase-seq reads in 4h 3T9MycER, corresponding to the 

DHS, per base signal and the footprints. The red troughs highlight the drop in the DHS signal 

corresponding to the position of the footprint. 

 

Recently, it has been shown that the footprinting efficiency of transcription factors is 

dependent on their residence time on the DNA (Sung et al., 2015), thus raising questions 

about the use of footprinting data in identifying TF binding sites. In order to test this 

observation, we computed the digestion profiles of three transcription factors Myc, Ctcf and 

Sp1 around their motifs at low Myc (0h) and high Myc (4h) conditions (figure 8). Ctcf, with 

its 11 zinc fingers, forms a very strong bond resulting in a longer residence time and thus 

leaving stronger footprint irrespective of the Myc levels as evident from its profiles. Sp1 has 

only one zinc finger and therefore forms a weaker bond with the DNA, resulting in low 

DNase I protection. Although weaker than Ctcf, the profile of Myc unlike Sp1 shows a clear 

region of DNase I protection, indicating that its footprints can be trusted to be real.   As 

expected, the profiles of both Ctcf and Sp1 remained unchanged during the transition from 

0h to 4h. The profile of Myc at 4h however, shows a visible difference when compared to 

its profile at 0h, indicating that the DNase I protection profiles are affected by the 

concentration of the transcription factor inside the nucleus.  Moreover, this analysis showed 

that indeed some transcription factors such as Sp1 (owing to their structure and the site they 
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recognize) might form bonds not strong enough to form a footprint, factors such as Myc and 

Ctcf do create identifiable footprints. Hence, the DNase-seq technique can be confirmed to 

be a useful tool for identifying the binding of the transcription factors that leave a footprint. 

 
         a		Ctcf	0h									 	 	 												b		Ctcf	4h	

 

    
          c		Myc	0h		 	 	 	 	d		Myc	4h 
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   e		Sp1	0h	 	 	 	 	 f		Sp1	4h	
 

 

Figure 17. Aggregate per base DNase I cleavage patterns for three transcription factors in the 

3T9MycER cells in untreated (0h) and treated (4h) conditions for (a-b)(L-R) Myc 0h and 4h (c-d) 

Ctcf 0h and 4h (d-e) Sp1 0h and 4h. The profiles show the expected trend of DNase I digestion for 

the three factors. Ctcf with a complex motif has well defined DNase I protected regions 

(footprints), Myc shows an intermediate level of digestion and the DNase I protection increases 

after 4h. Sp1 shows the lowest level of DNase I protection with poor footprints. 

 

Next, we compared the differences between the two systems in relation to DHSs. Figure 18 

shows the overlap among the all DHSs in all conditions. Around 73% of the DHSs in 0h 

3T9MycER overlap with those in 4h. In Eµ-myc, the overlap of the DHSs between conditions 

ranged from 82% for C with P to 81% for P with T and finally to 78% for C with T. This 

indicates that the regions of open chromatin do not change drastically during the transition 

from 0h to 4h and from C to P to T and therefore do not depend completely on the Myc 

levels (Sabò et al., 2014). However, the overlap of the DHSs of Eµ-myc with those of 

3T9MycER for all the conditions was only around 58%, indicating that while there is a common 

set of DHSs, there are also many DHSs specific to each system. This is expected, since the 

two systems 3T9MycER (fibroblasts) and Eµ-myc (B-cell lymphoma) are biologically very 
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different. A similar trend is seen also with the footprints, with ~68% of the C and P footprints 

overlapping with the T footprints. In 3T9MycER too, there is a good overlap of the footprints 

of 0h with that of 4h (>70%). 

 

	 	 						a	DHS	overlaps	

 

   b	Footprint	overlaps	
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Figure 18.  (a). Heatmap showing the percentage of overlap among the DHSs of 3T9MycER (4h/0h) 

and Eµ-myc (C, P and T). The overlap among the DHSs of the same system is higher than the 

overlap between the two systems is low (>67% vs. ~58%). (b) Heatmap showing the percentage 

of overlap among the footprints of 3T9MycER (4h/0h) and Eµ-myc (C, P and T). 

The footprints obtained from the pipeline were passed on to the motif analysis block. Around 

50% of the identified footprints were matched to a TF PWM class in our PWM library. The 

remaining footprints are most likely generated by transcription factors whose motif is not 

yet known. This approach is therefore limited by the number transcription factors with a 

known PWM.  
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3.3 Integration of 3T9MycER and Eµ-myc DNase-seq data 

with ChIP-seq and RNA-seq  

3.3.1 Introduction 

The Myc transcription factor acts as a master regulator of cellular growth (Dang, 2013) and 

has been shown to drive differential gene-expression of specific subsets of genes (Sabò et 

al., 2014). As mentioned in Chapter 1, Myc can bind together with other transcription factors 

forming complexes to control the expression of other genes to activate and repress its target 

genes (Kress et al., 2016; Varlakhanova et al., 2011; Wiese et al., 2013).  The most likely  

binding scenarios are: (i) Myc dimerizing with another member of the BHLH family to bind 

the same sequence of DNA as it does with Max, (ii) Myc binding close to another TF  with 

a small gap in between the recognition sites of the two (iii)Myc binding indirectly to the 

DNA through another TF (“piggy backing”) (iv) Myc binding aspecifically to the DNA 

without recognizing a specific motif. Our goal was to identify TFs binding with Myc to the 

DNA by the second and third mechanisms, in order to better understand the process of Myc 

dependent gene regulation using DNase footprinting data in the 3T9MycER and Eµ-myc 

systems.  

 

We first integrated data from DNase-seq experiments with other NGS data, such as ChIP-

seq and RNA-seq, in the 3T9MycER and Eµ-myc systems in order understand the 

characteristics of the Myc bound promoters in terms of histone and DNase I signatures. Next, 

we carried out motif analysis on subsets of Myc bound promoters defined by RNA–seq 

expression data as up, down or no-deg genes. As Myc is known to bind to a specific 

(“canonical”) form of the E-box, namely CACGTG with high affinity and to the non-
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canonical (CANNTG) forms with lower affinity (Walhout et al., 1997), the presence of the 

E-box in our sequences, therefore, serves as a control for our analysis. If Myc binds to the 

DNA through the second mode described above, we should find the motif of another factor 

very close to the E-box motif. In this scenario the ‘composite motif’ set ( see Introduction) 

can be very useful: if we find the composite motif of E-box with another TF, under the 

footprints (close to the summit of the Myc peak), this would strongly indicate the presence 

of a binding complex. Instead, in the case of a ‘piggy backing’ scenario we would instead 

expect to find the binding motif of another TF and no E-box under the footprint (close to the 

summit of the Myc peak). 

 

3.3.2 Materials and methods 

For the integrative analysis we used  ChIP-seq samples for the transcription factors Myc, 

Ctcf, Miz1, Pol II, histone marks H3k4me3, H3k4me1 and H3k27ac, and RNA-seq samples 

obtained in both systems in 3T9MycER (0h and 4h) and Eµ-myc  (C, P and T) systems (Sabò 

et al., 2014). Qualitative heatmaps for studying the overlaps of DHSs with ChIP-seq peaks 

were generated using the ‘compEpitools’(Kishore et al., 2015) R package. Enrichment of 

the ChIP-seq samples were calculated using the ‘GRenrichment’ function in the 

‘compEpitools’. 

 

For motif analysis, we compared MEME (parallel version (Machanick and Bailey, 2011), 

CUDA-MEME (Liu et al., 2010), STEME (Reid and Wernisch, 2014) and the command-

line  version of DREME (Bailey, 2011). CUDA-MEME is a version of MEME (see chapter 

3.2) that harness the power of the highly parallelized CUDA computing platform using 
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graphics processing unit to increase the computing speeds (Nickolls et al., 2008). STEME 

applies suffix trees, a data structure for efficiently storing and indexing a set of sequences 

(strings) to the Expectation Maximization (EM) algorithm, in order to increase the 

computation speed. DREME on the other hand, uses a non-probabilistic regular expression 

search and is optimized to search short motif sequences (4-8 nt long). For motif over-

representation analysis we used the command line version of the Pscan tool ( see Chapter 

3.2). 

 

3.3.3 Results 

i. Myc binds to already open DHSs 

We visualized the overlap of DHSs from high depth DNase-seq experiments (Figure 19) 

with ChIP-seq peaks of Myc, Ctcf, Miz1 and DNA Polymerase II (Pol II) and histone marks 

in the 3T9MycER and Eµ-myc systems respectively using heatmaps on the promoters in 

chromosome 1. In both systems, more than 70% of the Myc peaks overlap with a DHS, 

indicating that Myc binds to regions of DNA that are already open and does not act as a 

pioneer transcription factor, in agreement with previous studies (Soufi et al., 2012, 2015). In 

addition, more than 95% of the DHSs overlap with an H3K4me3, H3K27ac and a Pol II 

peak, indicating that these Myc-bound peaks are actively transcribed regions.  

 

In both heatmaps, we see three distinct clusters of peaks/DHSs. The first cluster contains 

Myc bound regions with high H3K4me1, H3K27ac, H3K4me3 and CpG content that also 

overlap highly with DHSs indicating actives promoter regions. The second cluster contains 

mostly regions with no Myc, DHSs, H3K4me1, H3K27ac, H3K4me3 and CpG indicative of 
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closed and inactive regions. Finally, the third cluster contains regions that are not bound by 

Myc but contain DHSs, high levels of H3K4me1, and low levels of H3K4me3 and H3K27ac 

indicative of open but inactive promoters. Thus, the heatmaps show that the DHSs change 

very little between the time-points in 3T9MycER or between conditions in Eµ-myc and both 

systems from similar clusters in the heatmaps. 

 

a 3T9MycER                  Chr 1 
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b Eµ-myc         Chr 1   

 

Figure 19. Heatmap showing the presence or absence of peaks corresponding to all the promoter 

regions (-2kb, +1kb from the TSS) in chromosome 1 for histone marks (H3K4me1, H3K4me3 and 

H3K27ac), transcription factor (Myc and Ctcf), and Pol II ChIP-seqs and DNase-seq of (a) Eµ-

myc (C, P and T) and (b) 3T9MycER at 0h and 4h. The heatmap also shows regions corresponding 

to CpG islands (CGI) and genes (+ and – strand).  

 

ii. E-box footprints are found close to the summit of the Myc peak 

Many E-boxes are present on the Myc bound promoters and under a Myc peak but they are 

not all recognized and bound by Myc: the sites recognized by a TF are usually close to the 

summit of its ChIP-seq peak. Therefore, if we carry out motif analysis on the complete ChIP-

seq peak the results can be often confusing, as the motif analysis tools may pick up several 

motifs which are not real binding sites of the TF. To limit this effect, it is better to choose a 

smaller region around the summit of the ChIP-seq peak. To choose the best length of the 

peak for motif analysis we used FIMO to search for all e-boxes under the summit of Myc 
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peaks using 200bp (-100/+100 from summit) and 400bp (-200/+200 from summit) and the 

full peak (Figure 20).  Although we identified many E-boxes on the original width of the 

Myc peaks, only a smaller proportion of these are footprinted. In comparison 200bp and 

400bp regions have a higher percentage of footprinted E-boxes indicating that although a 

promoter can contain multiple E-boxes, the E-box that Myc identifies is most likely to be 

very close to the summit. Hence, in the absence of DNase-footprinting data, it would be 

more effective to carry out downstream analysis (motif analysis) on a smaller region around 

the summit such as 400bp or 200bp region.  However, the 200bp regions also contain fewer 

E-boxes. Therefore, in order to be not be too stringent, we used a region of 400bp (+200/-

200bp around the summit) for motif analysis.

	

a			E-boxes	under	varying	Myc	peak	(promoter)	

widths	

	

b		Footprinted	E-boxes	under	varying	Myc	peak	

(promoter)	widths

 

Figure 20. (a) Number of E-boxes identified by FIMO (cut-off 10-5) on promoters of Myc peaks 

under the summit using varying peak widths (200bp, 400bp) and complete peak in 3T9MycER at 0h 

and 4h time-points. The full length peaks contain more E-boxes compared to the 200bp and 400 

bp regions. (b) Percentage of E-boxes that are footprinted under the summit of the Myc peak using 

using varying peak widths (200bp, 400bp) and complete peak in 3T9MycER at 0h and 4h time-points. 
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A higher percentage of E-boxes are footprinted in the 200bp regions compared to the 400bp and 

the full peak. 

 

iii. Up-regulated genes contain more footprinted E-boxes compared to not-deregulated 

and down-regulated genes 

We identified the footprints in the proximity of the promoters of the Myc-bound up, down 

and no-deg genes in the two systems. The number of footprints corresponding to the 

canonical E-box is considerably lower in down genes compared to up and no-deg genes 

(Figure 21 a and b).  

 

Figure 21. Distribution of the up, down and no-deg genes into 3 categories based on the footprint 

data (4h): (1) footprint of the canonical E-box binding proteins, (2) footprint of other proteins and 

(3) no footprints. (a) In 3T9MycER (4h/0h) the percentage of footprinted canonical E-boxes is similar 

in the up, and no-degs and least in the down genes. (b) In Eµ-myc (T/C) the percentage of 

footprinted canonical E-boxes is highest in the up and no-degs followed by the down genes.  
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This indicates that the interaction of Myc with the DNA is more frequently direct in up genes 

as compared to the down genes. It is possible that up-regulation of genes is caused by direct 

interaction of Myc with other transcriptions factors while down-regulation could be caused 

by secondary effects or Myc binding indirectly to the DNA through another transcription 

factor. Myc is known to bind with the transcription factor Miz1 to down-regulate gene-

expression but in our data we could not find the Miz1 motif among the enriched motifs in 

the down-regulated genes.  

 

iv. Myc peaks with footprinted E-boxes have higher signal enrichment than those with 

other footprints or no footprints. 

We compared the enrichment of the Myc peaks with an E-box motif overlapping a footprint 

overlapping (E-box FP) under the summit (+200/-200bp), the enrichment of Myc peaks with 

an overlapping footprint but no E-box (other FP) and the enrichment of Myc peaks without 

any overlapping footprints (Figure 22). For both promoter and distal Myc peaks we see a 

similar trend in the two systems. The enrichment of peaks is highest in the peaks with E-box 

footprint, followed by the peaks with other footprints and finally the peaks without any 

footprints. This indicates that Myc binding is strongest in peaks with an E-box and supports 

the finding that Myc binds directly. On the other hand, lower binding intensity in peaks 

without an E-box could possibly indicate a indirect binding scenario, where Myc is 

associated to the promoters of the target genes through another transcription factor. Finally, 

the lowest binding intensities in peaks without any footprints could indicate either not 

enough resolution to see a footprint or aspecific binding of Myc.  

 

 

 



  Results: Integration of MycER and Eµ-myc DNase-seq data with ChIP-seq and RNA-seq  
 

 66 

a		3T9MycER	

 

 

b		Eµ-myc	

 

Figure 22. Boxplots showing the enrichment of promoter and distal Myc peaks divided into three 

subgroups, those with no footprint (no FP), with a footprint that does not have the E-box sequence 

(with FP other than E-box) and finally the group of Myc peaks that have a footprint that has a E-
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box (with E-box FP) at 0h and 4h in 3T9MycER and in the C, P and T conditions of Eµ-myc. The 

variable widths of the boxes indicate the number of peaks in the category.  

Following this, we also compared the enrichment of the Myc peaks in 3T9MycER at 4h on the 

Myc-bound up, down and no-deg genes (Figure 23). The up and down genes were further 

divided into sub categories based on their log2 fold change ratio as: (i) less than 0.5, (ii) 

greater than or equal to 0.5 and less than 1 (iii) greater than or equal to 1. We see that the 

upregulated genes have highest enrichment of Myc peaks while the downregulated genes 

have the lowest enrichment. Moreover, higher fold change did not imply higher Myc binding 

intensities, instead the binding intensities were highest for the group of Myc peaks binding 

to DEGs (both up and down) with a fold change less than 0.5. These results are in line with 

observation that the upregulated genes have more both (canonical and non-canonical) e-

boxes compared to the no-deg and downregulated genes (Figure 21).  

 

 3T9MycER	(4h)	
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Figure 23. Boxplot showing the enrichment of Myc peaks in 4h 3T9MycER samples binding to 

upregulated and downregulated genes (divided into three categories by their log2 fold change ratio 

values: less than 0.5, higher than or equal to 0.5 and less than 1, higher than or equal to 1). 

v. The E-box motif is one of the most enriched motif in de novo motif analysis  

To identify possible binding partners of Myc in the 3T9MycER (4h) and Eµ-myc (P and T) 

systems we carried out motif analysis on the Myc bound DHS regions. We integrated the 

data from high depth DNase I seq, ChIP-seq and RNA-seq experiments to create functional 

subsets consisting of Myc-bound up, down-regulated and no-deg (not deregulated) genes in 

the two systems. We divided the list by gene expression to identify if Myc interacts with 

specific binding partners to drive up- and downregulation of genes. Therefore, we selected 

the set of sequences under the footprints that overlap with a Myc peak (-200/+200bp around 

the summit) corresponding to the up, down and no-deg genes (-2000/+1000 from TSS) for 

de novo motif analysis. 

 

We used two widely used de novo motif analysis tools MEME and DREME. One of the 

main limiting factors of de novo motif analysis is its extremely long run times, which can be 

affected by three different factors: the length of the sequences, the total number of sequences 

submitted and the motif size. MEME especially can take a very long time to run depending 

on the factors mentioned above. Therefore, several new versions of MEME have been 

proposed to improve the run times, namely, parallel-MEME, cuda–MEME and STEME with 

DREME which is known to be relatively faster but can only search for short motifs (Reid 

and Wernisch, 2014). We compared the run times of all the four tools on sets of 1000, 2000, 

3000, 5000 sequences corresponding to the top scoring peaks of the 3T9MycER 0h low-depth 

DNaseI-seq sample (see 3.3.2).  
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Our results (Figure 24), show that DREME has the shortest run-time and it is able to detect 

all the motifs or parts of the complete motifs detected by MEME on the same set of 

sequences. MEME run times become too long (>24h) when used on >5000 sequences. 

STEME run-times are extremely slow (>24h) even with 2000 sequences and hence we did 

not consider it for further analysis. Based on these results we chose DREME followed by 

TOMTOM for our further analysis. 

 

 

Figure 24. Run times of parallel MEME, CUDA-MEME and DREME. DREME is the fastest of 

the three although it can only be used for short motifs. CUDA-MEME is considerably faster than 

its parallel counterpart while offering the same options.  

 

We ran DREME+TOMTOM on the subsets of sequences described above. As expected, the 

E-box (which is our positive control) was enriched in all the Myc–bound up and down-

regulated subsets (Figure 25, below). In the 3T9MycER 4h and Eµ-myc P, the canonical E-box 

was found on the upregulated genes while the non-canonical E-box was found in the 

downregulated ones. In contrast in Eµ-myc T, both the canonical and non-canonical E-boxes 

were found in the up- and the downregulated genes. Most of the other motifs we identified 

such as NRF1, ETS family and POU family factors, are found in both the up and down lists 
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and therefore are not unique to any specific list. This is because the DREME searches for 

enriched motifs in the single set of sequences compared to the background but these motifs 

might not be specific to that set only. Hence, it is not easy to identify motifs specific to a 

particular set of sequences compared to another set. This analysis therefore, needs to be 

followed by a motif over-representation analysis which identifies the motifs that are specific 

to a given set of sequences compared to another. However, this DREME+TOMOTM motif 

analysis can be used as a quick way to validate the data of transcription factor ChIP-seq 

experiments.  The binding motif of the ChIP-ed transcription factor should be one of the 

most enriched motifs identified using de novo motif analysis on the ChIP-seq peaks.  

 

a		3T9MycER	up	 								 	 	 	 		b		3T9MycER	down	
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c		Eµ-myc	P	up	 	 	 	 		d		Eµ-myc	P	down	

 

    

e.	Eµ-myc	T	up	 	 	 	 		f.	Eµ-myc	T	down	

 

 

           

Figure 25. The list of TFs whose binding sites were identified by DREME in the (A)3T9MycER up-

regulated (B) 3T9MycER down-regulated (C) Eµ-myc T up-regulated (D) Eµ-myc T down-regulated. 

In 3T9MycER the non-canonical E-box (CANNTG, highlighted in green) was identified in the down-

regulated lists while the canonical E-box (CACGTG, highlighted in orange) was identified in the 

up-regulated lists. In Eµ-myc, the E-box was identified in both the up- and downregulated lists. 
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vi. The E-box motif is over-represented in the up-regulated genes 

In order to identify motifs that are unique to a particular set, we carried out motif over-

representation analysis used the Pscan (Zambelli et al., 2009) tool. However, this tool did 

not accept sequences less than 100 bases in length so we could not use it on the footprint 

sequences (which are ~35-50bp in length). We resorted to Pscan to search for over-

represented motifs in the region surrounding the summit of the Myc peaks (-200/+200) 

corresponding to up- and downregulated genes (positive set) against the no-deg genes 

(background or negative set) in the 3T9MycER and Eµ-myc (both in P and T) systems.  

 

From the Pscan results (Figure 26) we see that the E-box motif is enriched motif in the 

upregulated subset but not in the downregulated subset, when compared to the no-deg subset 

(background) in all the 3 samples (3T9MycER 4h , Eµ-myc P and T) . These results could 

explain our previous observation (Figure 23) that the enrichment of Myc peaks are higher in 

the upregulated genes compared to the no-deg and downregulated genes where the higher 

number of E-boxes could lead to stronger Myc binding. 

 

Most of the motifs we found to be enriched in the upregulated list are CG rich motifs like 

the Sp1, and the core promoter motifs BRE and MTE sequences (Figure 26 a, c and e) while 

in the downregulated list we find more AT rich motifs like core promoter motifs TATA box 

and Inr (Figure 26 b, d and f). Sp1 is a constitutive transcription activator of housekeeping 

genes and other TATA-less genes (Vizcaíno et al., 2015) and hence it is not surprising that 

it is found to be enriched in the up-regulated genes.  The analysis also revealed some other 

interesting motifs such as Bcl6b that is overrepresented in all the downregulated lists. Bclb6 

(also known as Bazf) is a transcriptional repressor that works in association with Bcl6 and 

is involved in early B-cell development (Takenaga et al., 2003) and key role in many cancers 
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(Li et al., 2015; Wang et al., 2015). However, since this analysis was carried out on the Myc 

peaks and not on the footprints, it is difficult to say whether the motifs we identified from 

this analysis were actually bound by the corresponding transcription factors. 

 

Although the motif over-representation analysis once again confirmed that the upregulated 

subset of genes has more E-box motifs compared to the no-deg and downregulated we could 

not define a conclusive list of binding partners of Myc involved in gene-regulation in these 

systems. Therefore, we need an approach that would allow use to the footprints data to 

identify motifs that are specific to up and downregulated Myc bound genes in our systems.  

 

a		3T9MycER	up	 								 	 	 	 		b		3T9MycER	down	
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c	Eµ-myc	P	up	 	 	 	 		d	Eµ-myc	P	down	

 

e		Eµ-myc	T	up	 	 	 	 		f		Eµ-myc	T	down	

 

Figure 26. Enrichment of TF motifs in (left to right) upregulated genes vs. no-deg genes and down-

regulated vs no-deg in (top-bottom) 3T9MycER 4h, Eµ-myc P and Eµ-myc T samples. The canonical 

E-box sequence ‘CAGGTG’ is identified as an over-represented motif the upregulated vs. no-deg 

list but absent from the downregulated vs. no-deg list in all the 3 samples. 
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3.4 Single feature classification  

3.4.1 Introduction 

As shown in the previous chapter, using DREME and Pscan we could not obtain a conclusive 

list of binding partners of Myc. We therefore classified the up, down and no-deg genes with 

another approach that leverages on the different of types data available in our systems of 

interest such as enrichments of histone modification profiles, transcription factor binding 

signatures obtained from footprints and ChIP-seq experiments. The rationale behind this was 

that, if a particular transcription factor A is a binding partner of Myc in up-regulating a set 

of genes, we can expect the PWM of that transcription factor to be a discriminating feature 

of the up-regulated against the no-deg genes. We assessed the ability of each of these features 

in classifying the genes in pairwise combinations (up/down, up/no-deg and down/no-deg). 

If any of these features are enriched in a particular category, it should be possible to classify 

the data into the categories considered with good accuracy. We also applied this approach 

on data from the tet-MYC, a hepatocellular carcinoma model in which genes which are 

directly and indirectly deregulated by Myc have  already been identified (see Introduction).  

 

3.4.2 Materials and methods 

We computed the ratios of the enrichment of ChIP-seq data on TFs and histone marks (Sabò 

et al., 2014) (4h compared to 0h in 3T9MycER, T compared to C and P compared to C in Eµ-

myc and tumour to normal in tet-MYC). In the 3T9MycER and Eµ-myc systems, we extracted 

the region under the summit of the Myc peaks (+250/-250bp around the summit) overlapping 

with the promoters (within -2kb/+1kb from TSS) of the up, down and no-deg genes with an 

overlapping DHS. Next, we used FIMO to search on these regions the binding sites of all 

the 2433 PWMs present in our database (see section 3.2). Then we used DNase-footprinting 
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information to keep only the motifs with an overlapping footprint (allowing a gap of 15 bp 

on both sides). These are motifs which are most likely bound by a transcription factor. We 

counted the number of times each of these footprinted PWMs are found on the promoter of 

each gene in the up, down and no-deg lists (Table 1). These footprinted PWM counts and 

enrichment ratios from the ChIP-seqs were all tested for their discriminative power using 

the ‘roc’ function of the ‘pROC’ (Robin et al., 2011) R package. We used this function to 

carry out binary classifications of up/down, down/no-deg and up/no-deg classes by plotting 

the ROC curves for each classification. The ROC curve is created by plotting the true 

positive rate (TPR) against the false positive rate (FPR) at various threshold settings. The 

complete list of features tested are listed in table 2. In addition to the data listed in Table 2, 

we also used the presence or absence of a CpG island on the promoter of the genes as another 

feature. 

 

 

Table 1: Example showing how the transcription factor binding information is calculated for use as a feature 

for single feature classification. 

Upregulated	genes	

PWM	1	

(number	of	

binding	sites)	

PWM	2	

(number	of	

binding	sites)	

……	

PWM	N	

(number	of	

binding	sites)	

Gene 1 1 0  2 

Gene 2 0 1  0 

Gene 3 2 1  0 

Gene 4 1 2  0 

Gene 5 0 1  1 
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In the tet-MYC system we did not have DNase-seq data, so we used the FIMO matches of 

PWMs in the -450/+50bp region around the TSS as putative transcription factor binding 

sites. We preferred to use the region around the summit of the Myc peaks for this system as 

the number of Myc ChIP-seq peaks in the Myc-off samples were very few. 

 

Experiment	 System	 Type	 Feature	

ChIP-seq  3T9MycER  Histone mark 

enrichment ratios 

H3K27ac, H3k4me3, 

H3K36me2, H4K16ac, 

H3K36me3, H3K4me1, 

H3K27me3 

ChIP-seq tet-MYC Histone mark 

enrichment ratios 

H3K4me3, H3K4me1, 

H3K27ac, H3K79me2 

ChIP-seq Eµ-myc Histone mark 

enrichment ratios 

H3K27ac, H3k4me3,  H3K4me1 

ChIP-seq  3T9MycER Transcription factor 

enrichment ratios 

Myc, Ctcf and Miz1 

ChIP-seq Eµ-myc Transcription factor 

enrichment ratios 

Myc, Ctcf and Rad21 

ChIP-seq tet-MYC Transcription factor 

enrichment ratios 

Myc and Ctcf 

ChIP-seq  All systems Transcription mark 

enrichment ratios 

Pol2 

 

DNase-seq  3T9MycER and 

Eµ-myc 

Enrichment ratio  - 

DNase-

footprinting 

3T9MycER and 

Eµ-myc 

Binding sites identified 

by FIMO + footprints 

under Myc peak summit 

2433 PWMs 
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Table 2: List of data used in the single feature classification approach. 

 

3.4.3 Results 

We calculated the performance of each feature in separating the data between pairwise 

combinations: up vs. no-deg, down vs. no-deg and up vs. down, and computed the AUCs 

corresponding to the ROCs of each of these classifiers. The overall top scoring feature and 

the top scoring PWM class for all the models are listed in table 3.  

 

In 3T9MycER, the maximum AUC corresponds to the enrichment ratio of the histone mark 

H3K27ac in all the 3 models. This is expected since H3K27ac is an activation mark (Tie et 

al., 2009) and therefore, more likely to be enriched in active genes than repressed genes. In 

the Eµ-myc system, the top scoring classifier was the RNA polymerase II ratio with an AUC 

higher than 0.8 in all the classifications (both for the T/C and P/C comparisons), suggesting 

that the Pol II signal alone can distinguish the up, down and no-deg gene categories with a 

high accuracy. In tet-MYC, the most predictive feature for Myc-dependent up vs. no-deg 

was the RNA polymerase II enrichment ratio (AUC 0.87) and for Myc-dependent down vs. 

no-deg was H3K4me3 (AUC of 0.74). The H3K4me3 is another mark that is associated with 

active promoters and hence can be expected to have different distributions in up, down and 

no-deg genes. For the Myc-independent up vs. no-deg and Myc-independent down vs. no-

deg classifications, none of the features reached an AUC higher than 0.6. In all the other 

FIMO analysis tet-MYC Binding sites identified 

by FIMO only (no 

footprints) around the 

TSS 

2433 PWMs 
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classification too only a few features had an AUC of more than 0.7. All other features had 

much lower AUCs (less than 0.7) and therefore were not predictive. Among the PWMs, none 

were able to classify the data with an AUC higher than 0.6 in any of the systems. Thus, 

except the obvious features such as H3K27ac and Pol II none of the other features had 

enough predictive power to classify the data. On the other hand, this predictive power could 

arise from a combination of features, which together could classify the data better. 

 

 

Model 

 

Overall top AUC 

(single feature) 

 

Top AUC among PWMs only 

(single feature) 

Up/Down (3T9MycER 4h) 0.87 

H3K27ac 

0.52 

SP4 

Up/No-deg (3T9MycER 4h) 0.76 

H3K27ac 

0.507 

Klf 11 

Down/No-deg 

(3T9MycER 4h) 

0.73 

H3K27ac 

0.52 

Sp4 

Up/Down 

(Eµ-myc T) 

0.94 

Pol II 

0.53 

SP4 

Up/No-deg 

(Eµ-myc T) 

0.84 

Pol II 

0.51 

NFYA 

Down/No-deg 

(Eµ-myc T) 

0.89 

Pol II 

0.52 

SP4 

Up/Down 

(Eµ-myc P) 

0.90 

Poll II 

0.53 

TFAP2C_HES7 

Up/No-deg 

(Eµ-myc P) 

0.75 

Poll II 

0.52 

SP4 

Down/No-deg 

(Eµ-myc P) 

0.73 

Poll II 

0.50 

TFAP2C_HES7 
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Myc-indep Up/No-deg 

(tet-MYC) 

0.59 

H3K79me2  

0.58 

E2F1_ELK1 

Myc-indep Down/No-deg 

(tet-MYC) 

0.59 

H3K4me3  

0.58 

E2f1_ELk1 

 

Table 3: Table showing the highest AUC of the ROCs obtained using the single feature classification 

approach. The histone mark H3K27ac and Pol II features were the best discriminative features 

overall. Among the PWMs the discrimination power was very low with the AUC in the range of 0.5 

to 0.53.
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3.5 Random forest classification 

3.5.1 Introduction 

Our objective was to identify features that can successfully separate pairs of classes of genes 

in the three systems under study. In particular, looking at the PWMs that are more enriched 

in a gene set will help us to pinpoint transcription factors that could be possible binding 

partners of Myc. We saw in chapter 3.4 that single PWMs could only classify the data with 

limited accuracy (see 3.4). It is however possible that the classification will improve if we 

take into account combinations of features. We explore this possibility with a machine 

learning algorithm called Random Forest (RF), which combines many features together to 

create a robust classifier and provides a ranking of the importance of the features in the 

classification. 

 

Machine learning approaches give computers the ability to learn associations without being 

explicitly programmed (Sherwood et al., 2014) and are therefore well suited for 

automatically identifying complex patterns in large datasets. They can be divided into two 

categories: unsupervised and supervised. Unsupervised methods are similar to pattern 

discovery, where the machine tries to learn some patterns or rules in a given dataset without 

any prior knowledge or training set. On the other hand, supervised learning methods require 

a training set from which they can learn the rules for classifying the data. A trained machine 

can then be applied to a new dataset for which the rules are not known. Among the different 

types of supervised machine learning algorithms, Ensemble methods combine several 

features to give a more robust classification compared to single feature based methods. 

Random forest (Breiman and Leo, 2001) is an Ensemble method that learns binary 

classifications of data using an ensemble of binary classification trees, and provides a 
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measure that ranks the features used for the classification. This measure can be used to filter 

out uninformative features and keep only those that classify the data best.  

 

We used the ‘cforest’ function of the ‘party’ package that applies a random forest algorithm 

to classify the genes on the same features that were also previously employed in the single-

feature classifications. One of the main advantages of using Random forest algorithms is 

that they can handle a large number of variables of different types with many missing values 

and therefore well suited for our problem (we have 2433 PWMs, in addition to other 

features). These algorithms use a combination of several decision trees (Figure 27) or 

ensemble of trees to classify the data. The basic unit, or the base learner, of a random forest 

is a binary tree constructed using recursive partitioning typically grown using the CART 

(Classification and Regression Trees) method (Breiman, 1984), where a tree is recursively 

partitioned by binary splits into homogeneous or near homogeneous terminal nodes. 

Homogeneity is defined by the Gini index that provides an indication of how “pure” the 

nodes are. If a dataset T contains examples from n classes, gini index,    

 

G = (𝑃𝑘	 ∗ 	 (1	– 	𝑃𝑘)))
*+,  

 

Where, G is the Gini index, Pk is the frequency of label k at a node and M is the number of 

unique labels. A node that has all classes of the same type (perfect class purity) will have 

G=0, whereas a node that has a 50-50 split of classes (worst purity) will have a G=0.5. A 

good binary split pushes data from a parent tree-node to its two daughter nodes so that the 

resulting purity of the daughter nodes is higher than that of the parent node. The tree is 

divided recursively until no further improvement of homogeneity can be made. RFs are often 

made of a collection of hundreds to thousands of such trees and each tree is grown using a 
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bootstrap sample of the original data and about one-third of the cases are left out of the 

bootstrap (out of bag or OOB data) in the construction of the kth tree. Each case of this OOB 

data is used as a test set to get a classification from the kth tree. In this way, a classification 

is obtained for each case in about one-third of the trees. At the end of the run, the class with 

the most votes is chosen as the final class j of the case n every time it was ‘OOB’. The 

proportion of times that j is not equal to the true class of n averaged over all cases gives the 

OOB error estimate. OOB data are also used to estimate importance of variables.  

 

RF trees also add an additional step of randomization: instead of splitting a tree node using 

all variables, at each node of each tree, a random subset of variables is selected and only 

these variables are used as candidates to find the best split for the node. This two-step 

randomization de-correlates trees lowering the variance of the forest ensemble.  

 

 

 

Adapted from Nguyen et al., 2013  

Figure 27. An example of a Random forest. Random forests are a type of ensemble method which 

consists of many trees to classify the data. 
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We classified our datasets using a random forest algorithm in the 3 systems of interest and 

then validated some of the top features identified by approach in the Eµ-myc system using 

ChIP-seq data from the ENCODE repository in the CH12 cell line. 

 

3.5.2 Materials and methods 

The random forest implementation of the party package ‘cforest’ function from the ‘party’ 

R package was used to carry out pairwise classifications of our datasets (as in Chapter 3.4). 

We used the same features described in Chapter 3.4 for single feature classification in 

3T9MycER, Eµ-myc and tet-MYC systems. The ROCs of the classifications were generated 

using the ‘ROCR’ R package. A k=10-fold cross validation was used to measure the 

performance of the models. In this method, the dataset is divided into 10 subsets and each 

time one of the k subsets is used as the test set and the other 9 subsets are combined to form 

a training set. Finally, the average error across all k trials is computed.  

 

The variable importance (VI) function was used to compute the importance of a feature in 

the classification. We used the standard version of the ‘varimp’ function in the ‘party’ 

package to calculate the VI. With this method, each predictor variable is randomly 

permutated to break its original association with the response Y. When this permuted 

variable Xj is used together with the remaining non-permuted predictor variables to predict 

the response for the OOB observations, the prediction accuracy should decrease substantially 

if the original variable Xj was associated with the response. The difference in prediction 

accuracy before and after permuting Xj, averaged over all trees, gives the variable 

importance.  

 



Results: Random forest classification 
 

 85 

We used the random forest approach to classify the same pairwise combinations (up/down, 

up/no-deg, down/no-deg) as in single-feature classification. Features that would rank highest 

in these classifications can be regarded as distinguishing features of the classes considered.  

 

Next, we calculated the variable importance of all the features from the model with the best 

AUC obtained using k=10 cross-validation. Only the features that had a positive variable 

importance were selected to obtain the final list of the top-most predictive features. After we 

obtained the lists of the top-most predictive features, we calculated their enrichment in the 

positive set compared to the negative set (for example, in the up/no-deg, down/no-deg 

classification, up and down are the positive sets and no-deg is the negative set). 

	

	

	

	

Figure 28. Main steps in the machine learning based classification of the up, down and no-deg 

genes using different features obtained from NGS data. A label is attached to each gene based on 

the RNA-seq data as up, down or no-deg. A random forest algorithm is used to classify the data 

into up/down, up/no-deg and down/no-deg categories using the different features such as ChIP-

seq enrichment ratios and PWM counts on the gene. Performance of the data is measured by a k-

fold (k=10) cross-validation method. Finally, the features with the the top-most variable 

importance in the model with the best AUC are used as the list of best predictive features in that 

classification.  
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3.5.3 Results 

We calculated the AUCs under the ROCs of each of the classifications obtained using 

random forest algorithm. Table 4 shows a comparison of these new AUCs with the highest 

AUCs obtained using the single feature approach (chapter 3.4). In the 3T9MycER system, the 

AUCs improved for all the three classifications (up/no-deg, down/no-deg and up/down). The 

highest improvement of AUC was observed for down vs. no-deg classification, where it 

increased from from 0.73 to 0.79. Similar increases of AUCs were also observed for the 

other two classifications in 3T9MycER (table 4). Instead, in the Eµ-myc system, the overall 

AUCs decreased in all the three models by about 3-4% compared to the top AUC obtained 

by the Pol II enrichment ratio in single feature approach. As random forest algorithms only 

use a subset of features at each node for dividing the tree, it is likely that the Poll II feature 

is not considered at every node. Still the best AUCs obtained using 10-fold cross-validation 

of ‘cforest’ for all the Eµ-myc classifications were higher or equal to 0.79. 

 

 

Model 

 

Average AUC using all features 

with single feature classification 

 

Best AUC using all 

features with 

cforest 

Up/Down (3T9MycER) 
0.88 

(H3K27ac 4h/0h ratio) 
0.91 

Up/No-deg (3T9MycER) 
0.76 

(H3K27ac 4h/0h ratio) 
0.84 

Down/No-deg 

(3T9MycER) 

0.72 

(H3K27ac 4h/0h ratio) 
0.79 

Up/Down 

(Eµ-myc) 

0.95 

(Pol II T/C ratios) 
0.92 

Up/No-deg 

(Eµ-myc) 

0.84 

(Pol II T/C ratios) 
0.80 

Down/No-deg 

(Eµ-myc) 

0.83 

(Pol II T/C ratios) 
0.79 
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Myc-dep Up/No-deg 

(tet-MYC) 

0.87 

(Pol II 

(tumour/control ratio) 

0.87 

Myc-dep Down/No-deg 

(tet-MYC) 

0.74 

(H3K4me3 tumour/control ratio) 
0.76 

Myc-indep Up/No-deg 

(tet-MYC) 

0.59 

(H3K79me2 tumour/control ratio) 
0.67 

Myc-indep Down/No-deg 

(tet-MYC) 

0.59 

(H3K4me3 tumour/control ratio) 
0.66 

 

Table 4: Table showing the comparison of the best AUC obtained with single feature classification 

and the AUC obtained using random forests. A significant improvement is seen for all the models. 

 

The major advantages of using the RF method are not limited to improvements of the AUCs 

but extend to the variable importance function, that provides an estimate of the importance 

of the features in the classification. The Figure 29 shows the top features obtained using this 

approach ranked by their variable importance. The acetylation marks H4K16ac (Taylor et 

al., 2013), H3K27ac (Tie et al., 2009) and the transcription mark  Pol II were among the top 

features in all the systems based on the variable importance function (Figure 29). Since these 

are activation marks, they are expected to be more enriched in actively transcribed genes, 

consequently in our predictions we find them to be more enriched in the up-regulated genes.  

 

In contrast to the results of the single feature approach, we found several PWMs among the 

list of top predictive features from the random forest method. In all the systems, for the up 

vs. no-deg classification, the footprints corresponding to the canonical E-box were among 

the top scoring features, once again confirming our previous observation that the canonical 

E-box is more enriched in the up genes compared to down genes. 
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In addition to the E-box (MAX motif), in the up/no-deg classification of 3T9MycER, we also 

found the composite motif CLOCK_BHLHA15, of the type ‘canonical-E-box_non-

canonical-E-box’ (CACGTG_CANNTG), indicating the presence of a footprint of a 

complex of two TFs, most likely Myc with another E-box binding factor (Figure 29 a). 

However, as many TFs (such as Usf1, BHLHA family members, Arntl, Hey2 etc.) can bind 

to the non-canonical E-box it is difficult to pinpoint which TF is actually binding. On the 

other hand, in the down/no-deg classification most of the top features identified are under-

represented in the down genes and more enriched in the no-degs.  

 

In Eµ-myc T, for the up/no-deg classification we identified several composite motifs that 

indicate the presence of a footprint of Myc binding very close to another TF, such as E2f1 

(E2F1_HES7 motif, where the HES7 binding site is a canonical E-box), Tfap2c 

(TFAP2c_MAX motif, where the MAX binding site is a canonical E-box), E2f1 

(E2F1_NHLH1 motif, where the NHLH1 binding site is a canonical E-box) and TEAD 

family members (TEAD4_CLOCK, where the Clock motif is a canonical E-box) (Figure 

29c). The TEAD factors can form a complex with YAP/TAZ to interact with many cell cycle 

regulators, including Myc (Leone et al., 2001). This list also contained the E2F4 motif in 

agreement with the Pscan analysis (Figure 26) which identified this motif as enriched in 

upregulated list. Myc can induce the expression of  E2F factors which are a component of 

Myc dependent control of cell proliferation and cell fate decisions pathways (Alvaro-Blanco 

et al., 2009) and it is possible that these factors play a role in Myc dependent  gene activation 

in the Eµ-myc system. We also found the NRF1/NRF2 motif among the top-features in the 

up/no-deg list. The Nrf1 transcription factor is a master regulator of the mitochondrial 

biogenesis mechanism respiratory chain and Myc can mediate its apoptotic function by 

binding to the Nrf1 target genes (Virbasius et al., 1993). The presence of the these factors 
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could indicate a possible ‘piggy backing’ scenario (see Chapter 1) where Myc binds to the 

DNA indirectly by binding to these factors. Similar to 3T9MycER system, very few features 

were enriched (Figure 29) in the down/nodeg classification. Among these were the 

transcription factors Cdca7l, Tfap2b, Hen1 (binds to the non-canonical E-box) and Nr0b1. 

These top features in the up/no-deg and down/no-deg lists can be considered as candidate 

binding partners of Myc in gene-regulation. 

 

	 a			MycER	4h	up/no-deg				 	 	 							b		MycER	4h	down/no-deg																																																																		
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c		Eµ-myc	T	up/no-deg																																					 	 		d		Eµ-myc	T	down/no-deg																																																																					 

 

					e		tet-MYC	Myc-dependent	up/no-deg																			f		tet-MYC	Myc-dependent	down/no-deg																																				 
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g	 tet-MYC	 Myc-independent	 up/no-deg	 	 	 	 	 	 	 h	 tet-MYC	 Myc-independent	 down/no-deg																																				

 

Figure 29.  Top features obtained from the model with the highest AUC from random forests based 

classifications ranked by their variable importance (a-b) 3T9MycER up/no-deg and down/no-deg (c-

d) Eµ-myc T vs.C up/no-deg and down/no-deg and (e-f) tet-MYC Myc-dependent up/no-deg and 

down/no-deg (g-h) tet-MYC Myc independent. The red boxes around a motif indicate that the 

motif contains a canonical E-box sequence while a green box indicates a non-canonical E-box 

sequence. The direction indicates whether a feature is more enriched (+) or less enriched (-) in the 

positive set compared to the negative set. The E-box sequence is among the top most predictive 

features in all the lists and is always more enriched in the upregulated genes.  

In the tet-MYC system, we once again found the TEAD4_HES7 motif as a top predictive 

feature in the Myc dependent up/ no-deg classification (similar to the TEAD4_CLOCK 

motif found in the top most predictive features of the up/no-deg classification of Eµ-myc T 

vs. C) (Figure 29 c). Conversely, both in the Myc independent up/no-deg and down/no-deg, 

all the top motif features that were identified were only enriched in the no-degs and not in 

the up or down genes (Figure 29 d).  
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Figure 30. Heatmap showing the normalized frequencies (footprinted only) of the top 20 predictive 

features (PWMs) from the random forest classification in 3T9MycER (up/no-deg and down/no-deg), 

Eµ-Myc (up/no-deg and down/no-deg) and tet-MYC (Myc dependent up/no-deg and down/no-deg 

and Myc independent up/no-deg and down/no-deg) in the different gene subsets (up, down, Myc-

dependent down etc.).  The frequencies are normalized first by the number of genes in the subset 

and the by the row-wise z-score. All the upregulated genes (highlighted by the blue colour box) 

cluster separately from the downregulated genes (highlighted by the black colour box), while the 

no-degs mix with the both clusters. We also identify a small cluster of PWMs that are highly 

enriched in only the upregulated gene subsets. 

To compare the overlap of the top motifs across the 3 systems, we considered all the motifs 

that appear among the top 20 features from the different comparisons (mycER up/down, 

up/no-deg, etc.). Next, we calculated their enrichment in each of the categories (mycER 

down, mycER up etc.). For 3T9MycER and Eµ-myc, we calculated this enrichment by adding 

up the total number of times a motif is found under the footprints overlapping a promoter of 
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the genes in a MYC, particular set, divided by the total number of genes in that set. For tet-

MYC, where we do not have footprint data, we considered the motifs that were present 

within -450/+50 of the TSS. We then plotted a heatmap showing the enrichment of motifs 

in the up, down (Myc-dep and Myc independent for tet-MYC) and the no-deg categories 

from all the 3 systems (3T9mycER, Eµ-myc, tet-MYC) (Figure 30).  

 

This heatmap allows us to extract the distribution of the PWMs across samples. We found 

that the down and up categories separate quite well, while, the no-degs do not form a distinct 

cluster and tend to mix with the ups. The tet-MYC Myc-dependent up, 3T9mycER up, tet-

MYC no-deg, 3T9mycER no-deg, Eµ-myc up (P and T) cluster together indicating that they 

have similar PWM enrichments and most of them are more enriched in this cluster compared 

to the other two clusters. Both the Myc-independent up and down categories cluster together 

as expected. We also found that many of the top features are shared across the systems. For 

example, TEAD_CLOCK motif (where CLOCK motif is an E-box) is highly enriched in the 

up-regulated genes of all the systems. 

Finally, for the 3T9MycER system, we tried to classify the gene categories using only the 

footprint information (motif counts) in order to test whether the PWM features alone were 

able classify the data into the different categories. We found that the performances of the 

classifiers were limited, with a maximum AUC of 0.62 in the up/down model while for the 

other models the AUC was lower (Table 5). One of the explanations for this decrease in the 

performance is that while the histone marks are general features for all up-regulated and 

down-regulated genes, Myc binding to the DNA with binding partners might occur only on 

specific subsets of genes within the up and down genes. Therefore, the overall dataset would 

be too heterogeneous to be classified based on PWMs alone but these PWM features can 
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still be picked up by the random forest classification approach, albeit with a lower but 

significant variable importance.  

 

 

Table 5: Table showing the AUCs of the 3 models up/down, up/no-deg and down/no-deg using different 

features in 3T9MycER. The models perform best when using both ChIP-seq ratios and PWMs as features. 

Removal of ChIP-seq features leads to a drastic drop in the AUCs. Some improvement is observed when using 

only PWMs as features to classify only the genes with high-fold change (>0.5 for Up and <1 for Down). 

 

 Validation using CH12 ChIP-seq datasets 

To validate the results obtained with the random forest method, we used publicly available 

ChIP-seq datasets from the CH12 cell line, a B-cell lymphoma cell line, similar to Eµ-myc 

P and T cells. The CH12 cell line is a mouse B-cell lymphoma cell line. ChIP-seq data-sets 

are available from the ENCODE project of the transcription factors E2f4, Ets1, Nrf2, Hcfc1, 

Zkscan1, Nelfe, Gcn5, Znf384, Maz, Ctcf, Chd1, Mxi1, Bhlhe40, Rad21, Sin3A and p300. 

In order to check the similarity between the two systems, especially with regards to Myc we 

calculated the overlap of the CH12 Myc ChIP-seq peaks with the ChIP-seq peaks of Myc in 

the Eµ-myc. Although the overlap was moderate (46% in Eµ-myc T) when considering all 

the peaks (Figure 31 a), the peaks on promoters of Eµ-myc T overlapped well (72%, Figure 

Model 

AUC 

All features 

all genes 

AUC 

PWMs only 

all genes 

AUC 

PWMs only 

high fold change genes 

Up/Down 0.91 0.62 0.68 

Up/No-deg 0.84 0.51 0.54 

Down/No-deg 0.79 0.62 0.65 
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31 b). This observation allowed us to study the overlap the Myc peaks (on promoters) in Eµ-

myc T sample with the available ChIPs of other transcription factors in this system. If the 

peaks of a TF overlap well with the Myc peaks, it could indicate a potential interaction with 

Myc. We were particularly interested in the overlap of the Nrf2 and E2f4 peaks with the 

Myc peaks in Eµ-myc T samples, as their motifs were among the top scoring motifs in our 

random forest classification for up vs. no-deg classification in Eµ-myc T. 

 

	 a		All	peaks	 	 	 	 							b	Promoter	peaks	

Figure 31. (a) The overlap of all the CH12 Myc peaks with the Myc peaks in the Eµ-myc C, P and 

T samples (b) The overlap of only the promoter Myc peaks in CH12 with the promoter Myc peaks 

in the Eµ-myc C, P and T samples. The promoter Myc peaks of Eµ-myc T sample have a significant 

overlap (72%) with the CH12 Myc peaks. 

We downloaded ChIP-seq experiment data for transcription factors in the CH12 cell line 

present in the ENCODE data repository and calculated the percentage of overlap of all these 

TF peaks with the Myc peaks in Eµ-myc C, P, T (Figure 32). We found that indeed the peaks 

of the transcription factors Nrf2 and E2f4 overlap well with the Myc peaks in T sample along 

with the TFs Hcfc1, Nelfe, Gcn5, Maz, Mxi1 and Sin3A (>70% overlap) suggesting that 

these TFs could bind close to Myc in this system. Hcfc1 (Lundberg et al., 2016), Gcn5 

(Martínez-Cerdeño et al., 2012), Nrf2 (Levy and Forman, 2010), Mxi1 (Armstrong et al., 

2013) and Sin3A (Garcia-Sanz et al., 2014) have been reported to interact with Myc in other 
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systems. Hence, it is possible that these factors could be possible binding partners of Myc in 

driving the de-regulation of genes in the Eµ-myc system, among these, Nrf2 and E2f4 are 

particularly well suited candidates as their footprinted PWMs were among the top-predictive 

features in the Eµ-myc T  up vs. no-deg classifications.  

 

Figure 32. Heatmap of the percentage of overlap of ChIP-seq peaks of different transcription 

factors in the CH12 cell line with the Myc bound promoters in Eµ-myc C, P and T samples. E2f4, 

Nrf2, Hcfc1, Nelfe, Gcn5, Maz and Sin3a peaks show a high overlap (greater than or equal to 

74%) with the Myc peaks in Eµ-myc T. 

Very few of the enriched PWMs identified by Pscan scored high in the random forest 

classifications. The PWMs of E2F family factors such as E2F2, E2F3 and E2F4 (Eµ-myc T 

up) were among the few that were identified by both the approaches. The Bcl6b PWM that 

was over-represented in down-regulated genes in Eµ-myc T had very low variable 

importance in the random forest classification. We also identified many new features in the 

list of top discriminative features that were not identified by the Pscan analysis. Moreover, 

unlike the DREME results, the features we identified using this random forest approach were 

specifically enriched in only one of the two categories being classified. Therefore, the 
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random forest method allowed us to identify features that could be potential binding partners 

of Myc in the three systems.  
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Chapter 4  

Discussion 
 

In this thesis, we describe several approaches to identify binding partners of the transcription 

factor Myc in gene-regulation in three models where Myc is overexpressed: 3T9MycER, Eµ-

myc and tet-MYC. The most promising approach is based on high-depth DNase-seq data 

which reveals genome-wide transcription factor binding sites. However, to the best of our 

knowledge there was no pipeline to automatically carry out of all the steps of DNase-seq 

data analysis. We addressed this issue by developing a pipeline that integrates state-of-the-

art tools to automatize the analysis of raw DNase-seq data (see chapter 3.2). We also 

demonstrated how the processed DNase-seq data can be integrated with other types of NGS 

data (RNA-seq and ChIP-seq) to identify key binding partners in the systems considered 

(chapter 3.5). To select the best footprint caller to be inserted into our pipeline, we carried 

out a benchmarking study on the available tools that use high-depth DNase-seq data to call 

TF footprints, using data from the ENCODE data repository (see chapter 3.1). The study 

identified the Wellington as the algorithm performing best both in terms of specificity and 

sensitivity. Hence, we used the Wellington as the footprint caller of choice in our pipeline. 

With the footprints obtained from Wellington, we constructed TF-TF interaction networks 

at different sequencing depths by down sampling the original datasets at 100%, 70% and 

30% of the original reads. Although the depth of footprinting is important for identifying TF 
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footprints, the most important interactions in the resulting TF-TF network are still retained 

even using lower-depth data.  

 

 The DNase-seq analysis pipeline that we developed provides an easy and automated way to 

carry out DNase-seq data for both high depth and low depth experiments. The final outputs 

of the pipeline are the lists of DHSs and footprints in bed and bigBed format. The pipeline 

also provides a motif analysis block with options to carry out de novo motif analysis using 

MEME and /or DREME, motif over-representation analysis using Pscan and motif searching 

using FIMO. De novo motif analysis can be used to identify the transcription factors 

regulating the genes in the system of interest. Motif over-representation analysis can instead 

be used to transcription factors that are over or underrepresented in a particular set of genes 

compared to another.  

 

To perform the motif analyses mentioned above, we compiled a list of 2433 different PWMs 

from various databases and published studies (see Chapter 3.2). We also propose a way to 

simplify this list of PWMs in order to reduce their redundancy and to combine similar 

transcription factors together into separate PWM classes. We classified all the PWMs based 

on their similarities into 445 classes containing all the 1815 non-composite motifs and 295 

classes containing the 618 composite ones. This piece of information was stored in a 

database containing the name of each PWM, the corresponding PWM class and the family 

the transcription factor belongs to. Such information can be extremely useful in interpreting 

the results of motif analysis: sometimes, an enriched motif can be associated by a motif 

matching tool such as TOMTOM to a particular TF from a database, yet it could be bound 

by another very similar TF. The database that we created (see 3.2) helps to resolve these 

scenarios as we can check the list of TFs that bind to a particular motif before drawing a 
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conclusion. For example, the E-box is bound by many different transcription factors such as 

Max, Clock, Hey2 and Usf1. However, in our systems we know that when Myc is over-

expressed it binds to almost all the open promoters. Therefore, when we find a motif 

associated to Clock or Hey2 to be enriched under the summit of a Myc peak or on footprints 

under the summit of a Myc peak, it is most likely that it is Myc that is binding there. 

 

By carrying out motif analysis on the DHSs with DREME, we confirmed the presence of 

the E-box under the ChIP-seq peaks of Myc in open chromatin in both 3T9MycER and Eµ-

myc. Then, using Pscan, we identified the over-represented motifs in the up and the down 

genes compared to the no-degs. The results showed that the E-box is more enriched in the 

up genes compared to the no-degs. Next, using footprints identified with high depth DNase-

seq we restricted the region of interaction of the TF to the DNA to improve the specificity 

of the motif analysis. We confirmed the presence of the E-box motif in the footprinted 

sequences and found that the E-box footprints have highest enrichment compared to the 

footprints of other TFs (Figure 22). By comparing the distribution of footprinted E-boxes on 

the up, down and no-deg genes we found that up and no-deg genes contain more footprinted 

E-boxes compared to down genes. This represents an indication that in down genes Myc 

binds to the DNA either mostly indirectly through another TF by “piggy backing” or 

aspecifically without recognizing a specific motif.   

 

As DREME only looks for the motifs enriched in a single set of sequences it was not possible 

to identify motifs specific to one subset of genes as compared to another (e.g up vs. no-deg). 

On the other hand, Pscan could identify over-represented motifs in a set of sequences 

compared to another but it was not possible to run this analysis on footprint sequences as it 

did not accept short sequences (less than 100bp). Hence, it was difficult to determine whether 
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the over-represented motif identified by Pscan were actually bound by a TFs. In fact, many 

of the motifs identified by Pscan, such as Bcl6b (Figure 26), did not score high in the random 

forest classification. The most probable reason for this could be that although the motif of 

Bcl6b is enriched in the down genes of Eµ-myc T, it is not bound by the TF and hence not 

footprinted. Alternatively, it is possible that the TF does not footprint (due to low residence 

times), but the footprint profile comparison in chapter 3.2 makes this scenario seems unlikely 

as the motif of Bcl6b is 12 bp long with many highly conserved residues. 

 

We developed a new R class, called ‘DHS’, and several methods to store and carry out 

integrative analysis of DNase-seq data and footprints. The new class we created is called 

‘DHS’, and has three slots for storing all the DHSs, the footprints identified within these 

DHSs, and the PWM matched by FIMO to the footprint, respectively, from one sample, all 

in one object. We also provide specific methods for this class that extract which footprints 

fall under the summit of the Myc peak, separate the DHSs which are on promoters and distal 

elements. In addition, we also developed specific functions and methods for motif analysis 

including a method to run Pscan and return the results in an easily readable table in .xlsx or 

.txt format. This method takes as input two sets of sequences in the FASTA format, a positive 

set and a negative set, or background, which are passed to Pscan. The output file obtained 

from the Pscan analysis is corrected for multiple testing using the Benjamini-Hochberg 

method, the PWMs are filtered based on the corrected p-value (default cut-off 0.01) and the 

final output is written to a .xslx or .txt file. Lastly, also wrote a function to look for PWMs 

in our database in a given set of sequences using FIMO and return the output in a GRange 

format. 
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Although with the motif analyses we identified some possible binding partners of Myc, this 

was not a conclusive list as DREME only finds motifs enriched in a single set of genes and 

Pscan could not be run on footprint regions. So, we chose to use approaches that can combine 

all the pieces of information that we have in these systems to classify the up, down and no-

deg genes. Our main goal here was not to classify the data but to identify the features that 

can give the best classification of the gene subsets. We searched for all possible binding sites 

of transcription factors using FIMO on comprehensive list of PWMs collected from multiple 

published resources (described in section 3.2). We then selected the sites overlapping a 

footprint and bound by Myc (overlap with a Myc peak) and counted the number of times 

each PWM is footprinted on our genes of interest (i.e. belonging to up, down and no-deg 

lists). Finally, we used this piece of information and the ChIP-seq enrichment ratios to 

classify the up, down and no-deg categories. If a feature is able to classify the data well, it 

would mean that the feature is discriminative and has different distributions in the two 

categories considered.  

 

We first applied this approach using one feature (PWM features, presence of absence of CpG 

islands and ChIP-seq enrichment ratios) at a time and calculated its predictive power in 

classifying the data in pairwise-combinations. Although the ChIP-seq features such as 

H3K27ac and Pol II were able to classify the data well with AUCs higher than 0.8, the same 

could not be said of the PWM, which classified the data with very poor AUCs. This indicated 

that this approach is not suitable for our problem and most likely, a single feature is not 

responsible alone in driving the differences between the two categories, but a combination 

of features separates the two categories. When we used the same features but with a random 

forest classifier that combines all the features together, we obtained a much improved result. 

The random forest classifier not only gave a good separation of data but also identified some 
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interesting PWMs features among the top predictive list of features (based of variable 

importance) that could potentially be binding partners of Myc. 

 

The presence of the enrichment ratios of H3K27ac, H4K16ac and Myc in the list of top 

discriminating features from the random forest classifiers in all the three systems can be 

considered a positive control confirming that this approach is able to identify features that 

are known to discriminate these gene sets. Since both H3K27ac and H4K16 are activation 

marks they are expected to be highest in the activated genes and lowest in the repressed 

genes.  

 

In the 3T9MycER system, in the up/no-deg classification (Figure 29 a), we found the 

footprinted complex motif of canonical E-box with a non-canonical E-box indicating that 

two E-box binding transcription factors are present on the promoters of those genes, one of 

which is most likely Myc. In addition, we also found other motifs, such as the CTCF which 

has been linked to the activation of c-MYC expression (Gombert and Krumm, 2009; 

Klenova et al., 1993). On the other hand, for the down/no-deg classification we found some 

PWM in the list of top predictive features, but all of them were enriched in the no-deg genes 

and not in the down genes. Therefore, the TFs binding to these motifs could not be 

considered as binding partners of Myc in downregulation. 

 

In the Eµ-myc system, some of the PWMs that we identified using the random forest 

algorithm for the up/no-deg classification among others are the NRF1/NRF2, TEAD4, the 

TFAP2 family factors and ETS transcription factors. All of these TFs have connections with 

Myc in gene-regulation (Morrish et al., 2003; Roussel et al., 1994; Virbasius et al., 1993; 

Wasylyk et al., 1998). We also found the complex motif of activation factor 2 (TFAP2) and 
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the E-box (TFAP2c_MAX) in the up/no-deg classification: the Tfap2 family consists of 5 

different homologous transcription factors (TFAP2a-e) which contain a highly conserved C-

terminal helix-span-helix motif required for dimerization. Nrf2 is an oncogene that has been 

reported to interact with Myc (Levy and Forman, 2010) and is suggested to be up-regulated 

due to the tumorigenic activity of  c-Myc (DeNicola et al., 2011). Moreover, Myc is also 

reported to form a ternary complex with Nrf2 and p-c-Jun to regulate drug-metabolism (Levy 

and Forman, 2010). In this system too, for the down/no-deg classification we found few 

significant PWMs enriched in the down genes: Hen1, Cdca7l and Tfap2b. The core of the 

Hen1 motif is a non-canonical E-box (CAGCTG), indicating that the downregulated genes 

have more non-canonical E-boxes compared to the no-degs. Cdaca7l (also known as Jpo2 

or R1) is known to be a transcriptional repressor (Chen et al., 2005) and is reported to play 

an important oncogenic role in mediating the full transforming effect of Myc in 

medulloblastoma cells (Huang et al., 2005). Given this connection of Cdaca7l to Myc in the 

development of medullobalstoma, it is possible that it also plays a role in Myc-dependent 

gene regulation in lymphomagenesis. The TEAD_E-box is another top predictive feature of 

the up/no-deg classification in the Eµ-myc which suggests that the footprint of the Tead 

family members binding in a complex with Myc is enriched in the up-regulated genes. The 

Tead proteins are transcription factors involved in development and are also known to play 

a role in cancer development (Knight et al., 2008; Landin Malt et al., 2012; Skotheim et al., 

2006).  

The addition of the tet-MYC system to our analysis helped to separate the Myc dependent 

response from the Myc-independent response. Although we do not have footprints in this 

system, the motif matches under the summit of the Myc peak can still be used to guess the 

transcription factors that are involved in the Myc-dependent and Myc-independent gene 

regulation. We once, again found the TEAD4_E-box motif in the up/no-deg classification 
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indicating that this feature is not only more enriched in the upregulated genes but is specific 

for the Myc-dependent upregulated genes as we do not find it enriched in the Myc-

independent genes. Moreover, in the heatmap integrating the top features of all the 

classifications (Figure 30), TEAD4_E-box is more enriched in all the upregulated list 

compared to the no-deg and downregulated lists, thus, indicating a possible direct interaction 

of Myc with Tead in Myc-dependent upregulation of genes. 

 

In the case of the Myc independent genes in the tet-MYC system, none of top features that 

were identified can called ‘discriminative’ because the AUCs for both the Myc-independent 

up/no-deg and down/no-deg were low (0.62 and 0.64). These values could mean that there 

are no specific transcription factors that drive the de-regulation of these genes together with 

Myc. The histone marks and ChIP-seq ratios too do not separate these classes well. 

Therefore, these genes are most likely to be deregulated by indirect effects.  

 

The three systems that we studied were different in terms of cell types but had one common 

feature: the overexpression of Myc. Therefore, it was not surprising that they shared some 

common PWM features as shown by the heatmap (Figure 30) displaying the enrichments of 

the top PWM features from all the classifications in the different gene subsets (up, down, 

no-deg in 3T9MycER and Eµ-myc, Myc-dependent up and down, Myc-independent up and 

down in tet-MYC). All the upregulated lists (except for the Myc independent list in tet-

MYC) were present in the same cluster along with the no-deg lists, while the downregulated 

lists formed a separate cluster indicating that these systems share many common 

transcription factors that drive the regulation of the up and down genes. In all the systems, 

in down-regulated lists fewer features were enriched indicating once again the down-

regulated genes are likely to be regulated by indirect effects.  
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Applying the random forest method, we were able to identify some features corresponding 

to TF binding motifs, that correspond to possible binding partners of Myc in the systems that 

we studied. Although the variable importance of transcription factor footprints was lower 

than the histone marks, their presence among the top discriminating features is nevertheless 

intriguing. The lower predictive power of the TF footprints instead may indicate that Myc 

does not regulate all the up or down-regulated genes in the same manner, but binds to the 

DNA with different binding partners in different subsets of genes to up- or down-regulate 

their expression. If these subsets make up only a small percentage of all the up or down 

genes it would explain the lower variable importance of the corresponding PWM class 

feature.  

 

Only a few of the enriched PWMs, such as those belonging to the E2F family factors E2f2, 

E2f3 and E2F4 identified by Pscan scored high in the random forest classifications. Many 

of the promising candidate binding partners of Myc identified by Pscan, such as Bcl6b, 

scored low in the random forest classifications indicating that the mere presence of an 

enriched motif is not a sufficient piece of evidence. We identified a large number of new 

features that we did not find using Pscan most likely because we could not run analysis on 

use it on footprints regions. This analysis also helped to overcome the issue that we had with 

DREME in distinguishing the TFs specific to the up and down genes, for example, the motif 

of Nrf1(similar to Nrf2 motif) TF was found by DREME in both Eµ-myc T up and down. 

Using random forest, we found that this PWM was specific to the up vs. no-deg classification 

and not the down vs. no-deg classification. Moreover, by the calculating the enrichment of 

the top most predictive PWMs on the up, down and no-degs genes we confirmed that this 

motif is enriched in the up genes and not in the down genes in this system. 
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Our results show that using a random forest approach to classify the Myc-regulated up/down, 

up/no-deg and down/no-deg genes can identify features that discriminate these gene sets. 

This might otherwise prove difficult to do with qualitative or visual approaches such as 

heatmaps and boxplots. The random forest based approach identified some TFs that could 

be potential binding partners of Myc involved in gene-regulation. The advantage of this 

approach lies in its ability to handle hundreds of features and extract the most informative 

ones while ignoring the rest. However, when using footprint calls as a proxy for TF binding 

it should be kept in mind that this approach would fail to identify TFs which have transient 

binding times (Yardımcı et al., 2014) as well as TFs without any known motifs.  

 

The random forest approach that we applied can also be used for a variety of other problems 

which requires the separation of two classes based on many features, for example, a set of 

genes known to be involved in a particular pathway compared to a background set. In the 

future, we plan to extend this approach to other models and identify features that differentiate 

the up- down and no-deg categories in these models. Clearly, these results need to be 

validated using experimental approaches, for example using knock out (of a candidate TF) 

mice to test the effect of the knock out on tumour progression in the Eµ-myc C, P, T model.   
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