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Abstract 

The comprehension of the molecular mechanisms underpinning Major Depression (MD) is 

becoming a crucial issue in public health, considering that this psychiatric disorder has been 

estimated to become the leading cause of disability within 2020. To sustain the critical 

relevance of the investigation of the molecular bases of this pathology, it is important to 

underline that a high percentage of patients do not respond to the current pharmacological 

treatments, despite the number of antidepressant drugs available in the market. 

MD is a very complex and invalidating pathology, characterized by neuro-vegetative and 

cognitive symptoms. Among them, the most relevant are alterations in mood and anhedonia, 

the latter defined as the incapability of feeling pleasure in pleasant circumstances. Although 

the causes of MD are not fully understood, it is known that the insurgence of this pathology is 

ascribable to the interaction between a genetic background of susceptibility and 

environmental factors. Among these factors, stress exposure play a pivotal role in the 

development of the psychopathology. However, it is important to mention that not all the 

subjects exposed to stressful situations develop a mental illness, indeed only a small 

percentage become affected by MD after stress exposure. In this context, people capable to 

cope with the consequences of stress are defined as resilient and the term “Stress-Resilience” 

refers to the ability of the subject to actively respond against adverse stimuli. The investigation 

and the identification of the molecular mechanisms underpinning stress vulnerability and 

stress resilience appear, thus, of critical importance to identify new therapeutic targets.  

Among the molecular mechanisms involved in depression pathophysiology, compelling clinical 

and preclinical evidence support a role for alteration of the inflammatory system, which is also 

affected by stressful experiences. 

With these premises, the general aim of my study was to investigate the relationship between 

major depression and neuroinflammation, in order to provide new information about the 

molecular background of this pathology. In particular, by the use of different experimental 

approaches, we evaluated the impact of stress on neuroinflammation and the potential anti-

inflammatory properties of pharmacological treatment with the antidepressants agomelatine 

and imipramine or the antipsychotic lurasidone. 

Our results demonstrated that neuroinflammation is strictly associated with the insurgence of 

stress-induced behavioral alterations in adult male rats tested for sucrose consumption. 



Indeed anhedonic-like animals showed increased levels of pro-inflammatory cytokines and 

markers of microglia activation, especially in the dorsal hippocampus. Moreover, we found 

that chronic pharmacological treatment with agomelatine, imipramine and lurasidone was not 

only able to normalize the alterations in sucrose intake, but also to modulate the pro-

inflammatory effects of chronic stress exposure. 

In this context, we found that agomelatine was able to modulate the feedback inhibition 

pathway of interleukin-6 signaling. Indeed, we observed that chronic administration of the 

antidepressant potentiated the activity of the suppressor of cytokine signaling (SOCS)3 in the 

prefrontal cortex of stressed animals, thus promoting the shutdown of IL-6 pathway. 

Subsequently, we used an unbiased genome-wide approach to characterize with a broader 

point of view the potential protective properties of agomelatine on a strong immune challenge 

such as the acute injection of lipopolysaccharide (LPS) in the rat ventral hippocampus. In 

particular, we enlightened molecules and pathways potentially important for its therapeutic 

effects in the context of neuroinflammation. 

Pursuing the idea that stress-Resilient animals actively cope with stress-induced 

alteration/priming of inflammation within the brain, we exposed adult male rats to two weeks 

of Chronic Mild Stress (CMS), followed by an immune challenge with LPS. Specifically, we 

found that stress-Resilient rats could better respond to LPS-induced behavioral alterations in 

sucrose intake. Moreover, our molecular analyses pointed out that dysregulated activation of 

microglia may play a pivotal role in the insurgence of altered behaviors in anhedonic-like 

animals, thus indicating these cells as main actors in the mechanisms of stress-Resilience. 

Lastly, we found that the altered expression of brain-derived neurotrophic factor (BDNF), a 

key molecule involved in the etiology of MD and in the therapeutic activity of antidepressants, 

influenced the inflammatory response within the brain. Specifically, we found that male and 

female mice heterozygous for this neurotrophic factor, differentially respond to an immune 

challenge with LPS when compared to wild-type animals, with a genotype*LPS interaction 

dependent on the brain area examined. 

Summarizing, the data obtained during my PhD strongly support the direct involvement of 

neuroinflammation in the insurgence of depressive-like phenotype, in the mechanism of 

stress resilience and in the molecular activity of diverse psychotropic drugs. 

  



La comprensione dei meccanismi molecolari alla base della Depressione Maggiore (MD) sta diventando 

un fattore importante nella salute pubblica, basti considerare che è stato stimato che questa patologia 

psichiatrica diventerà la seconda causa di disabilità al mondo entro in 2020. A sostegno della criticità 

dello studio delle basi molecolari della malattia, è importante sottolineare che una alta percentuale di 

pazienti non risponde correttamente ai trattamenti farmacologici oggi disponibili sul mercato. 

La MD è una patologia invalidante e altamente complessa, la cui sintomatologia è caratterizzata da 

sintomi neuro-vegetativi e cognitivi. Tra questi, i più importanti sono l’alterazione del tono dell’umore 

e l’anedonia, quest’ultima definita come l’incapacità di provare piacere in situazioni che dovrebbero 

suscitarlo. Nonostante le cause della MD non siano ancora del tutto note, è risaputo che l’insorgenza 

della patologia è imputabile all’interazione tra un background di suscettibilità genetica e fattori 

ambientali. Tra questi, l’esposizione a stress gioca un ruolo fondamentale nello sviluppo della 

psicopatologia. Tuttavia, è importante sottolineare che non tutti i soggetti esposti a situazioni 

stressanti sviluppano un disturbo mentale, infatti solo una piccola percentuale risulta affetta da MD in 

seguito all’esposizione a stress. In questo contesto, persone in grado di affrontare positivamente le 

conseguenze dello stress sono definite resilienti e il termine “Resilienza allo Stress” si riferisce all’abilità 

di un soggetto di rispondere attivamente e positivamente contro uno stimolo esterno. Lo studio e 

l’identificazione dei meccanismi molecolari alla base della vulnerabilità allo stress appaiono, dunque, 

di importanza critica per la scoperta di nuovi target farmacologici. 

Tra i meccanismi molecolari coinvolti nella patofisiologia della depressione, diversi dati clinici e 

preclinici supportano il ruolo delle alterazioni a carico del sistema infiammatorio, il quale risulta essere 

influenzato anche dall’esposizione a situazioni stressanti. 

Con queste premesse, lo scopo generale del mio studio è stato quello di indagare la relazione tra 

depressione maggiore e neuroinfiammazione, con il fine di fornire nuove informazioni sul substrato 

molecolare della patologia. In particolare, attraverso diversi approcci sperimentali, abbiamo valutato 

l’impatto dello stress sulla neuroinfiammazione e il potenziale effetto anti-infiammatorio del 

trattamento farmacologico con gli antidepressivi agomelatina e imipramina o l’antipsicotico 

lurasidone. 

I nostri risultati hanno dimostrato che la neuroinfiammazione è strettamente associata con 

l’insorgenza di alterazioni comportamentali indotte dallo stress in ratti maschi adulti, testati con il test 

del consumo del saccarosio. Infatti, animali con un comportamento simil-anedonico hanno mostrato 

aumentati livelli di citochine pro-infiammatorie e marcatori di attivazione microgliale, con una 

specificità particolare per l’ippocampo dorsale. Inoltre, abbiamo mostrato come il trattamento cronico 

con agomelatina, imipramina e lurasidone non sia stato solo in grado di normalizzare le alterazioni a 

livello del consumo di saccarosio, ma anche di modulare gli effetti pro-infiammatori dell’esposizione a 

stress cronico. 



In questo contesto, è emerso come agomelatina sia in grado di modulare i meccanismi di feedback 

negativo del pathway dell’interleuchina 6. Infatti, abbiamo osservato che la somministrazione cronica 

dell’antidepressivo è stata in grado di potenziare l’attività del soppressore del signaling delle citochine 

(SOCS)3 nella corteccia prefrontale degli animali stressati, promuovendo, quindi, lo spegnimento del 

pathway di IL-6. 

Successivamente, abbiamo adottato un approccio genome-wide per caratterizzare -da un punto di vista 

più ampio- le potenziali proprietà protettive di agomelatina su di un challenge immunologico con 

lipopolisaccaride (LPS). Nell’ippocampo ventrale di ratto, abbiamo evidenziato diverse molecole e 

pathway potenzialmente importanti per gli effetti terapeutici dell’antidepressivo in un contesto di 

neuroinfiammazione. 

Perseguendo l’idea che gli animali resilienti allo stress siano in grado di contrastare attivamente le 

alterazioni/il priming infiammatorio nel cervello, abbiamo sottoposto ratti maschi adulti a due 

settimane di CMS, seguito da un challenge immunologico con LPS. Nel dettaglio, abbiamo dimostrato 

che i ratti resilienti allo stress sono in grado di rispondere meglio alle alterazioni nel consumo di 

saccarosio in seguito a stress. Inoltre, le nostre analisi molecolari hanno evidenziato come l’alterata 

attivazione della microglia possa giocare un ruolo chiave nell’insorgenza delle alterazioni 

comportamentali degli animali simil-anedonici, indicando che questa popolazione cellulare partecipa 

attivamente ai meccanismi di resilienza allo stress. 

Infine, abbiamo mostrato come l’alterata espressione di BDNF, una molecola chiave coinvolta 

nell’eziologia della depressione e nell’attività terapeutica degli antidepressivi, possa influenzare la 

risposta infiammatoria nel sistema nervoso centrale. In particolare, topi maschi e femmina, eterozigoti 

per il fattore neurotrofico, hanno risposto diversamente al challenge con LPS, quando paragonati agli 

animali wild-type, con un’interazione genotipo*LPS dipendente dalla regione cerebrale analizzata. 

In conclusione, i dati ottenuti durante la mia tedi di dottorato supportano fortemente il diretto 

coinvolgimento della neuroinfiammazione nella comparsa di un fenotipo comportamentale simil-

depressivo, nei meccanismi di resilienza allo stress e nell’attività molecolare di diversi farmaci 

psicoattivi. 
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1.Introduction 

Major depression disorder (MDD), the mostly diffused psychiatric illness among mood 

disorders. This pathology is a common, costly and recurrent disorder, associated with 

considerable morbidity and excess mortality and has been projected to become the second 

leading cause of disability worldwide by 2020 (second to ischemic heart disease) (Sullivan et 

al., 2000).  

MDD is a complex pathology, almost twice as common in females than males. Indeed, almost 

20-25% of women are affected by the pathology, while only 7-12% of the men suffer from this 

disease (Kessler et al., 2009). Moreover, the probability to have a depressive episode before 

70 years old is higher in women (45%) with respect to men (17%). This psychiatric disease is 

mainly characterized by affective, vegetative and cognitive symptoms that show a relapsing-

remitting course. Depression has been described by mankind for several millennia. The term 

melancholia (which means black bile in Greek) was first used by Hippocrates around 400 a.C. 

(Nestler et al., 2002). Most of the major symptoms of depression observed today were 

recognized in ancient times, as were the contributions of innate predispositions and external 

factors in causing the illness. Even though similarities between ancient descriptions of 

depression and those of the modern era are outstanding, only in the middle part of the 19th 

century the brain become the focus of efforts to understand the pathophysiology of this 

disorder.  

Since the 1960s, depression has been diagnosed as “major depression” based on symptomatic 

criteria set forth in the Diagnostic and Statistical Manual (DSM IV, 2000). Specifically, 

depressed patients may show: 

- Depressed mood for the larger part of the day; 

- Lack of interest and pleasure for all, or almost all, the activities done for the larger part of the 

day, every day; 

- Insomnia or hypersomnia almost every day; 

- Psychomotor alterations; 

- Reduced energy almost every day (asthenia); 

- Feelings of guilt (exaggerated or unappropriated); 

- Reduced capability to concentrate, clearly think almost every day; 

- Recurrent suicidal thoughts. 
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It is obvious from these criteria that the diagnosis of depression, as opposed to most diseases 

of other organ systems, is not based on objective diagnostic test but rather on a highly variable 

set of symptoms. Accordingly, depression should not be viewed as a single disease but as a 

heterogeneous syndrome comprised of numerous diseases of distinct causes and 

pathophysiology. 

 

1.1 Etiology of major depressive disorder 

Epidemiologic studies show that approximately 40%-50% of the risk for depression is genetic 

(Fava and Kendler, 2000). This makes depression a highly heritable disorder, at least as 

heritable as several common complex medical conditions (e.g. type II diabetes, asthma and 

certain cancers), which are often thought of as genetic. Yet, the search for specific genes that 

confer this risk has been daunting, with no genetic abnormality being identified to date with 

certainty. The difficulty in finding depression vulnerability genes parallels the difficulty in 

finding genes for other psychiatric disorders and, in fact, for most common complex diseases. 

Thus, any single gene might produce a relatively small effect and would therefore be difficult 

to detect experimentally. It is also possible that variants in different genes may contribute to 

depression in each family, which further complicates the search for depression genes (Nestler 

et al., 2002).  

Most of the published genetic association studies of mood disorders have focused on 

functional polymorphisms (DNA sequence variations that alter the expression and/or 

functioning of the gene product) in the loci encoding the serotonin transporter (SLC6A4), 

serotonin 2A receptor (5HTR2A); tyrosine hydroxylase (TH, the limiting enzyme for dopamine 

synthesis); tryptophan hydroxylase 1 (TPH1) involved in serotonin synthesis; and catechol-o-

methyltransferase (COMT) that is an enzyme related to dopamine catabolism. All these 

molecules result implicated in the monoamine neurotransmitter system that is known to be 

involved in mood control (Levinson, 2006).  

As research advances, detailed studies have led to formulate different molecular theories of 

depression and, among others, some of the most important are the “monoamine hypothesis” 

and the “neuroplasticity hypothesis”.  

The “monoamine hypothesis” of depression, which asserts that depression is caused by 

decreased monoamine function in the brain, originated from early clinical observations 

(Pittenger and Duman, 2008). Two structurally unrelated compounds developed for non-
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psychiatric conditions, namely iproniazid and imipramine, had potent antidepressant effects 

in humans and were later shown to enhance central serotonin or noradrenaline transmission. 

Moreover Reserpine, an old antihypertensive agent that depletes monoamine stores, 

produced depressive symptoms in a subset of patients. Despite these evidences, treatment 

with currents antidepressant, designed to increase monoamine transmission acutely, reveals 

a relevant percentage of patients which not show an adequate response to the therapy and 

which have persistent symptomatology. Therefore, although these monoamine-based agents 

are potent antidepressants, alterations in central monoamine function might contribute 

marginally to genetic vulnerability (López-León et al., 2008; Ruhé et al., 2007) and the cause 

of depression is far from being a simple deficiency of central monoamines.  

The “neuroplasticity hypothesis” of depression suggests that mood disorders are caused by 

an impaired information processing within particular neuronal circuits in the brain due to 

altered neuroplasticity, and that treatment with antidepressant drugs may improve this 

deficit. Neuroplasticity is the ability of the brain to respond and adapt to environmental 

challenges and include a series of functional and structural mechanisms that may lead to 

neuronal remodeling, formation of novel synapses and birth of new neurons. Failure of such 

mechanisms might enhance the susceptibility to environmental challenges, such as stress, and 

ultimately lead to psychopathology. In this scenario, neurotrophic factors (NTFs) -a family of 

proteins that are responsible for the growth and survival of developing neurons and also for 

network construction (Poo, 2001)- play a key role as mediators of neuroplasticity. It is now 

well established that NTFs are important mediators of neuronal plasticity also in adulthood, 

where they modulate axonal and dendritic growth and remodeling, membrane receptor 

trafficking, neurotransmitter release, synapse formation and function (Lu et al., 2005).  

In addition to all these evidences, also non-genetic factors such as stress and emotional 

trauma, viral infections and even stochastic processes during brain development have been 

implicated in the etiology of depression (Fava and Kendler, 2000).  

The role of stress warrants particular comment. Depression is often described as a stress-

related disorder, and there is good evidence that episodes of depression often occur in the 

context of some form of stress. However, stress per se is not sufficient to cause depression. 

Most people do not become depressed after serious stressful experiences, whereas others 

develop the pathology under stress situations that might be considered mild for the majority 

of the population. Conversely, severe stress such as that experienced during combat, rape, or 
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physical abuse, does not typically induce depression, but instead causes post-traumatic stress 

disorder (PTSD) that is distinct from depression based on symptomatology, treatment and 

longitudinal course of illness. This underscores the view that depression in most people is 

caused by the interaction between a genetic predisposition and some environmental factors, 

which makes the mechanism of such interactions an important focus of investigation.  

A further non-genetic factor implicated in the etiology of depression is inflammation and one 

promising development in regard to identify novel pathophysiologic targets is the emergence 

of a number of experimental evidences that support its in depression. Particularly, it is known 

that depression is accompanied by alterations of inflammatory system and, in fact, patients 

with depression exhibit increased levels of inflammatory markers including interleukin (IL)-1, 

IL-6 and tumor necrosis factor (TNF), in both the periphery and the brain (Dowlati et al., 2010).  

It is moreover important not only to characterize the changes in immune/inflammatory 

responses in people with depression or in animal models of depression, but also to identify 

and investigate the possible link between the components of the immune/inflammatory 

response and systems involved in the etiopathogenesis of depression. 

 

1.2 Inflammation 

As discussed above stress exposure lead to an activation of the immune response, thus 

suggesting a potential role of the inflammatory response in the development of MDD. It is 

commonly known that following a viral or bacterial infection, there are subjective symptoms 

like general malaise, fatigue loss of appetite etc. The psychological and behavioral symptoms 

of the pathology represent, together with the febrile response and the associated 

neuroendocrine alterations, a well-organized strategy to cope infections (Dantzer et al., 2008; 

Howren et al., 2009; Raison et al., 2006). This strategy, called “Sickness behavior”, its activated 

by mediators of the inflammatory response, such as pro-inflammatory cytokines or pathogen 

associated molecular patters (PAMPs). These molecules coordinate the local and systemic 

response to pathogens; however, they can also act at central level, causing the psychologic 

symptomatology associated to infections. 

In the last years, the dysregulation of these molecules has been proposed as a key feature of 

the pathophysiology of MDD (Dantzer et al., 2008; Howren et al., 2009; Raison et al., 2006). 
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1.2.1 Association between depression and inflammation 

Several evidences suggest that neuroinflammation is associated with the insurgence of 

depressive phenotype at both pre-clinical and clinical level. 

 Increased expression of pro-inflammatory mediators in depressed patients 

As abovementioned depressed patients present increased levels of proinflammatory 

cytokines and their receptors, altered peripheral levels of chemokines and other 

adhesion molecules in the blood and in the cerebrospinal fluid (Maes, 1994; Miller et 

al., 2009). In addition, post-mortem studies, have shown increased levels of several 

genes and proteins related to the inflammatory response in the brain of suicidal 

depressed patients. Among these markers, we find the main pro-inflammatory 

cytokines interleukin (IL)-1TNF-IL-6 and toll-like receptors (Brambilla et al., 2014; 

Drago et al., 2015; Maes, 1995). Moreover, other studies suggested that increased 

levels of C reactive protein (CRP) and IL-1are predictive of the development of 

depressive pathology, thus proposing inflammation as a potential cause of the 

pathology (van den Biggelaar et al., 2007). 

Lastly, inflammation has been also related to the lack of therapeutic response to 

antidepressant treatment (Cattaneo et al., 2013; Miller et al., 2013). 

 

 The administration of pro-inflammatory cytokines induces depression 

The administration of pro-inflammatory cytokines (such as interferons) or their 

inductors in non-depressed subjects, induce the development of a depressive 

phenotype (Bonaccorso et al., 2002; Capuron et al., 2002; Reichenberg et al., 2001). 

As demonstration of this effect, the 30% of patients affected by hepatitis C and treated 

with interferons develop depression (Asnis and De La Garza, 2006). A similar effect has 

been observed also in cancer patients treated with immunotherapy (Capuron et al., 

2002). 

 

 Comorbidity with pathologies characterized by an altered inflammatory 

state.  

Of note, that depression shows high comorbidity with pathologies like cancer, 

rheumatoid arthritis, multiple sclerosis, cardiovascular and metabolic diseases and 

neurodegenerative diseases (Benton et al., 2007). 
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1.2.2 Cytokines and neurotransmitters 

As commonly known, monoamines have a crucial role in the regulation of mood and in the 

pathophysiology of depression. Pro-inflammatory cytokines have an important impact on the 

monoamine system and on the glutamatergic system. Specifically, the can lead to the reduced 

availability of synaptic monoamines. As an example, IL-1 and TNF- stimulate serotonin 

reuptake, an effect mediated by MAP kinases (Zhu et al., 2010). 

The alteration of neurotransmitter homeostasis induced by cytokines involves also the 

activation of the enzyme indoleamine 2,3 dioxygenase (IDO), that is responsible of the 

generations of kynurenines from tryptophan (a key precursor for serotonin synthesis). 

Moreover, kynurenines can be metabolized by microglial cells into quinolinic acid, a 

neurotoxic molecule that acts as NMDA agonist (Maes et al., 2011). 

Cytokines can also cause the decrease of the neurotrophin Brain-derived neurotrophic factor 

(BDNF) a key regulator of synaptic plasticity and brain homeostasis (Calabrese et al., 2014). 

1.2.3 Microglia 

Microglia cells are the macrophagic resident cells of the brain, responsible of the first line 

defense against immune alterations within the brain. 

In the so called “resting state” microglia surveil the microenvironment searching for 

pathogens or signs of disuse damage. At this stage microglia have a dendritic morphology 

characterized by long and ramified processes. In the “activated state” microglia have an 

amoeboid form with high mobility toward the site of damage. Moreover, active microglia 

trigger different pathways related to the production of pro-inflammatory mediators, 

modelling the function and activity of neurons. 

In physiological conditions microglia is regulated by soluble factors released by neurons. 

Among them we find CX3CL1 (or fractalkine), colony stimulating factor1 (CSF1), transforming 

growth factor beta (TGF-), IL-34, CD47 and CD200 (Kiedorf 2013; Butovsky 2014). These 

molecules bind to their cognate receptors laying on microglia. One of the most important is 

CX3CR1, the receptor of fractalkine a mediator constitutively expressed by neurons to control 

microglia state (Biber et al., 2007). 

Alterations in the response of microglia can contribute to the development of MDD, in 

particular it has been reported that microglia mediate stress-induced production of pro-

inflammatory mediators (Frank et al., 2007). The mechanisms responsible of microglia 

activation after stress are not completely resolved, however a pivotal role seems to be exerted 
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by pattern recognition receptors (PPRs). In this context, PAMPs and danger associated 

molecular patterns (DAMPs) may contribute to the dysregulation of microglia activation, thus 

leading to the exacerbation of the depressed phenotype. One of the most relevant PPR is the 

toll-like receptor-4. This receptor, present on microglia surface, is upregulated after stress 

exposure in animal models (Frank et al., 2012), while the blockage of its activation prevents 

microglia activation after stress. Another agonist of PPRs is high mobility group box 1 

(HMGB1), another key mediator upregulated after stress able to activate microglia. Lastly ATP 

represent another important signal at central level in the context of neuroinflammation. More 

in detail ATP binds both purinergic metabotropic (P2Y) and ionotropic (P2X) receptors. The 

activation of microglial P2Ys receptors induces a decrease of the activation of 

proinflammatory pathways, through the release of anti-inflammatory mediators; whereas the 

activation of the ionotropic receptors triggers the inflammatory response led by microglia 

(Harry, 2013). Among the latter receptors, P2X7 seem to play a crucial role in the context of 

psychiatric disorders, indeed mice with impaired expression of P2X7 show increased resilience 

to stress-induced behavioral alterations (Basso et al., 2009). 

 

1.3 Preclinical models  

1.3.1 Chronic mild stress (CMS) exposure 

One of the mostly used experimental approach to generate animal models of depression, is 

the exposure to paradigms of chronic stress. Among them the chronic mild stress (CMS) 

paradigm developed by Willner and collaborators in 1997, lead to the development of a 

depressed like phenotype in rodents that resemble the hallmark symptoms of depression: 

anhedonia and behavioral despair, respectively evaluated with the so-called sucrose 

consumption test and with the forced swim test (Willner, 1997). It is important to note that in 

this experimental paradigm not all the animals exposed to CMS develop an altered phenotype. 

This is in line with the fact that not all the human subjects routinely exposed to environmental 

stressors develop psychiatric disorders, on the contrary they are able to cope with an adverse 

situation. Similarly, it is possible to distinguish in rodents exposed to chronic stress, two 

populations that differently respond to stress: one susceptible that present alterations at 

behavioral level, the other resilient to the detrimental impact of stress. The nature of this 

different response is multifactorial and depends on the interaction between several systems 

both genetic and environmental. At molecular level, many systems are altered by the 
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exposure to chronic stress. As example, beyond the mediators of neuroplasticity and the 

glucocorticoid system, stressful events are associated with alterations of mediators of 

inflammation at both peripheral and central level.  

 

 

Microglia-neuron interactions in physiological conditions and after stress response (adapted from 

Wohleb et al. 2016). 
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1.3.2 Immune challenge with lipopolysaccharide 

Another demonstration of the involvement of the immune system in the development of MDD 

is the fact that the administration of the bacterial toxin lipopolysaccharide (LPS) in rodents, 

induce the development of depressive-like phenotypes (Frenois et al., 2007; Zhu et al., 2010). 

LPS administration mimic a bacterial infection, by massively inducing the production of pro-

inflammatory cytokines that -from the periphery- reach the CNS. Animals treated with LPS 

show the so-called sickness behavior, as a consequence of the systemic effects of the 

activation of the immune response. In general, these animals present impaired locomotor 

activity, decreased interest for the environment, reduced social interactions, reduced water 

and food consumption and cognitive alterations (Dantzer et al., 2008). 

Usually sickness behavior resolves within 24hours from LPS administration and -subsequently- 

depressive-like behavior emerges. At molecular level, within the first 6 hours from the 

immune challenge, there is a massive induction of pro-inflammatory cytokines, a peak is 

usually decreased in 24 hours. 

Lipopolysaccharide exerts its action binding to its specific receptor, the TLR-4. As previously 

described, this PPR receptor may mediate the activation of the immune signaling within the 

brain thus promoting the production of pro-inflammatory mediators, the activation of 

microglia and the activation of the kynurenine pathway. 

 

Temporal profile of the behavioral effect of LPS administration. Peripheral administration of 
lipopolysaccharide (LPS) induces sickness behavior that peaks 2 to 6 hours later and gradually wanes. 
The development of sickness behavior is paralleled by the activation of pro-inflammatory cytokine 
signaling in the brain in response to peripheral LPS. Depression-like behavior, as measured by 
increased immobility in the forced-swim test or the tail-suspension test and decreased preference for 
a sweet solution, emerges on this background 24 h later (Dantzer et al., 2008). 
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1.4 Pharmacological treatment 

In contrast to our limited understanding of depression, there are many effective treatments. 

The large majority (80%) of people with depression show some improvement with any of 

several antidepressant medications or electroconvulsive seizures (ECS). In addition, several 

forms of psychotherapy (in particular, cognitive and behavioral therapies) can be effective for 

patients with mild to moderate cases, and the combination of medication and psychotherapy 

can exert a synergistic effect. 

The treatment of depression was revolutionized about 50 years ago, when two classes of 

agents were discovered -entirely by serendipity- to be effective antidepressant: the tricyclic 

antidepressants and the monoamine oxidase inhibitors, the original tricyclic agents 

(imipramine) arose from anti-histamine research, whereas the early monoamine oxidase 

inhibitors (iproniazid) were derived from work on antitubercular drugs. The discovery that 

depression could be treated with these medications provided one of the first clues into the 

types of chemical changes in the brain that regulate depressive symptoms. Indeed, much 

depression research over the last half-century was based on the notion that understanding 

how these treatments work would reveal new insight into the causes of depression. 

The acute mechanisms of action of antidepressant medications were identified: inhibition of 

serotonin or norepinephrine reuptake transporters by the tricyclic antidepressants, and 

inhibition of monoamine oxidase (a major catabolic enzyme for monoamine 

neurotransmitters) by monoamine oxidase inhibitors. These discoveries led to the 

development of numerous second-generation medications (e.g. serotonin-selective reuptake 

inhibitors [SSRIs] and norepinephrine-selective reuptake inhibitors) which are widely used 

today. The availability of clinically active antidepressants also made it possible to develop and 

validate a wide range of behavioral tests to study depression-like phenotypes in animal 

models. Moreover, these medications and behavioral tests represent important tools for the 

study of brain function under normal conditions and for identify a range of proteins in the 

brain that might serve as targets for novel antidepressant treatments. 

Furthermore, the mechanism of action of antidepressant medications is far more complex that 

their acute mode of action might suggest. Inhibition of serotonin or norepinephrine reuptake 

or catabolism would be expected to result in enhanced actions of these transmitters. 

However, all available antidepressants exert their mood-elevating effects only after prolonged 

administration (several weeks to months), which means that enhanced serotonergic or 
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noradrenergic neurotransmission per se is not responsible for the clinical actions of these 

drugs. Rather, some gradually developing adaptations to this enhanced neurotransmission 

would appear to mediate drug action. Important progress has made in the search for such 

drug-induced plasticity but definitive answers are still out of reach. Moreover, several 

generations of research have failed to provide convincing evidence that depression is caused 

by abnormalities in the brain’s serotonin or norepinephrine systems. This is consistent with 

the ability of antidepressant medications to treat a wide range of syndrome far beyond 

depression, including anxiety disorders, PTSD, obsessive-compulsive disorder, eating 

disorders, and chronic pain syndrome. 

As mentioned previously, an important shift in emphasis has occurred in the past 2 decades 

with the discovery that physical or psychological stress, and the resulting activation of the 

inflammatory cascade, plays an increasingly important role in MDD. It can be therefore 

hypothesized that the anti-inflammatory drug would exhibit antidepressant activity and there 

is experimental (Manji et al., 2003) and clinical evidence (Müller et al., 2006) that cyclo-

oxygenase (COX) and nitric oxide synthase (NOS) inhibitors have antidepressant-like activity. 

Likewise, several lines of evidence indicate that antidepressants produce various 

immunomodulatory effects. In depressed patients, the effects of antidepressants are variable 

and seem to be related to the immune status of the subjects at the initiation of the treatment. 

Antidepressants reduced immune function and cytokine secretion and, for example, the 

increased plasma levels of IL-6 during acute depression were normalized by antidepressant 

treatment (Lanquillon et al., 2000). Indeed, treatment with antidepressant appears also to 

have an effect in lowering levels of IL-1, a cytokine for which evidence of an elevation in 

depression is controversial (Dowlati et al., 2010). On the other hand, when immune functions 

were found to be normal, antidepressants had no immunological effects; for example, chronic 

moclobemide treatment had no effect on monocytes functions, TNF- production or IFN-

levels (Landmann et al., 1997). In experimental animals, TCAs as well as SSRIs produce mainly 

immune suppression and anti-inflammatory effects. For example, administration of the 

tricyclic antidepressant desipramine in rats has been shown to result in a virtual ablation of 

neuro-derived TNF- (Reynolds et al., 2005). Antidepressants are also able to decrease 

peripheral inflammation and recently, preventive treatment with bupropion-amfebutamone, 

a noradrenaline-dopamine reuptake inhibitor, was shown to reduce TNF- release and 

mortality in a murine model of severe sepsis (Brustolim et al., 2006). 
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In addition to their effects on immune functions, antidepressants were also found to 

attenuate the behavioral effects of immune activation. Specifically, chronic but not acute 

administration of imipramine attenuated LPS-induced decrease in the consumption of and 

preference for saccharine solution, which is considered as a good animal model of anhedonia, 

as well as others sickness behavior symptoms including anorexia, weight loss, and reduced 

social, locomotor, and exploratory behavior (Yirmiya et al., 2001). 

Among others, one antidepressant that has shown modulatory properties on the 

inflammatory response is Agomelatine. Specifically, previous data from our laboratory 

demonstrated that chronic pretreatment with this antidepressant mitigated the inflammatory 

response induced in the rat by acute injection of lipopolysaccharide. Indeed, it has been found 

that agomelatine is able to act on the early phase of the inflammatory response (2-6 h after 

LPS), as well as in the late phase (24h after LPS) by acting on specific mediators. For example, 

the antidepressant significantly reduced the LPS-induced up-regulation of the pro-

inflammatory cytokines interleukin-1β and interleukin-6 in the rat brain as well as at 

peripheral level. At central level, these effects are associated to the inhibition of NF-κB 

translocation as well as to alterations of mechanisms responsible for microglia activation. In 

addition, we found that agomelatine was also able to alter the expression of enzymes related 

to the kynurenine pathway that are thought to represent important mediators to 

inflammation-related depression (Molteni et al., 2013). 
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2. Aim of the project 

Major depression is a severe psychiatric disorder characterized by a complex etiology and a 

heterogeneous symptomatology. The hallmark symptoms in depressed patients are 

alterations in mood and anhedonia, defined as the incapability of feeling pleasure in hedonic 

circumstances. Despite the numerous drugs available in the market, there are several unmet 

needs in the pharmacological treatment of major depression. Indeed, their therapeutic effect 

appears only after several weeks of treatment, often preceded by adverse effects, and it is not 

always related to a complete remission of the pathology. For these reasons a high percentage 

of patients do not respond to the pharmacological treatment. With these premises, the 

comprehension of the molecular mechanism altered in major depression appears 

fundamental to find new potential targets and develop new pharmacological entities. 

Despite the huge complexity of depression pathophysiology, it is well established that the 

insurgence of the disease is based on the interaction between a genetic background of 

susceptibility and environmental factors; among them, stressful events during life seem to 

play a pivotal role. It is important to note that not all the people exposed to stressful situations 

develop a mental illness, indeed only a small percentage of subjects become affected by major 

depression after stress exposure. In this sense the term “Resilience” refers to the ability of the 

subject to actively cope against adverse stimuli. The investigation and the identification of 

mechanisms underpinning stress vulnerability and stress resilience are, thus, of critical 

importance to identify new therapeutic targets.  

In addition, compelling evidence support the idea that neuroinflammation is involved in the 

etiology of psychiatric disorders and -in this context- it has been demonstrated that alterations 

in the inflammatory system may lead to the insurgence of depressive phenotype in animal 

models and in humans. 

With these premises, the aim of this work was to characterize the response of animal models 

of the pathology to chronic stress and/or to immune challenges to identify from one side the 

molecular systems mainly involved in stress resilience and, on the other, to better understand 

how different classes of antidepressant drugs may intervene on altered expression of 

mediators of inflammation. To pursue this end, we used different experimental approaches. 
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Firstly, we characterized the behavioral response of rats chronically exposed to the chronic 

mild stress (CMS) procedure -a well-established model of depression- by the mean of sucrose 

consumption test. The identification of a stress-Resilient population of animals gave us the 

possibility to investigate the alterations of mediators of inflammation in the different context 

of susceptibility, with a focus on brain areas involved in the pathophysiology of depression, 

such as the dorsal and ventral hippocampus and the prefrontal cortex. Then we evaluated how 

the antidepressant drugs agomelatine and imipramine and the antipsychotic lurasidone were 

able to modulate the alterations at behavioral and molecular levels in stress-Responsive rats. 

We then decided to focus our attention to a specific molecular signaling pathway, to identify 

a peculiar mechanism of action of antidepressant in the context of neuroinflammation. We 

chose the IL-6 pathway, because it is characterized by a feedback inhibition mechanism led by 

the suppressor of cytokine signaling (SOCS)3. We deepened the characterization of the activity 

of agomelatine on this system, considering the pronounced activity of this drug on IL-6 

expression in the rat prefrontal cortex. 

Subsequently, we used an unbiased genome-wide approach to characterize the potential 

protective properties of agomelatine on a strong immune challenge such as the acute injection 

of lipopolysaccharide in the rat ventral hippocampus. The aim of this new experimental 

methodology was to look at the molecular effect of an antidepressant from a broader point 

of view, to enlighten molecules and pathway potentially important for its therapeutic effects. 

We, then, pursued the idea that stress-resilient animals were more able to cope with stress-

induced alteration/priming of inflammation within the brain. Animals were exposed to two 

weeks of CMS, followed by an immune challenge with LPS, to test -at behavioral and molecular 

levels- the capability of the different stressed populations to respond to the massive induction 

of the inflammatory system after stress. This study was focused on the investigation on the 

molecular systems -related to neuroinflammation- underlying the response to CMS-induced 

susceptibility, with a specific interest on the protective mechanisms that are involved in 

resilience. 

Lastly, considering the key role of BDNF in the etiopathology of depression, we investigated 

its contribution in the response to inflammatory stimuli, exposing heterozygous male and 

female mice for the neurotrophin to a single injection of lipopolysaccharide. 
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3. Materials and Methods 

3.1 Animals 

3.1.1 Chronic mild stress study: evaluation of CMS-induced neuroinflammation (Exp.1), effects 

of pharmacological treatment on CMS-induced neuroinflammation (Exp.2) and the impact of 

a challenge with Lipopolysaccharide (LPS) in animals exposed to CMS (Exp. 3) 

Adult male Wistar rats (Charles River, Germany) were brought into the laboratory one month 

before the start of the experiments. The animals were singly housed with food and water 

freely available, and were maintained on a 12-h light/dark cycle in a constant temperature (22 

± 2° C) and humidity (50 ± 5%) conditions. All procedures used in this study were conformed 

to the rules and principles of the 2010/63/EU Directive and were approved by the Local 

Bioethical Committee at the Institute of Pharmacology, Polish Academy of Sciences, Krakow, 

Poland. All efforts were made to minimize animal suffering and to reduce the number of 

animals used. 

3.1.2 Genome wide analysis of agomelatine anti-inflammatory activity (Microarray study - Exp. 

4) 

Adult male Sprague-Dawley rats (Charles River, Calco, Italy) weighing 300-350 g were used 

throughout the experiments. Rats were housed in groups of 4 per cage under standard 

conditions (12h light/dark cycle with food and water ad libitum) and were exposed to daily 

handling for 1 week before any treatment. All animal handling and experimental procedures 

were approved by the University of Milan Institutional Animal Care and Use Committee and 

adhered to the Italian legislation on animal experimentation (D.Leg. 2014/26), the EC (EEC 

Council Directive 2010/63/UE), and the National Institutes of Health Guide for the Care and 

Use of Laboratory Animals. All efforts were made to minimize animal suffering and to reduce 

the number of animals used. 

3.1.3 Immune challenge in animals heterozygous for the neurotrophin BDNF (BDNF+/- study – 

Exp. 5) 

Wild type (C57BL/6 males and females) and BDNF⁺഻⁻ male and female mice on a mixed 

C57BL/6 SV129 background were taken from animal house of the Central Institute of Mental 

Health (Mannheim, Germany). All the animals were housed individually at the age of 13-19 

weeks in standard macrolon cages (type II - 26 cm x 20 cm x 14cm) with bedding and nesting 

material (paper tissue). They were acclimatized at least for 2 weeks to a reserved 12 hour 
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dark-light cycle (lights off 8 am – 8 pm) at 22 ± 1 Cͦ room temperature and the humidity 35 %. 

Animals received a standard pellet diet and water ad libitum. Bodyweight was assessed once 

a week when the cages were changed. All animal experiments were approved by the Animal 

Welfare Office of the Regierungspräsidium Karlsruhe, Germany.   

3.2 Experimental procedures 

3.2.1 Chronic mild stress study 

Each week of the stress regimen consisted of two periods of food or water deprivation, two 

periods of 45-degree cage tilt, two periods of intermittent illumination (lights on and off every 

2 hours), two periods of soiled cage (250 ml water in sawdust bedding), one period of paired 

housing, two periods of low intensity stroboscopic illumination (150 flashes/min), and three 

periods of no stress. All stressors were 10–14 hours of duration and were applied individually 

and continuously, day and night. Control animals were housed in separate rooms and had no 

contact with the stressed animals. They were deprived of food and water for 14 hours 

preceding each sucrose test, but otherwise food and water were freely available in the home 

cage 
Experiment 1. Animals were subjected to the stress procedure for two weeks, tested for the 

sucrose consumption. Based on the results of this test, the stressed animals were divided into 

2 groups: “stress-Responsive” (i.e. showing at least 50% decrease of sucrose consumption) 

and “stress-Resilient” (i.e. showing small or no decrease of sucrose consumption) to be 

compared versus un-stressed rats. This experimental design implied three experimental 

groups: unstressed animals used as control group (n=10 animals); stressed animals that 

showed a decrease in sucrose consumption (“stress-Responsive” animals, n=10); stressed 

animals that were resilient to the CMS (“stress-Resilient”, n=10). 24 hours after the final 

sucrose test the rats were killed by decapitation, the brains were removed and hippocampus 

(dorsal and ventral) and prefrontal cortex were dissected as fresh tissues. Specifically, the 

dorsal hippocampus corresponds to the plates 25-33 according to the atlas of Paxinos and 

Watson (Paxinos and Watson, 2006), whereas the ventral hippocampus corresponds to the 

plates 34-43. The prefrontal cortex (defined as Cg1, Cg3, and IL sub regions corresponding to 

the plates 6-10 according to the atlas of Paxinos and Watson) was dissected from 2-mm-thick 

slices, whereas the hippocampus was dissected from the whole brain. The brain specimens 

were then rapidly frozen in dry ice/isopentane and stored at -80° C for the molecular analyses. 
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Experiment 2. Animals were subjected to the stress procedure for 7 weeks. Based on the 

results of the final sucrose test carried out following first 2 weeks of stress, both control and 

stress-Responsive groups were further divided into matched subgroups and for the 

subsequent five weeks they received intraperitoneal injections (i.p.) of vehicle (hydroxy-ethyl-

cellulose, HEC 1%), imipramine (10 mg/kg daily) or agomelatine (40 mg/kg daily) with a dosage 

chosen according with previous data (Papp et al., 2003). Another group of animals received 

oral administration (by gavage) of vehicle (HEC 1%) or lurasidone (3 mg/kg daily); this dose 

and route of delivery were chosen based on previous studies (Ishiyama et al., 2007; Tarazi and 

Riva, 2013). The stress was continued throughout the entire period of drug administration. 

According with this experimental design the animals were divided into matched subgroups: 

rats that were left undisturbed and received the appropriate vehicle (i.p. or per os according 

with the respective drug) and used as control group (CTRL, n=10); CMS-exposed animals that 

received the appropriate vehicle for five weeks (STRESS; n=10); un-stressed rats that received 

only the chronic pharmacological treatment (IMI or AGO or LUR, n=10/group); rats that were 

subjected to the CMS procedure in parallel with pharmacological treatment (STRESS/IMI; 

STRESS/AGO; STRESS/LUR n=10/group). After five weeks, the treatments were terminated 

and control and stressed animals were killed by decapitation 24h after the last drug 

administration, their brains removed and dissected for dorsal hippocampus as fresh tissue. All 

samples were then rapidly frozen in dry ice/isopentane and stored at -80° C for the further 

molecular analyses. 

Experiment 3 Animals exposed to two weeks of chronic mild stress received 

Lipopolysaccharide (LPS from E. coli, serotype 026:B6; 250 g/kg, i.p.) or saline administration 

24 hours after the sucrose consumption test.  The dose of LPS was based on previously 

published studies of the laboratory (Macchi et al., 2013; Molteni et al., 2013) and was chosen 

as a sub-septic dose. The experimental design generated six experimental groups: animals that 

were not exposed to CMS that received saline (No Stress) or LPS (LPS); animals that showed a 

decreased sucrose intake after stress, that were administered with saline (Responsive) or LPS 

(Responsive/LPS); animals that did not present alterations at behavioral level that received 

saline (Resilient) or LPS (Resilient/LPS). 

In order to evaluate the effects of the immune challenge at both early and later time points, 

the animals were sacrificed 24 hours or six days after the LPS injection. During these six days, 
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the stress procedure was not interrupted. Dorsal hippocampi were dissected, frozen on dry 

ice and stored at -80°C for the molecular analyses. 

3.2.2 Microarray study - Exp. 4 

Rats were chronically (21 days) treated by oral gavage with vehicle (VEH; hydroxy- 

ethyl-cellulose 1%, 1 ml/kg) or agomelatine (AGO; 40 mg/kg) at 5 pm (2h before the dark 

phase) to mimic the evening administration of agomelatine in clinics. Animals were challenged 

with lipopolysaccharide (LPS from E. coli, serotype 026:B6; 250 g/kg, i.p.) or saline (SAL) 16h 

after the last drug administration. The choice of agomelatine dose was based on previous work 

demonstrating its activity in different animal models of depression (Papp et al., 2003) and for 

its anti-inflammatory properties in a previous study (Molteni et al., 2013). This experimental 

design implied 4 experimental groups: animals that received saline and vehicle (VEH/SAL), 

animals challenged with LPS without pharmacological pre-treatment (VEH/LPS), animals 

treated with agomelatine without the inflammatory challenge (AGO/SAL) and animals treated 

with agomelatine and injected with LPS (AGO/LPS). 

The animals were sacrificed by decapitation 2h (11 am) post LPS injection, ventral 

hippocampus was rapidly dissected, frozen on dry ice and stored at -80°C for the molecular 

analyses. 

3.2.3 BDNF+/- study - Exp.5 

After the acclimatization phase, wild-type and heterozygous mice were randomly divided to 

received saline or LPS. The bacterial toxin (from E. coli; serotype 026:B6) was dissolved in 

sterile, endotoxin-free isotonic saline and injected i.p. at the dose of 400 µg/kg. 

Intraperitoneal injections were prepared from 1 mg/ml stock solution and the dose of LPS was 

chosen after a pilot study (unpublished data). With this experimental design, we obtained 

eight groups of animals: male and female wild type mice treated with saline or LPS; male and 

female BDNF+/- mice that received saline or the bacterial toxin. After 6 hours from the 

injection, animals were tested with the Open Field (OF) test to evaluate alterations in the 

locomotor activity; whereas, after 18 hours from the immune challenge, we assessed the 

insurgence of depressive-like behavior with the Forced Swim test (FST). At the end of the FST 

the mice were dried and sacrificed 5 minutes later, the brains were harvested and the different 

brain regions (total hippocampus and frontal lobe) were dissected form both hemispheres. 

The tissues were frozen on dry ice and stored at -80°C until the molecular analyses.  
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3.3 Behavioral tests 

3.3.1 Sucrose consumption test (Chronic mild stress study) 

After a period of adaptation to laboratory and housing conditions, the rats (220 ± 7g) were 

trained to consume a 1% sucrose solution. Training consisted of nine 1h-baseline tests, in 

which sucrose was presented in the home cage, following 14h of food and water deprivation. 

The sucrose intake was measured at the end of the test by weighing pre-weighed bottles (300 

ml Polythene bottles equipped with Stainless steel ball sippers, North Kent Plastics, UK) 

containing the sucrose solution. Based on their sucrose intake in the final baseline test, 

animals were divided into two matched groups to be subjected or not to a chronic mild stress 

procedure (Papp, 2012) for a period of two (Experiment 1) or seven (Experiment 2) weeks. 

Sucrose consumption was used to discriminate between stress-Responsive and stress 

Resilient rats after two weeks of CMS. Subsequently, sucrose consumption was monitored, 

under similar conditions, at weekly intervals throughout the whole experiments. 

A similar procedure was used in Experiment 3 to assess the insurgence of anhedonic-like 

phenotype (after two weeks of CMS) and to evaluate the behavioral impact of LPS 

administration (6 days after LPS injection).  

3.3.2 Open Field test (BDNF+/-study - Exp.5) 

Locomotor activity monitoring was conducted in a square shaped, white openfield, measuring 

50 x 50 cm² and illuminated from above by 25 lx. Mice were placed individually into the arena 

and monitored for 10 minutes by a Video camera (Sony CCD IRIS). The resulting data were 

analyzed using the image processing system Etho Vision 3.0 (Noldus Information Technology, 

Wageningen, the Netherlands). For each sample, the system recorded position and the status 

defined events. Parameters assessed were total distance moved, velocity, distance to the 

walls and time in the center, which was defined as the area 10 cm distant from the walls.  

3.3.3 Forced Swim test (BDNF+/-study - Exp. 5) 

Briefly, mice were placed individually into a glass cylinder (23 cm height, 13 cm diameter), 

which was filled with water (21 Cͦ) up to height of 12 cm. The water was changed between 

testing sessions. A testing period of 6 minutes was used to determinate the onset and the 

percentage of time spent immobile (´floating´). Mice were monitored by a video camera (Sony 

CCD IRIS) from sideward. The resulting data were analyzed using the image processing system 

EthoVision 3.0 (Noldus Information Technology, Wageningen, the Netherlands). For each 
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sample, the system recorded position, object area and the status of defined events. 

Parameters assessed were latency to start floating, total immobility time, mobility, where 

mobility was defined as percentage change between 11.5% and 17% in the object area 

between samples. 

3.4 Molecular analyses 

3.4.1 RNA preparation and real time RT-PCR 

For gene expression analyses, total RNA was isolated from the different brain regions by single 

step guanidinium isothiocyanate/phenol extraction using PureZol RNA isolation reagent (Bio-

Rad Laboratories S.r.l.; Segrate, Italy) accordingly to the manufacturer’s instructions and 

quantified by spectrophotometric analysis. The samples were then processed for real-time 

polymerase chain reaction (PCR) to assess mRNA levels of different markers of inflammation. 

Briefly, an aliquot of each sample was treated with DNAse to avoid DNA contamination and 

subsequently analyzed by TaqMan qRT–PCR instrument (CFX384 real-time system, Bio-Rad 

Laboratories S.r.l.) using the iScript one-step RT–PCR kit for probes (Bio-Rad Laboratories 

S.r.l.). Samples were run in 384-well format in triplicates as multiplexed reactions with a 

normalizing internal control. Thermal cycling was initiated with incubation at 50°C for 10 min 

(RNA retrotranscription), and then at 95°C for 5 min (TaqMan polymerase activation). After 

this initial step, 39 cycles of PCR were performed. Each PCR cycle consisted of heating the 

samples at 95°C for 10 s to enable the melting process, and then for 30 s at 60°C for the 

annealing and extension reactions. A comparative cycle threshold (Ct) method was used to 

calculate the relative target gene expression. Probe and primer sequences used were 

purchased from Life Technologies Italia and Eurofins MWG-Operon (the complete list is 

presented in Table 1). 
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Table 1 List of primers and probes used in the different studies presented. 

 

3.4.2 Microarray procedures 

Gene expression microarray assays were performed using Rat Gene 2.1ST Array Strips on Gene 

Atlas™ platform (Affymetrix), following the WT Expression Kit protocol described in the 

“Affymetrix Gene Chip Expression Analysis Technical Manual” and in the GeneAtlas™ WT 

Expression Kit User Manual. Briefly, starting from 250 ng of total RNA, cDNA was synthetized 

with the Gene Atlas WT Expression Kit (Affymetrix, Santa Clara, CA, USA). The concentration 

and quality of cRNA and cDNA samples were determined by measuring its absorbance at 260 

nm using NanoDrop Spectrophotometer. After fragmentation and labeling procedures, 5.5 μg 

of cDNA were hybridized using Rat Gene 2.1ST Array Strip. The hybridization, the fluidics and 

the imaging were performed on the Affymetrix Gene Atlas instrument following the 

manufacturer’s instructions.  

3.4.3 Protein extraction and preparation of subcellular fractions 

Frozen brain regions from the different studies were manually homogenized in a glass-glass 

potter in ice-cold 0.32M sucrose buffer (pH 7.4) containing 1mM 4-(2-hydroxyethyl)-1-

piperazine-ethanesulfonic acid (HEPES) 0.1mM ethylene glycol tetra-acetic acid (EGTA) and 

0.1mM phenylmethylsulphonyl fluoride in the presence of commercial cocktails of protease 

(Roche, Monza, Italy) and phosphatase (Sigma-Aldrich, Milan, Italy) inhibitors. An aliquot of 

the homogenate (OMO) was sonicated and stored at -20°C, then the remaining part was 
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clarified at 1000g for 10 minutes. The pellet (P1) was kept as nuclear fraction and re-

suspended in a proper buffer (20mM HEPES, 0.1mM dithiothreitol, 0.1mM EGTA) 

supplemented with protease and phosphatase inhibitors, while the supernatant (S1) was 

centrifuged at 13000g for 15 minutes. The resulting supernatant (S2) was recovered as the 

cytosolic fraction, while the pellet (P2), corresponding to the crude membrane fraction, was 

re-suspended in the re-suspension buffer described above. Total protein content was 

measured accordingly to the Bradford Protein Assay procedure (Bio-Rad Laboratories) using 

bovine serum albumin as the calibration standard.  

3.4.4 Western blot analyses 

Equal amounts of protein (12-15 g, depending on the target of the analysis) were run under 

reducing conditions on 8% or 10% SDS-PAGE (PolyAcrylamide Gel Electrophoresis) and then 

electrophoretically transferred onto nitrocellulose or polyvinylidene difluoride (PVDF) 

membranes. Unspecific binding sites were blocked for 1 hour in 10% nonfat dry milk in Tris-

buffered saline, and membranes were then incubated overnight with the proper primary 

antibody (the complete list is presented in Table 2) at 4°C in blocking solution and then with 

the corresponding secondary antibody for 1 hour at room temperature. Immunocomplexes 

were visualized by chemiluminescence using ECL (Perkin Elmer) and the Chemidoc MP imaging 

system (BioRad Laboratories). Results were normalized using β-actin (mouse polyclonal 

antibody, Sigma-Aldrich, 1:10000 in 3% nonfat dry milk in Tris-buffered saline) as internal 

standard. 
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Table 2 List of primary and secondary antibodies used throughout the different studies presented. 
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3.5 Statistics 

All behavioral and molecular analyses were carried out in individual animals (independent 

determinations) by using different statistical tests according to the effect examined.  

In Experiment 1 and Experiment 2 the behavioral and molecular impacts of two weeks of 

stress were analyzed by one-way analysis of variance (ANOVA). Conversely, the effect of the 

pharmacological treatment was evaluated by two-way ANOVA, with treatment (vehicle vs. 

imipramine/agomelatine/lurasidone) and stress (stress vs. no stress) as independent factors. 

When appropriate, further differences were analyzed by Fisher’s Protected Least Significant 

Difference (PLSD). In addition, to evaluate the association between the development of the 

anhedonic phenotype and the alteration of gene expression, Pearson product-moment 

correlation coefficients (r) were calculated between sucrose consumption levels of single 

animals and the corresponding mRNA levels of IL-1, IL-6 and CD11b. Significance for all tests 

was assumed for P<0.05. Gene expression and protein data are expressed as mean ± standard 

error (SEM) and presented for graphic clarity as mean percent of the control group. 

In Experiment 3 analyses of sucrose consumption were performed with ANOVA with repeated 

measures, whereas the molecular impact of stress and LPS was evaluated with Two-way 

ANOVA, followed -when appropriate- by a PLSD test Significance for all was assumed for 

P<0.05. For graphical clarity graphs are presented as % differences between saline and LPS 

treated rats. 

For the data processing in the Microarray study (Exp.4), Affymetrix CEL files were imported 

into Partek Genomics Suite version 6.6 for data visualization and statistical testing. Quality 

control assessment was performed using Partek Genomic Suite 6.6. All samples passed the 

criteria for hybridization controls, labeling controls and 3’/5’ Metrics. Background correction 

was conducted using Robust Multi-strip Average (RMA) (Irizarry et al., 2003) to remove noise 

from auto fluorescence. After background correction, normalization was conducted using 

Quantiles normalization (Bolstad et al., 2003) to normalize the distribution of probe intensities 

among different microarray chips. Subsequently, a summarization step was conducted using 

a linear median polish algorithm to integrate probe intensities to compute the expression 

levels for each gene transcript. Pre-processing of CEL data for the complete data set was 

performed using ANOVA to assess the effects of the different treatments. Subsequently, to 

investigate the effects of LPS challenge, agomelatine treatment and their combinations, a four 

linear contrast was performed (VEH/LPS vs. VEH/SAL; AGO/SAL vs. VEH/SAL; AGO/LPS vs. 
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VEH/SAL; AGO/LPS vs. VEH/LPS). In this comparison, a maximum filter of P<0.05 and a 

minimum absolute fold-change cut-off of ±1.2 was applied. Genes that passed these criteria 

were used to run further analyses. Ingenuity Pathway Analyses (IPA) Software was then used 

to identify regulation of molecular signaling pathways, network and GO terms in each 

condition, using a significance threshold of -Log p value equal to 1.3 (P value = 0.05).  

For Real time-PCR, we used two-way ANOVA with treatment (Vehicle vs. Agomelatine) and 

challenge (LPS vs. Saline) as independent factors. When appropriate, further differences were 

analyzed by PLSD test or Single Contrast post-hoc test (SCPHT). Significance was assumed for 

P<0.05. For graphic clarity, data are presented as means percent ± standard error (SEM) of 

control group, namely vehicle-pre-treated rats received saline (VEH/SAL). 

In the BDNF+/- study (Exp.5) behavioral data were analyzed using Repeated Measurement 

ANOVA (time × treatment × genotype); One-Way ANOVA (treatment) Two-Way ANOVA 

(treatment × genotype). When appropriate, Bonferroni Post-Hoc-Tests was used to evaluate 

further differences between groups. 

Two-way ANOVA with treatment (Saline vs. LPS) or genotype (wild type vs. BDNF+/-) as 

independent factors was used for the molecular analyses. When appropriate, direct contrasts 

were analyzed with PLSD test. For graphic clarity, data are presented as means percent ± 

standard error (SEM) of control group, with significance threshold set at P<0.05.  
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4 Results 

 

4.1 Stress induced anhedonia is associated with the activation of the inflammatory system 

in the rat brain: restorative effect of pharmacological intervention 

 

Rossetti A.C., Papp M., Gruca P., Paladini M.S., Racagni G., Riva M.A., Molteni R. 

Pharmacological Research 2016 Jan; 103:1-12. doi: 10.1016/j.phrs.2015.10.022. Epub 2015 

Nov 1. 
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4.1.1 Introduction 

Major depression is a severe psychiatric disorder estimated to become the second leading 

cause of disability in the world by 2020 (Kessler et al., 2009). Although its etiology has not yet 

been fully elucidated, it is known that the exposure to stressful events may significantly con-

tribute to the development of the disease (Juruena, 2014; Klengel and Binder, 2013; Shapero 

et al., 2014). However, even if depression occurs in a significant percentage of stress-exposed 

sub-jects, most of them are able to successfully cope with the adverse situation and avoid 

such psychopathology (Feder et al., 2009; Franklin et al., 2012). The nature of this differential 

vulnerability is probably multi-factorial and involves a complex interplay between stress and 

the genetic and biological personal background. Over the past decade, there has been 

increasing attention to the involvement of the inflammatory system in the etiology of 

depression (Dantzer et al., 2008; Leonard and Maes, 2012; Miller et al., 2009). In particular, it 

has been reported that depressed subjects exhibit increased levels of inflammatory markers 

both in the periphery and in brain (Dowlati et al., 2010) and several pathologies associated 

with a moderate grade of inflammation present high co-morbidity with depression (Benton et 

al., 2007). Furthermore, a high percentage of patients with cancer or hepatitis C receiving 

immunotherapy with interferon-alpha develop major depression (Udina et al., 2012), 

suggesting that the activation of the immune system may effectively contribute to the onset 

of the disease. In addition, it has been described that stress may activate pro-inflammatory 

mediators at both peripheral and central level. For example, an increased inflammatory 

response has been observed in depressed subjects who experienced early life adversities 

(Danese et al., 2008; Danese et al., 2007; Pace et al., 2006) and similar effects were reported 

in laboratory animals exposed to different stress paradigms (Couch et al., 2013; Gibb et al., 

2011; Girotti et al., 2011; You et al., 2011). However, whether the neuroinflammation plays a 

pathogenic role in the insurgence of depression or it represents a merely epiphenomena is 

still elusive. In order to clarify this issue, in the present study we evaluated to what extent the 

development of a stress-induced anhedonic-like phenotype is associated with brain 

inflammation. To this purpose, we exposed adult male rats to a chronic mild stress (CMS) 

paradigm, an experimental procedure that considers the naturally occurring variation in the 

stress response. Indeed, CMS leads to two distinct behavioral responses in the rat: a 

“susceptible” response characterized by anhedonic-like symptoms as well as a “resilient“ 
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response where the animals appear able to avoid the pathological consequences of the stress 

exposure (Bergström et al., 2008). Given that, it is thought to be a well-established model of 

depression and has been widely used to evaluate stress-related molecular mechanisms (Hill 

et al., 2012; Pochwat et al., 2014; Zurawek et al., 2013). On these bases, we first exposed the 

animals to 2 weeks of CMS, a period sufficient to identify rats that were “susceptible” or 

“resilient” to the development of a decrease in the sucrose intake, a test used as measure of 

anhedonia in the CMS (Willner, 2005) as well as in other animal models of depression 

(Vollmayr et al., 2004). We then assessed the contribution of specific mediators of the 

immune/inflammatory system during this initial phase of stress by a detailed analysis of the 

expression of pro- and anti-inflammatory cytokines and markers of microglia activation and 

regulation in the hippocampus and prefrontal cortex, two brain regions that play a critical role 

in the pathophysiology of depression (Duman and Aghajanian, 2012; Krishnan and Nestler, 

2010). Next, we established if these molecular changes persisted following exposure to an 

additional 5 weeks of CMS. Last, we used two antidepressant drugs characterized by different 

primary mechanism of action, namely the classic tricyclic imipramine and agomelatine. 

Imipramine was chosen as a gold standard inhibitor of monoamine uptake, whereas 

agomelatine was selected based on its novel mechanism as melatonergic (MT1/MT2) agonist 

and serotonergic (5HT2C) antagonist. Moreover, a separate cohort of animals received the 

antipsychotic lurasidone, to evaluate to what extent pharmacological intervention with 

different class of drugs could normalize the behavioral and molecular consequences set in 

motion by CMS. 
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4.1.2 Experiment 1: expression profiling of inflammatory mediators in stress-responsive and 

stress-resilient rats  

4.1.2.1 Sucrose consumption test  

Approximately 70% of the animals exposed to the CMS paradigm for 2weeks showed a 

reduction in sucrose consumption (−4.6 g vs. No Stress, P<0.001). In particular, in the final 

baseline test, i.e. before the stress protocol had been initiated, we found that all animals drank 

approximately 12 g of sucrose solution and following two weeks of CMS the intake remained 

at similar level in control, non stressed animals but fell to approximately 6 g in stressed rats. 

We defined these animals as “Stress-Responsive” to distinguish them from stressed rats that 

did not show reduced sucrose intake, which were termed as “Stress-Resilient” (Fig. 1). The 

reduced sucrose intake was not associated with weight loss (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Effect of 2 weeks of chronic mild stress (CMS) on sucrose preference. Rats were divided into 

animals reactive (RESPONSIVE) and non-responsive (RESILIENT) to CMS depending on sucrose intake 

(n=10 each experimental group) and compared to control unstressed rats (NO STRESS). The data 

represent the sucrose intake expressed in grams (g) of each animal included in the study. ***P<0.001 

vs. No Stress (One-way ANOVA with PLSD). 
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4.1.2.2 Cytokine gene expression analysis. 

To investigate a possible link between the CMS-induced anhedonic phenotype and 

inflammation, we investigated some critical mediators of the inflammatory response in 

Responsive and Resilient animals. Specifically, we analyzed the mRNA levels of the pro-

inflammatory cytokines IL-1 and IL-6 and the anti-inflammatory cytokine TGF- in the dorsal 

and ventral hippocampal sub regions and in the prefrontal cortex, three brain areas mainly 

involved in the pathophysiology of depression. As shown in Fig. 2, stress significantly affected 

the expression of both IL-1 and IL-6 in the dorsal hippocampus (F2,26= 7.721 P=0.003; F2,28= 

7.469 P=0.003, respectively). Specifically, the mRNA levels of the two pro-inflammatory 

cytokines were increased by CMS only in Responsive animals (+52%, P<0.001 and +27%, 

P<0.05 vs. No Stress. respectively), whereas no changes were found in Resilient rats. 

Conversely, CMS did not alter TGF- mRNA levels in any experimental group. In the ventral 

hippocampus, IL-1 was specifically up-regulated by stress in reactive animals (F2,27= 4.003 

P=0.032; +71% vs. No Stress, P<0.01), with no effect of CMS on IL-6 and TGF- expression. Two 

weeks of CMS significantly modulated the expression of IL-1 also in the prefrontal cortex 

(F2,24= 3.116 P=0.05), an effect selectively observed in reactive rats (+41% vs. No Stress, 

P<0.05). In this experimental group, stress up-regulated also the expression of IL-6 (F2,28= 

4.003 P=0.022), which was significantly different from non-reactive rats (+29% vs. Resilient, 

P<0.01). Conversely, TGF- gene expression was not altered neither in reactive nor in non-

reactive rats. 

4.1.2.3 Gene expression analysis of microglial markers  

Given the increased expression of pro-inflammatory cytokines in animals that were reactive 

to CMS, we next investigated microglial response that represents a key component for brain 

inflammation (Saijo et al 2011). Specifically, we assessed the expression of CD11b, a marker 

for the activated state of this cellular population (Perego et al. 2011) as well as the mRNA 

levels of fractalkine (CX3CL1) and its receptor (CX3CR1), which control microglia activation. In 

particular, the interaction between the neuronal protein fractalkine and its receptor 

expressed by microglia plays a crucial role to maintain these cells in a resting. As shown in Fig. 

3A, we found that CD11b mRNA levels in the dorsal hippocampus were significantly up-

regulated in Responsive animals when compared with control animals or Resilient animals 

(F2,24= 6,633 P=0.006; +56% vs. No Stress, P<0.01 and +63% vs. Resilient, P<0.001). A similar 
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effect was observed for CX3CL1 (F2,28= 7.812 P=0.002; +37%vs. No Stress, P<0.001) and its 

receptor (F2,30= 5.026 P=0.014; +32% vs. No Stress, P<0.01; Fig. 4A and B). Conversely, CMS 

exposure did not alter the mRNA levels for CD11b in the ventral hippocampus (Fig. 3B), 

although the neuronal-glial cross talk was dysregulated. Indeed, a slight but significant 

decrease of CX3CL1 mRNA levels was observed in CMS-reactive animals (−12% vs. No Stress, 

P<0.05; Fig. 4C) whereas the expression of its receptor was up-regulated (F2,28= 7.551 P=0.003; 

+32% vs. No Stress, P<0.001; Fig. 4D). 

Figure 2. Effect of 2 weeks of chronic mild stress (CMS) on cytokine gene expression in the rat brain. 

The mRNA levels of the pro-inflammatory cytokines IL-1 and IL-6 and the anti-inflammatory cytokine 

TGF- were measured in the dorsal hippocampus (A, B, C), in the ventral hippocampus (D, E, F) and in 

the prefrontal cortex (G, H, I) of stressed (Responsive or Resilient) rats in comparison with unstressed 

animals (No Stress). The data, expressed as a percentage of No Stress animals (set at 100%), are the 

mean  SEM of at least eight independent determinations. *P<0.05; **P<0.01; ***P<0.001 vs. No 

Stress; °°P<0.01 °°°P<0.001 vs. Responsive (One-way ANOVA with PLSD). 
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In line with the findings in the ventral hippocampus, CD11b gene expression was not affected 

by CMS exposure in the prefrontal cortex (Fig. 3C), whereas a significant decrease of CX3CL1 

mRNA levels was found in stressed-Responsive animals (F2,30= 5.226 P=0.012; −15% vs. No 

Stress, P<0.01; −11% vs. Resilient, P<0.05; Fig. 4E) without concomitant changes of CX3CR1 

expression (Fig. 4F). 

 

Figure 3. Effect of 2 weeks of chronic mild stress (CMS) on the microglia marker CD11b. The gene 

expression of CD11b was measured in the dorsal hippocampus (A), in the ventral hippocampus (C) and 

in the prefrontal cortex of stressed (Responsive or Resilient) rats in comparison with unstressed 

animals (No Stress). The protein levels of CD11b (panel D) were measured by western blot analysis in 

the in the dorsal hippocampus of stressed (Responsive or Resilient) rats in comparison with unstressed 

animals (No Stress). The data, expressed as a percentage of No Stress animals (set at 100%), are the 

mean  SEM of at least eight independent determinations. **P<0.01, ***P<0.001 vs. No Stress; °° 

P<0.01, °°°P<0.001 vs. Responsive (One-way ANOVA with PLSD). In panel E are shown representative 

bands from the western blot analysis. 
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4.1.2.4 Protein analysis of microglial activation (CD11b) 

The changes of CD11b mRNA levels were paralleled by significant modifications of its protein 

levels in the crude membrane fraction. Indeed, as shown in Fig. 3, we found a main effect of 

stress (F2,25= 15.121 P<0.001) with a significant up-regulation of CD11b only in Responsive 

animals when compared to both the control group (+95%, P<0.001) and the Resilient animals 

(+92%, P<0.001). 

 

Figure 4. Effect of 2 weeks of chronic mild stress (CMS) on fractalkine (CX3CL1) and its receptor 

(CX3CR1) in the rat brain. The mRNA levels of CX3CL1 and CX3CR1 were measured in the dorsal 

hippocampus (A, B), in the ventral hippocampus (C, D) and in the prefrontal cortex (E, F) of stressed 

(reactive or non-reactive) rats in comparison with unstressed animals (No Stress). The data, expressed 

as a percentage of No Stress animals (set at 100%), are the mean  SEM of at least eight independent 

determinations. *P<0.05; **P<0.01; ***P<0.001 vs. No Stress; °P<0.01; vs. Responsive (One-way 

ANOVA with PLSD). 
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4.1.2.5 Pearson correlation analysis between sucrose intake and IL-1, IL-6 and CD11b gene 

expression levels  

To evaluate if the molecular changes induced by CMS in the stress-Responsive rats were 

associated with changes in sucrose intake, we calculated the Pearson product-moment 

correlation coefficient between the mRNA levels of IL-1, IL-6 and CD11b and sucrose 

consumption. As shown in Fig. 5, in the dorsal hippocampus all the molecular variables 

considered were associated with the intake of sucrose. Specifically, we found a significant 

inverse linear correlation between IL-1 gene expression and sucrose consumption (r = 

−0.510, P<0.01; Fig. 5A) and a similar result was also observed for IL-6 (r = −0.532, P<0.01; Fig. 

5B) and CD11b (r = −0.409, P 0.05, Fig. 5C). For all these inflammatory mediators, the highest 

mRNA levels were measured in animals consuming less sucrose, suggesting that the 

development of anhedonia at an early stage of stress exposure correlates with the activation 

of the inflammatory response in the dorsal hippocampus. Conversely, there was no 

correlation between changes in sucrose consumption and the expression of these 

inflammatory markers in the ventral hippocampus (Fig. 5D–F), whereas in the prefrontal 

cortex (Fig. 5G–I) only the mRNA levels of IL-6 significantly correlated with the intake of 

sucrose (r = −0.570, P<0.01). 
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Figure 5. Pearson correlation analysis. The correlation analysis between sucrose consumption and 

relative gene expression (expressed as percentage) of IL-1, IL-6 and CD11b in the dorsal hippocampus 

(A, B, C), in the ventral hippocampus (D, E, F) and in the prefrontal cortex (G, H, I) of unstressed (No 

Stress), stress-Responsive and stress-Resilient animals. The statistical significance was assumed with 

P<0.05. 
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4.1.3 Experiment 2: effect of long-term stress exposure on the inflammatory mediators: 

impact of pharmacological treatment 

4.1.3.1 Sucrose consumption test 

As in Experiment 1, two weeks of chronic stress reduced the consumption of 1% sucrose 

solution, an effect that persisted for the subsequent 5 weeks of CMS. As compared to vehicle 

administration, chronic treatment with imipramine, agomelatine and lurasidone did not affect 

sucrose intake in control animals (IMI: F1,40= 0.067, P=0.797; AGO: F1,40= 0.023, P=0.880; LUR: 

F1,39= 0.259, P=0.614), however they all increased sucrose consumption in stressed animals 

(Fig. 6). Specifically, as compared to week 0 scores, the increases in sucrose intake of stressed 

animals that receive imipramine (Fig. 6A) and agomelatine (Fig. 6B) reached statistical 

significance after 1 week of treatment (IMI: F1,40= 4.819, P=0.035; AGO: F1,40= 6.705, P=0.014). 

These effects were maintained and further enhanced thereafter, and at week 5 the amount 

of sucrose solution drunk by these animals was comparable to that of vehicle-treated control 

rats and significantly higher than that of vehicle-treated stressed animals (IMI: F1,40= 4.624, 

P=0.038; AGO: F1,40= 5.753, P=0.022). Similarly, the overall effect of 5 weeks of lurasidone 

treatment (Fig. 6C) led to increased sucrose consumption in stressed-rats (LUR: F1,40= 8.494, 

P=0.006). The recovery of sucrose preference in CMS rats treated with lurasidone was 

apparent during the first 2 weeks of treatment and reached first statistical significance after 3 

weeks (LUR: F1,39= 15.452, P<0.001).  All the changes of the sucrose consumption at the 

different weeks of treatment and the corresponding P values for statistical significance are 

listed in supplementary Tables S1–S3. 
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Figure 6. Effect of pharmacological intervention on sucrose intake following exposure to prolonged 

chronic mild stress (CMS). The sucrose intake was measured weekly during the whole experiment in 

rats (n=10 each experimental group) exposed to CMS combined with chronic treatment with 

imipramine (A), agomelatine (B) and lurasidone (C) for further 5 weeks starting after 2 weeks of only 

CMS. The data, expressed as gram (g) of sucrose intake, are the mean  SEM of at least nine 

independent determinations. *P<0.05; **P<0.01; ***P<0.001 vs. No stress/Veh; #P<0.05; ##P<0.01; 
###P<0.001 vs. Stress/Veh (Two-way ANOVA with PLSD).  
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4.1.3.2 Cytokine gene expression analysis 

We next investigated if the ability of pharmacological treatment to normalize the depressive-

like phenotype of stressed animals was associated with an effect on the inflammatory changes 

produced by chronic stress exposure. These analyses were performed in the dorsal 

hippocampus, the area in which we previously observed the major differences between 

reactive and non-reactive animals and where we found a significant correlation between 

sucrose consumption and the gene expression of IL-1, IL-6 and CD11b. As shown in Fig. 8, the 

expression of IL-1 was still significantly up-regulated after 7 weeks of CMS; these changes 

were normalized by the chronic treatment with imipramine, agomelatine as well as 

lurasidone. Of note, agomelatine per se was able to reduce basal levels of IL-1 mRNA (−36% 

vs. no Stress/Veh P<0.01, Fig. 7B), whereas imipramine (Fig. 7A) or lurasidone (Fig. 7C) did not 

produce any significant change on the inflammatory cytokine when administered to control 

(non-stressed) animals. The expression of IL-6 was significantly increased in stressed animals, 

but the pharmacological treatment did not interfere with this effect (Fig. 7C–E). Finally, the 

expression of TGF- was slightly but significantly decreased by chronic stress, whereas 

pharmacological treatment did not produce any change (IMI: F1,35= 2.973, P=0.095, Fig. 7G; 

AGO: F1,36= 2.523, P=0.122, Fig. 7H; LUR: F1,38= 0.015, P=0.905, Fig. 7I) except for imipramine 

that -per se- caused a modest reduction of TGF- expression. All the percentage of changes of 

the cytokine expression and the corresponding P values for statistical significance are listed in 

supplementary Table S4. 

 

4.1.3.3 Gene expression analysis of microglial markers 

We then investigated the modulation of microglia activation through the analysis of CD11b 

expression in the dorsal hippocampus. As shown in Fig. 8, CD11b mRNA levels were still up-

regulated after 7 weeks of CMS. These changes were completely normalized by chronic 

treatment with imipramine (F1,32= 13.355, P=0.001, Fig. 8A) and partially restored by 

agomelatine (Fig. 8B) and lurasidone treatment (Fig. 8C). We next examined CX3CL1 

expression and, at variance from what we observed after 2 weeks of CMS, we found that 

prolonged exposure to the stress paradigm caused a modest but significant decrease of 

fractalkine mRNA levels. This reduction was normalized by chronic lurasidone treatment 

(F1,36= 7.031, P=0.012, Fig. 8C) while imipramine and agomelatine (Fig. 8A and B) did not show  
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Figure 7. Modulation of cytokine gene expression following CMS and pharmacological treatment in 

the dorsal hippocampus. The mRNA levels of IL-1 (A, B, C), IL-6 (D, E, F) and TGF- (G, H, I) were 

analyzed in rats exposed to CMS and to the treatment with imipramine (A, D, G), agomelatine (B, E, H) 

or lurasidone (C, F, I) for 5 weeks. The data, expressed as a percentage of unstressed rats treated with 

vehicle (No stress/Veh animals, set at 100%), are the mean  SEM of at least seven independent 

determinations. *P<0.05; **P<0.01; ***P<0.001 vs. No stress/Veh. °P<0.01; °°P<0.01; °°°P<0.001 vs. 

Stress/treated animals (Two-way ANOVA with PLSD). 

 

any effect. The expression of the fractalkine receptor CX3CR1 was not significantly affected by 

7 weeks of CMS, although imipramine and lurasidone per se produced a modest, though 

significant, reduction of its mRNA levels (IMI: F1,38= 9.726, P=0.004, Fig. 8G; LUR: F1,37= 21.455, 

P<0.001, Fig. 8I). All the percentage of changes of microglia markers and the corresponding P 

values for statistical significance are listed in Supplementary Table S5.  
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Figure 8. Modulation of microglia markers following CMS and pharmacological treatment in the 

dorsal hippocampus. The mRNA levels of CD11b (A, B, C), CX3CL1 (D, E, F) and CX3CR1 (G, H, I) were 

analyzed in rats exposed to CMS and to the treatment with imipramine (A, D, G), agomelatine (B, E, H) 

or lurasidone (C, F, I) for 5 weeks. The data, expressed as a percentage of unstressed rats treated with 

vehicle (No stress/Veh animals, set at 100%), are the mean  SEM of at least eight independent 

determinations. *P<0.05; **P<0.01; ***P<0.001 vs. No stress/Veh; °°°P<0.001vs. Stress/treated 

animals (Two-way ANOVA with PLSD). 
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4.1.4 Discussion 

In the current study, we demonstrate that the development of the anhedonic-like phenotype 

in response to chronic stress is associated with neuroinflammation, sustained by the increased 

expression of pro-inflammatory cytokines IL-1and IL-6 and the marker of microglial 

activation CD11b. These changes were selectively observed in stressed animals showing a 

reduction of sucrose intake, but not in resilient rats. The expression of IL-1 was increased in 

stress-reactive rats in all the brain regions examined. Moreover, the evidence that 

pharmacological inhibition (Koo et al., 2008) or genetic deletion of IL-1 receptor (van Heesch 

et al., 2013) blocks the anhedonic behavior induced by chronic stress clearly supports the 

involvement of this cytokine in pathological impact of stress. Similarly, the increased 

expression of IL-6 observed in stressed rats with the anhedonic-like phenotype is in line with 

the reduced behavioral despair, enhanced hedonic behavior and resistance to stress-induced 

helplessness shown by IL-6 knockout mice (Goshen et al., 2008). Moreover, administration of 

IL-6 in the rat hippocampus increased immobility time in the forced swim test, whereas its 

inhibition has an opposite effect (Koo and Duman, 2008). It has to be noted that the 

association between increased pro-inflammatory cytokines and the pathological consequence 

of stress exposure has been also reported by a recent study showing a main involvement of 

TNF- (Couch et al. 2013), a discrepancy that may be due to differences in the experimental 

paradigm. Beside the up-regulation of pro-inflammatory cytokines, the neuroinflammatory 

response observed in our study included microglia activation, adding an important 

information about the role of these cells on the effect of stress exposure (for review see Thase, 

2006). Among the maladaptive mechanisms set in motion by stress that may result in microglia 

activation, our data point to the involvement of neuron-microglia cross-talk that regulates the 

state of these cells (Uher et al., 2012). Indeed, the expression of fractalkine and its receptor 

were increased after 2 weeks of stress. We hypothesize that the initial fractalkine up-

regulation may represent an attempt to counteract the elevated neuroinflammatory response 

induced by the early phase of the CMS exposure, in agreement with data reporting that a short 

exposure to stress can lead to microglial activation (Cattaneo et al., 2013). Interestingly, a 

recent study by Milior et al. showed that CX3CR1 KO mice do not present an anhedonic-like 

phenotype after two weeks of stress (Walker et al., 2013). Moreover, the increased expression 

of CX3CL1 and CX3CR1 observed in our study may contribute to the enhanced IL-1 release 
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by microglia, as recently reported (Biber et al., 2007). All in all, these data suggest a potential 

role of CX3CR1 and its ligand in the behavioral response to chronic stress, as sustained also by 

a significant linear correlation between the increased gene expression of CX3CR1 and the 

decrease in sucrose intake of reactive animals (data not shown). We found a similar significant 

negative correlation between the expression of IL-1, IL-6 and CD11b observed in the dorsal 

hippocampus of reactive animals and their intake of sucrose, providing support for the 

relationship of these molecular alterations with the development of the anhedonic-like 

phenotype in this brain region. These effects are in line with data demonstrating the 

association between anhedonia and neuroinflammation following the administration of the 

cytokine inducer lipopolysaccharide (Kreisel et al., 2014) suggesting that neuroinflammation 

is closely associated with the development of the depressive-like behavior, rather than being 

a consequence of stress exposure. However, further studies are demanded to establish 

whether the decreased sucrose consumption is a consequence of the inflammatory state or if 

the latter develops in close association with the behavioral deficit. The increased expression 

of inflammatory markers, as well as the dysregulation of the fractalkine system, persists after 

7 weeks of CMS suggesting that such changes may be intimately associated with the 

persistence of the anhedonic phenotype in stressed rats in line with previous reports 

(Hinwood et al., 2013; Raison et al., 2006). Of note, the increase of pro-inflammatory cytokines 

was paralleled by a reduction of TGF- supporting its potential role in the psychoimmunology 

of depression (Dhabhar et al., 2009) and suggesting that the pathological phenotype observed 

after a long exposure to stress may be due to an unbalance between pro- and anti-

inflammatory cytokines, as observed in clinical studies (de Bodinat et al., 2010). Interestingly, 

we found that drugs characterized by different mechanisms of action were able to normalize 

the decrease of sucrose intake and ameliorate the neuroinflammatory sig-nature observed in 

CMS rats. Indeed, an overall dampening of stress-induced neuroinflammation was observed 

following chronic treatment with the tricyclic antidepressant imipramine, with the novel 

antidepressant agomelatine that acts as MT1/MT2 melatonergic agonist and 5HT2C antagonist 

(Janssen et al., 2010), as well as with the multireceptor antipsychotic drug lurasidone, which 

has high affinity for dopamine D2 receptors as well as for 5-HT1A, 5-HT2A and 5-HT7 serotonin 

receptors (Tarazi and Riva, 2013). These results suggest that the ability of these drugs to 

modulate CMS-induced inflammatory changes appears to be independent from their primary 

effect at synaptic level, but may be due to shared long-term adaptive mechanisms induced by 
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their repeated administration. The role of inflammatory mediators as target of psychotropic 

drugs has been reported in in vitro and in in vivo studies (Brunello et al., 2006) and beneficial 

effects have been demonstrated with the combined use of anti-inflammatory and 

antidepressant drugs in animal models of depression (Mutlu et al., 2012). Moreover, in line 

with our results, Mutlu and colleagues demonstrated that chronic administration of 

agomelatine normalized the enhanced levels of IL-6 observed in the plasma of chronically 

stressed rats (Mutlu et al., 2013).The anti-depressant activity of lurasidone in the CMS 

paradigm is in agreement with data obtained using the forced swim test, an effect that 

appears to rely on its ability to block 5-HT7receptors (Cates et al., 2013). Moreover, we have 

recently reported that the ability of lurasidone to normalize the anhedonic-like phenotype 

induced by CMS may be also due to the modulation of synaptic and neuroplastic mechanisms 

(Luoni et al., 2014). It has to be noted that the main target of our pharmacological treatment 

appears to be IL-1. In fact, stress-induced IL-1 up-regulation was completely normalized by 

all the drugs examined, differently from what observed for IL-6, whose changes were 

ameliorated only in part by imipramine and agomelatine. Given the apparent ‘resistance’ of 

IL-6 to the pharmacological treatment, it may be inferred that the elevation of its levels 

contributes to residual symptoms that may impair or limit clinical remission of depression. 

Several mechanisms may underline the overall anti-inflammatory properties of the drugs 

used. Among these, one intriguing possibility is a role for the kynurenine pathway (Chourbaji 

et al., 2006), which represents an important link between inflammation and depression (Wu 

and Lin, 2008). We have previously demonstrated that chronic agomelatine treatment is able 

to modulate the expression of two of the major enzymes involved in this pathway, 

namelykynurenine-3-monooxygenase (KMO) and kynurenine amino-transferase (KAT)-II, 

(Schwarcz et al., 2012) that, by acting on kynurenine, may switch the pathway toward 

neurotoxic or neuroprotective arms respectively (Chourbaji et al., 2006). In line with these 

data, preliminary results point to an unbalance between these two enzymes in response to 

stress, which can be regulated by chronic treatment with antidepressant drugs (Molteni et al., 

unpublished). 
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4.2.1 Introduction 

In the context of affective disorders, the role of neuroinflammation is gaining increasing 

importance (Haroon et al., 2012; Wohleb et al., 2016), as a matter of fact, different meta-

analyses have shown that pro-inflammatory cytokines are strictly associated with the 

insurgence of psychopathologies such as major depressive disorder (MDD) (Dowlati et al., 

2010; Howren et al., 2009) In addition, it appears that an altered inflammatory response in 

the patients may play a pivotal role not only in the severity of the pathology, but also in the 

positive outcome of pharmacological therapy. Currently, standard therapies fail to reach the 

complete remission of the pathology in a large number of patients, thus suggesting an urgent 

need of new therapeutic targets and a better understanding of the molecular basis of MDD 

(Sukoff Rizzo et al., 2012) 

Interleukin (IL)-6 is a pleiotropic cytokine which, depending on the cellular context, may have 

pro or anti-inflammatory properties after rapid induction or following homeostatic regulation 

(Hunter and Jones, 2015). In the context of psychiatric disorders, this cytokine, together with 

tumor necrosis factor (TNF)-, resulted to have the most robust association with MDD, with a 

peculiar contribution to treatment-resistant depression (Maes, 1994; Maes et al., 2014). 

Among the signaling pathways activated by IL-6, one of the most important is mediated by the 

JAK/STAT proteins. Janus Kinase (JAK) 1 is a kinase non-covalently associated with the cytokine 

receptor responsible of the first phosphorylation processes of the cascade, due to the lack of 

intrinsic kinase activity of the receptor (Garbers et al., 2015). The signal transducer and 

activator of transcription (STAT) 3 is the downstream target of JAK1 that, upon activation, 

translocates into the nucleus to promote the transcription of several genes involved in both 

positive and detrimental effects of IL-6. The peculiarity of this system is the intrinsic feedback 

inhibition mechanism led by the suppressor of cytokine signaling (SOCS) 3. This protein is a 

member of the SOCS family, which is constituted by eight members; among them SOCS1 and 

SOCS3 are the unique proteins to possess a kinase inhibitory region (KIR) domain, which is 

able to inhibit the activity of the target receptor (Baker et al., 2009; Qin et al., 2008). In 

particular, it has been demonstrated that SOCS3 is able to block the pathway of the IL-6 family 

cytokines, showing a particular affinity for IL-6 signaling (Babon et al., 2014). The inhibitory 

action of SOCS3 is exerted through diverse mechanisms: firstly, with the inhibition of STAT3 

activation in the cytosol and secondly, through the blockage of JAK1, a protein that is 
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fundamental for the initiation of the downstream signaling (Babon et al., 2014; White and 

Nicola, 2013). 

In our study, we used the chronic mild stress procedure (CMS), a well-known model of 

depression, extensively used to investigate stress-related molecular alterations (Hill et al., 

2012; Pochwat et al., 2014). More in details, we exposed adult male rats to seven weeks of 

CMS paralleled with the pharmacological treatment with agomelatine for the last five weeks. 

Considering the ability of this antidepressant to modulate the expression of several mediators 

of inflammation (Molteni et al., 2013; Rossetti et al., 2016), our aim was to investigate the 

potential mechanisms underlying this activity on the IL-6 pathway in the rat prefrontal cortex, 

a brain region particularly involved in stress response and in the etiopathology of MDD, with 

a particular attention to SOCS3 and the potentiality of the IL-6 feedback inhibition. 
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4.2.2 Results 

4.2.2.1 Agomelatine modulates IL-6 increase in the prefrontal cortex of rats exposed to CMS. 

In order to investigate the impact of seven weeks of CMS on the expression of IL-6 in the rat 

brain, we performed the analyses of gene and protein expression in the dorsal, ventral 

hippocampus and in the prefrontal cortex. 

Despite the similar effects exerted by chronic stress exposure on the gene expression of IL-6 

in the ventral (+43% vs. No Stress/Vehicle, P<0.01; Table3) and dorsal (+38% vs. No 

Stress/Vehicle, P<0.05; Tabl3) hippocampus, we found a significant effect of the drug 

administration (F1,32= 7.892, P<0.01) and an interaction between stress and the 

pharmacological treatment (F1,32= 9.868, P<0.01) only in the prefrontal cortex. More in detail, 

while stress led to an increase of 51% when compared to control animals (P<0.01; Fig.9A), 

agomelatine had a normalizing effect only in this brain area. Indeed, in stressed animals the 

increase of IL-6 mRNA was normalized by the drug (-67% vs. Stress/Vehicle, P<0.001; Fig.9A). 

To deepen our analyses, we investigated the modulation of IL-6 protein levels in the prefrontal 

cortex. As shown in figure 1B -although not significant- we observed a trend toward increase 

in stress animals (+38% vs. No Stress/Vehicle) and an expression profile comparable to control 

rats in stress animals treated with agomelatine, with a potential normalizing effect of the drug 

(-47% vs. Stress/Vehicle). 

In addition, we analyzed the activation of JAK1, an accessory protein that mediates the 

cascade if IL6 interacting with its membrane receptor. The analysis of JAK1 phosphorylation 

(at tyrosine 1022 and 1023) showed that the main effect was due to a significant interaction 

stress*agomelatine (F1,32 =15.135, P<0.001; Fig.9C), while the pharmacological treatment did 

not reach the statistical significance (F1,32= 4.094, P=0.053 Fig.9C). More in detail, we observed 

an increase of JAK1 activation in the stress group when compared to control animals (+34% 

P<0.001 vs. Non Stress; Fig.9C). On the other hand, the pharmacological treatment was able 

to normalize the alterations due to stress (-35% P<0.001 vs. Stress; Fig.9C), with a profile 

similar to IL-6 expression. 
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 CTRL Agomelatine Stress Agomelatine/Stress 
Ventral 

hippocampus 100±9 128±7* 143±15** 122±9 

Dorsal 
hippocampus 100±6 119±14 138±11* 131±6 

 
Table3. Gene expression analysis of IL-6 in the ventral and dorsal hippocampus. The mRNA levels of 

Il-6 were analyzed in rats exposed to CMS and/or to the treatment with agomelatine for 5 weeks. The 

data, expressed as a percentage of unstressed rats treated with vehicle (No Stress/Vehicle, set at 

100%), are the mean ± SEM of independent determinations. *P<0.05; **P<0.01 vs. No Stress/Vehicle 

(two-way ANOVA with PLSD). 

Figure 9. Gene and protein expression analyses of IL-6 and activation of JAK1. The gene (A), protein 

(B) expression of IL-6 and the analysis of JAK1 phosphorylation on tyrosine 1022/1023 (C) were 

conducted in the prefrontal cortex of rats exposed to CMS and/or to the treatment with agomelatine 

for 5 weeks. The data, expressed as a percentage of unstressed rats treated with vehicle (No 

Stress/Vehicle, set at 100%), are the mean ± SEM independent determinations. **P<0.01, ***P<0.001 

vs. No Stress/Vehicle; ###P<0.001 vs. Stress/Vehicle (two-way ANOVA with PLSD). 
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4.2.2.2 Impact of CMS and drug treatment on the IL-6 signaling pathway in the prefrontal 

cortex. 

To better characterize the modulation of IL-6 pathway, we analyzed the expression of 

different molecules involved in its signaling. More specifically, we investigated in the cytosolic 

compartment the modulation of STAT3-activating phosphorylation at tyrosine 705 

(pSTAT3Y705) and the protein expression of SOCS3. Moreover, to evaluate the activity of the 

transcription factor, we analyzed pSTAT3Y705 levels in the nucleus and the mRNA levels of 

Socs3. 

The up-regulation of IL-6 after stress exposure was paralleled by the activation of STAT3 in the 

cytosol as indicated by the significant up-regulation of pSTAT3Y705 in stressed animals (+37% 

P<0.05 vs. No Stress/Vehicle; Fig.10A). Interestingly, this increase was normalized by the 

pharmacological treatment (-41% P<0.01 vs. Stress/Vehicle; Fig.10A) that had no effect on 

control rats, as demonstrated by the significant stress*agomelatine interaction (F1,36=6.764, 

P<0.05). On the contrary, no changes were found on the total form of STAT3 protein (Fig.10B, 

10E).  

In line with the increase of STAT3 activation in the cytosolic compartment, we found a similar 

expression profile in the nucleus. Animals exposed to CMS showed an increase of pSTAT3T705 

(+75% P<0.01 vs. No Stress/Vehicle; Fig.10D), an alteration normalized by the pharmacological 

treatment (-59% P<0.05 vs. Stress/Vehicle; Fig.10D). However, agomelatine per se, was able 

to induce pSTAT3Y705 levels in the nucleus, with a marked increase of the activated protein 

(+124% P<0.001 vs. No Stress/Vehicle; Fig.10D). Similarly to what previously observed,in this 

cellular compartment we did not found any change in the total form of STAT3. 

The expression level of Socs3 mRNA, whose transcription is promoted by the active form of 

STAT3, was modulated by stress (F1,33= 6.216, P<0.05) and also by pharmacological treatment 

(F1,33= 11.077, P<0.01). Indeed, as shown in figure 10C, stressed animals showed a 30% 

increase of Socs3 (P<0.05, vs. No Stress/Vehicle) and agomelatine up-regulated Socs3 in both 

control (+49% P<0.01 vs. Non Stress; Fig.10C) and in stressed animals (+69% P<0.001 vs. No 

Stress/Vehicle; Fig.10C). In line with these results,SOCS3 protein levels were increased in the 

cytosol in all the experimental groups (Fig. 10F). Indeed, SOCS3 was up-regulated by stress 

exposure (+35% P<0.05 vs. No Stress/Vehicle; Fig. 10F), and by agomelatine in both Non Stress 

and Stress conditions (+61% P<0.001 and +48% P<0.01 vs. No Stress/Vehicle respectively). 
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Figure 10. Analysis of the activation of IL-6 intracellular signaling. The protein expression of activated 

(phospho tyrosine 705) and total STAT3 were performed in the cytosolic (A, B) and in the nuclear 

compartments (D, E); SOCS3 levels were analyzed as protein (C) and as transcript (F). All the analyses 

were conducted in the prefrontal cortex of rats exposed to CMS and/or to the treatment with 

agomelatine for 5 weeks. The data, expressed as a percentage of unstressed rats treated with vehicle 

(No Stress/Vehicle, set at 100%), are the mean ± SEM of independent determinations. *P<0.05; 

**P<0.01; ***P<0.001  vs. No Stress/Vehicle; #P<0.05, ##P<0.01 vs. Stress/Vehicle (two-way ANOVA 

with PLSD).  
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4.2.2.3 Effect of CMS and agomelatine on the protein expression of pSTATS727 and MAP 

kinases in the nuclear compartment. 

Considering the diverse modulation of pSTAT3Y705 exerted by the pharmacological treatment 

per se in the cytosol and in the nucleus, we investigated if the regulation of the transcription 

factor at serine 727 (pSTATS727) or the activation of pp38T180/Y182, pERK1T202/Y204 and 

pERK2T185/Y187 may be involved. 

At first -as shown in figure 11- we analyzed the protein expression of pSTATS727. The 

phosphorylation at this site, however, was not altered by either the CMS, or the 

administration of agomelatine (Fig. 11A). Conversely, our experimental paradigm affected 

MAP kinases. Specifically, the levels of pp38T180/Y182 (Fig. 11B) were significantly increased by 

stress exposure (+39% P<0.05 vs. No Stress/Vehicle) and by agomelatine, which up-regulated 

the activation of the enzyme in both non stressed (+46% P<0.01 vs. No Stress/Vehicle; Fig. 

11B) and stressed (+39% P<0.01 vs. No Stress/Vehicle) animals. A different profile was 

observed for ERK1 (Fig. 11C), whose activation was increased only in stress animals (+58% 

P<0.05 vs. No Stress/Vehicle; Fig.11C), an effect normalized by the pharmacological treatment 

(-91% P<0.01 vs. Stress/Vehicle). Similarly, stress induced pERK2T185/Y187 protein levels (+77% 

P<0.001 vs. No Stress/Vehicle; Fig. 11D), an effect normalized by agomelatine (-47% P<0.01 

vs. Stress/Vehicle), which was also able to significantly increased the activation of the enzyme 

when administered to control rats (+48% P<0.01 vs. No Stress/Vehicle). 
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Figure 11. Protein levels of pSTAT at serine 727 and MAP kinases in the nuclear fraction. Panel A 

shows the protein levels of pSTAT3 (phospho serine 727) whereas the activation of nuclear MAP 

kinases p38, ERK1 and ERK2 are presented respectively in panels B, C and D. All the analyses were 

conducted in the prefrontal cortex of rats exposed to CMS and/or to the treatment with agomelatine 

for 5 weeks. The data, expressed as a percentage of unstressed rats treated with vehicle (No 

Stress/Vehicle, set at 100%), are the mean ± SEM of independent determinations and are presented 

as a ratio between phosphorylated and total form of the protein. *P<0.05; **P<0.01; ***P<0.001  vs. 

No Stress/Vehicle; ##P<0.01 vs. Stress/Vehicle (two-way ANOVA with PLSD). 

4.2.2.4 Analysis of STAT3 transcriptional activity: gene expression of Casp1, Casp3 and Bcl-xl 

Lastly, we investigated the mRNA levels of three genes whose transcription is induced by 

STAT3 activity within the nucleus, namely caspase 1 (Casp1), caspase 3 (Casp3) and B-cell 

lymphoma-extra large (Bcl-xl). 

As shown in figure 12, we did not observe statistically significant alterations of Casp1 gene 

expression (Fig. 12A). On the contrary, we found a significant effect of stress exposure (F1,35 = 

5.061; P<0.05) on Casp3 (Fig. 12B): its mRNA levels were slightly but significantly reduced in 

stressed rats (-16% P<0.01 vs. No Stress/vehicle). Similarly, agomelatine administration led to 



53 
 

a reduction of Casp3 levels in both non stressed (-12% P<0.05 vs. No Stress/Vehicle; Fig.12B) 

and stressed (-10% P<0.05 vs. No Stress/Vehicle; Fig.12B) animals. 

Regarding Bcl-x (Fig. 12C), we found a main effect of the pharmacological treatment (F1,37= 

16.929, P<0.001) that increased its gene expression in non-stressed animals (+17% P<0.05 vs. 

No Stress/Vehicle) and in animals subjected to CMS (+45% P<0.01 vs. Stress/Vehicle). 

 

Figure 12. Gene expression analysis of STAT3 transcriptional activity. The mRNA levels of Casp1 (A), 

Casp3 (B), and Bcl-xl (C), were analyzed in rats exposed to CMS and/or to the treatment with 

agomelatine for 5 weeks. The data, expressed as a percentage of unstressed rats treated with vehicle 

(No Stress/Vehicle, set at 100%), are the mean ± SEM of independent determinations. *P< 005; 

**P<0.01vs. No Stress/Vehicle; ##P<0.01 vs. Stress/Vehicle (two-way ANOVA with PLSD). 
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4.2.3 Discussion 

Our data showed that chronic exposure to stress increases the expression of IL-6 in the 

prefrontal cortex and in the hippocampus, two brain areas strictly interconnected and 

fundamental for the control of stress response and involved in the pathophysiology of 

depression (Radley et al., 2015). These results are in line with the reported association 

between IL-6 and the development of depressive-like behaviors in animal models (Sukoff Rizzo 

2012) and with alterations observed in major depressive disorder (Money et al., 2016). 

Moreover, a meta-analysis showed that -among others pro-inflammatory cytokines- IL-6 and 

TNF- have a strong association with the pathologic phenotype (Dowlati et al., 2010). 

Interestingly, our results demonstrated that agomelatine, a peculiar antidepressant with 

melatonergic and serotonergic activity (Guardiola-Lemaitre et al., 2014), exerted a specific 

effect on IL-6 expression only in the prefrontal cortex. In this context, we already 

demonstrated that agomelatine possesses anti-inflammatory properties when administered 

to rats exposed to lipopolysaccharide (Molteni et al., 2013) or to chronic stress (Molteni et al., 

2013; Rossetti et al., 2016), however, the underpinning molecular mechanisms are still elusive. 

Thus, we deepened our analysis on agomelatine activity by measuring the protein expression 

of key molecules involved in IL-6 pathway in the prefrontal cortex of rats. IL-6 is a pleiotropic 

cytokine with pro- or anti-inflammatory properties whose action is context-dependent. In the 

brain, this cytokine may have neurotrophic effects (Molteni et al., 2013; Rossetti et al., 2016), 

but also sustain chronic inflammation (Hunter and Jones, 2015). Interestingly IL-6 has an 

intrinsic feedback inhibitory mechanism, led by the protein SOCS3 (Babon et al., 2014). 

Firstly, here we demonstrated that stress was able to activate IL-6 pathway in all the cellular 

compartments analyzed: starting from the receptor-bound protein JAK1, through the 

cytoplasmic and nuclear activation of STAT3, to the gene and protein expression of SOCS3. 

The increase of the inhibitory protein in the stress condition, however, did not seem to limit 

either the activity of JAK1 (via the inhibition of its phosphorylation), or the activation of STAT3 

at tyr705, the latter fundamental for STAT3 nuclear translocation (Qi and Yang, 2014). The lack 

of the SOCS3-mediated feedback inhibition may be due to a sensitization of the system caused 

by the over-activation of the pathway that -in the stressed animals- is not dampened by the 

physiological activity of SOCS3. In this context, another contribution to SOCS3 induction may 

come from the activity of MAP kinases such as ERK1/2 and p38 that have been reported to be 
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involved in Socs3 expression also in the absence of STAT3 (Qin et al., 2007). In this regard, our 

data showed that chronic stress seems to over-activate nuclear p38, ERK1 and ERK2, a 

modulation that may be related to SOCS3 overexpression. These enzymes may be responsible 

for the activation of other transcription factors whose consensus regions lay on the promoter 

of Socs3: in this sense, it has been demonstrated -although in human non neuronal cell lines- 

that the intracellular increase of cAMP is capable of induce Socs3 transcription independently 

from STAT3 binding (Wiejak et al., 2012).   

Interestingly, the chronic treatment with agomelatine was able to normalize the alterations 

observed at intracellular level, without affecting the induction of SOCS3. Our hypothesis is that 

the effective inhibition of the pathway might occur through the inhibition of JAK1 and 

pSTAT3Y705 due to the increased SOCS3 expression. The modulation of the antidepressant on 

these molecules seemed to start from the nucleus, through the induction of Socs3 gene 

expression. 

To the best of our knowledge there are only few studies on the effects of antidepressants on 

SOCS3 activity. In a work of 2016 Al-Samhari and colleagues showed that pharmacological 

treatment with fluoxetine or N-acetylcysteine after forced swim was able to normalize the 

activation of STAT3 and to increase the levels of Socs3 gene expression, with no changes in 

SOCS3 protein levels (Al-Samhari et al., 2016). Similarly, fluoxetine has been demonstrated to 

reduce SOCS3 protein levels in the hypothalamus of animals subjected to chronic stress (Pan 

et al., 2013). Lastly, the administration of minocycline -a well-studied microglia inhibitor- in 

bulbectomized rats led to an increase of Socs3 levels, while the treatment per se caused a 

decrease in its gene expression (Burke et al., 2014). In our study we provide new insight in the 

action of antidepressants on this system, in particular, adding information on the activity of 

the drug itself. Nevertheless, the mechanism underlying Socs3 expression has to be fully 

elucidated, especially considering that nuclear pSTATY705 levels are normalized by the drug 

treatment. It is interesting to note that agomelatine normalizes the induction of ERK1/2 in the 

nucleus, without affect p38 activation, thus suggesting a potential contribution of this kinase 

in fostering the effect of the drug on SOCS3 inhibitory effect. Other analyses are needed to 

fully understand the role of MAP kinases in the stress-induced modulation of IL-6 signaling, 

especially keeping in mind that the control of SOCS3 expression by these enzymes has been 

only partially resolved (Ehlting et al., 2015). 
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Figure 13. Effect of stress and pharmacological treatment on IL-6 pathway The exposure to chronic 

mild stress is able to activate the IL-6 pathway in all its parts, with the phosphorylation of JAK1, STAT3 

and the promotion of SOCS3 expression. It appears, however that the feedback inhibition activity of 

SOCS3 is not able to block the effect of stress exposure on the pathway (on the left). On the contrary, 

the administration of agomelatine is able to induce SOCS3 expression, potentially through the 

intervention of MAP kinases at nuclear level. In this situation, the antidepressant seems to strengthen 

the inhibition on this signaling led by SOCS3; moreover, the increased levels of Bcl-xl mRNA in animals 

that received agomelatine, supports the idea that the pharmacological treatment may have a 

neuroprotective effect in the prefrontal cortex. 

Abbreviations: IL-6: Inteleukin-6; JAK1: Janus Kinase-1; STAT3: signal transducer and activator of transuction3; 

SOCS3: suppressor of cytokine signaling 3; ERK1/2: extracellular signal-regulated kinase; Bcl-xl: B-cell lymphoma-

extra large. 

 

Considering the activity exerted by agomelatine on the activation of the pathway, we may 

infer that the drug is able to potentiate the feedback inhibition via the up-regulation of SOCS3 

gene and protein expression. This idea is strengthened by the analysis of agomelatine per se 
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activity on IL-6 signaling. The chronic administration of the antidepressant induced SOCS3 

levels with a gene and protein expression profile similar to the other experimental groups. It 

remains to be understood how agomelatine treatment is capable of induce STAT3 

phosphorylation within the nucleus. We analyzed the phosphorylation site of STAT3 at serine 

727 that has been demonstrated to be a regulatory site of activated STAT3. The contribution 

of this second phosphorylation site is not fully understood, although some groups refer a 

potentiating effect on STAT3 transcriptional activity, others claim an inhibitory effect on the 

transcription factor (Breit et al., 2015; Wakahara et al., 2012). In our experimental context, 

however, this post-translational modification is not modulated in any of the experimental 

groups, suggesting the intervention of other molecules in the control of pSTAT3Y705 levels. At 

this level we cannot exclude the involvement of regulatory molecules such as the protein 

inhibitor of activated STAT3 (PIAS3) whose fine modulatory activity has been reported in 

different transcription factors involved in immune response (Shuai and Liu, 2005; Yagil et al., 

2010). 

Lastly, to clarify the role of agomelatine on STAT3 transcriptional activity, we analyzed the 

expression of genes controlled by this transcription factor, namely Casp1, Casp3 and Bcl-xl. 

Interestingly we found that, while the two caspases were not particularly modulated by our 

experimental paradigm, the antiapoptotic gene Bcl-xl showed an increase when the 

antidepressant was administered. Bcl-xl is known to have a pronounced neurotrophic effect 

and capable of supporting neuronal survival (Jonas et al, 2014) and its modulation exerted by 

the agomelatine, per se and in stress condition, is in line with the reported antiapoptotic 

properties of different antidepressants (Engel et al., 2013; Kosten et al., 2008; Kubera et al., 

2011). Despite the similar effect exerted by agomelatine on STAT3 activation, the modulation 

of Bcl-xl, strengthen the idea that agomelatine has a positive protective activity in the 

prefrontal cortex of rats exposed or not to chronic stress. This neuroprotective role of the 

antidepressant may be supported by the activity on SOCS3 in the regulation of stress-induced 

activation of IL-6 pathway.  

Although further studies are demanded to better understand the exact mechanism of action 

of the pharmacological treatment with agomelatine, the modulation of SOCS3 appears 

promising in the context of immune modulation exerted by antidepressant drugs, in particular 

on the fine-tuning of IL-6 signaling.   
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4.3 Lipopolysaccharide does not affect sucrose intake in stress-resilient rats: potential 

contribution of microglia. 

 

Rossetti A.C., Paladini M.S., Rubini L., Racagni G., Papp M., Riva M.A., Molteni R. 

Unpublished data 

  



59 
 

4.3.1 Introduction 

Stressful events during life may expose a subject to the development or the exacerbation of 

major depression, however even if this disease occurs in a significant percentage of stress-

exposed subjects, most of them avoid such psychopathology through active coping 

mechanisms. With these premises, stress resilience has been defined as the process of positive 

adjustments against stressful events (Walker et al., 2013). It is known that stress exposure 

strongly influences inflammatory events in the periphery and in the central nervous system 

(CNS), with an impact on behavioral alterations. The impact of stress on neuroinflammation is 

mediated by different mechanisms and physiological systems. Peripheral glucocorticoids, pro-

inflammatory cytokines and infiltrating immune cells can reach the brain and alter the 

neuroimmune function, thus leading to the dysregulated production of pro-inflammatory 

mediators (Wohleb et al., 2016). Microglia -the tissue-resident macrophages that about 10% 

of the cell population within the brain- play fundamental roles in the control of the 

homeostasis of the CNS. These cells are not only involved in the regulation of brain 

inflammatory status, but they also regulate brain development, shaping of brain connections, 

behavioral and mood under physiological conditions (Tremblay et al., 2011; Wake et al., 2013). 

Microglia are constantly surveilling the environment and they are extremely reactive to 

infectious and non infectious inflammatory responses and its dysregulation can lead to the 

development of neurological and psychiatric disorders (Cronk and Kipnis, 2013; Yirmiya et al., 

2015). Specifically, different evidence support the idea of the activation of microglia after 

stress exposure and its aberrant activation has been associated with long-lasting changes in 

terms of behavior, cognition and mood (Yirmiya et al., 2015). 

On these bases, the purpose of our study was to deepen our knowledge on the molecular 

mechanisms underpinning stress resilience, with a specific focus on neuroinflammation. We 

exposed adult male rats to two weeks of chronic mild stress, before being challenged with the 

bacterial wall component Lipopolysaccharide (LPS, i.p. 250 g/kg) and sacrificed 24h or 6 days 

after the immune challenge. Behavioral alterations were monitored through the sucrose 

consumption test to evaluate the insurgence of anhedonic-like phenotype and to identify 

stress resilient rats. Moreover, we assessed sucrose intake six days after LPS administration, 

to evaluate at behavioral level the different susceptibility to an immune challenge of the 

Stress-Responsive and Stress-Resilient populations. Lastly, we performed molecular analyses 



60 
 

24 hours and six days after LPS administration, to evaluate the short-term impact and the long 

lasting effects of the immune challenge. More in detail we analyzed the gene expression of 

pro-inflammatory cytokines (IL-1, IL-6, TNF-), toll-like receptor 4 (TLR-4) and markers of 

microglia activation (CD11b, Iba1, CX3CR1 and its ligand CX3CL1, Arginase1) in the rat dorsal 

hippocampus, a brain area involved in neuroinflammation-related stress response and in the 

etiology of depression (Rossetti et al., 2016). 
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4.3.2. Results 

4.3.2.1 Behavioral effects of CMS exposure and subsequent challenge with LPS 

Sucrose consumption was evaluated at two time points: after two weeks of stress exposure 

and after the immune challenge with LPS. As shown in figure 18, at the baseline the animals 

consumed roughly 11g of 1% sucrose solution. After the first test, the exposure to the chronic 

mild stress procedure for two weeks was able to induce a strong decrease in sucrose intake, 

with a significant effect of the stress procedure (F2,48= 19,678, P<0.001). This test led us to 

discriminate between a group of animals with decreased sucrose consumption (-9,1 g, 

P<0.001 vs. No Stress; Fig. 18) defined as Responsive and another population of animals that 

did not show any alteration in the behavior (-9,5g,P<0.001 vs. Reactive; Fig. 18). We named 

this second population as “Resilient”. 

Six days after LPS administration (Fig. 18B/18C), stress was still effective on reactive animals, 

indeed this group still consumed less sucrose when compared to Non Stress animals and/or 

to Resilient rats (stress effect in repeated measures: F5,48= 9,313 P<0.001; P<0.001 Responsive 

vs. No Stress; P<0.001 Responsive vs. Resilient; Fig. 18B).  

Moreover, among the groups that received LPS, we observed an interesting statistically 

significant difference between Non Stress and Resilient rats (P<0.05 vs. LPS; Fig. 18B), thus 

suggesting that the LPS treatment affects the behavior of control animals, but not the sucrose 

consumption of stress-resilient rats. More in detail, using the analysis of delta values 

(sucrose intake at Day 14 - sucrose intake at Day21) between the sucrose consumption of 

the animals before and after LPS administration, Non Stress/LPS animals showed a significant 

decrease of sucrose intake when compared to saline-treated rats (-3,9g, P<0.01 vs. Non Stress; 

Fig. 18C). 

  



62 
 

 

Figure 18. Behavioral analysis after the immune challenge with LPS. The behavioral analyses 

demonstrated that our CMS paradigm was effective after 1 week of stress exposure, leading to the 

identification of the Responsive and Resilient populations (A). The analysis at Day 21 (6 days post LPS) 

demonstrated that the immune challenge did not impair the already decreased sucrose intake in 

Responsive rats, however was detrimental in Non Stressed animals (B, C). Surprisingly, Resilient rats 

were able to actively cope against LPS administration, showing no decrease in sucrose intake. #P<0.05, 

##P<0.01; ###P<0.001 vs. No Stress or No Stress/LPS; ***P<0.001 vs. Responsive or Responsive/LPS. 

Repeated measures ANOVA with PLSD test. 

  

### 

# 
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4.3.2.2 Gene expression analysis of neuroinflammatory markers after 24 hours from LPS 

administration in the dorsal hippocampus 

In order to evaluate the molecular impact of the immune challenge on the diverse 

experimental groups, we analyzed the gene expression of different molecules related to 

neuroinflammation: the pro-inflammatory cytokines IL-1IL-6 and TNF- the marker of 

microglia activation CD11b and GFAP as an indicator of astrocytes activation.  

The analysis of IL-1 gene expression showed a significant effect of LPS administration (F1,40= 

59,970 P<0.05) with an overall increase of the cytokine in all the experimental groups (+341%, 

P<0.001; +522%, P<0.001; +416% P<0.001 vs. respective controls; Fig. 19A). LPS has an overall 

effect also on IL-6 mRNA levels (F1,45= 4,381, P<0.05) with a significant increase in Non Stress 

animals that received the toxin, when compared to the saline-treated counterpart (+28%, 

P<0.05 vs. No Stress; Fig. 19A) and to stress Responsive rats that received the toxin (-29%, 

P<0.05 vs. Reactive/LPS; Supplementary Fig.2). The pro-inflammatory cytokine TNF-on the 

contrary, showed an effect of stress exposure (F2,45= 3,777, P<0.05; Fig. 19B) that was reflected 

in a decreased expression in Responsive/LPS and Resilient/LPS animals; the latter resulted 

significantly different when compared to No Stress group that received LPS (-49%, P<0.01 vs. 

LPS; Supplementary Fig. 3). 

Similar to what we observed for the gene expression of IL-1, the marker of microglia 

activation CD11b showed an increased transcription in all the experimental groups (+193%, 

P<0.001; +245%, P<0.001; +203% P<0.001 vs. respective controls; Fig. 20A), with the general 

effect of LPS administration (F1,42=116,870 P<0,001). Lastly, GFAP expression was significantly 

affected by the immune challenge (F1,46= 6,508 P<0.05) that resulted in an increase of mRNA 

levels only in non-stressed animals that received LPS (+48%, P<0.01 vs. No Stress; Fig 20B). 

The levels of GFAP in animals subjected to CMS were not changed after LPS, probably due to 

the increased levels of the astrocytic marker in both groups after two weeks of stress (+35, 

P<0.05; +36, P<0.05 vs. No Stress respectively; Supplementary Fig. 4). 

 

Considering that 24 hours after LPS administration we observed the major effects on IL-1 and 

CD11b, we focused our attention on the pathway of TLR-4, and on microglia, the resident 

macrophagic population within the CNS. 
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Figure 19. Gene expression analysis of pro-inflammatory cytokines 24 hours after the immune 

challenge. The mRNA levels of the pro-inflammatory cytokines IL-1 (A), TNF-(B) and IL-6 (C) were 

measured in the dorsal hippocampus after 24 hours from LPS administration. The data are expressed 

as delta values  SEM between the percentages of saline treated rats (set at 100%) and the LPS treated 

counterpart. #P<0.05, ##P<0.01, ###P<0.001 vs. Non Stress; ***P<0.001 vs. Responsive; 

@@@P<0.001 vs. Resilient. Two way ANOVA with Post Hoc LSD 

 

4.3.2.3 Analysis of TLR-4 expression 6 days after LPS administration 

TLR-4 gene expression was altered by LPS, as demonstrated by a significant effect of the toxin 

administration (F1,44= 6,875, P<0.05). More in details (Fig. 21A), we found increased mRNA 

levels of the receptor after LPS in control (+27%, P<0.05 vs. No Stress) and in stress Responsive 

animals (+31% P<0.01 vs. Responsive) when compared to their saline-treated counterparts). 

Conversely, no change was found in Resilient animals treated with LPS, probably due to an 

upregulation of the receptor after stress exposure (+33% P<0.01 vs No Stress; +29% P<0.05 

vs. Responsive; Supplementary Fig.5). 
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The protein level profile of TLR-4, however, was not in line with its gene expression. Indeed, 

while the total form of TLR-4 was not affected by either stress exposure nor LPS 

administration, the analysis of the glycosylated form showed a significant effect of LPS (F1,42= 

12,150 P<0.001). Specifically, we found an upregulation of the activated form of the receptor 

only in Responsive rats treated with LPS, when compared to the saline treated group (+133%, 

P<0.001 vs. Responsive; Fig. 21B) and to No Stress animals challenged with LPS (+53%, P<0.05, 

vs. LPS; Supplementary Fig. 6). 

To confirm these results, we analyzed the gene expression of IL-1, a downstream target of 

the receptor signaling. We observed that, 6 days after LPS exposure, the levels of this 

proinflammatory cytokine were upregulated only in Reactive animals exposed to LPS. As 

shown in figure 21 we found a general effect of stress exposure (F2,41= 5,240 P<0.01), and 

significant differences between LPS-treated Reactive animals and saline treated rats (+50% 

P<0.01 vs. Reactive; Fig. 21C), LPS group (+73%, P<0.001 vs. LPS) and Resilient animals treated 

with the toxin (+66%, P<0.01 vs. Resilient/LPS). 

 

Figure 20. Gene expression analysis of CD11b and GFAP 24 hours after the immune challenge. The 

mRNA levels of the marker of microglia activation CD11b (A) and the astrocytic marker GFAP (B) were 

measured in the dorsal hippocampus after 24 hours from LPS administration. The data are expressed 

as delta values  SEM between the percentages of saline treated rats (set at 100%) and the LPS treated 

counterpart. #P<0.05, ##P<0.01, ###P<0.001 vs. Non Stress; ***P<0.001 vs. Responsive; 

@@@P<0.001 vs. Resilient. Two way ANOVA with Post Hoc LSD  
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Figure 21. Analyses of the long-term effects of the immune challenge on TLR-4 expression. The mRNA 

(A) and protein levels (B) of the Toll-like receptor 4 and the mRNA levels of IL-1 (C) were measured in 

the dorsal hippocampus after 6 days from LPS administration. The data are expressed as delta values 

 SEM between the percentages of saline treated rats (set at 100%) and the LPS treated counterpart. 

#P<0.05, ##P<0.01 vs. Non Stress; **P<0.01, ***P<0.001 vs. Responsive. Two way ANOVA with Post 

Hoc LSD 

 

4.3.2.4 Molecular characterization of microglia long-term activation after the immune 
challenge 

We firstly investigated the protein levels of IBA-1, a microglia specific protein, marker of 

cellular activation. 

The statistical analysis indicated a overall effect of LPS administration (F1,43= 15,247 P<0.001) 

and a stress*LPS interaction (F2,43= 6,449 P<0.01). More in details, as depicted in figure 22, we 

found a statistically significant decrease in IBA-1 in Resilient animals after LPS not only when 

compared to their controls (-42%, P<0.001; Fig. 22A), but also with respect to LPS group (-26%, 

P<0.05; Supplementary Fig. 8) and to Responsive animals (-28%, P<0.05; Supplementary Fig. 



67 
 

8). LPS affected also IBA-1 levels in Responsive animals, indeed, even with a lesser extent, this 

group showed a significant difference from its saline treated counterpart (-18%, P<0.05 vs. 

Responsive; Fig. 22A). Lastly, after stress exposure, we found a difference between both 

Responsive and Resilient animals compared to No Stress group (+27% P<0.05; +31%, P<0.01 

vs. No Stress respectively; Supplementary Fig. 8). 

To strengthen these results, we analyzed the gene expression of different markers of microglia 

activity. Firstly, we investigated the modulation of CD11b, as an indicator of microglia 

activation. We found that CD11b expression was affected by LPS (F1,42= 12,364 P<0.001) and 

by the interaction of the two experimental variables (Stress*LPS interaction F2,42= 11,592 

P<0.001). The mRNA levels of CD11b resulted upregulated in No Stress group treated with LPS 

(+24%, P<0.01 vs. No Stress; Fig. 22B) and in Responsive animals that received the toxin (+49%, 

P<0.001 vs. Responsive; Fig. 22B), while no effects were observed in Resilient animals. In 

addition, both LPS and Responsive/LPS groups showed significant differences with respect to 

Resilient animals (+19%, P<0.05; +35%, P<0.001 respectively; Fig 22B.). Of note, stress 

exposure differently impact CD11b expression, indeed Resilient animals showed a significant 

increase when compared to control animals (+20%, P<0.05 vs. No Stress; Supplementary Fig. 

9) and to Resilient rats (+26% P<0.01 vs. Resilient; Supplementary Fig. 9). 

We then analyzed the gene expression of CD68, marker of microglial macrophagic activity. The 

statistical analysis resulted in an effect of Stress exposure (F2,43= 3,327 P<0.05) and LPS 

administration (F1,43= 44,594 P<0.001). As shown in figure 22 also in this case Resilient rats 

showed a less pronounced activation of microglia. After LPS both No Stress and Responsive 

animals showed a massive increase of CD68 expression when compared to their respective 

controls (+65%, P< 0.001 vs. No Stress; +55% P<0.001 vs. Responsive; Fig. 22C). LPS was able 

to induce CD68 transcription also in Resilient rats, even if with a less pronounced effect (+34%, 

P<0.05 vs. Resilient; Fig 22C) as demonstrated by a significant difference also with Responsive 

animals that received LPS (-41%, P<0.05 vs. Responsive; Fig. 22C). 

Interestingly the expression profile of this markers followed the effects observed at behavioral 

level.  
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Figure 22 Evaluation of microglia activation after 6 days from the immune challenge. The protein 

expression of IBA1 (A) and the mRNA levels of CD11b (B) and the marker of phagocytic microglia CD68 

(C) were measured in the dorsal hippocampus after 6 days from LPS administration. The data, 

expressed as delta values  SEM between the percentages of saline treated rats (set at 100%) and the 

LPS treated counterpart. #P<0.05, ##P<0.01, ###P<0.001 vs. Non Stress; *P<0.05, ***P<0.001 vs. 

Responsive; @P<0.05 vs. Resilient. Two way ANOVA with Post Hoc LSD 
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We then evaluated the involvement of one of the systems known to control the activation of 

microglia -the so called on/off signaling- by measuring the gene expression of fractalkine 

(CX3CR1) and its receptor (CX3CR1). Firstly, the analysis of the ligand CX3CL1 showed an effect 

of LPS administration (F1,43= 8,271 P<0.01) that was followed only by a decreased gene 

expression in Resilient rats subjected to LPS administration, when compared to saline-treated 

animals (-37%, P<0.05 vs. Resilient; Fig. 23A). However, the mRNA levels of the receptor were 

affected by both stress (F2,47= 9,155 P<0.001) and LPS (F1,47= 29,314 P<0.001). In detail, LPS 

and Responsive/LPS groups showed an increase in the expression of CX3CR1 when compared 

to their saline-treated counterparts (+27%, P<0.001 vs. No Stress; +15%, P<0.05 vs. Reactive; 

Fig. 23B). This increase was not present in Resilient animals that received LPS, indeed these 

animals presented a significant difference in CX3CR1 expression with respect to LPS group (-

26%, P<0.01 vs. LPS; Supplementary Fig. 23B) 

Lastly, we measured the gene expression of Arginase1, a marker of microglia M2 phenotype. 

Interestingly we found that Arg1 was affected by stress (F2,26=12,764 P<0.001) and immune 

challenge (F1,46= 5,733 P<0.05). Interestingly the comparison between animals that received 

or not the toxin revealed that: LPS group had increased levels with respect to Resilient/LPS 

animals (-24% P<0.01 vs. Resilient/LPS; Fig. 23C); Responsive animals that were administered 

with LPS showed a significant decrease when compared to their saline treated control animals 

(-28% P<0.01 vs. Responsive; Fig. 23C); the gene expression of Arg1 was significantly more 

affected than in LPS animals (-20% P<0.05 vs. LPS; Fig. 23C)  

Of note, the basal gene expression of Arg1 in Resilient animals was significantly different from 

the other experimental groups treated with saline (-40%P<0.001 vs. No Stress; -37% P<0.001 

vs. Reactive; Supplementary Fig. 13). 
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Figure 23 Evaluation of modulators on/off signaling and marker of microglia phenotype after 6 days 

from the immune challenge. The mRNA levels of CX3CL1 (A), its receptor CX3CR1 and of the M2-

phenotype marker Arginase1 (C) were measured in the dorsal hippocampus after 6 days from LPS 

administration. The data are expressed as delta values  SEM between the percentages of saline 

treated rats (set at 100%) and the LPS treated counterpart. #P<0.05, ##P<0.01, ###P<0.01 vs. Non 

Stress; *P<0.05**P<0.01 vs. Responsive; @P<0.05 vs. Resilient. Two way ANOVA with Post Hoc LSD 
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4.3.3 Discussion 

The aim of this work was to better characterize the molecular mechanisms potentially 

involved in stress resilience in the context of neuroinflammation. We previously demonstrated 

that the exposure to two weeks of CMS could induce the upregulation of pro-inflammatory 

cytokines in the rat brain, with a more pronounced effect in the dorsal hippocampus  (Rossetti 

et al., 2016). More in detail, only animals that showed an altered sucrose intake presented an 

upregulation of IL-1 and IL-6 mRNA levels. 

In the present experiment, we firstly applied a CMS paradigm to identify stress responsive and 

stress resilient animals. Secondly, we challenged the animals with a low dose of 

lipopolysaccharide to investigate whether the resilience to stress exposure was related to an 

increased ability to cope with neuroinflammation. Considering anhedonia as a hallmark 

symptom of depression, the administration of LPS in rodents has been widely employed to 

study the effects of inflammation on behavior, with interest on its ability to induce anhedonic-

like phenotype (Biesmans et al., 2016). 

Interestingly, six days after LPS administration, we found that animals that were resilient to 

stress exposure, could also better respond to the immune challenge. Indeed, while non-

stressed animals and stress-Responsive rats showed a decreased sucrose consumption after 

LPS administration, stress-Resilient group did not present any behavioral alteration. The 

susceptibility to LPS in animals not exposed to CMS enlightened the important contribution of 

the inflammatory system in the insurgence of behavioral alterations, in particular, taking into 

account that the impairment in sucrose intake persisted for six days after the immune 

challenge. We cannot exclude that the sucrose intake of stress-Resilient rats was affected by 

the toxin at an earlier time point; nevertheless, even in this scenario, their response was 

apparently more rapid with respect to non-stressed animals.  

We further investigated these behavioral differences at molecular level, with a specific regard 

to the dorsal hippocampus. The systemic delivery of LPS can induce a strong immune 

response, especially within 24 hours from the administration at both central and peripheral 

level (Biesmans et al., 2016; Dantzer et al., 2008; Molteni et al., 2013). For this reason, we 

firstly assessed the expression of different markers of neuroinflammation at an early stage. 

Considering the massive induction of IL-1 and CD11b 24 hours after LPS, we decided to focus 
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our attention on the gene and protein expression of TLR-4 and on the molecular 

characterization of microglia activation at later time points. 

TLR-4 is a membrane receptor expressed on the surface of diverse cellular types, including 

cells of the central nervous system (Molteni et al 2016). It has been demonstrated that TLR-4 

is induced after chronic stress, with a mechanism that could involve both damage-associated 

molecular patterns (DAMPs) and bacterial metabolites derived from an altered intestinal 

permeability (García Bueno et al., 2016). In particular, the activation of its signaling may induce 

the transcription of different proinflammatory cytokines, among which, IL-1 is strongly 

involved in stress response (Goshen and Yirmiya, 2009). Interestingly, six days after the 

immune challenge, LPS administration could unmask the effects of stress exposure on TLR-4 

protein levels and on IL-1 gene expression in Responsive animals. This effect is in good 

agreement with the current literature where TLR-4 has been associated to inflammation-

associated stress response within the brain (García Bueno et al., 2016; Gárate et al., 2013; 

Gárate et al., 2011). The increased activation of TLR-4 and the subsequent upregulation of IL-

1, however, did not seem to be related to the behavioral effects of the immune challenge, 

indeed, the LPS group did not show an altered expression pattern of the two markers 

analyzed. 

On the contrary, the activation of microglia seems more related to the decrease of sucrose 

intake observed in LPS and Reactive/LPS groups. Indeed, the analysis of IBA1 -a Calcium 

binding protein involved in microglia activation and phagocytosis (Hellwig et al., 2016)- 

revealed a different expression between the groups that showed a different behavioral 

response to the immune challenge. Accordingly, to the literature reporting an up-regulation 

of this marker in depression models -among which chronic stress is included (Hinwood et al., 

2013; Tynan et al., 2010)- animals that consumed less sucrose presented increased levels of 

IBA1 when compared to Resilient/LPS animals. Interestingly, this modulation may suggest that 

Resilient animals have less activated microglia in response to LPS challenge. This hypothesis 

was sustained by the increased levels of CD11b and CD68 transcripts in Non Stress and 

Responsive animals treated with LPS. 

We then tried to identify the molecular system involved in the diverse activation of microglia 

analyzing the expression of CX3CL1/Fractalkine and its receptor CX3CR1. These molecules are 

part of the so-called ON/OFF signaling between neurons and microglia. In particular, 

fractalkine can be secreted by neurons or be exposed to their cellular surface, to bound its 
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specific receptor expressed by microglia (Kierdorf and Prinz, 2013). It has been demonstrated 

that alterations in the homeostasis of this system may induce alterations in synaptic pruning 

(Paolicelli et al., 2011), impaired brain connectivity and social interactions (Zhan et al., 2014) 

and protracted depressed like behaviors after LPS exposure (Corona et al., 2010). In our 

experimental setting, while the ligand CX3CL1 did not show important modulations, the 

receptor appeared less expressed in Resilient/LPS animals. Considering the role of CX3CR1 in 

the control of microglia activation this result may appear counterintuitive, however these data 

are supported by two recent works, in which the knock out of the receptor seems to confer 

resistance to the detrimental effects of stress (Hellwig et al., 2016; Milior et al., 2016). 

To strengthen our hypothesis about the involvement of microglia in the molecular 

mechanisms of stress resilience, the evaluation of a marker of the M2 phenotype -Arginase1- 

showed that animals with impaired sucrose intake had decreased levels of this transcript. This 

data suggests that LPS and Responsive/LPS groups potentially lack the protective role of 

microglia, thus explaining the more pronounced vulnerability to the immune challenge. T 

 

In conclusion, our data support the idea that neuroinflammation may play a pivotal role in the 

protective mechanisms underpinning stress resilience. In particular, we found that microglia 

may be involved in the increased ability of stress-Resilient animals to counteract the effects 

of CMS and, more interestingly, the consequences of a strong immune challenge such as LPS. 

These results showed that different systems involved in the control of microglia activation and 

homeostasis are impaired in animals with impaired sucrose intake, thus suggesting an urgent 

need to focus on these immune cells to elucidate the molecular mechanisms of stress 

resilience. 
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4.4 Genome-wide analysis of LPS-induced inflammatory response in the rat ventral 
hippocampus: modulatory activity of the antidepressant agomelatine 
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Under second revision at The World Journal of Biological Psychiatry 
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4.4.1 Introduction 

It is currently known that conventional pharmacological treatment of Major Depression (MD) 

-despite the different antidepressants available- has to face several critical issues, such as: a 

low grade of complete remission (25-30%), a poor response to the treatment in a high 

percentage of patients and a relapse rate of the 35% within 12 months. In addition, the latency 

to reach a therapeutic effect, the development of adverse effects and the poor efficacy on 

cognitive deficits and somatic symptoms, represent critical points for the conventional 

depression treatments (Connolly and Thase, 2012). All these issues are even worse if we 

consider that MD affects more than 10% of the general population and it is associated with 

such a high degree of functional impairment, that it is estimated to become -in the next future- 

the second leading cause of disability worldwide (Bromet et al., 2011). On these bases, it is 

crucial to identify new molecular systems and mechanisms involved in the neurobiology of 

depression, which may represent candidate targets for the development of novel 

pharmacological interventions. Among the systems that may contribute to the development 

of depression, a large body of data supports the involvement of the immune/inflammatory 

system (Dantzer et al., 2008; Haroon et al., 2012; Wohleb et al., 2016). Indeed, the levels of 

pro-inflammatory mediators such as TNF-α, IL-6 and C-reactive protein (CRP) are increased in 

the blood stream and in the cerebrospinal fluid of depressed patients (Dowlati et al., 2010; 

Howren et al., 2009; Raison et al., 2006). Moreover, depression often occurs in comorbidity 

with medical conditions characterized by an inflammatory state, such as diabetes, 

cardiovascular or neurodegenerative disorders (Anisman et al., 2008; Berge and Riise, 2015; 

Réus et al., 2015). In addition, the administration of the cytokine inducer lipopolysaccharide 

(LPS) in animal models is able to elicit depressive-like behaviors (Frenois et al., 2007; van 

Heesch et al., 2013; Zhu et al., 2010), an effect also observed after the central administration 

of the pro-inflammatory cytokines IL-6, IL-1β and TNF-α (Dantzer et al., 2008; Sukoff Rizzo et 

al., 2012; Wu and Lin, 2008). 

On these bases, evidence exists that antidepressant treatments are able to modulate 

immune/inflammatory systems (Janssen et al., 2010) and that non-steroidal anti-

inflammatory drugs or monoclonal antibodies in combination with standard therapy may be 

beneficial for the therapeutic outcome (Akhondzadeh et al., 2009; Brunello et al., 2006; Raison 

et al., 2006)). The relevance of these findings is even higher if we take into account that 
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treatment-resistant depression has been associated with elevated levels of specific 

inflammatory mediators (Miller et al., 2015; Strawbridge et al., 2015). With all these 

considerations, by using a candidate-approach analysis, we have already demonstrated that 

different classes of antidepressants possess anti-inflammatory properties in the chronic mild 

stress model of depression (Rossetti et al., 2016). Moreover, we showed that the novel 

antidepressant agomelatine is able to ameliorate the neuroinflammation induced in the rat 

by an acute inflammatory challenge (Molteni et al., 2013) by acting on specific inflammatory 

mediators. Conversely, in this study we performed a broader examination of the anti-

inflammatory effect of agomelatine by an unbiased genome-wide based approach. 

Specifically, adult male rats were treated with the antidepressant for 21 days, then a subgroup 

of animals was challenged with a single injection of LPS at the end of the treatment and they 

have been sacrificed two hours later to investigate the transcriptomic modulations in the 

ventral hippocampus, a brain region related to stress, emotion and affect (Fanselow and Dong, 

2010). With this broader approach, we analyzed network and pathway alterations in order to 

better understand the anti-inflammatory properties of agomelatine and identify novel targets 

for the treatment of depression associated to inflammation. 
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4.4.2 Results 

4.4.2.1 Overall transcriptional effect of chronic treatment with agomelatine and acute 

administration of lipopolysaccharide 

To investigate the overall transcriptional effects of the treatment with agomelatine, LPS, and 

their combination, we first compared each experimental group (AGO/SAL; VEH/LPS; AGO/LPS) 

with the control group (VEH/SAL) as common baseline, thus obtaining three lists of genes 

namely AGO/SALVEH/SAL, VEH/LPSVEH/SAL and AGO/LPSVEHSAL. As shown in figure 14A, we found 

that agomelatine significantly regulated the expression of 105 genes, with 77 genes (73%) up-

regulated and 28 genes (27%) down-regulated. A larger transcriptional effect was observed in 

animals treated with LPS. Indeed, the inflammatory challenge affected the expression of 284 

genes and, out of these, 231 (81%) were up-regulated and the remaining 53 (19%) were down-

regulated. Finally, a total of 296 genes were differentially modulated in animals that received 

both agomelatine and LPS when compared with the control group. Among these, 256 (86%) 

transcripts were up-regulated, whereas 40 (14%) were down-regulated. Additionally, we 

analyzed the magnitude of these transcriptional effects finding mild changes in all the 

experimental groups (Fig. 14B). Specifically, the majority of the genes showed fold-change 

values (FC) between 1.2 and 1.5 and only a small number of transcripts were regulated 

between 1.5 and 2 or more than 2-folds with respect to control animals. 

Moreover, to investigate the impact of the pretreatment with agomelatine on the effects of 

the immune challenge we compared the group of animals that received both the 

antidepressant and LPS (AGO/LPS group) with the animals that received only LPS (VEH/LPS), 

in order to provide a direct estimate of agomelatine effect in modulating the response to LPS 

effect. As shown in figure 1C, this analysis resulted in a list of 52 genes, 9 of which were down-

regulated (17%) whereas 43 were up-regulated (82%). The magnitude of the modulation of 

these genes (Fig. 14D) was between 1.2 and 1.5 FC, and only few transcripts exceeded this 

threshold. 
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Figure 1. Overall results of microarray analysis (A) Number of genes up-regulated or down-regulated 

in the ventral hippocampus of rat chronically treated with agomelatine (AGO/SALVEH/SAL), acutely 

injected with lipopolysaccharide (VEH/LPSVEH/SAL) or receiving both drugs (AGO/LPSVEH/SAL), as 

compared to the control group. (B) Magnitude of gene expression changes in these experimental 

groups. (C) Transcriptional effect of the chronic treatment with agomelatine on animals that received 

only LPS is presented in the AGO/LPSVEH/LPS gene list and magnitude of this modulation (D). 

 

4.4.2.2Genome-wide effect of the chronic treatment with agomelatine 

As previously indicated, a total of 105 genes were differentially expressed in the ventral 

hippocampus of animals chronically treated with agomelatine with respect to rats that 

received vehicle. Among these genes, we found -as the most up-regulated- the histone 

clusters Hist1h4m and Hist2h2ab (FC= +1.66 and +1.36 respectively); the glutathione 

peroxidase Gpx3 (FC= +1.58); the transcript coding for the fusion protein of fubi and ribosomal 

protein 30, Fau (FC= +1.48), the Zinc finger protein, Zdhhc22 (FC= +1.40); the Guanine 



79 
 

Nucleotide Binding Protein Gamma13, Gng13 (FC= +1.25). Conversely, the most down-

regulated transcripts include the mitochondrial GTPase, Rhot1, with a negative fold-change 

value of -1.54; the N-Acetyltransferase 8-like or Cml3 (FC= - 1.42), which has a probable N-

acetyltransferase activity; the olfactory receptor Olr1513 (FC= -1.34); the Hsp40 homolog 

Dnajc17 (FC= -1.21). See Supplementary Table S1 for the entire list of genes. Next, in order to 

capture the diverse and complex mechanisms altered by chronic treatment with agomelatine, 

we performed a pathway analysis based on the 105 significantly modulated genes using 

Ingenuity Pathways Analysis software (IPA) identifying 10 pathways that were significantly 

regulated by the antidepressant. Among these, we found the Rapoport-Luebering shunt of 

glycolytic pathway, the signaling pathways of phospholipase C and of the chemokine receptor 

CXCR4 (the entire list of pathways is detailed in Table S2, Supplementary materials). 

 

4.4.2.3 Genome-wide effect of the acute administration of lipopolysaccharide  

The microarray analysis indicated that 284 genes were differentially expressed between 

animals injected with LPS and sacrificed 2h later and saline-treated rats. All these genes are 

listed in TableS3 (Supplementary materials). A large part of these transcripts (81%) was up-

regulated by the inflammatory challenge. In particular, Cxcl10 -a chemokine of the CXO 

subfamily- resulted as the most up-regulated gene, with a +13.06 FC with respect to the 

control group. As expected, other genes related to the inflammatory response were strongly 

increased by LPS, including the transcripts coding for: the chemokine Cxcl11 (FC= +4.71); 

Gbp5, a guanilate binding protein inferred to be involved in IFN- cellular response (FC= 

+4.26); and the interferon-induced protein with tetratricopeptide repeats 3, namely Ifit3 (FC= 

+4.17). Among the small fraction (19%) of transcripts significantly down-regulated by LPS, we 

found genes encoding for ion channels, such as the solute carrier family 40 member 1 

(Slc40a1) andSlco1a2, namely the solute carrier organic anion transporter family member 1a2 

(with a negative FC of -1.65 and -1.56 respectively); the CDC-Like Kinase 2 (Clk2), a protein 

kinase coding-gene whose targets are involved in the control of the spliceosoma (FC= -1.47); 

and the transferring receptor (Tfrc) that plays a role in the cellular uptake of iron (FC= -1.44). 

By using the IPA we identified 100 pathways significantly modulated (listed in Table S4), which, 

as expected, are mainly related to the inflammatory and cellular response to infections, such 

as interferon, IL-6 and p38MAPK related signaling. 
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4.4.2.4 Genome-wide effect of the pretreatment with agomelatine on the inflammatory 

response induced by LPS 

To evaluate the transcriptional impact of the chronic treatment with agomelatine on the LPS-

induced inflammatory response, as first step, we compared the list of the 284 genes 

significantly modulated by LPS treatment (VEH/LPSVEH/SAL) with the list of 296 transcripts 

altered in rats treated with agomelatine and challenged with the endotoxin (AGO/LPSVEH/SAL). 

The resulting Venn diagram (Fig. 15A) identified three subgroups of genes. There were 91 

transcripts significantly expressed only in the VEH/LPSVEH/SAL group (Table S5, Supplementary 

materials), and that were not present at significant level in the list of genes belonging to the 

AGO/LPSVEH/SAL, suggesting that their modulation by the inflammatory challenge was 

prevented by agomelatine treatment. A comparison of the FC values of these 91 genes in both 

the experimental groups identified five transcripts whose induction was particularly blunted 

by the pretreatment with the antidepressant: the chemokine ligand2 (Ccl2, which, as a 

member of the chemokine family, is involved in the trafficking of immune cells); the major 

histocompatibility complex, class I, A (RT1-CE1); RAB Interacting Factor or Rabif (a protein 

involved in the regulation of vesicular transport);the Y box binding protein 1, Ybx1 (a 

transcription factor that mediates pre-RNA alternative splicing regulation and the 

transcription of numerous genes); the metabotropic glutamate receptor 2, Grm2 (involved in 

the regulation of glutamatergic activity). Among the genes with a lower difference in term of 

FC, we found transcripts strongly related to the inflammatory system, such as interleukin 1β 

(Il1β); the chemokine (C-X-C motif) ligand 2 (Cxcl2); the suppressor of cytokines signaling 

(Socs3) and the interleukin 2 gamma subunit (Il2rg). The IPA performed on the 91 genes 

identified 31 pathways significantly modulated by inflammatory challenge and prevented by 

agomelatine (Table S6, Supplementary materials), including systems involved in the stress 

response, such as the corticotropin releasing hormone(CRH) signaling as well as pathways 

associated with the regulation of specific cytokines (i.e. IL-9 signaling, IL-10 signaling, Role of 

JAK1 and JAK3 in γc Cytokine Signaling). The top 10 pathways are shown in figures 15B and 

15C. Next in the analyses of the Venn diagram of Fig. 15A, 193 transcripts were common 

between the two lists of genes (Table S7, Supplementary materials), suggesting that their LPS-

induced modulation is observed independently from agomelatine treatment. Last, 103 genes 

were significantly modulated only in animals that received both the pharmacological 

treatment and the immune challenge (Table S8, Supplementary materials). This list contains 
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genes that may be linked to the transcriptional impact of agomelatine by itself. In particular, 

among the top 10 mostly modulated genes in the AGO/LPSVEH/SAL group, we 

foundHist1h4m, Hist2h2ab (FC= +1.87 and +1.54 respectively), Fau (FC= +1.55) and Dnajc17 

(FC= -1.32) that were already present in the list of genes regulated by the antidepressant itself 

(Table S1). Moreover, we also found genes exclusively modulated by the combination of 

agomelatine and LPS: CD74 (FC= -1.63) which is associated with class II major 

histocompatibility complex (MHC) and serves also as receptor of the pro-inflammatory 

cytokine MIF; the RNA component of the telomerase ribonucleoprotein complex Terc (FC= 

+1.44); the nueronatin or Nnat (FC= +1.42), involved in the regulation of ion channels during 

brain development; Acer2 (FC= +1.33) that codifies for the alkaline ceramidase 2, an enzyme 

responsible for the generation of sphingosine with a role in cell proliferation and survival. 

 

Figure 15. Preventive effect of agomelatine: indirect extrapolation of 91 genes modulated by the 

drug. (A) Venn diagram of the comparison between VEH/LPSVEH/SAL and AGO/LPSVEH/SAL. The overlap of 
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the gene expression changes observed in the animals that received only lipopolysaccharide 

(VEH/LPSVEH/SAL) and those found in the rats pre-treated with agomelatine and then challenged by LPS 

(AGO/LPSVEH/SAL), indicates that 91 genes were altered only in the VEH/LPSVEH/SAL group, 193 genes were 

modulated by LPS with or without the antidepressant, 103 genes were regulated only when LPS was 

administered to rats pre-treated with agomelatine. (B) Top 10 canonical pathways most affected by 

acute injection of lipopolysaccharide in vehicle-pretreated animals. The figure shows the top canonical 

pathways in terms of -log(p-value) identified by Ingenuity Pathway Analysis software among the genes 

significantly modulated by lipopolysaccharide in rats pre-treated with vehicle. Each pathway is 

presented in the table (C) with the associated -log(p-value), number and name of genes involved. 

 

To further evaluate the impact of agomelatine pretreatment on the inflammatory response 

induced by LPS, we implemented the previously described comparison focusing on the 

AGO/LPSVEH/LPS list. This list includes 52 genes (Fig. 14C) and was generated from the AGO/LPS 

group by using the VEH/LPS group as baseline (see Section 4.1) in order to have a more direct 

comparison between the animals that received both the treatments and those injected only 

with LPS. Among the most upregulated genes in this list we found the already mentioned 

Hist1h4m (FC= +2.04), Fau (FC= +1.95) and Growth Arrest-Specific 5 (Gas5), a long non-coding 

RNA involved in the regulation of glucocorticoid receptor (FC= +1.81). On the other side, the 

top down-regulated genes were GH3Domain Containing (Ghdh) with a FC of -1.30 and Grm2 

(FC= -1.27). For the complete gene listsee Table S9. The associated IPA generated a list of 33 

pathways significantly modulated (Table S10, Supplementary materials). The most altered 

pathways were associated to oxidative phosphorylation and mitochondrial dysfunction, 

involving molecules that compose the complex I of NADH dehydrogenase, as well as the long-

term potentiation with genes like the Grm2 and the protein kinase C delta (Prkcd) (Fig. 16). 
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Figure 16. Preventive effect of agomelatine: direct comparison between AGO/LPS and VEH/LPS 

groups. (A) Top 10 canonical pathways most affected by the acute injection of lipopolysaccharide in 

agomelatine-pretreated animals. The baseline used in this analysis was the group of animals treated 

with vehicle and LPS. The figure shows the top canonical pathways in terms of –log(p-value) identified 

by Ingenuity Pathway Analysis software among the genes significantly modulated by 

lipopolysaccharide in rats received vehicle. Each pathway is presented in the table (C) with the 

associated –log(p-value), number and name of genes involved. 

 
Lastly, with the purpose of narrow the list of genes whose LPS-induced modulation may be 

prevented by agomelatine, we performed an overlap analysis between the 52 genes belonging 

to the AGO/LPSVEH/LPS list and the 91 genes, shown respectively in Table S9 and S5, found using 

VEH/SAL as reference group. The resulting Venn diagram (Fig. 17A) indicates that 9 genes were 

common between these groups (namely Ybx1, Grm2, Rabif, Lypla1, Tmem93, Fkbpl, Il1β, 

Tmem60,Prkcd) that represent the transcripts induced by LPS on which the pharmacological 

pretreatment has the larger effect of normalization. Among these, we focused our attention 

on the glutamate metabotropic receptor Grm2 and, as shown in figure 17B, the qRT-PCR 



84 
 

analysis confirmed the modulation observed in the microarray study. Indeed, Grm2 mRNA 

levels were significantly increased by LPS in animals pre-treated with vehicle (+34% p=0.055 

vs. VEH/SAL; Fig. 17B) but not in those that received agomelatine (-37% p<0.001 vs. VEH/LPS), 

as indicated by the significant Drug*LPS interaction (F1,27=5.718 P=0.025, Two-way ANOVA). 
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Figure 17. Top 9 genes modulated by agomelatine identified by intersection analysis. (A) Venn 

diagram of the comparison between AGO/LPS group (with VEH/LPS baseline) and the 91 genes of the 

VEH/LPSVEH/SAL group whose transcription was prevented by the pretreatment with agomelatine. The 

overlap between the two groups indicates 9 common genes (listed above in order of absolute fold 

change value) that should represent the transcripts mostly modulated by the preventive effect of 

agomelatine on the LPS administration. (B) Analysis by Real time qRT-PCR of the mRNA levels of the 

metabotropic glutamate receptor 2 (Grm2) in animals treated with vehicle or agomelatine for three 

weeks and then challenged or not with a single dose of LPS. The data, expressed as a percentage to 

the control group (vehicle/saline), are the mean ± SEM of independent determinations. p=0.055 vs. 

vehicle/saline; #p<0.05 vs. vehicle/LPS. Two-way ANOVA with Fisher’s PLSD. 
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4.4.3 Discussion 

This study provides novel findings on the transcriptional effect of a chronic treatment with the 

antidepressant agomelatine and on the ability of this drug to interfere with the response of 

the brain to an inflammatory challenge. Specifically, by using a genome-wide approach, we 

identified genes and pathways that may contribute to the therapeutic efficacy of the 

antidepressant and in particular on its previously demonstrated anti-inflammatory properties 

(Molteni et al., 2013; Rossetti et al., 2016). The pathway analysis revealed that the 

administration of agomelatine alone was able to modulate, among the others, two pathways: 

the signaling of C-X-C chemokine receptor 4 (CXCR4) and phospholipase C (PLC). Chemokines 

are small molecules that mediate leukocyte mobilization to sites of inflammation in the 

periphery. Currently, the chemokine family consists of more than 50members with more than 

20 G-protein coupled receptors that have also been detected at cerebral level. CXCR4 is the 

receptor of the very well-studied chemokine CXCL12 (or SDF-1). This signaling pathway is not 

only important in the immune system, where it has a role in the development of immune cells 

and neutrophils (Nagasawa, 2014), but it is also fundamental for the regulation of additional 

non-immune processes, such as neurogenesis and neuronal activity. Indeed, these molecules 

have a well-defined role in hippocampal development, architecture and function, in the 

modulation of the GABAergic and glutamatergic activity on serotonergic neurons, and in 

mechanisms related to neuroprotection such as production and release of different 

neurotrophic factors (Hanisch and Kettenmann, 2007; Réaux-Le Goazigo et al., 2013; Shyu et 

al., 2008; Williamson and Bilbo, 2013). Interestingly, it is well known that alterations of these 

systems are involved in the etiopathology of psychiatric disorders and in particular for 

depression (Duman and Monteggia, 2006; Sanacora et al., 2012). 

Another notable pathway modulated by the chronic administration of agomelatine is the 

signaling of PLC. Among the PLC isozymes, primary PLCs, PLCβ and PLCγ, are directly triggered 

by receptor activation. PLCβ isozymes are activated by G protein coupled receptor, whereas 

PLCγ isozymes are activated by receptor tyrosine kinase (Yang et al., 2013). Different groups 

have already demonstrated the involvement of the PLC pathway in the therapeutic effect of 

antidepressants. It has been reported that antidepressants with different synaptic 

mechanisms are able to increase the phosphorylation of PLCγ through the activation of TrkB, 

the high affinity receptor for the neurotrophin Brain derived neurotrophic factor (Rantamäki 
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et al., 2007). Our data add new information as indicate that agomelatine is able to modulate 

the PLC signaling by acting on a particular G protein, GNG13, which is responsible for the 

activation of the specific isozyme PLCβ. Interestingly, it has been demonstrated that the 

signaling of PLCβ may also be activated by the chemokine receptor (Bach et al., 2007) that, as 

discussed above, is modulated by chronic agomelatine treatment. Moreover, it has been 

recently reported that a compound able to activate the PLCβ/inositol phosphate 3 pathway 

has antidepressant properties in a rodent stress-based model of depression, an effect 

mediated by the BDNF/TrkB signaling (Yang et al., 2013), thus supporting the potential of PLCβ 

as new pharmacological target. In line with our result, it has been recently demonstrated that 

TrkB signaling is effectively involved in the antidepressant effect of agomelatine (Boulle et al., 

2016). However, beside these pathways involved in the effect of agomelatine per se, we 

identified genes specifically related to its ability to counteract the inflammatory response. 

Indeed, by analyzing our data with different approaches, we found that the antidepressant 

prevented the LPS-induced modulation of several genes. The majority of these genes are 

related to the inflammatory system such as IL-1β, thus confirming our previous data on the 

anti-inflammatory properties of agomelatine (Molteni et al., 2013). Other transcripts, belong 

to pathways related to the synthesis, generation and production of reactive oxygen species, 

suggesting an anti-oxidant effect of the antidepressant that may be associated with its 

structural analogy with melatonin, a well-known antioxidant agent (Reiter et al., 2008). By 

regulating these pathways, agomelatine could counteract the oxidative stress associated to 

the inflammatory response, an effect in line with its ability to positively modulate energy 

metabolism and oxidative stress parameters (de Mello et al., 2016). Through different overlap 

analyses, we further narrowed the list of genes whose LPS-dependent modulation was 

prevented by the antidepressant, finding 9 transcripts: Ybx1 (a transcription factor that 

mediates pre-RNA alternative splicing regulation and the transcription of numerous genes); 

Grm2 (metabotropic glutamate receptor 2); Rabif (member of the family of small GTP-binding 

proteins that are involved in the regulation of intracellular vesicular transport); Lypla1 

(lipophospholipase, a member of the a/b hydrolase superfamily with depalmitoylating 

activity, involved in the regulation of G-protein signaling); Tmem93 (ECM6, a transmembrane 

protein present in the endoplasmic reticulum, recently discovered to be involved in cell 

autophagy); Fkbpl (Fk506 binding protein like, involved in cellular response to stress and 

homolog of the FKBP protein family); Il1β ; Tmem60 (transmembrane protein 60, at present 
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no further data are available on this transcript); Pkcd (Protein Kinase Cδ, a family of serine- 

and threonine-specific protein kinases that can be activated by calcium and the second 

messenger diacylglycerol).One interesting candidate emerging from our analysis is Grm2, the 

gene encoding for the presynaptic metabotropic glutamate receptor type 2 (mGluR2) that 

regulates the glutamatergic homeostasis through an inhibitory tone on glutamate release. The 

observed LPS-induced up regulation of Grm2 transcription may be due to the activity of NF-

kB, a mechanism in line with the literature (Cuccurazzu et al., 2013; Nasca et al., 2013) and 

with the increased nuclear translocation of this transcription factor following LPS 

administration (Molteni et al., 2013). Since mGluR2 is also expressed in microglial cells, its 

increased expression might contribute to the detrimental consequences of microglia 

activation induced by the inflammatory challenge; this effect may be associated with the 

capability of this receptor to increase the release of TNF-α, the subsequent activation of 

neuronal caspase-3 and apoptosis processes  (Taylor et al., 2005). In line with this observation, 

it has been reported that mixed cortical culture with neurons derived from mGlu2 knockout 

animals are resistant to NMDA toxicity (Corti et al., 2007). Moreover, in a recent gene 

expression study of a large cohort of postmortem depressed subjects, the increased 

expression of Grm2 has been proposed as a biomarker of suicide in major depressed patients 

(Gray et al., 2015). Based on our results, it is feasible to hypothesize that a reduction in LPS-

induced increase of Grm2by agomelatine may be part of the anti-inflammatory properties of 

the drug. In conclusion, in the present study we used an unbiased genome-wide strategy to 

broaden our view on the immune-regulatory activity of the antidepressant agomelatine. 

Although further studies are needed to better investigate the modulatory activity of 

agomelatine and other antidepressants on the transcripts and pathways identified in our 

study, the information emerging from these results are useful to better understand the 

mechanisms of action of agomelatine and to identify novel targets for pharmacological 

intervention as well as to characterize the mechanisms involved in the association between 

depression and inflammation. 
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4.5 Different response to lipopolysaccharide in male and female BDNF heterozygous mice: 

gender and genotype Interaction 

 

Rossetti A.C., Paladini M.S., Trepci A., Gass P., Riva M.A., Molteni R. 

Unpublished data 
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4.5.1 Introduction 

Among the multiple systems affected in depressive state, neurotrophins play a crucial role. 

Indeed, Brain derived neurotrophic factor (BDNF) alterations are present in depressed 

subjects as well as in animal model of depression, and antidepressant drugs are able to 

ameliorate such defects (Calabrese et al., 2011; Molteni et al., 2010). 

In the context of neuroinflammation, the literature shows several examples of the detrimental 

effects of inflammation on BDNF homeostasis. More in detail, it has been demonstrated that 

the administration of the cytokine inducer LPS lead to the reduction of BDNF expression in 

vivo (Raetz and Whitfield, 2002). Moreover, in a recent study, Chapman and co-workers 

showed that an inflammatory challenge can affect the expression of BDNF transcripts in the 

hippocampus, suggesting a functional interaction between inflammation and the activity of 

the neurotrophin (Chapman et al., 2012). In addition, microglial cells, which represent one of 

the critical component of the inflammatory response, express BDNF mRNA, secrete the 

neurotrophin following stimulation, and have their functions regulated by BDNF (Trang et al., 

2011).  

With these premises, the aim of this study was to investigate the mutual influence between 

BDNF and inflammatory system by evaluating the inflammatory response in animals 

characterized by deficit in BDNF system. In particular, we induced an inflammatory response 

by acute injection of LPS in BDNF heterozygous mutant mice After 24 hours from the immune 

challenge animals, male and female, were tested with the open field test and with the forced 

swim test, to assess the insurgence of locomotor dysfunctions, anxiety-like and depressive-

like behaviors. Mediators of the inflammatory response were evaluated in the hippocampus 

and frontal lobe to investigate the molecular impact of LPS in a condition of BDNF impaired 

function. 
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4.5.2. Results 

4.5.2.1. Effects of LPS administration on locomotion, anxiety-like and depressed-like 

behaviors in wild-type and BDNF heterozygous mice 

4.5.2.1 Locomotor activity 

The total distance that male mice treated with LPS moved during the OF was reduced when 

compared to the locomotion of saline-treated mice. As a confirmation, the statistical analysis 

revealed that LPS administration had significant effect (F1,23= 74.485 P<0.001; Fig. 24A). Male 

mice that received or not the LPS injection spent more time moving in the beginning of the 

test than in the last part. As shown in figure 24 repeated measurement ANOVA revealed that 

the timing of the test (F1,19= 6,603 P=0,019) and treatment (F(1,19)=74.458  P<0.001) had 

significant effects.  

All male mice moved faster in the first 5 minutes of the test and the velocity of mice treated 

with LPS was slower than mice treated with saline. A repeated measurement ANOVA revealed 

that factor time (F1,19= 6.534 P=0.019) and treatment (F1,19= 73.876 P<0.001) were significant 

(Fig. 24B). The analysis at the later time point revealed that only treatment had a significant 

effect in the velocity of the mice (F1,19= 73.859 P<0.001; Fig. 24B). No significant effects were 

found in the direct comparisons between groups. 

The total distance moved by female mice treated with LPS, was decreased with respect to the 

groups of mice treated with saline in the last time point of the test. Indeed, the treatment 

with the toxin affected significantly the distance traveled (F1,20= 7.566 P=0.012; Fig. 25A). Also 

the timing of the test was significant in terms of locomotion in female mice, with animals 

moving less in the second trial of the OF (F1,20= 15.356 P=0.001; Fig. 25A)  

Female mice treated with LPS had an overall reduced velocity than mice treated with saline. 

If we compare the two sessions of the OF, treatment (F1,20= 7.561 P=0.012) and time (F1,20= 

15.341 P=0.001) had significant effects on the velocity of the female mice (Fig. 25B).No 

significant effects were found in the direct comparisons between groups. 

4.5.2.2 Anxiety-like behavior 

A two-way ANOVA, analyzed at the last time point revealed that the time male mice spent in 

the center of the arena was affected by genotype in a significant way (F1,23= 3.238 P=0.088). 

Interestingly we observed also a significant genotype*treatment interaction (F1,23= 4.589 

P=0,045; Fig. 24C) with a tendency toward decrease in wild type animals that received LPS. In 
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addition, repeated measurement ANOVA revealed that time (F1,19= 8.830 P=0.008), genotype 

(F1,19= 3.239 P=0.088) and the interaction treatment*genotype (F1,19= 4.588 P=0.045) affected 

the performance of the animals when considering the two session of the OF (Fig. 24CA). 

In male mice, the two-way ANOVA revealed that not treatment but genotype affected 

significantly the behavior of the mice (F1,23= 3.418 P=0.080; Fig. 24D). In addition, if we 

compared the first 5 minutes of the OF with the second trial, only the mutant mice treated 

with LPS did not have an increase in the distance to walls, while the other groups stayed 

farther away from the external walls. Indeed, we found not only an effect of time (F1,19= 16.448 

P=0.001) and genotype (F1,19=3.418 P=0.080), but also an interaction between the two 

variables (time*genotype F1,19=4.361P=0.050; 24D). 

LPS treated female mice generally tended to spend less time in the center, however the 

statistical analysis didn’t reveal any significant effect. The mutant mice treated with LPS did 

not have differences of the time they stayed in the center during all the period of the test. A 

repeated measurement ANOVA revealed that the behavior changed over time (F1,20= 12.041 

P=0.002) and mice reacted differently dependently on the treatment (interaction 

time*treatment: F1,20= 5.445  P=0.030; Fig. 25C).  

Mice of all experimental groups moved closer to walls in the first half of the behavioral test, 

than in the second half. A repeated measurement ANOVA revealed that this change was 

affected significantly by two factors, time (F1,20= 13.503  P=0.002) and treatment (F1,20= 6.069 

P=0.023), which showed also a significant interaction (time*treatment: F 1,20= 7.856  P=0.011) 

(Fig. 3.19.A). The analysis we did in the last time point of the test, the two way ANOVA 

revealed that only treatment affected this behavior (factor treatment: F(1,20)=6.071  P=0.023; 

Fig. 25D). 
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Figure 24 Effect of LPS on locomotion and anxiety like behavior on wild type or BDNF+/- male mice 
Evaluation of the behavioral effect of LPS administration in the open field arena. Here we present the 
total distance travedel (A) and the velocity (B) as parameters of locomotion. The time spent in the 
center of the arena (C) and the distance from the walls were used as indicators of anxiety-like 
phenotype. Each measurment is presented as difference between groups at the later time point (bar 
graphs) and in the different session of the test (line graps).  
 

Figure 25 Effect of LPS on locomotion and anxiety like behavior on wild type or BDNF+/-female mice 
Evaluation of the behavioral effect of LPS administration in the open field arena. Here we present the 
total distance travedel (A) and the velocity (B) as parameters of locomotion. The time spent in the 
center of the arena (C) and the distance from the walls were used as indicators of anxiety-like 
phenotype. Each measurment is presented as difference between groups at the later time point (bar 
graphs) and in the different session of the test (line graps).   
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4.5.2.3Depressive-like behavior 

All male mice had comparable latencies to start floating: genotype and treatment did not show 

any significant effect (Fig. 26 A, B). When the immobility time was analyzed in 2-min time 

segments, a repeated measurement ANOVA revealed that there was only the factor time 

significant (F2,38=108.314 P<0.001), whereas treatment and genotype did not influence the 

immobility time (Fig. 26 B). No specific differences between groups were observed. 

The latency to start floating was approximately 60s in all female mice tested; genotype and 

LPS administration had no significant effects (Fig. 26D). Concerning the total immobility time, 

we found a general effect of LPS treatment (F1,20=5.519 P=0.029). Female BDNF heterozygous 

mice showed different reaction to LPS than wild type mice treated with the toxin as suggested 

by a treatment*genotype interaction (F1,20=6.310 P=0.021). When analyzing the immobility in 

2-min time segment, we observed significant effects of time (F2,40= 150.152P<0.001), 

treatment(F1,20=5.519 P=0.029) and an interaction between the two variables 

treatment*genotype (F1,20=6.310 P=0.021; Fig. 26E). No specific differences between groups 

were observed. 

Figure 26 Effect of LPS ondepressive-like behavior on wild type or BDNF+/- mice Evaluation of the 

behavioral effect of LPS administration Forced Swim test. Here we present the latency of the first 

freezing and the total immobility time in male (A, B) and females (C, D) mice. Total immobility time is 

presented as difference between groups at the later time point (bar graphs) and in the different session 

of the test (line graps).   
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4.5.2.4 Molecular effects of LPS administration on mediators of the immune/inflammatory 

system in the hippocampus and in the frontal lobe of wild-type and BDNF heterozygous mice 

Although the LPS administration did not have a marked impact on the behavior of wild-type 

and mutant animals, we evaluated if the inflammatory challenge could unmask differences in 

the inflammatory response at molecular level in the different groups. To this aim, we analyzed 

the gene expression of pro-inflammatory cytokines and markers of microglia activation in the 

hippocampus and in the frontal lobe of wild-type and mutant mice. 

Gene expression analysis of the pro-inflammatory cytokine IL-1 

We first measured IL-1 gene expression and, as shown in figure 27A, its mRNA levels were 

significantly modulated by LPS administration in the hippocampus of both wild-type and 

heterozygous male mice (F1,19=179.8 P=0.001). Specifically, the inflammatory challenge 

markedly increased the pro-inflammatory cytokine without differences between the two 

genotypes (WT/LPS +465% vs. WT/SAL, P<0.001; +/d/LPS +571% vs. +/d/SAL, P<0.001). 

Conversely, a different profile was observed in the hippocampus of female mice, where the 

significant effect of the LPS injection (F1,18=14.17, P=0.002) was restricted to the mutant 

animals, as indicated by ANOVA (F1,18=5.89, P=0.029; LPS*Genotype interaction: F1,18=10.85, 

P<0.005). Indeed, as shown in figure 27B, IL-1β mRNA levels were significantly induced by LPS 

only in the heterozygous mice (+/d/LPS +324% vs. +/d/SAL, P<0.001) with no changes in wild-

type animals (+/d LPS +262% vs. WT/LPS, P<0.01). Moreover, it has to be noted that the 

magnitude of the cytokine induction in female mice was lower with respect to male animals 

although its basal expression was similar. 

In the frontal lobe of male mice was similar to what observed in the hippocampus. More in 

details, LPS administration significantly increased the gene expression of the pro-

inflammatory cytokine (F1,22=45.49, P=0.001) in both wild-type (WT/LPS +309% vs. WT/SAL, 

P<0.001) and heterozygous male mice (+/d/LPS +324% vs. +/d/SAL, P<0.001) without 

differences between the two experimental groups (Fig. 27C). Conversely, no changes in IL-1β 

expression were found in the frontal lobe of female mice exposed to LPS, neither in wild type 

nor in heterozygous animals (Fig. 27D). 
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Figure 27. Gene expression analysis of IL-1β in the hippocampus and in frontal lobe. The mRNA levels 

of the pro-inflammatory cytokine IL-1 were measured in the hippocampus and in the frontal lobe of 

males (A,C) and females (B,D) wild-type (WT) and BDNF heterozygous (+/d) mice 24 h after a single 

injection of lipopolisaccharyde (LPS, 400 g/kg i.p.) in comparison with mice treated with saline (SAL). 

The data, expressed as a percentage of the saline-injected wild-type mice (CTRL, set at 100%), 

represent the mean  SEM of at least 6 independent determinations. ***P<0.001 vs. CTRL; ###P<0.001 

vs. BDNF +/d; ++P<0.01 vs. WT/LPS (Two-way ANOVA with PLSD). 
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Gene expression analysis of the pro-inflammatory cytokine TNF- 

Similarly, to what observed in this brain region for IL-1β, the mRNA levels of TNF- were 

significantly up-regulated by the LPS treatment in male mice (F1,20=42.58, P=0.001), an effect 

independent by the genotype. In fact, the inflammatory challenge strongly induced the 

expression of TNF- in both wild-type (WT/LPS +1287% vs. WT/SAL, P<0.001) and mutant mice 

(+/d/LPS +1142% vs. +/d/SAL, P<0.001) without any statistical difference (Fig. 28A).  

On the contrary, the increase of TNF- gene expression by LPS was limited to the mutant 

animals in female mice with a general effect of LPS (F1,18=6.74, P=0.021), genotype (F1,18=10.7, 

P=0.006) and an interaction between LPS*Genotype (F1,18=4.95, P=0.043), This increase was 

less pronounced with respect to that observed in male mice (+/d/LPS +186% vs. +/d/SAL, 

P<0.01; +/d/LPS +164% vs. WT/LPS **P<0.01; Fig. 28B). 

In the frontal lobe, the gene expression profile of TNF- was qualitatively identical to what 

observed in the hippocampus although the effect of the inflammatory challenge was lower. 

As shown in figure 28C, we found a significant increase of its mRNA levels after LPS injection 

(F1,22 =42.43, P=0.001) in both wild-type (WT/LPS +544% vs. WT/SAL, P<0.001) and mutant 

male mice (+/d/LPS +678% vs. +/d/SAL, P<0.001). 

A slight but significant modulation of TNF-by LPS (F1,21=4.45, P=0.05) was also specifically 

observed in heterozygous female mice (+/d/LPS +55 vs. +/d/SAL, P<0.01; Fig. 28D). 
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Figure 28. Gene expression analysis of TNF- in the hippocampus and in the frontal lobe. The mRNA 

levels of the pro-inflammatory cytokine TNF- were measured in the hippocampus and in the frontal 

lobe of males (A, C) and females (B, D) wild-type (WT) and BDNF heterozygous (+/d) mice 24 h after a 

single injection of lipopolysaccharide (LPS, 400 g/kg i.p.) in comparison with mice treated with saline 

(SAL). The data, expressed as a percentage of the saline-injected wild-type mice (CTRL, set at 100%), 

represent the mean  SEM of at least 6 independent determinations. ***P<0.001 vs. CTRL; ###P<0.001 

vs. BDNF +/d; #P<0.05, ##P<0.01 vs. BDNF +/d; ++P<0.01 vs. WT/LPS (Two-way ANOVA with PLSD). 
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Gene expression analysis of the pro-inflammatory cytokine IL-6 

In male mice, LPS administration significantly affected also the expression of IL-6 (F1,19=42,84, 

P=0.001). However, differently from the other pro-inflammatory cytokines examined, the 

inflammatory challenge decreased its mRNA levels, an effect observed in both the genotypes 

(WT/LPS -56% vs. WT/SAL, P<0.001; +/d/LPS -65% vs. +/d/SAL, P<0.001; Fig. 29A).  

On the contrary, we did not observe any significant change in female mice (Fig. 29B). 

Similarly to what observed in the hippocampus of male mice, the expression of IL-6 was 

significantly down-regulated by LPS also in the frontal lobe (F1,19=123.9, P=0.001) of both wild-

type (WT/LPS -77% vs. WT/SAL, P<0.001) and heterozygous (+/d /LPS -66% vs. +/d /SAL, 

P<0.001) male animals (Fig. 29C), an effect even greater in this brain region. 

Once again, female mice did not show any significant change in the expression of IL-6 in all the 

experimental groups (Fig. 29D). 

Gene expression analysis of the marker of microglia activation CD11b 

We found that the mRNA levels of CD11b were significantly affected by the inflammatory 

challenge (F1,23= 48.93, P=0.001) and by the genotype (F1,23= 5.05, P=0.037) in the 

hippocampus of male mice. As shown in 30A, its expression was increased in both wild-type 

(WT/LPS +27% vs. WT/SAL, P<0.01) and BDNF heterozygous mice (+/d/LPS +60% vs. +/d/SAL, 

P<0.001), an effect significantly higher in the mutant animals (+/d/LPS +31% vs. WT/LPS, 

P<0.01) as indicated by the LPS*Genotype interaction (F1,23=6.85, P=0.017). 

In female mice, CD11b gene expression was up-regulated by LPS (F1,23= 13.06 P=0.002) only in 

mutant animals (+/d/LPS +44% vs. +/d/SAL, P<0.001; Fig. 30B) 

In the frontal lobe, we did not observe any significant modulation of the expression of CD11b 

by LPS or by the genotype, neither in male nor in female mice (Fig. 30C, D). 
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Figure 29. Gene expression analysis of IL-6 in the hippocampus and in the frontal lobe. The mRNA 

levels of the pro-inflammatory cytokine IL-6 were measured in the hippocampus and in the frontal lobe 

of males (A, C) and females (B, C) wild-type (WT) and BDNF heterozygous (+/d) mice 24 h after a single 

injection of lipopolysaccharide (LPS, 400 g/kg i.p.) in comparison with mice treated with saline (SAL). 

The data, expressed as a percentage of the saline-injected wild-type mice (CTRL, set at 100%), 

represent the mean  SEM of at least 6 independent determinations. ***P<0.001 vs. CTRL; ###P<0.001 

vs. BDNF +/d; ++P<0.01 vs. WT/LPS (Two-way ANOVA with PLSD). 
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Figure 30. Gene expression analysis of CD11b in the hippocampus and in the frontal lobe. The mRNA 

levels of the pro-inflammatory cytokine CD11b were measured in the hippocampus and in the frontal 

lobe of males (A, C) and females (B, C) wild-type (WT) and BDNF heterozygous (+/d) mice 24 h after a 

single injection of lipopolysaccharide (LPS, 400 g/kg i.p.) in comparison with mice treated with saline 

(SAL). The data, expressed as a percentage of the saline-injected wild-type mice (CTRL, set at 100%), 

represent the mean  SEM of at least 6 independent determinations. **P<0.01 vs. CTRL; ###P<0.001 vs. 

BDNF +/d; ++P<0.01 vs. WT/LPS (Two-way ANOVA with PLSD). 
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Gene expression analysis fractalkine (CX3CL1) and its receptor (CX3CR1) 

Despite a significant genotype effect (F1,22=8.72, P=0.009), the gene expression of fractalkine 

in the hippocampus of male mice was not strongly modulated by our experimental paradigm. 

In fact, as shown in figure 31A, the basal level of CX3CL1 was significantly higher only in BDNF 

heterozygous mice with respect to control mice (+/d/SAL +36% vs. WT/SAL, P<0.01). 

Conversely, LPS significantly reduced the mRNA levels of CX3CL1 in female mice (F1,23=5.07, 

P=0.036), an effect observed only in only in wild-type animals (WT/LPS -16% vs. WT/SAL, 

P<0.05; Fig. 31B). 

Despite the slight modulation of fractalkine, the inflammatory challenge shown a significant 

effect on its receptor in the hippocampus of male mice (F1,22=34.17, P=0.001). In fact, the 

mRNA levels of CX3CR1 were significantly increased by LPS in both wild-type (WT/LPS +50% 

vs. WT/SAL, P<0.001) and BDNF heterozygous mice (+/d/LPS +45% vs. +/d/SAL, P<0.001; Fig 

32A).  

In female mice, the CX3CR1 mRNA levels were up-regulated following the treatment 

(F1,24=5.54 P=0.029) only in heterozygous mice (+/d/LPS +22% vs. +/d/SAL, P<0.05; Fig 32B). 
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Figure 31. Gene expression analysis of CX3CL1 in the hippocampus. The mRNA levels of the pro-

inflammatory cytokine CX3CL1 were measured in the hippocampus of male (A,) and female (B) wild-

type (WT) and BDNF heterozygous (+/d) mice 24 h after a single injection of lipopolysaccharide (LPS, 

400 g/kg i.p.) in comparison with mice treated with saline (SAL). The data, expressed as a percentage 

of the saline-injected wild-type mice (CTRL, set at 100%), represent the mean  SEM of at least 6 

independent determinations. **P<0.01 vs. CTRL; *P<0.05 vs. CTRL (Two-way ANOVA with PLSD). 

 
 

 

Figure 32. Gene expression analysis of CX3CR1 in the hippocampus. The mRNA levels of the pro-

inflammatory cytokine CX3CR1 were measured in the hippocampus of male (A,) and female (B) wild-

type (WT) and BDNF heterozygous (+/d) mice 24 h after a single injection of lipopolysaccharide (LPS, 

400 g/kg i.p.)  in comparison with mice treated with saline (SAL). The data, expressed as a percentage 

of the saline-injected wild-type mice (CTRL, set at 100%), represent the mean  SEM of at least 6 

independent determinations. ***P<0.001 vs. CTRL; #P<0.05, ###P<0.001 vs. BDNF +/d (two-way 

ANOVA with PLSD). 
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4.5.3 Discussion 

The results of this study clearly indicate that a single systemic injection of LPS in mice induces 

a differential inflammatory response in male versus female animals and that this effect is 

influenced by BDNF expression and/or function. Specifically, we found a marked inflammatory 

response characterized by up-regulation of pro-inflammatory cytokines and microglia 

activation in male rats, an effect independent by the genotype. Conversely, a lower LPS impact 

was selectively observed in heterozygous animals without alteration in the wild-type. It has to 

be noted that the influence of a gender*genotype interaction on LPS response depends also 

by the brain region considered. 

The differential response to the inflammatory challenge has been observed for several 

mediators of the immune/inflammatory systems such as pro-inflammatory cytokines, anti-

inflammatory cytokines and marker for microglia activation, whereas only trends to 

modulation were observed at behavioral level. To this regard, it has been reported that the 

acute administration of LPS in rodents may induce 24 hours later a depressive phenotype 

characterized by anhedonia and behavioral despair (Frenois et al., 2007). However, in our 

experiment, we did not observe such a phenotype by using the Porsolt test and similarly we 

did not find an anxious phenotype by testing the LPS-received animals in the open field. 

Although the lack of behavioral effect in our experiment, that may be due to the different 

dosage of LPS used, the inflammatory challenge may be a useful tool to unmask -at molecular 

level- differences between the experimental groups. Indeed, we found a differential 

modulation of the inflammatory system in male and female LPS-treated animals. Indeed, in 

line with the literature, female seems to be “protected” to the inflammatory challenge, and 

one possible explanation is that the involvement of the hormonal status in which estrogens 

may play a key role. It is well documented that estrogens inhibit inflammatory response within 

the brain (Arevalo et al., 2012) and it has been recently demonstrated that estrogens 

deficiency induced in female rats by ovariectomy is associated with depressive-like phenotype 

and   increased levels of inflammatory mediators at cerebral levels (Xu et al., 2015). The 

involvement of these hormones is particularly interesting since It is well known that women 

may be more susceptible to develop depressive disorders than men and that the effect of 

estrogen on mood have well established. For example, it has been reported that the reduction 

of circulating estrogens during menopause is associated with the insurgence of mood 
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disorders in women (Freeman, 2010). Moreover, several data indicate that estrogen may have 

a protective role in different harmful conditions. For example, estrogens both protect against 

the detrimental effects of repeated stress in females, and prevents the stress-induced 

impairments when administered to males (Wei et al., 2014). This suggests that the stress 

hormone corticosterone and estrogen interact leading to a fine tuning of functional plasticity. 

In this context, it is interesting to note that local brain synthesis of estrogen from endogenous 

cholesterol, through the action of neuronal aromatases, could play a role in the modulation 

of neurotransmission in response to repeated stress. Indeed, it was shown that the inhibition 

of aromatase in female rats resulted in the loss of protection against neural and behavioral 

consequences of chronic stress, thus suggesting that central estrogen production is necessary 

for the protective action of estrogen.  

Another possibility is the involvement of Toll-like receptor-4, which mediated the 

inflammatory action of LPS. Among the cells that express TLR-4 there are astrocytes. These 

cells show sex differences in number, differentiation and function and since are involved in 

the response to injury and inflammation, they may participate in the generation of sex 

differences in the response of the brain to LPS. In line with this hypothesis, LPS-induced pro-

inflammatory cytokine up-regulation was higher in astrocytes derived from male or 

androgenized females in comparison to astrocytes derived from control or vehicle- injected 

female rats (Santos-Galindo et al., 2011). 

However, we did not find changes on the basal expression of TLR-4 between male and female 

wild-type animals. Nevertheless, beside the mechanisms underlying the gender effect, we 

have to consider its interaction with the genotype. Specifically, the lack of 50% of BDNF in 

female seems to “consent” the inflammatory response and further studies are demanded to 

investigate how BDNF system may interact with estrogens. 
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5. Summary and conclusions 
 
In conclusion, the results obtained during my Ph.D. add new preclinical evidence about the 

association between stress-related disorders -such as major depression- and alterations in the 

inflammatory system within the brain. By using different approaches, i.e. rats exposed to 

chronic stress or treated with lipopolysaccharide, antidepressant treatment, mice with partial 

deletion of the neurotrophin Brain-derived neurotrophic factor, we strengthened the idea of 

a direct involvement of neuroinflammation in behavioral alterations associated to 

psychopathology and brought to new insights on the molecular effects of antidepressant 

drugs in the context of modulation of the inflammatory response. 

Indeed, in the chronic mild stress study, we demonstrated that only the anhedonic-like 

phenotype correlates with neuroinflammation, in terms of increased expression of pro-

inflammatory mediators such as IL-1 IL-6 and the marker of microglial activation CD11b. 

These effects suggest a direct involvement of that neuroinflammation in the development of 

the depressive-like behavior, rather than being an adaptive response to of stress exposure. 

This idea has been supported by our data on LPS administration in animals exposed to CMS: 

on one side the susceptibility to LPS in animals not exposed to CMS enlightened the important 

contribution of the inflammatory system in the insurgence of behavioral alterations, in 

particular taking into account that the impairment in sucrose intake persisted for six days after 

the immune challenge. On the other, the apparent resistance to the LPS-induced 

neuroinflammation in stress-Resilient rats may suggest that inhibition of the inflammatory 

response may be one crucial mechanism underpinning stress resiliency. More in details, we 

pointed out that microglia is crucial for the development of altered behavior in stress-

vulnerable animals challenged with the cytokine inducer. Lipopolysaccharide, indeed, was a 

crucial tool to unmask the molecular differences between stress-Resilient rats and animals 

with decreased sucrose consumption, leading to the finding that the prolonged activation of 

microglia after the immune challenge seems strictly related to the decrease of sucrose intake. 

We hypothesize that the long-lasting behavioral effects of LPS may be due to alterations in 

microglia cross-talk with neurons (through the on/off signaling) or to an impaired M1/M2 

polarization of these cells, thus enlightening the role of microglia in modulating stress 

resilience. 
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Among the molecules examined, we found that IL-1-as the mostly up-regulated cytokine 

analyzed- may possibly play a pivotal role in the insurgence of depressive-like phenotype, 

especially in the dorsal hippocampus. Indeed, this cytokine has been also the main target of 

chronic pharmacological treatment of the drugs administered to animals exposed to CMS. In 

this context, we found that drugs characterized by different mechanisms of action were able 

to normalize the decrease of sucrose intake and ameliorate the neuroinflammatory signature 

observed in CMS rats. In fact, an overall dampening of stress-induced neuroinflammation was 

observed following chronic treatment with the tricyclic antidepressant imipramine, with the 

antidepressant agomelatine and with the antipsychotic lurasidone, thus suggesting that the 

regulation of the immune response within the brain may contribute to the therapeutic activity 

of these drugs. 

With the aim of elucidating the molecular targets of the modulation of inflammation within 

brain areas involved in major depression, we focused our attention of the feedback inhibition 

system of the IL-6 signaling as a potential target of antidepressant drugs. Considering that IL-

6 was mainly modulated by agomelatine, we investigated the impact of chronic administration 

of the drug on stressed animals. Our laboratory already demonstrated that agomelatine 

possesses anti-inflammatory properties, but its specific mechanisms of action in an 

inflammatory context are still elusive. Considering the observed effects of agomelatine activity 

on the IL-6 pathway, we propose that the antidepressant may be able to potentiate the 

feedback inhibition via the up-regulation of SOCS3 gene and protein expression. Although 

further studies are demanded to better understand the exact mechanism of action of how 

agomelatine acts on this system, the modulation of SOCS3 appears promising in the context 

of immune modulation exerted by antidepressant drugs, in particular on the fine-tuning of IL-

6 signaling.  

Another aspect that we analyzed in the context of molecular activity of antidepressant drugs 

on neuroinflammation was the genome-wide study on agomelatine activity. We found 

interesting data about the potential involvement of the pathway linked to chemokine receptor 

CXCR4 in the basal activity of agomelatine and on the anti-oxidant effect of the drug in animals 

challenged with lipopolysaccharide. In details, we found that the drug was able to modulate 

pathways related to synthesis, generation and production of reactive oxygen species. By 

regulating these pathways, agomelatine could potentially contribute to the modulation of the 
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oxidative stress associated to the inflammatory response. The diverse comparisons that we 

made between the list of modulated genes in the different experimental groups led us to the 

identification of nine transcripts, potentially involved in the anti-inflammatory and protective 

activity of agomelatine. Among them it was interesting to find the transcript of IL-1thus 

confirming the data obtained so far on the pro-inflammatory cytokine. Moreover, the 

microarray study enlightened the metabotropic glutamate receptor 2 (Grm2) as a potential 

pharmacological target of antidepressant in the context of neuroinflammation. This result, in 

light of the data presented in this work, appears promising considering that this receptor may 

be involved in the control of microglia activation. 

Lastly, another important point addressed during my Ph.D. was to investigate the potential 

mutual influence between alteration of inflammatory system and molecular systems known 

to be involved in depression pathophysiology. In this context, considering the recognized 

importance of BDNF in the etiology of major depression and on the therapeutic activity of 

psychotropic drugs, we evaluated the possible interaction between this neurotrophin and the 

immune response. Indeed, it is known that this complex disorder affects multiple systems i.e. 

molecules involved in neurotransmission, hormones and mediators of neuronal plasticity and 

among them the neurotrophin brain-derived neurotrophic factor (BDNF) plays a crucial role. 

BDNF levels are reduced in depressed subjects and its modulation represents a key step in 

long-term adaptive changes brought about by antidepressant drugs. In addition, microglial 

cells, which represents one of the critical component of the inflammatory response express 

BDNF mRNA, secrete the neurotrophin following stimulation and their function are regulated 

by BDNF. On this basis, the aim of this study was to establish if BDNF dysfunctions were 

associated with alteration of the inflammatory system and if inflammatory response was 

exacerbated under condition of impaired BDNF function. In line with the literature, we found 

that a single systemic injection of LPS in mice induced a differential inflammatory response in 

male versus female mice. However, interestingly this effect is influenced by BDNF expression 

and/or function. Specifically, we found a marked inflammatory response characterized by up-

regulation of pro-inflammatory cytokines and microglia activation in male rats, an effect 

independent by the genotype. Conversely, a lower LPS impact was selectively observed in 

heterozygous animals without alteration in the wild-type. One possible explanation is that the 

differential inflammatory response observed in the two different genders is driven by the 
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hormonal status in which estrogens may play a key role. Specifically, the lack of 50% of BDNF 

seems to “consent” the inflammatory response and further studies are demanded to 

investigate how BDNF system may interact with estrogens. 

 

In conclusion, the results obtained during my PhD thesis strongly sustain the involvement of 

neuroinflammation in the insurgence of depressive like phenotype and on the activity of 

diverse antidepressant drugs. In addition, we support the idea of a dramatic role of microglia 

in the regulation of stress response, in particular in term of resilience. This aspect definitely 

needs to be pursued especially in terms of pharmacological research of new potential targets 

for the treatment of major depression and stress-related disorders. 
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6. Appendix - Supplementary figures 

Supplementary figure 1. Gene expression analysis of IL-1 in dorsal hippocampus of animals 

exposed to chronic stress and subsequent administration of LPS. The mRNA levels of IL-1 β 

were measured in the rat dorsal hippocampus of animals exposed or not to chronic stress and 

treated with saline or LPS. Data are expressed as percentages with respect to saline-treated 

non stressed animals and they represent the average ± SEM. (***P<0.001 vs. CTRL; 

@@@P<0.001 vs RESPONSIVE; ##P<0.001 vs. RESILIENT; Two-way ANOVA with post hoc LSD). 

Supplementary figure 2. Gene expression analysis of IL-6 in dorsal hippocampus of animals exposed 

to chronic stress and subsequent administration of LPS. The mRNA levels of IL-6 were measured in 

the rat dorsal hippocampus of animals exposed or not to chronic stress and treated with saline or LPS. 

Data are expressed as percentages with respect to saline-treated non stressed animals and they 

represent the average ± SEM. (*P<0.05 vs. CTRL; °P<0.05 vs. LPS; Two-way ANOVA with post hoc LSD). 
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Supplementary figure 3. Gene expression analysis of TNF-a in dorsal hippocampus of animals 

exposed to chronic stress and subsequent administration of LPS. The mRNA levels of TNF-a were 

measured in the rat dorsal hippocampus of animals exposed or not to chronic stress and treated with 

saline or LPS. Data are expressed as percentages with respect to saline-treated non stressed animals 

and they represent the average ± SEM. (*P<0.05, **P<0.01 vs. CTRL; Two-way ANOVA with post hoc 

LSD).  

 

Supplementary figure 4. Gene expression analysis of CD11b in dorsal hippocampus of animals 

exposed to chronic stress and subsequent administration of LPS. The mRNA levels of CD11b were 

measured in the rat dorsal hippocampus of animals exposed or not to chronic stress and treated with 

saline or LPS. Data are expressed as percentages with respect to saline-treated non stressed animals 

and they represent the average ± SEM. (***P<0.001 vs. CTRL; @@@P<0.001 vs RESPONSIVE; 

##P<0.001 vs. RESILIENT; Two-way ANOVA with post hoc LSD). 



112 
 

Supplementary figure 5 Gene expression analysis of GFAP in dorsal hippocampus of animals 

exposed to chronic stress and subsequent administration of LPS. The mRNA levels of GFAP were 

measured in the rat dorsal hippocampus of animals exposed or not to chronic stress and treated with 

saline or LPS. Data are expressed as percentages with respect to saline-treated non stressed animals 

and they represent the average ± SEM. (*P<0.05, **P<0.01 vs. CTRL; Two-way ANOVA with post hoc 

LSD). 

Supplementary figure 6. Gene expression analysis of TLR-4 in dorsal hippocampus of animals 

exposed to chronic stress and subsequent administration of LPS. The mRNA levels of TLR-4 were 

measured in the rat dorsal hippocampus of animals exposed or not to chronic stress and treated with 

saline or LPS. Data are expressed as percentages with respect to saline-treated non stressed animals 

and they represent the average ± SEM. (*P<0.05, **P<0.01 vs. CTRL; @P<0.05, @@P<0.01 vs 

RESPONSIVE; Two-way ANOVA with post hoc LSD). 
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Supplementary figure 7. Protein levels analysis of TLR-4 in dorsal hippocampus of animals exposed 

to chronic stress and subsequent administration of LPS. The protein levels of TLR-4 were measured 

in the rat dorsal hippocampus of animals exposed or not to chronic stress and treated with saline or 

LPS. Data are expressed as percentages with respect to saline-treated non stressed animals and they 

represent the average ± SEM. (@@@P<0.001 vs RESPONSIVE; °P<0.05 vs. LPS; Two-way ANOVA with 

post hoc LSD). 

Supplementary figure 8. Gene expression analysis of IL-1 in dorsal hippocampus of animals exposed 

to chronic stress and subsequent administration of LPS. The mRNA levels of IL-1 β were measured in 

the rat dorsal hippocampus of animals exposed or not to chronic stress and treated with saline or LPS. 

Data are expressed as percentages with respect to saline-treated non stressed animals and they 

represent the average ± SEM. (@@@P<0.001 vs RESPONSIVE; °°P<0.01 vs. LPS; §§P<0.01 vs. 

RESILIENT/LPS Two-way ANOVA with post hoc LSD). 



114 
 

Supplementary figure 9. Protein levels analysis of IBA1 in dorsal hippocampus of animals exposed to 

chronic stress and subsequent administration of LPS. The protein levels of IBA1 were measured in the 

rat dorsal hippocampus of animals exposed or not to chronic stress and treated with saline or LPS. Data 

are expressed as percentages with respect to saline-treated non stressed animals and they represent 

the average ± SEM. (*P<0.05, **P<0.01 vs CTRL; @P<0.05 vs RESPONSIVE; °P<0.05 vs. LPS; §P<0.05, 

§§§P<0.001 vs. RESILIENT Two-way ANOVA with post hoc LSD) 

 

Supplementary figure 10. Gene expression analysis of CD11b in dorsal hippocampus of animals 

exposed to chronic stress and subsequent administration of LPS. The mRNA levels of CD11b were 

measured in the rat dorsal hippocampus of animals exposed or not to chronic stress and treated with 

saline or LPS. Data are expressed as percentages with respect to saline-treated non stressed animals 

and they represent the average ± SEM. (**P<0.01 vs. CTRL; @@P<0.01, @@@P<0.001 vs RESPONSIVE; 

°P<0.05 vs. LPS; §§§P<0.001 vs. RESILIENT Two-way ANOVA with post hoc LSD. 
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Supplementary figure 11. Gene expression analysis of CD68 in dorsal hippocampus of animals 

exposed to chronic stress and subsequent administration of LPS. The mRNA levels of CD68 were 

measured in the rat dorsal hippocampus of animals exposed or not to chronic stress and treated with 

saline or LPS. Data are expressed as percentages with respect to saline-treated non stressed animals 

and they represent the average ± SEM. (***P<0.001 vs. CTRL; @@@P<0.001 vs RESPONSIVE; §P<0.05 

vs. RESILIENT; Two-way ANOVA with post hoc LSD). 

 

Supplementary figure 12. Gene expression analysis of CX3CL1 in dorsal hippocampus of animals 

exposed to chronic stress and subsequent administration of LPS. The mRNA levels of CX3CL1 were 

measured in the rat dorsal hippocampus of animals exposed or not to chronic stress and treated with 

saline or LPS. Data are expressed as percentages with respect to saline-treated non stressed animals 

and they represent the average ± SEM. (§P<0.05 vs. RESILIENT; Two-way ANOVA with post hoc LSD). 
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Supplementary figure 13. Gene expression analysis of CX3CR1 in dorsal hippocampus of animals 

exposed to chronic stress and subsequent administration of LPS. The mRNA levels of CX3CR1 were 

measured in the rat dorsal hippocampus of animals exposed or not to chronic stress and treated with 

saline or LPS. Data are expressed as percentages with respect to saline-treated non stressed animals 

and they represent the average ± SEM. (***P<0.001 vs. CTRL; @P<0.05 vs. RESPONSIVE; °P<0.05, 

°°P<0.01 vs. LPS; Two-way ANOVA with post hoc LSD). 

 

Supplementary figure14. Gene expression analysis of Arg1 in dorsal hippocampus of animals 

exposed to chronic stress and subsequent administration of LPS. The mRNA levels of Arg1 were 

measured in the rat dorsal hippocampus of animals exposed or not to chronic stress and treated with 

saline or LPS. Data are expressed as percentages with respect to saline-treated non stressed animals 

and they represent the average ± SEM. (***P<0.001 vs. CTRL; @@@P<0.001 vs. RESPONSIVE; °P<0.05, 

°°P<0.01 vs. LPS; Two-way ANOVA with post hoc LSD). 
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Supplementary tables 

Supplementary Table 1 Summary of the effects of chronic mild stress (CMS) and treatment 

with imipramine on sucrose preference. Animals were exposed for 7 weeks to CMS procedure 

that was combined during the last 5 weeks with intraperitoneal injections (i.p.) of vehicle 

(hydroxyethylcellulose, HEC 1%) or imipramine (10 mg/kg daily). The table shows the weekly 

sucrose intake (g) and the corresponding P value obtained by Two-way ANOVA and PLSD test. 

The “baseline” values refer to the sucrose intake of the animals before the stress procedure. 

 

 
Drug Week Experimental Group Sucrose 

Intake (g) 
P-Value 
Vs. CTRL 

P-Value 
Vs. CMS 

 
IMIPRAMINE 

 

BASELINE 

CTRL 10,2 - - 

Imipramine 11,2 - - 

CMS 11,1 - - 

CMS+IMI 12,4 - - 

0 

CTRL 11,4 - - 

Imipramine 11,8 0,733 - 

CMS 6,8 0,001 *** - 

CMS+IMI 6,8 - 0,982 

1 

CTRL 9,6 - - 

Imipramine 11,2 0,329 - 

CMS 4,2 0,002 ** - 

CMS+ IMI 7,5 - 0,041 # 

2 

CTRL 11,4 - - 

Imipramine 11,6 0,940 - 

CMS 6,6 0,008 ** - 

CMS+ IMI 11 - 0,014 # 

3 

CTRL 10 - - 

Imipramine 10,4 0,817 - 

CMS 5 0,003 ** - 

CMS+IMI 8,9 - 0,016 # 

4 

CTRL 10,1 - - 

Imipramine 10,7 0,691 - 

CMS 6,8 0,039 * - 

CMS+ IMI 10,9 - 0,012 # 

5 

CTRL 12 - - 

Imipramine 11,7 0,834 - 

CMS 6,9 0,002 ** - 

CMS+ IMI 11,8 - 0,002 ## 
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Supplementary Table 2 Summary of the effects of chronic mild stress (CMS) and treatment 

with agomelatine on sucrose preference. Animals were exposed for 7 weeks to CMS 

procedure that was combined during the last 5 weeks with intraperitoneal injections (i.p.) of 

vehicle (hydroxyethylcellulose, HEC 1%) or agomelatine (40 mg/kg daily). The table shows the 

weekly sucrose intake (g) and the corresponding P value obtained by Two-way ANOVA and 

PLSD test. The “baseline” values refer to the sucrose intake of the animals before the stress 

procedure. 

 
Drug Week Experimental Group 

Sucrose 
Intake (g) 

P-Value 
Vs. CTRL 

P-Value 
Vs. CMS 

AGOMELATINE 
 

BASELINE 

CTRL 10,2 - - 

Agomelatine 11,2 - - 

CMS 11,1 - - 

CMS+ AGO 11,6 - - 

0 

CTRL 11,4 - - 

Agomelatine 11,78 0,832 - 

CMS 6,8 0,002 ** - 

CMS+ AGO 6,8 - 1,000 

1 

CTRL 9,6 - - 

Agomelatine 10 0,758 - 

CMS 4,2 0,000 *** - 

CMS+AGO 8,8 - 0,002 ## 

2 

CTRL 11,4 - - 

Agomelatine 12,7 0,463 - 

CMS 6,6 0,006 ** - 

CMS+ AGO 9,4 - 0,105 

3 

CTRL 10 - - 

Agomelatine 12,4 0,093 - 

CMS 5 0,001 *** - 

CMS+ AGO 9,2 - 0,004 ## 

4 

CTRL 10,1 - - 

Agomelatine 13,3 0,033 - 

CMS 6,8 0,029 * 0,004 ## 

CMS+AGO 11,2 - - 

5 

CTRL 12 - - 

Agomelatine 12,4 0,814 - 

CMS 6,9 0,004 ** - 

CMS+ AGO 12,2 - 0,003 ## 
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Supplementary Table 3 Summary of the effects of chronic mild stress (CMS) and treatment 

with lurasidone on sucrose preference. Animals were exposed for 7 weeks to CMS procedure 

that was combined during the last 5 weeks with oral administration (by gavage) of vehicle 

(hydroxyethylcellulose, HEC 1%) or lurasidone (3 mg/kg daily). The table shows the weekly 

sucrose intake (g) and the corresponding P value obtained by Two-way ANOVA and PLSD test. 

The “baseline” values refer to the sucrose intake of the animals before the stress procedure 

. 

 
Drug Week Experimental Group 

Sucrose 
Intake (g) 

P-Value 
Vs. CTRL 

P-Value 
Vs. CMS 

LURASIDONE 
 

BASELINE 

CTRL 11,3 - - 

Lurasidone 11,9 - - 

CMS 11,7 - - 

CMS+ LUR 12 - - 

0 

CTRL 11,4 - - 

Lurasidone 11,9 0,704 - 

CMS 6,5 0,000 *** - 

CMS+ LUR 6,9 - 0,737 

1 

CTRL 9,6 - - 

Lurasidone 10,4 0,655 - 

CMS 5 0,005 ** - 

CMS+ LUR 6,9  -0,220 

2 

CTRL 11,1 - - 

Lurasidone 11,8 0,661 - 

CMS 7,5 0,024 * - 

CMS+LUR 10,3 - 0,075 

3 

CTRL 12,5 - - 

Lurasidone 13 0,714 - 

CMS 5,9 0,000 *** - 

CMS+ LUR 13,2 - 0,000 ### 

4 

CTRL 11,6 - - 

Lurasidone 12,4 0,64 - 

CMS 6,6 0,003 ** - 

CMS+ LUR 11 - 0,01 ** 

5 

CTRL 12,3 - - 

Lurasidone 12,7 0,816 - 

CMS 6 0,000 *** - 

CMS+LUR 12,1 - 0,000 ### 
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Supplementary Table 4 Summary of the effects of chronic mild stress (CMS) and 

pharmacological treatment on the mRNA levels of the pro-inflammatory cytokines IL-1 and 

IL-6 and the anti-inflammatory cytokine TGF- in the rat dorsal hippocampus. Animals were 

exposed for 7 weeks to CMS procedure that was combined during the last 5 weeks with 

intraperitoneal injections (i.p.) of vehicle (hydroxyethylcellulose, HEC 1%) or imipramine (10 

mg/kg daily) or agomelatine (40 mg/kg daily). Another groups of animals received oral 

administration (by gavage) of vehicle (HEC 1%) or lurasidone (3 mg/kg daily). 24 hours after 

the last drug administration rats were killed by decapitation and the dorsal hippocampus was 

rapidly dissected for the molecular analyses. The table shows the percentage of change for 

each inflammatory protein and the corresponding P value obtained by Two-way ANOVA and 

PLSD test. 
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Drug Gene (mRNA) Experimental Group 
% change 
(of CTRL) 

P-Value 
Vs. CTRL 

P-Value 
Vs. CMS 

Figure 

IMIPRAMINE 

IL-1 

CTRL 0 - - 

Fig. 7A 
Imipramine -21 0,261 - 

CMS +45 0,033 * - 
CMS+IMI -19 - 0,002 ## 

AGOMELATINE 

CTRL 0 - - 

Fig. 7D 
Agomelatine -36 0,014 * - 

CMS +45 0,007 ** - 
CMS+AGO -31 - 0,000 ### 

LURASIDONE 

CTRL 0 - - 

Fig. 7G 
Lurasidone +15 0,245 - 

CMS +35 0,016 * - 
CMS+LUR +3 - 0,34 # 

IMIPRAMINE 

IL-6 

CTRL 0 - - 

Fig. 7B 
Imipramine +26 0,119 - 

CMS +38 0,018 * - 
CMS+IMI +15 - 0,191 

AGOMELATINE 

CTRL 0 - - 

Fig. 7E 
Agomelatine +119 0,214 - 

CMS +138 0,012 * - 
CMS+AGO +131 - 0,641 

LURASIDONE 

CTRL 0 - - 

Fig. 7H 
Lurasidone +23 0,137 - 

CMS +32 0,042 * - 
CMS+LUR +18 - 0,374 

IMIPRAMINE 

TGF- 

CTRL 0 - - 

Fig. 7C 
Imipramine -16 0,001 *** - 

CMS -13 0,021 ** - 
CMS+IMI -9 - 0,26 

AGOMELATINE 

CTRL 0 - - 

Fig. 7F 
Agomelatine -11 0,073 - 

CMS -13 0,043 * - 
CMS+AGO -16 - 0,666 

LURASIDONE 

CTRL 0 - - 

Fig. 7I 
Lurasidone -1 0,822 - 

CMS -16 0,021 * - 
CMS+LUR -13 - 0,705 



122 
 

Supplementary Table 5 Summary of the effects of chronic mild stress (CMS) and 

pharmacological treatment on the mRNA levels of CD11b, marker of microglia activation, 

fractalkine (CX3CL1) and its receptor (CX3CR1) as regulators of neuron-microglia cross-talk in 

the rat dorsal hippocampus. Animals were exposed for 7 weeks to CMS procedure that was 

combined during the last 5 weeks with intraperitoneal injections (i.p.) of vehicle (hydroxyethyl 

cellulose, HEC 1%) or imipramine (10 mg/kg daily) or agomelatine (40 mg/kg daily). Another 

groups of animals received oral administration (by gavage) of vehicle (HEC 1%) or lurasidone 

(3 mg/kg daily). 24 hours after the last drug administration rats were killed by decapitation 

and the dorsal hippocampus was rapidly dissected for the molecular analyses. The table shows 

the percentage of change for each inflammatory protein and the corresponding P value 

obtained by Two-way ANOVA and PLSD test. 
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Drug Gene (mRNA) Experimental Group 
% change 
(of CTRL) 

P-Value 
Vs. CTRL 

P-Value 
Vs. CMS 

Figure 

IMIPRAMINE 

CD11b 

CTRL 0 - - 

Fig. 8A 
Imipramine -11 0,351 - 

CMS +50 0,000 *** - 
CMS+IMI -3 - 0,000 ### 

AGOMELATINE 

CTRL 0 - - 

Fig. 8D 
Agomelatine +10 0,547 - 

CMS +50 0,005 ** - 

CMS+AGO +31 - 0,263 

LURASIDONE 

CTRL 0 - - 

Fig. 8G 
Lurasidone -1 0,969 - 

CMS +40 0,007 ** - 

CMS+LUR +16 - 0,097 

IMIPRAMINE 

CX3CL1 

CTRL 0 - - 

Fig. 8B 
Imipramine +11 0,099 - 

CMS -15 0,028 * - 
CMS+IMI -5 - 0,104 

AGOMELATINE 

CTRL 0 - - 

Fig. 8E 
Agomelatine -10 0,148 - 

CMS -15 0,039 * - 

CMS+AGO -20 - 0,475 

LURASIDONE 

CTRL 0 - - 

Fig. 8H 
Lurasidone -5 0,385 - 

CMS -16 0,012 * - 

CMS+LUR +12 - 0,000 ### 

IMIPRAMINE 

CX3CR1 

CTRL 0 - - 

Fig. 8C 
Imipramine -20 0,005 ** - 

CMS -5 0,483 - 

CMS+IMI -14 - 0,167 

AGOMELATINE 

CTRL 0 - - 

Fig. 8F 
Agomelatine -12 0,079 - 

CMS -5 0,482 - 

CMS+AGO -3 - 0,831 

LURASIDONE 

CTRL 0 - - 

Fig. 8I 
Lurasidone -17 0,005 ** - 

CMS -5 0,401 - 

CMS+LUR -25 - 0,001 ### 
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Supplementary Table 6 List of the 105 genes differentially expressed in the ventral 

hippocampus of animals chronically treated with agomelatine with respect to the rats that 

received only the vehicle (fold-change cut-off: ±1.2; p<0.05 here presented as -log(p Value)). 

 

Gene 
Symbol 

p-value 
(AGO/SAL vs. VEH/SAL) 

Fold-Change 
(AGO/SAL vs. VEH/SAL) 

Hist1h4m 0,010 1,66 
Gpx3 0,008 1,58 
Fau 0,018 1,48 

Zdhhc22 0,009 1,40 
Npas4 0,021 1,38 

Krtap4-3 0,005 1,38 
Hist2h2ab 0,047 1,36 

Romo1 0,000 1,36 
Fstl4 0,002 1,36 

Slc35c2 0,014 1,34 
Tnxb 0,029 1,33 

Rpl36a-ps4 0,000 1,32 
Ndufv3 0,000 1,32 
B3gat3 0,002 1,30 

Ervfrd-1 0,003 1,30 
Slc2a5 0,003 1,29 
Rtbdn 0,001 1,28 

Ndufa7 0,007 1,28 
Prokr2 0,004 1,27 

Tmem14c 0,007 1,27 
Myl12b 0,000 1,26 
Rnf208 0,028 1,26 
Gng13 0,003 1,25 
Kcna3 0,004 1,25 

Olr1332 0,045 1,25 
Mgp 0,046 1,24 

Ubfd1 0,001 1,24 
Panx2 0,001 1,24 
Ppia 0,002 1,24 

Fam43a 0,017 1,24 
Cln6 0,000 1,23 
Pitx1 0,009 1,23 
Jph4 0,000 1,23 

Samd4b 0,001 1,23 
Zfp580 0,016 1,23 

Fam100a 0,000 1,23 
Cort 0,040 1,23 
Wiz 0,000 1,23 
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Fam57b 0,001 1,23 
Kcnk9 0,005 1,23 
Rgma 0,012 1,22 

Sh2d3c 0,000 1,22 
Adam19 0,004 1,22 

Qars 0,002 1,22 
Mef2d 0,000 1,22 
Gpr137 0,010 1,22 
Pom121 0,006 1,22 
Sh2b3 0,004 1,22 
Wnk2 0,005 1,21 

Slc39a13 0,004 1,21 
Mark4 0,040 1,21 
Mrc2 0,000 1,21 

Wdsub1 0,005 1,21 
Tox2 0,000 1,21 
Slpil2 0,008 1,21 
Syn3 0,000 1,21 

Commd9 0,023 1,21 
Olr1736 0,017 1,21 
Grik3 0,010 1,21 
Stra6 0,022 1,21 

Babam1 0,008 1,21 
Fam189b 0,002 1,21 
Slc25a28 0,019 1,21 
Dlgap3 0,003 1,21 
Sec61g 0,008 1,21 
Zfp688 0,003 1,20 

Cic 0,000 1,20 
Brpf3 0,037 1,20 

St6gal2 0,019 1,20 
Taar7e 0,044 1,20 
Pvrl1 0,049 1,20 
Zmiz2 0,000 1,20 

Prkcdbp 0,022 1,20 
Mdk 0,031 1,20 

Arid1a 0,001 1,20 
Trim47 0,001 1,20 

Lgi2 0,018 1,20 
Ttc5 0,043 -1,20 

Fam82a2 0,039 -1,20 
Atg5 0,031 -1,20 

Tmed9 0,007 -1,21 
Gnpnat1 0,021 -1,21 

Agl 0,008 -1,21 
Olr204 0,007 -1,21 
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Dnajc17 0,012 -1,21 
Rpl3 0,009 -1,22 

Exosc3 0,039 -1,22 
Hspd1 0,001 -1,22 

Minpp1 0,024 -1,22 
Pcdhb12 0,007 -1,23 
Dbndd2 0,030 -1,23 

Uprt 0,044 -1,24 
Vamp3 0,007 -1,24 
Isoc1 0,047 -1,25 

Olr1590 0,027 -1,25 
Vom2r57 0,021 -1,27 
Sec11a 0,047 -1,29 
Nt5c3 0,016 -1,29 

Olr1237 0,046 -1,29 
Eid1 0,006 -1,30 

Timmdc1 0,002 -1,31 
Clk2 0,002 -1,31 

Olr1513 0,048 -1,34 
Cml3 0,012 -1,42 
Rhot1 0,002 -1,54 
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Supplementary Table 8 List of the 284 genes differentially expressed in the ventral 

hippocampus of animals that received a single injection of Lipopolysaccharide with respect to 

rats that received only the vehicle (fold-change cut-off: ±1.2; p<0.05). 

 

Comparison 
Gene 

Symbol 

p-value 
(VEH/LPS vs. 

VEH/SAL) 

Fold-Change 
(VEH/LPS vs. 

VEH/SAL) 
 

Vehicle/LPS 
 vs. 

 
Vehicle/Saline 

Cxcl10 0,000 13,07 
Cxcl11 0,000 4,71 
Gbp5 0,000 4,26 
Ifit3 0,000 4,17 

Zfp36 0,000 3,77 
Osmr 0,000 3,27 
Rsad2 0,000 3,18 
Birc3 0,000 2,87 

Nfkbia 0,000 2,74 
Pdk4 0,000 2,64 
Ifit2 0,000 2,56 
Mt1a 0,000 2,55 
Sgk1 0,000 2,53 
Rgs16 0,000 2,47 

Irf1 0,000 2,46 
Ptges 0,000 2,45 

Apold1 0,000 2,28 
Dusp1 0,000 2,26 
Ch25h 0,000 2,21 
Gpd1 0,000 2,10 
Ifit1 0,001 2,05 

Vcam1 0,000 2,04 
Icam1 0,000 1,98 
Ccl2 0,013 1,96 
Gbp2 0,000 1,93 
Plat 0,000 1,80 
Aspa 0,001 1,76 
Tgm2 0,000 1,76 
Herc6 0,000 1,74 
Lcn2 0,001 1,74 

Cdkn1a 0,000 1,72 
Ier3 0,000 1,72 
Oasl 0,000 1,72 
Atf3 0,000 1,66 

Gadd45g 0,000 1,66 
Tuba1c 0,009 1,65 
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Tnfrsf11a 0,000 1,65 
Nuak2 0,000 1,64 
Slc2a1 0,000 1,61 
Cxcl16 0,003 1,61 

Adamts1 0,000 1,61 
Errfi1 0,000 1,60 
Nfkb2 0,000 1,59 

Tinagl1 0,000 1,59 
Pla2g3 0,000 1,58 

Gpatch4 0,000 1,56 
Il6r 0,000 1,56 

Hif3a 0,000 1,56 
Usp18 0,000 1,54 
Ifitm3 0,000 1,54 

Apcdd1 0,000 1,53 
Trim16 0,000 1,52 
Oas1b 0,000 1,52 
Bcl6b 0,000 1,52 
Per1 0,000 1,50 
Bcl3 0,000 1,48 
Ddit4 0,002 1,47 

Kdm6b 0,000 1,46 
Angptl4 0,000 1,46 
Cxcl9 0,000 1,46 
Cnksr3 0,000 1,46 

Cp 0,000 1,45 
Gpx3 0,025 1,45 
Upp1 0,000 1,45 
Selp 0,000 1,45 
Irak2 0,000 1,45 
Cryab 0,008 1,45 
Mt2A 0,000 1,45 

Fam43a 0,000 1,45 
Gpr4 0,000 1,44 
Lfng 0,000 1,44 
Pate4 0,000 1,43 
Il4ra 0,000 1,42 
Fn1 0,001 1,42 

Plekhf1 0,004 1,42 
Rin3 0,000 1,42 

Cd274 0,000 1,42 
Hbb-b1 0,001 1,42 
Stra6 0,000 1,42 
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Arrdc2 0,000 1,41 
RT1-CE1 0,012 1,41 

Olig2 0,003 1,41 
Adamts9 0,000 1,40 
Arid5a 0,000 1,40 
Esam 0,000 1,40 
Parp9 0,001 1,39 

Zc3h12a 0,000 1,39 
Prr5 0,000 1,39 
Rnd1 0,000 1,39 

Tnfrsf1b 0,001 1,39 
Rpl37a-ps1 0,017 1,39 

Sp140 0,000 1,38 
RT1-CE4 0,001 1,38 
Zfp189 0,000 1,38 

Sik1 0,000 1,37 
Samd9l 0,003 1,37 
Nfkbiz 0,000 1,37 
Pla1a 0,000 1,37 

Arrdc3 0,000 1,37 
PVR 0,002 1,37 
Prkd2 0,002 1,37 
Fstl4 0,002 1,36 
Ripk2 0,003 1,36 
Socs1 0,000 1,35 
Pim1 0,001 1,35 
Cxcl1 0,005 1,35 
Apol3 0,000 1,35 
Prokr2 0,001 1,34 
Chchd1 0,038 1,34 
F2rl1 0,000 1,34 
Oas1a 0,001 1,34 
Usp54 0,001 1,34 
Grrp1 0,000 1,33 
Nt5e 0,003 1,33 

Pnpla2 0,000 1,33 
Gpr31 0,000 1,32 

Bhlhe40 0,000 1,31 
Ncl 0,012 1,31 

Map3k8 0,000 1,31 
Ralgds 0,000 1,31 
Oasl2 0,007 1,31 

Csrnp1 0,000 1,30 
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Nfil3 0,000 1,30 
Tagln2 0,006 1,30 

Igtp 0,000 1,30 
Olig1 0,018 1,29 

Serpine1 0,000 1,29 
Isg20 0,018 1,29 

Tmem88 0,000 1,29 
Slc25a13 0,000 1,29 
Map3k6 0,001 1,29 

Csf1 0,005 1,29 
Nfe2l2 0,007 1,29 
Ifih1 0,000 1,28 

Zdhhc22 0,045 1,28 
Akap2 0,000 1,28 
Plxnd1 0,004 1,28 
Litaf 0,007 1,28 

Cmpk2 0,000 1,27 
Dtx3l 0,000 1,27 

Golga7b 0,019 1,27 
Lipe 0,000 1,27 

Cdc37l1 0,001 1,27 
Tsc22d3 0,007 1,27 
Rapgef3 0,001 1,27 

Il1b 0,008 1,27 
Smad1 0,000 1,27 

Irf7 0,002 1,27 
Zc3hav1 0,000 1,26 

Cflar 0,003 1,26 
Timp1 0,002 1,26 
Tap1 0,000 1,26 
Cd59 0,035 1,26 

Ddx58 0,003 1,26 
Tgfb1 0,003 1,25 

Slc35c2 0,048 1,25 
Tbx3 0,000 1,25 

Ndufb8 0,041 1,25 
Socs3 0,001 1,25 

Cables1 0,004 1,25 
Rnf125 0,002 1,25 
Tfcp2l1 0,000 1,25 
Lonrf3 0,000 1,25 
Ptp4a3 0,003 1,25 
Flnb 0,000 1,25 
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Klf9 0,000 1,25 
Cspg4 0,001 1,25 
Mfsd2a 0,000 1,25 
Hcn4 0,001 1,25 
Usp30 0,005 1,24 
Ccnl1 0,002 1,24 

Smarcd2 0,000 1,24 
Grm2 0,046 1,24 

Dusp10 0,017 1,24 
Gpt2 0,010 1,24 

Rnf208 0,037 1,24 
Pvrl1 0,026 1,24 
Npsr1 0,001 1,24 

Tmem119 0,004 1,24 
Hist2h4 0,003 1,24 
Cdk18 0,016 1,23 
Sema7a 0,006 1,23 

Ceacam1 0,008 1,23 
Bag3 0,001 1,23 

Fam176a 0,002 1,23 
Spsb1 0,004 1,23 

Plekhh1 0,018 1,23 
Sla 0,008 1,23 

Sbno2 0,000 1,23 
Tle3 0,001 1,23 

Chrna4 0,017 1,22 
Mertk 0,003 1,22 
Rasd2 0,019 1,22 
Klf15 0,002 1,22 
Zfp64 0,028 1,22 
Mx2 0,028 1,22 

Zbtb16 0,004 1,22 
Tceb2 0,030 1,22 
Lrrc8a 0,004 1,22 
Dusp5 0,003 1,22 
Ifngr1 0,008 1,22 
Trex1 0,001 1,22 
Dlc1 0,001 1,22 

Mef2c 0,045 1,22 
Tns1 0,008 1,22 
Nr4a1 0,009 1,22 

RT1-M3-1 0,007 1,22 
Lrig3 0,001 1,21 
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Crhr2 0,007 1,21 
Ppia 0,004 1,21 

Brpf3 0,034 1,21 
Ccrn4l 0,001 1,21 
Hbegf 0,038 1,21 

Rpl36a-ps4 0,005 1,21 
Prkcd 0,037 1,21 
Gja4 0,013 1,21 

Pmaip1 0,001 1,21 
Cxcl2 0,017 1,21 
Btg2 0,011 1,21 

Zfp704 0,031 1,21 
Mrf 0,002 1,20 
Fzd9 0,027 1,20 
Slfn2 0,004 1,20 

Pitpnc1 0,005 1,20 
Ecel1 0,041 1,20 

Gadd45b 0,001 1,20 
Il2rg 0,004 1,20 
Eya1 0,000 1,20 
Lgi3 0,006 1,20 

Pric285 0,006 1,20 
Clic1 0,006 1,20 

Gnpnat1 0,024 -1,20 
Sugt1 0,039 -1,20 
Vof16 0,005 -1,20 

Rasgrp3 0,033 -1,20 
Ces2a 0,006 -1,20 
Ppp6c 0,005 -1,21 
Tmc7 0,002 -1,21 
Ghitm 0,033 -1,21 

Tmem93 0,016 -1,21 
Timmdc1 0,021 -1,21 

Fkbpl 0,020 -1,21 
Tmem60 0,023 -1,21 

Set 0,017 -1,21 
Agps 0,037 -1,21 

Olr663 0,016 -1,21 
Ybx1 0,034 -1,22 
Spry2 0,002 -1,22 
Egfl7 0,010 -1,22 
Chi3l1 0,008 -1,23 

C1H6orf35 0,011 -1,23 
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Tmem33 0,011 -1,23 
Aldh1a1 0,006 -1,23 

Lef1 0,000 -1,23 
Lypla1 0,026 -1,24 
Trpc6 0,040 -1,24 
Ocln 0,000 -1,24 

Nudt19 0,027 -1,24 
Abcg2 0,004 -1,25 
Rpl27a 0,012 -1,25 

Tek 0,001 -1,25 
Mars2 0,035 -1,25 

Olr1590 0,027 -1,25 
Tbpl1 0,018 -1,25 

Exosc3 0,021 -1,26 
Nt5c3 0,026 -1,26 
Cyyr1 0,003 -1,27 
Slc7a1 0,000 -1,27 
Prom1 0,001 -1,30 

Hist2h2be 0,003 -1,30 
Tnfrsf11b 0,008 -1,31 
Rasl11a 0,000 -1,33 

Sox2 0,002 -1,38 
Rabif 0,001 -1,39 

Slco1c1 0,000 -1,39 
Rhot1 0,011 -1,39 

Rbm12b 0,004 -1,41 
Hes5 0,002 -1,42 
Npas4 0,014 -1,42 
Gpr34 0,010 -1,42 
Tfrc 0,001 -1,44 
Clk2 0,000 -1,47 

Slco1a2 0,000 -1,56 

Slc40a1 0,000 -1,65 
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Supplementary Table 10 List of the 91 genes resulted from the overlap analysis between the 

284 genes significantly modulated by the LPS treatment (Supplementary Table 3) and the list 

of 296 transcripts altered in rats treated with agomelatine and challenged with the endotoxin. 

They represent the genes whose transcription is prevented by agomelatine: the fold change 

value is shown in the two experimental groups (fold-change cut-off: ±1.2). 

 

Gene 
Symbol 

Fold Change value 

VehLPS vs. VehSal AgoLPS vs. VehSal 

Ccl2 1,96 1,49 
RT1-CE1 1,41 1,12 

Rabif -1,39 -1,10 
Ybx1 -1,22 1,06 
Grm2 1,24 -1,02 
Lypla1 -1,24 1,00 
Gpr34 -1,42 -1,19 

Tmem93 -1,21 1,03 
Il1b 1,27 1,04 

Fkbpl -1,21 1,01 
Hbb-b1 1,42 1,20 

Tmem60 -1,21 -1,00 
Prkcd 1,21 1,00 
Tap1 1,26 1,06 

Rbm12b -1,41 -1,21 
Agps -1,21 -1,02 
Cryab 1,45 1,26 

Tmem33 -1,23 -1,04 
Ecel1 1,20 1,04 
Gpx3 1,45 1,29 

Plekhh1 1,23 1,07 
Rasd2 1,22 1,07 
Zfp64 1,22 1,07 

Set -1,21 -1,07 
Npsr1 1,24 1,09 

Nudt19 -1,24 -1,10 
Chi3l1 -1,23 -1,09 
Hcn4 1,25 1,11 

Smad1 1,27 1,13 
Eya1 1,20 1,07 

Akap2 1,28 1,16 
Pvrl1 1,24 1,12 

Hist2h2be -1,30 -1,18 
Zdhhc22 1,28 1,17 
Dusp5 1,22 1,11 
Ppp6c -1,21 -1,09 
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Olr663 -1,21 -1,10 
Mars2 -1,25 -1,14 
Mef2c 1,22 1,11 
Isg20 1,29 1,18 
Ncl 1,31 1,20 

Map3k6 1,29 1,18 
Trpc6 -1,24 -1,13 

C1H6orf35 -1,23 -1,12 
Ptp4a3 1,25 1,15 
Tbpl1 -1,25 -1,15 

Tfcp2l1 1,25 1,16 
Nt5c3 -1,26 -1,17 
Zfp704 1,21 1,11 
Socs3 1,25 1,16 
Ghitm -1,21 -1,12 
Cspg4 1,25 1,16 
Clic1 1,20 1,12 
Lgi3 1,20 1,12 

Pitpnc1 1,20 1,12 
Mrf 1,20 1,13 

Cd59 1,26 1,18 
Sugt1 -1,20 -1,13 
Crhr2 1,21 1,14 
Nr4a1 1,22 1,15 

Fam176a 1,23 1,16 
Hbegf 1,21 1,14 
Cdk18 1,23 1,17 

Gnpnat1 -1,20 -1,14 
Rnf208 1,24 1,18 
Rpl27a -1,25 -1,19 
Exosc3 -1,26 -1,20 

Tle3 1,23 1,17 
Mertk 1,22 1,17 

Rnf125 1,25 1,20 
Chchd1 1,34 1,29 

Dlc1 1,22 1,17 
Pric285 1,20 1,15 
Lrrc8a 1,22 1,17 
Tmc7 -1,21 -1,16 
Ccrn4l 1,21 1,17 
Gja4 1,21 1,17 
Bag3 1,23 1,19 
Lrig3 1,21 1,18 

Gadd45b 1,20 1,17 
Rasgrp3 -1,20 -1,17 
Ndufb8 1,25 1,22 
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Slc35c2 1,25 1,22 
Brpf3 1,21 1,18 

Pmaip1 1,21 1,17 
Spsb1 1,23 1,20 
Egfl7 -1,22 -1,20 

Timmdc1 -1,21 -1,18 
Cxcl2 1,21 1,19 
Btg2 1,21 1,20 
Il2rg 1,20 1,19 
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Supplementary Table 12 List of the 193 genes resulted from the overlap analysis between the 

284 genes significantly modulated by the LPS treatment (Supplementary Table 3) and the list 

of 296 transcripts altered in rats treated with agomelatine and challenged with the endotoxin. 

They represent the transcripts modulated by the LPS with or without the administration of 

agomelatine. The fold change value is shown in the two experimental groups (fold-change cut-

off: ±1.2). 

 

Gene Symbol 
Fold Change value 

VehLPS vs. VehSal AgoLPS vs. VehSal 

Cxcl10 13,07 12,51 
Cxcl11 4,71 4,46 
Gbp5 4,26 3,97 
Ifit3 4,17 4,28 

Zfp36 3,77 3,97 
Osmr 3,27 2,99 
Rsad2 3,18 3,31 
Birc3 2,87 2,68 

Nfkbia 2,74 2,66 
Pdk4 2,64 2,77 
Ifit2 2,56 2,69 
Mt1a 2,55 2,40 
Sgk1 2,53 2,51 
Rgs16 2,47 2,39 

Irf1 2,46 2,17 
Ptges 2,45 2,01 

Apold1 2,28 2,23 
Dusp1 2,26 2,26 
Ch25h 2,21 1,96 
Gpd1 2,10 1,97 
Ifit1 2,05 1,78 

Vcam1 2,04 1,85 
Icam1 1,98 2,12 
Gbp2 1,93 1,91 
Plat 1,80 1,69 
Aspa 1,76 1,88 
Tgm2 1,76 1,53 
Herc6 1,74 1,80 
Lcn2 1,74 2,11 

Cdkn1a 1,72 1,68 
Ier3 1,72 1,67 
Oasl 1,72 1,64 
Atf3 1,66 1,57 
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Gadd45g 1,66 1,53 
Tuba1c 1,65 1,51 

Tnfrsf11a 1,65 1,45 
Nuak2 1,64 1,66 
Slc2a1 1,61 1,61 
Cxcl16 1,61 1,53 

Adamts1 1,61 1,45 
Errfi1 1,60 1,67 
Nfkb2 1,59 1,63 

Tinagl1 1,59 1,67 
Pla2g3 1,58 1,43 

Gpatch4 1,56 1,40 
Il6r 1,56 1,48 

Hif3a 1,56 1,57 
Usp18 1,54 1,60 
Ifitm3 1,54 1,75 

Apcdd1 1,53 1,65 
Trim16 1,52 1,39 
Oas1b 1,52 1,37 
Bcl6b 1,52 1,48 
Per1 1,50 1,55 
Bcl3 1,48 1,43 
Ddit4 1,47 1,73 

Angptl4 1,46 1,48 
Cxcl9 1,46 1,71 
Cnksr3 1,46 1,46 

Cp 1,45 1,25 
Upp1 1,45 1,44 
Selp 1,45 1,25 
Irak2 1,45 1,43 
Mt2A 1,45 1,47 

Fam43a 1,45 1,32 
Gpr4 1,44 1,61 
Lfng 1,44 1,40 
Pate4 1,43 1,48 
Il4ra 1,42 1,43 

Kdm6b 1,42 1,42 
Fn1 1,42 1,34 

Plekhf1 1,42 1,40 
Rin3 1,42 1,44 

Cd274 1,42 1,43 
Stra6 1,42 1,30 

Arrdc2 1,41 1,36 
Olig2 1,41 1,46 

Adamts9 1,40 1,47 
Arid5a 1,40 1,44 
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Esam 1,40 1,58 
Parp9 1,39 1,33 

Zc3h12a 1,39 1,38 
Prr5 1,39 1,42 
Rnd1 1,39 1,41 

Tnfrsf1b 1,39 1,22 
Rpl37a-ps1 1,39 1,31 

Sp140 1,38 1,32 
RT1-CE4 1,38 1,21 
Zfp189 1,38 1,38 

Sik1 1,37 1,36 
Samd9l 1,37 1,48 
Nfkbiz 1,37 1,30 
Pla1a 1,37 1,36 

Arrdc3 1,37 1,37 
PVR 1,37 1,28 
Prkd2 1,37 1,39 
Fstl4 1,36 1,21 
Ripk2 1,36 1,48 
Socs1 1,35 1,38 
Pim1 1,35 1,37 
Cxcl1 1,35 1,34 
Apol3 1,35 1,39 
Prokr2 1,34 1,32 
F2rl1 1,34 1,49 
Oas1a 1,34 1,38 
Usp54 1,34 1,25 
Grrp1 1,33 1,31 
Nt5e 1,33 1,33 

Pnpla2 1,33 1,45 
Gpr31 1,32 1,22 

Bhlhe40 1,31 1,33 
Map3k8 1,31 1,46 
Ralgds 1,31 1,27 
Oasl2 1,31 1,40 

Csrnp1 1,30 1,28 
Nfil3 1,30 1,26 

Tagln2 1,30 1,30 
Igtp 1,30 1,26 

Olig1 1,29 1,36 
Serpine1 1,29 1,27 
Tmem88 1,29 1,21 
Slc25a13 1,29 1,23 

Csf1 1,29 1,35 
Nfe2l2 1,29 1,23 
Ifih1 1,28 1,31 
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Plxnd1 1,28 1,23 
Litaf 1,28 1,38 

Cmpk2 1,27 1,31 
Dtx3l 1,27 1,20 

Golga7b 1,27 1,26 
Lipe 1,27 1,26 

Cdc37l1 1,27 1,26 
Tsc22d3 1,27 1,46 
Rapgef3 1,27 1,23 

Irf7 1,27 1,32 
Zc3hav1 1,26 1,27 

Cflar 1,26 1,30 
Timp1 1,26 1,22 
Ddx58 1,26 1,24 
Tgfb1 1,25 1,23 
Tbx3 1,25 1,21 

Cables1 1,25 1,29 
Lonrf3 1,25 1,30 
Flnb 1,25 1,25 
Klf9 1,25 1,27 

Mfsd2a 1,25 1,26 
Usp30 1,24 1,21 
Ccnl1 1,24 1,24 

Smarcd2 1,24 1,32 
Dusp10 1,24 1,21 

Gpt2 1,24 1,21 
Tmem119 1,24 1,21 
Hist2h4 1,24 1,39 
Sema7a 1,23 1,20 

Ceacam1 1,23 1,24 
Sla 1,23 1,22 

Sbno2 1,23 1,20 
Chrna4 1,22 1,22 
Klf15 1,22 1,30 
Mx2 1,22 1,27 

Zbtb16 1,22 1,23 
Tceb2 1,22 1,22 
Ifngr1 1,22 1,27 
Trex1 1,22 1,32 
Tns1 1,22 1,21 

RT1-M3-1 1,22 1,21 
Ppia 1,21 1,29 

Rpl36a-ps4 1,21 1,33 
Fzd9 1,20 1,23 
Slfn2 1,20 1,23 
Vof16 -1,20 -1,28 
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Ces2a -1,20 -1,22 
Spry2 -1,22 -1,22 

Aldh1a1 -1,23 -1,24 
Lef1 -1,23 -1,23 
Ocln -1,24 -1,24 

Abcg2 -1,25 -1,26 
Tek -1,25 -1,35 

Olr1590 -1,25 -1,29 
Cyyr1 -1,27 -1,32 
Slc7a1 -1,27 -1,21 
Prom1 -1,30 -1,32 

Tnfrsf11b -1,31 -1,31 
Rasl11a -1,33 -1,35 

Sox2 -1,38 -1,32 
Slco1c1 -1,39 -1,31 
Rhot1 -1,39 -1,32 
Hes5 -1,42 -1,34 
Npas4 -1,42 -1,49 
Tfrc -1,44 -1,52 
Clk2 -1,47 -1,25 

Slco1a2 -1,56 -1,42 
Slc40a1 -1,65 -1,58 
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Supplementary Table 14 List of the 52 genes obtained from the comparison between the 

AGO/LPS group, previously analyzed with respect to the animals treated with the vehicle and 

now directly compared to the rats received LPS (fold-change cut-off: ±1.2; p<0.05 here 

presented as -log(p Value)). 

 

Comparison 
Gene 

Symbol 

p-value 
(AGO/LPS vs. 

VEH/LPS) 

Fold-Change 
(AGO/LPS vs. 

VEH/LPS) 
 

Agomelatine/LP
S 

vs. 
Vehicle/LPS 

Hist1h4m 0,001 2,04 
Fau 0,000 1,96 

Gas5 0,022 1,81 
Rn5-8s 0,016 1,75 

Hist2h2ab 0,019 1,45 
Prelp 0,007 1,40 
Rmrp 0,005 1,38 
Cstb 0,014 1,35 

Dmrtc1b 0,013 1,31 
Atp5l 0,008 1,31 

Pou3f1 0,003 1,31 
Mif 0,006 1,30 

Hmgn2 0,050 1,29 
Ybx1 0,009 1,28 

Sec61g 0,001 1,27 
Uqcrfs1 0,003 1,26 
Morf4l1 0,044 1,26 

Rabif 0,011 1,26 
Olr397 0,005 1,25 
Snhg4 0,016 1,25 
Ndufb4 0,008 1,24 
Leprotl1 0,004 1,24 
S100a16 0,032 1,24 
Psme1 0,023 1,24 
Lypla1 0,024 1,24 

Tmem93 0,007 1,24 
Rpl18a 0,003 1,23 
Ndufa7 0,018 1,23 
Fkbpl 0,013 1,23 

Ndufv3 0,000 1,23 
Vgf 0,005 1,23 
Atf4 0,030 1,23 
Rfk 0,018 1,23 
Cln6 0,000 1,23 
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Romo1 0,007 1,22 
Ptges3 0,031 1,22 
Myl12b 0,002 1,22 
Actr6 0,023 1,22 
Trub2 0,032 1,22 

Tmem60 0,024 1,21 
Rab27b 0,030 1,21 
Rabl5 0,046 1,21 

Nhp2l1 0,023 1,20 
Prkcd 0,040 -1,20 

Ppfibp1 0,025 -1,21 
Il1b 0,022 -1,22 

Dus2l 0,045 -1,22 
Olr75 0,009 -1,22 
Oxsm 0,019 -1,24 
Grm2 0,029 -1,27 
Ghdc 0,009 -1,31 

RT1-CE15 0,027 -1,33 
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