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ABSTRACT 
Spinal Muscular Atrophy (SMA) is among the most common genetic neurological diseases that cause 

infant mortality. SMA is caused by deletion or mutations in the survival motor neuron 1 gene (SMN1), 

which are expected to generate alterations in RNA transcription, or splicing and most importantly 

reductions in mRNA transport within the axons of motor neurons (MNs). SMA ultimately results in the 

selective degeneration of MNs in spinal cord, but the underlying reason is still not clear entirely. The aim 

of this study is to investigate splicing abnormalities in SMA, and to identify genes presenting differential 

splicing possibly involved in the pathogenesis of SMA at genome-wide level. We performed RNA-

Sequencing data analysis on 2 SMA patients and 2 controls, with 2 biological replicates each sample, 

derived from their induced Pluripotent Stem Cell-differentiated-MNs. Three types of analyses were 

executed. Firstly, differential expression analysis was performed to identify possibly mis-regulated genes 

using Cufflinks. Secondly, alternative splicing analysis was conducted to find differentially-used exons 

(DUEs; using DEXSeq) as splicing patterns are known to be altered in MNs by the suboptimal levels of 

SMN protein. Thirdly, we did RNA-binding protein (RBP) - motif discovery for the set of identified 

alternative cassette-DUEs, to pinpoint possible mechanisms of such alterations, specific to MNs. The 

gene ontology enrichment analysis of significant DEGs and alternative cassette-DUEs revealed various 

interesting terms including axon-guidance, muscle-contraction, microtubule-based transport, axon-cargo 

transport, synapse etc. which suggests their involvement in SMA. Further, promising results were 

obtained from motif analysis which has identified 22 RBPs out of which 7 RBPs namely, PABPC1, 

PABPC3, PABPC4, PABPC5, PABPN1, SART3 and KHDRBS1 are known for mRNAs stabilization and 

mRNA transport across MN-axon. Five RBPs from PABP family are known to interact directly with SMN 

protein that enhance mRNA transport in MNs. To validate our results specific wet-lab experiments are 

required, involving precise recognition of RNA-binding sites correspondent with our findings. Our work 

has provided a promising set of putative targets which might offer potential therapeutic role towards 

treating SMA. 

  

During the course of our study, we have observed that current methods for an effective understanding of 

differential splicing events within the transcriptomic landscape at high resolution are insufficient. To 

address this problem, we developed a computational model which has a potential to precisely estimate 

the “transcript expression levels” within a given gene locus by disentangling mature and nascent 

transcription contributions for each transcript at per base resolution. We modeled exonic and intronic read 

coverages by applying a non-linear computational model and estimated expression for each transcript, 

which best approximated the observed expression in total RNA-Seq data. The performance of our model 

was good in terms of computational processing time and memory usage. The application of our model is 

in the detection of differential splicing events. At exon level, differences in the ratio of the sum of mature 

and the sum of nascent transcripts over all the transcripts in a gene locus gives an indication of 

differential splicing. We have implemented our model in R-statistical language.  
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PREFACE 
This thesis will provide the detailed work that I have performed during four years of my PhD course. I 

have divided my work in four chapters: Introduction, Materials and Methods, Results and Discussion. In 

Chapter 1, a detailed introduction has been provided for our research area with current technologies to 

study the proposed biological problems. In Chapter 2, the details of implemented methods have been 

provided that are divided into two separate studies: (1) Study of Alternative Splicing in SMA and (2) 

Development of Computational Model to Estimate Transcript Expression. In this chapter, firstly, the 

materials and methods for study (1) have been described to investigate the alternative splicing patterns 

and their mis-regulations in SMA pathology. Secondly, materials and methods for the development of 

computational model are described. In Chapter 3, results obtained from the implemented methods are 

given in two separate sections, containing the results from: Study of Alternative Splicing in SMA and 

Development of Computational Model to Estimate Transcript Expression. In Chapter 4, the research 

problem, our implemented methods, major findings have been discussed and finally the obtained results 

have been concluded with future directions to subsequently enhance the current work in both studies. 

This chapter also contains two sections: Study of Alternative Splicing in SMA and Development of 

Computational Model to Estimate Transcript Expression.  
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CHAPTER	1	-	 INTRODUCTION	

Background 
In this chapter, we intend to describe the relevant fundamentals of cellular processes on our 

area of study. The whole genetic stories revolve around the genetic information keeper DNA, 

which perform two essential tasks within every single cell: first is replication and second is 

transcription. During the transcription process DNA tends to convey its information as messages 

for producing an expression (as proteins). Messenger-RNA (mRNA) carries these messages 

which further undergo pruning and maturation, retaining only the coding sequences. Such post-

transcriptional modifications of precursor-mRNA (pre-mRNA) involve several intricate 

mechanisms which require great specificity and fidelity. We are interested in studying the 

mechanisms ruling the preferential choice of some coding regions over the others and their 

aberrations, leading to fatal disorders.  

We will start by describing post-transcriptional processes, their regulatory mechanisms and how 

mis-regulations in these mechanisms could impact our cellular systems. Further, we will 

describe the established methods to study these processes which include Next Generation 

Sequencing (NGS) methods and their key applications such as RNA-Sequencing technology to 

study transcriptome of a cell in a given time-point and transcription level variations between two 

different conditions can be analyzed. In order to perform such analysis, we have described 

computational tools suitable to quantify the expression levels of genes, transcripts and individual 

exons and to identify relative differences in their expressions levels between two different 

conditions. Further, to analyze the differential alternative splicing, we have introduced a novel 

computational model which has a potential to precisely estimate the “transcript expression 

levels” within a given gene locus by disentangling mature and nascent transcription 

contributions for each transcript at per base resolution. 

1.1 Precursor messenger RNA Splicing 
In the late 1970s, a surprising discovery revealed that the genes in eukaryotic cells are not 

continuous stretch of coding sequences (‘exons’) rather they are interrupted by very long 

intervening noncoding sequences, designated as ‘introns’1,2. Therefore, a journey from 

transcription to translation requires an additional albeit indispensable step, namely, ‘RNA 

splicing’, which help in the removal of such noncoding sequences from the Precursor 

messenger RNA (pre-mRNA) and ligate the coding sequences together, producing mature 

mRNA. The faithful processing of pre-mRNA
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is very essential for the synthesis of functionally active protein in the cellular system. Therefore, 

in eukaryotic cells splicing is a critical step towards gene expression.  

1.2 Biogenesis of snRNP Particles 
Pre-mRNA splicing is carried out by an intricate macromolecular machinery called spliceosome 

which is made up of five small nuclear ribonucleoproteins (snRNPs) and more than 100 other 

essential proteins3. Wherein snRNPs are RNA-protein complexes fabricated of Uridine-rich 

small nuclear Ribonucleic acid (U snRNAs; non-coding class of RNAs) and large set of proteins. 

These non-coding species of RNAs are mainly classified as: (1) Sm snRNAs and (2) Sm-like 

(Lsm) snRNAs on the basis of sequence similarity and protein cofactors4. The Sm class 

contains U1, U2, U4, U4atac, U5, U11 and U12 snRNAs which are transcribed by RNA 

polymerase II, containing three essential recognition elements: 5′-trimethylguanosine (TMG) 

cap, Sm-protein-binding site (Sm-site) and 3′ stem–loop structure. Whereas Lsm class have U6 

and U6atac snRNAs, containing 5'-γ-monomethylphosphate cap and a 3' stem–loop which are 

transcribed by RNA polymerase III. After the transcription, Sm-snRNAs moves out from the 

nucleus into the cytoplasm for post-transcriptional processing steps, however Lsm-snRNAs 

always stay inside the nucleus. Therefore, the whole snRNPs biogenesis process including all 

additional maturation steps is centered upon Sm-class snRNPs (Figure 1.1). The Sm-snRNPs 

biogenesis starts from the transcription of snRNA in the nucleus and the transcribed pre-snRNA 

binds with various export proteins to facilitate the transport within the cytoplasm through Nuclear 

Pore Complex (NPC). The export machinery is comprised of Phosphorylated adapter RNA 

export protein (PHAX), the export receptor Chromosome Region Maintenance-1 (CRM1 or 

exportin-1), the cap-Binding Complex (CBC; containing CBP80 and CBP20 domains, which 

specifically binds with PHAX) and GTP-bound RAs-related Nuclear protein (RAN GTP-ase). The 

PHAX protein shows distinctive behavior with its phosphorylation status such as its 

hyperphosphorylated form confines it within the nucleus whereas its hypophosphorylated form 

makes it cytoplasm-specific and favors pre-snRNA export5,6. Later, the export machinery 

disassociates from pre-snRNA followed by its assembly onto seven Sm-proteins (arranged as a 

ring like structure containing Sm B, D3, D1, D2, E, F and G to form a Sm-core RNP) with the 

help of Survival of Motor Neuron protein complex (SMN protein complex)7. The SMN complex is 

a macromolecular protein complex, containing self-oligomers of SMN protein associated with 

GEMIN2-8 proteins and unr-interacting protein (UNRIP). GEMINS have acquired their name 

from the dot-like sub-nuclear structures called ‘gems’ where they localize with the SMN protein. 
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The SMN protein complex specifically binds with snRNA’s conserved regions (Sm-site and 3’-

stem loop) which promotes the stable assembly of snRNA onto Sm-proteins and form a snRNP 

particle. Further, the 5’-mono-methylated cap (7-methylguanosine or m7G-cap) of snRNA is 

hypermethylated into tri-methylated cap (2, 2, 7-trimethylguanosine or m3G-cap or TMG) by 

trimethylguanosine synthase-1 (TGS1) enzyme and 3’-end of snRNA is trimmed by 

exonuclease activity. These modifications facilitate the final re-import of processed snRNP 

particle into the nucleus with the help of nuclear import proteins, namely snurportin-1 (SPN) and 

importin-β (Imp-β)8,9. Within the nucleus snRNP first localized in the cajal bodies (CBs; sub-

nuclear organelles) for the further maturation steps10 and finally gets stored in “Interchromatin 

Granule Clusters” (IGC) or “nuclear speckles” for the pre-mRNA splicing activity11 (Figure 1.1).  

 

Figure 1.1: The transcription of small nuclear RNA and its processing into the functional small nuclear 
Ribonucleoprotein particles (snRNPs).  
The process initiates with snRNA transcription in the nucleus, followed by its export within the cytoplasm by the help 

of various export proteins. Later, a series of post-transcription processing steps are carried out to generate a stable 

snRNP and further its re-import take place within the nucleus to follow the final maturation steps and utilize it for 

mRNA splicing mechanism. For the detailed explanation of this process read through the main text. This figure has 
been taken from a review article published by Matera et al.4 

1.3 Spliceosome: A Highly Dynamic Machinery  
Nuclear pre-mRNA splicing is mediated by an ordered assembly of spliceosome components 

which endure large number of structural rearrangements to attain catalytically active complex 
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form at the transcription site. Therefore, the spliceosomes are highly dynamic in their structural 

build. Basically they are divided into two distinct types: major and minor spliceosomes, on the 

basis of specific snRNPs in their core built. 

• Major spliceosomes are composed of five main snRNPs i.e. U1, U2, U4, U5, U6 and 

several other ancillary proteins. This class of spliceosomes predominantly recognizes 

the canonical 5’ and 3’ splice-sites (GU-AG)12.  

• Minor spliceosomes also composed of five main snRNPs i.e. U11, U12, U4atac, U6atac 

and U5 with large number of other proteins and process the splicing of rare introns, 

containing non-canonical splice-sites (AU-AC splice-sites).  

These machineries operate via multitude of RNA-protein, RNA-RNA, protein-protein interactions 

to enhance correct excise-and-ligate splicing reactions.  

1.4 Major Spliceosome Mediated pre-mRNA Splicing 
During the splicing reaction spliceosome complex performs several structural shifts at 

conformational and compositional levels, being highly dynamic in nature13–15. Such 

rearrangements take place between snRNAs, spliceosome proteins and pre-mRNA through 

their interactions with each other, forming an active spliceosome complex. Approximately 

99.24% of the splice site junctions have 5’-GU and 3'-AG di-nucleotide consensus within intronic 

sequences12,16. Therefore, most of the eukaryotic intron sequences are spliced-out by major 

spliceosome machinery through specific selection and base-pairing with intronic consensus 

regions in an ordered fashion. Such regions mainly include 5’-splice site (5’-ss; donor) followed 

by the 3’-branch point (BPS; ~20-40 nucleotide long adenosine-rich sequence), 3’-

polypyrimidine-tract (PPT) and 3’-splice-site (3’-ss; acceptor)17. Altogether, PPT, BPS and 3’-ss 

builds the 3’-intronic consensus (Figure 1.2). In order to correctly differentiate the long intronic 

sequences (approximately 104 to 105 nucleotides) from the short exonic sequences (~300 

nucleotides or less for internal exons), prior interactions between 5’-ss and 3’-ss surrounding the 

exons are necessary17,18 that are generally required for the initial splice-site recognition. The 

weakly conserved sequences within and around exonic region helps in this process by building 

a stable multi-factorial complex with additional splicing factors located within ~300 nucleotides 

space (Figure 1.2). It is evident that for the initial splice site recognition U1 and U2 snRNPs 

forms complex around the exons via RNA-protein and protein-protein interactions (such as 

Serine/Arginine rich or SR proteins interact with U1 snRNP and U2 auxiliary factors or U2AFs 
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interact with U2 snRNP). This is recognized as an “exon definition”, forming an “exon definition 

complex” (Figure 1.2). Similarly, U1-U2 undergoes subsequent rearrangements and perform 

interactions by spanning intronic sequence, forming an “intron definition complex” (Figure 1.2). 
These interactions bring 5’-ss, 3’-BPS and 3’-ss in close proximity to establish appropriate 

pairings within them. This process also helps to find precise location of an authentic exon which 

further mediates the assembly of spliceosome components to carry out splicing. 

 

 Figure 1.2: An organization of 5’ and 3’-splice sites consensus with splicing regulatory elements (SREs).  

The pre-mRNA comprises of short exons (represented with ‘blue’ rectangles) interrupted with long intronic 

(represented with a ‘black’ dotted line between EXON1 and EXON2) sequences. Within exonic and intronic 

sequences, “Exon Splicing Enhancer” (ESE; ‘green’) and Exon Splicing Silencer (ESS; ‘red’); “Intron Splicing 

Enhancer” (ISE; ‘green’) and Intron Splicing Silencer (ISS; ‘red’) elements can be present, respectively. The 5’-splice 

5’-ss is located at EXON1-INTRON junction which consist of ‘GU’ dinucleotide consensus while the 3’-intronic region 

consists of 3’-BPS, 3’-PPT followed by the 3’-ss, consisting of ‘AG’ (within EXON2-INTRON junction), representing 

the 3’-consensus.  

1.5 The Splicing Pathway  
The complexity within splicing pathway arises due to the involvement of tremendous molecular 

participations and interactions within them (favors high precision)19–21. The mechanism initializes 

with an early recognition of the splice sites, where U1 snRNP base-pairs with 5'-ss in an ATP-

independent manner. The 70kDa component of U1-snRNP interacts with SR proteins (trans-

acting splicing factor) which are bound onto the Exon Splicing Enhancer (See Figure 1.3 ESE; 

‘green’ rectangle localized within exonic region represented with ‘blue’ rectangle) element within 
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the exons and stabilize protein-snRNA complex via protein-protein interactions. Further, the 

Splicing Factor 2 (SF2) binds with the 3’-BPS and subsequently U2AF joins the PPT or Y(n) 

sequence adjacent to 3’-BPS. U2AF is composed of 2 subunits: a larger subunit or U2AF 65kDa 

and a smaller subunit or U2AF 35kDa. The smaller subunit interacts with 3'-ss while the larger 

subunit interacts with PPT through its RNA Recognition Motif (RRM). All together the assembly 

of these spliceosome players completes the formation of E-complex22 (Figure 1.3). Further, U2 

snRNP makes contact with BPS and forms a duplex through subsequent displacement of SF2. 

This step requires ATP hydrolysis and mediates the formation of A-complex (Figure 1.3). Now, 

the pre-assembled snRNPs, containing U4/U6 and U5 joins above arrangement as U4/U6.U5 (a 

tri-snRNP complex) by base-pairing with 5’-ss, through an another ATP molecule breakdown 

and give rise to B-complex23–25 (Figure 1.3). But this complex is still catalytically inactive. 

Therefore, in order to generate a catalytically competent spliceosome, all of its elements 

undergo multiple conformational rearrangements via RNA-RNA, RNA-protein and protein-

protein interactions. In this process, U6 immediately displaces from U4 and base-pairs with U2, 

that unravel the 5’-end of U6 and binds to 5’-ss. This arrangement facilitates the dissociation of 

U1 and U4, and the remaining components including U2, U5 and U6 form a catalytically active 

spliceosome B*-complex, which is ready to catalyze the first trans-esterification reaction of the 

splicing pathway (Figure 1.3). In this step, BPS-2’ hydroxyl group (2’-OH) attacks the 

phosphodiester bond at the 5’-ss, resulting in the cleavage of 5'-exon with free 3’-OH group and 

an intermediate 2’-5’ branched lariat structure, forming C-complex (Figure 1.3). Further, the 

remodeling of spliceosome components facilitate the second catalytic step of splicing, wherein 

3’-OH of 5’-exon attacks the phosphodiester bond at the 3’-ss and performs second cleavage 

reaction17,23,24,26. Subsequently, ligation of the exons and removal of lariat structure takes place. 

The ligated exons get released from the spliceosome assembly by RNA helicase proteins (such 

as pre-mRNA splicing factor 22 or PRP22, PRP16, PRP17 and SLU7) which also trigger the 

spliceosome components disassembly and recycling25,27–29,30,31 (Figure 1.3). Since the entire 

process undergoes several conformational changes, therefore specific proteins are also 

engaged to fulfill the high energy requirements such as proteins of DExD/H box family are 

essential for chaperoning the ATP hydrolysis32,33. Additionally, magnesium ions (mg2+) are also 

required to stabilize the active RNA conformations during spliceosome assembly and splicing 

pathway34,35. 
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Figure 1.3: The schematic of the splicing pathway.  

The pre-mRNA splicing initiates with the recognition of an authentic 5’ss and 3’-ss within the intronic sequence. In this 

schematic, the canonical splice sites 5’-GU (donor) and 3’-AG (acceptor) are shown which are recognized and 

spliced by major spliceosome components assembly (See the main text for details).  

1.6 Alternative Splicing: An Additional Dimension into Transcriptional Landscape 
Spliceosome is not only capable in accurate recognition of the splice-sites but also has an ability 

to choose variety of different splice sites across pre-mRNA sequence and produce a large set of 

distinct transcripts from a single gene. This mechanism is known as alternative splicing (AS)36–

41. AS is an important post-transcriptional phenomenon which serves as a pivotal medium for 

generating diverse set of proteins from a smaller number of genes. The human genome 

contains around 26,000 annotated genes, with approximately 2,33,785 exons and 2,07,344 

introns. The mean length of a gene spans around 27kbp with a mean of 8.8 exons and mean 

length of 148.12 nucleotides (Figure 1.4). Mean length of intron is 3,365 nucleotides42. In 

general, every single gene has a capability to generate at least 2 – 3 alternative transcript 

forms, but some interesting exceptions such as neurexin3 gene (a neuropeptide receptor in 
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humans) are also present which produces 1,728 different transcripts through AS mechanism43. 

More than ~95% of the human genes are known to produce alternative splice variants, 

suggesting its ubiquitous impact throughout the human genome44. Moreover, AS acts in a cell-

type specific manner and it has been observed in all the tissues with relatively higher frequency 

in the nervous tissue45. 

 

Figure 1.4: A bar plot illustrating internal exons length distribution in the human genome.  

This distribution is based on the RefSeq hg19 gene-model annotations with “validated” and “reviewed” gene-tags. 

The total number of internal exons are 3,28,272 with their mean length of 148.12 bp. 

1.7 Alternative Splicing Types 
Alternative splicing can occur in five different types of patterns46,47 (Figure 1.5): 	

• Exon skipping: It is the most frequent form of AS pattern in mammals. Wherein certain 

exon gets excluded (skipped) from one transcript but preserved in another transcript of a 

gene. Such exons are known as cassette exons.	

• Alternative 5'-Splice Site: is a type of AS pattern where different 5’-donors gets utilized.	

• Alternative 3'-Splice Site: is a type of AS pattern where different 3'-acceptors gets 

utilized. 	

• Mutually exclusive exons: is a type of AS pattern where selection of one of the two 

mutually exclusive exons take place by which only one of the two exons is retained per 

transcript but never both in a same transcript.	
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• Intron retention: During the pre-mRNA splicing process, if the intronic sequence 

remains unidentified by splicing factors then it gets retained in the mature mRNA and 

codes for a protein (mostly a non-functional protein). This AS event is less frequent as 

compared to other AS events among humans48,49. Braunschweig and colleagues have 

explained the specific essentiality of intron retention AS event in tuning expression of 

mammalian transcriptomes50.	

	

Figure 1.5: The representation of five canonical types of AS patterns in the eukaryotic genes.  

In unspliced mRNAs (on the left hand side) the exons are represented with ‘blue’, ‘red’ and ‘green’ colored thick 

boxes and introns are represented with ‘blue’ lines (in forward direction). The alternatively spliced transcripts are 

represented with ligated set of exons (on the right hand side). For each AS pattern two paths have been represented; 

path-1 and path-2 which are illustrated with ‘red’ and ‘blue’ colored dotted lines, respectively. In Alternative Cassette 

Exon or exon skipping AS event, skipping of an exon 3 is shown. In Alternative 3’-Splice Site selection event, an 

exon-3 has two alternative 3’-acceptor sites. In Alternative 5’-Splice Site selection event, an exon-2 has two 

alternative 5’-donor sites. In Mutually Exclusive AS event, exon-3 and exon-4 are mutually exclusive exons 

represented with ‘red’ and ‘green’ colored thick boxes, respectively. In intron retention event, the retained intron 

sequence is shown with ‘red’ thick line.  
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1.8 Regulation of Alternative Splicing 
AS must be highly regulated for accurate productivity and mis-regulations in AS patterns are 

known to be implicated in several fatal human diseases, in particular neurodegenerative 

disorders due to the longer length of genes expressed in this tissue51. More than 15% of the 

genetic diseases are known to be caused by subtle perturbations in AS patterns which are 

indeed very difficult to detect52. AS is mainly regulated by cis-acting regulatory elements 

(located within exonic or intronic sequences) by either favoring the exon inclusion or exclusion 

from the transcript. The relative location and function of these elements differentiate them into 

‘splicing enhancers’ and ‘splicing silencers’. For instance, if they are localized within exonic 

region they are called Exon Splicing Enhancers (ESEs) and Exon Splicing Silencers (ESSs) 

whereas if they are present within intronic region then they are called Intron Splicing Enhancers 

(ISEs) and Intron Splicing Silencers (ISSs), representing overall the class of Splicing Regulatory 

Elements (SREs). The SREs probe their effect by binding with trans-acting splicing factors52,53 

and regulates the splicing mainly during an initial step of spliceosome assembly which involves 

exon-definition complex and intron-definition complex formation.  

The most extensively studied trans-acting splicing regulatory proteins are classified into three 

categories: (1) SR proteins54–56, (2) heterogeneous nuclear ribonucleoproteins (hnRNPs)57 and 

(3) tissue-specific RNA–binding proteins58–61. SR proteins chiefly contains one or two copies of 

RNA-Recognition Motifs (RRM) and the C-terminal arginine/serine dipeptide-rich (RS) 

domain22,26,62,63. The RRMs facilitates RNA-binding activity and RS domain helps in protein-

protein interactions in a sequence specific manner. Few key examples of SR proteins include 

Splicing Factor 2 or Alternative Splicing Factor (SF2/ASF), U1-70k snRNP (70kDa) and U1 

snRNP C proteins (U1-C). The family of SR proteins is highly conserved throughout 

metazoans64 and are extensively studied to play essential roles in constitutive and alternative 

splicing splice-site selections. Notably, SR proteins are known to enhance the inclusion of exon 

(such as ASF1/SF2)65, whereas hnRNPs are known to silence the exon inclusion (such as 

Polypyrimidine tract binding protein and RNA Binding Motif 5 protein)66,67. Further, in tissue-

specific splicing regulatory factors, Nova is a very well-studied neuron-specific splicing regulator 

which can act as either splicing enhancer or silencer. It has been identified to regulate large set 

of genes in neurons and perform correlated functions implicated in pre-synaptic and post-

synaptic neuronal activities68. Moreover, Nova was the first neuron-specific splicing regulatory 

factor discovered in mammals61,69.  
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1.9 Implications of Alternative Splicing Disruptions in Human Diseases 
AS demands highly controlled operations to yield genuine transcripts and, if diverts from 

normality it can result into serious health issues70,71. To date many human diseases are 

primarily caused by mis-regulations in AS patterns72. These diseases might be caused by the 

mutations, which in turn either formulate disruptions in the splicing of specific genes or interferes 

with the assembly of spliceosome machinery73. For instance, several genetic disorders are 

known to be caused by loss of spliceosome biogenesis or its function. In particular, 

neurodegenerative diseases which are mainly caused by the subtle variations in AS patterns. 

Due to the longer length of genes expressed in nervous tissue, neurons have higher rate of AS 

events with higher mis-regulation frequency74–76. Such as Frontotemporal dementia with 

parkinsonism associated with chromosome 17 is caused by mutations in microtubule-associated 

protein tau encoding gene (MAPT) which leads to the multiple mis-regulations in exon10 of tau 

gene77. Alzheimer’s disease is also linked with abnormalities in the AS patterns of tau gene78,79. 

Another very common neurodegenerative disorder called Spinal Muscular Atrophy (SMA) is 

caused by the point mutations in exonic regulatory sequence of Survival Motor Neuron 1 gene 

(SMN1) that results in the loss of its function80. In my thesis work, one of our goal is to study 

SMA pathology in order to identify mis-regulations in the AS patterns of the SMA patients with 

respect to the healthy controls by analyzing transcriptomic data (using RNA-Sequencing 

technology) obtained from their Induced Pluripotent Stem Cells (iPSCs) derived Motor Neurons.  

1.10 Spinal Muscular Atrophy (SMA) 
SMA is characterized by the degeneration of alpha-motor neurons located in the anterior horn of 

spinal cord which are essential for the quick transmittance of nerve impulses to voluntary 

skeletal muscles (Figure 1.6). It is a genetic disease which inherits in an autosomal recessive 

pattern and known to be a second leading cause of infant mortality after cystic fibrosis81. The 

estimated incidence of SMA is 1 in 10000 live births with the carrier frequency of approximately 

1 in 50 individuals82–85. SMA manifests with high degree of genetic heterogeneity between 

patients, therefore it is classified into four phenotypes on the basis of age of onset and severity 

level that vary between acute to milder forms84,86,87 (Figure 1.7). Type I SMA (Werdnig-

Hoffmann disease) is the most common and severe form of SMA which account for more than 

50% of patients that are diagnosed with SMA88. The patients who suffer from severe form of 

SMA typically manifest pathology quite early in their life, usually before 6 months of age with a 

rapid and unexpected onset. The gradual loss of lower motor neurons causes failure of the 
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major body organs, especially the respiratory system. The children who are diagnosed with 

SMA type I never manage to sit unaided, they lack head control due to extremely poor muscle 

tone, and they experience bulbar denervation, accumulation of secretions in the lungs, causing 

respiratory distress which eventually leads to death within 2 years. The most fatal form of SMA 

type I is referred as SMA type 0 and is diagnosed in those who are born extremely weak 

(hypotonic) and merely survive few weeks even with intensive respiratory support. In type II 

SMA patients, onset of disease is usually noticed between 7 to 18 months, where children 

develop the ability to sit independently, but they are incapable to stand or walk, they also have 

respiratory troubles. Despite of fairly diminished life expectancy, they live well into adulthood89. 

SMA type III or juvenile form of SMA usually reveals after 18 months of age. They have an 

ability to walk without support, albeit many lose this ability later in their lives. The respiratory 

system involvement is less apparent, and their life expectancy is near to normal90,91. Type IV 

SMA patients have disease onset in their adulthood (> 18 years) where they experience very 

mild course of the pathology. This group of patients has the ability to walk in their adulthood and 

experience little to no respiratory and nutritional troubles. However, the severe benchmarks 

linked with the SMA pathology are changing with improved respiratory and nutrition care92,93.		

 

Figure 1.6: A cross section of the spinal cord, representing the morphological differences between SMA-
patient and healthy control.  

A In the anterior horn region of the spinal cord tissue in healthy person has uniform distribution of the alpha-motor 

neuron cells (shown as a ‘green’ arrow) while in B In the anterior horn region of the spinal cord of a SMA patient 
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represents noticeable degeneration of alpha-motor neuron cells. D Skeletal muscle of SMA patient shows 

hypertrophic fibers with wasted muscles (shown with ‘white’ and ‘green’ arrow heads, respectively), conversely C 

demonstrates healthy muscle with uniform distribution of muscle fibers. The area highlighted with ‘black’ asterisk 

represents muscle spindles which remains unaffected and but more distinctly visible in SMA patient with respect to 

healthy control. The figure has been taken from a review article published by Lunn et al.80.  

 

Figure 1.7: The classification of SMA phenotypes.  

A An infant suffering from SMA type I, showing bell shaped lungs, and extremely poor muscle tone (hypotonic 

condition); B and C The children represent the SMA type II condition, D a patient with SMA type III/SMA type IV. 

These images are taken from the google search about patients suffering from SMA.  

1.10.1 SMA Pathology Cause and Genes Involved  
Brzustowicz et al. in 1990 investigated 13 clinically heterogeneous SMA groups in order to 

identify their genetic location in the human genome. They noticed albeit of the phenotypic 

variations in all groups the genetic location was same located on chromosome 5 at 5q11.2–

q13.3 region94 which was refined later95–97. Several investigations explained further the high 

instability within identified genomic region of SMA due to intrachromosomal rearrangements 

(such as duplications, gene conversions and deletions)98,99. SMA-specific region was further 

detailed by Lefebvre and colleagues as genetic and physical maps using pulsed-field gel 

electrophoresis (PFGE) coupled with single-stranded conformation polymorphism (SSCP) 

analysis100 and successfully cloned the first novel gene responsible for SMA that was 

designated as Survival Motor Neuron gene (SMN). The 20kb SMN gene has 9 exons 

interrupted by 8 introns101 and localized within a highly complex genomic region which exists as 
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large inverted duplicated region (500 kbp). Further, two homologous and inversely duplicated 

SMN genes were identified; a telomeric copy of SMN (SMN1) and a centromeric copy of SMN 

(SMN2) gene. Major cohorts of SMA patients (> 98%) were observed to have frameshift 

homozygous deletions within SMN1 gene100,102,103 which makes it a SMA-determining gene. 

SMN1 and SMN2 genes have only five base pair of discrepancies. A synonymous mutation in 

exon 7 (nucleotide 6; TTC in SMN1 and TTT in SMN2; Figure 1.8), a single nucleotide variation 

at 3' non-coding region in exon 8 (nucleotide 1286; TGG in SMN1 and TGA in SMN2; Figure 

1.8), and three single base substitutions within sixth and seventh intron (Figure 1.8). Despite 

the slight differences between SMN1 and SMN2, the two genes do encode identical proteins but 

single nucleotide transition at position 6 of exon 7 (C to T) cause its skipping from SMN2 

transcripts and produce a truncated SMN protein. SMN2 gene produces 90% of the truncated 

transcripts which encode non-functional SMN-del7 protein that degrades rapidly104 and only 

10% of the full-length (FL) transcripts containing exon 7 and encode FL-SMN protein (Figure 
1.9). Therefore, SMN2 gene is insufficient to compensate the loss of SMN1 gene100,105,106 which 

produce FL transcripts that encode a ubiquitous functional SMN protein (containing 294 amino 

acids). However, all patients retain at least one copy of SMN2 gene and it is evident that the 

SMA severity level is inversely correlated with SMN2 copy number. Milder patients generally 

have high copy number of SMN2 gene, producing higher levels of the FL SMN protein than do 

the severely affected ones107. Therefore, SMA is caused by the deficiency of the SMN protein 

that is essential for carrying out the vital cellular activities. 

A couple of studies explained the downstream effect of single nucleotide change on alternative 

splicing of exon 7 in SMN2 gene. Cartegni and colleagues108 explained the disruptions in the AS 

patterns due to aberrant C-to-T transition in exon 7 of SMN2 gene108,109. Another study has 

provided a contrasting explanation which says, due to the single nucleotide change ESS is 

created that is bound by splicing silencers (such as hnRNP A1) at exon 7 of SMN2 and cause 

its skipping from majority of SMN2 transcripts110–112. 
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Figure 1.8: SMN genes located on chromosome 5 at chr5q11.2-13.3. 
Two copies of SMN genes are mapped within chr5q11.2-13.3 region with other duplicated genes. The centromeric 

half represents the SMN2 gene (SMNc) location and the telomeric half represents SMN1 gene (SMNt) location. 

SMNc and SMNt genes differ by five nucleotide variations: (i) ‘g-to-a’ transition within intron 6 at nucleotide 164 

(nt164); (ii) ‘C-to-T’ transition within Exon 7 at nt6; (iii), and (iv) two single nucleotide transitions from a-to-g’ within 

intron 7 at nt362 and nt477, (v) ‘G-to-A’ transition within Exon 8 at nt1286. This position is located inside the 3’-UTR 

of Exon 8. 

 

Figure 1.9: AS of SMN1 and SMN2 genes.  
SMN1 gene has normal inclusion of exon 7 and produces full-length (FL) mature transcripts that encode functional 

SMN protein. In contrast, SMN2 gene undergoes C to T transition at position 6 of exon 7, causing its skipping due to 
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cis-acting ESE-SRE disruption which gets converted into ESS that is bound by splicing repressors (such as hnRNP 

A1) and promote its exclusion. SMN2 gene produce 90% non-functional SMN protein with only 10% FL-SMN protein. 

1.10.2 SMN Protein, its Location and Function  
Qing Liu and Gideon Dreyfuss reported the location of SMN gene within the novel nuclear 

structures which have been discovered incidentally by them while searching for hnRNP-

interacting proteins (hnRNPRs) and named them as “gems”113. Gems are dot-like structures 

having granular appearance found to be enriched with SMN protein and often located in the 

close vicinity of cajal bodies (CBs). CBs are conserved subnuclear structures named after their 

discoverer, the Noble laureate Santiago Ramon y Cajal in 1903114. In addition to the nucleus, 

SMN is also present in the cytoplasm. Notably, gems and CBs share similarity in their physical 

properties including their copy number (2-6), size (very small in size 0·1–2·0 μm) and similar 

behavior towards metabolic cues113,115. Both structures are also shown to be regularly engaged 

in the state of assembly and disassembly during cell cycle, which further gives a notion to share 

strong functional relationships. CBs have been identified as one of the important processing 

locations of splicing snRNPs and other RNA processing factors. Therefore, they have a central 

role in the modification and maturation of splicing machinery. Moreover, SMN was also 

investigated to have a very important role in the assembly of snRNPs to form active 

spliceosome that perform pre-mRNA splicing in every cell116–123 (Figure 1.1). Therefore, both of 

these nuclear structures are profoundly indispensable for post-transcriptional modifications of 

RNA. Later, Dreyfuss and colleagues collaboratively demonstrated that SMN protein is 

extremely unstable as a monomeric unit and forms discrete oligomers by self-associations. 

SMN oligomer recruits GEMIN2-8 and UNRIP, forming a macromolecular SMN-complex (40S to 

80S). The SMN complex has evolved overtime by gradual block-wise addition of ancillary 

proteins124. Otter et al.125 has presented a protein-protein interaction network of SMN complex. 

Miscellaneous studies shed light on the existence of self-association within SMN components, 

helping in strengthening the complex’s stability through SMN self-oligomerization and 

eventually, its ubiquitous role in spliceosome assembly116–120,126–132. 

1.10.3 Motor Neuron Specific Functions of SMN Protein 
Since SMA is specifically deleterious for motor neurons (MNs), therefore it is very important to 

study MN specific role of SMN protein and in this direction few hypotheses have been 

postulated, describing the SMA pathology. One hypothesis suggests the deficiency of SMN 

protein cause disruptions in spliceosome assembly and perturbs the splicing of selective set of 
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genes, which might be critical for MNs survival. Other studies suggests the essential role of 

SMN protein in neuronal processes such as mRNA transport to MN axons for their 

sustenance133–139. Given the fact that MNs-axons are quite long which makes their sub cellular 

RNA and protein localization considerably challenging and to perform this task large set of 

proteins works together where SMN plays a key role. In this support, a study has suggested, 

apart from the regular proteins involved in classical the SMN complex, SMN also partners with 

RBPs, including hnRNP R, hnRNP Q, TDP 43, FMRP, HuD134. Further, Wilfried Rossoll et al.135 

has provided an evidence for the direct interactions between SMN and hnRNP R RBP, which 

colocalizes in the axons and axon-terminals of MNs. hnRNP R is also known to interact directly 

with 3’-UTR of β-actin mRNA that assist its transport through axons and helps in the axonal 

growth. It has also been questioned that SMN protein might have significant roles in the 

development, maturation and stability of neuromuscular junctions (NMJs) and its lower levels 

promote the SMA pathology140–144. Various studies have presented contradictory findings by 

further investigating on this open question, involving NMJ involvement in SMA development. 

They have found the specific loss of central synapses, mainly proprioceptive inputs onto MNs 

somata and proximal dendrites which takes the precedence in the loss of MNs of mice SMA 

mice145–147. Moreover, the investigations regarding selective defects in NMJs they have found 

mostly all hind-limb muscles were fully innervated and also capable of eliciting muscle 

contractions in the studied mice models. Another latest study has shown the direct interaction of 

SMN with Ubiquitin-like modifier Activating enzyme 1 (UBA1) in neurons. The deficiency of SMN 

protein cause mis-regulations in the splicing patterns of UBA1 and also reduces the UBA1 

expression levels which results in the perturbations of the key cellular mechanism of protein 

homeostasis, causing neurodegerenation148. All aforementioned studies have provided the 

remarkable understanding of the pathology; yet, the important questions still remain unclear 

such as which of the postulated studies are more relevant for targeting the disease or whether 

all applies equally with the disease progression.  

1.10.4 Animal Models to Study SMA Pathobiology 
In order to elucidate significant information towards the progression of SMA pathogenesis 

several SMA animal models were developed, including both vertebrates and invertebrates. The 

successful generation of SMA animal models was encouraged by a remarkable study which has 

presented the high conservation of the SMN protein during the evolutionarily processes among 

divergent species149–151. These studies also indicated the significant conservation of the 
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functional domains in SMN protein which are involved primarily in the RNA-binding processes151 

(Figure 1.10). In addition to this, the effects of SMN mutation/depletion have been studied in 

Caenorhabditis elegans152,153, Drosophila melanogaster154, Danio rerio140 and Mus 

musculus155,156 by incorporating the point mutations in SMN1 gene or by creating complete 

knockdown variants, simulating one or more aspects of human SMA pathology. Zebrafish and 

Drosophila SMA models have shown similar effect in MN axons and NMJs. In Zebrafish, SMN 

mutant embryos exhibited failure in the axon pathfinding capabilities and SMN deficient 

Drosophila models developed specific perturbations in the pre-synaptic terminals (“NMJ 

boutons”). However, these models have also revealed some unique species-specific hallmarks 

such as Zebrafish has solely MN defects, whereas C.elegans SMA model has represented 

mainly muscular system involvements, and in Drosophila both MNs and muscular defects were 

noticed. Such deviations explain the species-specific effects of SMN mutations. Therefore, it is a 

very tough decision to consider one SMA disease-model for significantly recapitulating the 

genetics of human SMA pathology.  

Furthermore, SMA mouse models were considered more reliable because of their close 

relatedness with humans at the genomic level. In mouse genome only SMN1 gene exists, while 

humans have SMN1 and SMN2 genes. Therefore, the complete homozygous deletion of SMN1 

gene exon 7 (Smn-/-) would result an absolute lethality in mouse, whereas heterozygous 

mutations (Smn±) lead to the normal phenotypic development rather than SMA. Transgenic 

mouse lines were generated, containing disruptions in SMN1 gene and incorporating human 

SMN2 gene in variable copy number155,156. These models have certainly rewarded deep insights 

about the human SMA pathobiology on a behavioral as well as neurological level and might be 

utilized for the advanced development of neurodegenerative disorder therapeutics. However, as 

discussed earlier, in the current animal models (worms, flies or fishes) a common limitation is an 

absence of SMN2 gene103 and they also require cumbersome knockdowns and overexpression 

experiment setups to study the disease mechanism. Although mice models have been widely 

accepted for studying SMA pathogenesis but they also need complicated transgenic activation 

of human SMN2 gene as a potential disease modifier. Therefore, it would be highly beneficial to 

utilize human cell based models to study such a complicated neuromuscular disorders.  
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Figure 1.10: SMN protein and its functional domains. 

The Lysine–rich (K-rich) region at “Exon-2b” and Tyrosine-Glycine (YG) domain at “Exon-6” act as a self-association 

domain which mediates the SMN protein to perform self-oligomerization that imparts stability and functionality to it. 

The Tudor domain is located within “Exon-3” of the SMN protein which promote Sm-Proteins binding on snRNA 

during snRNP biogenesis through Gemin binding that is supported by K-rich region at “Exon-2a”. The Proline-rich (P-

rich) region is present within “Exon-5”. The Figure is adapted from the review article published by Burghes et 
al.157 

1.10.5 Induced Pluripotent Stem Cells (iPSCs) Based SMA Models 
Recently, a revolutionary method was presented by Takahashi and Yamanaka in 2006158 in the 

area of stem cell biology to reprogram the mature somatic cells back into their pluripotent state 

which exhibits the embryonic stem cells like characteristics (ESCs). Therefore, the method was 

designated as induced Pluripotent Stem Cell (iPSC) technology. Initially, the experiments were 

performed on mouse adult fibroblast cells which were successfully converted into 

undifferentiated pluripotent stem cells using four essential transcription factors (TFs; oct3/4, 

sox2, c-myc, klf4; which were delivered by using retroviruses). They have identified these core 

set of TFs from the initial list of 24 key factors previously known in ESCs. These reprogrammed 

cells were called as induced Pluripotent Stem Cells (iPS cells). Furthermore, in 2007 they 

presented another work of iPS cells generation from human fibroblast cells into pluripotent state 

using above mentioned TFs159. Subsequently, another group presented a similar study for the 

generation of human iPS cells using lentiviral delivery system160. Most importantly they 

demonstrated the use of partly distinct TFs, including OCT4, SOX2, NANOG, and LIN28. The 

choice of these TFs was encouraged by a stem cell study which has identified c-Myc as an 

apoptotic factor for human ES cells160. Ebert and colleagues161 were first to model SMA 

pathology by the use of iPSC technology. They isolated skin fibroblast cells from 3-year-old boy 

suffering from type I-SMA and reprogrammed them into iPS cells and differentiated into MNs, 

recapitulating SMA-specific characteristics. To investigate the changes in SMN protein levels of 
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iPS-SMA cells with respect to healthy controls, they similarly cultured iPS-wild type (iPS-WT) 

cells from his unaffected mother fibroblast cell lines. This study has significantly presented the 

decrease in SMN protein levels of iPS-SMA cells as compared to the iPS-WT cells. Recently, 

another study has identified the presence of certain downregulated genes/proteins with respect 

to the healthy controls by the virtue of iPSC technology162. This shows the reliability and 

success of iPSC-based models in studying neurodegenerative diseases.  

Therefore, to investigate further in this direction, we hypothesized that due to the lower level of 

the SMN protein, there might be mis-regulations in the splicing patterns of specific set of genes 

and most importantly reduction in the mRNA transport; which is crucial for the survival of MNs. 

Towards our goal, we carried out the Genome-Wide RNA-Seq data analysis where the RNA 

samples were isolated from iPSCs derived MNs of two SMA patients and two healthy controls, 

with two biological replicates per sample. In doing so, skin fibroblast cells were isolated from 

SMA-patients and healthy controls that were reprogrammed into iPSCs163 and further 

differentiated into MNs. This study may provide promising and important leads to understand 

the intricate pathological mechanisms of SMA in a detailed manner. We have organized this 

study into three main objectives which are explained below, probing different aspects of 

transcriptome data analysis. 

Ø Firstly, we performed the global expression level analysis to identify differentially 

expressed genes (DEGs) and transcripts between two different conditions (SMA-patients 

and healthy controls).  

Ø Secondly, we performed the exon-level analysis to identify relative changes in the 

expression at individual exon level which gives an account of differentially spliced 

transcripts between two different conditions.  

Ø Thirdly, the identification of SREs and their specific RBPs from the list of differentially-

used exons and their flanking upstream and downstream introns. Such analysis helps to 

pinpoint the specific splicing regulatory mechanisms and pathology related alterations in 

the splicing patterns, linked with MNs sustenance in SMA.  

1.11 Transcriptome Analysis 
In order to study the transcriptome of any organism, scientific efforts began with single 

candidate-gene based methods using the northern blotting techniques. Since this method was 

based on the prior knowledge of known transcripts and also required higher amounts of starting 
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material (but generate low-throughput), therefore it has low potential to discover novel 

transcripts. The development of nucleic acid amplification techniques such as reverse-

transcription quantitative polymerase chain reaction (RT-qPCR) have raised the analysis 

potential. Only advanced methods, such as microarray technology and then Next Generation 

Sequencing technology (NGS) has allowed to visualize the wider picture of transcriptome 

landscape. 

1.11.1 Use of Microarrays in the Analysis of Alternative Splicing Profiles  
Microarrays have changed the single-gene expression prospective by providing a methodology 

to characterize and measure the expression levels of thousands of known genes or transcripts 

simultaneously on a single glass-chip experiment164. A typical microarray chip is composed of 

array of minute cDNA spots (‘probes’) which gets selectively hybridized to fluorescently labeled 

sequences of interest (unknown ‘targets’) and generates fluorescence intensity that is detected 

by a fluorescent detector. Using such multiplexing tool, expression quantification of multiple set 

of genes in a particular cell-type has gained applicability and most interestingly the differential 

expression analysis between two conditions165. It has also enabled the detection of AS 

events166–169, non-coding RNA170, Single Nucleotide Polymorphism171 and so forth. Various 

types of microarrays are available on the basis of chip design and hybridization procedure. For 

example, spotted cDNA microarrays (oligonucleotide microarrays or Affymetrix GeneChips) are 

designed to quantify the relative differential expression of genes or transcripts between two 

conditions by measuring the abundance of mRNA transcripts in each sample. Further, 

advanced types of oligonucleotide microarrays include exon arrays, tiling arrays and exon-exon 

junction arrays which are capable to determine AS events and characterize the differences 

between spliced and unspliced mRNAs at genome-wide scale172. In contrast, tiling arrays have 

an advent to identify novel transcript variants (as they do not rely on priori transcripts 

information)170. Later, Yeakley et al. have presented bead-based fiber-optics microarrays, which 

operates without the need of prior laborious steps such as RNA purification or cDNA formation 

and it needs a small starting material (sub-nanograms of total-RNA)166. These microarrays can 

identify AS isoforms for a single gene and also can be used to differentiate closely related 

transcripts or genes. 
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Ø Advantages and Disadvantages 
The economic value and the large-scale study attributes of microarray technology made it an 

attractive choice. The invention of tilling arrays offered the capability to perform studies at much 

wider level but they are unable to detect rare or novel transcriptional events, as prior sequence 

information is required to design tilling microarray chips. Moreover, the cost of tilling arrays is 

relatively higher than traditional microarrays, therefore it is not feasible to study large genomes 

with tiling arrays. Furthermore, in the presence of highly-related sequences, the risk of cross-

hybridization is also a concern. In microarrays, digital or numeric expression quantification is not 

possible, which accounts for the relative “number of transcript copies” as “read counts” 

expressed in the sample under investigation, rather microarrays abundance estimation relies 

upon measuring the probe hybridization intensity signals. 

In the following sections, we intend to discuss the sequencing technologies (at single nucleotide 

resolution) from first through third generation sequencing methods. 

1.11.2 First Generation Sequencing 
i. Sanger Sequencing 
First generation DNA sequencing method was developed by Frederick Sanger and colleagues 

in 1977 by the use of modified 2',3'-dideoxynucleteotide triphosphates (ddNTPs)173. These are 

altered forms of normal dNTPs where 3'-hydroxyl group is removed from deoxyribose sugar 

which blocks the DNA chain elongation in-vitro. Therefore, it is also called chain termination 

sequencing method. The working principle is “base-per-base reading by non-reversible 

termination” of DNA polymerization reaction which means whenever any modified base is 

incorporated, the reaction is terminated and synthesis of new sequencing reaction begins. 

Likewise, multiple stretches of sequenced molecules (with different lengths) are synthesized. 

Subsequently, denaturation of the resultant molecules is performed with their mass-based 

sorting using gel electrophoresis (mass of the sequenced molecules represents their point of 

termination). Finally, autoradiography and gel imaging techniques are used to visualize the DNA 

bands and examining DNA sequence, respectively. Furthermore, various improvements within 

the incorporation of ddNTPs (using radioactive substances or fluorescent dyes) impart partial 

automation to Sanger sequencing. Later, gel electrophoresis method was replaced with 

capillary-based electrophoresis and commercialized by Applied Biosystems (ABI 370)174,175. This 
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system can generate 6 to 8 Mb of DNA sequences per day with the read length ranges between 

600 to 900 bases. The cost of Sanger sequencing per 1Mb is around $500. 

Ø Advantages and Disadvantages 
Sanger sequencers give an advantage of longer read lengths but its major limitation is low-

throughput with high cost. Additionally, the quality of first few bases is inferior due to the 

presence of primer sequence. The average error rate is high which is either due to the 

contamination with bacterial vectors used for fragment amplification or due to general sample 

contaminations or due to the presence of low-complexity regions (repeated regions). 

1.11.3 Use of Expressed Sequence Tags to Study Alternative Splicing   

Expressed sequenced tags (ESTs) are short sequences (200-800 nucleotides) of mRNA 

transcripts, representing transcriptionally active regions at given time-points in a cell176. Initially, 

Adams and coworkers described the use of ESTs for the characterization of the human 

genes177. Subsequently, Mironov et al. contributed to analyze the prevalence of AS in human 

genes by mapping ESTs onto known human gene sequences. They identified about 35% 

alternatively spliced genes with higher modulation frequency in 5’ UTRs178. Further, Brett and 

colleagues have identified 38% human genes undergo AS with higher occurrences of exon 

skipping AS event179. Modrek et al. performed the mapping of “~2.1 million human mRNA and 

EST sequences” at genome-wide level180 and they discovered 42% of the genes are 

alternatively spliced. Overall EST based studies determined approximately 30,000 AS events in 

the human genes177–183.  

Ø Limitations 
The data obtained from EST sequencing are error-prone in nature (~1/100). The presence of 

vector genome contamination, partial transcripts processing and high redundancy with low 

quality regions near 5’ and 3’ ends of the fragments, can lead to AS prediction bias. A 

comprehensive review on the use and limitations of ESTs data has been provided by 

Nagaraj184.  

1.11.4 Second Generation Sequencing Methods  
To address aforementioned limitations of the automated Sanger sequencing method, novel and 

more efficient methods were major milestone. Few years later, this revolutionary achievement 

was attained with the development of novel technology, having extreme power and efficiency of 

generating high-throughput data with a bonus of cost reductions and high accuracy. Moreover, 
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this new arena of sequencing has reflected the previous designation of high-throughput 

sequencing to next-generation sequencing technology (NGS) which implement the massive 

parallel sequencing procedure and produce high-throughput data with time and cost reductions.  

All of the NGS approaches intend to discard the use of bacterial vectors for the cloning of target 

DNA which help in bias reductions. NGS platforms mainly involves the template fragmentation, 

adaptor ligation, substrate binding (NGS platform specific) and PCR amplification (for increasing 

the overall signal) followed by sequencing itself. Typically, NGS platforms differs by sequencing 

procedures involving type of enzyme used, underlying principles to generate reaction signals 

with their efficient recording/imaging (base-call). The generated read lengths are also system 

specific but all have shorter read lengths with respect to Sanger sequencing methods (except 

third generation sequencing methods).  

We will begin with the briefings of available NGS methods to-date with their strengths and 

weaknesses. Most importantly, all NGS technologies are equally capable for sequencing any 

biopolymer (DNA or RNA). Herein, methods are explained with DNA as a starting material. 

However, for sequencing RNA an additional step of reverse transcription is required to obtain 

cDNA. Our main goal is to sequence RNA molecules, therefore we have also discussed RNA-

sequencing procedure with a selected NGS platform (Illumina Genome Analyzer) in section-

1.12 of this chapter. Second generation sequencing methods, including Sequencing by 

Synthesis (SBS) and Sequencing by Ligation (SBL) mainly follows reversible chain termination 

sequencing technique (also called Cyclic Reversible Termination or CRT sequencing). Most of 

the sequencing platforms in this category follows the general sequencing library preparation 

steps as described below with platform specific sequencing procedure:  

A. Library preparation  

(a) Sample fragmentation into small fragments. 

(b) Adapter ligation on both sides of the fragments. The ligation can be performed either 

before or after the denaturation step of the fragments. 

(c) The adapter-ligated fragments are immobilized onto solid surface (magnetic beads or 

glass-slide) which contain primer-oligos (covalently attached) complementary to the 

adapter sequences of fragment. 

(d) The fragment enrichment is performed by using emulsion-PCR or clonal amplification. 
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B. Sequencing, which is NGS platform specific. During the sequencing reaction (at single base 

resolution), most of the NGS platforms follow a fixed cycle with the following steps: 

(a) DNA polymerase incorporate the fluorescent-labeled single base to the fragment 

(template). 

(b) Then, 3’-OH end of the incorporated base is blocked with a reversible terminator to 

inhibit further base incorporation. The reversible terminators consist of a ‘cleavable 

fluorophore’ attached with nucleobase of the incorporated nucleotide and ‘small 

reversible moiety’ which perform capping of 3’-OH group of incorporated base.  

(c) Laser excitation of attached fluorophore moiety and detection.  

(d) Reactivation of polymerase reaction by 3’-OH group unblocking. 

(e) The cycle is repeated millions of billions times in parallel. 

This cycle diverges by detection chemistry, which rely on the type of used 3’-OH blocker. 

Mostly, all SBS approaches use 3’-blocked terminators185. In contrast, other more efficient 

terminators have also been developed, namely 3’-unblocked or virtual terminators186. Virtual 

terminators keep the 3’-OH group unmodified which allows the incoming nucleotide to interact 

naturally with the active-site of DNA polymerase enzyme.  

(i) 454/Roche Sequencing Technology  
In 2005, 454/Roche Company was the first to commercialize the NGS based sequencing 

platform, based on pyrosequencing principle. The system relies upon the release of 

pyrophosphate (PPi) during the DNA polymerization reaction. Wherein with every base 

incorporation, a PPi molecule is released which emits light, that is detected by the light sensitive 

cameras and gets recorded. The system is parallelized on a picotiter plate which contains 

around 2 million wells. where each well has a capacity to hold single-stranded sample fragment 

attached with streptavidin coated beads. The library preparation involves the aforementioned 

steps where DNA fragments are of 300-800bp size187. To initialize the sequencing procedure, 

the bead covered with amplified fragments are added onto the picotiter plate. The wells are 

prepared with an enzymatic mixture of DNA polymerase, ATP sulfurylase and luciferase. The 

loaded plate is placed inside the sequencer and during each sequencing reaction four bases are 

provided. With every base incorporation, a PPi molecule is released and ATP sulfurylase 

convert it into ATP molecule, which acts as a substrate to luciferase that catalyzes the 

conversion of luciferin into oxyluciferin (a light emitting reaction). The emitted light gets captured 

by high-resolution charge-coupled camera (CCD) and recorded as a nucleotide peak (pyrogram: 
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a graph representing light intensities). Further, apyrase enzyme degrades all the unpaired 

nucleotides to prevent any background noise and next reaction is performed. Notably, dATPs 

can be confused with luciferase enzyme which can interfere with the synthesis mechanism, 

therefore dATP modification into deoxyadenosine-5’-(α-thio)-triphosphate (dATPαS) is 

performed. In 2008, Roche/454 FLX Titanium system has offered read length up to 600 bp with 

total output of 700 Mb per run (accuracy of 99.9% per base-call). This technology has been 

implemented successfully in several genomics and transcriptomics sequencing projects188, 

including the discovery of rare transcripts, novel genes, de novo transcriptome assembly of non-

model organisms189–194. 

Ø Advantages and Disadvantages 
High speed and longer read length are the major advantages of this platform. The main 

limitation of this platform is signal intensity drop over the sequencing run due to enzymatic 

activity reduction which results in poor-quality base-calls. Moreover, its sequencing cost is 

higher with low- throughput. 

(ii) Illumina/Solexa Genome Analyzer 
Illumina genome analyzer was released in 2006, which has presented “bridge amplification” or 

“clonal amplification” method (supplanted the emulsion PCR amplification method) for fragment 

amplification. During the amplification step, the denatured and adapter ligated ssDNA fragments 

are immobilized on the flow-cell (by hybridizing with primer sequences that are complementary 

to the adapters). Bridge amplification is performed to generate single fragment clusters wherein 

bridge-like structure is formed when 3’-end of the template fragment bends toward its 

complementary primer sequence gets hybridize with it. Subsequently, all clusters and all 

fragments per cluster are sequenced in parallel by SBS approach. These steps are repeated 

until the complete sequence is read in a massively parallel environment per flow-cell. 

Bridge amplification method has the capacity of generating 800-1000 K clusters/mm2 with 

sufficient flow cell loading. Illumina technology has been adapted by researchers for different 

purposes such as de novo genome195,196 and transcriptome assembly197, re-sequencing of 

complete genomes to identify de novo mutations in pathologies198–200 and study genome-wide 

genes expression in normal and diseased conditions201. The platform offers ultra-high 

throughput within budget, constant improvements in read length202.  
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Ø Advantages and Disadvantages 
Ultra-high throughput with deeply sequenced reads at low cost is the great achievement of this 

platform. The observed problem in this technology is “leading and lagging strand dephasing”. In 

sequencing CRT cycles, dephasing (in Ilumina) refers to a condition where multiple copies of 

the template DNA fragment within a cluster move out of synchronization. If a DNA fragment 

exists in 10,000 copies within a cluster, then all of these fragment copies incorporate 

fluorescent-labeled nucleotide which gets recorded and imaged. Further, this nucleotide is 

unblocked for the next nucleotide incorporation reaction. If the unblocking does not take place 

on certain fragment, then that fragment would not be able to incorporate next nucleotide. 

However, it might get unblocked in the next cycle and in this case it will be lagging behind from 

rest of the leading fragment copies within the cluster. As the CRT cycles progresses, more and 

more fragment copies within the cluster move out of synchronization, resulting in deletions 

within the sequenced fragments.  

(Iii) Life Technologies SOLiD  
In 2007, Life Technologies launched the third NGS platform which is based on Sequencing by 

Oligo Ligation Detection (SOLiD) method. It uses ligase enzyme instead of DNA 

polymerase203,204 which tend to read two nucleotides together per reaction and add more 

accuracy.  

The sequencing library is prepared with aforementioned steps and ligation based sequencing is 

performed wherein a universal primer sequence is annealed (complementary) to the adapter 

sequence at one end of the fragment. Further, a set of four fluorescently labeled di-base probes 

(usually placed within 8-mers) and DNA ligase enzyme is introduced automatically by the 

system where probes compete for the ligation, and target fragment’s complementary probe gets 

base-paired and ligated by ligase which result in fluorescence emission that is captured by the 

detectors and gets recorded. Subsequently, the non-ligated probes are discarded and 

fluorescence moieties are clipped-off in order to reactivate the 5’-phosphate group. In every 

ligation reaction, the di-base specificity is re-verified for base-1 (in next reaction) and base-2 (in 

previous reaction) to minimize the error-rate. After one-time set of cycles, the universal primer 

sequence is re-set by n-1 (where ‘n’ is the length of primer). Approximately 5-10 cycles (with 

each time primer reset) are performed (with a series of ligation sub-cycles) for each template 

fragment, producing color-space sequencing data. Several studies have used this platform for 

genome-wide sequencing studies205–208.  
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Ø Advantages and Disadvantages 
This platform has offered very high accuracy (99.99%) with low cost but the read length is still 

short (up to 75bp) as compared to other competitive NGS platforms. 

(iv) Ion Torrent Sequencing Technology 
Life technologies have presented an innovative sequencing method based on the 

“semiconductor chip technology”. It is based on the ion detection (proton ions or H+)209,210. This 

technology provides high speed, reduced costs and simple instrument design with respect to 

other NGS platforms. The technique uses the concept of proton ion (H+) release during the 

phosphodiester bond formation in DNA polymerization reaction and detects the change in pH of 

solution with every new base addition in sequencing reaction. If H+ ion concentration is high, it 

results in pH drop and vice versa. The sequencing chip is designed with two separate layers: 

first layer functions as a sample loader (with billions of tiny wells), and the second layer senses 

the pH change (“ion sensitive layer”). Currently, the ion torrent systems have provided a very 

high sequencing capacity ~100 Gb per run with very high accuracy (99.99%), which can be 

used to sequence whole genome very efficiently. 

Ø Advantages and Disadvantages 

Ion Torrent has high error-rate for homopolymers detection, as it only relies on sensing and 

measuring the pH changes.  For instance, when no base is incorporated no voltage is detected 

whereas, if two identical bases are incorporated (one after the other) the detection is two times 

higher, but it is very difficult to capture changes in signal intensity accurately, corresponding 

large number of incorporated identical bases.  

1.11.5 Third Generation Sequencing 
(i) Single Molecule Real Time Sequencing Technology (SMRT) 
In 2011, a new concept of NGS sequencing was commercialized by Pacific Biosciences 

(PacBio) to perform real time single molecule sequencing211. The SMRT works on the 

mechanism of detecting real time nucleotide incorporation events without DNA synthesis 

termination which reduces time and increases read length. During the library preparation no 

PCR amplification is required. They harness the power of DNA polymerase enzyme by using 

two proprietary technologies. Firstly, the use of four colored phospholinked nucleotides to 

visualize the activity of DNA polymerases which carry the fluorescent label on the terminal 

phosphate rather than on the base. As a result, enzyme cleaves away the fluorescent label as 
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part of the base incorporation step and leave behind a completely natural DNA strand. 

Secondly, the use of nanophotronic visualization chamber called Zero Mode Waveguide (ZMW; 

70nm wide cylindrical metallic chamber with 20x10-21 zeptoliters detection volume)212. The 

nucleotides diffuse in and out of ZMW in microseconds. When the polymerase encounters the 

correct nucleotide it takes several milliseconds to incorporate it, and during this time its 

fluorescent label gets excited and emits light, which is captured by the sensitive detector. The 

whole process repeats several times, building the desired sequence length.  

Ø Advantages and Disadvantages 

SMRT provides the real-time single molecule sequencing utility with longer read length  

(2500bp-15000bp). This methodology gives an opportunity to understand the natural behavior of 

the DNA-polymerase during the base incorporation reaction. The PCR free sequencing adds 

high fidelity and confidence for reading single unique molecules. The error rate is high in terms 

of indels (15%) and base substitutions (1%). 

1.12 Implications of NGS Technology for Sequencing RNA  
1.12.1 RNA-Sequencing Technology (RNA-Seq) 
The sequencing of RNA molecules requires an additional step of reverse transcription during 

the RNA-Seq library preparation213. Steps for the library preparation and sequencing of RNA 

samples are described as follows:  

A. Isolation of total RNA sample and its purification to remove any DNA contaminants. Further, 

depletion of ribosomal-RNA is performed followed by poly-A enrichment step (to obtain only 

mature mRNA). The ribosomal-depleted RNA without the poly-A enrichment can be used to 

study wide range of other existing RNA-species and also unspliced mRNA (or nascent 

mRNA), which is useful to study mRNA-splicing. 

B. The purified samples are fragmented into small fragments followed by the size selection of 

the fragments (using gel electrophoresis). 

C. Reverse transcription of the RNA fragments into cDNA is performed. 

D. Further library preparation steps and sequencing step varies for specific NGS platform:   

(a) Amplification of cDNA molecules into multiple identical sets or ensembles. 

(b) Execution of sequencing and detection at the single nucleotide resolution.  

(c) Bioinformatics analysis of generated RNA-Seq data is one of the major time consuming 

tasks which requires rational pipelines and further validations of the putative results.  
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Note, if the chosen technique involves the single molecule sequencing application, then the 

fragment amplification step is not involved. 

Recently, the Association of Biomolecular Resource Facilities next-generation sequencing 

(ABRF) has presented a comprehensive comparison in the performance of all key NGS 

platforms. They analyzed RNA-Seq data by using 454/Roche, Life Sciences Ion torrent, Illumina 

HiSeq and PacBio SMRT, and identified a high correlation between these platforms for the 

transcript expression analysis214.  

1.13 Computational Challenges in NGS Data Analysis 
The analysis of NGS data starts from the alignment of reads onto the reference genome, which 

is the most challenging step due to the short length of the reads (except PacBio). Prior to the 

alignment step, filtration of raw reads is required to reduce bias which might originate either 

during library preparation or during sequencing. The aligned reads can be analyzed to estimate 

relative gene or transcript abundance levels in the sample215. Various read alignment free 

methods are available which estimate relative gene or transcript abundances by completely 

avoiding the time consuming read alignment step using reference transcriptome indexes. These 

methods provide fast speed over alignment-based methods without compromising with the 

accuracy. Further, to validate the putative findings suitable wet-lab experiments should be 

designed. To carry out NGS data analysis of large genomes (for instance Homo sapiens), the 

computational systems must have sufficient memory and processors (CPUs; to parallelize the 

tasks). 

In the following sections, we intend to introduce widely used bioinformatics tools to pre-process 

and analyze the NGS (RNA-Seq) data. 	

1.13.1 Raw RNA-Seq Read Files and their Pre-processing 
Raw sequencing reads are stored as Fastq files or NCBI Sequence Read Archive (SRA) file 

formats. The Fastq files are text based files where each read is represented with four sections, 

containing the information of nucleotide sequence and their quality scores (Phred scores)216 

encoded with ASCII characters. Whereas, if the raw reads are archived in SRA format217 then, 

the SRA file is first extracted into Fastq format using “SRA-toolkit (fastq-dump)” 

(http://www.ncbi.nlm.nih.gov/books/NBK158900/). The Phred score (Q) provides per-base 

quality values in terms of the probability of base-call being wrong during sequencing. 
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𝑄 = −10𝑙𝑜𝑔)*𝑃 

In Illumina, sequencing can be performed in two different modes with distinct library preparation 

procedures: Single-End (SE) and Paired-End (PE). In SE sequencing, the cDNA fragments are 

read from one end only whereas in PE sequencing, fragments are read from both the ends with 

predetermined distance within two reads. SE mode generates one Fastq file and PE mode 

generates two Fastq files (for “read1” and “read2”).	

Beginning from the sample isolation, library preparation, until sequencing, the whole process is 

prone to some errors, including low quality base-calls towards 3’-end of the read, presence of 

adapter and primer sequences, GC-content bias and PCR duplicates. Therefore, it is very 

important to quality check the data before downstream analysis. Various programs help in this 

task such as FastQC218, RNA-SeQC219, SAMstat220 and on the basis of quality check report 

further processing can be performed whenever required. For instance, removal of low-quality 

reads and adapter or primer sequences using software such as Cutadapt221, Trimmomatic222, 

FASTX-toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), htSeqTools223, TrimGalore224. 

1.13.2 Read Alignment   
The quality checked reads are aligned onto the reference genome or transcriptome. During 

short-read alignment variety of parameters should be considered which includes number of 

sequenced reads, read length, reference genome size, accurate splice-sites detection and SE 

and PE reads. The aligners vary on the basis of alignment algorithm which includes: Hash-

tables and Burrows-Wheeler Transform (BWT) with backward search. Hash-table based 

aligners use “seed-and-extend” strategy. Such as MAQ225, SeqMap226, RMAP227, RazerS228. In 

contrast, the BWT based aligners align the entire reads to the reference genome unlike “seed-

and-extend” approach by first indexing and storing the reference genomes as compressed 

suffixes (including prefix-suffix tree, suffix array and Ferragina-Manzini or FM index)229. The 

widely used BWT based software include Bowtie230, Bowtie2231, BWA232, SOAP2233, GSNAP234 

and MapSplice235. Dobin et al.236 has presented an ultra-fast read aligner, namely Spliced 

Transcripts Alignment to a Reference (STAR), which combines the seed generation and their 

search within uncompressed suffix arrays of reference genome (providing high alignment 

speed). 
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 1.13.3 Read Alignment File Format and Visualization 
Mostly aligners store the alignments in the Sequence Alignment/Map format (SAM) or Binary 

Alignment/Map format (BAM; compressed format of SAM). SAM is a tab-delimited text file which 

provide the detailed read alignment information in two sections: the header section and the 

alignment section. The header section lines start with ‘@’ symbol. In the alignment section, each 

alignment line is represented by 11 main fields. These fields describe the read alignment (Table 
1.1). The BAM format compresses the SAM format by BGZF (Blocked GNU Zip Format) 

compression and indexes them to reduce the space on the hard disk which also provides 

random quick alignment access. The genome-wide per-base coverage of aligned reads can be 

visualized using Integrative Genomics Viewer (IGV) (http://www.broadinstitute.org/igv/), 

GenomeView237, LookSeq238, BamView239, and MagicViewer 

(http://bioinformatics.zj.cn/magicviewer/) tools. 

Table 1.1: The alignment section within SAM file format. 
Every aligned read is represented with 11 mandatory fields reported below. 

 
1.14 Expression Quantification and Differential Expression Analysis using RNA-
Seq Data 
The expression estimation from the aligned reads is one of the basic routines using RNA-Seq 

data. This application can be extended to identify the relative differences in the expression 

levels between different biological conditions. To perform these tasks most widely used tools 

include Cufflinks240, DESeq241 and edgeR242. The gene or transcript expression estimations are 

given as counts which corresponds to the number of reads overlapping at a given genomic 

locus. The read counts are required to be normalized to scale the differences in gene or 

transcript length and library size per sample (total number of reads in a sample or sequencing 

depth). Several normalization criterions are present such as Read Per Kilobase per Million 

Column Field TYPE DESCRIPTION
1 QNAME STRING Query Name for the Template
2 FLAG INTEGER bitwise FLAG
3 RNAME STRING Reference Sequence Name
4 POS INTEGER Leftmost mapping Position (1-based)
5 MAPQ INTEGER Mapping Quality
6 CIGAR STRING CIGAR string represents sequence mapping
7 RNEXT STRING Reference Name of the Next read
8 PNEXT INTEGER Position of the Next read
9 TLEN INTEGER Length of the Template (observed)
10 SEQ STRING Seqment Sequence
11 QUAL STRING per-base phred quality scores in ASCII characters
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mapped reads (RPKM), Fragments per Kilobase per Million mapped fragments (FPKM) and 

Transcripts Per Kilobase Million (TPM).  

To enhance the speed of RNA-Seq data analysis which mainly involves the transcript 

abundance estimation analysis, several alignment-free methods have been designed recently, 

such as RNA-Skim243, sailfish244, salmon245, kallisto246. 

On the other hand, if the study involves the identification of the localized events such as relative 

changes in the expression at an exon-level (differential-usage of the exons) between two 

conditions, “exon-centric” methods are required such as DEXSeq247, DSGseq248, Diffsplice249, 

MATS250, SpliceR251 and so forth.  

1.15 Selection of Bioinformatics Tools for RNA-Seq Data Analysis 

1.15.1 Study of Alternative Splicing in SMA  
The goal of this study is to identify mis-regulations in the AS regulatory patterns (controlled by 

specific SREs and RBPs) and disruptions in the mRNA transport of MNs, due to the lower levels 

of SMN protein in SMA patients with respect to the healthy controls by analyzing RNA-Seq data 

using a rationally designed pipeline (See Chapter 2; Materials and Methods). To perform this 

study, we have selected two widely used bioinformatics programs: Cufflinks and DEXSeq.  

(i) Cufflinks Tools and Limitations 
Cufflinks tools have the capability to quantify the expression level of genes and transcripts in 

RNA-Seq data samples. The quantified samples can be further used to identify the differentially 

expressed genes (DEGs), transcripts and differential AS events between different conditions 

using Cufflinks-Cuffdiff2 tool252. Despite the broad spectrum of the Cufflinks tools, we observed 

its two limitations. Firstly, Cuffdiff2 tool applies a highly conservative approach which results in 

the skipping of more complex phenomenon within the transcripts of the same gene. Such as in 

order to identify the differential AS events, it initially groups together the transcripts with same 

Transcription Start Site (TSS) and performs their statistical testing only, while the transcripts 

with different TSS in a gene remain untested. Suppose, we have a gene with 2 transcripts 

(having different TSS; Figure 1.11) and if we identify any relative changes in the expression 

levels of this gene then it could be either due to transcriptional regulation or due to alternative 

splicing. Such genes will be discarded from Cuffdiff2 analysis. Though it is quite challenging to 

disentangle such events, but we need to uphold alike cases and improve computational 
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methods which have the capability to disentangle them accurately. Therefore, to understand the 

regulatory mechanisms of such genes, we need to analyze them by applying more generic and 

less restrictive computational methods (discussed in next section). Secondly, the dependency of 

cufflinks on the gene annotations, which are rather far from complete and not even fully 

consistent within different source databases. Moreover, this is a major limitation for all the 

current tools as they heavily rely upon the gene annotations. 

 

Figure 1.11: An example demonstrating the stringency of Cufflinks-Cuffdiff2 pipeline.  

The gene ZNF75A expresses two different transcripts with the different TSS and also undergoes the AS event of 

exon skipping in transcript 2 (shown with ‘Blue’ arrow).  

(ii) DEXSeq Tool 
We decided to use a more generic tool called DEXSeq which is designed specifically to identify 

relative changes in the expression at individual exon-level in a whole gene (Differentially-Used 

Exons) between different conditions. DEXSeq tests for all the exons present in a gene in a 

similar way without any prior assumption about same TSS or different TSS. Therefore, it 

produces a list of exons which might be resulted either due to changes at transcriptional level or 

at AS level. In addition, DEXSeq tests the relative changes in the read counts at single exon-

level of the whole gene, but it does not estimate significant changes in isoform proportions.  

1.16 Development of Computational Model to Estimate Transcript Expression 
1.16.1 Motivation 
The currently available computational methods are insufficient to understand differential splicing 

events at high resolution within the transcriptomic landscape. In order to address this problem, 

we designed a computational model which has a potential to precisely estimate the “transcript 

expression levels” within a given gene locus by disentangling mature and nascent transcription 

contributions for each transcript at per base resolution. Recently, Madsen et al. has presented 

an idea of estimating intron read coverage across the transcripts to measure the acute 

transcriptional activity of a cell in a steady-state253. They used a very simple approach by 

summarizing the intronic reads for each transcript within unique regions which are not-
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overlapping with any other exons of the gene. In this study, we have presented a non-linear 

computational model which estimates the expression levels (intronic and exonic read 

coverages) by precisely measuring the contributions of mature and nascent transcription at per-

base resolution for each transcript in a given gene locus. We examined the performance of our 

model at a genome-wide level by analyzing total RNA-Seq samples. With this, we take one step 

forward to study the transcriptome complexity in terms of differential splicing with more details. 

The application of our model in detecting differential splicing events. At exon level, differences in 

the ratio of the sum of mature and the sum of nascent transcripts over all the transcripts in a 

gene locus gives an indication of differential splicing. 

1.16.2 Background  
The computational methods are improving to get deep insights about the general and tissue-

specific up-regulation or down-regulation of certain transcripts in a specific condition of the cell 

at steady-state. For instance, certain cell-types preferentially express some specific isoforms for 

a given gene locus over the other isoforms with respect to the standard gene annotation 

models. Therefore, from the list of possible isoforms for a given gene some will be plausible 

while others will not be plausible in a specific cell-type. Further, the presence of the specific 

isoforms can also be differentiated on the basis of their expression level. Sometimes similar set 

of plausible isoforms show higher expression within a specific biological condition whereas the 

lower expression is shown in another biological condition. Such up and down regulation of the 

isoforms expression can usually be noticed within pathological and normal conditions of the 

organism. Another crucial aspect within the transcriptional landscape involves the AS and its 

regulatory mechanisms as described previously. These mechanisms focus upon either the 

selective inclusion or exclusion of selective exon(s) within transcripts. Thus, enhancing or 

silencing their expression levels and as a result optimize the overall expression levels of the 

transcripts in a given gene locus. The existing five canonical AS types within eukaryotic cells 

should be accurately modeled in order to assign the correct expression contributions (weights) 

for every possible transcript in a gene. In doing so, we must first determine the number of 

plausible transcripts in a given gene locus to model precisely their expression estimations, but it 

is not a trivial task to accurately define the existence of some transcripts over the others. 

Therefore, we first introduce possible method to determine plausible isoforms within a given 

gene locus and modeled their expression levels by disentangling the mature and nascent 

transcription contributions (See Chapter 2; Materials and Methods). 
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1.16.3 Mature and Nascent Transcription  
The transcription takes place in the nucleus of the cell and once it is completed most of the 

mature transcripts (mRNA) are exported inside the cytoplasm by the addition of 5’-cap and 3’-

polyA-tail which prevents any damage and degradation. At the steady-state, when the total-RNA 

extraction is performed from the cells it contains both cytoplasmic-RNA as well as nuclear-RNA. 

Within the cytoplasm, high proportion covers the mature transcripts while in nucleus the 

transcripts could be at any stage of transcription that is whether RNA polymerase has just 

completed the transcription or still ongoing. The former will result in FL transcripts while the 

latter are still transcribing and are designated as nascent transcripts. Therefore, the total-RNA 

samples comprise a mixture of mature and nascent transcripts in variable proportions, 

depending upon the length of the transcript which can be modeled as intronic and exonic read 

coverages at per-base resolution. Furthermore, nascent transcription in combination with the co-

transcriptional splicing mechanism provides the inference of AS in the transcripts254. The co-

transcriptional splicing mechanism states that the mRNA transcription and the splicing of the 

transcribed parts of transcript operates side-by-side, giving rise to nascent and partially spliced 

mRNA expressions. During the start of each intron the nascent expression tends to accumulate 

and as the transcription of one intron between two authentic exons completes immediately 

splicing machinery also takes part and nascent expression shows gradual declination and 

ultimately lost and exonic coverages accumulates as mature mRNA expression. The nascent 

transcription gives the account for on-going transcription in a cell at a given time which shows 

the “saw-tooth” trend in the intronic-read coverage due to actively growing transcript lengths 

towards the 3’-end of the transcript254. This trend repeats for every intron due to the presence of 

co-transcriptional splicing mechanism. Therefore, there is an interplay between transcription and 

splicing regulatory factors in order to accomplish efficient mRNA transcription and its 

processing. Ameur et. al254 have presented the idea of studying nascent transcription with co-

transcriptional splicing phenomenon using the advent of total RNA-Seq data. We exploited 

intronic read coverage to precisely estimate the expression levels and therefore, assigning the 

accurate expression weights to each possible isoform of a gene.
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CHAPTER	2	–	MATERIALS	AND	METHODS	

2.1 Study of Alternative Splicing in SMA 
The wet-lab procedure from reprogramming of the fibroblast cells into SMA-iPSCs and control-

iPSCs, their differentiation into spinal motor neurons (MNs) until the RNA sample collection and 

RNA-sequencing process was performed by our colleagues (Corti S et al.1). We performed the 

complete computational analysis of the RNA-Sequencing data by devising the integrative 

computational pipelines to get deep insights about SMA pathogenesis at genome-wide level. 

2.1.1 Reprogramming of Skin Fibroblast Cells into iPSCs 
We reprogrammed the skin fibroblast cells into iPSCs from two SMA patients and two healthy 

controls, with two biological samples per sample using oriP/EBNA1-based episomal vectors by 

the nucleofection of episomal plasmid combinations (NHDF kit VPD-1001 with U-20 program, 

Amaxa) (Figure 2.1A). The used vectors and plasmid combinations (pEP4EO2SEN2K, 

pEP4EO2SET2K and pCEP4-M2L) were described previously255. The complementary DNAs 

(cDNAs) for the open reading frames of the human genes OCT4, SOX2, NANOG, LIN28, c-

Myc, and KLF4 were derived through direct PCR of human stem cell cDNA. After transfection, 

the fibroblast cells (1 × 106 cells per nucleofection) were plated onto Matrigel (BD Biosciences) 

covered 3 × 10–cm dishes, containing fibroblast culture medium, which was changed every day. 

After 4 days of transfection, the fibroblast culture medium was replaced with human Embryonic 

Stem cell (hESC) culture medium (mTeSR, Stemcell Technologies Inc.) for 8 to10 days. After 

18 days of transfection, it was possible to identify the first colonies with an iPSC-like 

morphology. Within 18 to 20 days after transfection, the 3×10–cm dishes of reprogramming 

culture were stained with alkaline phosphatase (Millipore) to identify the eventual presence of 

human iPSC colonies. Between 25 to 30 days, the other two 10-cm dishes were passed to 

fresh10-cm Matrigel-covered dishes (1 ml each plate) at a ratio of 1:3. Further, to analyze and 

expand the reprogrammed cells, the iPSC colonies were picked that were morphologically more 

similar to hESCs. The efficiency of skin fibroblast cells reprogramming was about 3-6 colonies 

per 106 fibroblast cells. 

																																																													
1	 Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of 

Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan 20135, Italy.	

	



Chapter	2	–	Materials	and	Methods	–	Alternative	Splicing	in	SMA	
	

38	
	

 

2.1.2 Differentiation of SMA-iPSCs and Control-iPSCs into Spinal Motor Neuron 
We generated spinal motor neurons (MNs) from iPSCs following a multistage differentiation 

protocol developed for hESCs256 (Figure 2.1B). To produce the MNs from SMA patients-iPSCs 

and controls-iPSCs, the cells were cultured with neuronal medium that is comprised of 

Dulbecco’s modified Eagle’s medium/F12 (Gibco, Invitrogen) supplemented with MEM 

(minimum essential medium) nonessential amino acids solution, N2 and heparin (2 mg/ml; 

Sigma-Aldrich). After 10 days, retinoic acid (RA; a caudalizing factor) was added (0.1 mM; 

Sigma-Aldrich) to promote the neural caudalization. At day 17, the posteriorized 

neuroectodermal cells were collected. After the isolation, the neuroectodermal clusters were 

then suspended for a week in the same neuronal medium supplemented with RA (0.1 mM) and 

sonic hedgehog (SHH) (100 to 200 ng/ml; R&D Systems Inc.). At day 24, other growth factors 

like Brain-Derived Neuronal Factor (BDNF), Glial-Derived Neuronal Factor (GDNF), and insulin-

like growth factor-1 (IGF-1; 10 ng/ml; PeproTech) were added. After 4 to 5 weeks under 

differentiation conditions, the cells that expressed MN–specific transcription factors (TFs) such 

as HB9, ISLET1, and OLIG2 (spinal cord progenitor marker) and pan-neuronal markers such as 

TuJ1, Neurofilament, and MAP2 were generated. Most of these HB9/ISLET1-positive neurons 

expressed choline acetyltransferase (ChAT) and were SMI32 positive (MN-specific marker), 

demonstrating a MN phenotype. The invitro differentiation protocol yielded a mixed cell 

population which also contained non-MN cells. Given the limited availability of surface markers 

to isolate MNs and purify them further, a physical strategy based on gradient centrifugation was 

applied. 
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Figure 2.1: An experimental setup for the reprogramming of human skin fibroblast cells into iPS Cells using 
combination of reprogramming factors and their differentiation into MNs.  

A The skin fibroblast cells isolated from SMA-patients and healthy controls (wild type or WT) are reprogrammed into 

iPS cells using the method of nucleofection of fibroblast cells with non-viral, non-integrating episomal vectors 

(oriP/EBNA1) derived from Epstein-Barr virus, encoding combinations of reprogramming factors. Transgenes and 

other vectors features are shown with red and green arrows, respectively. B The iPS cells are differentiated into MNs 

by multistage differentiation protocol. Wherein the iPS cells are plated with neuronal medium, containing Dulbecco’s 

modified Eagle’s medium/F12, supplemented with MEM nonessential amino acids solution, N2, and heparin. Further, 

RA and SHH are added to promote the neural caudalization and ventralization. Next, neurotrophic growth factors 

such as such as BDNF, GDNF are added and within 35 days under differentiation conditions, MNs are generated 

expressing MN-specific factors (HB9 in ‘green’). The procedure for the iPSCs generation and MNs differentiation 
were previously mentioned by Corti et al.163 and this figure has been adapted from the same article. 

2.1.3 RNA Sample Isolation and Library Preparation 
Total RNA samples were extracted from SMA-patients iPSCs and controls iPSCs derived MNs 

using the RNeasy mini kit Qiagen. The integrity of isolated RNA samples was tested using 

Agilent 2000 analyzer (Agilent Technologies). In addition, total-RNA was treated with DNAse to 

remove any DNA contaminants during the isolation process, as described by Qiagen. 

Concentrations were determined using a Nanodrop spectrophotometer (Wilmington, DE). Only 

samples with ratios between 1.8 and 2.0 were used. TruSeq RNA library preparation kit was 
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used for RNA-Seq library preparation, including the poly-A enrichment step to select only mRNA 

molecules (Figure 2.2). 

2.1.4 RNA-Sequencing Data 
Ultra-deep RNA-Sequencing was performed on total 8 samples using Illumina HiSeq 2000 

platform (Figure 2.2). Two samples were from 2 SMA-iPSC derived MNs (with 2 biological 

replicates per sample). SMA patient-1 (replicate-1) consist of 156,662,164 PE reads (2 x 101nt 

length); SMA patient-1 (replicate-2) consist of 193,040,114 PE reads and SMA patient-2 

(replicate-1) consist of 159,771,568 PE reads; SMA patient-2 (replicate-2) consist of 

168,518,554 PE reads. Two samples were from 2 Controls-iPSC derived MNs (with 2 biological 

replicates per sample). Control-1 (replicate-1) consist of 139,791,014 PE reads; Control-1 

(replicate-2) consist of 209,121,716 and Control-2 (replicate-1) consist of 205,784,853 PE 

reads; Control-2 (replicate-1) consist of 166,029,806 PE reads.  

 

Figure 2.2: RNA isolation and RNA-Sequencing procedure.  

Total-RNA samples isolated from SMA-iPSC derived MNs and control-iPSC derived MNs and purified by removing 

ribosomal-RNA and DNA contaminants. Paired-End, Poly-A selected RNA-sequencing libraries are prepared which 

are sequenced on Illumina HiSeq 2000 platform. 

2.1.5 Pre-Processing of the Reads: Quality Check 
Firstly, we performed the quality check of our dataset using FastQC software218. The raw RNA-

Seq read files were analyzed for any possible bias including poor quality reads (Phred score or 

Q < 30), GC-content bias, duplicated sequences, presence of adaptor sequences or primer 

sequences. We assessed the read quality in terms of the read length distribution, Phred score 

distribution, and nucleotide frequencies obtained from FastQC statistics. 
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2.1.6 Read Alignment 
After the quality check, we mapped reads to the reference genome (hg19). To assess the 

performance and accuracy of two widely used splice-aware aligners: TopHat2257 and STAR236 

on our dataset, we set-up two pipelines (Pipeline-I and Pipeline-II). In Pipeline-I (Figure 2.3), we 

used TopHat2 aligner with “--no-mixed”, “--transcriptome-index” parameters. The other default 

parameters were kept as such, as they were designed to align PE RNA-Seq reads obtained 

from Illumina platform. The transcriptomic index was built using Ensembl gene-model 

annotations (Homo_sapiens.GRCh37.75.gff; hg19 assembly)258. Further, in Pipeline-II (Figure 
2.3), we used STAR aligner and align our RNA-Seq dataset with the following selected 

parameters: “outFilterIntronMotifs RemoveNoncanonical”, “outSAMstrandField intronMotif”, and 

“outSAMtype BAM SortedByCoordinate”. The average percentage of uniquely aligned reads in 

all the samples for TopHat2 was 89.33% and for STAR was 92.46%.  

The chosen parameters are described below: 

 TopHat2 Read Alignment: 

1) --transcriptome-index: This option has been provided by TopHat2 to build the 

transcriptomic sequence file from the given gene annotation file (GTF file). Bowtie2 

generates the index from this known transcript information. This operation helps in 

accelerating the read alignment step, as the reads are firstly aligned onto the 

transcriptome and then the unaligned reads are aligned onto genome to find 

unannotated splice site junctions. 

2)  --no-mixed: This option has been specifically designed for PE reads. By using this, the 

aligner only reports those alignments where both “read 1” and “read 2” can be mapped 

as a pair. 

 STAR Read Alignment: 

1) outFilterIntronMotifs RemoveNoncanonical: The option helps in filtering the 

alignments by motifs. We applied “RemoveNoncanonical” option to consider only 

canonical junctions and discard alignments with non-canonical junctions. 

2) outSAMstrandField intronMotif: This option is useful to make alignments compatible 

with Cufflinks-Cuffdiff2 tools for their downstream analysis. Such as, for unstranded 

RNA-Seq datasets, similar tools require a ‘XS’ flag to represent aligned read strand 

attribute and STAR aligner set this parameter by assigning ‘XS’ tag to all the splice 
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junctions. While in the case of strand-specific RNA-Seq datasets, there is no need to set 

this parameter.   
3) outSAMtype BAM SortedByCoordinate: The option sorts the resulted read alignments 

by their coordinates.  
 

 

Figure 2.3: A rational approach for the selection of computational pipeline to analyze RNA-Seq data. 

Starting from the quality checked reads performed on FastQC tool, the read alignment is performed onto the 

reference genome using two different splice-aware aligners: TopHat2 and STAR. The aligned reads are analyzed 

applying two pipelines: Pipeline-I and Pipeline-II. Within Pipeline-I, TopHat2 aligned samples are analyzed with 

Cufflinks tools to quantify the expression of genes and isoforms at genome-wide level and identify Differentially 

Expressed Genes and isoforms between SMA-patients and controls. These reads are also analyzed for identifying 

the Differentially-Used Exons between SMA-patients and controls using DEXSeq tool. Similarly, in Pipeline-II the 

STAR aligned reads are analyzed by Cufflinks and DEXSeq tools. The outcomes of the two pipelines are correlated 

by computing Pearson correlation coefficients. 
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2.1.7 Gene and Transcript Expression Level Quantification and Differential 
Expression Analysis Between Two Conditions 

The alignment files (in BAM format) from both of the aligners were fed into Cufflinks tools240. We 

estimated the gene and transcript expression levels using “Cuffquant” on each individual sample 

with “-u” flag which support multi-read correction (those reads mapped at multiple loci within the 

genome). Further, we performed the normalization of the quantified expressions in order to 

scale the expressions levels for varying gene or transcript lengths and differences in the 

sequencing depth of the libraries using “Cuffnorm”. To obtain the information about the 

similarities and dissimilarities in expression profiles within and between samples, we performed 

hierarchical (or unsupervised) clustering using the normalized expression levels of genes and 

isoforms (or transcripts). Subsequently, to determine the relative changes in the expression 

levels between different conditions (i.e. patients and controls) normalized gene and isoform 

level expressions were utilized using “Cuffdiff2”252. 

2.1.8 Differential Exon-Usage Analysis 
To detect the differential usage of the exons between patients and controls, we applied 

DEXSeq247 tool, on both pipeline-I and pipeline-II. This tool requires raw read-counts for the 

analysis, that we had obtained by applying HTSeq tool259 on each sample in our dataset. HTSeq 

quantifies the aligned reads overlapping with each gene locus (gene/transcripts/exons) using 

pre-processed reference annotations (hg19 Ensembl). The pre-processing of the gene 

annotations is required to remove the redundancy in the transcripts as in gene-model 

annotations many features (exons) recur more than once, therefore DEXSeq collapse such 

information into “counting bins”. These “counting bins” represent unique exons which overlaps 

with each other completely for each gene. If overlapping exons in two or more transcripts of a 

gene have different boundaries, then algorithm enforce the exons to split into parts which are 

referred as “exon-parts”. To execute the preprocessing of reference annotations, DEXSeq 

package provides a python script. Further, raw read counts were analyzed for differential-exon 

usage by firstly, normalizing all the samples for their sequencing depth between and within 

samples; and biological variation (dispersion estimation) within samples (using Cox-Reid 

likelihood estimation method). Then, each counting-bin (exon or exon-part) in a whole gene was 

tested to determine the relative changes in the expressions (differential exon usage) between 

different conditions (patient versus control).  
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2.1.9 Execution of Computational Pipeline-I and Pipeline-II  
To investigate on the performance and accuracy of both aligners, we applied the downstream 

analysis steps in the two pipelines: Pipeline-I and Pipeline-II (Figure 2.3). In Pipeline-I, we used 

read alignments obtained from TopHat2 to be analyze by Cuffdiff2. In contrast, in Pipeline-II, we 

used read alignments obtained from STAR and we analyzed them by Cuffdiff2. 

On the other hand, within Pipeline-I, Tophat2 obtained read alignments were also analyzed to 

identify Differential-Exon Usage (DEUs) using DEXSeq. Similarly, in Pipeline-II, similar analysis 

was performed on STAR obtained read alignments. Further, in order to choose the most robust 

pipeline out of the two, we intended to compare their outcomes by computing the Pearson 

correlation coefficient (r) values. In Cuffdiff2 analysis, we compared the log2 fold change 

(log2FC) values for the significantly differentially expressed genes resulted from Pipeline-I and 

Pipeline-II. Subsequently, we compared the log2FC values for significantly differentially used 

exons resulted from Pipeline-I and Pipeline-II. From these comparisons, we obtained very high 

correlations between both pipelines. Finally, we decided to use Pipeline-II because STAR is 

much faster than TopHat2, without losing accuracy. 

  log2 fold change is defined as: 

𝒍𝒐𝒈𝟐𝑭𝑪 = 𝒍𝒐𝒈𝟐
𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝟐
𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝟏

																														(𝟏) 

Where, Condition1 = Control-FPKM expression values, and 	

              Condition2 = Patient-FPKM expression values	

2.1.10 A Rational Strategy for the Selection of Computational Tools to Estimate 
Expression Levels using Simulation Method 

Nowadays, various computational methods are available for the downstream analysis of RNA-

Seq data-sets, starting from aligning the reads until answering a study-specific question/s. For 

instance, quantification of expression levels, differential expression analysis at different genomic 

levels for genes, isoforms and exons, or investigation of the AS variations can be performed by 

implementing a variety of statistical methods. We found this task quite challenging and critical 

for accurately interpreting the RNA-Seq data. We started our experimental validation with the 

set of simulations. Simulated reads were generated on the basis of real data in order to mimic 

the biological phenomenon, underlying the quantification of the expression levels of genes and 
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isoforms. This helps to avoid under- or over-estimations within simulated read expression levels 

with respect to the real world data. We performed the read simulations using RNA-Seq by 

Expectation-Maximization simulation software (RSEM)260. RSEM is mainly designed to quantify 

the gene or isoform abundances in the RNA-Seq data (SE or PE) without relying upon the 

reference genome. Another utility in RSEM is RNA-Seq read simulation that can be guided by 

prior estimated gene or isoform abundances and modeled parameters. In our experiment, these 

parameters were obtained by providing the real RNA-Seq data. We took advantage of both of 

the utilities and generated simulated RNA-Seq PE reads. We applied our devised Pipeline-II on 

the simulated reads and obtained the gene and isoform expression estimations. Further, we 

computed the Pearson correlation coefficient between the expression values of simulated reads 

and expression estimations from RSEM-estimated model on the real data-set. The higher 

correlation coefficient between their expression estimations has reflected the great reliability of 

the computational pipeline we applied (Figure 2.4). 

 

Figure 2.4: Simulation of PE reads using RSEM tool. 

Firstly, the transcript level expressions are estimated from the real RNA-Seq dataset using RSEM. The read 

simulation requires the reference genome sequence file and known gene annotation file to learn the simulation 

algorithm and additionally to guide the simulation procedure, parameters from estimated expression obtained from 

real dataset can be used. Simulated PE reads are analyzed with Cuffquant-Cuffnorm in Pipeline-II (described above 
in Figure 2.3). The outcomes from the RSEM estimated expressions and transcript expressions obtained from 

Pipeline-II are correlated by computing the Pearson correlation coefficient.  
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2.1.11 Filtration of DEXSeq Obtained Exons  
DEXSeq performs on the mathematical model of the gene annotations by collapsing the 

genomic features into counting-bins (exons and exon-parts). Because the tested set of “exon-

parts” from DEXSeq analysis has no real existence and interpretation of these partial exons is 

highly complex. Therefore, we filtered-out “exon-parts” from the downstream analysis. In doing 

so, the DEXSeq results (obtained from the pipeline-II) were refined by following three criteria 

(Figure 2.4):  

Ø Firstly, we overlapped the resulted list of exons and exon-parts identified from DEXSeq 

with a list of known Alternative Cassette Exons (ACEs) expressed in human brain tissue 

taken from a recent study51 and obtained a filtered list of DEXSeq results for ACEs only 

(DEXSeq-ACEs; Figure 2.5 FILTER-1). These filtered set of exons represent only 

“exon-skipping” events that remained intact during the DEXSeq analysis. 

Ø Secondly, the above shortlisted exons were filtered to remove first (Transcription Start 

Site or TSS exon) and last (Polyadenylation Site or PAS exon) exons from the 

corresponding transcripts using Ensembl hg19 gene annotations. This is because any 

relative changes in the expression of first exon of the transcript mainly occurs due to the 

transcriptional regulatory events that are controlled by transcription regulatory factors 

instead of AS regulatory events that are controlled by splicing regulatory factors (Figure 
2.5 FILTER-2). Therefore, by applying this filter we have focused only on the internal 

DEXSeq-ACEs of the transcripts. 

Ø  Lastly, these exons were epurated by filtering out those which were present in the list of 

significantly differentially expressed transcripts obtained from the Cuffdiff2 analysis. This 

is because these exons were resulted due to overall relative expression changes at the 

whole transcript level rather than changes at an individual exon level (Figure 2.5 
FILTER-3). Therefore, this step has provided a highly promising set of core DEXSeq-

ACEs which are controlled by splicing regulatory factors. Now, these exons were divided 

into two parts (Figure 2.6):  
1) Significant DEXSeq-ACEs: We obtained this list by putting a threshold on         

qvalue < 0.01 (significance level associated with each tested-exon for the differential-

usage between different conditions in DEXSeq analysis). These significant DEXSeq-

ACEs are Differentially-Used Alternative Cassette Exons (DUACEs) which show 

statistically significant relative changes in the expression at individual exon level due 
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to AS (exon-skipping) event between SMA-patients and healthy controls. Further, 
this list of significant DUACEs were divided on the basis of up-expression (or 

Enhanced) and down-expression (or Silenced) in SMA-patients with respect to 

controls using log2FC values obtained from DEXSeq analysis for each tested exon 

(Figure 2.6).  

a) Enhanced DUACEs (log2FC > 0; in SMA-patients) 

b) Silenced DUACEs (log2FC < 0; in SMA-patients) 

2) Non-Significant DEXSeq-ACEs: We obtained this list by putting a threshold on 

absolute (log2FC < 0.01) and qvalue > 0.05. There exons were used as Control set 

of DEXSeq-ACEs for the downstream analysis.  

 

 

Figure 2.5: Filtration of DEXSeq identified exons by applying logical juxtaposition.  

See main text for the details. 

2.1.12 Identification of Motifs and RNA-Binding Proteins 
The list of core-DEXSeq-ACEs were analyzed further to identify Splicing Regulatory Elements 

(SREs) which are known to localized within exonic and intronic sequences of the transcripts 

(Figure 2.6). These elements are short stretch of nucleotide sequences or motifs (consensus 

sequence) that regulates splicing by recruiting RNA-Binding Proteins (RBPs). The purpose of 

this analysis was to pinpoint the key mechanisms underlying mis-regulations in mRNA-splicing, 

specific to MNs. In doing so, the sequence level analysis was performed on the list of significant 

DUACEs (enhanced and silenced) and non-significant DEXSeq-ACEs with their upstream and 

downstream flanking introns.  

Firstly, the genomic sequences were retrieved from enhanced, silenced and control exons and 

their flanking upstream and downstream introns using GeCo++ library261. The upstream and 
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downstream introns were restricted to the fixed length of 150bp and first 10bp were subtracted 

from each side of flanking intron of the corresponding exon. This was because the initial bases 

of the intronic region (on each side of the exon) consists of splice-sites (5’ and 3’) where the 

motif finding signal are relatively stronger than other locations of the intronic sequence. 

Therefore, to avoid such signal masking effect during motif discovery within SREs, first few 

bases should be excluded towards upstream and downstream introns.  

 

Figure 2.6: Categorization and three-region sequence level analysis of core DEXSeq-ACEs. 

The core-set of DEXSeq-ACEs are categorized into significant and non-significant DEXSeq-ACEs. The significant 

DEXSeq-ACEs are DUACEs, having statistically significant relative changes in the expression at individual exon level 

between SMA-patients and healthy controls. On the basis of expression level either up or down in SMA-patients, the 

significant DUACEs are divided into Enhanced and Silenced DUACEs. All Significant DUACEs and Control DEXSeq-

ACEs (Non-Significant) are used for three-region sequence level analyses to identify motifs (or SREs; shown as ISE 

and ISS in introns; ESE and ESS in exons, represented with ‘green’ and ‘red’ colored thick bars, respectively) and 

RBPs (SR or hnRNPs, represented with ‘light blue’ and ‘pink’ colored eclipses, respectively) that specifically binds on 

SREs. Three-regions consist of exons (represented with ‘orange’ colored rectangle) and their flanking introns 

(Upstream-Intron or USI and Downstream-Intron or DSI, represented with ‘black’ colored line) which has a fixed 

length of 150bp (marked with ‘black’ colored dotted lines and long ‘black’ colored arrows on both sides) and first 10bp 
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(GT at 5’ss and AG at 3’ss represented with short ‘black’ colored arrows) are deducted on each side from intronic 

sequence analysis.  

Overall, we have 9 sequence files (Figure 2.7), containing 3 files from the enhanced DUACEs 

(first file for upstream-intron of enhanced DUACEs, second file for enhanced DUACEs 

themselves and third file for downstream-intron of enhanced DUACEs); 3 files from silenced 

DUACEs (first file for upstream-intron of silenced DUACEs, second file for silenced DUACEs 

themselves and third file for downstream-intron of silenced DUACEs); and 3 files from control 

DEXSeq-ACEs (first file for upstream-intron of control DEXSeq-ACEs, second file for control 

DEXSeq-ACEs themselves and third file for downstream-intron of control DEXSeq-ACEs). 

However, for the motif discovery analysis, we used only enhanced and silenced DUACEs that 

comprised of 6 sequence files. Motif discovery was performed using MEMERIS software 

(Multiple EM for Motif Elicitation in RNAs Including Secondary Structures)262: an extension of 

MEME motif finder263 which uses the concept of position specific scoring matrices (PSSMs) to 

identify biological patterns within the nucleotide sequences. MEMERIS also presents a unique 

approach of pattern finding by utilizing the information of secondary structures which guide motif 

search within the single-stranded regions of RNA. It intends to pre-compute the probability 

values for single-strandedness in a position-specific manner by applying two methods: (i) PU: 
the probability that all the nucleotides are unpaired, and (ii) EF: the expected fraction of 

nucleotides which do not make base-pairs, within a corresponding subsequence or substring. 

The chosen parameters for MEMERIS execution include: “-w 5 -dna -pi 0.01 -mod zoops -

nmotifs 5 -minsites 10 -secstruct”.  

 Where,  

1) -w:      is the length of the motif to be searched in a given nucleotide sequence. 

2) -dna:  represents the nucleotide sequence. 

3) -pi:     refers to the “Pseudocount” value which helps in adjusting the influence of single-

strandedness that is determined from EF or PU above described methods for a given 

motif length (-w) per sequence.   

4) -mod: the given nucleotide sequence can be modeled by different models. Such as 

sequence containing either zero, one or more than one motifs which are non-overlapping 

in position specific scoring matrix (PSSM). PSSM gives the probability distribution values 

at every position within the given sequence. MEMERIS provides three models for motif 
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searching: OOPS, ZOOPS and TCM. In OOPS, model sequences are queried to find 

only “One motif Occurrence Per Sequence”. In ZOOPS, model sequences are queried to 

find “Zero or One motif Occurrence Per Sequence”. In Two Component Mixture (TCM) 

model sequences are queried to find Zero or more occurrences per sequence. We 

chose ZOOPS motif search model within the sequences which also allowed for an 

absence of the motif occurrence in the sequence.  

5) -nmotifs: defines number of motifs to be searched. 

6) -minsites: defines the minimum number of occurrences of the motifs per sequence. 

7) -secstruc: retrieves the probability values to estimate single-strandedness of the 

sequences. These values are pre-computed by launching a Perl script 

“GetSecondaryStructureValues.perl” included in MEMERIS package. We used “-w 5” 

and method “EF”. 

Likewise, we identified total 30 novel motifs using 6 sequence files (5 motifs per sequence file 

from the motif search). Further, we intended to remove similar motifs which were having more 

than 60% similarity in their PSSMs. Only 6 out of 30 motifs were found to be unique (unrelated) 

on the basis of this criterion. Subsequently, enrichment analysis was performed for the 6 unique 

motifs. We quantified the occurrences of each motif in all 9 sequence databases (Enhanced, 

Silenced and Control exon and intron sequence files See Figure 2.7) using MEME suite 

program264, namely, Find Individual Motif Occurrence (FIMO)265. FIMO search for all the 

provided motifs to find matches within the sequences of all files individually. Altogether, we have 

performed 54 analyses wherein we have 6 motifs which were searched in 9 sequence 

databases individually (Figure 2.7). Further, in order to determine if the overrepresentation 

differences for searched motifs within all sequence files (corresponding to specific region i.e. 

DSI, or Exon or USI and specific condition i.e. Enhanced or Silenced or Control) have any 

statistical significance or not, we applied the non-parametric Wilcoxon test. In total, we 

performed 54 pairwise comparisons and performed Wilcoxon test to obtain statistical 

significances. 

Next, we analyzed 6 unique motifs to find known set of RNA-binding proteins (RBPs) using a 

computational tool, TOMTOM266. TOMTOM compares PSSM of user’s identified motifs (query) 

within a database of known PSSMs (target), which are associated with specific RBPs. As a 

“target” motif database, we used “Ray 2013 Homo sapiens (DNA-encoded)”267 which consists of 

102 motifs of 7 – 8bp length. 
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Figure 2.7: Motif identification and motif enrichment analysis.  

A The motifs identification is performed on files labeled with circles ‘1’ to ‘6’ derived from the “Significant set of 

Enhanced and Silenced DUACEs”. Each Enhanced DUACE has been divided into three regions: 1. Upstream 

Flanking Intron, 2. DUACE itself, and 3. Downstream Flanking Intron. B Every motif is searched within all the 

sequence files labeled with ‘1’ to ‘9’ which provides the occurrences (enrichment or overrepresentation) of each motif 

within all the sequence files or sequence databases. In total 54 analyses has been performed, including 6 motifs that 

have been searched in 9 sequence files, individually.  

*Nine Significant DUACEs were having infinite log2FC values which we excluded from the further analysis. 

2.1.13 Validation of Significant DEGs and DUACEs with Functional Annotation 
Analysis 

Gene Ontology (GO) enrichment analysis allows to determine characteristic biological attributes 

in a given gene set. It is based on the premise that functionally related genes should 

accumulate together in the corresponding GO category. We used Database 

for Annotation, Visualization and Integrated Discovery (DAVID268), a web-based functional 
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annotation analysis tool. It helps in identifying the enriched or over-represented gene ontology 

terms (GO), covering three domains: “Biological Process (BP)”, “Cellular Component (CC)” and 

“Molecular Function (MF)”. The enrichment of biological pathways and gene-set disease 

associations can also be obtained from this analysis. Firstly, we performed the DAVID analysis 

on our list of significantly Differentially Expressed Genes (DEGs) (qvalue < 0.05) that are 

derived from Cufflinks-Cuffdiff2 pipeline. In our analysis, the complete set of 1,858 significant 

DEGs were provided as “target genes”, and 63,651 genes including both significant and non-

significant served the purpose of “background genes”. 

Furthermore, we evaluated the genes corresponding to our set of DUACEs. Total of 859 genes, 

corresponding to the list of DUACEs were provided as “target genes” and the list of unique 

14,758 genes, including both significant DUACEs and non-significant core DEXSeq-ACEs acted 

as “background genes” for functional annotation analysis. 
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2.2 Development of Computational Model to Estimate Transcript Expression 

2.2.1 Re-Construction of Isoform Paths in a given Gene Locus 
In a given gene locus, we can have multiple exon combinations giving rise to multiple different 

isoforms. Of course not every possible path exists in reality, therefore some isoforms will only 

represent hypothetical combinations which do not exist in reality and some will be actually 

coherent with the given annotations and also validated with the experimental data obtained from 

RNA-Seq technology. The isoform paths can be re-constructed by different approaches which 

are explained in the following sections.  

2.2.2 Generation of Isoform Paths on the basis of Junction Information using 
Graphs 

To construct all the possible isoform paths by considering all the possible exon/intron 

combinations in a given gene locus, the idea of Directed Acyclic Graphs (DAGs; Figure 2.8) can 

suffice the need. In mathematical terms, DAGs consist of finite set of vertices and edges with 

directional information without forming any directed cycle. Formally, graphs can be represented 

as 𝐺 = 𝑉, 𝐸   where, 𝑉 represents the set of ‘vertices’ or ‘nodes’ and 𝐸 represents the 

connections or edges between any two vertices. In such graphs, the vertices and edges are 

arranged in an ordered fashion. To represent a given set of isoforms with the help of graphs, we 

considered the 5’ and 3’ splice site junctions as ‘vertices’ and introns or the exons of the isoform 

represented the ‘edges’ of the graph. By drawing all possible combinations of edges with the 

identified set of junctions, multiple isoform paths can be obtained. Later, these paths can be 

validated with the experimental data (for example, RNA-Seq data) by estimating the expression 

for each possible path at per-base resolution and preserving only the ones that actually are 

present in the analyzed samples. 
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Figure 2.8: A representation of Directed Acyclic Graph (DAG). 

A hypothetical gene ‘G’ consists of five isoforms (t1 – t5 paths from gene annotations based transcriptomic assembly 

obtained from Cufflinks tool) where exons are represented with ‘blue’ colored thick rectangular boxes and introns are 

represented with thin ‘dark grey’ lines. Unique splice-site junctions are numbered from 1 through 8 (digits in ‘red’ 

color). Directed acyclic graph is generated, comprising all the 5 isoforms (shown with different colored directed lines) 

from gene ‘G’, where splice-sites junctions form the vertices of the graph (represented as 5’-splice site and 3’-splice 

site, with ‘orange’ colored circles); edges of the graph can be either exons or introns. Exons of the isoform are shown 

with dotted directed lines (where the direction is from 3’-5’ splice-site) and introns of the isoform are shown with 

continuous directed lines (from 5’-3’ direction). TSS and PAS of the isoforms are represented with ‘green’ colored 

rectangles. If any junction is not supported by the junction information obtained from the RNA-Seq read alignments, 

then that complete isoform path is discarded. Path t5 is excluded from the list if splice-site junction-8 is not supported 

by junction information and 4 paths will be persevered. 

2.2.3 Generation of Isoform Paths on the basis of Known Gene Annotations  
Another simpler approach is to consider only the known gene annotation information and 

retrieve the isoform paths with already annotated exon/intron combinations. This approach will 

restrict the analysis to only known set of transcripts but makes the things much easier in terms 

of computation time and memory usage. 
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 2.2.4 Generation of Isoform Paths with a Combined Approach 
In this approach, two sources can be combined. In doing so, the set of paths are obtained from 

Cufflinks generated transcriptome assembly based on RNA-Seq data. Further, these paths are 

validated from the exon-intron junction information received from RNA-Seq data alignments. 

Only those paths will be preserved which are justified by junction information and the rest will be 

discarded. We used this approach to start with the set of plausible isoform paths in a given gene 

locus. 

2.2.5 Obtaining the Defined Set of Information from Total RNA-Seq Data 
The information about the exon-intron junctions was retrieved from the aligned total RNA-Seq 

samples which were stored in the BAM files. The “CIGAR” string information was utilized for 

defining the presence of Exon-Intron junctions. These junctions denote the location of 5’ and 3’ 

splice sites which were supported by total number of junctions within the given locus. As 

mentioned earlier, this information was utilized to filter the list of isoform paths obtained from 

Cufflinks transcriptome assembly. Only those paths from Cufflinks were considered valid which 

were supported by the above identified exon-intron junctions with enough supporting junction 

counts (junction count > 2) in the total RNA-Seq data. Ultimately, the filtered set of isoform 

paths were assigned to a given gene locus which were called plausible isoform paths, according 

to the processed samples. 

2.2.6 MODEL 
In a genomic locus for which a set of isoforms is given we obtain from the aligned fragments a 

vector  

𝑏 =

𝑏 1
𝑏 2
⋮

𝑏 𝐿B

 

containing the number of fragments covering each genomic position. The purpose of our model 

is to obtain an estimate of nascent and mature transcription levels which best approximate the 

measured b (which was computed at per-base resolution within the given gene locus by 

applying BamTools API269). 
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2.2.6.1 Coverage Probability along a Transcript: CPT(X) 
Reads coverage deriving from an RNA transcript of length Lt is not uniform along the transcript 

itself (Figure 2.9). Given a discrete fragment length distribution F(l) (which can be obtained from 

the data) the probability of observing a fragment of length li at position x is affected by the 

distance from the transcript borders and can be expressed as: 

 

𝑝D 𝑥 =

𝑥
𝐹 𝑙D
𝑙D

, 𝑥 < 𝑙D

𝐹 𝑙D , 𝑙D ⩽ 𝑥 ⩽ 𝐿I − 𝑙D

𝐿I − 𝑥
𝐹 𝑙D
𝑙D

, 𝑥 > 𝐿I − 𝑙D

 

 

Figure 2.9: Mature transcript profile at per base resolution. 

The profile describes the probability of observing a fragment of length li at any position along the transcript of length 

Lt. This probability is affected by the distance from the transcript borders (which are marked by 5’-start of the mature 

transcript and 3’-end of the mature transcript) that is because less number of fragments tend to overlap the start and 

end bases along the transcript. F(li) is the relative frequency of the fragment of length li obtained from the distribution 

of relative frequencies of all fragment lengths in the analyzed total RNA-Seq data (See Figure 3.15 in Results; 

Chapter 3). The probability values remain constant in-between the transcript borders i.e. when any position along the 

transcript is equal to the fragment length li until it is equal or smaller than Lt-li. 
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By summing over the Nf possible fragment lengths: 

𝐶𝑃𝑇 𝑥 = 𝑝D

MN

DO)

𝑥  

we obtain a the CPT(x) profile which describe the probability of observing a fragment of any 

length at each position along the transcript (Figure 2.10). 

Where, 𝑁Q is the number of possible fragment lengths (obtained from fragment length 

distribution library of total RNA-Seq data) observed at position 𝑥 along the transcript. 

 

Figure 2.10: An example of Coverage Probability along a Transcript (CPT). 

CPT gives the probability (along the y-axis) of observing a fragment of any length at each position (or index along x-

axis of the mature transcript) along the transcript. For instance, at position or Index 𝑥=1 along the transcript of length 

Lt, CPT (𝑥) is computed by summing over all the probabilities for Nf  possible fragment lengths in the library at 

position 𝑥. 

2.2.6.2 Genomic Profile for a Mature Transcript 
A mature transcript has introns already spliced out. For a mature transcript, by mapping to the 

genomic locus its positions and corresponding CPT(𝑥) values and setting to 0 intronic positions, 

we obtain a genomic mature probability profile pm(𝑥)of length Lg (Figure 2.11). 
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Figure 2.11: Genomic probability profile for a mature transcript. 

The genomic coverage probability profile of the mature transcript where the transcript coordinates are mapped onto 

the reference genome to obtain corresponding genomic coordinates (represented as Index or position along the x-

axis; genomic coordinates for ‘Start’ or TSS and ‘End’ or PAS position of the transcript). Genomic coverage 

probability profile (along the y-axis) accumulates across all the transcribed exons (represented as high bars) and 

across introns (represented with a line between narrow long bars shows no coverage across the genomic index) 

there is no coverage as in the mature transcript the introns are spliced out.  

2.2.6.3 Genomic Profiles of Nascent Transcripts 
In the simplifying hypotheses of constant transcription velocity, we can expect to observe in our 

library any partially transcribed fraction of a transcript with the same probability, depending on 

nascent transcription rate only. Since splicing is co-transcriptional, we consider the excision of 

an intron to occur immediately after completion of its downstream exon.  

A transcript fraction with a still unspliced intron will not contain any previous intron and therefore 

will contribute to the genomic coverage profile in all transcribed exons and in the unique 

unspliced intron only (Figure 2.12 and Figure 2.13).  
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Figure 2.12: Example of genomic probability profiles for nascent transcripts at different stages of 
transcription. 

Coverage probability profile start to accumulate gradually as the transcription proceeds. The transcription of the first 

exon gives a partially transcribed transcript or nascent transcript (represented with small ‘blue’ square and coverage 

is shown with a ‘black curve’ over it) which transcribes further the remaining first exon and partially transcribed intron 

(represented with ‘red’ line). Across the transcribed exons, coverage probability profile tend to accumulate in every 

nascent transcript while the coverage profile is unique for every unspliced intron as splicing is co-transcriptional and 

according to our simplifying hypothesis, splicing takes place immediately after the last base of the downstream exon 

is transcribed as a result there will be no coverage for the previous intron (represented with ‘grey’ line) and coverage 

probability profile will be unique for every intron (saw-tooth) across the transcript. 

Therefore, the full genomic nascent probability profile pn(x)of length Lg is obtained by averaging 

the genomic mapped CPTs deriving from each possible transcript fraction. 
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Figure 2.13: Genomic probability profile for a nascent transcript. 

Along x-axis fragment length distribution probability profile and along y-axis genomic positions (Index) of the 

transcript. For all the transcribed exons the coverage profile accumulates (high peaks in the plot) across the nascent 

transcript and for the introns, coverage probability profile is unique for each unspliced intron (saw-tooth shaped 

coverage probability profile) along the nascent transcript  

In a gene locus of length Lg we obtain both the mature and nascent probability profiles for each 

of the Nt transcripts spanning the locus and we organize the profiles in two matrices: 

 

𝑀S =

𝑝S) 1 𝑝ST 1 ⋯ 𝑝SMI 1
𝑝S) 2 𝑝ST 2 ⋯ 𝑝SMI 2

⋮ ⋮ ⋯ ⋮
𝑝S) 𝐿B 𝑝ST 𝐿B ⋯ 𝑝SMI 𝐿B

 

 

and  

𝑀V =

𝑝V) 1 𝑝VT 1 ⋯ 𝑝VMI 1
𝑝V) 2 𝑝VT 2 ⋯ 𝑝VMI 2
⋮ ⋮ ⋯ ⋮

𝑝V) 𝐿B 𝑝VT 𝐿B ⋯ 𝑝VMI 𝐿B
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For the Nt transcripts spanning the locus we define: 

 

𝐸S =

𝑚)
𝑚T
⋮

𝑚MX

 and 𝐸V =

𝑛)
𝑛T
⋮
𝑛MX

 

 

Here, for the kth transcript mk and nk represent the number of mature and nascent molecules 

respectively. Then we model the vector b of observed fragments counts through the following 

equation: 

 

𝑏 = 𝑀S𝐸S + 𝑀V𝐸V + 𝜀 

 

We could estimate Em and En from the data by minimizing the error 𝜀: 

 

𝑚𝑖𝑛
]^_*;]a_*

𝑏 − 𝑀S𝐸S − 𝑀V𝐸V  

 

Where, Mm = Matrix of fragment length distribution probability profile for each “Mature 

transcript”, Mn = Matrix of fragment length distribution probability profile for each “Nascent 

transcript”. En= Estimate of nascent transcript expression and Em = Estimate of mature transcript 

expression 

In this way, Em and En estimates would be independent. Though, the number of mature 

transcripts copies depend on the rate of nascent transcription and therefore it cannot be 

considered independent form the number of nascent transcripts copies. We can write: 
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𝐸S =

𝛼)𝑛)
𝛼T𝑛T
⋮

𝛼MX𝑛MX

=

𝛼) 0 ⋯ 0
0 𝛼T ⋯ 0
⋮ ⋮ ⋯ ⋮
0 0 ⋯ 𝑎MX

𝐸V = 𝐴𝐸V 

 

Where, 

𝛼 = 𝑑𝑖𝑎𝑔 𝐴 =
𝐸S
𝐸V

 

 

represents the vector of ratios between mature and nascent fragments for each transcript. 

We rewrite our model equation as: 

 

𝑏 = 𝑀S𝐴 + 𝑀V 𝐸V + 𝜀 

 

and therefore we will solve: 

 

𝑚𝑖𝑛
f_*;]a_*

𝑏 − 𝑀S𝐴 + 𝑀V 𝐸V  

 

2.2.6.4 Model Parameters Identification Procedure 
To solve this nonlinear problem (i.e. the model equation is not linear in the parameters) we 

adopted an alternating gradient descent method. To this purpose, according to the minimization 

problem: 

 

𝑚𝑖𝑛
f_*;]a_*

𝑏 − 𝑀S𝐴 + 𝑀V 𝐸V  
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we define the following objective function: 

 

𝑓 𝐴, 𝐸V = 𝑏 − 𝑀S𝐴𝐸V + 𝑀V𝐸V 𝑏 − 𝑀S𝐴𝐸V + 𝑀V𝐸V h 

and we calculate the derivatives: 

 

𝜕𝑓 𝐴, 𝐸V
𝜕𝐸V

=
𝐸Vh𝐾h𝐾
𝑓 𝐴, 𝐸V

−
𝑏h𝐾

𝑓 𝐴, 𝐸V
 

 

𝜕𝑓 𝐴, 𝐸V
𝜕𝐴

=
𝐸Vh 𝐴h𝑀S

h + 𝑀V
h 𝑀S𝑋

𝑓 𝐴, 𝐸V
−
𝑏h𝑀S𝑋
𝑓 𝐴, 𝐸V

 

 

Where, for convenience we defined 𝐾 = 𝑀S𝐴 + 𝑀V 

and, 

 

𝑋 =

𝑛1 0 ⋯ 0
0 𝑛2 ⋯ 0
⋮ ⋮ ⋯ ⋮
0 0 ⋯ 𝑛MX

, 𝑑𝑖𝑎𝑔 𝑋 = 𝐸V 

 

At each step we alternate between updating A and En by using the following multiplicative 

update rules: 

𝐴l < −𝐴
𝐸Vh 𝐴h𝑀S

h + 𝑀V
h 𝑀S𝑋

𝑏h𝑀S𝑋
 

 

and, 
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𝐸Vl < −𝐸V
𝐸Vh𝐾h𝐾
𝑏h𝐾

 

after updating both A and En. 

In the tests we performed, iterations were stopped when the following criterion was met: 

𝐸Vl − 𝐸V < 1 ⋅ 10no 
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CHAPTER	3	-	RESULTS	

3.1 Study of Alternative Splicing in SMA 

3.1.1 MNs Generated from SMA Patient iPSCs Present Reduced Cell Survival in 
Culture 

The iPSCs generated from SMA patients and healthy control fibroblasts with non-viral and non-

integrating methods showed pluripotency markers and were able to differentiate into MNs using 

established protocols163 (Figure 3.1A). After 4–5 weeks under differentiation conditions, cells 

were generated that expressed MN-specific transcription factors (TFs), such as spinal cord 

progenitor markers (such as HB9, ISLET1, and OLIG2) and pan-neuronal markers (such as 

TuJ1, Neurofilament, and MAP2). Majority of these HB9/ISLET1-positive neurons expressed 

Choline Acetyl Transferase (ChAT) and were positive for the MN marker SMI-32, demonstrating 

a MN phenotype (Figure 3.1B). The in vitro differentiation protocol yielded mixed cell population 

that also included non-MN cells. Given the limited availability of surface markers to isolate MNs 

and purify them further, we applied a physical strategy based on gradient centrifugation. After 

cells were selected using this method, immunocytochemistry analysis showed that the 

percentage of ChAT + SMI32 + cells derived from healthy control iSPCs (WT-iPSCs) was 

88.4 ± 8.3%, and 87.6 ± 7.7% for cells derived from SMA-iPSCs. Further, astrocytic cells were 

quantified wherein less than 1% of the differentiated cells from iPSCs expressed the astrocyte 

marker GFAP. We also observed that SMA iPSC-derived MNs exhibit reduced survival in long-

term culture, and in this study at 10 weeks, we observed a reduction of MNs number in the 

SMA-iPSC cultures compared with WT-iPSCs (p < 0.001; Figure 3.1C).    
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Figure 3.1: Reprogramming of skin fibroblast cells of SMA-patient and healthy control (WT) into iPSCs and 
their differentiation into MNs using non-viral and non-integrating method.  
A Immunocytochemical characterization of iPSC clones derived from SMA patient (SMA-iPSCs) and healthy control 
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(WT-iPSCs) which expresses pluripotency TF NANOG (‘red’ colored iPSC colonies) and stem cell surface marker 

SSEA3 (‘green’ colored iPSC colonies). B SMA-iPSCs and WT-iPSCs differentiation into spinal MNs expresses MN-

specific markers including SMI32 (‘green’) and ChAT (‘red’). MNs (‘yellow’) shows merging of ‘green’ and ‘red’ colors 

which represents double-positive MNs. C Quantification of MNs at 10 weeks after differentiation from iPSCs show 

reduced number of SMA-iPSCs derived MNs (‘yellow’). with respect to WT-iPSCs derived MNs (‘green’) (one-way 

ANOVA with Tukey’s post hoc test resulting *p < 0.001, 10 weeks).  

3.1.2 Quality of RNA-Seq Samples and Read Mappability  
The sequencing quality of RNA-Seq samples was high, including two SMA-patients and two 

healthy controls with two biological replicates each (Figure 3.2 and Figure 3.3). Total 130-190 

million reads (91 to 94% reads) were uniquely mapped across all samples onto the reference 

genome, revealing high mappability of our samples (Table 3.1). Some reads (4-6%) were 

mapped at multiple genomic locations. Very few percentage of reads (0.3-0.13%) were mapped 

onto too many loci and others remain unmapped (2-3%). The aligned and indexed read files 

were visualized using Integrative Genomic Viewer (IGV)270. Great coherence was shown for the 

read densities (or coverage) within and between the sample conditions (Figure 3.4). 
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Figure 3.2: Box-plots from FastQC quality check for controls RNA-Seq samples. 

The analysis is performed on two control samples with two replicates per sample. Control samples and replicates are 

shown as Control 1-rep1, Control 1-rep2 and Control 2-rep1, Control 2-rep2. Along x-axis and y-axis read per base 

positions and their Phred quality scores are plotted, respectively. Mean of the quality scores is shown with ‘blue’ line 

(showing trend in read quality with an initial rise, then remains constant and finally decline towards the end of the 

read) and Median is shown with ‘red’ line in all samples.  
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Figure 3.3: Box-plots from FastQC quality check for SMA-patient RNA-Seq samples. 

The analysis is performed on two SMA-patient samples with two replicates per sample. SMA-patient samples and 

replicates are shown as Patient 1-rep1, Patient 1-rep2 and SMA-Patient 2 are shown as Patient 2-rep1, Patient 2-

rep2. Along x-axis and y-axis read per base positions and their Phred quality scores are plotted, respectively. Mean 

value for the quality scores is shown with ‘blue’ line and Median is shown with ‘red’ lines in all the samples. 
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Table 3.1: The read alignments from RNA-Seq samples using STAR aligner. 
Column 1 reports the sample condition and biological replicate; column 2 contains tags; in column 3 Total Paired-End 

(PE) reads per sample are given; column 4 contains the total number of uniquely mapped reads onto the reference 

genome; column 5 gives the percentage of uniquely mapped reads, column 6 gives the total number of multi-mapped 

reads with their percentages in column 7. 

RNA-Seq 
Sample 

Tag Total PE Reads Uniquely 
Mapped Reads 

Uniquely 
Mapped 
Reads (%) 

Multi-
Mapping 
Reads 

Multi-
Mapping 
Reads (%) 

Control 1-rep1 C11 139,791,014 130,816,448 93.58 6,044,955 4.32 

Control 1-rep2 C12 209,121,716 192,292,558 91.95 11,266,224 5.39 

Control 2-rep1 C21 205,784,853 192,250,393 93.42 9,307,034 4.52 

Control 2-rep2 C22 166,029,806 155,794,899 93.84 7,291,950 4.39 

Patient1-rep1 P11 156,662,164 146,786,589 93.71 6,469,136 4.13 

Patient1-rep2 P12 193,040,114 178,406,512 92.42 9,178,705 4.75 

Patient2-rep1 P21 159,771,568 145,378,464 90.99 9,188,251 5.75 

Patient2-rep2 P22 168,518,554 152,992,352 90.79 10,886,377 6.46 
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Figure 3.4: Visualization of read coverage with Integrative Genomics Viewer (IGV) at per-base resolution. 

The read coverage is shown for position 6 of exon-7 in SMN1 gene (Cytosine or C; marked with a ‘blue’ line) within 

SMA-patients and controls with their biological replicates. The IGV tracks labeled with C11, C12; C21, C22 represent 

Control 1 and Control 2, respectively; the tracks labeled with P11, P12; P21, P22 represent SMA-patient 1 and SMA-

patient 2, respectively.  

3.1.3 Similarities and Dissimilarities in the Expression Profiles of Two Different 
Biological Conditions 

High-throughput RNA-Seq samples from 2 SMA patients and 2 healthy controls, with 2 

biological replicates each sample, were processed. To investigate the potential relationship in 

terms of overall expression levels within samples (biological replicates) and between samples 

(two different conditions, i.e. patients and controls), we performed the hierarchical clustering by 

calculating the Euclidean distances between gene and isoform expression levels in all samples. 

All 8 samples were found to be clustered in pairs with their own biological replicates as 

expected (Figure 3.5; P11-P12, P21-P22 and C11-C12, C21-C22) which indicated the similarity 

in their expression profiles. Control samples were clustered together that indicated similar 

expression profiles in both controls and within their replicates. Moreover, this cluster was far 

away from SMA-patient-1 which suggested very different expression profiles between two 

different conditions. The control samples cluster was less distant from SMA-patient-2 cluster 



Chapter	3	–	Results	–	Alternative	Splicing	in	SMA	
	

72	
	

(Figure 3.5; cluster containing, P21 and P22), albeit certainly distinct. Clusters containing SMA-

patient-1 (P11 and P12) and SMA-patient-2 (P21 and P22) samples were not clustered together 

that suggested the presence of heterogeneity in SMA-patients. 

 

Figure 3.5: The hierarchical clustering of gene and isoform expression levels in SMA-patients and healthy 
controls and their biological replicates. 

A Clustering dendrogram for Genes expression levels obtained by calculating the Euclidean distances between SMA-

patients and controls using “ward.D” method, B Clustering dendrogram for Isoforms expression levels obtained by 

calculating the Euclidean distances between SMA-patients and controls using “ward.D” method. SMA-patient-1 

replicates correspond to P11, P12; SMA-patient-2 replicates correspond to P21, P22; Control-1 replicates correspond 

to C11, C12; Control-2 replicates correspond to C21, C22. Along the y-axis “Height” represents the distances in 

expression levels (A for Genes, and B for Isoforms) of analyzed samples. 

3.1.4 Correlation in Fold Change Values of Significantly Differentially Expressed 
Genes and Isoforms using Pipeline-I and Pipeline-II 

We were interested in comparing two splice-aware aligners, namely TopHat2 and STAR. Given 

the fact that, Tophat2 and Cufflinks tools together have established a gold-standard for 

analyzing RNA-Seq data, therefore we wanted to investigate if we change the aligner then how 

this will impact the cufflinks results, will they be still coherent or not? In doing so, we designed 
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two workflows: Pipeline-I and Pipeline-II (See Materials and methods: Study-A). To evaluate 

their performance, we compared the outcomes of downstream analysis steps in both pipelines. 

First, we compared the Log2FC values by computing the Pearson correlation (r) coefficient for 

the significantly differentially expressed genes and isoforms (adjusted_p-value or qvalue < 0.01) 

resulted from Cuffdiff2 analysis using both pipelines. We obtained a very strong correlation 

between both pipelines with r = 0.98 for significantly differentially expressed genes (Figure 3.6 
A) and r = 0.99 for significantly differentially expressed isoforms (Figure 3.6 B). This indicated 

that both aligners were equally robust and accurate. STAR aligner was having very high speed 

over TopHat2. Given that our RNA-Seq samples were highly deeply sequenced which took 

much longer in the alignment step with TopHat2 while very less with STAR without losing 

accuracy. Therefore, we opted for STAR over TopHat2. 

 

Figure 3.6: Scatter plots showing correlation between the log2 fold change (Log2FC) values for significantly 
differentially expressed genes and isoforms obtained from cuffdiff2 using Pipeline-I and Pipeline-II.  
A Scatter plot representing Log2FC values (represented with ‘blue’ circles) for significantly differentially expressed 

genes (adjusted_p-value < 0.01) obtained from cuffdiff2 tool applied on Tophat2 (along the x-axis) and STAR 

alignments (along the y-axis)., B Scatter plot representing Log2FC values (represented with ‘green’ circles) for 

significantly differentially expressed isoforms (adjusted_p-value < 0.01) obtained from cuffdiff2 tool applied on 

Tophat2 (along the x-axis) and STAR alignments (along the y-axis).  
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3.1.5 Correlation between two pipelines within fold change values of significantly 
Differentially-Used Exons 

The identification of accurate splice-site junctions (both known and novel) during read alignment 

onto the reference genome is critical for identifying relative changes in the expression at 

individual exon-level between two different conditions. We aligned the reads using two aligners: 

TopHat2 and STAR in order to see the impact of different aligners on the results of DEXSeq 

analysis in pipeline-I and pipeline-II. We compared DEXSeq results obtained from both 

pipelines. In doing so, we selected the significant Differentially-Used Exons with qvalue < 0.01 

and computed the Pearson correlation coefficient for their Log2FC values. We achieved a good 

correlation between them with r = 0.94 (Figure 3.7). Consequently, this has confirmed that both 

aligners have equivalent accuracy in splice-site alignment from RNA-Seq data. We preferred 

STAR for its ultra-high speed over Tophat2. 

 

Figure 3.7: Scatter plot showing correlation between Log2FC values for significantly Differentially –Used 
Exons obtained from DEXSeq tool using pipeline-I and pipeline-II. 
Scatter plot representing Log2FC values (represented with ‘black’ circles) for significantly Differentially–Used Exons 

(adjusted_p-value < 0.01) obtained from DEXSeq tool applied on Tophat2 (along the x-axis) and STAR alignments 

(along the y-axis). 
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3.1.6 Simulation of RNA-Seq Reads 
To evaluate the performance of applied pipeline, we run simulations study on the basis of 

estimated parameters obtained from the real RNA-Seq data. We applied RSEM tool to quantify 

transcript abundances from real-RNA-Seq data and allowed the RSEM-simulator to simulate PE 

reads learned from the real data-based estimated parameters. Simulated PE reads were 

aligned by STAR aligner (see Materials and Methods, Figure 2.3) and transcript expressions 

were quantified using Cuffquant-Cuffnorm programs in pipeline-II. In order to determine the 

correlation between RSEM estimated transcript expressions and expressions estimated from 

simulated reads, we computed the Pearson correlation coefficient between them. We obtained 

correlation coefficient, r = 0.94, that has validated the used analysis pipeline-II (Figure 3.8). 

 

Figure 3.8: A scatter plot showing correlation between expression levels obtained from read simulations 
analyzed by pipeline-II and RSEM quantified isoform expressions. 
The scatter plot (‘red’ line indicates the goodness-of-fit) between the expression estimations obtained from simulated 

PE-reads applying Cuffquant-Cuffnorm (along the y-axis, in logarithmic scale) and RESM based transcript expression 

quantifications (along the x-axis, in logarithmic scale). 

3.1.7 Functional Annotation Analysis: Differentially Expressed Genes (DEGs) 
We performed the gene ontology (GO) enrichment analysis on significant DEGs using DAVID268 

software, to find the correlation between the set of DEGs and key processes implicated in the 

pathobiology of SMA. SMA is primarily a disease of degeneration of MNs in the spinal cord and 
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cause muscular atrophy. In this study, we expected to observe good correlation between the 

significant DEGs and neuromuscular system related processes. Indeed, the enrichment analysis 

provided well supported results in terms of significantly enriched GO terms related to 

neuromuscular systemic processes. 

In the Biological Process (BP) category we found 32 overrepresented GO terms, including 

“regulation of neurotransmitter transport” (GO:0051588), “neuron development” (GO:0048666), 

“neuron differentiation” (GO:0030182), “axon guidance” (GO:0007411), “neuron projection 

development” (GO:0031175), “synaptic transmission” (GO:0007268), “muscle contraction” 

(GO:0006936), “BMP signaling pathway” (GO:0030509), “transmission of nerve impulse” 

(GO:0019226), “axonogenesis” (GO:0007409) and others. These processes highlight the 

essential mechanisms related to the neuromuscular system development and maintenance. 

Additionally, such processes are known to be greatly hampered in SMA pathogenesis, due to 

insufficiency of SMN protein. Moreover, an axon specific isoform of SMN, namely axonal-SMN 

encoding a-SMN protein has been identified. This axon specific SMN protein is localized within 

the axonal structures of MNs in the spinal cord and supports axonogenesis271.  

In the Cellular Component (CC) category, we found 10 significantly enriched GO-terms: 

“synapse” (GO:0045202), “sarcomere” (GO:0030017), “actin cytoskeleton” (GO:0015629), 

“striated muscle thin filament” (GO:0005865), “synapse part” (GO:0044456), “myosin complex” 

(GO:0016459), “presynaptic membrane” (GO:0042734), “synaptosome” (GO:0019717), 

“contractile fiber part” (GO:0044449) and ”focal adhesion” (GO:0005925). The identified terms 

pinpoint the involvement of cellular regions specific for building neuromuscular junctions and 

muscle contraction that are impaired in SMA patients.  

Further, in the Molecular Function (MF) category, we found 7 enriched GO-terms: “actin filament 

binding” (GO:0051015), “cytoskeletal protein binding” (GO:0008092), “calcium ion binding” 

(GO:0005509), “glycosaminoglycan binding” (GO:0005539),” gated channel activity” 

(GO:0022836), “sequence-specific DNA binding” (GO:0043565) and “phosphatidylcholine-sterol 

O-acyltransferase activator activity” (GO:0060228). These functions show the binding of 

essential regulatory factors necessary for carrying out important neuromuscular processes.  

Notably, in the biological pathway enrichment category from functional annotation analysis, we 

found key pathways pivotal for the neuromuscular processes such as “Muscle contraction” and 

“Synaptic Transmission”. We identified “agrPathway:Agrin in Postsynaptic Differentiation” 
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pathway which though remained below significance level (p-value = 0.089) and several genes 

involved in this pathway are known to play essential roles in the development, maintenance and 

maturation of neuromuscular junctions272 such as actin, alpha 1, skeletal muscle (ACTA1), 

epidermal growth factor receptor (EGFR), integrin, beta 1 (ITGB1), jun oncogene (JUN), 

laminin, alpha 3 (LAMA3), neuregulin 2 (NRG2) and paxillin (PXN). 

All overrepresented GO-terms mentioned above have broadly supported the neuromuscular 

system specific processes. The p-values for these ‘significantly enriched GO-terms’ were in the 

range of 1e-3 and 1e-13. Figure 3.9 illustrates all overrepresented GO-terms with their 

statistics. 

To visualize and interpret the gene-set enrichment results obtained from DAVID tool, we used 

Enrichment map plugin in cytoscape software. It is a network based method to effectively 

explore the enrichment analysis results (Figure 3.10). In this map, we presented few enriched 

GO terms resulted from DAVID results which were related with each other through biological 

processes, molecular functions and cellular components. Such as in the central cluster of the 

enrichment map in Figure 3.10 GO terms mainly represent processes related to neuron 

development connected with cell morphogenesis involved in neuron differentiation, neuron 

projection development, axonogenesis and axon guidance. All of these processes are vital for 

the neuron and its projection development (axon), which guide the signal transmission through 

the long axons until the synapse establishment with muscle fibers that exhibit muscles 

contraction and movement133,142,273. Second cluster has covered the specific processes involved 

in the release of neurotransmitters (with the help of calcium ion binding) and to establish the 

synapse formation between presynaptic membrane and postsynaptic membrane on the muscle 

fibers143,274. Specific GO terms related to the regulation of protein transport and protein 

localization across axons and axon terminals are essential for the development and sustenance 

of MNs. Lung development is linked with respiratory system development which is majorly 

impacted in SMA patients due to poor muscle tone92,100,275. These results indicated that our 

identified set of DEGs were enriched in terms which are linked with neuromuscular processes 

that gets disrupted in SMA pathology.  
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Figure 3.9: The functional annotation analysis of significantly ‘DEGS’ (qvalue < 0.05). 

The enriched GO-terms (Biological Process, Cellular Component and Molecular Function) and pathways have 

significant p-value <= 0.05, except agrPAthway/Agrin in Postsynaptic differentiation pathway that has p-value = 

0.089. The horizontal bars represent the “genes count” associated with the particular enriched GO-term or enriched 

pathway. 
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Figure 3.10: Network-based visualization of DEGs enrichment analysis results obtained from DAVID tool 
using Enrichment map (Cytoscape plugin). 

In this map each node is representing the enriched GO term and color of the node indicates the level of GO term 

significance (i.e. darker color ‘deep red’ means higher significance level while lighter color ‘yellow’ indicates low 

significance level, however all the shown GO terms are statistically significant). The size of the node represents the 

number of genes enriched with each GO term. The edge (undirected ‘light blue’ thin lines) between the nodes 

indicates the relationship between enriched GO terms with each other. 
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3.1.8 Functional Annotation Analysis: Differentially-Used Alternative Cassette 
Exons 

We identified the relative changes in the expression at the level of individual exons between 

SMA-patients and healthy controls using DEXSeq247 tool. The selection was restricted for the 

internal alternative cassette exons from the list of DEXSeq resulted exons. Further, on the basis 

of their statistical significances (qvalue < 0.01) we obtained a list of significant Differentially-

Used Alternative Cassette Exons (DUACEs). To annotate the genes corresponding to these 

epurated exons and identify their biological relevance, we performed GO enrichment analysis 

using DAVID268 software. From this analysis, we obtained the specific mechanisms which are 

responsible for overall MNs developmental processes, their maintenance and skeletal muscular 

system development (through interaction between nerves and muscle fibers).  

From DAVID analysis, we identified total 30 significantly overrepresented GO-terms. Out of 

these, 14 GO-terms were represented in the BP category: ”axon cargo transport” 

(GO:0008088), “protein localization in organelle” (GO:0033365), “protein import” (GO:0017038), 

“protein targeting” (GO:0006605), “microtubule-based transport” (GO:0010970), “neuron 

development” (GO:0048666), “neuron projection morphogenesis” (GO:0048812), 

“axonogenesis” (GO:0007409), “regulation of transcription from RNA polymerase II promoter” 

(GO:0006357) and others (Figure 3.11). These terms have highlighted essential mechanisms 

such as axon protein transport in MNs that enhance their survival. SMN protein has been 

studied to play pivotal activities in such transports and its deficiency pinpoints the known 

aspects of disturbances in motoneuron vital axon-protein transport in SMA pathology134,135.  

Eleven GO-terms were overrepresented in CC category, including “microtubule cytoskeleton” 

(GO:0015630),” sarcolemma” (GO:0042383), ”sarcoplasm” (GO:0016528), ”sarcoplasmic 

reticulum” (GO:0016529), ”microtubule” (GO:0005874), ”calcium channel complex” 

(GO:0034704), “neuron projection” (GO:0043005), “axon” (GO:0030424), ”dendrite” 

(GO:0030425), “endoplasmic reticulum membrane” (GO:0005789) and “microtubule associated 

complex” (GO:0005875). These enriched terms are linked to neuron cell specific compartments 

(such as axon and dendrites) and striated muscle cell specific regions (such as sarcoplasm, 

sarcolemma or postsynaptic membrane and sarcoplasmic reticulum). Further, microtubule-

based cytoskeleton structures support the RNA and protein transport from the motoneuron cell 

body (soma) to the axon terminals to establish synapses with the muscle fiber. Given the fact 
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that the distance between MN soma and axon terminal is very large (~ 1 meter) which makes 

the mRNA and protein transport highly challenging and to accomplish this task various cellular 

components and building blocks are engaged. Such as microtubules which plays very important 

role that also interacts with SMN protein to facilitate the transport of specific mRNAs across 

axons until the axon terminals. Lack of adequate levels of SMN protein possibly result in the 

reduction of mRNAs transport that might disrupt the synapse formation between neurons and 

muscles and cause SMA. These results provide promising insights and purport our data-set to 

correlate with SMA pathology and specific mechanisms within neuromuscular system. The GO 

term “endoplasmic reticulum (ER) membrane” was also identified which is consistent with a 

recent study by Lee L. Rubin et al.276, that has highlighted the specific rise of ER stress in SMA, 

causing selective degeneration of motoneurons in SMA pathology276. 

Furthermore, we identified 5 enriched GO-terms in MF category: “microtubule binding” 

(GO:0008017), ”microtubule motor activity” (GO:0003777), “calcium ion binding” (GO:0005509), 

“motor activity” (GO:0003774), and “cytoskeletal” (GO:0008092). They primarily represent the 

protein transport that is mediated by precise binding of the proteins onto the microtubule 

cytoskeleton structures273. The release of calcium ions and their binding has specific roles in the 

release of neurotransmitters from the presynaptic membrane to the postsynaptic membrane for 

the signal transmission from neurons to the muscles277.  

We visualized the GO enrichment analysis results using network based map obtained from 

Enrichment map plugin of Cytoscape (Figure 3.12) where the central cluster represented the 

processes related to the microtubule-based intracellular cargo transport across the axons and 

axon terminals. Other smaller clusters represented the MNs cellular compartments including 

axons and dendrites. A cluster with muscle fibers cellular compartments such as sarcoplasmic 

reticulum, sarcoplasm and sarcolemma.  
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Figure 3.11: The functional annotation analysis of significantly Differentially-Used Alternative Cassette Exons 
(DUACEs; qvalue < 0.05) corresponding genes. 

The enriched GO-terms (Biological Process, Cellular Component and Molecular Function) have significant                 

p-value <= 0.05. The horizontal bars represent the “counts of the genes” associated with the particular enriched GO-

term. 
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Figure 3.12: Network-based visualization of DUACEs enrichment results obtained from DAVID tool using 
Enrichment map (a Cytoscape plugin). 
The terminology of the graph has been kept same as in Figure 3.10. 

3.1.9 Identification of Splicing Regulatory Elements and RNA-Binding Proteins 
Alternative splicing regulation represents a vital aspect of controlled transcriptional activity within 

every eukaryotic cell. The main controllers in this process includes cis-acting splicing regulatory 

elements (SRE; motifs) which acts by recruiting trans-acting splicing regulatory factors. In this 

study, we aimed to identify SREs located within the exonic sequences as ESEs and ESSs; or 

within the intronic sequences as ISEs and ISSs. Specific RNA-Binding Proteins (RBPs) bind on 

these sequence patterns (i.e. SREs or motifs) and regulate exclusion or inclusion of the exon 

within the transcript. The lower levels of SMN protein in SMA pathology might disrupt the 

splicing patterns of the specific set of transcripts by disturbing their SREs which makes them 
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inaccessible for specific RBPs. From the DEXSeq analysis, total 45,483 DEXSeq-ACEs were 

obtained (Figure 3.13), which were divided into two parts: Significant DUACEs and Non-

significant DEXSeq-ACEs. In Significant DUACEs list, we have 859 exons out of which 368 

DUACEs were having enhanced expression and 482 DUACEs were having silenced expression 

in SMA-patients with respect to healthy controls. In non-significant DEXSeq-ACEs list, we have 

5,421 exons which were used as control in the analysis. 

We applied sequence level analysis on the identified set of enhanced and silenced DUACEs 

along with their flanking introns using MEMERIS262. Total 30 motifs were discovered from 6 

sequence files, wherein 3 files were from enhanced DUACEs, their upstream introns and 

downstream introns, 3 files were from silenced DUACEs, with their upstream introns and 

downstream introns. We filtered-out those motifs which were having more than 60% similarity in 

their PSSMs. As a result, 6 unique motifs were selected, having the following consensus: 

“CCTCG”, “TCATC”, “AAGAA”, “ATTTT”, “CCACC”, and “GAAAA”. Further, each sequence file 

was scanned to compute the occurrences of each identified motif using FIMO265 tool by means 

of position specific frequency matrix. Overrepresentation of each motif was compared in all 

sequence files containing enhanced DUACEs, silenced DUACEs and control set of exons with 

their upstream intron and downstream intron sequences, in pairwise manner.  

For instance, occurrences of motif-1 were computed within enhanced-upstream introns 

sequence file and occurrences of motif-1 in silenced-upstream introns sequence file and then 

their occurrences were compared with each other. Similarly, all possible pairwise comparisons 

were performed for each of the 6 motifs occurrences. The statistical significances were obtained 

for the differences of motif occurrences using Wilcoxon non-parametric statistical test. In all 

comparisons, we obtained certain regions with statistically significant differences in their 

occurrences in different condition which suggest overrepresentation of certain motif in one 

region over the another. These results are given in Table 3.2. Further, we computed the 

average occurrences of each motif per sequence length in all sequence files which were 

represented with bar plots in Figure 3.14.  

In order to identify RBPs for the identified set of unique motifs we used TOMTOM tool which 

compare query PSSMs (identified motifs) with target PSSMs (Ray database267). TOMTOM has 

identified 22 similar PSSMs associated with 22 known RBPs in the target database. The 

resulted RBPs are given in Table 3.3. 
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Figure 3.13: Filtration of DEXSeq results to obtain refined set of exons for SREs and RBPs identification. 

See main text for details.  
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Table 3.2: Pairwise overrepresentation comparisons for each motif within Enhanced, Silenced and 
Control sequence databases. 
The significant differences among the analyzed regions for motif enrichment analysis are shown with the 

p-value<0.05. In this table, “#Motif” column represents the corresponding number of the identified motif; 

“Motif Region” column provides the information for the region where the motif was identified and the 

expression level of searched region. The region can be either ‘Exon’, ‘Upstream Intron’ or ‘Downstream 

Intron’ and expression level can be either ‘Enhanced’ or ‘Silenced’. “Seq_Type” column represents the 

region where the given motif (column 1) was scanned. “Motif Occurrences Comparison” column provides 

the pairwise comparisons in their occurrences. For instance, the first row of the table gives the 

comparison between “ctrl-vs-silenced” that means “Control DUACEs Upstream Intron sequence file” and 

“Silenced Exon Upstream Intron sequence file” were scanned for “#Motif 1” and its occurrences were 

compared. For instance, their overrepresentation differences were statistically significant with p-value = 

0.033 (Wilcoxon statistical test).  

#Motif	 Motif	Region	 Seq_Type	 Motif	Occurrences	
Comparison	

Wilcoxon	
test	(p-value)	

1 Silenced	DUACE	Upstream	Intron	 upstream	 ctrl-vs-silenced	 0.032952787	

3 Silenced	DUACE	 upstream	 ctrl-vs-silenced	 0.001653789	

5 Enhanced	DUACE	Upstream	
Intron	

upstream	 ctrl-vs-silenced	 0.023272979	

2 Silenced	DUACE	Upstream	Intron	 upstream	 enhanced-vs-silenced	 0.035851368	

4 Silenced	DUACE	 upstream	 enhanced-vs-silenced	 0.028702714	

1 Silenced	DUACE	Upstream	Intron	 exon	 ctrl-vs-enhanced	 0.001364972	

1 Silenced	DUACE	Upstream	Intron	 exon	 ctrl-vs-silenced	 0.006138266	

2 Silenced	DUACE	Upstream	Intron	 exon	 ctrl-vs-silenced	 0.015140815	

4 Silenced	DUACE	 exon	 ctrl-vs-silenced	 0.029128923	

2 Silenced	DUACE	Upstream	Intron	 exon	 enhanced-vs-silenced	 0.037523772	

1 Silenced	DUACE	Upstream	Intron	 downstream	 ctrl-vs-silenced	 0.022302108	

4 Silenced	DUACE	 downstream	 ctrl-vs-silenced	 0.036428094	

4 Silenced	DUACE	 downstream	 enhanced-vs-silenced	 0.023538089	
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Figure 3.14: Bar plot representing the average occurrences of each motif per sequence length in all 
sequence files. 

Enhanced Upstream Intron (E-up), Silenced Upstream Intron (S-up), and Control Upstream Intron (C-up); Enhanced 

DUACE (E-exon), Silenced DUACE (S-exon), and Control (C-exon); Enhanced Downstream Intron (E-dwn), Silenced 

Downstream Intron (S-dwn), and Control Downstream Intron (C-dwn) are represented along the x-axis of each bar 

with average occurrence of each motif per sequence length along the y-axis. 
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Table 3.3: Identified set of RNA Binding Proteins (RBPs). 
In this table, the first column “#Motif” gives the information of identified motif; the second column “Query 

ID” represents the region and condition where the motif was identified; third column ‘Target ID’ represents 

the RBP ID in the target database; fourth column ‘RBP’ gives the Protein ID; fifth column gives the protein 

full names; and sixth column provides the significances of the identified RBPs with p-value <0.05. 

#Motif Query ID Target ID RBP Protein Full Name p-value 

1 Silenced DUACE 
Upstream Intron 

RNCMPT00045 PPRC1 Peroxisome proliferator-activated 
receptor gamma coactivator-related 
protein 1 

0.0465279 

2 Silenced DUACE 
Upstream Intron 

RNCMPT00083 YBX1 Y-box-binding protein 1 0.0507951 

3 Silenced DUACE  RNCMPT00019 SRSF10 Serine/arginine-rich splicing factor 10 0.0281991 

3 Silenced DUACE RNCMPT00043 PABPC4 Polyadenylate-binding protein 
cytoplasmic 4 

0.0421641 

4 Silenced DUACE RNCMPT00025 HNRNPC Heterogeneous nuclear 
ribonucleoproteins C1/C2 

0.0026912 

4 Silenced DUACE RNCMPT00167 HNRNPCL1 heterogeneous nuclear ribonucleoprotein 
C-like 1 

0.0038673 

4 Silenced DUACE RNCMPT00032 HuR ELAV-like protein 1 or human antigen R 0.0069628 

4 Silenced DUACE RNCMPT00012 CPEB2 Cytoplasmic polyadenylation element-
binding protein 4 

0.0196742 

4 Silenced DUACE  RNCMPT00269 PTBP1 Polypyrimidine tract-binding protein 1 0.0209912 

4 Silenced DUACE  RNCMPT00165 TIA1  TIA1 cytotoxic granule-associated RNA 
binding protein 

0.0247981 

4 Silenced DUACE  RNCMPT00159 RALY RALY heterogeneous nuclear 
ribonucleoprotein 

0.0330535 

4 Silenced DUACE  RNCMPT00079 U2AF2 U2 small nuclear RNA auxiliary factor 2 0.0350781 

4 Silenced DUACE  RNCMPT00158 CPEB4 Cytoplasmic polyadenylation element-
binding protein 4 

0.0372912 

5 Enhanced DUACE 
Upstream Intron 

RNCMPT00026 HNRNPK Heterogeneous nuclear 
ribonucleoprotein K 

0.0491327 

6 Enhanced DUACE  RNCMPT00153 PABPC3 Polyadenylate-binding protein 
cytoplasmic 3 

0.0031335 

6 Enhanced DUACE  RNCMPT00171 PABPC5 Polyadenylate-binding protein 
cytoplasmic 5 

0.0031335 

6 Enhanced DUACE  RNCMPT00064 SART3 Squamous cell carcinoma antigen 
recognized by T-cells 3 

0.0048223 

6 Enhanced DUACE  RNCMPT00155 PABPC1 Polyadenylate-binding protein 
cytoplasmic 1 

0.0048223 
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6 Enhanced DUACE  RNCMPT00157 PABPN1 Polyadenylate-binding protein nuclear 1 0.0205277 

6 Enhanced DUACE  RNCMPT00043 PABPC4 Polyadenylate-binding protein 
cytoplasmic 4 

0.0249685 

6 Enhanced DUACE  RNCMPT00019 SRSF10  Serine/arginine-rich splicing factor 10 0.0281991 

6 Enhanced DUACE  RNCMPT00169 KHDRBS1 KH domain-containing, RNA-binding, 
signal transduction-associated protein 1 

0.0431269 
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3.2 Development of Computational Model to Estimate Transcript Expression 

3.2.1 Total RNA-Seq Strand Specific Data 
To examine the robustness and accuracy of our model, we downloaded the publicly available 

strand specific total RNA-Seq data with paired-end (PE) reads from NCBI Sequence Read 

Archive repository under accession SRP043027 (http://www.ncbi.nlm.nih.gov/Traces/sra/). We 

selected one deeply sequenced sample with four biological replicates (Strand specific 

U2OS_RZSS_R1-R4) under this experiment278. The library preparation was performed by using 

Illumina TruSeq kit and sequenced on Illumina HiSeq 2000 platform with 100bp read length in 

PE mode. Total sequenced library sizes range from 210-260 Million PE reads.  

We assessed the quality of raw data with FastQC program218 and trimmed the poor quality 

bases using TrimGalore application 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). The trimmed reads were re-

assessed for final quality check before the subsequent analysis. In TrimGalore, we used the 

following parameters: “--paired”, “--phred33”, “--fastqc”, “--illumina”, “--gzip”. Where, “--paired” 

option gives the sequencing mode information that is PE in our data. “--phred33” encodes for 

the Phred quality score from Illumina sequencer where the quality scores range from 33-126 in 

ACSII characters. “--fastqc” commands for an automatic quality check after the completion of 

trimming procedure. “--illumina” gives the information for the used sequencer (such as Illumina 

for our samples). “--gzip” option performs the compression of the processed files. 

The pre-processed samples were aligned using STAR aligner236. The uniquely mapped reads 

were processed while multi-loci mapped reads were discarded. Total 165-185 Million PE reads 

(~ 80%) were uniquely mapped onto the reference genome (hg19). 

Further, we performed the transcriptome assembly using the aligned samples in order to build 

the sample-specific transcript assemblies. The Cufflinks tool240 was applied on each of the four 

aligned samples and obtained four sample-specific transcript assemblies, stored in Gene 

Transfer Format (GTF). Consequently, the individual sample transcript assemblies were merged 

into single master transcriptome GTF assembly by applying Cuffmerge tool.  
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3.2.2 Analysis of Gene Loci with Our Model 
We randomly selected a list of gene loci from the gene annotation file with transcript and exon 

coordinate information. The designed model can be applied on complete set of the genes 

present in an annotation file we provided, or individual gene can be analyzed by specifying its 

gene locus. We analyzed several gene loci and here we have presented the results of 8 genes 

with variable complexity in their number of exons, number of possible isoform paths, TSS (either 

same or different across plausible isoforms) and AS events (Table 3.4). If PE reads alignment 

(in a fragment) extend across the given original genomic coordinates, then in those cases 

fragments were counted within the extended genomic interval. For each gene locus (in Table 
3.4), its original genomic coordinates were provided to the exon-intron junction finding program 

(in the model) which provide its corresponding extended genomic interval and then calculate the 

number of supporting junctions from the aligned fragments (i.e. PE reads aligning across splice 

site junctions) in the data. For instance, in PAQR8 gene locus, the beginning position within the 

original genomic coordinates (Chr6:52226219-52272575) got extended (downstream for the 

genes with plus strand) from Chr6:52226219 to Chr6:52142695 while the ending position 

remain same. In BPGM gene locus, ending position within the original genomic coordinates 

(Chr7:134331560-134594387) got extended from Chr7:134364565 to Chr7: 134594387 

(upstream) while beginning position remain unchanged. In SNRPC gene locus, both beginning 

and ending positons within the original genomic coordinate (Chr6:34725183-34741571) got 

extended (Chr6:34423975-34842151) and in FAM46C gene locus, the original coordinates 

(Chr1:118148556-118170994) remain unchanged. 

Table 3.4: A list of processed gene loci. 
Each gene locus is given with its corresponding Gene Id; Gene Locus; Extended Interval; Number of 

plausible isoform paths and Strand.  

# Gene Id Gene Locus Extended Interval 
Number of 
Plausible 

Isoform paths 
Strand 

1 FAM46C Chr1:118148556-118170994 Chr1:118148556-118170994 1 Plus 

2 PAQR8 Chr6:52226219-52272575 Chr6:52142695-52272575 3 Plus 

3 BPGM Chr7:134331560-134364565 Chr7:134331560-134594387 4 Plus 
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4 SNRPC Chr6:34725183-34741571 Chr6:34423975-34842151 4 Plus 

5 LSM6 Chr4:147096837-147121152 Chr4:147096837-147121152 7 Plus 

6 FOSB Chr19:45971253-45978437 Chr19:45771161-45982034 11 Plus 

7 TEP1 Chr14:20833826-20881588 Chr14:20808516-20881588 11 Minus 

8 POT1 Chr7:124462440-124570067 Chr7:124462440-124570212 20 Minus 

 

3.2.3 Isoforms Re-construction for Each Gene Locus 
For a given gene locus, the isoform paths were re-constructed using both exon-intron junction 

information that was supported by the total RNA-Seq data and the information obtained from 

Cufflinks annotated isoform paths. The purpose of combining both information was to consider 

only those paths which were annotated and also well-supported by the real data. For instance, if 

some path was annotated within Cufflinks transcriptome annotations but missing in total RNA-

Seq data then, in that case we chose to exclude that isoform path from our list. By doing so, the 

isoform path selection became more efficient through the reduction of unrealistic isoform paths 

as compared to keeping all the possible exon-intron combinations. The presented gene loci 

(Table 3.4) with varying number of isoform paths that range from 1-20 helped us to examine the 

efficiency of our model (with increased complexity in gene loci) in the expression estimation of 

each isoform path within all gene loci. In simplistic case like FAM46C gene, mature and nascent 

probability profiles were computed for one isoform path while in the complex cases like POT1 

these profiles were computed for 20 isoform paths at per base resolution. 

3.2.4 Fragment Length Distribution and Transcript Profile Generation 
As the first step, we determined the distribution of relative frequencies for all the fragment 

lengths from total RNA-Seq data, wherein the maximum length of the fragment was 500bp and 

most frequently obtained fragments were of ~100bp length (Figure 3.15). By using relative 

frequencies from the fragment length distribution profile along with annotation based isoform 

structures, the mature and nascent probability profiles for each isoform in our dataset were 

computed. Wherein mature transcript probability profile describes the probability of observing a 

fragment of any length at each position along the transcript within a given gene locus. In the 

mature transcripts, these probabilities got affected by the distance from the transcript borders 
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which can be seen in the example of SNRPC gene (Figure 3.17C) where fragment length 

probability values progressively increase from the transcript start position until the given length 

of the fragment has reached and then it became constant and finally started to decrease 

progressively towards the end of the transcript (for details see Materials and Methods 
section 2.2.6.1). The nascent transcript probability profiles give the equal probability of 

observing any of the partial transcripts in the data library. In the nascent transcript probability 

profile, the read coverage across exons in partial transcripts got accumulated (estimated read 

coverages as peaks indicated in Figure 3.17D) while each unspliced intron along the partial 

transcript acquire unique probability profile (estimated read coverages as saw-tooth shapes 

indicated in Figure 3.17D) due to co-transcriptional splicing phenomenon.  

 

Figure 3.15: A fragment length distribution from total RNA-Seq data. 

Along the x-axis fragment lengths are plotted with their relative frequencies on the y-axis from total RNA-Seq data. 

3.2.5 Expression Estimation 
We applied our model to each gene locus in our dataset and estimated the expression of each 

transcript (including mature and nascent transcription contributions) which best approximated 

the observed expression in the data. Iteration stopping threshold was set to 1 * 10-3. 

Convergence was reached for all loci in a reasonable CPU time. In Figure 3.16 the 

convergence criterion (expressed in logarithmic scale) and the overall distance between our 
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coverage estimate and the measured one are reported for each iteration step. The number of 

iterations before convergence varied between 70 and 2500. The overall residual distance 

resulted always stable after relatively few iteration and well before convergence is reached. In 

Table 3.5 we reported the results for gene loci we analyzed as well as the cufflinks FPKMs for 

comparison. The modeled expression estimates for mature and nascent transcripts with the 

observed read coverage have been represented for SNRPC gene in Figure 3.17. Wherein total 

estimated read coverage give the contributions of both mature and nascent transcription 

together which can be directly compared to the observed read coverage. In the result shown in 

Figure 3.17, total estimated read coverage was approximately equivalent to the observed read 

coverage as represented in the plots Figure 3.17A and Figure 3.17B. The contribution of 

mature transcription to the total estimated read coverage has been shown in Figure 3.17C 
likewise the contribution of nascent transcription to the total estimated read coverage has been 

shown in Figure 3.17D.  
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Figure 3.16: Scatter plots representing the speed of convergence and distance between the initial and 
minimal value obtained at successful convergence. 
From A through E five genes with gene symbols FAM46C, PAQR8, BPGM, SNRPC and POT1 have been 

represented wherein convergence speed is measured at each iteration step by computing the norm of difference 

between the two consecutive estimated expression values plotted as an iteration error (y-axis) for each iteration (x-

axis) (shown with empty squares in ‘green’ color on the left-hand side plots for every gene). The distance or residual 

distance indicates the difference between the estimated expression value and observed expression value at each 

iteration step until the minimal distance is achieved upon successful convergence. This distance has been plotted 

along the y-axis with each iteration step on the x-axis (shown with empty diamonds in ‘red’ on the right-hand side 

plots for every gene). 
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Figure 3.17: Modeled read coverages and observed read coverages for SNRPC gene locus from total RNA-
Seq data. 
A Plot represents the observed read coverage (total RNA-Seq data, y-axis in logarithmic scale) at per-base resolution 

(x-axis) for SNRPC gene locus. B Plot represents the total estimated read coverage (y-axis in logarithmic scale) 

contributed from mature and nascent RNA transcription at per-base resolution (x-axis). C Plot represents the 

contribution from estimated expression of mature RNA transcription (‘Mature’ on y-axis in logarithmic scale) at per-

base resolution (x-axis). D Plot represents the contribution from estimated nascent RNA transcription (‘Nascent’ on y-

axis in logarithmic scale) at per-base resolution (x-axis). 
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3.2.6 Generation of BED files and Visualization in the Genome Browser  
After the successful application of the model to each gene locus, we generated BED files. 

These files were visualized using Integrative Genome Viewer (IGV)270 (Figure 3.18). The re-

constructed isoform paths were consistent with the annotated isoforms in the known gene 

annotations. In the results, every modeled transcript was annotated with three estimated 

measures: Mature RNA estimate (M), Nascent RNA estimate (N) and α, where α is the ratio 

between mature and nascent RNA estimates which give the account for accumulated mature 

transcript expression. As the contribution of mature RNA transcription is dependent upon the 

number of nascent transcripts (which make our computational model non-linear), the estimate of 

mature transcript was given by the multiplication of nascent transcript estimate and α.  
 

Figure 3.18: Visualization of modeled SNRPC gene locus on IGV. 

The SNRPC gene has 4 isoforms as shown in the annotations (exons are represented with ‘blue’ thick boxes and 

introns are represented with ‘blue’ thin lines in forward direction). Below each isoform its corresponding ensembl 

transcript ID has been reported. Observed read coverage track (represented with ‘grey’ peaks) have been reported 

which represents the total aligned read density within the given locus. Splice site junctions are also shown within 

each exon and intron boundaries (represented with ‘brown’ bands), which are supported by read alignments along 

the splice site junctions in read alignment file. Our modeled isoforms are shown in the detected paths panel (exons 

are represented as ‘red’ thick boxes and introns are represented as ‘’red’ thin lines in forward direction). Below each 

detected isoform, 3 comma separated values have been given, wherein first value is for mature RNA estimate (M), 

second value is for Nascent RNA (N) and third value gives alpha (M/N) in the model. For SNRPC isoform-1 estimated 

expression for mature transcript is 1352.51, for nascent transcript is 10.44 with alpha 129.54. In isoform-2 estimated 
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expression for mature transcript is 531.75, for nascent transcript is 1.71 with alpha 310.87. In isoform-3 expression 

for mature transcript is 164.95, for nascent transcript is 1.54 with alpha 106.93. In Isoform-4, expression for mature 

transcript is 37.37, for nascent transcript is 79.40 with alpha 0.47. 

 

Table 3.5: The expression estimations of the mature (M) and nascent (N) with alpha (a ratio 
between M and N) in 8 analyzed gene loci with variable number of plausible isoform paths. 

# Gene Symbol 
and Transcript Id 

Gene and Transcript 
coordinates 

Isoform 
paths 

M N alpha 
Cufflinks 

FPKM 

1 FAM46C chr1:118148556-
118170994 

1 

    

 ENST00000369448.3 chr1:118148556-118170994  3.12E+001 8.36E+000 3.74E+000 1.87382 

        

2 PAQR8 Chr6:52226219-52272575 3     

 ENST00000512121.1 chr6:52226219-52268347  4.90E+000 1.42E-001 3.44E+001 0 

 ENST00000442253.2 chr6:52226926-52272575  2.49E+001 3.30E+000 7.54E+000 1.49633 

 ENST00000360726.3 chr6:52227244-52272489  1.31E-001 5.03E-002 2.60E+000 0 

        

3 BPGM 

Chr7:134331560-
134364565 4     

 ENST00000344924.3 chr7:134331560-134364565  5.81E+001 2.33E+000 2.49E+001 3.42405 

 ENST00000418040.1 chr7:134331563-134364560  1.74E-003 7.56E-004 2.31E+000 0 

 ENST00000393132.2 chr7:134331583-134364565  2.13E-004 5.39E+000 3.96E-005 0 

 ENST00000443095.1 chr7:134345173-134346493  5.63E+000 5.80E-002 9.70E+001 0 

        

4 SNRPC chr6:34725183-34741571 4     

 ENST00000244520.5 chr6:34725183-34741571  1.35E+003 1.04E+001 1.30E+002 113.989 

 ENST00000374018.1 chr6:34725302-34741491  5.32E+002 1.71E+000 3.11E+002 0 

 ENST00000374017.3 chr6:34725331-34741571  1.65E+002 1.54E+000 1.07E+002 0 
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 ENST00000474635.1 chr6:34725689-34741309  3.74E+001 7.94E+001 4.71E-001 0 

        

5 LSM6 

Chr4:147096837-
147121152 7     

 ENST00000296581.5 chr4:147096837-147111196  4.68E+001 2.94E+001 1.59E+000 0 

 ENST00000515311.1 chr4:147096855-147121152  3.47E+002 1.84E+001 1.89E+001 29.6428 

 ENST00000503982.1 chr4:147096879-147104798  3.21E+001 1.10E-001 2.93E+002 0 

 ENST00000502781.1 chr4:147096881-147111198  1.26E+001 2.28E+000 5.51E+000 4.13649 

 ENST00000504181.1 chr4:147096900-147111339  9.42E-104 7.15E-089 1.32E-015 0 

 ENST00000510331.1 chr4:147096922-147097838  6.02E+000 5.81E+001 1.04E-001 0 

 ENST00000507449.1 chr4:147104075-147108703  1.01E+002 1.24E-001 8.12E+002 0 

        

6 FOSB Chr19:45971253-45978437 11     

 ENST00000443841.2 chr19:45971253-45978436  5.30E-025 8.45E-022 6.28E-004 0 

 ENST00000417353.2 chr19:45971253-45978436  1.16E-006 9.66E-004 1.20E-003 0 

 ENST00000585836.1 chr19:45971253-45978436  1.13E+000 6.56E-001 1.72E+000 0 

 ENST00000353609.3 chr19:45971253-45978436  1.48E-014 4.02E-002 3.68E-013 0 

 ENST00000591858.1 chr19:45971253-45978436  6.51E-011 3.52E+000 1.85E-011 0 

 ENST00000590335.1 chr19:45971254-45975339  1.22E+000 8.92E+000 1.36E-001 0 

 ENST00000592436.1 chr19:45971693-45976298  8.61E-054 2.57E-041 3.35E-013 0 

 ENST00000592811.1 chr19:45973134-45977855  7.76E-138 2.47E-122 3.14E-016 0 

 ENST00000586615.1 chr19:45973171-45978437  3.60E-145 5.69E-132 6.33E-014 0 

 ENST00000589593.1 chr19:45973523-45975811  2.91E-090 7.56E-084 3.85E-007 0 

 ENST00000587358.1 chr19:45974337-45976325  1.56E-168 1.14E-161 1.36E-007 0 

        

7 TEP1 Chr14:20833826-20881588 11     
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 ENST00000553365.1 chr14:20833826-20841259  7.55E-013 2.69E-001 2.81E-012 0 

 ENST00000262715.5 chr14:20833826-20881580  3.30E-001 2.32E-002 1.43E+001 3.18327 

 ENST00000555008.1 chr14:20835790-20859904  1.93E-001 1.27E-002 1.52E+001 0 

 ENST00000556935.1 chr14:20836553-20881579  5.43E-009 8.37E-006 6.49E-004 0 

 ENST00000555727.1 chr14:20836553-20881578  9.52E-001 1.74E-001 5.47E+000 4.772 

 ENST00000553984.1 chr14:20837526-20841239  7.60E-020 8.89E-001 8.55E-020 0 

 ENST00000545983.1 chr14:20839677-20850421  7.11E-034 6.86E-026 1.04E-008 0 

 ENST00000556488.1 chr14:20841666-20846368  6.67E-001 4.07E-002 1.64E+001 0 

 ENST00000471684.2 chr14:20841943-20846203  9.22E-059 6.50E-047 1.42E-012 0 

 ENST00000557627.1 chr14:20868826-20872016  8.61E-019 1.42E-001 6.08E-018 0 

 ENST00000556549.1 chr14:20876101-20881588  1.85E+000 6.05E-002 3.06E+001 0 

        

8 POT1 

Chr7:124462440-
124570067 20     

 ENST00000430927.1 chr7:124462440-124467304  5.22E-001 8.98E-002 5.82E+000 0 

 CUFF.12817.2 chr7:124462440-124570067  1.28E-002 4.54E-003 2.83E+000 0 

 ENST00000357628.3 chr7:124462440-124570035  7.07E-002 1.53E-002 4.61E+000 0.98168 

 ENST00000393329.1 chr7:124462441-124570037  1.03E-001 1.63E-002 6.33E+000 1.39618 

 ENST00000436534.1 chr7:124462455-124469396  8.85E-169 6.68E-082 1.33E-087 0 

 ENST00000609106.1 chr7:124463910-124569856  1.78E-017 1.11E-011 1.60E-006 1.25495 

 ENST00000608057.1 chr7:124464016-124537238  1.73E-017 3.83E-011 4.51E-007 0 

 ENST00000607932.1 chr7:124464016-124537238  2.67E-015 1.25E-009 2.14E-006 0 

 ENST00000608200.1 chr7:124480710-124482886  1.71E-001 8.56E-003 2.00E+001 0 

 ENST00000466483.1 chr7:124481035-124483303  1.43E-001 1.28E-001 1.12E+000 0 

 ENST00000610141.1 chr7:124491862-124499104  1.38E-067 4.51E-046 3.05E-022 0 

 ENST00000608126.1 chr7:124491980-124493581  0 3.17E-001 0 0 
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 ENST00000487564.1 chr7:124498835-124503439  2.42E-001 2.36E-002 1.02E+001 0 

 ENST00000429326.1 chr7:124499032-124537256  2.06E+000 5.39E-002 3.82E+001 0 

 ENST00000446993.1 chr7:124510973-124569998  1.74E-031 1.49E-029 1.17E-002 0 

 ENST00000609702.1 chr7:124510999-124569881  8.45E-003 3.11E-004 2.72E+001 0 

 ENST00000608261.1 chr7:124532320-124569879  3.50E-001 1.01E-002 3.45E+001 0 

 ENST00000608437.1 chr7:124532756-124569879  2.31E-006 2.22E-007 1.04E+001 0 

 ENST00000461288.1 chr7:124538315-124569856  9.92E-001 7.28E-003 1.36E+002 0 

 ENST00000464453.1 chr7:124568975-124569840  4.79E-004 6.58E-002 7.29E-003 0 
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CHAPTER	4	–	DISCUSSION	

4.1 Study of Alternative Splicing in SMA 
Lack of SMN protein leads to a fatal neurodegenerative disorder: SMA. This fact suggests 

highly important role of SMN protein in the MNs, coupled with its ubiquitous role in snRNPs 

biogenesis and spliceosome assembly. In our study, we focused our attention to investigate on 

the AS mechanisms within MNs, which might get disrupted due to the loss of SMN protein. In 

particular, our hypothesis states that, the loss of SMN protein might impact the ‘AS patterns’ of 

specific set of genes (which are probably linked with the survival of alpha-motor neuron cells in 

the spinal cord) and most importantly its loss might cause the drop in mRNAs transport within 

the axons of MNs.  

Here, we have identified higher percentage of significantly down-regulated genes (58%) than 

up-regulated genes (42%), in SMA-patients with respect to healthy controls. This is expected to 

observe the down expression of the genes in SMA-patients, but it is in the disagreement with 

Rubin et al. work287. RBPs have been shown to interact with SMN protein and such RNA-protein 

interactions contribute to the enhanced mRNA stabilization within the cytoplasm which extend 

their life span and expression within the cell279. In general, Poly-A Binding Proteins (PABPs) 

binds on mRNA to stabilize them and moreover, they are potential SMN protein interactions 

within MNs279. In our results, we identified 5 PABP family RBPs out of 22 significantly enriched 

RBPs namely, PABPC1, PABPC3, PABPC4, PABPC5, PABPN1 (Table 2.4). These RBPs have 

been shown in earlier studies to enhance the mRNA stability until translation is initiated279–284. In 

healthy controls due to presence of normal SMN protein levels, SMN-specific RBPs interacts 

with it and successfully form a stable RNA-protein complex with the processed mRNA. As a 

result, the overall gene/transcript expression levels remain sufficiently high which has also been 

observed in our samples. Conversely in SMA, due to the lower levels of SMN protein, SMN-

specific RBPs cannot interact with it, which might cause the destabilization of RNA-protein 

complex. Consequently, processed mRNA in MNs of SMA-patients tend to degrade 

comparatively early, effecting their overall expression levels, as also indicated in our results.  

Our results from exon-centric analysis has identified approximately similar proportions of 

silenced exons (57%) and enhanced exons (43%) in SMA patients with respect to healthy 

controls, as obtained from DEG analysis. Here, we assume that the alternative splicing 

regulatory mechanisms responsible for the selection of certain splice sites (to perform

 exon inclusion) within a transcript may get mis-regulated due to SMN protein deficiency, which 

plays an essential role in the assembly of splicing machinery. 
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Further, results from our functional annotation analysis has revealed several key regulatory 

processes specific to neuromuscular system development and maintenance. Interestingly, we 

have found several over-represented terms having direct associations with the key regulatory 

mechanisms of motor neuron axon, protein transport and localization towards the end terminals 

of axons to facilitate their growth. These facts have been previously validated by many 

experimental studies in SMA animal models133–136,138,145,285, describing the importance of SMN 

protein in transport activities within motor neurons. SMN protein has been shown to actively 

interact and associate with the cytoskeleton (neurofilaments) of motor neurons to aid such axon 

cargo transportation that is essential for the development/growth of axons and ultimately 

sustenance of motor neuron cells. While their impaired association has been observed in SMA 

pathogenesis136. We obtained similar terms related to microtubule-based movement of mRNA 

and proteins which are also supported by actin filament binding. Further, Giavazzi and 

colleagues have observed the specific rise of SMN protein levels during the development stages 

of human central nervous system, specifically in the process of axonogenesis and axon 

sprouting273. We have also identified biological processes linked with neuron development and 

axonogenesis in our analysis. Furthermore, an enrichment of cytosolic calcium ion homeostasis 

was also found, which is consistent with a study published by Ruiz et al.277, determining the 

abnormal accumulation of the calcium ions in nerve fiber terminals of SMA mouse models with 

respect to their control experiments. An interesting study by Kong and colleagues143 has 

determined the specific reduction of synaptic vesicles in SMA mice model which impact the 

neurotransmission across pre-synaptic terminals and affect NMJs maturation. These findings 

corroborate our results, reporting the enrichment of mis-regulated genes involved in impulse 

transmission coupled with neurotransmitter release and its regulation. Recently, a study by 

Rubin and colleagues276 has identified the “hyperactivation of ER stress pathway”, resulting into 

motor neurons degeneration in SMA patients with respect to healthy controls. Consistent to this, 

we have also found enrichment of gene related to endoplasmic reticulum membrane in our data. 

Many authors140–144,153 have worked upon finding the responsible mechanisms behind NMJs 

disruptions in SMA pathology and the role of agrin protein have been highlighted for proper 

NMJs development and their maturation during synapse establishment. In SMA pathology, the 

expression levels of agrin are found to be greatly reduced, resulting in NMJs impaired 

physiology274. In agreement to these finding, we have identified agrin pathway in our analysis, 

but below the significance levels.  
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From our motif analysis study, the identified a significant set of PABP family RBPs have been 

observed to bind on similar cis-acting binding site (Motif 6) localized within enhanced DUACE 

sequences. This finding supports the idea of preferential role of mRNA and RBPs interactions, 

contributing to mRNA stabilization within cytoplasm and protection from any possible 

degradations (such as mRNA uridylation) until translation is initiated286. Furthermore, in SMA-

patients, HNRNPCL1 RBP has been found to be significantly under-expressed with respect to 

the controls. In our results, this protein has been identified to bind within silenced DUACE 

sequences, that might indicate the negative regulation of AS mechanisms in SMA-patients. 

However, till date, no specific study has investigated in-depth the splice site selection regulatory 

mechanisms for this protein. The identified HNRNPC RBP is known to mediate the exon 

skipping by binding to YBX-1 and HNRNPL splicing factors. YBX-1 RBP also has a role in the 

AS regulation of pre-mRNA. Another study by Nasrin et al.287 has reported the exon-10 skipping 

event in Muscle specific Receptor tyrosine Kinase (MuSK), a postsynaptic transmembrane 

molecule, due to the up-regulation of YBX-1, HNRNPL and HNRNPC trans-acting splicing 

factors. Akten and colleagues have reported SMN-HuD (Hu Antigen D or ELAV Like Neuron-

Specific RNA Binding Protein 4 or ELAVL4 complex) interaction with CPG15 protein (alias 

Neuritin 1 or NRN1) that mediates the axon growth in MNs288. Interestingly, in our data we have 

observed nearly no expression for NRN1 gene (near zero read coverage) in SMA-patient1 

samples (P11 and P12). Further, in this context we have identified another Hu family RBP, 

namely HuR which has been demonstrated in many studies to be involved in mRNA 

stabilization by binding specifically to AU-rich elements (ARE) present within 3’-UTR of the 

transcripts. Farooq and colleagues have exploited HuR RBP for enhancing the SMN-mRNA 

stabilization and SMN protein expression regulations289. HuR is also known to interact with 

acetylcholinesterase (AChE) during the differentiation and development of muscles 

(myogenesis)290–292.  

Earlier work by Storbeck et al. has identified SRSF10 (isoform 1) as a ‘splicing enhancer’ trans-

acting factor which specifically recognizes and binds to the GAA-rich regions within mRNA293. 

This SR family splicing factor has been shown to revert the AS pattern of SMN2 gene towards 

the formation of full-length SMN transcripts by enhancing the inclusion of exon-7294. The positive 

activity of SRSF10 has offered potential therapeutic benefits to SMA-patients by significantly 

increasing the levels of functional SMN protein295,296. Here, similar to these previous findings, we 

have identified SRSF10 RBP which pinpoints its relevance in SMA pathogenesis. 
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Additionally, our RNA-Seq data have revealed the clear distinction for the expression level of 

SMN1 gene between SMA patients and controls; specifically, SMA patients have no read 

coverage within exon-7 at nucleotide position 6 (Figure 3.4 in Chapter 3 - Results section 
3.1.2). This indicates the great reliability of the procedure being used for the generation of MNs, 

specific to SMA patients and healthy controls, using iPSC technology that has added a great 

potential to identify patient specific targets for such complex neurodegenerative disorders. 

Further, we obtained consistent variability in the overall expression levels of genes and isoforms 

within and between biological replicate samples from SMA-patients and controls (Figure 3.5 in 

Chapter 3 - Results section 3.1.5), which supports our data and analysis procedure.  

In future, the significant set of RBPs we have identified requires subsequent wet-lab 

experimental validations to determine their exact binding sites within mRNA, which guides the 

selection of specific splice-sites during pre-mRNA splicing. UV cross-linking and 

immunoprecipitation (CLIP) method68 and individual nucleotide resolution CLIP (iCLIP) 

method297 has been introduced to determine RNA-RBP interactions and to identify exact binding 

sites of RBPs on pre-mRNA. In this study, RNA samples were poly-A selected which restricts 

the analysis for mature mRNA only, therefore in future experimental plans, total RNA-

Sequencing of the samples should be performed. The data generated from total RNA-

Sequencing can be analyzed in detail using the computational model we have developed in 

Study-B which has a potential to precisely estimate the transcript expression level in a given 

gene locus and effectively detect differential splicing events between two conditions. 
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4.2 Development of Computational Model to Estimate Transcript Expression 
In this study, we have presented a non-linear model for estimating the expression levels of each 

transcript within a given gene locus by disentangling the contributions of mature and nascent 

RNA transcription at a steady-state. Given the high complexity within gene loci, we assume that 

by quantifying these two phenomenon, the precise weightage of each possible transcript for a 

gene can be estimated from total RNA-Seq data. The mature RNA measures are dependent 

upon the nascent RNA levels which make the system non-linear while estimating their 

contributions in a given gene locus.  

In the comparison study of estimated expression values from our model with cufflinks quantified 

FPKM expressions in analyzed genes, we found most of the isoforms which have higher 

expression estimate in our model also remains consistent with the expressions obtained from 

cufflinks tool (corresponding isoforms are represented with ‘grey’ highlighted rows in Table 3.5). 

To further verify the accuracy of our modeled estimations we would like to set up simulation 

experiments to compare the estimated expressions with simulated read expressions. The 

simulation of nascent transcripts is rather complex than simulating only mature transcripts. This 

is because in nascent transcripts two mechanisms has to be considered side-by-side that are 

on-going transcription and partially spliced regions of transcribing transcript after every step of 

complete transcription of single intron and its neighboring exons. More specific techniques are 

available to measure the nascent transcription of cells, giving the account of transcriptional 

activity. Such as Global Run-On (GRO) Seq298 and RNA Polymerase II (RNA-II) Chip-Seq299,300, 

which can be run in parallel to compare the obtained expression estimations with our modeled 

estimations.  

Further, we would also like to apply our method without providing any gene annotations by the 

combination of approach of Directed Acyclic Graphs (DAGs) and exon-intron junction 

information from the total RNA-Seq data. The possible paths and their exponential increase by 

considering all the possible combinations with all types of alternative splicing events makes 

everything quite complex but can be handled if we combine the junction information and per-

base read coverages to include only plausible isoform paths and exclude the unrealistic paths 

from the further expression modeling. 
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Currently in our model we intend to refine the already annotated paths by combining the exon-

intron junction information from the given data obtained by computing the coverages at per-base 

resolution and in future we will apply our model to predict the isoform paths without providing 

any annotations but the real challenge is to correctly identify the transcription start site (TSS) 

and polyadenylation site (PAS) in a given gene locus. We attempted to devise a method for 

predicting the precise TSS and PAS by observing the Border-effects at start and end-site of the 

transcripts. Such effects arise due to variations in the Fragment Length Distributions (FLD) at 

the start and end-sites of the transcripts. Later, we investigated that for more complex gene loci 

where the TSS and PAS containing exons are very small their FLD profiles spreads from first 

exon to the neighboring exons. Therefore, we are still working to devise other strategies to 

tackle these issues.  

Another improvement we are considering is in the selection of iteration termination criterion to 

further enhance the speed of convergence. The complete algorithm has been implemented in 

R-programming language and in future we would like to implement it in C++ to improve the 

processing time and convergence speed of highly complex gene loci or whole genome so that 

we can compare the results with above mentioned methods. Most importantly, we want to 

examine the performance of our model in studying the differential splicing between two or more 

conditions for which we need total RNA-Sequencing experiments. In conclusion, our method 

gives the promising results with accurate estimation of isoform expression levels within 

reasonable computational processing time. 
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