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ABSTRACT (English): 
Alzheimer disease (AD) pathogenesis is the result of an interplay of crossing pathways, as amyloid 
cascade and synaptic failure. It has been shown that Aβ is liberated from the amyloid precursor 
protein (APP) by BACE and γ-secretase activity. Alternatively, APP is cleaved within Aβ domain by 
ADAM10, which prevents Aβ formation. ADAM10 is a synaptic protein and works as sheddase 
towards several neuronal cell adhesion molecules. Therefore, ADAM10 activity can regulate not 
only Aβ generation, but also the synaptic morphology and the degree of functional synaptic 
connectivity. ADAM10 represents a potential pharmacological target for AD because the 
upregulation of its activity limits Aβ formation and affects synaptic function. Since ADAM10 
synaptic localization/activity is controlled by the interactions with different protein partners, we 
aimed at identifying novel protein partners of ADAM10. To this, we performed a yeast two-hybrid 
screening, using ADAM10 C-terminal tail as a bait. We took advantage of several biochemical and 
imaging technique to analyze the role of such interaction.  
The results revealed the cyclase-associated protein 2 (CAP2) as a new ADAM10 binding partner. 
CAP2 is a regulator of actin dynamics and, thereby, of spines morphology, and could be involved 
in the modulation of ADAM10 synaptic localization/activity. Here we confirmed ADAM10/CAP2 
interaction and we identified the domains responsible for the association. Moreover, we defined the 
region of CAP2 involved in actin binding and we analyzed the effect of such domain on ADAM10 
synaptic localization. 
CAP2 can represent the crossing point between different aspects of AD pathogenesis, such as the 
amyloid cascade and actin-dependent spines shaping, thus taking part in a new cellular 
mechanism underlying synaptic dysfunction in AD. 
 
 
 
ABSTRACT (Italian): 
La malattia di Alzheimer (AD) è una malattia neurodegenerativa caratterizzata da un aumento di 
livelli di beta-amiloide (Aβ) e dalla sua deposizione in placche senili. In particolare, la forma 
solubile di Aβ svolge un ruolo importante nelle fasi iniziali di AD, portando a perdita delle sinapsi e 
conseguenti deficit cognitivi. Aβ deriva dalla proteina precursore (APP), che può essere 
sequenzialmente tagliata dalle proteasi BACE1 e γ-secretasi per produrre Aβ. Tuttavia, con un 
meccanismo mutualmente esclusivo rispetto al precedente, APP può essere processato da α-
secretasi (ADAM10) e γ-secretasi; ADAM10 taglia APP all'interno del dominio Aβ, evitando così la 
generazione di Aβ. Inoltre, nei neuroni, ADAM10 è responsabile del taglio proteolitico di diverse 
molecole di adesione, come neuroligin-1, N-caderina, NCAM e Ephrin. Pertanto, in un quadro più 
ampio, ADAM10 ha un importante ruolo nel controllo della morfologia delle spine dendritiche e 
nella plasticità attività-dipendente.  
Dato il ruolo chiave svolto da ADAM10 nella cascata dell’amiloide e nel controllo della morfologia 
delle spine dendritiche, ADAM10 può rappresentare un potenziale bersaglio farmacologico per 
prevenire la degenerazione sinaptica delle prime fasi della patologia di AD. A riguardo, è 
importante sapere che ADAM10 è in grado di agire sui suoi substrati solo quando è inserito 
correttamente nella membrana plasmatica. Di conseguenza il trasporto intracellulare di ADAM10 è 
di rilevante importanza per regolare l’attività dell’enzima stesso. 
Alla luce di queste considerazioni, per identificare possibili proteine partner in grado di regolarne la 
localizzazione, abbiamo eseguito un yeast two-hybrid screening utilizzando la coda C-terminale di 
ADAM10 come esca. I risultati hanno rivelato CAP2 come nuovo partner di ADAM10.  
CAP2 è una proteina poco descritta in letteratura, che svolge un ruolo chiave nella regolazione del 
citoscheletro di actina e nella trasduzione del segnale. Alla luce delle caratteristiche di CAP2, il 
nostro lavoro è stato volto allo studio e caratterizzazione di come questa proteina possa 
influenzare la localizzazione intracellulare di ADAM10 e di conseguenza la sua attività, agendo 
quindi indirettamente non solo sulla produzione di Aβ, ma anche, in generale, sul fisiologico 
rimodellamento delle spine dendritiche. 
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1. INTRODUCTION 

1.1 DENDRITIC SPINES: THE LOCUS OF ALZHEIMER'S 

DISEASE 

1.1.1 ALZHEIMER’S DISEASE 
	

Alzheimer’s disease (AD) is a progressive and neurodegenerative disorder 

characterized by increased levels of amyloid β-peptides (Aβ) and their deposition in 

senile plaques and by the formation of the intracellular Neurofibrillary Tangles (NFTs), 

constituted of hyperphosphorylated Tau protein. ADAM10 prevents Aβ generation 

because it cleaves the Amyloid Precursor Protein (APP) within the Aβ domain. Aβ plays 

a central role in AD pathogenesis. Indeed, the “amyloid hypothesis” was first proposed 

from research conducted in the middle of the 1980s showing that senile plaques found 

in AD brain tissue were composed mainly of a sticky Aβ peptide1. This hypothesis was 

formalised by Hardy and Higgins (1992) who stated that Aβ “precipitates to form amyloid 

and, in turn, causes NFTs and cell death”2. Up to now, most investigators believe that 

the production and cerebral deposition of amyloid plaques composed of the 38 to 42 aa 

Aβ peptide is central to the development of AD3. According to the amyloid hypothesis, 

deposition and accumulation of Aβ in the brain is the primary factor driving AD 

pathogenesis4. In animal models Aβ deposition has also been observed prior to the 

tangle pathology5. Therefore, the basic biochemical formula for Aβ production was 

investigated in minute details to determine the aetiology of the disease. 

The cloning of the gene encoding APP and its localization to chromosome 216,7, 

coupled with the earlier recognition that trisomy 21 (Downs syndrome) leads invariably 

to the neuropathology of AD8, set the stage for the proposal that Aβ accumulation is the 

primary event in AD pathogenesis. In addition, the identification of mutations in the APP 

gene that cause hereditary cerebral haemorrhage with amyloidosis (Dutch type) 

showed that APP mutations could cause Aβ deposition, albeit largely outside the brain 

parenchyma9. Soon, the first genetic mutations causing AD were discovered in the APP 

gene2,10 11. The contemporaneous discovery that Aβ was a normal product of APP 

metabolism throughout life and could be measured in culture medium, cerebrospinal 

fluid, and plasma12-14 allowed scientists to quickly establish the biochemical 

abnormalities caused by APP mutations. The majority of the mutations cluster at or very 

near the sites within APP that are normally cleaved by secretases. In accordance with 
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this, these mutations promote generation of Aβ by favouring proteolytic processing of 

APP by β or γ secretase or increase the relative production of Aβ42 compared to Aβ40 
15. Furthermore, APP mutations internal to the Aβ sequence heighten the self-

aggregation of Aβ into amyloid fibrils16. These exciting developments provided the 

genetic framework for the emerging amyloid hypothesis2,4. In the past years, bolstered 

particularly by the cloning of the γ-secretase  components named Presenilins (PSs) 17,18 

and the demonstration that AD-causing mutations in PS1 and PS2 also enhance the 

processing of APP to form Aβ, the amyloid hypothesis has become the focus of AD 

research. In addition to the cloning of PS1 and PS2 and the discovery that they alter 

APP metabolism19-21  through a direct effect on the γ secretase protease22,23, there have 

been four conceptually important observations that strongly support the amyloid 

hypothesis. First, mutations in the gene encoding the tau protein, the main component 

of NFTs, cause frontotemporal dementia with parkinsonism24-26. This 

neurodegenerative disorder is characterized by severe deposition of tau in NFTs in the 

brain, but no deposition of amyloid. The clear implication is that even the most severe 

consequences of tau alteration - profound NFTs formation leading to fatal 

neurodegeneration - are not sufficient to induce the amyloid plaques characteristic of 

AD. Thus, the NFTs of wild-type tau seen in AD brains are likely to have been deposited 

after changes in Aβ metabolism and initial plaque formation, rather than before4. 

Second, transgenic mice overexpressing both mutant human APP and mutant human 

tau undergo increased formation of tau-positive tangles (as compared with mice 

overexpressing tau alone), whereas the structure and number of their amyloid plaques 

are essentially unaltered27. This finding suggests that altered APP processing occurs 

before tau alterations in the pathogenic cascade of AD, a notion bolstered by the recent 

observation that in mouse hippocampal primary neuronal cultures, Aβ toxicity is tau 

dependent28. Third, crossing APP transgenic mice with ApoE–deficient mice markedly 

reduced cerebral Aβ deposition in the offspring29, providing strong evidence that the 

pathogenic role of genetic variability at the human ApoE locus 30 is very likely to involve 

Aβ metabolism. And fourth, growing evidence indicates that genetic variability in Aβ 

catabolism and clearance may contribute to the risk of late-onset AD 31-34. Taken 

together, these findings are consistent with the notion that cerebral Aβ accumulation is 

the primary mechanism of AD pathogenesis and that the rest of the disease process, 

including tau tangle formation, results from an imbalance between Aβ production and 

Aβ clearance.  
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As the above-described amyloid cascade hypothesis of AD, as initially formulated, 

proposed that the hallmark progressive deposition of insoluble fibrillar Aβ in plaques 

triggered neurodegeneration which, in turn, caused the insidious escalation of 

debilitating symptoms, including progression through the different stages of clinical 

dementia. Support for this proposal came from the discovery that application of fibril 

containing Aβ to cultured neurons was highly toxic in vitro and that intracerebral 

injection of fibril-containing Aβ caused a neurodegeneration-associated disruption of 

performance of cognitive tasks in animals 35,36. However, the relatively poor correlation 

between the severity of clinical dementia at the time of death of patients with AD and 

either the magnitude of fibrillar Aβ load or the extent of neuron loss in the brain provided 

a major challenge for the original amyloid cascade hypothesis37. In fact, many studies 

demonstrated that the best statistical correlation occurs between measures of synaptic 

density and degree of dementia38. Data obtained by electron microscopy39, 

immunocytochemical and biochemical analyses on synaptic marker proteins in AD 

biopsies and autopsies indicate that synaptic loss in the hippocampus and neocortex is 

an early event40 and the major structural correlate to cognitive dysfunction38,41. Not 

NFTs, senile plaques, nor even neuronal loss show such a strong statistical correlation 

with dementia 42,43. Moreover, the decrease in synapse number and density seems 

disproportionate to the loss of neuronal cell bodies38,44, suggesting that pruning of 

synaptic endings may precede the demise of the neuron in the disease process. 

Furthermore, some changes in the brains of AD patients and APP transgenic mice 

suggest that synaptic function is compromised prior to the physical deterioration of 

neuronal structures45-47. This evidence, coupled with the fact that large fibrillar plaques 

present much less Aβ surface area to neuronal membranes than do a multitude of small 

oligomers that can diffuse into synaptic clefts, indicates that such soluble assembly 

forms are better candidates for inducing neuronal and/or synaptic dysfunction than 

plaques, per se. Indeed, human Aβ can exist in diverse assembly states, including 

monomers, dimers, trimers, tetramers, dodecamers, higher-order oligomers and 

protofibrils, as well as mature fibrils, which can form microscopically visible amyloid 

plaques in brain tissues48. Therefore, a new understanding of the amyloid cascade 

hypothesis proposes an alternative mechanism for memory loss based on the impact 

of small, soluble Aβ oligomers4. Indeed, different soluble molecular species that are 

generated at very early stages of the disease could be involved in synaptic failure and 

only at more advanced stages they are deposited in an aggregated form. It has, thus, 
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been suggested that soluble assembly states of Aβ peptides can cause cognitive 

problems by disrupting synaptic function in the absence of significant 

neurodegeneration. Therefore, current research investigates the relative importance of 

these various soluble Aβ assemblies in causing synaptic dysfunction and cognitive 

deficits. 

1.1.2 WHAT IS A DENDRITIC SPINE? 
The synapse is the specialized junction that allows the communication between the 

neurons in the mammalian brain. In particular, the synapses that use glutamate as 

neurotransmitter are defined as excitatory synapses, and they are localized where the 

axon of a neuron contacts the dendrites of another neuronal cell, which receive synaptic 

inputs.  

Most of the excitatory synapses are generally formed at the head of a protrusion, called 

dendritic spine, that is the structure specialized for synaptic transmission. Spines are 

typically small (less than 3 µm in length, from the dendritic attachment to the tip of the 

head), with a head (0.5–1.5 µm diameter) connected by a narrow neck (<0.5 mm 

diameter and �1 μm long) to the dendritic shaft49 . The geometry of the spines is highly 

variable from spine to spine. According the classification of Peters and Kaiserman-

Abramof the spines can be categorized into three essential types: thin, mushroom and 

stubby spines. Thin spines are the most common and have a thin, long neck and a 

small bulbous head. Mushroom spines are those with a large head and are typically 

found in adult brains. Stubby spines are devoid of a neck50,51 , and are particularly 

prominent during early postnatal development52 , although they are still found in the 

adult53. In addition, dendritic filopodia have been observed and are longer that mature 

dentritic spines and normally they haven't a clear head49. Most of the excitatory 

synapses occur on the spine heads where it is possible to detect an electron-dense 

disc-like structure, named PSD (Post Synaptic Density),. The PSD is directly opposed 

to the presynaptic side. The presence of a prominent PSD, that can be revealed by 

Electron Microscopy, is a characteristic of the asymmetric synapses, that are typically 

glutamatergic; in contrast, the inhibitory and symmetric synapses occur mostly on 

dendritic shafts.  

It has been demonstrated, over the years, that the neuronal activity regulates the 

morphology of the spines and, through this modification, controls the synaptic 

transmission and plasticity. Notably, the morphological features of the spines are 

correlated with the synaptic structure: the head volume (and also the total spine volume) 
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is correlated with the PSD area. The PSD is composed of multiple proteins that bind 

each other through specific domain-domain interactions, forming a mesh-like structure 

organized in consecutive layers. The shape and the size of the spines are dependent 

on the developmental stages and on the strength of the synapses54. The most relevant 

feature of this process is the presence in the young brain of the dendritic filopodia. 

Indeed, in the young brain there are many filopodia that partially disappear in the adult 

brain. Although the function of the filopodia is still unknown, it is has been shown that it 

is a very plastic structure that plays a role in the formation of connection among 

neurons, even if it is no clear yet if the spines derive directly from filopodia. Probably 

these structures mediate the process of spines formation even if they are just a transient 

structure. Likewise, the conversion of filopodia to spines is not likely to occur in mature 

neurons, when filopodia are rare and spines can form within minutes to hours, as shown 

in cycling female rats, during the recovery from hibernation as well as in living adult 

mice55 (Fig. 1). 

 

 
1.1.3 SPINES COMPOSITION: THE ORGANELLES 
The soma may not be able to provide enough proteins for the entire cell, and this may 

be due to "structural" limits of the biosynthetic capability of the soma. For this reason, 

the dendrites contain almost all of the cellular machinery necessary to synthesize 

proteins. Moreover, the transport of mRNA designated to the formation of synaptic 

proteins, and their localization and translation, is fundamental for the synaptic 
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composition56.  The polyribosomes are found in the spines, therefore the spines must 

be able to synthesize proteins, even if it is known that the protein synthesis occurs 

mainly in the dendrite shafts57. In particular, since the production of many proteins is 

strictly activity dependent, the protein synthesis is differentially regulated in the spines 

depending on the association of the ribosome with the spines. Several spines contain 

the SER (Smooth Endoplasmic Reticulum), that is a continuous with the RER (Rough 

Endoplasmic Reticulum) of the dendritic tree and that can be extended through the neck 

to the head, sometimes even continuously49. The SER is involved in the intracellular 

trafficking and in the regulation of intracellular Ca2+ stores. The SER, especially in the 

hippocampus, is formed by specific vesicles and tubules, thus creating the “spine 

apparatus”, a stack of SER cisternae and dense plates between them49. Larger spines 

usually contain the “spine apparatus” and the amount of cisternae is correlated with the 

size of the PSD58. 

Protein markers of Golgi membranes, including α-mannosidase II, giantin, and Rab6, 

have been found in the dendrites of some neurons58-60. The dendritic localization of 

these organelles suggests that “satellite” protein secretion can occur at sites far from 

the nucleus. What controls the flow of cargo that passes through several dendritic 

branch points to distal ends of dendrites? Golgi outposts situated at dendritic 

intersections engage in ongoing post-Golgi trafficking61 and are properly positioned to 

regulate the identity or the amount of cargo that is trafficked to each branch. Despite 

the presence of functional Golgi outposts in some hippocampal dendrites, not all 

dendrites possess detectable Golgi. Moreover, even in those dendrites containing Golgi 

outposts, most ER-to-Golgi carriers originating in the dendrite are trafficked all the way 

back to the somatic Golgi62.  Thus, dual modes of early secretory trafficking exist in 

dendrites. In fact, the major mode of ER-to-Golgi trafficking is directed long distances 

to the Golgi apparatus in the soma. This appears to be the exclusive mode of early 

secretory trafficking in those dendrites lacking Golgi outposts.  

Also the mitochondria are present in the dendritic shafts, but not in the spines, and a 

recent study demonstrated that mitochondria mobility in dendrites is controlled by 

synaptic activity. Synaptic stimulation decreased mitochondrial mobility and increased 

the association of mitochondria with dendritic spines63. The high compartmentalization 

of dendrites properties leads to the correct spatial segregation and integration of the 

different pathways required for the structure of the synapse62. 
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1.1.4 SPINES COMPOSITION: FROM RECEPTORS TO SCAFFOLDING 
PROTEINS 
Hundreds of molecules have been described in the spines, and these are involved in 

many biochemical pathways. This molecular complexity is important to make functional 

the synaptic machinery and to create synapses independent from other synapses and 

from the rest of the neuron49 (Yuste, 2010). 

Glutamate receptors  

Glutamate is the most important excitatory neurotransmitter in the brain. It is released 

from vesicles from pre-synaptic sites and interacts with its receptors on the post-

synaptic site. The glutamate receptors are: ionotropic receptors (iGluR) and G-protein 

coupled receptors (mGluR). The first type of receptor give rise to fast postsynaptic 

response, while the metabotropic receptor produces slower postsynaptic effects. 

Several types of iGluRs have been identified: AMPARs (receptors activated by α-

amino-3-hydroxyl-5-methyl-4-isoxazole-propionate), NMDARs (receptors activated by 

N-methyl-D-aspartate), and kainate receptors (receptors activated by kainic acid)64.  

NMDARs are heteromeric assembly of different subunits that form a non-selective 

cation channel and allow the entry of Ca2+ in addition to monovalent cations, as Na+ 

and K+. NMDARs are activated only when presynaptic glutamate release coincides with 

sufficient post-synaptic depolarization. Extracellular Mg2+ exerts a voltage-dependent 

block of the opened ion channel65 and so it is necessary the relieve of the Mg2+ block 

of the ion channel66. Moreover, not only the glutamate, but also the binding of glycine 

appears to be necessary for receptor activation67. At hyperpolarized membrane 

potentials, more negative than -70 mV, the concentration of Mg2+ in the extracellular 

fluid is sufficient to virtually abolish ion flux through NMDARs channels even in the 

presence of glutamate and glycine. A positive change in transmembrane potential will 

increase the probability of the exit of Mg2+. NMDARs are composed of multiple subunits 

(GluN1, GluN2A-D, GluN3) that assemble in heteropentameric or heterotetrameric 

structures. These structures exhibit distinct properties depending on the subunit 

composition. The various isoforms of NR2 subunits contain the glutamate-binding site68 

while glycine-binding site appears to be located on the NR1 subunit. NR1 is essential 

for NMDAR function and eight receptor variants can be generated by alternative 

splicing69. The GluN2A subunit confers a lower affinity for glutamate, distinct faster 

kinetics, greater channel open probability and more prominent Ca2+-dependent 

desensitization compared to GluN2B. The GluN2D and GluN2C subunits are 
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characterized by low conductance openings and reduced sensitivity to Mg2+ block.  

NR3-containing receptors are more predominant in a narrow time window during 

development. The GluN3 containing receptors are considered a distinct class of 

nonconventional NMDARs since GluN3 shows limited sequence homology to GluN1 

and GluN2 and since it confers unique properties to the channel. NMDARs have been 

shown to contain consensus sequences for phosphorylation by protein kinases70. 

CaMKII (Calcium/calmodulin-dependent protein kinase II) can associate to GluN1, 

GluN2A and GluN2B which can be phosphorylated also by other kinases as PKC 

(Protein Kinase C) or PKA (Protein Kinase A). In the brain, between 10 and 70% of NR1 

and NR2 subunits seem to be phosphorylated by PKA or PKC71 thus increasing the 

heterogeneity of NMDARs. 

AMPARs are heterotetramers composed of the subunits GluA1-4 72. They are activated 

by glutamate and antagonized by 6-ciano-7-nitroquinoxaline-2,3-dione (CNQX) and 

2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX). These receptors are the 

major mediator of fast glutamatergic excitatory synaptic transmission in the central 

nervous system (CNS). AMPARs can assume different role depending on their 

composition: AMPARs containing GluA2 subunits show lower permeability to Ca2+, 

while receptors containing GluA1, GluA3 and GluA4 are permeable to Ca2+ 73. The 

differences among the subunits are due to an alternative splicing74. All the subunits of 

AMPARs have phosphorylation sites on their C-terminal tail that regulate their function 

and that seem to be involved in the regulation of synaptic plasticity. GluA1 is one of the 

most abundantly expressed subunit of AMPARs in hippocampal and neocortical 

neurons75. Most of the phosphorylation on GluR1 occurs on serine and threonine76, and 

tyrosine residues77. Ser831 and Ser845 are involved in the expression of LTP and 

LTD78. PKC and CaMKII mediate the phosphorylation on GluA1-Ser83179, while GluA1-

Ser845 is phosphorylated by protein kinase A (PKA). This phosphorylation can enhance 

currents through AMPARs80. GluR2 is a key subunit which renders AMPARs channel 

impermeable to Ca2+ and confers specific biophysical properties81. There are several 

serine phosphorylation sites (Ser863 and Ser880) on the C-terminal tail of GluA2. The 

kinase that act on the GluA2 is the PKC82. GRIP family stabilize AMPARs at the synaptic 

side (Dong et al., 1997) and as intracellular pools83. The phosphorylation of Ser880 give 

the AMPARs the capability to bind PICK-1 (Protein Interacting with C Kinase-1), that 

either promotes the endocytosis of the receptor84 or allows its trafficking to the plasma 

membrane83. GluA3 and GluA4 are not highly expressed in the adult forebrain 
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structures compared to GluA1 and GluA2 subunits85. Expression of GluA4 in the 

hippocampus is limited during early post-natal period development and GluA4 can be 

inserted into synapses by spontaneous activity86. 

Scaffolding proteins: the MAGUK family  

The Membrane Associated Guanylate Kinase (MAGUK) family is a super family of multi-

domain proteins characterised by the presence of a shared set of structural domains. 

The MAGUK family includes the post-synaptic density 95 (PSD-95), chapsyn-110, 

synapse-associated protein 102 (SAP-102), and SAP-97. They are key protein in 

governing the localisation of the glutamate receptors at synapse and their function. 

According to their function, these proteins are present in the PSD, since the 

synaptogenesis (Boeckers et al., 1999). Their multi-domain structure is fundamental for 

their correct localisation and activity. They contain three PDZ (PSD-95/DLG/ZO1) 

domains, a Src homology 3 (SH3) region and a Guanylate Kinase (GK)-like sequence. 

They are all localized in the CNS87, but each member is distributed differently in brain 

cell compartments. PSD-95 and PSD-93 are highly enriched in the PSD 88, where they 

interact with the cytoplasmic tail of NMDA receptor subunits, while SAP97 and SAP102 

have been found in dendrites and axons and are abundant in the cytoplasm as well as 

at synapses and are involved in the trafficking of NMDARs and AMPARs respectively, 

SAP102 can associate with the exocytosis and regulate the delivery of NMDARs to the 

surface of the plasma membrane. Since these properties are related to the capability of 

MAGUK proteins to interact with other PSD components, it is important to understand 

the structural characteristics of their domains. PDZ domain scaffolds have been shown 

by genetic, electrophysiological and morphological studies to be essential for controlling 

the structure, strength and plasticity of synapses. SH3 modules regulates protein–

protein interactions. SH3 ligands are composed of seven residues and contain PXXP 

sequences. The GK module, typical domain of the enzyme that catalyses the 

conversion of GMP to GDP, mediates protein–protein interactions independently of its 

predicted enzymatic activity89. Indeed, the MAGUK proteins are predicted to bind 

neither GMP nor ATP and are, therefore, assumed to be enzymatically inactive. 

 

Adhesion molecules 

The adhesion molecules are important for the formation and the development of the 

synapses, since they are involved in the formation of the dendritic spines55. Indeed, 
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they mediate the connection between an axon and a dendrite. However, they are 

expressed at mature synapse regulating plasticity and consequently contributing to a 

variety of cognitive functions, including learning and memory.  For that reason, they are 

involved in the continual synapse remodelling. CAMs affect spine structural changes by 

influencing the actin cytoskeleton through molecular links or by engaging singling 

cascades. They can link in a stable way the presynaptic side to the postsynaptic side, 

giving the structure and stability to the synapse. They can nevertheless modulate the 

remodelling through their proteolytic cleavage disrupting the connection with the 

presynaptic side. Moreover, the CAM cleavage can also affect a variety of 

neurotransmitter receptor-CAM interactions to strongly influence the degree of 

functional synaptic connectivity. Different adhesion molecules, among which N-

cadherin, Ephrins, Integrin, the adhesion molecules of neuronal cells (NCAM, neural 

cell adhesion molecule), Densin-180 and Neuroligin-149, are localised in spines. The 

adhesion molecules are bound to the actin cytoskeleton. The N-cadherin interact with 

the actin filament thought β-catenin and α-catenin 90. The Integrin91 and Densin-180 92 

are bound to the alpha-actinin while the Neuroligin-1 is bound to the actin filaments 

through PSD-95. In particular, the CAM capability to link these additional associated 

proteins results in a larger multi-molecular complexes. For example, at the postsynaptic 

side, PSD-95, a MAGUK scaffold protein, binds to neuroligins, NMDA receptors, and 

also TARPs that in turn link to AMPA receptors. 

The CAMs are classified in homophilic or heterofilic, the homophilic CAM link interact 

with a partners across the two side of the membrane belonging to the same family, 

while the homofililic interaction occurs between CAMs belonging to different families. 

For example, the cadherin superfamily members belong to the homophilic class 93. 

Among them, N-cadherin, is expressed at both excitatory and inhibitory synapses 

during early development but later becomes preferentially enriched at excitatory 

synapses94. This could reflect distinct roles played by N-cadherin first in synapse 

formation and subsequently in mature excitatory synapse function. The N-cadherin, 

through a morphological change in its conformation, is necessary for the activity-

dependent enlargement of the spine. The N-cadherin principal role is the maintenance 

of the dendritic spine. Indeed, N-cadherin can modulate the spine morphology 

regulating the availability of the glutamate receptors95. N-cadherin is important for the 

maintain of the synaptic levels of AMPARs, because the N terminal domain of the GluA2 

subunits of AMPARs can interact with the synaptic N-cadherin 96,97. 
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1.2 THE SPINOSKELETON: ACTIN IN ACTION IN THE 

SPINES 

Actin is one of the most enriched protein in the synapses. Half of it is present in its 

glomerular form (G-actin) and half of it in the filamentous part (F-actin). The actin 

cytoskeleton formation process in the spine is highly dynamic and strictly regulated. The 

G-actin polymerizes to F-actin using an ATP-dependent hydrolysis that allows the 

formation of the filamentous actin. The filamentous actin is a polarized structure. It is 

possible to recognise a fast growing site on that structure (the barbed end, the side 

where the monomers are added) and the side where the actin depolymerize (the 

pointed end)98. 

The the actin bound to the ADP (ADP-actin) has the same affinity for both sides of the 

actin filament, while the monomer of actin bound to the ATP (ATP-actin) can bind the 

barbed-end because of the hydrolysis of ATP to ADP.  

The cycle of polymerization and depolymerization of actin is influenced by the G-actin 

concentration inside the cell. When G-actin concentration is higher than 0,1 µM, an 

increase in polymerization is observed until G-actin concentration goes back to 0,1µM, 

called “critical concentration”. In the physiological conditions the concentration of the G-

actin is between 50-200 µM. This high actin concentration is permitted by the presence 

of actin binding proteins that maintains the “critical concentration”. Indeed, a lot of 

proteins are able to sequester and bind G-actin, such as profilin, timosin β 4, the WASp 

(Wiskott-Aldrich Syndrome proteins) and the CAPs (Cyclase Associated Proteins) 99-

102. Anyway, the majority of the ABP (Actin Binding Proteins) are proteins necessary for 

the regulation of the actin filaments, such as the capping protein, the tropomodulin, the 

gelsolin and Cap Z 103,104. They bind the terminal part of F-actin (barbed-end) preventing 

the binding of the G-actin. Another class of F-actin binding proteins are responsible for 

the severing, since they break the actin filament creating new barbed ends for the 

polymerization of actin. 

The spinoskeleton represents the cytoskeleton of the spine. The principal component 

of the spinoskeleton is the F-actin that occupies the total volume underneath the PSD 

in the spine105. The actin gives to the spine stability and structure, influencing the shape 

and motility. The actin can assume different shapes: (1) the branched actin, that is 

mainly present in the distal part of the spine, and (2) the linear part, that is more equally 

distributed106. Only 5% of the actin in the spines is stable; in particular, the actin 
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filaments in the head of the spine are highly dynamic, giving rise to a phenomena called 

actin treadmilling 107,108, that occurs when one end of an actin filament grows in length 

(at the barbed end) while at the other end (the pointed end) there is a constant removal 

of the actin subunits. 

The spinoskeleton is composed of two main parts: the core and the shell. The shell is 

the actin present in the terminal part of the spine that is highly dynamic (turnover rate: 

10 sec). The other part is the core that represents the actin localized in the central part 

of the spine, where the turnover is slower, around 10 minutes105. 

It is clear that the core represents the structural part of the spine and is more stable. 

While the dynamic capability of the actin in the shell part can allow the elongation of 

actin filaments and can permit the nucleation of the new filaments relevant for the 

structural growth of the spine 105. 

 
1.2.1 ACTIN BINDING PROTEINS  
The ABPs regulate the physiology of actin giving to the actin the characteristic 

dynamism and stability.  The most important and investigated in dendritic spines are: 

 

Arp2/3 (actin-related protein 3) 

It’s a complex made of different subunits, among which Arp2, Arp3, ARPC1, ARPC2, 

ARPC3, ARPC4 and ARPC5. The Arp2/3 is the principal actin filaments nucleator109. It 

can bind the filamentous actin to both sides and allows the insertion and creation of an 

additional filament 110. It is enriched in the PSD and its downregulation results in an 

impairment in the spine head formation98,111. It is activated by several proteins, such as 

Cortactin, Abi2, WAVE-1 (WASp-family verprolin homology protein-1), N-WASP (neural 

Wiskott-Aldrich syndrome protein) and Abp1. The deletion of such proteins is related to 

memory deficits 112-115 . 

 

Profilin I and Profilin II 

This class of protein is fundamental for the actin polymerization. They are responsible 

for the ADP to ATP nucleotide exchange on actin. These proteins catalyse actin 

polymerization in a concentration-dependent manner, it serves as a catalyst at lower 

concentrations and as inhibitor at higher levels116 . The profilin II is the principal isoform 

in the mammalian brain109, even if profilin I is also expressed 117. 
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ADF/cofilin 

These proteins can promote the actin turnover (Fig. 2). In particular, they can bind G-

actin and F-actin in a stoichiometric ratio 1:1, leading to a depolymerisation of the actin 

filaments from the pointed-end and, thereby, promoting the depolymerisation, but they 

can also create new barbed-ends. The cofilin, which exist in two isoforms, cofilin I and 

cofilin II, belongs to a highly conserved protein family, as the ADF (or destrin)118. The 

role of this complex is fundamental for continuous treadmilling of actin. In fact, since the 

actin monomers are fundamental for a fast reorganisation of the actin cytoskeleton, the 

complex ADF/cofilin promotes the depolymerisation of actin and creates a new pool of 

G-actin monomers available for other filaments formation 119. The result of this activity 

is the correct maintenance for the morphology of the spine111. Indeed, the LIMK1 

activation (LIM kinase 1), that inhibits the ADF/cofilin activity, leads to an altered 

morphology of the spine function120.  

 

 

 

Eps8 

Eps8 (epidermal growth factor receptor pathway substrate 8) is a capping protein. 

Capping proteins (CP) regulate actin polymerization by binding the barbed end of an 

actin filament, which blocks addition and loss of actin subunits121. The capping proteins 

are distributed in dendritic spine and their function is relevant to inhibit the filopodia 
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(Kovar et al., 2000; Kovar et al., 2001; Perelroizen et al., 1996)
and CAP is the only known nucleotide exchanger for G-actin in
plants (Chaudhry et al., 2007). However, unlike profilin, which
preferentially binds to ATP–G-actin (Pantaloni and Carlier,
1993), CAP binds to ADP–G-actin with a relatively high affinity
and effectively competes with ADF/cofilin for binding to ADP–
G-actin (Mattila et al., 2004; Moriyama and Yahara, 2002). Yeast
profilin has a much weaker nucleotide-exchange activity than
mammalian profilin (Eads et al., 1998; Wen et al., 2008) and fails
to enhance nucleotide exchange when ADF/cofilin is bound to
ADP–G-actin (Chaudhry et al., 2010). Thus, a sequential
processing mechanism of actin monomers by CAP (for ADP/
ATP exchange) and profilin (for the incorporation of ATP–G-
actin to actin barbed-ends) has been proposed in yeast (Mattila
et al., 2004). In addition, profilin binds to P1 of Srv2/CAP and
collaborates in polarized actin localization in yeast (Bertling et al.,
2007) (Fig. 3). However, the functional relationship between
CAP and profilin is not well understood in other organisms. For
instance, mammalian profilin enhances the nucleotide exchange
of G-actin to much faster rates than yeast profilin (Wen et al.,
2008), but it is unclear whether profilin and CAP function in a
redundant or hierarchical manner to regulate actin turnover in
mammalian cells.

In human CAP1 and yeast Srv2/CAP, HFD in the N-terminal
half of CAP binds to the ADF/cofilin-actin complex (Fig. 3) and
augments the ADF/cofilin-mediated turnover of actin filaments
(Moriyama and Yahara, 2002; Quintero-Monzon et al., 2009).

These results were originally interpreted as evidence for an active
involvement of HFD in the dissociation of the ADF/cofilin-actin
complex. However, a recent study shows that HFD is not required
for the recycling of ADF/cofilin and G-actin but, instead, has a
separate function in actin filament severing (Chaudhry et al.,
2013), which is discussed below.

The sites necessary for monomer sequestering and nucleotide
exchange activities of CAP reside in its C-terminal half that
contains WH2 and CARP (Fig. 1A). The C-terminal half of CAP
can bind to one molecule of G-actin (Freeman et al., 1995), and
WH2 and CARP bind independently to G-actin (Chaudhry et al.,
2010; Makkonen et al., 2013; Mattila et al., 2004; Peche et al.,
2013), suggesting that they separately contact G-actin. An N-
terminal part of WH2 from other proteins, such as WASP, was
found to bind to G-actin at a cleft between its subdomains 1 and 3
(Dominguez, 2007), and WH2 of CAP might bind to G-actin in a
similar manner. Although a CARP-binding site on G-actin has
not been determined, mutations in its subdomains 2 and 4 –
which are the candidate sites for CARP binding – disrupt its
interaction with Srv2/CAP in yeast (Amberg et al., 1995).
Although the CARP domain is sufficient to promote the
nucleotide exchange of ADP–G-actin (Makkonen et al., 2013),
WH2 is necessary to facilitate nucleotide exchange when ADF/
cofilin is bound to ADP–G-actin (Chaudhry et al., 2010; Nomura
and Ono, 2013). Since ADF/cofilin and WH2 share the same
binding site on G-actin (Dominguez and Holmes, 2011), WH2
might be needed for CAP to be able to compete with ADF/cofilin
for G-actin binding. Nonetheless, the structural basis for the
acceleration of the nucleotide exchange of G-actin by CAP is
largely unknown.

Effects of CAP on F-actin – enhancement of filament
severing
CAP also directly interacts with actin filaments and enhances
filament disassembly (Moriyama and Yahara, 2002). Recent
microscopic observations have clearly demonstrated that CAP
induces the severing of actin filaments (Fig. 3) (Chaudhry et al.,
2013; Normoyle and Brieher, 2012). Mammalian CAP1 alone
can sever actin filaments at an acidic pH but not at neutral pH
(Normoyle and Brieher, 2012), whereas mammalian and avian
ADF/cofilins efficiently sever actin filaments at basic pH but not
at neutral and acidic pHs (Hawkins et al., 1993; Hayden et al.,
1993; Yonezawa et al., 1985). However, when CAP1 and ADF/
cofilin are combined, they promote severing of actin filaments
within a wide pH range (Normoyle and Brieher, 2012). Thus,
either CAP1 or ADF/cofilin alone might function as a pH-
dependent F-actin disassembly factor, but CAP1 and ADF/cofilin
might act together as pH-independent F-actin disassembly
factors. Yeast Srv2/CAP also promotes the severing of ADF/
cofilin-bound actin filaments and this activity is mediated by the
N-terminal half of Srv2/CAP that contains the coiled-coil region
and the HFD (Chaudhry et al., 2013). This activity of CAP
resembles that of actin-interacting protein 1 (AIP1), which
promotes the severing and disassembly of ADF/cofilin-bound
actin filaments (Ono, 2003) (Fig. 3). Indeed, a genetic study in
yeast suggests redundant functions of the N-terminal half of Srv2/
CAP and AIP1 (Chaudhry et al., 2013). However, the mechanism
of how actin filaments are severed by the HFD of CAP still
remains unclear. Functionally important surface residues in HFD
of yeast Srv2/CAP have been mapped to the surface of the HDF
protein, opposite to the location of its N- and C-termini.

ATPADP

ADF/cofilin

ATP-
actin

ADP(Pi)
actin

ADP-
actin

Profilin

CAP oligomer

AIP1
CAP

ADF/cofilin
ADP-
actin

Barbed
(+) end

Pointed
     (–) end

Nucleotide exchange

Depolymerization

Severing

Severing

HFD

CARP

CAP

ATP-
actin

ADP-
actin

Depolymerization

Fig. 3. Regulation of actin filament dynamics by CAP, ADF/cofilin,

profilin and AIP1. CAP competes with ADF/cofilin for binding to G-actin

(right) and promotes its nucleotide exchange (top). CAP also promotes

severing of ADF/cofilin-bound actin filaments (bottom). These activities are

similar to those exerted by profilin and AIP1. ADF/cofilin cooperatively binds

to actin filaments and severs them at the boundary between ADF/cofilin-

bound and the bare segments (Elam et al., 2013). Note that the molecular

organization of the CAP oligomer is hypothetical. Also note that CAP binds

to actin monomers in an oligomeric form but, for simplicity, only a

monomeric CAP is shown as a G-actin-bound form.
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formation122. The actin-capping proteins control the organization of filopodia. They can 

cap the newly branched filaments created by the Arp2/3 complex, thus controlling the 

elongation of the filopodia and the concentration of the free G-actin monomers123-125. 

 

Myosin II and myosin IV 

These proteins are complexes constituted by four light and two heavy chains and they 

regulate the actin filaments contraction55. The myosin II (in particular the isoform 

MyH10) is localized in the synapses and can regulate the morphology of the dendritic 

spines and the synaptic strength55. Also the isoform MyH7B can cooperate with MyH10 

to control the correct morphology of the spine109. The myosin IV (the isoform Myo6) is 

involved in the internalisation of the AMPA receptor and the Myo6 KO shows a decrease 

in the number of synapses.  

 

Drebrin A 

Drebrin can bind the F-actin and promotes the polymerisation of actin126 (Hayashi and 

Shirao, 1999). It is localized in postsynaptic terminals in adult brain and a decrease in 

drebrin levels has been shown in AD patients127. However, it is well known that is 

involved in spine formation in the early stage of the development regulating the F-actin 

polymerisation. 

 

Rho family of GTPases 

They are Ras protein. There are different components of the family, among which RhoA 

(Ras homolog gene family, member A), Rac1 (Ras-related C3 botulinum toxin substrate 

1) and Cdc42 (Cell division control protein 42 homolog). All the members of this family 

have been studied in neuronal cells since they are involved in the neuronal 

morphogenesis. In the dendritic spine the Rho activation is fundamental for the cofilin 

phosphorylation and therefore for the actin stabilisation of the spine109. While the Rac1 

and Cdc42 activation leads to an enlargement of the head spine111 115, promoting the 

formation of Arp2/3 complex. 

 

1.2.2 CAP (Cyclase-Associated Protein) 
CAP (Cyclase-Associated Protein), originally isolated from the Saccharomyces 

Cerevisiae, are components of the complex responsible for the Ras–cAMP signalling 
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activating the adenylate cyclase (AC) and are involved in the regulation of the 

cytoskeletal structure. Indeed, the yeast lacking of CAP is unable to grow on an 

enriched medium, are not resistant to the temperature in a minimal media and, 

moreover, present changes in cell morphology such as a shape rounder and larger than 

normal cells. Therefore, it has to be assumed a fundamental role of CAP in the cell 

growth. It should also be considered that not all the CAP physically interact with AC or 

regulate its function. For example the CAP proteins of Schizosaccaromyces pombe, 

which are structurally and functionally related to CAP of S. cerevisiae128, are not closely 

involved in the RAS signalling. This suggests that CAP are bifunctional proteins, able 

to interact with the pathway of AC activation, but also directly with actin. In addition, the 

activities of Srv2/CAP in cell growth and cytoskeletal organization are conserved also 

in CAP homologues129. 

 
1.2.2.1 CAP STRUCTURE 
CAPs are multidomain proteins of 450-550 amino acids and vertebrates have two CAP 

homolog forms, CAP1 and CAP2130. CAP is a predominantly hydrophilic protein, made 

up of α- helix, and of a β-sheets region located in the C-terminal region. 

The most important structural and functional domains of the CAP protein of S. 

cerevisiae are:  

1-the N-terminal domain, which interacts with AC and is required to activate the RAS 

protein; 

2- the C-terminal domain, which is involved in cytoskeletal rearrangement131,132. Indeed, 

the deletion of the C-terminal domain leads to the expression of abnormal phenotypes: 

slow growth, altered cell morphology and actin dynamics.  

3- the central domain rich in proline, between the N-terminal domains and C-terminal, 

responsible for the interactions with proteins containing SH3 domains. 

N-terminal domain 

This region contains tandem repetitions of a heptad motif alphaXXalphaXXX (where 

alpha represents a hydrophobic amino acid and X represents any amino acid), 

suggesting a coiled-coil structure133. The alpha-helical coiled coil is one of the principal 

subunit oligomerization motifs in proteins134 and, in the yeast, is a highly conserved 

motif sufficient for the interaction with AC. 

In yeast, this highly conserved motif interacts with AC. However, the amino-terminal 

domain of human CAP does not have the same function. Therefore, this structurally 
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conserved RLEXAXXRLE motif (where X represents non-conserved amino acid) has 

diverged functionally during evolution but may still be critical for CAP function in all 

organisms. Indeed, the coiled coil regions in other signalling proteins could interact with 

this motif in higher eukaryotes 129.  

The structure of the N-terminal domain of CAP (residues 51-226) was solved by X-ray 

diffraction135 showing that most of the N-terminal region is composed of a stable bundle 

of six antiparallel α-helices that are termed helical folded domain (HFD). The HFD binds 

to the ADF/cofilin-G-actin complex136,137 and also interacts with ADF/cofilin to promote 

the severing of actin filaments138. 

 

Central domain 

There are two proline rich regions in the central region of CAP: P1 and P2. P1 is highly 

conserved among different species, while P2 is less conserved.  

Several of the CAP partners bind selectively P1 or P2. For example, the SH3 domain 

of Abl tyrosine kinase binds P1 of human CAP1, while Abp1 yeast protein binds to the 

P2 srv2 / CAP139,140. 

Recent experiments141 with Drosophila CAP have detected a region just downstream 

from the SH3 binding domain that shows similarity to the verprolin homology domain 

(LKKAET), called WASP homology domain, found in a variety of actin binding proteins 

(e.g., thymosin, fimbrin, actinin and members of the WASp family). The WASp 

homology domain of CAP binds to G-actin without a clear preference between ATP-

actin or ADP-actin, but it has a crucial role in actin nucleotide exchange. 

 

C-terminal domain 

Regarding the C-terminal domain, it has been demonstrated that the deletion of the last 

27 aminoacids abolishes the binding of CAP to actin in S. cerevisiae142 and humans143. 

Within this region there is a 7 a.a. stretch constituting the site E (X) 3PEQ: residues E, 

P and Q are present in all the analysed CAP proteins. 

The C-terminal portion of CAP is mainly made up of β-sheets144. The 35 amino acids 

sequence in the C-terminal domain contains a dimerization motif. 
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1.2.2.2 ROLE OF CAP IN ACTIN DYNAMIC 
CAP has a critical role in the RAS signalling pathway, but several studies suggest that 

this signalling function is related to a limited number of organisms, while its capability 

of maintaining the cytoskeleton structure appears to be conserved among 

eukaryotes129. 

The morphological abnormalities in cells lacking of CAP are associated with the lack of 

proper distribution of actin, the loss of normal bundles of actin and the formation of 

abnormal bundles132. In addition, the expression of a heterologous CAP protein in yeast 

cells lacking of CAP, can recover the phenotype linked to actin, but not the phenotype 

associated to RAS, suggesting that the actin regulation is the evolutionarily conserved 

role128. Similar genetic studies have shown that the regulatory function of the events 

related to actin has been preserved in the CAPs of Lentinus edodes (shiitake 

mushrooms) 145, rat 143 and human146. 

 
1.2.2.3 CAP AND G-ACTIN 
Early biochemical studies demonstrated that CAP sequesters actin monomers 

preventing the nucleation of actin and the filament elongation147. However, recent 

studies have revealed that CAPs play more active roles in promoting the dynamics of 

actin filaments. 

CAP binds to G-actin in a molar ratio 1: 1, and inhibits the spontaneous polymerization 

of G-actin in the F-actin. This activity has been demonstrated in vitro for the CAPs of S. 

cerevisiae147, Dictyostelium148, C. elegans (CAS-1 and DAC-2)149, pork (ASP-56 / 

CAP1) and human (CAP2)150. 

The effect of CAP on actin is controversial. Freeman and collaborators147 show that 

yeast CAP inhibits the incorporation of G-actin at both ends of the actin filament (to the 

pointed-end and to the barbed-end), while Mattila and colleagues151 report that CAP 

selectively inhibits the incorporation of G-actin to the barbed-end. This discrepancy 

could be due to different ratios of CAP and G-actin used in these studies, since it was 

shown that human CAP1 accelerates the addition of G-actin to the barbed-end when it 

is present in sub-stoichiometric amounts respect to the G-actin, but inhibits the addition 

of the monomer when they are used in stoichiometric amounts136. 

At the actin steady state, when CAP is present in an equimolar concentration to G-actin, 

CAP sequesters G-actin 152. In yeast, CAP locates in actin patches140, while in 

Dictyostelium and mammalian cells is localized in the cell periphery 148,153; therefore, in 
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these areas, the concentration of CAP may be high enough to sequester actin 

monomers.  

CAP also increases the rate of nucleotides exchange on actin, and this can represent 

the most important effect on the actin polymerization. During the treadmilling of actin, 

exchange of actin-bound nucleotide occurs primarily at G-actin, whereas hydrolysis of 

ATP into ADP occurs primarily at F-actin. The newly depolymerized actin monomers 

are predominantly bound to ADP. When free ATP is present, ADP–G-actin can 

‘recharge’ itself by rapidly exchanging ADP for ATP and, thus, maintaining the 

treadmilling cycle. However, when no free ATP is available, ADP–G-actin cannot 

recharge itself, thus preventing the treadmillingcycle154-158. However, different G-actin 

binding proteins, including thymosin β4 159 and ADF / cofilin are able to inhibit this 

nucleotides exchange and, therefore, to prevent the process of "actin-recharging". 

CAP is able to promote the exchange of the nucleotide bound to the G-actin160,161 and 

so to increase the turnover of actin in the presence of thymosin β4162,  ADF / cofilin or 

profilin163. 

However, unlike the profilin99, CAP binds to the ADP-G-actin with relatively high affinity 

and competes for it with ADF / cofilin151. 

In human CAP1 and yeast CAP, the HFD domain binds to ADF cofilin-actin complex, 

and increases the actin turnover mediated by ADF/cofilin 136,137. These results were 

originally interpreted as evidence of an active involvement of the HFD domain in the 

dissociation of the complex ADF/cofilin-actin. However, a recent study shows that the 

HFD domain is not required for the recovery of ADF / cofilin and G-actin but, instead, 

has a severing function on the polymerized actin filament. 

The sites necessary for monomer sequestering and nucleotide exchange activities of 

CAP reside in its C-terminal. The C-terminal half of CAP can bind to one molecule of 

G-actin147, and WH2 and CARP bind independently to G-actin150,151,164. 

Although the C-terminal half of CAP is sufficient to promote the nucleotide exchange of 

ADP–G-actin, WH2 is necessary to facilitate nucleotide exchange when ADF/ cofilin is 

bound to ADP–G-actin165. 

Since ADF / cofilin and WH2 share the same binding site for the G-actin (Dominguez 

and Holmes, 2011), WH2 might be necessary to CAP to be able to compete with 

ADF/cofilin. 
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1.2.2.4 CAP AND F-ACTIN 
CAP also interacts directly with the filaments of F-actin and promotes depolymerization 

of the filament. Recent observations have clearly shown that CAP induces cleavage of 

actin filaments166. For example mammalian CAP1 is able, alone, to sever actin filaments 

at acidic pH condition, but not at neutral pH, while the ADF / cofilin of mammal is able 

to “cut” actin filaments in basic pH, but not at neutral and acidic pH. However, when 

CAP1 and ADF / cofilin are combined, they promote the breakdown of actin filaments 

within a wide pH range.  

In addition, yeast CAP promotes the severing of actin linked to ADF / cofilin, and this 

activity is mediated by the N-terminal portion of CAP containing the coiled-coil region 

and the HFD domain138. However, the mechanism by which the actin filaments are 

cleaved from CAP HFD domain remains unclear. 

1.2.2.5 CAP2 (Cyclase-Associated Protein 2) 
Higher eukaryotes have two homologs of CAP, CAP1 and CAP2, which share high 

homology. CAP1 is equally distributed in the organs of the mouse and is highly 

abundant, while CAP2 is expressed only in the skeletal muscle, heart, testis and brain. 

The N-terminal part of CAP2 is conserved through all the species, in particular the 

sequence LxxRLE/DxxxxRLE.  

The best characterisation of CAP2 in mammalian cells, up to now, is made by Peche 

and colleagues, that generate a CAP2gt/gt knockout mice. This model show a particular 

phenotype: 

1-Mutant mice showed a decrease in body weight and had a decreased percentage of 

survival (they survive not over 70 days in comparison to WT animals). Further, they 

developed dilated cardiomyopathy (DCM) associated with drastic reduction in basal 

heart rate and prolongations in atrial and ventricular conduction times. A further finding 

is that mortality due to DCM and atrial dilation is more evident in male than female 

animals. The authors demonstrated that this is due to the dishevelment of sarcomere. 

The lack of CAP2 leads to the loss of the G-sequestering capability of the protein and 

so to the filament-fragmenting activity. They demonstrated that CAP2 is present in the 

Z-line-banding pattern of the sarcomeres and regulates filament formation150. 

2-Kosmas and colleagues showed that the keratinocytes of mutant mice showed 

reduced velocity and a delay in scratch closure. They showed that CAP2 in murine and 

human skin is present in the nucleus, in the cytosol and in the cell periphery; moreover, 

they reported that interestingly, in human wounds, CAP2 was also expressed in 



	 22	

hyperproliferative epidermis and at the migrating tongue. CAP2gt/gt fibroblasts develop 

abnormal protrusions and more focal adhesions and show reduced velocity. The 

authors proposed a model according to which, the CAP2 knockout cells motility is 

affected by stabilization of focal adhesions and by disruption of cell polarity, since the 

depletion of CAP2 leads to an increase in focal adhesion in resting and in migrating 

cells167. 

3-Kumar and colleagues showed that CAP2 is highly express in different brain areas, 

such as in the olfactory bulb, cortex, hippocampus and cerebellum. Using cortical 

primary culture labelled with TRITC-phalloidin to stain F-actin, they observed that CAP2 

colocalizes with F-actin. In particular, they showed that CAP2 also localizes in the 

dendritic shaft and presynaptic terminal with a synapsin I staining and in the excitatory 

postsynaptic sites, with a PSD-95 co-staining. Mutant mice showed a statistically 

significant increase in dendritic arbor complexity using a Sholl analysis respect to 

control. That results were confirmed by F/G actin ratio analysis, that shows an increase 

of the ratio in the mutant brain lysates. The authors found out that the induction of 

chemically long term potentiation (cLTP) results in a reduced surface density of GluA1 

compared to the surface GluA1 in WT cortical neurons, which suggests that the synaptic 

plasticity is impaired in CAP2 mutant neurons. This was further analysed with a surface 

biotinylation assays, suggesting that CAP2 is important for the exocytosis of AMPA 

receptor. Since previous studies reported that CAP2 modulate the dissociation of ADP 

G-actin-cofilin complexes136, they verified if CAP2 was able to bind cofilin. They 

confirmed the CAP2-n-cofilin interaction and found out that ablation of CAP2 in neuron 

results in the reduction of phosphorylated (inactive) cofilin and its accumulation in 

cytoplasmic aggregates cells168. 

A lot of studies reported that the gene of CAP2 is up-regulated in the early phases of 

Hepatocellular carcinoma (HCC)169. Shibata and co-workers have studied the 

expression of CAP2 and demonstrated its overexpression in multistage carcinogenesis 

of HCC. It was assumed that the stromal invasion capacity that occurs in the early 

months of HCC could be related to the actin binding activity of CAP2. The CAP2 

involvement in other carcinomas remains unclear. Peche and collaborators170 

monitored mRNA levels in 47 different types of cancer. CAP2 was over up-regulated in 

renal cancer, brain, colon, bladder and thyroid, while it was down-regulated in breast 

cancer, suggesting that CAP2 is regulated in different ways according to the type and 

origin of the tumour. 
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1.3 SYNAPTIC PLASTICITY: HOW THE SYNAPSES STORE 

INFORMATION 

Various factors can modify the strength of the transmission of the synapses. The 

synaptic activity is the capability of two neurons to communicate each other. Specific 

patterns of synaptic activity can modulate the strength of the synaptic transmission and, 

by this sophisticated way, the synapses store information in response to experience. 

The capability to modify neuronal circuit function generated by the experience is called 

synaptic plasticity. This term also includes the role in creating new circuits during the 

development and the capability to maintain the normal physiology of the neuronal 

circuits created171. 

 

1.3.1 SHORT-TERM PLASTICITY 
The short-term plasticity is characterised by an increase in the probability of transmitter 

release, in response to the left over calcium concentration in the presynaptic side after 

short bursts of activity. The major function of the short-term plasticity is to modulate the 

filter capability of the synapses, inhibiting or enhancing the release probability of 

neurotransmitter171. 

In particular, the paired pulse facilitation /depression is a form of short-term plasticity. It 

is a facilitation or a depression of the synaptic transmission depending on the timing at 

which a second stimulus is delivered after a first one on the same synapse; it’s a paired-

pulse facilitation if the second stimulus occurs within an interval from the first of 20–500 

ms, while the paired pulse depression occurs after a shorter interval (less than 20 ms)172 
173. Facilitation can be attributed to an increase of calcium concentration produced by 

the second stimulus leading to an increased probability to facilitate an additional release 

of neurotransmitter after the first stimulus. A lot of protein of the presynaptic 

compartment can contribute to promote the short-term plasticity, in particular the 

activation of protein kinases can modulate the activity of presynaptic phosphoprotein, 

for example synapsin174. On the other hand, a strong depletion of calcium in the 

presynaptic compartment can be generated after the first stimulus, contributing to 

create a depression. Indeed, paired-pulse depression is commonly observed in all 

synapses after short (less than 20 ms) interstimulus intervals, and it probably results 

from the inactivation of voltage-dependent sodium or calcium channels or from a 
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transient depletion of the release-ready pool of vesicles docked at the presynaptic 

terminal. Actually, we can point out that the depression, rather than facilitation, is strictly 

related to the transmitter release; in fact, in synapses where the probability of 

neurotransmitter release is high, the phenomena of depression may predominate171. 

Other forms of short-term plasticity are the post-tetanic potentiation (PTP) and the 

augmentation. The PTP occurs after a repetitive or tetanic stimulation of synapses with 

prolonged (approximately 200 ms to 5 s) trains of stimulation applied at high frequencies 

(10–200 Hz)173. On the other hand, repetitive activation leads to depression that can 

last for several seconds or even minutes173. Augmentation and PTP describe an 

enhancement of transmitter release lasting from seconds (augmentation) to several 

minutes (PTP)171. The concentration of Ca2+ in terminal boutons rises during PTP, 

suggesting that, like facilitation, it is a presynaptic process. 

Moreover, the G protein–coupled receptors (GPCRs) play an important role in the 

modulation of the synaptic transmission, enhancing or depressing it. In addition,  

several neuromodulators can influence the presynaptic release: retrograde messengers 

that have been identified in specific cell types include dopamine, dynorphin, glutamate, 

GABA, nitric oxide, brain-derived neurotrophic factor (BDNF), and oxytocin175-178. 

Astrocytes and perisynaptic Schwann cells regulate the synapses because of their 

intimate association with them. They have different roles, such as the clearance of 

neurotransmitter, thus controlling the speed and the extent of such clearance (Bergles 

et al, 1999; Danbolt, 2001). The glia can act on the short-term plasticity releasing 

substances that can impact on the synaptic function, including extracellular 

messengers; in particular, glial cells have different receptors, including Ca2+-permeable 

channels, that can control the internal stores of [Ca2+]i. The resulting increase in [Ca2+]i 

can trigger vesicular release of substances from astrocytes, which can act on 

presynaptic terminals to regulate neurotransmitter release173. 

 
1.3.2 LONG-TERM PLASTICITY 
 
1.3.2.1 LONG TERM POTENTIATION 
LTP is a persistent increase in synaptic strength following a high-frequency stimulation 

of a chemical synapse. First it was described by Bliss and colleagues179,180. It has been 

reported that the repetitive activation of excitatory synapses in the hippocampus causes 

a potentiation of synaptic strength that could last for hours or even days. Nowadays, we 

know that there are different forms of LTP in several brain areas, in particular at the 
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glutamatergic synapses and the form of LTP that occurs in the hippocampus, between 

the Shaffer collateral (axons that derive from the cells in CA3) and the apical dendrites 

of CA1 pyramidal cells, is considered the prototypic system to explain the LTP that 

appears at the glutamatergic synapses. LTP is characterized by three basic properties: 

cooperativity, associativity and input-specificity. Cooperativity means that several 

presynaptic fibres must be activated to generate the trigger signal. Moreover, the LTP 

is associative, which means that strong activation of one set of synapses can facilitate 

LTP at an independent set of adjacent active synapses on the same cell if both sets of 

synapses are activated within a finite temporal window181. Finally, LTP is input-specific, 

because when the trigger signal is turned on, all the others stimuli can’t be active. Many 

type of LTP have been described in the hippocampus, but the most described is 

NMDAR dependent. According to that, the induction of the LTP needs the increase in 

postsynaptic calcium concentration through NMDARs during a strong postsynaptic 

depolarisation of the cell181. In this process, the entry of the Ca2+ triggers the 

translocation of specific proteins to the synapse, including the AMPAR182. Practically 

the electrical stimulation, achieved with a high-frequency train of stimuli to the Schaffer 

collaterals, can generate, in the CA1 cells, excitatory postsynaptic potentials (EPSP). 

High-frequency stimulation protocols typically comprise delivery of one or several trains 

of pulses at 50–100 Hz for 1 sec183, called tetanic stimulation. This strong stimulation 

that leads to a summation of the excitatory postsynaptic potentials (EPSPs) allows 

achieving a strong depolarisation of the postsynaptic cell, activating NMDARs. In the 

early phase of LTP there is a strong redistribution of AMPARs at the synapse, because 

of activity-dependent changes in AMPAR trafficking, and this events are required for 

the maintenance of LTP 181,184-186. For example, the proteins of the TARP family control 

AMPAR distribution and insertion187 188,189. The molecular mechanism by which the LTP 

is maintained is initiated by a sufficient depolarisation of the membrane that allows the 

Mg2+ removal and the influx of the Ca2+ ion through NMDAR. The calcium ions activate 

intracellular kinases and phosphatases, such as PKA, PKC and CAMKII. 

In particular, CAMKII is activated by a structural change and it is recruited to the PSD, 

where it can phosphorylate several proteins such as AMPAR, NMDAR, PSD-95 190. The 

phosphorylation of Ser73 of PSD-95 can dissociated the PSD-95 from GluN2A while 

the phosphorylation of Ser295 can increase the stability of the association of the two 

proteins191. Also AMPARs are modified by several phosphorylations that impact on its 

trafficking and channel properties. 
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The late phase of LTP is more persistent (lasting > 8 hr) and requires transcription and 

synthesis of new proteins and, therefore, takes advantage of the protein synthetic 

machinery at synaptic sites on dendrites. During the late phase of LTP, the molecules 

that mediate the signalling to the nucleus are CAMKII, PKA, CAMKIV and MAPK, which 

in turn activate the key transcription factor CREB. However, the local synthesis 

apparatus can also be involeved in the generation of proteins that play a key role in the 

modifications triggered by LTP. Harris and co-workers showed that the percentage of 

spines containing polyribosomes increased 2 h after a tetanic stimulation192. As 

described, the synthesis and transport of new proteins enriches the composition of the 

spines. One of the most accredited hypothesis regarding the specificity of the new 

protein localisation is the capability of LTP to generate the so called “synaptic tag”, 

responsible for capturing the proteins and molecules only into selected spines193. The 

nature and composition of this synaptic tag is still unknown and object of debate, even 

if Morris and colleagues proposed anatomical changes and phosphorylation of 

receptors and kinases as possible tag candidates. 

Eva Fifkovà described for the first time, by the EM microscopy, that the enlargement in 

the morphology of the spine was correlated to the LTP. This modification in spine 

morphology was found 2 min after tetanic stimulation and lasted up to 23 h194. 

Matsuzaki confirmed these data using photolysis of caged glutamate and imaged it by 

two-photon microscopy. He demonstrated that, in the hippocampus, LTP leads to an 

enlargement of the dendritic spines that is correlated with an increase in the synaptic 

electrical response. Moreover, it has demonstrated that the LTP can induce new spine 

formation195. Along with spine growth, morphological changes associated with LTP 

include enlargement of the PSD196, the splitting of the single PSDs and spines into two 

functional synapses197,198, the remodelling of spine actin cytoskeleton199, redistribution 

of polyribosomes200 and mitochondria201. 

In addition to the prototypic LTP described above, in the hippocampus another form of 

LTP has been described and occurs at the mossy fiber synapses, the synapses 

between the axons of dentate gyrus granule cells (i.e., mossy fibers) and the proximal 

apical dendrites of CA3 pyramidal cells181. As for the NMDARs mediated plasticity, this 

LTP can represent a paradigmatic example of forms of plasticity that occurs also in 

other areas of the brain. The trigger of mossy fiber LTP is an increase in intracellular 

calcium concentration in presynaptic terminals202-204. The involvement of the 

presynaptic kainate receptor205-207  that leads to an increased probability of 
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neurotransmitter release is clear. Like NMDAR-dependent LTP, new protein synthesis 

appears to be required for maintaining mossy fibre LTP. However, it is unknown 

whether the increase in PKA activity following the induction of mossy fibre LTP is 

maintained for tens of minutes or hours. We also do not know whether long-lasting 

structural changes occur at the synapses that express mossy fibre LTP (Fig.3).  

1.3.2.2 LONG TERM DEPRESSION 
LTD (long term depression) has been considered as a parallel and opposite process to 

the more common LTP55. There are different forms of LTD through the brain, but, as I 

mentioned above, I will focus on the NMDAR-dependent LTD at excitatory synapses on 

hippocampal CA1 pyramidal cells208. 

We can induce LTD in neuronal cells applying a prolonged repetitive low frequency 

stimulation protocol; NMDAR-dependent LTD can also be induced by correctly timing 

the activation of presynaptic axons and the postsynaptic neuron209 (STDP). As the LTP, 

also the LTD is input-specific depending on the postsynaptic concentration of 

calcium210. The difference between the two processes resides in the difference in the 

concentration of calcium: high concentration of calcium triggers LTP, low concentration 

of calcium triggers LTD. The low frequency stimulation that leads to LTD involves the 

activation of calcium/calmodulin-dependent phosphatase calcineurin (also known as 

protein phosphatase 2B), of PP1, and of a phosphoprotein inhibitor-1 which inhibits PP1 

until calcineurin dephosphorylates it; it also inhibits and prevents the phosphorylation 

of several proteins, such as PKC and PKA. Consistent with a role for PKA, LTD is 

associated with selective dephosphorylation of Ser845 on GluR1, a PKA substrate site 
211(Lee et al, 2000). This dephosphorylation event may contribute to the expression of 

LTD, as it decreases the AMPAR open-channel probability212. 

Indeed, LTP is associated with phosphorylation of GluR1-Ser831, a substrate of 

CAMKII and PKC. While LTD was found to be associated with selective 

dephosphorylation of GluR1-Ser845 without any change in GluR1-Ser831208. The LTD 

induction in the CA1 cells can also trigger an activation of metabotropic glutamate 

receptors. Probably the extrasynaptic group of mGluRs are responsible for activating 

this kind of LTD213, including the mGluR1 and mGluR5 G-coupled protein receptors. In 

particular, it has been shown that the mGluR1 can activate the LTD in the ventral 

tegmental area (VTA), while the mGluR5 is involved in the hippocampus, cortex, and 

nucleus accumbens LTD induction171. In the cerebellum and in the VTA, the PKC 

mediates this kind of LTD213, but probably it is not involved in the mGluR- mediated LTD 
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in the hippocampus. Other signalling proteins important for mGluR LTD include the 

MAPKs p38, ERK, and Jnk214-216, tyrosine phosphatases217, and phosphatidylinositol 3-

kinase218 but how these various enzymes might lead to a long-lasting decrease in 

synaptic strength is unknown171. It is not clear where the mGluR-mediated LTD takes 

place. It has been suggested that in slices prepared from neonatal (P8–P15) animals, 

mGluR LTD is independent from protein synthesis and is due to a presynaptic 

modification, whereas in older animals (P21–P35) mGluR LTD is mediated by a protein 

synthesis-dependent reduction in the postsynaptic levels of AMPARs171. In particular, 

in the hippocampus the mGlur5 receptors stimulates the initiation of the local synthesis 

thought the Homer scaffold protein219 (Fig.3). 

 
 

1.3.3 Other mechanisms for plasticity: tuning the synapses  
Additional forms of synaptic plasticity that are not activity dependent have been 

identified, such as metaplasticity and homeostatic plasticity220. The homeostatic 

plasticity is the capability of neurons of regulating their own excitability relative to 

network activity, it uses a much slower timescale than LTP and is probably very 

important for the development. A mechanism, by which the homeostatic plasticity may 

allow local changes, is the synaptic scaling, which uses a set of calcium-dependent 

sensors that regulate receptor trafficking to increase or decrease the accumulation of 

glutamate receptors in the spine221. The metaplasticity consists in the ability of the 

neurons to modulate the activity-dependent synaptic plasticity222, or in other words the 

LTP or LTD are regulated by a plasticity of the entire synaptic state. In fact, now we 

know that there is a threshold for a system to induce the synaptic plasticity, and this 

movement within the plasma membrane. Most investigators
believe that the incorporation of AMPARs into the PSD is
the more important change because it appears to be
accompanied by structural changes in the dendritic spines
and synapses themselves, an attractive mechanism for
maintaining LTP (see below). There are also experimental
findings consistent with rapid presynaptic changes during
LTP, but the retrograde messenger that is responsible
remains elusive, one prominent possibility being BDNF
(Bramham and Messaoudi, 2005).

Maintaining LTP. Much of the work on NMDAR-
dependent LTP has focused on the mechanisms responsible
for its initial 30–60min, to a large extent because of
technical limitations in the duration over which stable
electrophysiological recordings can be maintained. None-
theless, the mechanisms that allow LTP to persist for hours,
days, or even longer are of great importance. Like virtually
all cell biological phenomena, the persistence of LTP is
dependent upon new protein synthesis (Reymann and Frey,
2007). This so-called ‘late phase of LTP’ (defined as the
potentiation present more than 1–2 h after LTP induction)
is commonly assumed to depend upon local dendritic
protein synthesis, which supplies needed components to the
synapse (Sutton and Schuman, 2006), as well as transcrip-
tion in the nucleus (Zhou et al, 2006). The signaling to the
nucleus required for long-lasting LTP has been suggested to
depend on a number of protein kinases including PKA,
CaMKIV, and Erk-MAPK, which activate key transcription
factors that may include cAMP response element-binding

protein and immediate-early genes such as c-Fos and
Zif268/Egr-1 (Thomas and Huganir, 2004). These transcrip-
tional complexes presumably promote expression of
effector genes that are required for maintaining the synaptic
enhancement.
Several mRNAs can be found in dendrites, including

those of the AMPARs themselves, CaMKII, Arc, and
proteins which may function to regulate receptor trafficking
(Grooms et al, 2006; Job and Eberwine, 2001; Ju et al, 2004;
Mayford et al, 1996; Schuman et al, 2006; Steward and
Schuman, 2001). The trafficking of some of these mRNAs
and their local translation seems to be highly regulated by
activity. Furthermore, other components of the translational
machinery are found in or adjacent to dendritic spines and
polyribosomes are recruited to spine heads following LTP
induction (Bourne et al, 2007). Thus, there is accumulating
evidence that the machinery to provide local, newly
synthesized proteins to synapses is available.
An intriguing hypothesis is that during the synaptic

activation to induce LTP a ‘synaptic tag’ is generated that
functions to capture or sequester plasticity related proteins,
which in turn are required to stabilize the increase in
synaptic strength (Frey and Morris, 1997). However, little is
known about the identity of the synaptic tag or the newly
synthesized proteins that are required to maintain LTP,
although it has been suggested that PKA, CAMKII, or PKMz
might function as the synaptic tag (Reymann and Frey,
2007; Sajikumar et al, 2005; Young et al, 2006).
A compelling possibility for a long-term maintenance

mechanism of LTP is the structural remodeling of
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Figure 2 Model of AMPAR trafficking during LTP and LTD. In the basal state (depicted on top), receptors cycle between the postsynaptic membrane and
intracellular compartments. This is achieved through lateral mobility of the receptors out of the synapse into endocytic zones, where they are endocytosed
into early endosomes in a clathrin- and dynamin-dependent manner. Normally, the receptors are transferred to recycling endosomes and returned to the
plasma membrane by exocytosis, followed by lateral movement into the synapse where they are retained through interaction with MAGUKs. Following
induction of LTP, there is enhanced receptor exocytosis and stabilization at the synapse through a calcium-driven process that involves CAMKII and fusion of
recycling endosomes mediated by Rab11a. Following the induction of LTD, enhanced endocytosis at extrasynaptic sites occurs in a process that is calcium-
dependent and involves protein phosphatases, primarily calcineurin and protein phosphatases 1 (PP1). While in the basal state endocytosis is presumably
balanced by receptor recycling, following LTD receptors are retained within the cell, and perhaps degraded.
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limit is not a static property of synaptic connections but, instead, changes dynamically 

according to the recent history of synaptic activity 222. 

1.3.4 SYNAPTIC PLASTICITY: THE BASIS OF MEMORY 
According to Bear and Malenka (2004), the brain takes advantage of the neuronal 

capability to express long-lasting activity-dependent synaptic modifications as one of 

the key mechanisms by which experiences modify neural circuits behaviour.  However, 

in the last years, the LTP phenomenon has been the object of intense investigation 

because is considered to be the basis of the process of memory formation. Indeed, 

since the hippocampus is a well-known locus for declarative memory223, it is not 

surprising that in the last three decades a major effort aimed at demonstrating a role for 

hippocampal LTP in encoding new memories224. According to such hypothesis, the 

process of strengthening the synapses can increase the strength of circuits' 

connections thus leading to the storage of the new information in those circuits (i.e. in 

particular in the hippocampus, the declarative memory, the type of memory that, in 

humans, can be consciously recalled, is generated). During the last years, several 

correlations have been observed between defective hippocampal synaptic plasticity 

and defective hippocampal-dependent memory tasks upon perturbation of a number of 

proteins which have a role in synaptic plasticity, either pharmacologically, or through 

gene knockout 225. 

 
1.3.5 SPINES ARE ELECTRICAL COMPARTMENTS 
Spines are clearly electrical compartments separated from the parents' dendrite 54. It is 

clear that during the APs (Action Potentials) the voltage of the spines is present also in 

the parents' shafts, whereas during excitatory postsynaptic potentials (EPSPs) spines 

must sustain a higher depolarization than dendritic shafts. Probably this occurs thanks 

to the particular shape of the spines: the most plausible hypothesis is that the action 

potential is amplified in the head of the spine and reduced as it invades the shafts by 

passing through the neck. There are still different hypothesis on how the electrical 

compartmentalisation is kept. In any case, it allows the spine to amplify the synaptic 

currents and reduce the EPSPs when they invade the dendrites thus preventing the 

dendrites saturation, especially if the neuron integrates a lot of inputs. Alternatively, this 

phenomenon can be interpreted as a mechanism through which spines could simply 

diminish the depolarization generated by each input, therefore more EPSPs can be 

integrated before the neuron fires an AP. Moreover, the electrical compartmentalization 

enables precise control of the synaptic strength. This process could occur by modifying 
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the amplification of EPSPs at the spine head, by altering the activation of spine 

conductance, or by altering the spine neck/dendritic shaft electrical coupling by either 

active or passive mechanisms. For this reason, after the LTP induction we can clearly 

see the modification of the morphology of the spine that allows the spines to be more 

responsive to the external signal 49. A compelling possibility for a long-term 

maintenance mechanism of LTP is the structural remodelling of potentiated synapses 
183. Spines have a variety of shapes and sizes, and can undergo rapid shape changes 

that are influenced by activity198. Morphological changes, which have been reported to 

accompany LTP, include growth of new dendritic spines, enlargement of pre-existing 

spines and their PSDs, and the splitting of single PSDs and spines into two functional 

synapses 195,197,198. An attractive model suggests that during LTP, recycling endosomes 

contribute to AMPAR subunits insertion in the synapse, as well as to lipids and 

constituents enrichment which enlarge the synapse226,227. At later time points, there is 

a concomitant increase in the presynaptic active zone, the size of which always closely 

matches to that of the PSD226. This presynaptic remodelling must involve post- and 

presynaptic protein interactions with cell adhesion molecules. 

 

1.3.6 ACTIN ROLE IN PLASTICITY 
It has been shown that the neuronal plasticity is strictly linked to the fast remodelling of 

the synaptic actin228. LTP induction moves the G and F actin ratio to an increase in F-

actin levels leading to an increase of spine volume, while the LTD induction move the 

ratio toward an increase of the G-actin concentration leading to the shrinkage of the 

spine199,229. The link between the LTP and actin remodelling is demonstrated by the 

treatment with depolymerizing actin reagents195,229. Bosh and colleagues showed for 

the first time, the remodelling that occurs in the spine after the LTP stimulation. 20 

seconds after the LTP induction there is a rapid increase of the actin levels in the spines. 

Moreover, there is also a change in the composition of the actin binding proteins that 

regulate the actin cytoskeleton into the spine. During the first minutes of LTP induction, 

the concentration of a lot of protein that can modify the actin cytoskeleton, such as 

debrin, CaMKIIβ e α-actinin, is decreased230 . During this phase, that takes 1-7 

minutes194, the actin cytoskeleton is more unstable and susceptible to reorganization. 

During this phase the cofilin plays an important role in the remodelling of F-actin. First 

of all, upon the activation of the NMDAR the cofilin is translocated to the synapse. Since 

the actin concentration is high, the cofilin can severe the actin cytoskeleton, leading to 
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the formation of new barbed ends231. The severing is a phenomenon that allows Arp2/3 

to enhance its function of branching, creating new filaments that are involved in the 

maintenance of spine expansion and in the proteins trafficking, such as the trafficking 

of AMPAR232. According to that, the pharmacological inhibition of the cofilin 

phosphorylation prevents the maintenance of spine enlargement, even if the first phase 

of the LTP is not blocked. Indeed, Bosch proposes the fundamental role for cofilin and 

others ABP for the maintenance of the structural remodelling of the actin cytoskeleton. 

During the second phase (7-60 min after the LTP induction) the actin concentration 

goes back to “normal” levels. In this phase all the changes that occured in the first phase 

are stabilized. According to that, the cofilin moves to the neck of the spine after its 

phosphorylation on Ser3. This is a key point, since if the cofilin phosphorylation is 

prevented, it is possible to assist to an excessive severing process that can lead to the 

spine shrinkage, fostering the depolymerisation of actin instead of polymerisation233. In 

the neck of the spine, the cofilin is dephosphorylated again in order to bind F-actin and 

create a stable structure, made of cofilin and F-actin, at the base of the spine head. This 

particular complex, in the neck, can decrease the normal movement of F-actin from the 

spine head234. Indeed, the complex cofilin-actin can stop this treadmilling leading to the 

enlargement of the spine at the spine head. Moreover, the importance of F actin is not 

only related to the remodelling, but after LTP induction it can capture and stabilize a lot 

of proteins, thus representing an anchoring for several molecules235. In the third phase 

(that correspond to L-LTP, late LTP), that occurs 60 minutes after induction, there is a 

stabilization of the spine composition. In particular, synaptic proteins, as the members 

of MAGUK family, reach a level that is proportional and closer to the new spine volume, 

thus the natural correlation between the volume and the PSD size is recovered 236 (Fig. 

4). 

As concern the structure of the spines, it has been demonstrated that the F-actin 

nucleation, mediated by WAVE complex, an activator of the Arp2/3 complex, occurs in 

the central structure of the spine, while the elongation occurs at the tip of finger-like 

protrusions. For that reason, the proteins involved in the branching of the already 

assembled filaments are localized in the central part of the PSD, while next to the 

membrane the filament elongator proteins are localized. The synaptic plasticity, 

modifying the distribution patterns of ABP, induces also the redistribution of branched 

F-actin regulators in spines, to create an enlargement also in the distal part of the spine 
237. 
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	  of spines closer to the neck while the fast treadmilling of
actin filaments closer to the spine head surface fine-tunes
spine shape and dynamics, conferring a capability to
respond to stimuli [Koskinen et al., 2014]. Thus, increased
myosin IIb expression and spine localization during neuro-
nal maturation [Ryu et al., 2006] can explain the detected
increase in the relative size of the F-actin stable pool (actin
crosslinking) and the faster treadmilling of the dynamic
pool (myosin IIb motor activity) in 3-week-old compared
to 2-week-old neurons [Koskinen et al., 2014] (Fig. 1).

Actin Dynamics During Long-Term
Potentiation

Proposed as being the cellular counterpart for memory for-
mation, it is not surprising that LTP and the associated
spine remodeling have recently got a lot of attention. Trains
of high-frequency activity can induce long-term potentia-
tion (LTP) of glutamatergic synaptic connections: a persis-
tent increase in the strength of a synapse. It is mediated by
membrane depolarization, NMDA receptor activation and
short, significant increases in postsynaptic calcium [Huganir
and Nicoll, 2013]. LTP formation relies on dynamic actin
filaments [Krucker et al., 2000; Fonseca, 2012]. During
LTP, dendritic spines accumulate F-actin and these changes
can persist for weeks, along with an increase in the ampli-
tude of synaptic currents [Fukazawa et al., 2003]. Single

spines undergoing LTP exhibit a significant expansion of
the spine head along with a shortening and widening of the
spine neck [Matsuzaki et al., 2004; Urban et al., 2011;
Tønnesen et al., 2014].

Phase I: Reorganization of the Spine
Actin Cytoskeleton

Spine remodeling during LTP follows several phases (Fig. 2).
First, almost immediately after stimulation (1–7 min), the
spine head rapidly enlarges, F-actin concentration rises and
actin-severing/depolymerizing, -capping and -polymerizing
proteins enter the spine while actin-stabilizing proteins leave
[Matsuzaki et al., 2004; Okamoto et al., 2004; Honkura
et al., 2008; Bosch et al., 2014; Meyer et al., 2014; Mizui
et al., 2014]. Such neuronal activation also results in the auto-
phosphorylation of CaMKIIb and, subsequently, its dissocia-
tion from F-actin [Kim et al., 2015b]. CaMKIIb can
stabilize and maintain spine structure through actin bundling
and by inhibiting the binding of other actin regulators
[Okamoto et al., 2007; Kim et al., 2015b]. Dissociation of
CaMKIIb releases the maintenance of the actin structures
allowing for reconstruction. The characteristics of this initial
step illustrate how synaptic activity can orchestrate the action
of tens of actin-regulatory proteins to destabilize and partly
break down the existing actin structure in order to rebuild it
according to the new needs (Fig. 2). Active cofilin is especially
highly enriched in spines in this first stage, suggesting a major

Fig. 2. Dendritic spine actin dynamics in long-term potentiation formation. Immediately after high-frequency stimulation (HFS),
Ca21 ions flow into spines. Actin filaments are cut shorter through severing (scissors) while actin polymerization expands the spine
head (yellow circles). Soon after this initial enlargement, actin filaments are gradually stabilized and spine head size decreases.
We propose that cytoskeleton breakdown allows for the effective addition and replacement of AMPA receptors while re-stabilization
facilitates the maintenance of these changes.
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I.Hlushchenko	et	al.,Cytoskeleton-2016	
Figure	4.	Actin	remodelling	during	LTP 
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1.4 ADAM10: AN ENZYME INVOLVED IN SEVERAL 

SYNAPTOPATHIES 

Neuronal signalling is an integrated process between the excitatory and inhibitory 

process. The signals that a neuron can receive could be excitatory or inhibitory, can be 

directed to the dendrites or to the cell body, and whether the neuron fires an action 

potential depends on the total input of all the synapses238. There are a lot of control 

mechanisms that maintain the balance between the excitatory and inhibitory synaptic 

transmission, the so-called E/I balance. Alteration in the E/I synapse balance has been 

proposed to be involved in the pathogenesis of many brain disorders, including autism 

and schizophrenia238. Moreover, it is known that the functional morphology of the spine 

is strictly linked to the synaptic function and therefore the deep comprehension of the 

mechanisms underlying the physiology of the synapse can help in the understanding of 

the basic mechanisms involved in the brain pathology. Spine morphology depends on 

rapid alteration in neuronal activity and glutamate receptor activation. Indeed, as 

described in the previous chapter, the induction of LTP causes enlargement of spine 

heads, whereas activity patterns that induce LTD cause spine head shrinkage238. 

A class of enzymes, such as the metalloproteases, responsible for the modulation of 

the synaptic morphology plays a specific role in the synaptic development and 

remodelling. For example, ADAM10 is involved in physiological processes such as the 

development to pathologies as AD. Indeed, the knockout mice for ADAM10 are 

characterized by prenatal lethality at 9.5 days of embryogenesis, with defects in the 

development of the central nervous system239. 

 

1.4.1 ADAM10 substrates 
The proteases (also called peptidase or proteinase) are enzymes that performs 

proteolysis; proteases play a critical roles the brain having emerging roles in synaptic 

plasticity, memory, neurodegenerative disorders such as Alzheimer’s, Parkinson’s and 

prion diseases, ischemia and traumatic brain injury, inflammatory and infectious 

diseases, and tumour progression. 

In the central nervous system (CNS), ADAM10 can cleave different proteins, among 

which: prion protein (PrP), N-Cadherin, neuroregulin, ephrins, L1 adhesion molecule, 

transmembrane chemokines, Notch and its ligand Delta and APP (Amyloid Precursor 

Protein).  



	 34	

 

The prion protein (PrP)  

The cellular prion protein PrP is essential for the pathogenesis and transmission of prion 

diseases. Whereas the majority of PrP is bound to the cell membrane via a 

glycosylphosphatidylinositol (GPI) anchor, a secreted form of the protein has been 

identified. PrP can be released into the medium by both protease and phospholipase-

mediated mechanisms240 (Parkin et al., 2004). PrP undergoes constitutive cleavage 

involving ADAM10 and phorbol ester-regulated proteolytic cleavage mediated by 

ADAM17 (Vincent, 2004). Therefore, activation of ADAM10 and ADAM17 could be 

considered a putative therapeutic strategy aiming at increasing normal PrP breakdown 

and, thereby, depleting cells of the putative toxic domain of PrP241. 

 

Adhesion molecules: N-Cadherin,  γ-protocadherins and L1 

Cadherins are Ca2+ dependent adhesion molecules expressed virtually by all cells that 

form solid tissue, during development as well as in adult life. N-Cadherin, the most 

abundant Cadherin in the CNS, belongs to type I classical Cadherins. The release of 

its extracellular domain, which contains the homophilic binding site, is functionally of 

major importance for the regulation of cell adhesion, cell migration and neurite 

outgrowth 242,243. ADAM10 is responsible for the initial proteolytic cleavage of N-

Cadherin, leading to the release of the extracellular soluble domain and the production 

of the membrane-bound carboxy-terminal fragment CTF1, which is cleaved by Υ-

secretase244. The enzymatic activity of ADAM10 on N-Cadherin may be significant for 

the coordinated interplay between cell-cell adhesion, cell detachment, cell proliferation 

and cell survival during embryogenic development, in wound healing and during tumour 

invasion. Other than N-Cadherin, at least two classes of cell-adhesion molecules are 

cleaved by ADAM10, γ-protocadherins (Pcdh-γ) and L1 adhesion molecule. Pcdh-γ are 

abundantly expressed in the nervous system. They are enriched at synapses and 

involved in synapse formation, specification and maintenance. Pcdh-γ C3 and Pcdh-γ 

B4 are constitutively cleaved within their ectodomains by ADAM10, thus inhibiting cell 

aggregation245. The immunoglobulin superfamily recognition molecule L1 promotes 

neuronal migration, neuronal survival and neurite outgrowth246. L1 undergoes 

constitutive cleavage at the cell surface which can be enhanced by stimulation with 

PMA, cholesterol depletion or NMDA-treatment (Maretzky et al., 2005; Mechtersheimer 
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et al., 2001). Constitutive and NMDA-induced shedding of L1 is mediated by ADAM10 

while PMA stimulation or cholesterol depletion leads to ADAM17-mediated L1 

cleavage247. ADAM10-mediated release was found to occur in intracellular vesicles that 

are subsequently released while cleavage of L1 in response to PMA occurred at the 

cell surface248. Soluble L1 has been shown to stimulate cellular migration, neurite 

outgrowth and recovery after spinal cord injury. 

 

Ephrin family 

Ephrins are neuronal guidance molecules that bind to receptor tyrosine kinases of the 

Eph family. Ephrin cleavage is fascinating. Ephrin ligands, presented on one cell 

surface, associate with their receptors on the surface of a juxtaposed cell, leading to 

cell-cell repulsion. Ephrin ligand can be proteolytically released from its membrane by 

a complex on the opposing cell composed of the ephrin receptor and ADAM10. While 

ADAM10 constitutively associates with EphA3, the formation of a functional 

EphA3/ephrin-A5 complex creates a new molecular recognition motif for the ADAM10 

cysteine-rich domain that positions the proteinase domain for effective ephrin-A5 

cleavage. Surprisingly, the cleavage occurs in trans, with ADAM10 and its substrate 

being on the membranes of opposing cells, suggesting a simple mechanism for 

regulating ADAM10-mediated ephrin proteolysis, which ensures that only Eph-bound 

ephrins are recognized and cleaved249. In particular, when the growth cone of a neuron 

that expresses Eph receptors encounters ephrin ligands on the surface of another cell, 

this event initiates bidirectional signalling cascades that regulate cell adhesion, axonal 

guidance and neuronal plasticity. The growth cone then overcomes these adhesive 

forces and breaks away from the ephrin surface by proteolytic shedding of ephrin. A 

cleavage-inhibiting mutation within ephrin A2 delays axon detachment, suggesting that 

shedding is critical for axon guidance in the CNS250. ADAM10 can cleave ephrin A5 

bound to EphA3 and thus terminate binding via ephrin. Notably, the ephrin receptor 

EphB2 also undergoes calcium-influx and NMDAR-induced cleavage that is sensitive 

to ADAM10 inhibition249. Thus, ADAM10 can be regarded as promoter of axon guidance 

and extension in the CNS because of the cleavage of ephrins as well as of their 

receptors.  
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Notch  

The receptor Notch and its ligand Delta 1 are required for neuroepithelial development 

during embryogenesis, but also for neuronal stem cell maintenance and self-renewal of 

the adult brain. ADAM10 cleaves the extracellular domain of Notch239  which is then 

directly followed by an intramembranous cleavage of the remaining cell-associated 

Notch molecule via γ-secretase. This results in the generation of a cytoplasmic fragment 

which can translocate into the nucleus and can be a transcription factor251. Thus, 

ADAM10 is critically involved in the transcriptional signalling pathway of Notch and is 

required for its functions in neurogenesis, even in the adult CNS.  

 

The Amyloid Precursor Protein (APP) 

Although APP is one of the most studied proteins, the physiological function of APP 

itself or indeed APP-derived peptides has not been definitively elucidated. Most 

evidence suggests that APP has a trophic function promoting neurite outgrowth, 

neuronal migration and repair via interaction with extracellular matrix proteins252,253. 

Several reports indicate that the lack of APP or its overexpression affects the number 

of dendritic spines. APP knockout mice exhibit a baseline dendritic spine density that is 

approximately two-fold higher compared with wild-type controls because of a higher 

number of persistent spines254. Moreover, dendritic spine density is modulated in a 

dose-dependent manner by APP expression. In addition to a role in spine morphology, 

two reports showed that APP may contribute to postsynaptic mechanisms via regulation 

of the surface trafficking of excitatory NMDA receptors255. 

Generation of Amyloid peptide (Aβ) from APP is positioned at the beginning of a 

cascade that leads to Alzheimer’s disease (AD). The shedding process is mediated by 

α- or β-secretases, while the cleavage of the membrane retained stubs is due to γ-

secretase3. β- and γ-secretases are the principal players involved in Aβ production, 

while α-secretase cleavage on APP prevents Aβ deposition. Three members of the 

family of ADAMs have been shown to exert α-secretase activity on APP: ADAM10, 

ADAM17, which is also known as TACE, i.e., Tumor Necrosis Factor-alpha Converting 

Enzyme, and ADAM9, also referred to as MDC9, standing for 

metalloprotease/disintegrin/cysteine-rich protein256,257. Two recent studies finally 

demonstrated that the constitutively cleaving α-secretase activity in neurons is 

selectively mediated by ADAM10258,259. ADAM10-mediated non amyloidogenic 
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pathway on APP releases one soluble, neurotrophic fragment called sAPPα and one 

membrane associated stub, called CTF83, which can then be cleaved by the γ-

secretase complex, liberating extracellular p3 and the amyloid precursor protein 

intracellular domain(AICD). 

 
1.4.2 ADAM10 structure 
ADAM10 is a 748 amino acid type I membrane glycoprotein, which is ubiquitously 

expressed260. Members of the ADAM family are characterized by a defined domain 

structure, including a signal sequence, a N-terminal prodomain, followed by a catalytic 

proteinase domain containing a zinc-binding motif, a disintegrin domain, a cysteine-rich 

sequence, a transmembrane domain, and a cytoplasmatic tail260. The nascent protein 

is not functional and is produced as a zymogene. ADAM10 is predominantly found as 

a proenzyme intracellularly in the Golgi, presumably in an inactive form257.  After the 

cleavage of the signal sequence, ADAM10 enters the secretory pathway to be 

processed and thereby activated by the proprotein convertases furin or PC7261, as 

demonstrated for the prodomains of several ADAMs262-264. Furin and PC7 are calcium-

dependent endoproteases responsible for proteolytic cleavage of cellular and viral 

proteins transported via the constitutive secretory pathway. Cleavage occurs at the C-

terminus of basic amino acid sequences, such as R–X–K/R–R and R–X–X–R. The furin 

was found predominantly in the trans-Golgi network (TGN), but also in clathrin-coated 

vesicles dispatched from the TGN, on the plasma membrane as an integral membrane 

protein and in the medium as an anchorless enzyme. ADAM10 prodomain exhibits a 

dual function: the separately expressed prodomain is capable of inactivating 

endogenous ADAM10 in cell cultures while overexpressed ADAM10 without its 

prodomain is inactive261. By contrast, coexpression of the prodomain in trans rescues 

the activity of the deletion mutant of ADAM10 lacking of the intracellular prodomain. In 

addition, the recombinant murine prodomain purified from Escherichia coli acts as a 

potent and selective competitive inhibitor in experiments performed in vitro265. This 

implicates that the prodomain of ADAM10 acts not only as a transient inhibitor, but also 

as an internal chaperone in the maturation of the enzyme. The catalytic domain of 

ADAM10 contains a typical zinc-binding consensus motif (HEXGHXX GXXHD); the 

mutation E384A compromises this motif and leads to a substantial decrease in sAPPα 

secretion266,267. Although the removal of the disintegrin domain of ADAM10 did not 

grossly affect shedding of APP in cell cultures, the cleavage of some substrates 

molecule is likely to be influenced by non-catalytic domains. For example, epidermal 
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growth factor cleavage is at least partially impaired in ADAM10 knockout cells 

overexpressing a cytoplasmic domain deletion mutant of ADAM10268. During transport 

through the secretory pathway, ADAM10 is complex N-glycosylated resulting in the 

active protease, which mediates proteolysis in the late compartments of the secretory 

pathway and at the plasma membrane. Cell surface biotinylation experiments 

demonstrated that the proteolytically activated form of ADAM10 is localized mainly in 

the plasma membrane257 (Fig. 5). 

 

 

1.4.3 Regulation of ADAM10 activity: the role of intracellular trafficking 
ADAM10, that is enriched in the PSD 269 can act on its substrate only when is correctly 

inserted into the plasma membrane. Therefore, the regulation of its trafficking can 

control its activity. Several proteins can modulate ADAM10 synaptic localization and, 

thereby, its activity. 

SAP97, a member of the MAGUK family, can modulate ADAM10 trafficking fostering its 

insertion in the synaptic membrane269. SAP97 SH3 domain binds to the proline-rich 

sequences in the cytosolic domain of ADAM10, thereby driving the protease trafficking 

from dendritic Golgi outposts to the postsynaptic membrane and increasing its cleavage 

activity. This process is mediated by a previously uncharacterized protein kinase C 

phosphosite in SAP97 SRC homology 3 domain that modulates SAP97 association with 

ADAM10. Such mechanism is essential for ADAM10 trafficking from the Golgi outposts 

to the synapse, but does not affect ADAM10 transport from the endoplasmic 

reticulum270. 
2. The gene locus and mRNA of ADAM10: place of
transcriptional regulation and translational control

The 16 exons of the mouse and human gene for ADAM10 are
located in a region of about 160 kbp on mouse chromosome 9 and
human chromosome 15, respectively (Yamazaki et al., 1997a,b)
(Fig. 1). Luciferase reporter assays were used to characterize the
promoter region which lacks a classical TATA motif. The region
between !508 and !300 was found to include binding sites for
Sp1, USF and also contains a retinoic acid-responsive element
(Fig. 2). An additional retinoic acid-responsive element is found
more downstream. In this context, vitamin A acid application to
cells increased the activity of the human ADAM10 promoter
(Prinzen et al., 2005). Within the ADAM10 promoter region, single-
nucleotide polymorphisms (SNPs) were not necessarily different
when AD patients and control subjects were compared (Prinzen
et al., 2005).

ADAM10 transcripts were found to be 4.4 kb in size. Careful
examination of the sequence of the mRNA of ADAM10 revealed an
untranslated 50 located GC-rich stretch of about 450 nucleotides.
Interestingly, the presence of this region inhibited the translation
of a reporter and vice versa a deletion caused, strongly increased
expression in human kidney cell lines (Lammich et al., 2010). The
translational repression due to this 50 UTR was caused by a stable
G-quadruplex RNA secondary structure (Lammich et al., 2011), and

Fig. 1. Evolution, gene structure, maturation and regulation of the ectodomain sheddase ADAM10. (A) The A Disintegrin And Metalloproteinase family (ADAMs) is composed
of inactive and active proteases. ADAM10 and ADAM17 are closely related members of the active ADAMs. (B) The human ADAM10 gene consists of a 50 and 30 untranslated
region (blue) and 16 exons which are used to generate the multimodular ADAM10 polypeptide. ADAM10 is itself subject to ectodomain shedding (black arrow). The crystal
structure model of the disintegrin domain (Janes et al., 2005) within the extracellular domain of ADAM10 is depicted. (C) Furin cleavage within the Golgi removes the
prodomain of ADAM10 and leads to the mature and fully active form of the protease. Ectodomain shedding of substrates mediated by ADAM10 triggers intramembrane
proteolysis by the g-secretase complex or by signal peptide peptidase-like proteases (SPPLs). (D) Regulation of ADAM10 activity is mediated at different levels, i.e. modulation
of promoter activity, the degree of prodomain release, cellular trafficking, cellular signaling and lipid and protein interactions.

Fig. 2. Regulation of ADAM10 at the transcriptional and translational level. ADAM10
transcription is controlled by several transcription factors. Their binding sites in the
ADAM10 promoter are indicated by colored squares. One factor is a heteromer of RAR
and RXR, which appears to bind to the indicated RXR motif, but may additionally also
bind to the other RXR motif (Prinzen et al., 2005). Upon binding of all-trans retinoic
acid (atRA) to RAR, the RAR/RXR factor stimulates ADAM10 transcription. The drug
acitretin, a retinoic acid derivative, is able to displace atRA from the cellular retinoic
acid binding protein (CRABP), leading to atRA binding to RAR and stimulation of
ADAM10 expression. The mRNA of ADAM10 consists of a GC-rich 50 untranslated
region (50 UTR), the ADAM10 open reading frame (ORF) and the 30 UTR. Two upstream
open reading frames (uORFs, light blue boxes) are found in the 50 UTR, but do not
control ADAM10 translation. In contrast, a GC-rich G quadruplex (GQ) structure
suppresses ADAM10 translation, presumably through FMRP. Likewise, different
miRNAs suppress ADAM10 translation by binding to different sequences within the 30

UTR. The length of 50 UTR, ORF and 30 UTR is not drawn to scale.

P. Saftig, S.F. Lichtenthaler / Progress in Neurobiology 135 (2015) 1–20 3

P.	Saftig,	S.F.	Lichtenthaler,	Progress	in	Neurobiology-2015	
Figure	5.	ADAM10	structure 
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The mechanism by which SAP97 mediates the ADAM10 trafficking, is regulated by 

LTD, one of the main paradigms of activity-dependent synaptic plasticity. Indeed, LTD 

boosts ADAM10 membrane insertion by fostering its SAP97-mediated forward 

trafficking to synaptic membrane271. Moreover, this mechanism is fostered by short-

term activation of the NMDAR in primary neurons269. However, NMDAR can also affect 

ADAM10 expression, because its activation leads to upregulation of the genes encoding 

ADAM10 and β-catenin proteins. Inhibitors of Wnt/β-catenin signaling abolished the 

ADAM10 upregulation, while the activation of the Wnt/ β-catenin signaling pathway by 

recombinant Wnt3A stimulated ADAM10 expression. Moreover, ERK inhibitors blocked 

both the NMDAR and Wnt3A-induced ADAM10 upregulation. These data suggest that 

the NMDA receptors control ADAM10 expression via a Wnt/ MAPK signaling 

pathway272. 

In addition, the ADAM10 cytoplasmic tail contains a ER retention motif that regulates 

its intracellular localisation. Indeed, sequential deletion/mutagenesis on this arginine-

rich sequence can alter the surface trafficking of the enzyme273. 

ADAM10 associates with different tetraspanins274. TSPAN12 is a partner of mature form 

of ADAM10 and promote the maturation of the protease275. Similarly, TSPAN15 also 

bound to ADAM10 in the ER. This complex was able to quickly pass through the 

secretory pathway, leading to more activated ADAM10 at the cell surface and increased 

ADAM10- mediated shedding events276. It is tempting to speculate that different 

TSPANs may modulate the cellular fate of ADAM10 (and other ADAMs), their 

substrates and also the function of the intramembrane cleaving proteases in a tightly 

coordinated fashion277.  

Another ADAM10 binding partner is the clathrin adaptor 2 (AP2), a heterotetrameric 

assembly that initiates the endocytosis process, interacts with an atypical AP2-binding 

motif (RQR) in ADAM10 C-terminal domain, and modifies its localisation. The LTP (long 

term potentiation) reduces the enzyme membrane levels by inducing AP2-mediated 

endocytosis271.  

 
1.4.4 ROLE OF ADAM10 IN ALZHEIMER’S DISEASE 
As regards ADAM10 involvement in AD pathogenesis, ADAM10 protein levels were 

found to be significantly reduced in platelets of sporadic AD patients and a significant 

decrease in sAPPα levels was detected in platelets and cerebrospinal fluid (CSF) of AD 

patients 278. In addition, it has been shown that α-secretase activity was reduced in 

temporal cortex homogenates from AD patients. In contrast, ADAM10 mRNA levels 
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were found to be two-fold increase in hippocampal and cerebellar sections of AD 

patients279. These results were obtained from the brains of severe AD patients and it is 

possible that, in later stages of the disease, ADAM10 expression is increased as a 

defense mechanism or as a secondary effect of inflammation and reactive gliosis. 

As mentioned above, the correct spatial localization of ADAM10 in the postsynaptic 

membrane is pivotal for an efficient APP α-secretase cleavage (Fig. 6), thus the 

mechanisms regulating the trafficking of ADAM10 play a key role in the modulation of 

its activity. We know that SAP97 and AP2 can modulate the localisation of ADAM10 

and thereby its activity. It has been shown that the ADAM10/SAP97 and ADAM10/AP2 

associations are involved in AD pathogenesis. Indeed, ADAM10 synaptic levels and 

ADAM10/SAP97 association are reduced in the hippocampus of AD patients in the early 

stage of the disease280. Interfering with the ADAM10/SAP97 complex for 2 weeks by 

means of a cell-permeable peptide strategy in mice is sufficient to increase amyloid 

levels and leads to the reproduction of initial phases of sporadic AD281. Specifically, 

there is a significant reduction in PKC mediated phosphorylation of SAP97 site in AD 

hippocampi when compared with age-matched control patients, that leads to a 

decrease of the SAP97/ADAM10 association270. 

ADAM10/AP2 association has also a pathological relevance; in fact, it has been 

demonstrated a concomitant increase in ADAM10 association to AP2 in the 

hippocampus of AD patients271. Our results suggest that in early stages of the disease, 

the reduction of α-secretase synaptic localization and activity could be ascribed to a 

defect in ADAM10 exocytosis/endocytosis processes rather than to an alteration of its 

expression. 

  

a soluble fragment, sAPPb, into the extracellular space. CTF99 can then be cleaved
by g-secretase at the C-terminus of Ab sequence; this processing allows the release
of the amyloidogenic Ab fragment and the amyloid intracellular domain (AICD)
(Fig. 25.1).

The cleavage of g-secretase releases Ab peptides of varying length from the
plasma membrane, depending on the site of cleavage. Of these, Ab42 has an
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Fig. 25.1 Scheme of the proteolytic events and cleavage products that are generated during the
processing of APP. APP is delivered to the surface membrane, where it is cleaved by a-secretase
within the sequence of Ab, thus precluding the formation of the amyloidogenic fragment. APP
molecules that fail to be cleaved by a-secretase can be internalized into endocytic compartments
and subsequently cleaved by b-secretase (BACE1) and g-secretase to generate Ab

576 E. Marcello et al.

E	Marcello	et	al.,	Journal	of	Cell	Science-2013		
Figure	6.	Amyloid	Cascade	
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1.4.5 ROLE OF ADAM10 IN OTHER CNS DISEASES 
ADAM10 has a role in several brain disorders, ranging from Huntington disease to 

mental retardation.  

For example, using conditional ADAM10 knockout mice (ADAM10 cKO or A10 cKO)258, 

it has been shown that the depletion of the protease in neural precursors leads to 

posttranslational accumulation of PrPC in the early secretory pathway282. Altmeppen 

and colleagues demonstrated that the lacking of ADAM10 leads to an increase level of 

PrPC, increased prion conversion and a reduced time in the incubation of prion disease. 

In light of these observations, it is clear the fundamental role of ADAM10 in the PrPC 

metabolism and in neurodegenerative events. 

Huntingtin is a large protein associated with the Huntington disease. The huntingtin 

protein (htt) inhibited ADAM10 activity and the shedding of its substrate N-cadherin, 

thus controlling neural adhesion during development. It is shown that the htt regulation 

of ADAM10 works through the modulation of the ADAM10-SAP97 complex 283.  

Interestingly, the majority of substrates of ADAM10 are either directly or indirectly 

involved in autism spectrum disorder (ASD), schizophrenia (SCZ) and bipolar disorder 

(BD), through both functional and genetic association284. For example, ADAM10 is also 

involved in the Fragile X syndrome, caused by mutations or deletions of the Fragile X 

mental retardation protein (FMRP). ADAM10 levels were found to depend on FMRP 

that controls the ADAM10 mRNA translation presumably by binding to the G-quadruplex 

structure in the 5-UTR of the ADAM10 mRNA285  
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2. AIM 

ADAM10 is one of the most important sheddase among the disintegrin and 

metalloproteinases family members. In neurons, ADAM10 is a component of the PSD, 

where it can act on many substrates, such as neuroligin-1, N-cadherin, NCAM and 

Ephrin. Thus ADAM10 has a crucial role in controlling synaptic adhesion molecules, 

spine morphology, and activity-dependent plasticity. Moreover, ADAM10 is the α-

secretase, the enzyme that cleaves APP within the Aβ domain, thus preventing Aβ 

generation. 

ADAM10 cleaves its substrate only when it is inserted at the plasma membrane and, 

therefore the intracellular trafficking of ADAM10 represents a mechanism capable of 

tuning its activity. In the last few years, the complex machinery responsible for ADAM10 

activity regulation in the synapses has been described. According to this, ADAM10 

forward trafficking to the synapse is mediated by SAP97. The phosphorylation of SAP97 

by PKC allows the trafficking of ADAM10 to the synapse from Golgi outposts, whereas 

the clathrin adaptor AP2 mediates the removal of ADAM10 from the plasma membrane. 

Both SAP97 and AP2 interact with the cytoplasmic tail of ADAM10. Therefore, the C-

terminal tail represents the locus responsible for the regulation of ADAM10 synaptic 

localization/activity. 

In light of these considerations, my PhD project aimed to identify new protein partners 

of ADAM10 Cterminal domain capable of modulating ADAM10 synaptic localization. 

We performed a yeast two-hybrid screening of a brain cDNA library using the ADAM10 

C-terminal tail as bait. Among the positive clones, we found a protein of particular 

interest, i.e. Cyclase-Associated Protein 2 (CAP2). CAPs are evolutionary highly 

conserved proteins involved in (i) processes orchestrating changes in actin 

cytoskeleton such as cell migration, movement and polarity, (ii) linking signalling 

pathways to elements of the cytoskeleton, (iii) vesicle trafficking and endocytosis1 

Hubberstey AV, Mottillo EP. Cyclase-associated proteins: CAPacity for linking signal 

transduction and actin polymerization 129 are essential for maintaining the balance 

between G- and F-actin. CAPs are highly conserved proteins that have been described 

in yeast, plants, Dictyostelium, Drosophila and mammals. CAP deficiency results in 

defects in vesicle trafficking, endocytosis, and in an altered cell morphology and cell 

growth 286. Two closely related homologs of CAP have been described in mammals. 

CAP1 is expressed in nearly all cells, whereas CAP2 expression is restricted to a limited 

number of tissues and is mainly found in brain, skin, skeletal and cardiac muscle 287. 
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Since at least one of the two CAP proteins is expressed in nearly all cells, it is likely that 

CAP1 and CAP2 complement each other in some cellular functions, but CAP2 may 

have unique roles, especially in neurons. 

 

Given that, the main goal of my phD project were to understand the functional role of 

ADAM10/CAP2 interaction. In particular, the specific aims were: 

1. to characterize CAP2 function in the brain, 

2. to investigate the capability of CAP2 to modulate actin dynamic, 

3. to determine CAP2 involvement in modulating ADAM10 synaptic localization 

4. to unravel CAP2 role in the remodelling of dendritic spines. 
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3. MATERIALS AND METHODS 

 

3.1 ANIMALS  

Sprague–Dawley rats of 6 weeks, E18 embryos from Sprague–Dawley rats for primary 

hippocampal neuron cultures. All the experiments were approved by the OHSU 

Institutional Animal Care and Use Committee and by the Italian Health Ministry 

(#295/2012-A).  

 

3.2. Y2H SCREENING  

Y2H was conducted according to the manufacture’s procedure guidelines using the 

Mate & Plate Library—Mouse Brain (normalized; cat #630488, TakaraBio/Clontech 

Europe, France). Briefly, the ADAM10(697-748) C-tail (bait) was cloned in the pGBKT7 

plasmid and transformed in the AH109 haploid yeast strain (MATa). This was mated 

overnight with the Mouse Brain normalized library (prays) cloned in pGADT7 

transformed in Y187 haploid yeast strain (MATa). Yeast were plated after 24 h on 

selective plate, allowing only the growth of diploid where a protein interaction between 

the bait and pray protein occurred (absence of Leucine, Adenine, Tryptophan and 

Histidine). Then the diploids were tested by a colorimetric assay (a-gal) to avoid the 

presence of false positive. Plasmids (twenty-one positive clones) were extracted from 

the yeast and sequenced.  

 

3.3. PLASMIDS  

EGFP CAP2 plasmid was a kind gift from Professor Angelika Noegel (University of 

Cologne). This plasmid was used to perform point mutation inserting a stop codon for 

the codon corresponding to aa 452 using the QuikChange site-directed mutagenesis kit 

(Stratagene, La Jolla, CA), following the manufacturer's instructions.  

Myc CAP2 plasmid was created using the restriction enzyme and it was used to perform 

point mutation inserting a stop codon for the codon corresponding to aa 452, C32G 

using the QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA), 
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following the manufacturer's instructions. Myc CAP2 plasmid was used also to create 

the deletion mutant Myc CAP2 165-476 using the the restriction enzyme SalHI and NotI. 

Glutathione S-transferase (GST)-CAP2 fusion protein contains CAP2 sequence and the 

deletion mutant GST CAP2-452Δ the restriction enzyme BamHI-HF and XhoI. 

Glutathione S-transferase (GST)-ADAM10 C-terminal domain (Ct) fusion protein 

contains the cytoplasmic domain of ADAM10 (695–749)269. GFP was provided by Dr 

Maria Passafaro (CNR, Milan, Italy) 

 

3.4. CELL CULTURES AND TRANSFECTIONS 

COS7 cells were grown on 100 mm dishes and maintained in DMEM containing 

Glutamax (DMEM þ Glutamax, GIBCO) supplemented with 10% fetal bovine serum and 

penicillin–streptomycin (GIBCO). Cells were allowed to grow till confluence before 

passaging every 3–4 days using trypsin. The day before transfection, COS-7 cells were 

placed in a 12 wells multiwell (for imaging), then cells were transfected with 250–500 

ng of plasmid DNA using the lipofectamine LTX method (Invitrogen). After 36 h, COS-

7 cells were fixed for immunostaining/imaging. Hippocampal neuronal primary cultures 

were prepared from embryonic day 18–19 (E18-E19) rat hippocampi. Neurons were 

transfected at DIV10 using calcium-phosphate co-precipitation method with 2–4 µg of 

plasmid DNA. Neurons were treated at DIV15, fixed and then immunostained. 

 

3.5. FLUORESCENT IMMUNOCYTOCHEMISTRY 

Cells were fixed with 4% Paraformaldehyde (PFA)-4% sucrose in PBS solution at 4 °C 

and washed several times with PBS. Cells were either blocked with 5% BSA in PBS for 

30 min at room temperature and then labelled with primary antibodies for surface 

labelling for 1 h at room temperature or permeabilized with 0.1% Triton X-100 in PBS 

for 15 min at room temperature and then blocked with 5% BSA in PBS for 30 min at 

room temperature. Cells were then labelled with antibodies for intracellular epitopes for 

1 h overnight at 4 °C. Cells were washed and then incubated with secondary antibodies 

for 1 h at room temperature. Cells were then washed in PBS and mounted on glass 

slides with Fluoromount mounting medium (Sigma Aldrich) or permeabilized for total 

labelling.  
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3.6 SUBCELLULAR FRACTIONATIONS  

TIF, a fraction highly enriched in PSD proteins but absent of presynaptic markers63, 

was isolated from adult rat hippocampus. To this, samples were homogenized at 4 °C 

in an ice-cold buffer containing 0.32 M Sucrose, 1 mM HEPES, 1 mM NaF, 0.1 mM 

phenylmethylsulfonyl fluoride (PMSF), 1 mM MgCl in the presence of protease inhibitors 

(Complete, GE Healthcare) and phosphatase inhibitors (PhosSTOP, Roche 

Diagnostics GmbH), using a glass- Teflon homogenizer. Homogenates were then 

centrifuged at 1,000g for 5 min at 4 °C, to remove nuclear contamination and white 

matter. The supernatant was collected and centrifuged at 13,000g for 15 min at 4 °C. 

The resulting pellet (P2 crude membrane fraction) was resuspended in hypotonic buffer 

(1 mM HEPES with Complete). Resuspended P2 were then centrifuged at 100,000g for 

1 h at 4 °C. Triton X-100 extraction of the resulting pellet was carried out at 4 °C for 20 

min in an extraction buffer (1% Triton X-100, 75 mM KCl and Complete). After 

extraction, the samples were centrifuged at 100,000g for 1 h at 4 °C and the TIFs 

obtained were resuspended in 20 mM HEPES with Complete.  

PSDs were isolated from rat hippocampus64. Rats (15 animals) were killed, hippocampi 

were dissected within 2 min and pooled. All hippocampi dissected in 42 min were 

discarded. Homogenization was carried out by 10 strokes in a glass-Teflon 

homogenizer (700 r.p.m.) in 4 ml/g of cold 0.32 M sucrose containing 1 mM HEPES, 1 

mM MgCl2, 1 mM NaHCO2 and 0.1 mM PMSF (pH 7.4). The homogenized tissue was 

centrifuged at 1,000g for 10 min. The resulting supernatant was centrifuged at 13,000g 

for 15 min to obtain a fraction containing mitochondria and synaptosomes. The pellet 

was resuspended in 2.4 µl/g of 0.32 M sucrose containing 1 mM HEPES, 1 mM 

NaHCO3 and 0.1 mM PMSF, overlaid on a sucrose gradient (0.85–1.0–1.2 M), and 

centrifuged at 82,500g for 2 h. The fraction between 1.0 and 1.2 M sucrose was 

removed, diluted with an equal volume of 1% Triton X-100 in 0.32 M sucrose containing 

1 mM HEPES, 15 min. This solution was spun down at 82,500g for 45 min. The pellet 

(Triton insoluble postsynaptic fraction, PSD1) was resuspended, layered on a sucrose 

gradient (1.0–1.5–2.1 M), and centrifuged at 100,000g at 4 °C for 2 h. The fraction 

between 1.5 and 2.1 M was removed and diluted with an equal volume of 1% Triton X-

100 and 150 mM KCl. PSD2 were finally collected by centrifugation at 100,000g at 4 °C 

for 45 min and stored at 80 °C until processing. All purifications were performed in the 

presence of complete sets of protease and phosphatase inhibitors (Roche Diagnostics). 

Protein content of the samples was quantified by using Bio-Rad protein assay.  
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3.7 TRITON INSOLUBLE SYNAPTIC MEMBRANE (TIF) 

To obtain the TIF fractions, samples of rat brain were homogenized at 4°C in an ice-

cold buffer with protease inhibitors (Complete™, GE Healthcare, Mannheim, Germany), 

Ser/Thr and Tyr phosphatase inhibitors (Sigma-Aldrich), 0.32 M Sucrose, 1 mM Hepes, 

1 mM NaF, 0.1 mM PMSF, 1 mM MgCl2 using a glass-teflon homogenizer. An aliquot 

of homogenate (Homo) was kept for Western Blot (WB) analysis. Homo were then 

centrifuged at 1000g for 5 min at 4°C, to remove nuclear contamination and white 

matter. The supernatant was collected and centrifuged at 13000g for 15 min at 4°C. 

The resulting pellet (crude membrane) was resuspended in resuspension buffer (1 mM 

Hepes with protease inhibitors (Complete™, GE Healthcare)) and then centrifuged at 

100000g for 1 h at 4°C. Triton-X extraction of the resulting pellet was carried out at 4°C 

for 20 min in an extraction buffer (1% Triton-X, 75 mM KCl and protease inhibitors 

(Complete™, GE Healthcare)). After extraction, the samples were centrifuged at 

100000g for 1 h at 4°C and the TIFs obtained were resuspended in 20 mM HEPES with 

protease inhibitors (Complete™, GE Healthcare). To get the soluble fraction (S2), 

samples of human brain were homogenized at 4°C in an ice-cold buffer with protease 

inhibitors (Complete™, GE Healthcare), Ser/Thr and Tyr phosphatase inhibitors 

(Sigma-Aldrich), 0.32 M Sucrose, 1 mM Hepes, 2 mM EDTA, 0.1 mM PMSF, 1 mM 

EGTA using a hand-held glass-teflon homogenizer. In this case, aliquots of Homo were 

kept to perform immunoprecipitation (ip) assay. Homo were then centrifuged at 1000g 

for 10 min at 4°C, to remove nuclear contamination and white matter. The supernatants 

were collected and centrifuged at 100000g for 1h at 4°C. The resulting pellet (crude 

membrane) was discarted and the supernatant obtained corresponds to the S2 fraction. 

 

3.8. CO-IP ASSAY 

A measure of 100 µg of proteins from rat hippocampus or HEK 293/COS 7 homogenate 

or 50 µg of proteins from rat hippocampus TIF were in RIA buffer containing 200 mM 

NaCl, 10 mM EDTA, 10 mM Na2HPO4, 0.5% NP-40, 0.1% SDS and protein A/G-

agarose beads as pre-cleaning procedure. Primary antibodies were added leaving to 

incubate overnight at 4 °C on a wheel. Protein A/G-agarose beads were added and 

incubation was continued for 2 h, at room temperature on a wheel. Beads were 

collected by gravity or centrifugation (1200 rpm) and washed three times with RIA buffer 
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before adding sample buffer for SDS–polyacrylamide gel electrophoresis (SDS–PAGE) 

and the mixture was boiled for 10 min. Beads were pelleted by centrifugation, all 

supernatants were applied onto 7–8% SDS–PAGE gels.  

 

3.9 PULL-DOWN ASSAY  

GST fusion proteins were expressed in Escherichia coli and purified on glutathione 

agarose beads (Sigma Aldrich). A measure of 200 µg of brain homogenate proteins 

were incubated with 40 ml of GST alone and with of GST fusion proteins of the C-

terminal domain of ADAM10 or GST CAP2-452Δ to a final volume of 1 ml in Tris-

Buffered Saline (TBS, 10 mM Tris and 150 mM NaCl) for 2 h on the rotator at room 

temperature. After incubation, beads were washed four times with TBS and 0.1% Triton 

X-100.  

 

3.10 NEURONAL CULTURE TREATMENT 

To induce chemical LTP, hippocampal neuronal cultures at 14 DIV were first incubated 

in artificial cerebrospinal fluid (ACSF) for 30 minutes: 125 mM NaCl, 2.5 mM KCl, 1 mM 

MgCl2, 2 mM CaCl2, 33 mM D-glucose, and 25 mM HEPES (pH 7.3; 320 mosM final), 

followed by stimulation with 50 μM forskolin, 0.1 μM rolipram, and 100 μM picrotoxin 

(Tocris) in ACSF (no MgCl2). After 16 minutes of stimulation, neurons were replaced in 

regular ACSF for 15 minutes and then subjected to TIF extraction or surface-expression 

assays288,289. TIF was isolated neurons as previously described 191.  

 

3.11 INTERNALIZATION ASSAYS 

To label surface TacADAM10-RAR, live COS7 cells were incubated with anti-Tac 

antibody for 45 minutes in medium at 4°C, while live neurons were labelled by 

incubation in ACSF with anti-Tac antibody for 30 minutes at 10°C. After brief washing 

in DMEM, COS7 cells were returned to 37°C for 10 minutes. Neurons were washed 

with cold ACSF, and internalization was allowed at 37°C in response to cLTP induction 

(16 minutes plus 15 minutes to allow internalization). A parallel set of controls was kept 

at 4–8°C to stop trafficking. Cells were then fixed with 4% PFA and 4% sucrose in PBS, 
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pH 7.4 and blocked with normal serum; remaining surface Tac chimeras were labeled 

with 488 secondary antibody (nonpermeabilized), and internalized receptors were 

labeled with 555-conjugated secondary antibody after Triton permeabilization. For 

COS7 internalization experiments, wide-field fluorescence images were acquired with 

a Zeiss ×40 objective and a CoolSnap CCD camera.  

 

3.12 FRAP EXPERIMENT 

Hippocampal neurons (DIV13) were transfected with GFP-Actin plus SH CAP2 or SCR 

as above. 48 hr later. After acquiring images from both channels, FRAP was performed 

only on the GFP-actin channel using the confocal LSM510 Meta system (Zeiss) with a 

63X objective. Prebleach fluorescent signal was acquired using a 488 nm line argon 

laser. A circular Region of Interest (ROI, 2 μm diameter) on a selected dendritic spine 

head was photobleached by scanning with the 488 nm argon laser line at 100% laser 

power with pixel dwell time of 2.2 μs, using acquisition settings of 256 × 256. 

 

3.13 ANTIBODIES 

The following primary antibodies were used: Ant-CAP2 (Santa Cruz Biotechnology 

1:100 WB and 1:200 ICC), Ant-CAP2 (Proteintech 1:1000 and 1:3000 WB and 1:100 

ICC), Anti-Actin (Sigma-Aldrich 1:10000 WB), Anti-Actin (Sigma-Aldrich 1:3000 WB), 

Anti-Tubulin (Sigma-Aldrich 1:20000 WB), Anti-Myc (9E10) (Roche 1:1000 WB and 

ICC), Anti-Myc (Santa Cruz Biotechnology 1:200 WB and 1:500 ICC), Anti-GFP 

(Synaptic System 1:500 WB), Anti-GFP (Millipore 1:500 ICC), Anti-GFP (Aves 1:1400 

ICC), Anti-Cofilin (Cell Signallin 1:1000 WB), Anti-MAP2 (Millipore 1:500 ICC), Anti-

GFAP (Cell Signalling 1:200 ICC), Anti-PSD-95 (Neuromab 1:300 ICC and 1:1000 WB), 

Anti-Bassoon (Neuromab 1:300 ICC), Anti-Synaptophisin (Synaptic System 1:1000 

WB) .The following secondary antibodies were used: goat anti-mouse-HRP (172–

1,011) and goat anti-rabbit-HRP (172–1,019, Bio-Rad), goat anti-mouse-Alexa488 (A-

11029), goat anti-mouse-Alexa555 (A-21422), goat anti-mouse-Alexa633 (A-21052), 

goat anti-rabbit-Alexa488 (A-11034) and goat anti-rabbit-Alexa555 (A-21429; Life 

Technologies). 
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4. RESULTS 

 

4.1 CAP2 IS A NOVEL BINDING PARTNER OF ADAM10 

To confirm the results of the two-hybrid screening, we carried out co-

immunoprecipitation assays from homogenates of rat hippocampus. As shown in Fig. 

1A, CAP2 is able to precipitate both ADAM10 and actin, but not ADAM22, another 

member of the ADAM family. No signal is detectable when the sample is precipitated 

without CAP2 antibody. Moreover, ADAM10 is not capable of precipitating CAP1, the 

protein homologous to CAP2, demonstrating the specificity of the complex 

ADAM10/CAP2. No signal is revealed when the sample is precipitated without ADAM10 

antibody or in samples without homogenate. 

These results were confirmed by colocalization analysis performed in COS7 cells 

transfected with ADAM10 and Myc CAP2. As shown in Fig. 1B, CAP2 expression 

modifies ADAM10 distribution pattern, enriching the enzyme in CAP2-clusters. 

Moreover, ADAM10 interaction with CAP2 was confirmed by proximity ligation assay 

(PLA). As shown in Fig. 1C, PLA signals were detected when the two antibodies 

recognizing ADAM10 and CAP2 were used, indicating that these two proteins are in 

close proximity (<40 nm) to each other. In order to identify the domain of ADAM10 

cytoplasmic tail recognized by CAP2 we carried out pulldown assays. Fusion proteins 

of glutathione-S-transferase (GST) and GST bound to ADAM10 C-terminal domain 

(GST- ADAM10 Ct) were incubated with rat hippocampus homogenate. GST- ADAM10 

Ct was able to specifically pull-down CAP2. Therefore, we tested a series of deletion 

mutants of GST-ADAM10 Ct, to identify the domain of ADAM10 responsible for the 

interaction with CAP2 (Fig. 1D). Truncation of the last 41 aa of ADAM10 tail (GST-708Δ) 

abolished binding to CAP2 (Fig. 1E), indicating that the ADAM10 most membrane 

proximal Pro Rich region is required for the interaction with CAP2.  

On the other hand, we generated different deletion mutants of EGFP-CAP2 to define 

the CAP2 domain required for its interaction with ADAM10 (Fig. 1F). We deleted the 

last 22 aa (452Δ), the C-terminal domain and the Pro-rich region 2 (311Δ), the Pro-rich 

regions (232Δ) 

HEK 293 cells stably transfected with ADAM10-HA were transfected with either EGFP 

CAP2 or EGFP CAP2 452Δ or EGFP CAP2 311Δ, or EGFP CAP2 232Δ. The cells 

extracts were immunoprecipitated with the HA antibody and the immunocomplex 
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probed for EGFP. Fig. 1G shows that the first 232 amino acids of CAP2 contains the 

ADAM10-binding site, revealing that ADAM10 interacts with the N-terminal part of 

CAP2. All together these data demonstrate that CAP2 is a novel protein partner of 

ADAM10 in neuronal cells, since CAP2 N-terminal domain is able to interact with 

ADAM10 most membrane-proximal sequence in its cytoplasmic domain. 

 
Figure 1. CAP2 is localized in the postsynaptic compartment but it is not enriched in the PSD. 
A. Expression of ADAM10, CAP2, Actin in brain areas: HIPPO hippocampus, STR striatum, CTX cortex, 
CRB cerebellum. Tubulin was used as internal control. 
B. Time course of expression of ADAM10, CAP2, Actin in brain homogenate of rats at E9, P7, P14 and 
P21   (E = embryonic day, P = post-natal). Tubulin was used as control. 
C. Time course of expression of ADAM10, CAP2, Actin in hippocampal neurons at DIV6, 8, 10, 13, 15 
(DIV= day in vitro). Tubulin was used as control. 
D. Immunocytochemistry of CAP2, MAP2(neuronal marker) and endogenous GFAP (astrocytes marker). 
E. Post-synaptic density purified from adult rat hippocampi, CAP2 is present all the fractions but not 
enriched in PSD as ADAM10. Legend: Homo, Homogenate; S1, Supernatant 1; P1, Pellet 1; S2, 
Supernatant 2; P2, Pellet 2; S3, Supernatant fraction; P3, microsomal fraction; PSD1; PSD2, post-
synaptic density. 
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F. Representative staining of CAP2 and synaptic markers. After fixation, neurons were stained with post 
and pre synaptic markers, PSD-95 and Bassoon respectively, to evaluate the localisation of CAP2 at the 
synapse. 
G. Immunocytochemistry of CAP2, phalloidin (F-actin marker) and endogenous PSD-95 in DIV15 primary 
hippocampal neurons. 
 

4.2 CAP2 localization in the brain 

Since a careful characterization of CAP2 function in the brain is still missing (Kumar et 

al., 2016), first we determined CAP2 expression profile in different brain areas and 

CAP2 localization at a subcellular level. Western Blot analyses revealed similar CAP2 

protein levels in cortex, hippocampus, striatum and cerebellum. The analysis of CAP2 

expression during development showed an increase from postnatal day 14 and, in 

hippocampal neuronal culture, from day in vitro 8 (Fig. 2A, B, C).  

Immunostaining assays performed with a CAP2 antibody and markers for neuronal cells 

(MAP2) and astrocytes, as GFAP, demonstrated that CAP2 is expressed in both cells 

(Fig. 2D). To investigate CAP2 subcellular localization we took advantage of a 

biochemical fractionation approach to isolate excitatory PSDs from rat hippocampus. 

We found that CAP2 is present in all the fractions but is not enriched in the PSD, as 

ADAM10 (Fig. 2E). Focusing on the synaptic localisation of the protein, confocal 

analyses revealed that CAP2 co-localizes with PSD-95, a post-synaptic marker, but not 

with Bassoon, a presynaptic protein (Fig. 2F). Moreover, CAP2 showed a partial 

colocalization with the postsynaptic protein PSD- 95, while it perfectly colocalizes with 

phalloidin, a marker for F-actin, suggesting that CAP2 is localized in the region close to 

the PSD, where the actin cytoskeleton is present (Fig. 2G).  
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Figure 2. CAP2 is localized in the postsynaptic compartment but it is not enriched in the PSD. 
A. Expression of ADAM10, CAP2, Actin in brain areas: HIPPO hippocampus, STR striatum, CTX cortex, 
CRB cerebellum. Tubulin was used as internal control. 
B. Time course of expression of ADAM10, CAP2, Actin in brain homogenate of rats at E9, P7, P14 and 
P21   (E = embryonic day, P = post-natal). Tubulin was used as control. 
C. Time course of expression of ADAM10, CAP2, Actin in hippocampal neurons at DIV6, 8, 10, 13, 15 
(DIV= day in vitro). Tubulin was used as control. 
D. Immunocytochemistry of CAP2, MAP2(neuronal marker) and endogenous GFAP (astrocytes marker). 
E. Post-synaptic density purified from adult rat hippocampi, CAP2 is present all the fractions but not 
enriched in PSD as ADAM10. Legend: Homo, Homogenate; S1, Supernatant 1; P1, Pellet 1; S2, 
Supernatant 2; P2, Pellet 2; S3, Supernatant fraction; P3, microsomal fraction; PSD1; PSD2, post-
synaptic density. 
F. Representative staining of CAP2 and synaptic markers. After fixation, neurons were stained with post 
and pre synaptic markers, PSD-95 and Bassoon respectively, to evaluate the localisation of CAP2 at the 
synapse. 
G. Immunocytochemistry of CAP2, phalloidin (F-actin marker) and endogenous PSD-95 in DIV15 primary 
hippocampal neurons. 
 

4.3 CAP2 FORMS DIMERS 

Since CAP2 staining appears punctuate (Fig. 1D) and it has been reported that the 

dimerization is an important characteristic of CAP1 (Hubberstey et al., 1996), we 

hypothesized that also CAP2 could form dimers. First of all, to test this hypothesis COS 

7 cells were co-transfected with Myc CAP2 and EGFP CAP2. As shown in Fig. 3A, Myc 

CAP2 and EGFP CAP2 perfectly colocalize in perinuclear clusters. In addition, we 

performed immoprecipitation assays from the lysates of COS-7 cells transfected with 

Myc CAP2 and EGFP CAP2. The precipitation of Myc CAP2 implicates the co-

precipitation of EGFP-CAP2, suggesting that CAP2 can associate in aggregates. 

In order to identify the domain responsible for the self-association, we took advantage 

several deletion mutants of EGFP CAP2 (Fig. 1F) to performed a co-

immunoprecipitation assays from lysates of COS 7 cells transfected with Myc CAP2 full 

length and the deletion mutants of EGFP CAP2. We found out that the deletion of the 

Proline rich regions of CAP2 and the WH2 domain did not interfere with the dimer 

formation, since the presence of the N-terminal (1-232 aa) was sufficient for the 

interaction with CAP2 full length (Fig. 3B). To narrow down the region responsible for 
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the dimerization we collaborated with Dr. Di Marino (University of Lugano), who carried 

out a computational analysis that predicted the first N-terminal 165 aa as the 

dimerization region (Fig. 3C).  

We generated the mutant Myc CAP2 165-476, lacking of the predicted dimerization 

domain.  When transfected in COS7 cells, Myc CAP2 165-476 displayed a diffuse 

pattern through the cell and no clusters were detected as in cells expressing Myc CAP2 

FL and Myc CAP2 232 Δ (Fig. 3D).  

To verify the presence of the dimer in physiological conditions, we loaded samples of 

total homogenate and Triton-Insoluble Fraction (TIF), which is enriched in postsynaptic 

proteins, onto a native-like condition gel. We detected a band corresponding to CAP2 

monomer (53 kDa) and a band with an apparent molecular weight of 106 kDa that could 

correspond to a CAP2 dimer (Fig. 3E). Interestingly, the CAP2 dimer is enriched in the 

the TIF when compared with the total homogenate.  

The CAP2 monomer and dimer are also detectable when we load lysates of Myc CAP2-

transfected HEK293 cell onto a native-like. However, when we load homogenate of 

cells expressing the mutant Myc CAP2 165-476, lacking of the N-terminal domain, the 

band with an apparent molecular weight of 106 kDa is not revealed. Since the detection 

of such 106 kDa band depends on β-mecaptoethanol presence in the loading buffer we 

hypothesized that a disulfide bond could be responsible for the dimer formation. In the 

domain 1-165 aa there is only the cysteine 32, thus suggesting that this aa can be 

relevant for the dimerization. In fact, when we load the extracts of cells transfected with 

the mutant of MycCAP2 carrying the single point mutation 32C to G onto a native-like 

gel, the band at 106 kDa is not detectable (Fig. 3F).  

However, both Myc CAP2 C32 to G and Myc CAP2 165-476 were able to co-precipitate 

with EGFP CAP2 full length, suggesting that the Cysteine 32 is not the only residue 

responsible for CAP2 self-association (Fig. 3G). Indeed, it has been shown that there 

are at least two binding sites within CAP that mediate its dimerization (Hubberstey et 

al., 2002). Hubberstey and colleagues reported that the amino-terminal domain of 

human CAP (aa 1–228) interacts with itself as well as with the carboxyl-terminal domain 

(amino acids 253–475). Likewise, the C-terminal domain of CAP2 interacts with itself 

and with the N-terminal region through different types of chemical bonds. Moreover, it 

is still unclear in the literature whether CAP proteins form dimers or higher order 

structures, with several possibilities, such as C-C or C-N or N-N binding (Hubberstey et 

al., 2002).  
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Finally, we verified whether the mutant Myc CAP2 C32 to G is still able to bind ADAM10. 

We performed coimmunoprecipitation assay in HEK 293 stably transfected with HA 

ADAM10 and transfected with either Myc CAP2 full-length or the mutant Myc CAP2 

C32 to G. As shown in Fig. 2H, the mutant Myc CAP2 C32 to G is still able to bind 

ADAM10, demonstrating that such residue is not important for ADAM10/CAP2 

association.	

 

 
Figure 3. CAP2 is able to self-associate and forms dimers and cluster-like structures. 
A. COS-7 cells transfected with Myc CAP2 and EGFP-CAP2 and stained with anti GFP and anti Myc 
antibodies; the analysis reveals that Myc CAP2 and EGFP-CAP2 colocalize in clusters.  
B. Co-IP assays carried out from homogenate of HEK293 cells transfected with Myc CAP2 and different 
deletion mutants of EGFPCAP2. The sequence 1-232 of CAP2 is sufficient for CAP2 self-association. 
C. Molecular modelling of N-terminal part of Cap of Dictyostelium. 
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D. Representative scheme of the different CAP2 mutant constructs transfected in COS7 cells. Confocal 
imaging of COS7 cells co-transfected with Myc CAP2 , Myc CAP2 232Δ and Myc CAP2 165-476 shows 
that the region 1-232 is sufficient for clusters formation while the deletion of the sequence 1-165 
completely abolishes the presence of clusters . 
E. Samples of rat brain homogenate and TIF were loaded onto a non-denaturating gel. Western blot 
analysis performed with CAP2 antibody showed a band corresponding to CAP2 (53 KDa) and another 
band at 106 KDa corresponding to a CAP2 dimer. 
F. Homogenates of cells expressing different mutants of CAP2 were loaded onto a non-denaturating gel; 
WB analysis was performed with Myc antibody and revealed the different capability of the mutants to 
dimerize. The single point mutation 32C to G avoid the capability to form dimers onto a native-like 
condition gel. 
G. Co-IP assays carried out from homogenate of HEK293 cells transfected with EGFP CAP2 and either  
Myc CAP2 C32 to G or Myc CAP2 165-476. The results show that this mutants are still able to interact 
with EGFP-CAP2. 
H. Co-IP assays carried out from homogenate of HEK293 cells stable transfected with ADAM10-HA and 
Myc CAP2 C32 to G to evaluate its capability to bind ADAM10. This mutant is still able to associate to 
ADAM10. 
	

 

4.4 CAPABILITY OF CAP2 TO MODULATE ACTIN DYNAMIC 

CAP2 plays an important role in regulating the actin cytoskeleton and in signal 

transduction. It has been reported that in cardiomyocytes and keratinocytes, CAP2 is 

essential for normal actin organization because of the binding to G-actin, which 

regulates actin filament dynamics (Peche V.et al., 2007).  

To verify it, we took advantage of COS7 cells as a quick and easy tool to analyse the 

actin dynamics. We transfected COS7 cells with Myc CAP2 and stained G-actin with 

DnaseI and F-actin with phalloidin. CAP2 full length colocalized with the monomeric 

actin but not with filamentous actin. The statistical analysis showed a significant 

increase in the G-actin/F-actin ratio in cells transfected with Myc CAP2 when compared 

to mock cells, suggesting that CAP2 mediates actin depolymerisation in COS7 cells 

(Fig. 4A). Moreover, we noticed that the actin dynamics was influenced by the 

aggregation status of CAP2.  

We could recognize a population of cells in which CAP2 formed a single perinuclear 

structure (named polymeric structure) and other cells in which CAP2 was organized in 

small clusters scattered in the cytoplasm (called oligomeric structure). Interestingly, the 

G-actin/F-actin ratio was significantly higher in cells in which CAP2 was present as 

polymeric structure than in cells with CAP2 oligomeric structures, suggesting that CAP2 

aggregation is important for actin dynamics. (Fig. 4B).  

The next step was to investigate CAP2 directly in neurons. Immunostaining analyses 

revealed that CAP2 colocalized with F-actin. Indeed, CAP2/F-actin colocalization 

degree is significantly reduced by latrunculinA, a drug able to block actin polymerization, 
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thus indicating that CAP2 binds filamentous actin in neurons (Fig. 4C). Furthermore, we 

set up a biochemical assay to separate G-actin and F-actin.  The results obtained 

confirmed the data of the immunostaining: CAP2 is enriched in the F-actin fraction. 

Moreover, we validated this assay by analysing the distribution of G-actin binding 

proteins, such as phosphorylated Cofilin, that is enriched in G-actin fraction, as 

expected (Fig. 4D).  

Despite these unexpected results showing that CAP2 bids F-Actin and not G-actin in 

neuronal cells, we investigated the CAP2 role in actin polymerisation and we found out 

that CAP2 can mediate the depolymerisation of actin, since the overexpression of Myc 

CAP2 in neuronal cells leads to an increase in G-actin/F-actin ratio (Fig. 4E). According 

to these results, the transfection of CAP2 shRNA resulted in a decrease in G-actin/F-

actin, indicating a shift towards F-actin (Fig. 4F). 

The literature shows the complex role of CAP protein in actin dynamics. Indeed, several 

studies showed that CAP sequesters actin monomers, but also that CAP enhances the 

recharging of actin monomers promoting the severing of actin filaments in cooperation 

with ADF/cofilin. To clarify the mechanism by which CAP2 can modulate the actin 

dynamics in spines, we took advantage of fluorescence recovery after photobleaching 

(FRAP) experiments carried out in a single spine of hippocampal neuronal cells 

transfected with GFP actin, that was partially incorporated into the actin filaments, and 

either CAP2 shRNA or its scrambled control sequence (Koskinen et al,. 2012).  

Actin filaments in spines normally turn over rapidly, due to treadmilling, while actin 

monomers exchange bidirectionally between spines and the adjacent dendritic shaft. If 

GFP-actin in a spine is photobleached, new fluorescent GFP-actin monomers normally 

diffuse into the spine and are incorporated into the barbed end of bleached filaments, 

predominantly in the juxtamembrane (‘shell’) region of the spine head (Hotulainen et 

al., 2009; Frost et al., 2010). Concomitantly, bleached actin molecules are severed from 

filament pointed ends (closer to the spine ‘core’) and exchange out of the spine, which 

recovers its fluorescence. 

However, if turnover is impaired, bleached GFP-actin remains trapped within filaments 

and FRAP is attenuated. The fraction of actin filaments in the spine that are undergoing 

rapid turnover can thus be determined from the extent of FRAP (Star et al., 2002). 

The recovery of GFP-actin fluorescence, after the spine photobleaching, in CAP2 

knockdown neurons was significantly increased, compared to control neurons, 

indicating that is consistent with a significant decrease in the percentage of stable GFP-
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actin in spines lacking of CAP2. In contrast to these marked effects on the pool of stable 

actin, the half-time of GFP-actin fluorescence recovery was not significantly different 

(Fig. 4G). Taken together, these data suggest that the predominant effect of loss of 

CAP2 on GFP-actin turnover is to increase the pool of mobile actin in spines, promoting 

the treadmilling of actin, thus leading to a faster rate of actin turnover.  
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Figure 4. CAP2 affects actin dynamics in neurons and specifically in the spine.  
A. COS 7 cells transfected with Myc CAP2 FL to evaluate the capability influence the polymerisation of 
actin. The ratio G-actin/Factin has been calculated by measuring the integrated density of DNAse (G-
actin marker) and Phalloidin (F-actin marker) staining. Data are presented as mean ± s.e.m., n = 33–38, 
***P< 0.001, unpaired Student’s t-test.  
B. G-actin/F-actin ratio was calculated in COS 7 cells transfected with Myc CAP2 FL presenting CAP2 
as a single perinuclear structur(polymeric) e and in cells were CAP2 was aggregated in cluster localized 
in the cytoplasm (oligomeric). The capability of CAP2 to influence the G/F ratio is link to it’s structure 
(oligomeric or polymeric structure). Data are presented as mean ± s.e.m., n = 17-15, *P< 0.05, unpaired 
Student’s t-test.  
C. Hippocampal neurons were treated with latrunculin A to evaluate the capability of CAP2 to bind F-
actin. Immunostaining for CAP2 and F-actin (phalloidin) revealed that CAP2 colocalizes with F-actin, 
whereas the treatment with latrunculin A reduces the percentage of colocalisation. Data are presented 
as mean ± s.e.m., n = 17–15, *P< 0.05, unpaired Student’s t-test.  
D. Immunoblots of G-actin (G) and F-actin (F) fractions obtained from hippocampal neurons taking 
advantage of an Actin Polymerization Assay kit. CAP2 is present in the F-actin pellet, while Phospho 
Cofilin is present in the supernatant and Cofilin in both fraction, as expected. 
E. Hippocampal neuron were transfected with Myc CAP2 to evaluate the capability of influencing the 
polymerisation of actin. As in COS-7 cells, CAP2 overexpression increases the G-actin/F-actin ratio. Data 
are presented as mean ± s.e.m., n = 19–29, ***P< 0.001, unpaired Student’s t-test.  
F. Hippocampal neuron were transfected with either SH CAP2 or the scrambled control sequence (SCR) 
and G-actin/F-actin ratio was assessed. The loss of CAp2 significantly decreases the G-actin/F-actin 
ratio. Data are presented as mean ± s.e.m., n = 22–22, *P< 0.05, unpaired Student’s t-test.  
G. The rate of actin turnover was analysed by FRAP in hippocampal neuron transfected with GFP actin 
and either SH CAP2 or SCR at DIV 11. The FRAP analysis was performed at DIV 13. FRAP curves 
(normalized to average pre-bleach 
fluorescence), plotted from multiple single-spine ROIs for each condition. Histogram of the stable fraction 
of GFP-actin (mean ± SEM) calculated for each individual FRAP trace used to generate the pooled data 
 

Since it was clear that CAP2 affects the actin dynamic, the next step was to identify the 

actin binding region in CAP2 sequence. First we demonstrated that CAP2 can associate 

with both actin and cofilin performing a coimmunoprecipitation assay from rat brain 

homogenate (Fig. 5A).   

Then, we generated the fusion protein GST-CAP2 linking the GST to either CAP2 full-

length or the deletion mutant GST-CAP2-452Δ lacking of the CAP2 C-terminal domain 

that has been reported to bind actin. Pull-down assays revealed that the GST-CAP2 

452Δ mutant is not able to interact with actin, thus demonstrating that the last 22 aa of 

CAP2 are essential for actin binding (Fig. 5B). We confirmed these results carrying out 

a coimmunoprecipitation assay from the lysate of COS7 cells transfected with Myc 

CAP2 452Δ. This deletion mutant could not bind actin, but it is still able to interact with 

cofilin. In addition, we tested the binding capability of the Myc CAP2 C32 to G mutant 

and we verified that it can associate to both actin and cofilin (Fig. 5C). Moreover, when 

we loaded lysates of cells expressing the mutant Myc CAP2 452Δ onto a native-like gel, 

the 106 kDa band was detectable, suggesting that the lack of the last 22 aa does not 

affect CAP2 Cys32-dependent dimerization (Fig. 5D). 
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To unravel the effect of the loss of CAP2 actin binding domain on actin dynamics, we 

transfected either Myc CAP2 or Myc CAP2 452Δ in COS 7 cells and in hippocampal 

neurons. Surprisingly, the lack of the actin binding domain didn't revert the effect of 

CAP2 on the G-actin /F-actin ratio both in COS7 cells and in hippocampal neurons (Fig. 

5E, F), indicating that this C-terminal domain is not important for the polymerization of 

actin.		

	
 



	 61	

Figure 5. The actin binding domain of CAP2 is not relevant for the modulation of actin dynamics.  
A. Rat brain homogenate was immunoprecipitated (IP) with CAP2 antibody and WB analysis was carried 
out with an anti actin and cofilin antibody. CAP2 specifically interacts with both actin and cofilin. 
B. Actin interacts with the C-terminal tail of CAP2. GST CAP2 FL– full length, GST CAP2 Δ452 –(1-452) 
were incubated in a pull-down assay with rat brain homogenate.  WB analysis was performed with ACTIN 
antibody. GST proteins were stained by Coomassie staining. The deletion of the last 24 amminoacids 
abolishes actin binding to CAP2, suggesting that this is the sequence responsible for the interaction. 
C. Co-IP assays carried out from homogenate of HEK293 cells transfected with different mutants of Myc 
CAP2 to evaluate their capability to bind actin and cofilin.  
D. The mutant Myc CAP2 Δ452 is able to create dimers, as shown by the presence of the band at 106 
kDa in native-like gels. 
E. COS 7 cells were transfected with Myc CAP2 FL and Myc CAP2 Δ452 to evaluate the capability of 
influencing the polymerisation of actin. Myc CAP2 induces the depolymerisation of actin, and the lack of 
the actin binding domain does not affect this property. Data are presented as mean±s.e.m., n= 33-38, 
***P<0.001; n= 33-38, *P<0.05; one-way ANOVA followed by Bonferroni post-hoc test.  
E. Hippocampal neuron were transfected with Myc CAP2 to evaluate the capability of influencing the 
polymerisation of actin. As in COS7 cells, CAP2 overexpression increases G-actin/F-actin ratio and the 
lack of the last 24 aa does not influence this effect, Data are presented as mean±s.e.m., n= 19;29; 
**P<0.005; one-way ANOVA followed by Bonferroni post-hoc test.  

 

4.5 CAP2 ACTIVITY ON ADAM10 LOCALIZATION 

Given the importance of the CAP family in protein trafficking and endocytosis, we 

evaluated that if CAP2 and, in particular, its actin binding domain played a relevant role 

in ADAM10 membrane localization. First, we performed coimmunoprecipitation 

experiments from the homogenate of ADAM10-HA stable transfected HEK293 cells 

transfected with either EGFP-CAP2 or EGFP CAP2 452Δ. As shown in Fig. 6A, we 

confirmed that EGFP CAP2 452Δ can't bind actin but it is still able to associate to 

ADAM10, indicating that ADAM10 and actin binding region did not overlap in CAP2. 

Thus, we decided to evaluate the membrane localization of ADAM10 in COS7 cells 

transfected with ADAM10 and either with CAP2 full length (CAP2 FL) or the mutant 

lacking of the actin binding domain (CAP2 452Δ). The quantitative analysis showed that 

the mutant lacking of the actin binding domain significantly increases the surface 

localization of ADAM10 while the CAP2 FL didn’t affect the membrane level of the 

protein (Fig. 6B). We confirmed this result in neuronal cells where the co-localization 

between ADAM10 and PSD-95 increased in neuron transfected with the mutant CAP2 

452Δ while, again, the CAP2 FL didn’t modulate the synaptic localization of ADAM10 

(Fig. 6C). 

Since the actin binding site of CAP2 affects the levels of surface level of ADAM10, we 

investigated which mechanism is responsible for the modulation of this process. We 

decided to evaluate two pathways that are fundamental for ADAM10 localization: the 

forward trafficking and the endocytic process of the protein (Marcello et al., 2013). First, 

we performed an internalization assay in COS7 cells transfected with TacADAM10-RAR 
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and either Myc CAP2 full length or the mutant Myc CAP2 452Δ. The mutant of CAP2 

significantly impaired the endocytosis rate of ADAM10 while CAP2 full length didn't 

modulate ADAM10 internalization (Fig. 6D). The actin cytoskeleton plays an essential 

role in endocytosis. Actin assembly can create protrusions that encompass extracellular 

materials. Actin can also support the processes of invagination of a membrane segment 

into the cytoplasm, elongation of the invagination, scission of the new vesicle from the 

plasma membrane, and movement of the vesicle away from the membrane (Mooren et 

al., 2012). Therefore, these data suggest that CAP2 is involved in ADAM10 

endocytosis, probably anchoring the protein to the actin cytoskeleton. 
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Figure 6. CAP2 actin binding domain impairs ADAM10 endocytosis. 
A. Co-ip assay revealed the capability of CAP2 452D to bind ADAM10, even if it can’t bind actin. 
B. COS-7 cells were cotransfected with ADAM10 and either Myc CAP2 or the mutant Myc CAP2 Δ452, 
the mutant lacking of the actin binding domain. The expression of Δ452 significantly increases ADAM10 
membrane localisation. Data are presented as mean±s.e.m., n= 16;13; *P<0.05; one-way ANOVA 
followed by Bonferroni post-hoc test.  
C. Hippocampal neurons cotransfected with GFP, EGFPCAP2, or EGFPCAP2 Δ452. Cells were fixed, 
and stained for endogenous ADAM10 and PSD-95. The transefection of CAP2 does not affect ADAM10 
synaptic localisation, while the expression of the mutant Δ452 significantly increases ADAM10 
colocalisation with PSD-95. Data are presented as mean±s.e.m., n= 43;21; ***P<0.001; n= 46;21; 
**P<0.005; one-way ANOVA followed by Bonferroni post-hoc test.  
D. Antibody uptake assays were performed on COS7 cells transfected with either TacADAM10-RAR 
and Myc-CAP2 or with the mutant Myc-CAP2 Δ452. Representative images of cells returned to 37°C to 
allow endocytosis. The expression of the mutant lacking of the actin-binding domain significantly 
impairs ADAM10 endocytosis. Data are presented as mean±s.e.m., n= 11;11; *P<0.05; one-way 
ANOVA followed by Bonferroni post-hoc test.  
	
	

4.6 ADAM10/CAP2 COMPLEX IN SPINE REMODELLING 

We hypothesized that CAP2 could affect spine morphology, since modulates actin pools 

in the spines, as demonstrated by FRAP experiments (see Fig. 3G), and can influence 

ADAM10 localization and, thereby, its synaptic activity. Indeed, ADAM10 is important 

for the spine morphology because works as sheddase towards a number of neuronal 

adhesion molecules.  

To test this hypothesis, first we transfected hippocampal neuronal cells with CAP2 

shRNA and the corresponding control. Our analysis revealed that there was no 

significant difference in the neck width, the head width and the density of spines, 

whereas we detected a significant difference in the length of the spines, suggesting that 

CAP2 is involved in the remodelling of the spine shape, which is deeply linked to the 

actin polymerization (Fig. 7A). The morphology of hippocampal neurons was also 

analysed by tracing the dendrites of neurons transfected with GFP and either CAP2 
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shRNA or the scrambled control sequence and we found out that the absence of CAP2 

reduce the complexity of dendrites branching (Fig. 7B). We analysed the spine 

morphology also in neurons overexpressing either CAP2 full length or the mutant CAP2 

452Δ. We used the GFP to fill the neuron and we noticed that CAP2 full length 

overexpression increased the spine head width, without affecting spine length and 

spines density. Notably, this effect was reverted by the lack of the last 22AA in the 

mutant CAP2 452Δ, thus suggesting that the actin binding site of CAP2 is essential for 

the spine remodelling related to CAP2 (Fig. 7C). We have shown that this actin binding 

site in CAP2 is not involved in the regulation of actin dynamics but has a role in the 

control of ADAM10 membrane levels. Therefore, the lack of the last 22 influence spine 

shape because it impairs ADAM10 endocytosis, thus increasing its synaptic levels and 

thereby its shedding activity towards neuronal adhesion molecules.  
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Figure 7. CAP2 modulates spine morphology. 
E. The overexpression of CAP2 in hippocampal cultures significantly increases the width of dendritic 
spines without changing the length and the density; while the mutant 452D doesn’t affect significantly the 
width parameter. Data are presented as mean±s.e.m., n= 10;10; **P<0.005; n= 10;10; ***P<0.001; one-
way ANOVA followed by Bonferroni post-hoc test.  
F. The silencing of CAP2 leads to a significant increase of the spine length. Data are presented as mean 
± s.e.m., n = 7-7, *P< 0.05, unpaired Student’s t-test.  
G. Representative images of hippocampal neurons transfected with GFP and cotransfected with either 
SHCAP2 or SCR. Sholl analysis shows a decrease in dendrite branching in neurons lacking of CAP2 
 

The importance of ADAM10 in spine remodelling is demonstrated by the synaptic 

plasticity-dependent modulation of ADAM10 synaptic localization/activity. It has been 

reported that LTD promotes ADAM10 synaptic membrane insertion and stimulated its 

activity. ADAM10 interaction with SAP97 is necessary for LTD-induced ADAM10 

trafficking and required for LTD maintenance and LTD-induced changes in spine 

morphology. While in hippocampal neuronal cultures LTP induces ADAM10 

endocytosis through AP2 association and decreases synaptic ADAM10 levels and 

activity (Marcello et al., 2013). 

Therefore, we wondered whether activity-dependent synaptic plasticity modulates also 

CAP2 synaptic availability in the dendritic spines. To test this hypothesis, we induced 

chemical LTP (cLTP), using a highly validated protocol, in hippocampal cultures 

(Marcello et al, 2013). To induce LTP, we used a chemical stimulation protocol with 

forskolin plus rolipram for 16 minutes that results in prolonged NMDA receptor-

dependent LTP (cLTP). 15 min after cLTP induction, TIF was purified from control and 

cLTP-treated hippocampal neurons, and TIF samples were loaded onto a native-like 

gel to reveal CAP2 monomer and dimer.  cLTP stimulation caused a significant increase 

in CAP2 dimer levels in TIF (Fig. 8A). We analysed also the interaction of CAP2 and 

actin and coimmunoprecipitation assays demonstrated a significant decrease in the 

association between CAP2 and actin (Fig. 8B). Taken together these data demonstrate 

that LTP can modulate CAP2 properties promoting the C32-dependent dimerization in 

the synapses and inducing actin detachment from CAP2. 
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Figure 8. cLTP can modulate CAP2 properties.  
A. Tif purification of control and cLTP-treated neurons. cLTP (15’) promotes CAP2 dimerization in the 
TIF fraction. The ratio dimer/ monomeris expressed as percentage of control. Data are presented as 
mean ± s.e.m., n = 8, *P< 0.05, paired Student’s t-test.  
B. CAP2/Actin co-IP assays performed on tif of control and cLTP-treated neurons. cLTP (15’) abolishes 
CAP2/Actin binding in the TIF fraction.  

 

  



	 67	

5. CONCLUSION 

Several studies highlighted the key role of the disintegrin and metalloproteinase family 

member ADAM10 in health and disease, due to its shedding activity toward a number 

of functional membrane proteins such as APP and N-cadherin 271 

The proteins at the surface of cells play important functions for the cell-cell 

communication, intracellular signalling and they can control the synapse remodelling. 

The control of the cell surface protein indirectly regulates the shape of the spines and 

thereby their functionality. Indeed, spines undergo dynamic changes in their 

morphology, and this structural modifications correlate with the alterations in synaptic 

strength228. Therefore, ADAM10 activity can control the synaptic function through the 

cleavage of its substrates. On the other hand, ADAM10 undergoes a dynamic regulation 

of its activity by synaptic plasticity, that modulates its localisation. The synaptic 

localisation is crucial for ADAM10 synaptic activity because ADAM10 can act on its 

substrate only when it is inserted in the plasma membrane. Indeed, LTD promotes 

ADAM10 membrane insertion through the association with SAP97, whereas LTP 

reduces the enzyme membrane levels by inducing AP2-mediated endocytosis. In light 

of the above, ADAM10 delivery to the postsynaptic compartment seems to be critical 

for synaptic activity–induced spine remodelling. In fact, ADAM10 cleavage of synaptic 

adhesion molecules may allow the activated synapse to rapidly modulate the spine size 

during induction of activity-dependent synaptic plasticity 271. 

Given the importance in the localisation of ADAM10 at the cell surface, the trafficking 

of the enzyme assumes a key role in the regulation of its activity. For this reason, we 

have performed a yeast two-hybrid screening of a brain cDNA library using the ADAM10 

C-terminal tail as bait since this region represents the main biochemical locus for the 

regulation of the trafficking of the enzyme through protein-protein interaction. Among 

the positive clones, we found a protein of particular interest, i.e. CAP2. CAP proteins 

were originally described as Cyclase Associated Protein (hence CAP) from 

Saccharomyces cerevisiae 129. CAPs are evolutionary highly conserved actin-binding 

proteins involved in changes in actin cytoskeleton and in vesicle trafficking/endocytosis, 

linking signalling pathways to elements of the cytoskeleton.  

CAP2 is a multidomain protein expressed only in a limited number of tissues, including 

the brain, suggesting that CAP2 may have unique roles. CAP family has been described 

as an actin-monomer-binding protein that can sequester actin monomers and prevent 

them from polymerization in vitro 129. Recent studies have revealed that CAP proteins 
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promote actin filament dynamics, cooperating with ADF/cofilin both in vitro and in vivo. 

First we confirmed the interaction between ADAM10 and CAP2 using different 

techniques, ranging from coimmunorpecipitation assays to PLA. The two proteins 

interact and this association is specific, since CAP1, the protein homologous to CAP2, 

does not bind ADAM10. Moreover, we identified the domains responsible for the 

association that are the most membrane proximal proline rich domain in ADAM10 tail 

and the N-terminal region of CAP2. 

 Given that, the first aim of our study was to characterize CAP2 in neuronal cells. We 

confirmed the presence of CAP2 in the brain and then we defined the localisation of the 

protein in the neuronal cell, showing that it is present in the excitatory neurons and it is 

localized in the postsynaptic compartment. However, CAP2 is not enriched in the 

postsynaptic density as ADAM10. Moreover, it has been reported in the literature that 

CAP2 can create aggregates through which it can regulate its activity (new). The real 

function of this aggregates and which domains of the protein are involved in the 

oligomerisation are not clear yet. It is known in the literature that Srv2/cyclase-

associated protein (CAP) can create aggregates because of interactions between its C-

terminal region (C) and the N terminal domain (N), but the interaction can occur also 

between C/C and N/N. We demonstrated that the Cysteine-32 is fundamental for the 

self-interaction in the N-terminal region. The biological role of this self-association is not 

clear yet, likely it can affect the localisation of the protein or it can optimize the CAP 

function. To clarify this issue, we analysed the major biological function of CAP2: the 

capability of binding actin and influencing its dynamics. Our results suggested that the 

CAP2 sequesters G-actin monomer in CAP2-clusters detectable in the cytoplasm and 

CAP2 overexpression triggers a shift of the G-actin/F-actin ratio towards G-actin, 

suggesting the induction of cytoskeleton depolymerisation. Interestingly, the rate of 

actin depolymerization depends on the aggregation form of CAP2. Indeed, the G-

actin/F-actin ratio is higher in cells containing one single perinuclear structure compared 

to cells in which CAP2 is organized in cluseters. Even if CAP2  mainly binds G-actin in 

COS7 cells , we demonstrated that in neuronal cells CAP2 can bind F-actin. In neuronal 

cells, we observed that CAP2 overexpression can trigger the actin depolymerisation, 

while CAP2 downregulation reduces G-actin/F-actin ratio. To have more complete view 

of how CAP2 influences the actin dynamics in the spines, we took advantage of the 

FRAP analysis. We silenced CAP2 in hippocampal neuron overexpressing GFP-actin 

that was partially incorporated into the actin filaments 290. The recovery of GFP-actin 
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fluorescence, after the spine bleaching, in CAP2 knockdown neurons was significantly 

increased, compared to control neurons, indicating that there was a significant decrease 

in the stable pool of GFP-actin in the spine. These results suggested that the absence 

of CAP2 increases the treadmilling of actin, leading to a faster rate of actin turnover. 

Thus CAP2 triggers a slower actin dynamic in the dendritic spine and, according to the 

literature, it can coordinate activities in the process of actin treadmilling catalysing 

different steps in actin turnover 137. In support if this hypothesis, it has been recently 

described by Peche and colleagues that CAP2 binds cofilin in neuronal cells, thus 

suggesting that CAP2 takes part to the actin treadmilling cooperating with crucial steps 

of the depolymerisation dynamic. Probably CAP2 interacts with G and F actin mediating 

a complicated exchange of actin monomer, that involves the entire protein structure. 

Therefore, we aimed at identifying the actin binding in CAP2 sequence. In our hands, 

the sequence of CAP2 responsible for the actin binding is composed of the last 22 aa. 

The CAP2 mutant lacking of the last 22 aa was not able to bind actin. However, the loss 

of this domain did not revert the effect of CAP2 on G-actin/F-actin ratio in both COS7 

cells and neuronal cells. 

In light of the above, we assessed the effect of CAP2 on spine morphology: we found 

out that the silencing of the protein determines longer spines, as expected, since CAP2 

downregulation decreases the stable pool of actin in the spines. 

On the other hand, CAP2 overexpression leads to an increase in the width of the spine 

while. the transfection of the mutant lacking of the acting binding domain reverted the 

effect of CAP2 on spines. Since we have demonstrated that this actin binding domain 

does not affect actin dynamics, we wondered that the effect is mediated by ADAM10.  

As previously reported, ADAM10 can modulate the morphology of the spines cleaving 

adhesion molecules, such as N-cadherin. Is CAP2 involved in the trafficking of 

ADAM10? We found out that CAP2 doesn’t modulate the surface expression and the 

endocytosis of ADAM10 but, if we removed the actin binding domain of 22 aa in the C-

terminus, we measured an increase in surface expression of ADAM10 and a decreased 

internalisation index. Therefore, this actin binding site in CAP2 is not involved in the 

regulation of actin dynamics but has a role in the control of ADAM10 membrane levels. 

Therefore, the lack of the last 22aa influences spine shape because it impairs ADAM10 

endocytosis, thus increasing its synaptic levels and thereby its shedding activity towards 

neuronal adhesion molecules.  
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The importance of ADAM10 in spine remodelling is demonstrated by the synaptic 

plasticity-dependent modulation of ADAM10 synaptic localization/activity. Therefore, 

we wondered whether activity-dependent synaptic plasticity modulates also CAP2 

synaptic availability in the dendritic spines. cLTP stimulation caused a significant 

increase in CAP2 dimer levels in TIF. We analysed also the interaction of CAP2 and 

actin and coimmunoprecipitation assays demonstrated a significant decrease in the 

association between CAP2 and actin. Taken together these data demonstrate that LTP 

can modulate CAP2 properties promoting the C32-dependent dimerization in the 

synapses and inducing actin detachment from CAP2. 

The above-described pathways, i.e. ADAM10 cleavage of cell adhesion molecules, 

actin polymerization and spines’ shaping, are required for stabilising synaptic contacts. 

In this framework, we hypothesized that the actin-binding protein CAP2, a newly 

identified partner of ADAM10, can be positioned at the crossroad of such pathways and 

can be implicated in brain pathologies, such as AD, in which there is an impairment of 

the localisation/activity of ADAM10. According to that, microarray analysis of 

hippocampal gene expression of AD patients, reported a downregulation of CAP2 gene. 

Moreover, the CAP2 gene is present at chromosome 6p22.3 in human. An interstitial 

6p22-24 deletion syndrome of the short arm of chromosome 6 was reported where 

patients with this deletion have a variable phenotype including a developmental delay 
168. Since CAP2 could be involved in synaptic failure in both neurodegenerative and 

neurodevelopmental disorders, it represents a potential pharmacological target for 

several diseases. 
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