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Abstract 
Background/Aims: The antifungal drug Micafungin is used for the treatment of diverse fungal 
infections including candidiasis and aspergillosis. Side effects of Micafungin treatment include 
microangiopathic hemolytic anemia and thrombocytopenia with microvascular thrombosis. 
The development of thrombosis may be fostered by stimulation of eryptosis, the suicidal 
death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with 
phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include 
increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, activated protein kinase 
C (PKC), casein kinase 1α or p38 kinase and activated caspases. The present study explored, 
whether Micafungin induces eryptosis. Methods: Flow cytometry was employed to estimate 
phosphatidylserine abundance at the erythrocyte surface from annexin-V-binding, cell volume 
from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species 
(ROS) from DCFDA dependent fluorescence, and ceramide abundance at the erythrocyte 
surface utilizing specific antibodies. Hemolysis was quantified by measuring haemoglobin 
concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to 
Micafungin (10 - 25 µg/ml) significantly increased hemolysis and the percentage of annexin-
V-binding cells, and significantly decreased forward scatter. Micafungin (25 µg/ml) did not 
significantly modify Fluo3-fluorescence, DCFDA fluorescence, or ceramide abundance. The 
effect of Micafungin on annexin-V-binding was not significantly modified by removal of 
extracellular Ca2+, by PKC inhibitor staurosporine (1 µM), p38 kinase inhibitor SB203580 (2 µM), 
casein kinase 1α inhibitor D4476 (10 µM) or pancaspase inhibitor zVAD (10 µM). Conclusions: 
Micafungin triggers hemolysis and eryptosis with cell shrinkage and phospholipid scrambling 
of the erythrocyte cell membrane.
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Introduction

Micafungin has been employed for the treatment and prophylaxis of diverse fungal 
infections [1-10] including candidiasis [5-37] and aspergillosis [5-8, 12, 15, 24, 27-30, 32, 
33, 36, 38, 39]. Side effects of Micafungin treatment include thrombotic thrombocytopenic 
purpura (TTP), a condition characterized by microangiopathic hemolytic anemia and 
thrombocytopenia with microvascular thrombosis [40].

Stimulators of thrombosis include triggering of eryptosis, the suicidal death of 
erythrocytes characterized by cell shrinkage [41] and cell membrane scrambling with 
phosphatidylserine translocation to the cell surface [42]. Phosphatidylserine exposing 
erythrocytes further adhere to the vascular wall [43], stimulate blood clotting and thus 
foster thrombosis [44-46]. Accordingly, stimulation of eryptosis may lead to impairment of 
microcirculation [44, 47-51]. 

Signaling mechanisms stimulating eryptosis include Ca2+ entry with increase of cytosolic 
Ca2+ activity ([Ca2+]i) [42], ceramide [47], caspases [42, 52, 53], as well as several kinases 
including casein kinase 1α, Janus-activated kinase JAK3, protein kinase C, and p38 kinase 
[42]. Eryptosis is inhibited by AMP activated kinase AMPK, cGMP-dependent protein kinase, 
and PAK2 kinase and sorafenib/sunitinib sensitive kinases [42]. 

Eryptosis is triggered by oxidative stress [42], energy depletion [42] and a wide variety 
of xenobiotics [42, 54-84]. 

The present study explored whether Micafungin could stimulate eryptosis. To this end, 
human erythrocytes were exposed to Micafungin and phosphatidylserine surface abundance, 
cell volume, [Ca2+]i, abundance of reactive oxygen species (ROS) and ceramide determined by 
flow cytometry. 

Materials and Methods 

Erythrocytes, solutions and chemicals
Fresh Li-Heparin-anticoagulated blood samples were kindly provided by the blood bank of the University 

of Tübingen. The study is approved by the ethics committee of the University of Tübingen (184/2003 V). The 
blood was centrifuged at 120xg for 20 min at 20 °C and the platelets and leukocytes-containing supernatant 
was disposed. Erythrocytes were incubated in vitro at a hematocrit of 0.4% in Ringer solution containing (in 
mM) 125 NaCl, 5 KCl, 1 MgSO4, 32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES; pH 7.4), 5 
glucose, 1 CaCl2, at 37°C for 48 hours. Where indicated, erythrocytes were exposed for 48 hours to Micafungin 
(Selleckchem, Munich, Germany). To test for an involvement of oxidative stress, erythrocytes were exposed 
for 48 hours to a combination of Micafungin and antioxidant N-acetylcysteine (Sigma Aldrich, Hamburg, 
Germany). Involvement of protein kinase C or p38 kinase was analyzed by exposure of erythrocytes for 48 
hours to a combination of Micafungin and either PKC inhibitor staurosporine (Tocris bioscience, Bristol, UK) 
or p38 kinase inhibitor SB 203580 (Tocris bioscience). A putative role of casein kinase 1α was elucidated by 
exposure of erythrocytes for 48 hours to a combination of Micafungin and casein kinase 1α inhibitor D4476 
(Sigma Aldrich, Hamburg, Germany). Involvement of caspases was tested by exposure of erythrocytes for 48 
hours to a combination of Micafungin and pancaspase inhibitor zVAD (Enzo Life Sciences, Lörrach, Germany).

Annexin-V-binding and forward scatter 
After incubation under the respective experimental condition, a 150 µl cell suspension of erythrocytes 

was centrifuged at 630xg for 3 min and, after trashing the supernatant, the erythrocytes were stained 
with Annexin-V-FITC (1:200 dilution; ImmunoTools, Friesoythe, Germany) in Ringer solution containing 
5 mM CaCl2 at 37°C for 20 min under protection from light. The annexin-V-abundance at the erythrocyte 
surface was subsequently determined on a FACS Calibur (BD, Heidelberg, Germany). Annexin-V-binding 
was measured with an excitation wavelength of 488 nm and an emission wavelength of 530 nm. A marker 
(M1) was placed to set an arbitrary threshold between annexin-V-binding cells and control cells. The same 
threshold was used for untreated and Micafungin treated erythrocytes. A dot plot of forward scatter (FSC) 
vs side scatter (SSC) was set to linear scale for both parameters. The threshold of forward scatter was set at 
the default value of “52”.

D
ow

nl
oa

de
d 

by
: 

15
9.

14
9.

19
3.

14
9 

- 
1/

16
/2

01
7 

10
:3

9:
56

 A
M



Cell Physiol Biochem 2016;39:584-595
DOI: 10.1159/000445650
Published online: July 11, 2016 586
Peter et al.: Micafungin-Induced Eryptosis 

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2016 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Confocal microscopy
In order to visualize the effect of Micafungin on F-actin in human erythrocytes, Phalloidin eFluor® 660 

(eBioscience, San Diego, USA) was used. Briefly, treated erythrocytes were stained with Phalloidin eFluor® 
660 at a dilution of 1:100 for 45 mins in the dark at 37°C. In order to visualize phosphatidylserine exposure, 
erythrocytes were additionally stained with Annexin-V-FITC (1:200 dilution; ImmunoTools, Friesoythe, 
Germany) for 30 mins in the dark at 37°C. The erythrocytes were washed twice and were finally resuspended 
in 200 µl Ringer solution containing 5 mM CaCl2. For confocal microscopy, 20 µl of each sample were spread 
onto a glass slide and dried for 15 mins at RT. The slides were covered with PROlong Gold antifade reagent 
(Invitrogen, Darmstadt, Germany). Subsequently, confocal images were taken on a Zeiss LSM 5 Exciter 
confocal laser-scanning microscope.

Intracellular Ca2+

After incubation, erythrocytes were washed in Ringer solution and then loaded with Fluo-3/AM 
(Biotium, Hayward, USA) in Ringer solution containing 5 mM CaCl2 and 5 µM Fluo-3/AM. The cells were 
incubated at 37°C for 30 min and washed once in Ringer solution containing 5 mM CaCl2. The Fluo-3/
AM-loaded erythrocytes were resuspended in 200 µl Ringer solution. Then, Ca2+-dependent fluorescence 
intensity was measured in FL-1 with an excitation wavelength of 488 nm and an emission wavelength of 
530 nm on a FACS Calibur. Afterwards, the geomean of the Ca2+ dependent fluorescence was determined.

Reactive oxygen species (ROS) 
Oxidative stress was determined utilizing 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA). After 

incubation, a 150 µl suspension of erythrocytes was washed in Ringer solution and then stained with DCFDA 
(Sigma Aldrich) in Ringer solution containing DCFDA at a final concentration of 10 µM. Erythrocytes were 
incubated at 37°C for 30 min in the dark and then washed two times in Ringer solution. The DCFDA-loaded 
erythrocytes were resuspended in 200 µl Ringer solution, and ROS-dependent fluorescence intensity was 
measured in FL-1 at an excitation wavelength of 488 nm and an emission wavelength of 530 nm on a FACS 
Calibur (BD). 

Ceramide abundance
To determine the ceramide abundance at the erythrocyte surface, a monoclonal antibody was used. 

After incubation, cells were stained for 1 h at 37°C with 1μg/ml anti-ceramide antibody (clone MID 15B4; 
Alexis, Grünberg, Germany) in phosphate-buffered saline (PBS) containing 0.1 % bovine serum albumin 
(BSA) at a dilution of 1:10. After two washing steps with PBS-BSA, cells were stained for 30 min with 
polyclonal fluorescein-isothiocyanate (FITC)-conjugated goat anti-mouse IgG/IgM (concentration 0.5 mg/
ml) specific antibody (BD Pharmingen, Hamburg, Germany) diluted 1:50 in PBS-BSA. Unbound secondary 
antibody was removed by repeated washing with PBS-BSA. Samples were then analyzed by flow cytometric 
analysis in FL-1 at an excitation wavelength of 488 nm and an emission wavelength of 530 nm. Finally, the 
geomean of the ceramide dependent fluorescence was determined.

Statistics
Data are expressed as arithmetic means ± SEM. As indicated in the figure legends, statistical analysis 

was made using ANOVA with Tukey’s test as post-test and t test as appropriate. n denotes the number of 
different erythrocyte specimens studied. Since different erythrocyte specimens used in distinct experiments 
are differently susceptible to triggers of eryptosis, the same erythrocyte specimens have been used for control 
and experimental conditions.

Results

The present study explored whether Micafungin is able to trigger eryptosis, the suicidal 
erythrocyte death characterized by cell shrinkage and by phospholipid scrambling of 
the cell membrane with phosphatidylserine translocation to the cell surface. To this end, 
erythrocytes drawn from healthy volunteers were incubated for 48 hours in Ringer solution 
without or with Micafungin (10 – 25 µg/ml).
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Erythrocyte volume was estimated from forward scatter, which was determined 
utilizing flow cytometry. As illustrated in Fig. 1, Micafungin (10 – 25 µg/ml) significantly 
decreased erythrocyte forward scatter. Moreover, Micafungin significantly increased the 
percentage of shrunken erythrocytes (Fig. 1C), an effect reaching statistical significance 
at 10 µg/ml Micafungin concentration. In contrast, Micafungin treatment decreased the 
percentage of swollen erythrocytes (Fig. 1D), an effect reaching statistical significance at 10 
µg/ml Micafungin concentration.

The percentage of hemolytic erythrocytes was estimated from hemoglobin concentration 
in the supernatant. As illustrated in Fig. 2, a 48 hours exposure to Micafungin (10 – 25 µg/
ml) increased the percentage of hemolytic erythrocytes. 

Phosphatidylserine exposing erythrocytes were identified utilizing annexin-V-binding, 
as determined by flow cytometry. As illustrated in Fig. 3, a 48 hours exposure to Micafungin 
(10 – 25 µg/ml) significantly increased the percentage of phosphatidylserine exposing 
erythrocytes. 

Confocal microscopy was employed to visualize the annexin binding and the actin 
filaments of erythrocytes. As illustrated in Fig. 4, confocal microscopy confirmed the increase 
of annexin-V-binding. The actin filaments were apparently resistant to the Micafungin 
treatment (Fig. 4).

Fluo3 fluorescence was taken as a measure of cytosolic Ca2+ activity ([Ca2+]i). As a result, 
the Fluo3 fluorescence was similar following incubation of the erythrocytes in the absence of 
Micafungin (21.16 ± 0.56 a.u., n = 14) and in the presence of 10 µg/ml (20.77 ± 0.85 a.u., n = 
14), 15 µg/ml (19.78 ± 0.72 a.u., n = 14) and 25 µg/ml (20.04 ± 0.57 a.u., n = 14) Micafungin. 
Thus, Micafungin did not appreciably modify [Ca2+]i.

Fig. 1. Effect of Micafungin on erythrocyte forward scatter. A. Original histogram of forward scatter of eryth-
rocytes following exposure for 48 hours to Ringer solution without (grey area) and with (black line) pres-
ence of 25 µg/ml Micafungin. B. Arithmetic means ± SEM (n = 14) of the erythrocyte forward scatter (FSC) 
following incubation for 48 hours to Ringer solution without (white bar) or with (black bars) Micafungin 
(10 - 25 µg/ml). C. Arithmetic means ± SEM (n = 14) of the percentage of erythrocytes with forward scatter 
(FSC) <200 following incubation for 48 hours to Ringer solution without (white bar) or with (black bars) 
Micafungin (10 – 25 µg/ml). D. Arithmetic means ± SEM (n = 14) of the percentage of erythrocytes with 
forward scatter (FSC) >800 following incubation for 48 hours to Ringer solution without (white bar) or with 
(black bars) Micafungin (10 – 25 µg/ml). ***(p<0.001) indicates significant difference from the absence of 
Micafungin (ANOVA).
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A next series of experiments explored whether the Micafungin-induced translocation 
of phosphatidylserine was sensitive to extracellular Ca2+. To this end, erythrocytes were 
incubated for 48 hours in the absence or presence of 25 µg/ml Micafungin in the presence 

Fig. 2. Effect of Micafungin on hemolysis. Arithme-
tic means ± SEM (n = 8) of the percentage of he-
molytic erythrocytes following incubation for 48 
hours to Ringer solution without (white bar) or with 
(black bars) Micafungin (10 - 25 µg/ml). *(p<0.05), 
***(p<0.001) indicate significant difference from the 
absence of Micafungin (ANOVA).

Fig. 3. Effect of Micafungin on phosphatidylserine exposure. A. Original histogram of annexin-V-binding of 
erythrocytes following exposure for 48 hours to Ringer solution without (grey area) and with (black line) 
presence of 25 µg/ml Micafungin. B. Arithmetic means ± SEM (n = 14) of erythrocyte annexin-V-binding fol-
lowing incubation for 48 hours to Ringer solution without (white bar) or with (black bars) Micafungin (10 
- 25 µg/ml). ***(p<0.001) indicates significant difference from the absence of Micafungin (ANOVA).

Fig. 4. Confocal micros-
copy on effects of Mica-
fungin on phosphatidyl-
serine externalization and 
F-actin. Confocal micros-
copy of annexin V fluores-
cence (left panels), F-actin 
abundance (middle pan-
els) and overlay of both 
stainings (right panels) in 
erythrocytes following ex-
posure to Ringer solution 
(upper panels) or to 10 
µg/ml micafungin for 48 
hours (lower panels).
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or nominal absence of extracellular Ca2+. As shown in Fig. 5, removal of extracellular Ca2+ 
did not significantly blunt the effect of Micafungin on the percentage of annexin-V-binding 
erythrocytes and even in the absence of extracellular Ca2+, Micafungin significantly increased 
the percentage of annexin-V-binding erythrocytes. Thus, Micafungin-induced cell membrane 
scrambling was not appreciably modified by removal of extracellular Ca2+.

Eryptosis is further stimulated by oxidative stress. Reactive oxygen species (ROS) was 
thus quantified utilizing 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA). As shown in 
Fig. 6 A&B, the DCFDA fluorescence was significantly (p<0.001) lower in the presence of 
Micafungin than in the absence of Micafungin. Thus, Micafungin rather decreased oxidative 
stress.

To explore, whether the effects of Micafungin could be modified by the redox state, 
the influence of Micafungin on annexin-V-binding was tested in the absence or presence 
of antioxidant N-acetylcysteine (1 mM). As a result, Micafungin (25 µg/ml) increased the 
percentage of phosphatidylserine exposing erythrocytes to similar values in the absence 
(from 2.19 ± 0.29 % to 19.49 ± 0.83 %, n = 16) and in the presence (from 1.58 ± 0.16 % to 
17.16 ± 0.88 %, n = 16) of N-acetylcysteine (1 mM). 

A further stimulator of eryptosis is ceramide. Ceramide abundance at the erythrocyte 
surface was thus quantified utilizing specific antibodies. As shown in Fig. 6 C&D, the ceramide 
abundance was significantly lower following exposure to Micafungin, than in the absence of 
Micafungin. Thus, Micafungin rather decreased ceramide abundance.

In order to elucidate a possible role of p38 kinase, the influence of Micafungin on annexin-
V-binding was quantified in the absence or presence of p38 kinase inhibitor SB 203580 (2 

Fig. 5. Ca2+ insensitivity of Micafungin -induced phosphatidylserine exposure. A,B. Original histograms of 
annexin-V-binding of erythrocytes following exposure for 48 hours to Ringer solution without (grey area) 
and with (black line) Micafungin (25 µg/ml) in the presence (A) and absence (B) of extracellular Ca2+.  
C. Arithmetic means ± SEM (n = 16) of annexin-V-binding of erythrocytes after a 48 hours treatment with 
Ringer solution without (white bars) or with (black bars) Micafungin (25 µg/ml) in the presence (left bars, 
+ Calcium) and absence (right bars, - Calcium) of Ca2+. ***(p<0.001) indicates significant difference from the 
absence of Micafungin (ANOVA).
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µM). As a result, Micafungin (25 µg/ml) increased the percentage of phosphatidylserine 
exposing erythrocytes to similar values in the absence (from 2.93 ± 0.70 % to 17.79 ± 0.85 %, 
n = 8) and in the presence (from 2.37 ± 0.58 % to 18.11 ± 1.27 %, n = 8) of SB 203580 (2 µM). 

The involvement of protein kinase C was tested by quantifying the effect of Micafungin 
on annexin-V-binding in the absence or presence of protein kinase C inhibitor staurosporine 
(1 µM). As a result, Micafungin (25 µg/ml) increased the percentage of phosphatidylserine 
exposing erythrocytes to similar values in the absence (from 3.29 ± 0.58 % to 20.03 ± 0.96 %, 
n = 16) and in the presence (from 3.50 ± 0.53 % to 19.55 ± 1.29 %, n = 16) of staurosporine 
(1 µM). 

A putative role of casein kinase 1α was studied by determination of Micafungin-induced 
annexin-V-binding in the absence or presence of casein kinase 1α inhibitor D4476 (10 µM). 
As a result, Micafungin (25 µg/ml) increased the percentage of phosphatidylserine exposing 
erythrocytes to similar values in the absence (from 1.59 ± 0.21 % to 22.68 ± 0.89 %, n = 8) 
and in the presence (from 1.54 ± 0.11 % to 21.83 ± 1.04 %, n = 8) of D4476 (10 µM).

A final series of experiments addressed the putative involvement of caspases in 
Micafungin induced eryptosis. To this end, the influence of Micafungin on annexin-V-
binding was tested in the absence or presence of pancaspase inhibitor zVAD (10 µM). As 
a result, Micafungin (25 µg/ml) increased the percentage of phosphatidylserine exposing 
erythrocytes to similar values in the absence (from 2.15 ± 0.31 % to 17.42 ± 1.02 %, n = 8) 
and in the presence (from 2.12 ± 0.26 % to 19.61 ± 1.30 %, n = 8) of zVAD (10 µM). 

Fig. 6. Effect of Micafungin on ROS and ceramide abundance. A. Original histogram of DCFDA fluorescence 
of erythrocytes following exposure for 48 hours to Ringer solution without (grey area) and with (black line) 
presence of 25 µg/ml Micafungin. B. Arithmetic means ± SEM (n = 5) of erythrocyte DCFDA fluorescence fol-
lowing incubation for 48 hours to Ringer solution without (white bar) or with (black bars) Micafungin (10 
- 25 µg/ml). C. Original histogram of ceramide abundance of erythrocytes following exposure for 48 hours 
to Ringer solution without (grey area) and with (black line) presence of 25 µg/ml Micafungin. D. Arithmetic 
means ± SEM (n = 4) of erythrocyte ceramide abundance following incubation for 48 hours to Ringer solu-
tion without (white bar) or with (black bars) Micafungin (10 - 25 µg/ml). **(p<0.01), ***(p<0.001) indicate 
significant difference from the absence of Micafungin (ANOVA).
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Discussion

The present observations demonstrate that Micafungin stimulates eryptosis, the suicidal 
erythrocyte death. Treatment of erythrocytes from healthy individuals with Micafungin results 
in cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the 
erythrocyte surface. The concentrations required for this effect are in the range of peak plasma 
concentrations determined in Micafungin treated patients [85]. At least in theory the sensitivity 
to Micafungin induced eryptosis could be enhanced in clinical conditions with accelerated 
eryptosis, such as dehydration [86], hyperphosphatemia [87], chronic kidney disease (CKD) 
[88-91], hemolytic-uremic syndrome [92], diabetes [93], hepatic failure [94], malignancy 
[42], sepsis [95], sickle-cell disease [42], beta-thalassemia [42], Hb-C and G6PD-deficiency 
[42], as well as Wilsons disease [96].

Attempts to define the signaling of Micafungin on erythrocyte cell membrane scrambling 
were not successful. According to the present observations, the involvement of several well 
known triggers of eryptosis, such as Ca2+ entry, oxidative stress, ceramide, protein kinase 
C, p38 kinase and caspases [42] is unlikely. Micafungin-induced cell membrane scrambling 
was not paralleled by increase of Fluo3 fluoresence and was not significantly modified by 
removal of Ca2+ from extracellular space, indicating that the effect was not dependent on entry 
of extracellular Ca2+. The effect of Micafungin on cell membrane scrambling was paralleled by a 
decrease rather than an increase of reactive oxygen species and was not significantly modified 
by the antioxidant N-acetylcysteine. Micafungin further decreased rather than increased the 
abundance of ceramide. The effect of Micafungin on cell membrane scrambling was not sensitive 
to staurosporine, SB203580 or D4476 and did thus apparently not require the activation of 
protein kinase C, p38 kinase or casein kinase 1α. Moreover, Micafungin was effective even in 
the presene of caspase inhibitor zVAD. Thus, the cellular mechanism involved in the triggering 
of eryptosis remained elusive.

Besides its effect on eryptosis, micafungin triggered hemolysis. The effects of Micafungin 
are reminiscent to the hemolytic effects of surfactant [97]. It is actually the purpose of 
eryptosis to clear defective erythrocytes from circulating blood prior to hemolysis [42]. The 
removal of defective erythrocytes is important as hemolysis leads to release of hemoglobin, 
which passes the renal glomerular filter, precipitates in the acidic lumen of renal tubules, 
occludes nephrons and may thus lead to renal failure [98]. Eryptosis further accomplishes 
removal of infected erythocytes from circulating blood [42]. 

Conclusion

In conclusion, Micafungin triggers eryptosis with cell shrinkage and cell membrane 
scrambling. In addition Micafungin and triggers hemolysis.  
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