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1 Abstract 

The most recent cancer classification from NIH includes ~200 types of tumor that 

originates from several tissue types (http://www.cancer.gov/types). Although 

macroscopic and microscopic characteristics varies significantly across subtypes, the 

starting point of every cancer is believed to be a single cell that acquires DNA somatic 

alterations that increases its fitness over the surrounding cells and makes it behave 

abnormally and proliferate uncontrollably. Somatic mutations are the consequence of 

many possible defective processes such as replication deficiencies, exposure to 

carcinogens, or DNA repair machinery faults. Mutation development is a random and 

mostly natural process that frequently happens in every cell of an individual. Only the 

acquisition of a series of subtype-specific alterations, including also larger aberrations 

such as translocations or deletions, can lead to the development of the disease and this is 

a long process for the majority of adult tumor types. However, genetic predisposition for 

certain cancer types is epidemiologically well established. In fact, several cancer 

predisposing genes where identified in the last 30 years with various technologies but 

they characterize only a small fraction of familial cases. This work will therefore cover 

two main steps of cancer genetics and genomics: the identification of the genes that 

somatically changes the behavior of a normal human cell to a cancer cell and the genetic 

variants that increase risk of cancer development. The use of publicly available datasets is 

common to all the three results sections that compose this work. In particular, we took 

advantage of several whole exome sequencing databases (WES) for the identification of 

both driver mutations and driver variants. In particular, the use of WES in cancer 

predisposition analysis represents one of the few attempts of performing such analysis 

on genome-wide sequencing germline data. 
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2 Introduction 

The purpose of this work is to delineate a workflow to analyze and classify genes that are 

important for cancer progression both at the germinal level (cancer predisposing genes, 

CPGs) and somatic level (somatic driver genes, SDGs). We generally refer at variants as 

those hereditable germline Single Nucleotide Polymorphisms (SNPs) that happen in the 

normal DNA of the person and they can increase or not the risk of developing cancer. 

We call mutations, all those Single Nucleotide Variants (SNVs) that can be seen in the 

tumor but are not part of the original genome of the individual. To be more precise, we 

refer to the latter as somatic mutations since the term mutation is sometimes used to 

define pathogenic germline variants, especially in clinical settings (for example when 

referring to BRCA1 mutants). In general, mutation, compared to variant, assumes a 

negative connotation when referring to pathogenic alterations. This introduction 

represents a brief historical summary of the main milestones in cancer research 

concerning DNA alterations in cancer. This history runs on a parallel track with the 

history of cell biology, as a lot of what we know now on how a human cell behave is 

nothing but a byproduct of cancer research.  

2.1 Cancer as an evolutionary process 

The somatic evolution of cancer is a theory that states that cancer is the effect of the 

accumulation of mutations over time from a single aberrant cell of origin that passes the 

mutations to its next generation. This cell of origin, ultimately evolve in a tumor via 

mutations that confer a selective growth advantage with respect to its surrounding cells. 

In 1902, the German biologist Theodor Boveri introduced for the first time the concept 

of chromosomal aberration as a possible cause for a cell to become malignant, by 

reviving some observations made by David von Hansemann in 1890 (Boveri, 2008).  This 
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hypothesis came from the observation that in sea urchins, all chromosomes are necessary 

for a proper embryonic development. Quoting from his seminal work: 

‘ We may therefore regard it as probable that individual chromosomes have different 

properties in vertebrates too, and it is this assumption that forms the basis of the tumour 

hypothesis I have put forward. A malignant tumour cell is – and here again I take up the 

ideas of Hansemann – a cell with a specific abnormal chromosome constitution ‘. 

The idea of tumors as cells with chromosomal defects came as a sort of side note in his 

work, since the experiments carried out on sea urchin were aimed at demonstrating what 

is called the Boveri-Sutton hypothesis that chromosomes are responsible for mendelian 

inheritance. Therefore, it is noteworthy that the biology of cancer was born together with 

the biology of the cell. Boveri’s ideas on oncogenesis, summarized in 1914 Zur Frage der 

Entstehung maligner Tumoren (On the Origin of Malignant Tumors, Williams & 

Wilkins. Philadelphia, PA, USA, 1914) were mostly speculative rather than 

experimental. Chromosomal inheritance was definitely ruled out by Thomas Morgan a 

year later and the term somatic mutation was introduced by Tyzzer approximately in the 

same period of time (Tyzzer, 1916). Unfortunately, Boveri died in 1915, without 

knowing that his seminal ideas were shaping cancer research for the next 100 years. In 

1919, Whitman associated anaplasia, the condition of a cell that loses the morphological 

characteristics of mature cells, with the concept of somatic mutations (Whitman, 1919). 

He also sets the somatic mutation mechanism as the cause of uncontrolled proliferation 

and aberrant cell division, as postulated by Boveri himself. 25 years before the discovery 

of DNA as the molecule of inheritance and 50 years before the first experiments on cell 

cycle regulation, cancer was already seen as an evolutionary mechanism that starts from 

a single aberrant cell that proliferates and passes the mutations to the next generation of 

cells (clonal evolution). In Whitman words: 



 8	

‘ This cell, the cancer cell, is thus a ‘new kind of cell’. In modern terminology it is, 

strictly and literally, a mutated cell. Since the process is, or at least may be, repeated 

itself from time to time, and here and there, in a tumor, it follows that the tumor cells 

themselves are by no means all alike in their biologic properties; that, on the contrary, 

an ever recurring process of mutation is taking place, with a tendency, however, to 

deviate more and more from the normal type. This explains why metastatic tumors, for 

example, are often more, but never less, malignant than the primary tumor, as well as 

other related phenomena of tumor growth ’. 

2.2 Accumulating driver mutations 

In the beginning of the 20th century, scientists referred at mutations as chromosomal 

aberrations, because DNA structure and function was still unknown. In this view, two 

fundamental concepts of somatic tumor evolution were still missing. First, the idea of 

accumulation of mutations over time was first observed by two statistical models by 

Nordling in 1953 and Armitage and Dolls in 1954 (Armitage and Doll, 1954; Nordling, 

1953)  that for the first time clearly stated that age is the main risk factor for cancer death 

and that multi-mutations (at least 7 in Nordling model) must occur to develop the 

disease. Secondly, what kind of mutations must occurs to develop the various subtypes of 

cancer was mostly unknown until 1971 (Knudson, 1971). Knudson observed that the 

heritable form of retinoblastoma occurred at a much earlier age than the non-heritable 

form and he explained this observation by speculating that at least two mutational events 

were necessary for the development of this cancer. Patients that present with the 

heritable form of retinoblastoma harbor a germline mutation since conception and 

require only one DNA mutation in a somatic cell to develop the cancer. In contrast, in 

the non-hereditary type of retinoblastoma, two DNA mutations need to occur in a 

somatic cell in order to initiate oncogenesis. It represented the first explanation of the 

mechanism of mutations in cancer that over 10 years later will be identified as RB1, the 
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first tumor suppressor gene (TSG) (Murphree and Benedict, 1984). TSGs are entities with 

three main characteristics: 

• Their normal function is to prevent tumor formation by inhibiting cell cycle and 

ultimately tumor growth. Generally, they can induce apoptosis, promoting DNA 

repair or arrest the cell cycle 

• The mutations affecting these genes must disrupt the normal function of the 

protein 

• Mutations on tumor suppressors are generally recessive, in the sense that one 

single healthy copy of the gene is sufficient to maintain the normal behavior of 

the cell 

 The second category of genes that promote tumorigenesis is called oncogene (OG) and 

the first evidence of this class of genes and related mutations has been fully understood 

10 years after the work of Knudson on retinoblastoma. Oncogenes are cancer genes that 

when mutated increase or modify their activity within the cell and promote cell growth 

and survival. In 1979, Bishop and Vamus discovered c-Src in chickens, a gene that when 

mutated resembles a viral form called v-Src that can be found in Rous Sarcoma Virus 

(Stehelin et al., 1976). Once the oncogene is transfected back into a chicken, it can lead 

to cancer. This discovery led to the idea of the viral infection as a tumor-promoting 

factor and also to the definition of the first proto-oncogene. Nevertheless, the first 

“natural occurring” oncogene can be seen as HRAS (Reddy et al., 1982), that has been 

demonstrated to have oncogenic potential by itself in NIH/3T3 cell line. With this last 

discovery, we can define all the main characteristics of oncogenes: 

• The mutations affecting this class of genes are generally missense mutations, so 

that the resulting protein function changes but is not compromised 
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• The mutations affecting this class of genes alter the original function of the gene 

by changing it (shift-of-function mutations) or more commonly by enhancing it 

(gain-of-function) 

• Oncogenes are generally dominant, in the sense that one single altered copy is 

sufficient for an oncogenic effect 

• In some cases (like RAS family genes) one oncogene is sufficient to transform the 

normal cell into a neoplastic cell (Fasano et al., 1984) 

This brief historical context of mutational theory of cancer can be summarized in a series 

of milestones as such: 

1. Cancer is a somatic disease, originating from aberrant behavior of normal cells 

2. The aberrant behavior is given by alterations in the DNA structure or content 

3. Cancer is a multi-step process, given by the accumulation of mutations over time 

and therefore age is the main risk factor for carcinogenesis 

4. There exists a genetic predisposition towards the development of such alterations 

that can be inherited and creates tumors with early onset 

5. Cancer develops through two main forces: loss-of-function in tumor suppressor 

genes and gain-of-function in oncogenes 

2.3 Tumor heterogeneity 

What is still missing from these milestones is what is the concordance in terms of 

genomic makeup among tumor types and also among tumors within the same type. In 

other terms, what are the possible ways a cancer could develop? To answer this question, 

scientists were setting the basis of what is currently called tumor heterogeneity, so what 

are the intrinsic genomic differences between different tumor cells. This difference can 

be seen both between tumors (inter-tumor heterogeneity) and within tumors (intra-

tumor heterogeneity). The first attempt at a definition of tumor heterogeneity is strictly 

correlated to clonal evolution theory (Nowell, 1976). In 1976, Nowell wrote: 
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‘ The acquired genetic instability and associated selection process, most readily 

recognized cytogenetically, results in advanced human malignancies being highly 

individual karyotypically and biologically. Hence, each patient's cancer may require 

individual specific therapy, and even this may be thwarted by emergence of a genetically 

variant subline resistant to the treatment ’. Nowell not only pinpointed that each tumor 

has its own history and biology, but poses the bases of the direction of cancer medicine 

of the last 10 years. In fact, what we now refer to personalized or precision medicine 

implies by definition that we need to understand the specific genetic makeup of each and 

everyone disease in order to tailor a specific treatment. This incredible heterogeneity is 

probably the main reason why finding effective treatments for cancer turns out to be still 

a major challenge in cancer research. Clonal evolution generates branches that compose 

a tumor made of various genomes. When a drug is designed to kill certain kind of cells, 

those with a specific genome, it leaves the possibility to other minor branches to win the 

battle for survival and recreate a tumor resistant to that drug.  

2.4 Cancer genome landscapes 

Although the concept of tumor heterogeneity was known since the 70s, it is only with 

the advent of genome-wide studies and Next Generation Sequencing (NGS) that 

scientists start to understand fully the landscapes of possible mutational patterns in 

various tumor types. In 2000, Perou and colleagues delineate the first example of tumor 

landscapes using microarray data, by bridging the gap between macroscopic subtypes 

seen by a pathologist via immunohistochemestry and genomic subtypes derived from 

gene expression (Perou et al., 2000). The authors were able to recapitulate both primary 

and metastatic machinery and ultimately give a “name”, in their words a molecular 

portrait, to the tumor of each of the 42 patients analyzed in their work. In fact, in the 

conclusion they stated: 

‘ A striking conclusion from these data concerns the stability, homogeneity and 

uniqueness of the 'molecular portraits' provided by the quantitative analysis of gene 
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expression patterns. We infer that these portraits faithfully represent the 'tumour' itself, 

and not merely the particular tumour 'sample', because we could recognize the 

distinctive expression pattern of a tumour in independent samples. ‘ 

This first example used the most prominent genome-wide technique at that time, 

expression microarray. Somatic mutations detection was still extremely expensive and 

just a few targeted genes at a time could be analyzed using polymerase chain reaction 

(PCR)-based capillary sequencing techniques. The principle behind the identification of 

somatic mutations was, at its core, the same we use today with NGS: separately 

sequencing normal germline DNA and a tumor sample and call as somatic mutations 

every base that is present in the tumor but not in the germinal line. In 2007, Vogelstein’s 

group at the John Hopkins was able to delineate the first mutational landscape of two 

kinds of solid tumors, breast and colon (Wood et al., 2007). In this seminal work that 

looked at most of the coding genes in the human genome (20,857 transcripts from 

18,191 genes), they found an average of 70 mutations per sample, approximately ten-

times more than the estimation made by Nordling model in the 1953. Furthermore, they 

add three fundamental milestones to the somatic mutation theory: 

1. The landscape of mutations in cancer is formed by few mountains and many 

hills. Mountains represent genes mutated in more than 10-20% of the samples 

while hills represent genes mutated at a frequency of 5% or lower. 

2. Not all mutations are as important as the others. ~15/70 can be called drivers as 

they promote tumor growth and survival. The majority of them are simply 

passengers, so mutations that appear in the context of genomic instability of 

neoplastic cells and are simply dragged over the generations of cells being not 

under any selective pressure. 

3. While mountains are certainly driver, each tumor has its own hills. Hills are 

linked between each other in common pathways. 
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2.5 Driver VS Passenger: a problem of mutation rate 

Vogelstein’s work on cancer genome landscapes represented in fact the last of a series of 

other seminal works probably opened by Vogelstein himself in 2004. In the review 

Cancer Genes and the pathways they control (Vogelstein and Kinzler, 2004), the 

problem of understanding the entire molecular landscapes of cancer finally emerged in 

its paramount importance: 

‘ There are at least three major challenges that will occupy most cancer researchers' 

time over the next 10 years. The first is the discovery of new genes that have a causal 

role in neoplasia, particularly those that initiate and conclude the process. The second is 

the delineation of the pathways through which these genes act and the basis for the 

varying actions in specific cell types. The third is the development of new ways to exploit 

this knowledge for the benefit of patients ‘. 

Before the early years of 2000, a precise estimate of how much of the genome was 

mutated in cancer was mostly based on mathematical models about mutation progression 

(Goldman and Yang, 1994; Yang et al., 2003). The word driver itself was used mostly to 

define oncogenes and tumor suppressors behaviors through an automotive metaphor that 

is still used in every basic course in cancer genomics today. Mutations in oncogenes are 

like cars with a stuck accelerator and mutations in tumor suppressors are like cars with a 

dysfunctional brake (Vogelstein and Kinzler, 2004). The concept of passenger in the 

somatic mutation theory was therefore linked to driver when the first PCR-based work 

on hundreds of genes started to be published in the attempt to correct an estimation of 

the mutation rate that was largely wrong. Milestone works in this sense are the ones by 

Greenman in 2006 and 2007, based on the analysis of 518 kinase genes on a cohort of 

210 tumors (Greenman, 2006; Greenman et al., 2007). Mathematical models on somatic 

mutation processes could be applied and polished based on actual genome-wide data, 

taking into account previous modeling about phylogenetic (Goldman and Yang, 1994) 

and codon substitution rates and pathogenic effects (Yang et al., 2003). In the same 
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period, before the rise of the NGS era, another publication by Sjöblom et al. reached 

similar conclusions about the nature of driver and passengers through the analysis of 

~13’000 genes in 11 breast and 11 colorectal cancers (Sjöblom et al., 2006). The works 

of Greenman and Sjöblom were compared in a Nature editorial in 2007 (Haber and 

Settleman, 2007), showing the poor overlap in terms of specific mutations on kinases, 

despite the approaches were in fact very similar to each other. The necessity of a larger 

sample to discern the entire repertoire of driver genes was evident and finally brought on 

by the efforts of the Human Cancer Genome Project, whose main repository, The Cancer 

Genome Atlas (TCGA), is used over the entire Results section.  

2.6 Cancer genomics and human genetics 

The idea of passenger mutations was not completely new 10 years ago. There was already 

huge evidence of what is called hitchhiking in genetics. Some of the variations seen in the 

human genome can increase their allele frequency or go extinct simply by being “close” 

(in genetics vocabulary, in linkage disequilibrium, LD) with alleles under selective 

pressure. The term genetic hitchhiking was coined in 1974 by Mainard Smith and Haigh 

(Smith and Haigh, 1974) and brought back to attention by Gillespie with the pseudo-

hitchhiking model of genetic draft  (Gillespie, 2000). This model made the fortune of the 

Genome-Wide Association Studies (GWAS) era that relies on the possibility to find 

regions of the genome associated with a disease by simply looking at few SNPs all along 

the genome. Under LD model, each SNP can also account for the entire surrounding 

region that is inherited together according to its LD-block. When a SNP is found 

associated with a trait, it is possible to calculate where the real pathogenic variant could 

reside and this SNP will represent a proxy for the unknown pathogenic variant. The need 

of a map of human variation to understand common and rare haplotypes in any kind of 

diseases was of paramount importance and HapMap and 1000 Genome Projects were 

both born, along with the Human Genome Project, to serve this purpose. Again, the 
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same urge of map of human variations was already discussed by Dulbecco 20 years 

earlier when talking about the future of cancer research after viral models for the 

discovery of oncogenes (Dulbecco, 1986):  

‘ If we wish to learn more about cancer we must concentrate on the cellular genome [...] we 

have two options: either to try to discover the genes important in malignancy by a 

piecemeal approach or to sequence the whole genome of a selected animal spieces. [...] In 

which species should this effort be made? If we wish to understand human cancer, it should 

be made in humans because the genetic control on cancer seems to be different in different 

species ‘. 

Research on cancer predisposition had a burst in interest during the early 90s with the 

discovery of BRCA1 and BRCA2 responsible for the early onset of certain breast and 

ovarian cancer. The risk for a carrier has been estimated to be at least 5-fold higher for 

breast cancer by the age of 70 (Chen and Parmigiani, 2007). In 1990, the group of Mary-

Claire King at UC Berkley defined the region of susceptibility as being 17q21 (Hall et al., 

1990) and after a rush lasted four years, BRCA1 was finally cloned by University of 

Utah and Myriad Genetics (Miki et al., 1994). It was believed that after the discovery of 

other highly penetrant (but way more rare) susceptibility genes like PALB2, the 

remaining missing familiarity toward cancer could be only explained by combinations of 

common variants that announced the advent of GWAS. While genome-wide somatic 

studies on cancer were still in preparation around the 2010, when NGS technology was 

taking place, large-scale GWAS studies were conducted on cancer. In particular, the 

Collaborative Oncological Gene-Environment Study (COGS), developed a unified array 

for the study of three major hormone dependent tumor types, breast, ovarian and 

prostate cancer, that encompassed over 200’000 individuals by the beginning of 2013 

(Sakoda et al., 2013). The results of GWAS studies in cancer, despite the huge efforts and 

investments, are still controversial (Check Hayden, 2013; Visscher et al., 2012). 
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2.7 Cancer genomics in the NGS era	

Although similar in principle, there is a substantial difference between passenger 

variants and passenger mutations. While genetic draft is a mechanical phenomenon, 

somatic mutations are way more unpredictable. The probability for a base to be altered 

in a tumor could depend by a plethora of different events, which include genomic 

instability, carcinogens effect, viral infection or simply the downstream effects of other 

driver mutations. So, since Laura Wood and Bert Vogelstein molecular landscapes, one 

of the main tasks of cancer genomics was to distinguish driver from passenger mutations 

and create a catalogue of cancer genes with the final aim of developing personalized 

treatments. The first attempt at a catalogue for cancer DNA similar to what 1000 

Genomes represented for human DNA is COSMIC (Catalogue of Somatic Mutations In 

Cancer), established in 2008 under the Cancer Genome Project (CGP) (Forbes et al., 

2008). In the same year, Timothy Ley and colleagues showed the results of the first whole 

genome sequencing of a leukemia sample (Ley et al., 2008) performed using one of the 

first Next Generation Sequencing (NGS) technology, the Roche 454 pyrosequencing. 

NGS technologies dramatically changed the way cancer genomics was perceived and 

studied, by allowing hundreds of sample data to be aggregated and analyzed at the same 

time and showing how deep the heterogeneity within and between tumors was. 

Furthermore, a complete new set of tools and standards in bioinformatics were 

developed to support this new biological big data era (Li et al., 2009). Other tumor types 

followed: the first breast cancer (Shah et al., 2009), then lung (Pleasance et al., 2010) and 

prostate (Berger et al., 2011), analyzed with the Illumina Genome Analyzer II. This 

technology was routinely used for the second phase of The Cancer Genome Atlas 

(TCGA) to collect mutation data. This consortium, born in 2006, started with the idea of 

characterizing 3 tumor types, glioblastoma multiforme, lung and ovarian cancer. In 
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2009, with the decrease in sequencing cost, a 5-years project started with the aim of 

characterizing 20-25 tumor types. Currently, over 30 tumor types are included. 

This work will take advantage of these data, to further understand both cancer 

predisposition and cancer somatic development and ultimately divide what is driver 

from what is passenger in both germinal and tumor genomes. 

 

3 Material and Methods 

This work represents a collection of bioinformatics methodological approaches to tackle 

the identification of driver forces that lead to cancer risk and tumor formation in the 

DNA. Therefore, an in depth analysis of materials and methods was included in the 

results for each section, as they represents results per se. Nevertheless, there are a few 

common elements at the base of this works, mostly about data format, retrieval, and 

management. 

3.1 Data Format 

Each experimental approach in NGS bioinformatics has its own format for storing and 

analyzing data. While raw formats such as FASTQ and BAM files are common to all 

sequencing technologies, mutations and variants have their own specific representation. 

3.1.1 VCF format 

The Variant Calling Format (https://samtools.github.io/hts-specs/VCFv4.2.pdf) 

represents the first real shift in genome sequences storage from SNP-based arrays 

towards NGS technologies. In fact, it was born from the advent of the 1000 Genomes 

Project (Danecek et al., 2011) as a more appropriate format for large-scale genome 

sequencing compared to NCBI General Feature Format (GFF, 

http://gmod.org/wiki/GFF3), which is oriented to larger regions of the genome and 
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resembles the BED format, or PEDigree files (PED,  https://www.cog-

genomics.org/plink2/formats#ped) that still are the standard for genetics and genotype 

calls. At its core, it is composed by 4 columns, representing chromosome, position, 

reference and alternative allele, plus the genotype call of each sample included in the call. 

The main advantage over the aforementioned formats are: i) its ability to be directly 

connected to the reference genome (via the chromosome-position-reference system), ii) 

its ability to carry variant call measures such as depth of coverage along side with the 

genotype call itself and iii) compared to the PED format, an emphasis on 

variant/mutation (one for each row), that is necessary when working on millions of 

variant/mutation at a time. PED format put the emphasis on the subjects (one for each 

row), in a time where the number of variants mapped could be even less than the 

number of subjects genotyped. This shift from a sample-based to a variant-based format, 

allows an easy annotation of the file, with several optional field such as allele counts and 

ethnicity-wise allele counts introduced by the 1000 Genomes Project itself. 

3.1.2 MAF format 

The Mutation Annotation Format 

(https://wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+(MAF)+Specifi

cation), is a cancer-specific format for somatic mutations developed together with The 

Cancer Genome Atlas (TCGA) to show VCF files in a conveniently annotated version 

that include, by default, features such as gene name, mutation type 

(missense/indel/splice site etc.). The main difference with respect to VCF, is that the 

same mutation is repeated with a new row for every new samples that harbors it. This 

shift from a wide to long format facilitates readability and data manipulation (the 

number of columns does not change by adding new samples) at the cost of increasing file 

size. The number of somatic mutations is generally not too high (on average from 



 19	

thousands to hundreds of thousands), even in whole-genome-sequencing, and file size is 

not an issue compared to a VCF storing germline variants with millions of records. 

3.2 Data Retrieval 

In the last 5 years, several freely available databases of sequencing data were released to 

the public. These resources represent an unprecedented opportunity for  analyzing DNA 

sequencing data with thousands of patients with mutations and variants at exome and 

genome scale. The main resources used in the three works presented here are: TCGA, 

ICGC, cBioPortal, COSMIC/CGC and ExAC. 

3.2.1 TCGA 

The Cancer Genome Atlas (TCGA) is an international consortium based in the United 

States born in 2006 from the collaboration between the National Cancer Institute (NCI) 

and the National Human Genome Research Institute (NHGRI). It represents an 

unprecedented effort to integrate RNA, mRNA, DNA, copynumber and epigenomic data 

from thousands of patients in ~30 cancer types. Data from this resource were used in all 

the three chapters of the results. In general, somatic mutation calls are freely available in 

MAF format that is extremely convenient for the high level analysis of the first two 

chapters of the results. The third section of the results instead, made use of raw bam file 

from 673 breast cancer germline samples that were analyzed from scratch. 

3.2.2 ICGC 

The International Cancer Genome Consortium (ICGC) was born in 2008 to coordinate 

worldwide cancer sequencing projects of over 50 cancer types. Its main datacenter and 

secretariat is based in Toronto, Canada. In recent years, it also absorbed large part of the 

TCGA database and the format used for mutation is very similar to the MAF format 

used by TCGA. Data from this consortium were used throughout all the presented 

works.  
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3.2.3 cBioPortal 

The cBioPortal for Cancer Genomics is an aggregation datacenter and analysis web-tool 

for cancer genomic analysis that gathers studies from 146 projects in over 50 tumor types 

at the time this work was written (Cerami et al., 2012). It includes almost every data from 

ICGC and TCGA plus other smaller studies. It represents one of most complete resource 

for exploratory analysis on cancer data and ships an R package called cgdsr for the fast 

retrieval of gene specific and clinical information. This package was wrapped and used 

inside our LowMACA R package to analyze pattern of mutations and is presented in the 

second section of the results of this work. 

3.2.4 COSMIC and CGC 

The Catalogue Of Somatic Mutation In Cancer (COSMIC) is a database created at the 

Wellcome Trust Sanger Institute in 2004 as an actual collection of somatic mutation in 

cancer that gather information from both sequencing and array based data to draw a 

map of the known somatic alterations of thousands of cancer samples (Forbes et al., 

2008, 2011). From this database, the Cancer Gene Census (CGC) was created as a source 

of the established cancer genes both at predisposition and somatic driver level (Futreal et 

al., 2004). Both COSMIC and CGC were used in all the sections of the results as an 

annotation and reference set of established somatic mutation and driver genes for 

various comparisons. 

3.2.5 ExAC 

The Exome Aggregation Consortium (ExAC) is one of the largest databases of human 

variants that is currently freely available. It is a collection of 60’706 unrelated individuals 

from 15 different studies with exome sequencing data from their germline DNA. The 

database also includes data from germline of TCGA patients that represents over the 

10% of the participants of the ExAC. These data were used in the third section of the 
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results as a control sets against breast cancer patients, after the removal of all cancer 

samples and samples not from European origin. In total, we used over 20’000 control 

individuals to characterize possible cancer predisposing variants (see section 4.3).  

3.3 Data Processing and Manipulation 

Mutations and variants acquired a common representation with the advent of NGS. 

While the formats reached a sort of standardization over the last years, methodologies to 

obtain such data did not. In particular, mutation call is one of the most controversial 

points in cancer genomics, with many different algorithms developed and results that 

hardly agree with each other, both at somatic and germline level (Alioto et al., 2015; 

Bodini et al., 2014; Hwang et al., 2015). While sections 1 and 2 of the results make use of 

precomputed mutations from ICGC and TCGA, with pipelines standardized at least for 

each tumor type, in the third section we had to developed the entire pipeline of 

preprocess by ourselves. Among the many available, we chose the Genomic Analysis 

Tool Kit (GATK) to preprocess our data from alignment to variant call (DePristo et al., 

2011; McKenna et al., 2010; Van der Auwera et al., 2013). In particular, a typical variant 

call pipeline is composed as such: 

1. FASTQ filter for bad quality reads 

2. Alignment using BWA (Li and Durbin, 2009) 

3. Picard markduplicates (http://broadinstitute.github.io/picard) 

4. Indel Local realignment (GATK) 

5. Estimate systematic error and base quality (GATK) 

6. HaplotypeCaller for variant calling (GATK) 

7. Combine multiple VCF and GenotypeGVCF (GATK) 

8. Variant Quality Score Recalibration for both SNPs and InDels (GATK) 

At this point we obtain the final VCF that includes all the samples. Further preprocess 

includes: i) Split multiallelic sites (Tan et al., 2015) ii) Annotate using ANNOVAR 
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(Wang et al., 2010) iii) Adjust ANNOVAR output to obtain a MAF-like format. Heavy 

formatting of variants were carried on using vcftools/bcftools (Danecek et al., 2011) and 

vt (Tan et al., 2015), while all data munching and statistics made use of R and data.table 

package for speed up (https://cran.r-project.org/web/packages/data.table). 

This brief summary gives an idea of the tools that can be used when parsing and analyze 

mutation data, but for a detailed explanation of the methodological set of each section, 

refer to the specific Materials and Methods paragraph in 4.1.4, 4.2.3, 4.3.3. 

4 Results 

4.1 DOTS-Finder: a comprehensive tool to assessing driver genes in 

cancer genomes 

This section is adapted from (Melloni et al., 2014) and it represents an attempt to create 

a comprehensive method for the identification of somatic driver genes. Following the 

seminal work from (Vogelstein et al., 2013), we developed a tool capable of detecting 

driver genes and separate them in the two main classes of driver genes, tumor 

suppressors and oncogenes, characterized by distinct patterns of mutation distribution. 

4.1.1 Abstract 

A key challenge in the analysis of cancer genomes is the identification of driver genes 

from the vast number of mutations present in a cohort of patients. DOTS-Finder is a 

new tool that allows the detection of driver genes through the sequential application of 

functional and frequentist approaches, and is specifically tailored to the analysis of few 

tumor samples. We have identified driver genes in the genomic data of 34 tumor types 

derived from existing exploratory projects such as The Cancer Genome Atlas and from 

studies investigating the usefulness of genomic information in the clinical settings. 

DOTS-Finder is available at https://cgsb.genomics.iit.it/wiki/projects/DOTS-Finder/. 
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4.1.2 Introduction 

In the last few years, there has been an enormous increase in the amount of data 

regarding somatic mutations in various cancer types, thanks to technological 

advancements and reduction of sequencing costs. The massive sequencing of several 

cancer genomes has led to the identification of thousands of mutated genes. However, 

only a minority of the identified mutations has a true impact on the fitness of the cancer 

cells, in terms of conferring a selective growth advantage and leading to clonal expansion 

(drivers), while the others are simply passengers, namely, mutations that occur by genetic 

hitchhiking in an unstable environment and have no role in tumor progression. 

Several statistical strategies have been developed to properly identify driver mutations 

and driver genes. These strategies can be roughly classified in four main categories: 

‘protein function’, ‘frequentist’, ‘pathway-oriented’ and ‘pattern-based’ approaches. The 

‘protein function’ approaches are based on the prediction of the functional impact of a 

specific mutation in the coding sequence of a protein (Reva et al., 2011; Shihab et al., 

2013b; Sim et al., 2012). Although they do not permit the identification of driver genes, 

they can predict the effect of the mutation on the protein product. The ‘frequentist’ 

approaches evaluate the frequency of mutations in a gene compared with the 

background mutation-rate (Dees et al., 2012; Lawrence et al., 2013; Wood et al., 2007). 

The ‘pathway-oriented’ approaches are based on the analysis of the co-occurrence of 

mutations in a pathway-centered view (Bashashati et al., 2012; Ciriello et al., 2012; 

Leiserson et al., 2013; Vandin et al., 2012) and are usually focused on searching for driver 

genes belonging to the most significant mutated pathways. Lastly, the ‘pattern-based’ 

approaches identify driver genes by assessing the type of mutations (e.g. 

missense/truncating/silent) and their relative position on an amino acid map across 

many cancer samples (Davoli et al., 2013; Tamborero et al., 2013a; Tian, 2011; Vogelstein 

et al., 2013). They exploit the known structural properties of mutations in tumor 
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suppressor genes (TSG) and oncogenes (OG). Nevertheless, the identification of driver 

mutations in cancer remains a major challenge in computational biology and cancer 

genomics. Indeed, discovering driver mutations is one of the main goals of genome re-

sequencing efforts, as the knowledge generated by exome-sequencing will translate from 

research to the clinic. The results of some of the cited tools are summarized in a recent 

database called DriverDB (Cheng et al., 2014) and also aggregated in one of the Pan 

Cancer analysis publications (Tamborero et al., 2013b). From their comparison, it is 

clear that all these approaches are complementary and only the integration of many of 

these strategies can improve the identification of driver genes. 

Here, we present an innovative tool called DOTS-Finder (Driver Oncogene and Tumor 

Suppressor Finder) that integrates a novel pattern-based method with a protein function 

approach (functional step) and a frequentist method (frequentist step) to identify driver 

genes. In addition, it allows the classification of driver genes in TSGs or OGs. The 

software is freely available and has been designed to return robust results even with few 

tumor samples. 
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4.1.3 Implementation 

4.1.3.1 Overview of DOTS-Finder 

 

Figure 1 DOTS-Finder workflow. Illustration of the three main steps and the databases used to identify 
driver genes. Starting from the top left, a MAF file is taken as input. This file can encompass patients with 
any particular kind of tumor or any stratification of homogeneous samples under specific criteria (e.g. 
smoker patients with lung cancer, patients <50 years of age, etc.). The workflow includes the following 
three steps (green arrows): 1) Preliminary step: the dataset is filtered, reannotated and aggregated by gene 
(from top-left to bottom-left); 2) Functional step: TumorSuppressorGene – Score (TSG-S) and OncoGene 
– Score (OG-S) are calculated (from bottom-left to bottom-right) 3) Frequentist step: four statistical tests 
are run on genes that exceed the TSG-S and OG-S threshold (from bottom-right to top-right). The center 
panel (Data Integration) lists the external sources used by DOTS-Finder. 
 

The DOTS-finder pipeline is illustrated in Figure 1. Our method can be applied to genes 

that are targeted by single nucleotide variants (SNVs) and small insertions and/or 

deletions (InDels). Given a set of mutations in an exome/genome sequence dataset, the 

output is a ranked list of genes that prioritizes the best candidate driver genes and 

classifies them as TSGs or OGs. The user can submit an input Mutation Annotation 

Format (MAF) file for a set of patients that can be grouped by different criteria. In the 

Preliminary step, the MAF file is reannotated and several descriptive statistics are 
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calculated. This produces a gene-based table with aggregated mutational measures. The 

next two main steps, a functional assessing procedure and a statistical confirming 

procedure, constitute the core of DOTS-Finder. In the former, putative candidate OGs 

and TSGs are identified by calculating a Tumor Suppressor Gene Score (TSG-S) and an 

OncoGene Score (OG-S), based on the type and location of the mutations occurring in 

each gene. These scores are inspired by the concepts expressed in a recent study by 

Vogelstein et al. (Vogelstein et al., 2013). The TSG-S is based on the ratio between 

truncating (i.e. inactivating) mutations and total number of mutations found in each 

gene, under the null hypothesis that this value is equal to the average truncating/total 

ratio of patients’ exomes. The OG-S is based on the entropy of the pattern of missense 

SNVs and inframe insertions/deletions calculated using a Gaussian density model on the 

protein product. In the latter step, the statistical confirming procedure, the two lists of 

possible OGs and TSGs undergo four tests to assess whether the mutational pattern in 

each gene shows a statistically-defined evidence of positive selection based on the 

mutation rate and the number of non-silent mutations, calculating their statistical 

probability of being true driver mutations. After correction for false discovery rate, all 

the genes with a q-value<0.1 are identified as candidate driver OGs or TSGs. The user is 

free to modify this threshold.  

DOTS-Finder is a comprehensive method that considers three main aspects of a mutated 

gene: it takes into consideration where the mutations are collectively found (pattern-

based approach), what is the effect of mutations on protein products (protein-change 

approach), and what is the frequency of these mutations in the sample (frequentist 

approach). Our method is able to overcome many of the problems derived from the 

application of each individual approach. First of all, the prediction ability of frequentist 

approaches such as MutSigCV (Lawrence et al., 2013) relies on the estimation of the so-

called background mutation rate (BMR). Nevertheless, a precise map of the BMR in the 
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whole genome is still unavailable and constitutes one of the unresolved challenges of 

cancer genomics. A plethora of genomic events, such as transcription and replication 

timing, are associated with the fact that part of the genome is more prone or less prone 

to mutation. In particular, experimental data of these two events showed a significant 

correlation with the probability of a mutational event (Lawrence et al., 2013). However, 

while these experiments should be context specific (tissue/patient specific), data on 

replication timing are hard to obtain for every patient and/or tissue. Finally, pure 

frequentist methods do not allow any classification of the type of aberrations in terms of 

gain or loss of function. A pattern-based approach can bypass the problem of achieving a 

correct BMR estimation by focusing on the position of the observed mutations and not 

on their frequency. Thus, the frequency simply becomes a statistical power boost and not 

the point of investigation. Vogelstein et al. (Vogelstein et al., 2013) provide a scheme to 

assess whether a gene can be considered an OG or a TSG, but a large amount of data are 

needed in order to evaluate rarely mutated genes. The Authors’ approach, as well as the 

method developed in TUSON Explorer (Davoli et al., 2013) have been used to 

collectively evaluate general cancer genes across tumor types, however, when applied to 

single tumor type, they were found to lack the statistical power to recapitulate the overall 

results. In particular, with these methods, the discrete calculation of an OG test requires 

many mutations in the exact same hotspots to reach statistical significance. On the 

contrary, our approach, which takes into consideration the proximity of mutations by 

using the Gaussian smoothing, is able to identify also small deviations from a uniform 

distribution. 

The main problem in assessing the value of our method is the absence of a gold standard 

in the identification of driver genes and the lack of benchmark studies. Indeed, the 

objects of our investigation are the driver genes of the different cancer types, which are 

still mostly unknown. However, to have an estimate of the prediction ability of DOTS-
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Finder, we decided to compare the aggregated predictions for 12 cancer types with the 

results of a well-documented global analysis from the Pan-Cancer 12 (Tamborero et al., 

2013b) (see section 4.1.5.10). In this analysis, the Authors combined the outputs of 

several approaches and we were able to compare our tool with the single output from 

MutSig, MuSiC, ActiveDriver (Reimand et al., 2013), OncodriveFM (Gonzalez-Perez 

and Lopez-Bigas, 2012) and OncodriveClust (Tamborero et al., 2013a). We also related 

the predictions of each method with the Cancer Gene Census (CGC) database (Futreal et 

al., 2004), a manually curated collection of driver genes. Notably, DOTS-Finder emerged 

as the best available tool because of its sensitivity to find both known and new candidate 

driver genes. 

Moreover, we have applied DOTS-finder to 34 tumor types and compared its output 

with the results of other approaches. Our approach shows results which are consistent 

with the literature for both high and low mutation rate cancers; DOTS-finder allows 

detection of new plausible driver candidates while excluding highly mutated genes not 

associated with cancer, the so-called “fishy genes”, such as the Mucins, Titin and most of 

the olfactory receptors.  

DOTS-Finder requires minimal input files, it is easy to use, and does not necessitate any 

programming skill or statistical knowledge. Indeed, we created a tool accessible to 

researchers in a wide range of fields. Compared with popular tools like MuSiC (Dees et 

al., 2012) and MutSigCV (Lawrence et al., 2013), we only require the availability of easily 

accessible MAF files. The users do not need to have bam files as in MuSiC, which are not 

publicly available or easily accessible. In addition, the users do not necessitate any 

proprietary software, as the source code is written in Python and contains some 

embedded R codes, which are two freely available languages. Since DOTS-Finder is 

released under the GNU GPLv3+ license, users are also free to modify the code and 

implement new features.  
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DOTS-Finder is an easy solution for investigating genomic information from existing 

exploratory projects like The Cancer Genome Atlas (TCGA), but it is especially useful to 

identify reliable driver candidates in small studies assessing the value of genomic 

information for clinical purposes, such as understanding and predicting chemoresistance 

or metastatic spread. Indeed, we performed a saturation analysis on the mutational data 

present in 238 bladder cancer patients using 9 subsampling fractions, and, as shown in 

section 4.1.5.11, DOTS-Finder can perform statistically better than our best competitor, 

MutSigCV Version 1.4, in terms of number of drivers found and precision-recall balance 

in small sample datasets. Our tool could recapitulate up to 40% of the results of the 

entire dataset with just 5%  (i.e. 12 patients) of the dataset. Thus, it can be used in the 

clinical research setting to help identifying driver genes that can assist patient 

stratification for prognosis and choice of treatment. We envisage that DOTS-Finder 

might facilitate the identification of candidate targets, which could be used to develop 

diagnostic, prognostic or therapeutic strategies, even in situations where the available 

data are scarce (e.g. rare tumors). 
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4.1.3.2 The Functional Step: finding tumor suppressor gene and oncogene 

candidates 

On the basis of previous proposals (Tian, 2011; Vogelstein et al., 2013), we developed 

scores to assess if a gene in a given tumor could be considered either a TSG or an OG 

candidate. A TSG is characterized by loss of function mutations. Typically, these 

mutations are truncating and tend to destroy the protein product or make it non-

functional. Frame shift mutations, SNVs creating a stop codon, non-synonymous 

mutations on the stop codon, translations in the start site, and splice site mutations are 

all considered of the truncating type. Ultimately, a TSG is characterized by truncating 

mutations in a non-specific pattern (Figure 1, Panel A).  

 

Figure 2 Mutational patterns of typical tumor suppressor genes and oncogenes. (A) Mutations of APC 
in Colorectal Cancer. This is the mutational landscape of a typical TSG with diffuse truncating mutations 
(in red) and a non-specific pattern of missense mutations (blue density plots). Truncating mutations cover 
85% of all the non-synonymous mutations on APC. (B) Mutations of KRAS in Colorectal Cancer. This is 
the mutational landscape of a typical oncogene with significant clusters of mutations, which are present in 
specific hot spots of the protein ideogram (blue density plots). In particular, KRAS tends to mutate on 
amino acids 12 and 13 (119/143 mutations). The total numbers of truncating sites and missense mutations 
are indicated in the panels. The mutations are mapped on the corresponding canonical protein ideogram, 
therefore, not all the mutations can be represented (e.g. splice sites mutations are not included in the 
figure). 
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An OG, on the other hand, is characterized by gain or switch of function mutations that 

confer new properties on the protein product or simply enhance the existing ones. 

Hence, the typical mutations affecting an OG are missense mutations on key amino acids 

or on specific domains. We consider a “missense type” mutation all the non-synonymous 

SNVs that do not create a stop codon and occur outside start codons or stop codons, and 

all the insertions and deletions not altering the reading frame (Inframe InDels). These 

mutations have a particular pattern, as they are generally clustered in one or more 

regions along the protein (Figure 2, Panel B). For example, in leukemias, IDH1 can bear 

different kind of mutations, but almost always at amino acid position 132 (Figure 3). 

 

Figure 3 Density plot of genes tested for oncogenetic characteristic. Three known highly mutated genes 
are presented showing data from COSMIC. TTN is a notorious “giant gene” that is often found mutated 
because of its length. It does not show any particular clusterization around hotspots and the information 
entropy of its mutations is therefore very high. PIK3CA and IDH1 retains visible clusters of mutations; 
three hotspots for the first one (entropy=6.433) and one unique hotspot on amino acid 132 for the second 
one (entropy=2.453) 
 
The Tumor Suppressor Gene Score (TSG-S) evaluates whether a gene harbors an 

elevated number of truncating mutations compared with the total number of mutations 

present on that gene. Given 64 codons in the DNA and 9 possible SNVs per codon (3 

nucleic acids × 3 possible changes) we have a total of 576 possible base changes. Only 23 

of them can be considered truncating (~ 3.9% of all the SNVs, weighted for the actual 

human codon usage) against the 415 non-synonymous single base changes that lead to 

missense variations and 138 silent mutations. If we take into account all the InDels that 
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corrupt the reading frame of a gene, we can estimate, based on our sample data, that the 

ratio between truncating mutations and total number of mutations in cancer is 

approximately around 14%, with a standard deviation of 4. This percentage ranges from 

a minimum of 9% in glioblastoma (GBM) to a maximum of 25% in pancreatic 

adenocarcinoma (PAAD), with high intra-tumor variability among patients. This 

discrepancy indicates that some tumors are more prone than others to acquire and 

maintain truncating mutations (Figure 4). 

 

Figure 4 Distribution of mutations per type across cancer types. In this figure we calculated the average 
percentage of truncating, missense and silent mutations in the patients of 16 different cancer types from 
TCGA data. These percentages can vary considerably across tumor types but we can assess that on average, 
14% of the mutations can be considered truncating, 21% silent and the vast majority, 65%, are missense. 
 

The TSG-S is calculated using a binomial distribution under the null hypothesis that the 

ratio between truncating mutations and total number of mutations found in each gene is 

equal to the average truncating/total ratio in patients’ exomes (Figure 5).  
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Figure 5 Calculation of TSG-Score. The TSG-S is calculated using the ratio between the number of 
truncating mutations and total mutations found in the gene. In the example, 3 mutations are truncating 
over a total of 6. This ratio is compared to the average ratio of truncating over total in the affected patients. 
 

The calculation of this score is set in the specific cancer-patient environment where the 

gene is found mutated, following the idea that a truncating mutation in a sample with 

few other alterations weights more than a mutation in a hypermutated sample. 

The OncoGene Score (OG-S) indicates whether a gene harbors an elevated number of 

missense mutations in certain regions of the gene. The Score is based on the Shannon’s 

entropy of the pattern of missense SNVs and inframe insertions/deletions, calculated 

using a Gaussian density model on the protein product. Every mutation is weighted for 

the actual Functional Impact provided by Mutation Assessor (a ‘protein function’ 

method) (Reva et al., 2011)  and compared with a random model estimated by a 

bootstrapping procedure. The score is able to catch the clusterization of mutations 

around significant hot spots in a gene.  

We set a threshold for the two scores based on the analysis of the Catalogue Of Somatic 

Mutations In Cancer (COSMIC) (Forbes et al., 2008), using as positive control the CGC 

genes that encompass somatic point mutations. To evaluate the quality of our scores 

with regard to the classification in driver and non-driver, and avoid making assumptions 

on the behavior of driver genes, we adopted two strategies. First, we did not consider any 

a priori set of true non-driver genes (negative control) and, second, we did not divide the 

Cancer Gene Census in OGs and TSGs. As mentioned before, the OG-S and TSG-S 

work on different levels and different mutation types, so we do not exclude the 
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possibility that the same gene might show oncogenic and tumor suppressor features at 

the same time in different tumors, or even in the same cohort of patients (see Atypical 

tumor suppressor genes and oncogenes section). 

Since the mutated genes reported in COSMIC are more than 18000, the known drivers 

in CGC accounts for less than 1% of all the mutated genes. These numbers indicate that 

the two classes are extremely unbalanced, and that a common “Receiving Operator 

Characteristic” analysis is not appropriate to address the goodness of our scores. We 

therefore calculated the Matthews correlation coefficient curves (MCC) for the two 

scores and maximize their values to obtain our thresholds (Figure 6). 

 

Figure 6 Matthews Phi correlation for the OG-Score and the TSG-Score. The plot shows the trend of the 
Matthews phi correlation for every possible cutoff of the classification of genes as oncogenes candidate or 
tumor suppressors. The OG-S and TSG-S are calculated on the COSMIC database v66 using as positive 
control the genes of Cancer Gene Census. The chosen cutoffs are the ones in which the two functions are 
maximized. 
 

Compared to other common measures like accuracy, the MCC is much more 

informative for strongly unbalanced classes (Baldi et al., 2000). Our thresholds were also 

rescaled for every tumor type in order to take into account the setting-specific mutation 

rate and the number of samples at our disposal. 

Tumor Suppressor Gene Score Matthews Phi Curve

− log10(p−value) Cutoffs

Ph
i c

or
re

la
tio

n 
co

ef
fic

ie
nt

0 50 100 150 200 250

0.
0

0.
1

0.
2

0.
3

0.
4

OncoGene Score Matthews Phi Curve

- Entropy Z-Score Cutoffs

Ph
i c

or
re

la
tio

n 
co

ef
fic

ie
nt

−500 0 500 1000

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Cancer Gene Census no translocations (173 genes)Cancer Gene Census no translocations (173 genes)



 35	

4.1.3.3 The Frequentist step: assessing the possible drivers 

The genes that exceed at least one of the thresholds of the two scores, are classified as 

OGs or TSGs and four tests are then performed to assess if the mutational pattern in 

each gene shows a statistically defined “driver behavior”. This analysis is complex, as it 

requires the proper estimation of the BMR, which is specific for each gene in each tumor 

type and patient. Indeed, we foresee at least seven sources of background mutation-rate 

heterogeneity: i) the specific mutation-rate of each tumor type; ii) the specific number of 

mutations in each patient; iii) the GC-content, as most of the mutations found in cancer 

are point mutations occurring in GC spots; iv) the gene size; v) the gene-specific SNP 

frequency; vi) the replication time; vii) the levels of gene expression. However, there 

might be other unknown parameters that could also influence the background mutations 

rate of a gene. Our method does not need to take into consideration either replication 

timing or gene expression levels, since they both require a great amount of new 

experimental data. 

Briefly, the four tests used by DOTS-Finder are: 1) Higher Frequency Test. The rate of 

non-synonymous mutations per Mb in a gene is compared with the rate of mutations in 

the patients carrying mutations in that gene. 2) Non-synonymous versus Synonymous 

Ratio Test. Given the total number of mutations found in a specific gene, this test 

assesses whether the number of non-synonymous mutations is higher than the expected 

number of non-synonymous mutations. The expected value is calculated on the 

probabilistic ratio obtained by randomly placing the same number and type of mutations 

on the specific codon usage structure of the gene. 3) Tumor-specificity Test. This test 

prioritizes the driver genes in the different tumors, although it is not fundamental for the 

driver assessment. The frequency of non-synonymous mutations in the samples is 

compared with the frequency found in the COSMIC database across tumor types. The 

test verifies whether the frequency of non-synonymous mutations in a particular tumor 
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or situation is higher than the general frequency found in COSMIC. The idea is that 

some mutations are tissue-specific and might be driver only in certain kind of cancers. 

For example, NPM1 is a clear driver gene specific for leukemias; similarly, VHL is 

specific for renal cancer. 4) Functional Impact Test. This test is used to verify whether 

the functional impact score of the gene mutations, calculated by Mutation Assessor, is 

higher than the average score in the patients affected by a mutation in that gene. The 

four p-values obtained from these tests are combined using the Stouffer’s method with 

specific weights, in order to take into account both the dependencies between tests and 

their relative importance in the driver definition (see section 4.1.4.6). The resulting p-

value is then adjusted to correct for false discovery rate. 

4.1.4 Material and Methods 

4.1.4.1 Availability 

DOTS-Finder can be downloaded at http://cgsb.genomics.iit.it/wiki/projects/DOTS-

Finder under GNU GPLv3+. Full explanation on how to install DOTS-Finder, how to 

use it and how to interpret the results can be found at 

http://cgsb.genomics.iit.it/wiki/projects/DOTS-Finder/Documentation.   

4.1.4.2 Input Format 

DOTS-Finder accepts the following input formats: 

1. MAF format version 2.3 (10 May 2012) and 2.4 (6 March 2013). The 

program is also a complete MAF format validator in case of submission to the 

TCGA. The MAF file specifications can be found at 

https://wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+(MAF)+

Specification. 

2. MARF format. The Mutation Annotation Reduced Format is a short 

version of the MAF format with just 13 columns instead of the canonical 34. 
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3. Annovar CSV (Wang et al., 2010). This is one of the most common 

annotator for exome/genome sequencing data; it is not directly supported, but we 

provide a simple step-by-step conversion method to MARF format.  

4.1.4.3 Requirements 

DOTS-Finder runs on MacOS and Unix based machines. The code is written in Python 

and contains embedded R codes. DOTS-Finder uses embedded version of bedtools and 

liftOver, thus it cannot be available for Windows users. In order to work properly, these 

freely available languages must be already installed with their libraries and packages: 

• Python 2.7 

• R >= 2.0.0 

• CRAN package 'multicore' 

4.1.4.4 Mutation data 

We analyzed data from TCGA and COSMIC for a total of 8187 samples. The full 

database is the one used by TUSON Explorer (Davoli et al., 2013), available at 

http://elledgelab.med.harvard.edu/wp-

content/uploads/2013/11/Mutation_Dataset.txt.zip. We removed from the 

Central_Nervous_System_NS dataset the patients not coming from the 

oligodendroglioma cancer type and integrated the original datasets used by TUSON 

Explorer with data from samples of diffuse large B-cell lymphoma (DLBCL) (Lohr et al., 

2012) and chronic lymphocytic leukemia (CLL) (Wang et al., 2011). We also collect 

additional data from (Lawrence et al., 2014), available at www.tumorportal.org, 

including samples from other cancer types: multiple myeloma (MM) (Chapman et al., 

2011), rhabdoid tumor (RHAB) (Lee et al., 2012) and carcinoid (CARC) (Francis et al., 

2013). 
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4.1.4.5 Databases 

The method is guided in all the different passages by sources of information on proteins 

and genes derived from several public databases. The exon length of the gene is 

calculated using the RefGene hg19 UCSC table (Pruitt et al., 2009) as the minimum 

number of exons (in base pairs) required to encompass all the possible annotated 

transcripts for that gene. In case a gene of interest is not annotated on RefGene, the 

length is set to the average value (3192 bp). The raw frequency of mutation per gene is 

derived from COSMIC v66 (Forbes et al., 2011) and calculated among all the samples 

stored in the database across any tumor types (947213 samples). The number of amino 

acids is derived from the UniProt database (Consortium, 2013) while the domains 

structure is taken from the “superfamilies” found on the NCBI Conserved Domain 

Database (Benson et al., 2013). The Functional Impact Score used for the OG-S 

(OncoGene Score) is taken from the Mutation Assessor database (Reva et al., 2011). 

A Single Nucleotide Variation (SNV) can result into two different effects on the codon 

that will be transcribed: it can either change the amino acids (non-synonymous 

mutation) or mantain the same amino acid exploiting the redundancy of codons over 

amino acids (synonymous mutations). For every single base change (C>G, A>T etc.), we 

can derive how many changes lead to a non-synonymous variation or to a synonymous 

variation for every possible codon (Figure 7). 
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Figure 7 Effect of A>C transition on some codons. At top left corner, AAA codes for lysine and retains 3 
spots of possible A>C mutations. All these A>C transitions lead to a change in the codified amino acids 
and are therefore non-synonymous mutations. ACA codes for threonine and is composed by 2 adenines. A 
change in the first A, lead to CCA, a proline (non-synonymous), while last A brings ACA to ACC that is 
still a threonine and therefore a synonymous SNV. According to the entire map of possible changes (A>T, 
T>A, C>G, etc.), weighted by gene specific codon usage, we can derive a comprehensive landscape of 
effects 
 

We took the human codon usage from the NCBI GenBank (Benson et al., 2013) via the 

Kazusa website ftp://ftp.kazusa.or.jp/pub/codon/current/species/9606 to derive what we 

have called the 79 rule: in a random mutation process on human genome, where all the 

types of transitions and transversions have the same probability to appear, given n 

random mutations on a human genome, 79% of them will be non-synonymous. 

lim!→!  
n!"!!!"#$#"%$&!

n = 0.79 

or, in other words: 

n!"!!!"#$#"%$&!
n!"#$#"%$&!

~3.78 

The number of non-synonymous mutations will be ~ 3.78 times higher than the number 

of synonymous mutations. 
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Table 1 Predicted non-synonymous mutations over total mutations divided by SNV type. Read by row, 
this table describes the effect of SNVs on the non-synonymous over total mutations ratio using the 
number of non-synonymous and synonymous changes per codon as described in Figure 7. This table 
refers to the effect of random mutations on an entire reference exome. It can be seen as a way to describe 
the dangerousness of a specific base change. For example, a C>T transition only leads to a non-
synonymous SNV in 59% of the cases while a G>T transversion in 85% of the cases. 
 

The 79 rule derives from the average value of the weighted effects of all base substitutions 

(Table 1). For example, if we want to calculate the effect of the transversion A>C on the 

non-synonymous/total ratio (NSY/total!!!), we will have 

NSY/total!!! =
nsy!!!  × W

(nsy!!! + sy!!!) ×  W
 

where nsy!!!  is the ordered non-synonymous variations vector (64x1) that a 

transversion A>C can cause, weighted for the human codon usage vector  W divided by 

the total amount of A>C transversions that can be found on the 64 codons (nsy!!! +

sy!!! =  total!!!  ) weighted for the same codon usage. 

If we apply the same calculation to tumor sample datasets, like those provided by the 

TCGA, the results are surprisingly coherent with this simple probabilistic rule. The 

average ratio between non-synonymous and total mutations across patients for every 

tumor type spans between 0.74 and 0.81, suggesting that the mutational process is almost 

always random and therefore the large majority of mutations are passengers (Figure 8). 
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Figure 8 Non-synonymous mutations over total mutations distributions: the “79 rule”. The 79 rule (see 
Additional File 1: Text S2.e) states that under the hypothesis of a random mutational process, the 79% of 
the SNVs lead to non–synonymous variations. If we look at the real data, this random process is still valid 
on average, giving another confirmation that the majority of mutations are passengers and are not under 
selective pressure 
 

Each mRNA is composed by a distinctive percentage of codons that can vary 

significantly depending on the gene and can be completely different from the entire 

human codon usage. In addition, not all the types of SNVs have the same probability to 

be found. Transitions tends to happen more frequently and are generally less damaging 

compared to transversions (e.g. 2 out of 3 SNPs are transitions (Collins and Jukes, 

1994)).  

Moreover, the relative number of transitions and transversions in a sample are tumor 

dependent (Rubin and Green, 2009). For example, C>T transitions caused by misrepair 

of ultraviolet-induced covalent bonds between adjacent pyrimidines are frequent in 

melanoma, whereas C>A transversions caused by exposition to polycyclic aromatic 

hydrocarbons in tobacco smoke, characterize lung cancer (Lawrence et al., 2013). We 

therefore generalized the above formula for every gene-SNV couple:  
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NSY/total!!!
! =

nsy!!! × w!

(nsy!!! + sy!!!) ×  w!
 

where i > 𝑗  represents the SNV i to j with i, j ∈ (A,C,G,T) and i ≠ j , while w!  is the 

codon usage of the gene g. 

4.1.4.6 DOTS-Finder step by step  

Two main steps follow a preliminary analysis in DOTS-Finder: a functional assessment 

procedure and a statistical confirmation procedure. In the former, we identify a 

particular mutational pattern behavior that can be classified as “Oncogene”, “Tumor 

Suppressor” or sometimes both. In the latter the two lists of possible oncogenes and 

tumor suppressors undergo 4 tests to assess their statistical probability of being true 

driver mutations. 

1. Preliminary Step 

o Reannotation 

o Filtering 

o Descriptive Statistics 

2. Functional Step 

o OG-Score 

o TSG-Score 

3. Frequentist Step 

3.1 Test 1: Higher Frequency Test 

3.2 Test 2: Non-synonymous versus Synonymous Ratio Test 

3.3 Test 3: Tumor-specificity Test 

3.4 Test 4: Functional Impact Test 

1. Preliminary Step 

Before entering in the main DOTS-finder procedure, the MAF file is reannotated 

according to the refGene database and a few measures such as CG content, gene length, 
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number of amino acids and superfamily domains composition are added. This step is 

necessary to let every database coherently communicate to the others via the same 

annotation. 

The tool automatically cuts the non-protein coding genes based on HUGO gene name 

database (19094 genes) (Gray et al., 2013) and discards all the mutations in non-coding 

regions like RNA mutations, intergenic mutations (IGR) and intron mutations (Intron). 

The user can change this setting via command options. 

2. Functional Step 

To calculate the OG-S we need the genomic coordinates of the missense mutations and 

the functional impact of the mutations according to Mutation Assessor. We associate the 

respective functional impact to every SNV and we assign to the Inframe InDels the 

average functional impact for that position (no score is provided for InDels in the 

database). The mutations are then mapped on the gene length and weighted by their 

impact. The discrete distribution of the mutations is smoothed with a Gaussian kernel 

estimation using a bandwidth that follows the Silverman’s rule of thumb (Silverman, 

1986). Thus, mutations that map close in the protein sequence increase the probability 

density function (PDF), creating a mutational hotspot with a higher density than the 

sum of the single-base discrete probabilities. The probability that the mutational profile 

has not arisen from non-selected passenger mutations is given by the comparison of the 

Shannon entropy index built on experimental data with the one built on uniform 

random profiles. We define the OG-S as the information entropy calculated on 

experimental data (X!
! ) compared with a bootstrapped uniform random distribution 

with the same numerosity (U!
! ) divided by the bootstrap interquartile range (bootIQR): 

OGS! =
H(X!

! )− BootMedian(H(U!
! ))

BootIQR(H(U!
! ))
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where H(X!
! ) is the sample entropy calculated on gene 𝑔 with 𝑚 missense mutations 

and H(U!
! ) is the entropy of a uniform random sample of size 𝑚 on gene 𝑔. The OG-S is 

therefore a modified Z-score, used to obtain robust bootstrap results even with small 𝑚. 

The TSG-S reveals the characteristics of the driver genes that have diffuse truncating 

mutations in a non-specific pattern. To detect this particular pattern a large portion of all 

the mutations found on the gene must be truncating. The TSG-S is calculated as the 

−log!"(p− value)  of a one-tail binomial test (H!:p >  p! ) where the number of 

successes t! is the number of truncating mutations on gene g and the number of trials n! 

is the total number of mutations found on the gene. This ratio (p = !!
!!

) is compared with 

a p! calculated as: 

 p! = mean(
T!
!

N!
!) 

where T!
! and N!

! represent, respectively, the number of truncating mutations and the 

total number of mutations in patient 𝑖 where gene 𝑔 is mutated. 

We can define the TSG-S for a gene 𝑔 as: 

𝑇𝑆𝐺𝑆! = 𝑃 𝑋 ≥ 𝑥  𝐻! =
𝑛!
𝑘

!!

!!!!

 𝑝!!(1−  𝑝!)!!!! 

3. Frequentist Step 

The genes that pass at least one of the two thresholds (OG-S or TSG-S) are divided in 

the respective candidate categories (oncogene, tumor suppressor or both). Four 

statistical tests are run for these genes with specific modifications according to the 

categories they belong to. The four p-values obtained from the tests are pooled together 

using the Stouffer’s method (Stouffer S et al., 1949) with a pattern of weights that take 

into account both the dependencies between tests and their relative importance in the 

driver definition. These suggested weights are set in order to take advantage of the full 

information provided by the four tests, but they can also be user-defined. The result is 
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finally adjusted using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 

1995). 

3.1 TEST 1: Higher Frequency Test 

This test compares the rate of non-synonymous mutations per Mb in each gene with the 

rate of mutations in the patients carrying a mutation in that gene. The alternative 

hypothesis to reject the equality of these two proportions is 

nsy!!

l! ∗ S!
>  

NSY!!

exome length 

Where nsy!!  represents the number of non-synonymous mutations found on gene g and 

tumor t, l! is the length of the gene in Mb, S is the total number of samples in tumor t 

and NSY!! is the average number of non-synonymous mutations found in the patients 

with a mutation in gene g. This number is divided by the number of base pairs of an 

average exome sequencing (30Mb). Because of the low probability of mutation per Mb 

(from 0.1/Mb in AML to a maximum of 100/Mb in melanoma) a Poisson single tail test 

is run to assess if the rate of mutation of the gene is higher than the average mutation 

rate among the patients. This test is the same for both the TS and the OG groups. We 

apply a weight equal to 0.5 in the Stouffer’s method because of the major relevance of 

this rate both in the literature (Dees et al., 2012; Lawrence et al., 2013; Wood et al., 2007) 

and for research/clinical purposes. 

3.2 Test 2: Non-synonymous versus Synonymous Ratio Test 

3.2.1 TEST 2 - OG : Non-synonymous versus Synonymous Ratio Test for Oncogenes 

This test verifies if the rate between non-synonymous mutations and synonymous 

mutations is significantly high in the gene. To avoid zero division errors (some genes do 

not show synonymous mutations), the proposed test is based on the equivalent non-

synonymous/total ratio. The rate of comparison is calculated on the expected ratio 
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obtained by randomly placing the same number and kind of mutations on the specific 

codon usage structure of the gene. 

Since the effect of an InDel cannot be predicted in this way, we assume it will always 

produce a non-synonymous effect. So the total amount of mutations on gene g and 

tumor t is divided in 

M!
! = SNV!! + indel!!  

the SNV!! are divided by their respective base substitution (A>C , G>T etc.) and put in 

the vector bs!!  (12x1). We operate a vector product between bs!!  and NSY/total! 

calculated in our database in order to obtain the expected non-synonymous/total ratio in 

the SNVs. To obtain the final expected ratio we simply add the InDels we have 

subtracted before 

expected(
NSY
total!

!

) =  
SNV!! ∙ (bs!!×

NSY
total!

)+ indel!!

total!!
 

Finally, we try to evaluate 

nsy!!

total!!
>  𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(

NSY
total!

!

) 

using a one-tail binomial test. 

3.2.2 TEST 2 - TSG : Non-synonymous versus Synonymous Ratio Test for Tumor 

Suppressor Genes 

This test assesses if the rate between non-synonymous mutations and synonymous 

mutations in the gene is higher than the average rate in the patients who present the 

same mutation. We evaluate if 

nsy!!

total!!
>  𝑚𝑒𝑎𝑛(

NSY!!

TOTAL!!
) 

where nsy!!  and total!!  represent, respectively, the number of non-synonymous 

mutations and the number of synonymous plus non-synonymous mutations found in 
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the gene g in tumor t while mean( !"#!!

!"!#$!
! ) is the average ratio calculated from all the 

samples with a mutation in the same gene. A one-tail binomial test is run in order to 

verify this inequality. This test is less precise than the previous one since the calculation 

of the null hypothesis ratio is made from a sample evaluation. Nevertheless this method 

of calculation of the null hypothesis is better for tumor suppressor candidates, since 

tumor suppressors are prone to have InDels and splice mutations that cannot be inserted 

in a probabilistic environment as we did for SNVs (the large majority of missense 

mutations are single spot mutations). 

For TEST 2, we apply a weight of 0.2 in the Stouffer’s method as this test has a lower 

statistical power and is linked to TEST 1; in fact, the total number of mutations depends 

on the sample size and the tumor specific mutation rate. 

3.3 TEST 3: Tumor-specificity Test 

This test verifies if the frequency of non-synonymous mutations in a particular tumor or 

situation is high compared with the general frequency found in COSMIC database.  

Again, we evaluate if 

nsy!!

s! > F! 

where nsy!!  represents the number of non-synonymous mutations found in the gene g in 

tumor t, s! is the total number of patients/samples in tumor t, and F! is the frequency of 

mutation across tumor types provided by the COSMIC database, by running a one-tail 

binomial test. However, we only apply a weight of 0.1 in the Stouffer’s method, as this 

test is just used for ranking purposes in the chosen dataset. While we consider tumor 

specificity an important driver characteristic, we do not believe that not being tumor 

specific should be penalizing. For example, genes like TP53 or KRAS should be 

considered important driver even in tumors where they are not frequently mutated. 

3.4 Test 4: Functional Impact Test 
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3.4.1 TEST 4 - TSG: Functional Impact Test for TSGs 

For every mutation in the gene we matched the respective patient it belongs to. We then 

compared the functional impact score of each mutation with the average score of all the 

other mutations in the patient. This test is used to assess if the distribution of the impact 

scores on the gene is stochastically higher than the average distribution. 

We evaluate if 

mean(FI!
!) > 𝑚𝑒𝑎𝑛(FI!) 

 

where FI!
! represents the average functional impact on gene g in patient i while FI! is the 

average functional impact in patient i without considering gene g. A Wilcoxon one-tail 

test for paired data was used to assess this inequality. Since no impact score is provided 

for truncating type mutations and silent mutations, in this work we applied the 

maximum score provided by Mutation Assessor to the first group (6) and the minimum 

to the silent mutations (0). 

3.4.1 TEST 4 - OG: Functional Impact Test for Oncogenes 

This test is like the above with the exception that since an oncogene is characterized by a 

majority of missense mutations, it is necessary to exclude all the truncating mutations 

from the calculation of the mean impact score, both at gene level and patient level. 

As for the non-synonymous versus synonymous ratio test, an adequate sample size is 

fundamental for reaching a sufficient statistical power. The functional impact test is 

therefore weighted 0.2 in the Stouffer’s method, the same as for TEST 2. 

4.1.4.6.1 Setting the threshold for TSG-S and OG-S 

The evaluation of our scores in classifying genes as driver or non-driver was set on the 

large database of COSMIC, using as positive control the genes of CGC (Futreal et al., 

2004). We carry out the analysis by calculating and maximizing the Matthews phi curves 
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for the two scores against the list of true drivers (Figure 6). The TSG-S curve is 

maximized at −log!"(p− value) of 12 (p-value=10!!") reaching a Matthew’s phi of 0.4 

for the positive control of CGC genes that encompass somatic point mutations. The OG-

S curve is instead maximized at Entropy Z− Score of 49 reaching a Matthew’s phi of 

0.35. The calculation of the threshold cannot be directly applied to smaller tumor 

specific datasets because it is based on a huge amount of data provided by COSMIC 

(more than 7000 samples) and our scores are number-of-mutations dependent. In 

particular, the OG-S decreases if it is calculated on few mutations because the 

interquartile range of the uniform tends to increase by bootstrapping small samples. 

Similarly, the TSG-S enhances its statistical power with the increase in the number of 

trials (i.e. the number of mutations). We therefore derived a TSG coefficient and an OG 

coefficient that are calculated as 

TSG!"#$$%!%#&' =
COSMIC threshold for TSG

COSMIC mean number of truncating per gene 

 

OG!"#$$%!%#&' =
COSMIC threshold for OG

COSMIC mean number of missense per gene 

These coefficients are multiplied for the mean number of truncating and missense 

mutations per gene in the single dataset during analysis in order to set specific tumor 

type thresholds. The mean number of missense and truncating mutations per gene is a 

way to aggregate both the information on the sample size (number of patients) and the 

mutation rate of the tumor type (number of mutations per patient). 

We set a lower bound for these thresholds: 1 for TSG-S (p-value=10!!) and 1 for OG-S 

(distance from the median uniform entropy of at least 1 interquartile range). For the 

OG-S, we also put an upper bound for this threshold at 3.5 as suggested in outlier 

analysis for the modified z-scores (Walfish, 2006). 
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4.1.5 Results 

4.1.5.1 Application of DOTS-Finder to individual cancer types 

We applied our methodology to 34 different cancer types (Colorectal Adenocarcinoma, 

Lung Squamous Cell Carcinoma, Uterin Carcinoma, Ovarian Adenocarcinoma, Lung 

Adenocarcinoma, Prostate Adenocarcinoma, Pancreatic Adenocarcinoma, 

Glioblastoma, Kidney Clear Cell Carcinoma, Kidney Papillary Cell Carcinoma, Kidney 

Chromophobe, Skin Melanoma, Low Grade Glioma, Esophageal Adenocarcinoma, 

Medulloblastoma, Stomach Adenocarcinoma, Head and neck squamous cell carcinoma, 

Oligodendroglioma, Acute Lymphoblastic Leukemia (ALL), Chronic Lymphocytic 

Leukemia (CLL), Soft Tissue Sarcoma, Lymphoma B-cell, Biliary Tract, Astrocytoma, 

Neuroblastoma, Liver Hepatocellular Carcinoma, Lung Small Cell Carcinoma, 

Rhabdoid_Tumor, Multiple Mieloma, Carcinoid, Breast Cancer, Thyroid Carcinoma, 

Acute Myeloid Leukemia (AML), Bladder Carcinoma). We analyzed the overall output 

in section 4.1.5.2. In this section, we show the existence of a great variability among the 

different tumor types in terms of driver genes. In Table 2, we present the results of four 

cancer types: Breast carcinoma (BRCA) and Thyroid Carcinoma (THCA), described in 

sections 4.1.5.3 and 4.1.5.4, and Acute Myeloid Leukemia (AML) and Bladder 

Carcinoma (BLCA), described in sections 4.1.5.5 and 4.1.5.6. The rest of the DOTS-

Finder results can be seen in Appendix Table 1. We also compared the DOTS-finder 

output with the output of the following methods: i) the main TCGA publications (when 

available); ii) TUSON Explorer (Davoli et al., 2013) (considering all the genes with a q-

value <=0.1); iii) MuSiC (Tamborero et al., 2013b)(used for identifying significantly 

mutated genes in 12 cancer types); iv) MutSig (Lawrence et al., 2014) (used for 

identifying significantly mutated genes in 21 tumor types). Thus, we used the state-of-

the-art results from official TCGA publications and from the latest release of the 

applications described above. We were not able to use exactly the same input data of all 
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the publications, since TUSON Explorer and MutSig (as used in (Lawrence et al., 2014)) 

are unavailable. Our results show that DOTS-Finder can identify known cancer genes 

involved in each tumor, confirm new discoveries reported by other groups, and detect 

novel driver gene candidates which are mutated at low frequency and not identified by 

other methods Appendix Table 2. 

Acute Myeloid Leukemia Thyroid Carcinoma Breast Cancer Bladder Carcinoma 

S = 196 S = 326 S = 1046 S = 145 

MNSp = 11 MNSp = 19 MNSp = 36 MNSp = 177 

Gene 
name 

NS 
freq q-value Gene 

name 
NS 

freq q-value Gene name NS 
freq q-value Gene 

name 
NS 

freq q-value 

TSG TSG TSG TSG 

CEBPA 0.066 0 TG 0.049 8.00E-
10 CBFB 0.021 0 ARID1A 0.241 0 

NPM1 0.276 0 EMG1 0.018 5.30E-
08 CDH1 0.062 0 CDKN1A 0.145 0 

RUNX1 0.092 0 RPTN 0.025 9.05E-
06 GATA3 0.095 0 KDM6A 0.214 0 

TET2 0.087 0 PPM1D 0.015 0.0054 MAP2K4 0.039 0 TP53 0.262 0 

TP53 0.077 0 TMCO2 0.009 0.0056 MAP3K1 0.070 0 ELF3 0.076 1.18E-
10 

WT1 0.061 0 IL32 0.009 0.0152 PTEN 0.040 0 MLL2 0.262 1.18E-
10 

RAD21 0.026 3.27E-
06 DNMT3A 0.015 0.2896 TP53 0.338 0 EP300 0.152 3.03E-

09 

PHF6 0.031 3.40E-
06 ONCOGENE TBX3 0.022 1.11E-

12 RB1 0.110 2.26E-
08 

STAG2 0.031 1.38E-
05 BRAF 0.561 0 MLL3 0.065 5.93E-

12 SPTAN1 0.097 3.03E-
06 

EZH2 0.015 0.0007 HRAS 0.037 0 AOAH 0.019 3.98E-
10 MLL3 0.200 6.14E-

06 

ASXL1 0.026 0.0014 NRAS 0.080 0 CTCF 0.021 7.90E-
10 CREBBP 0.131 1.16E-

05 

HNRNPK 0.010 0.0083 TG 0.049 3.47E-
08 RUNX1 0.024 3.19E-

06 STAG2 0.090 7.55E-
05 

CALR 0.010 0.0142 DNASE2 0.009 0.0694 NCOR1 0.038 3.97E-
06 FOXQ1 0.048 0.0060 

CBFB 0.010 0.0572 PRDM9 0.018 0.0816 RB1 0.021 6.09E-
06 TXNIP 0.055 0.0079 

CBX7 0.005 0.0948 DICER1 0.009 0.1070 NCOR2 0.032 0.0003 FAT1 0.110 0.0370 

BCOR 0.010 0.1971 ZNF845 0.018 0.1070 STXBP2 0.010 0.0004 FBXW7 0.069 0.0428 

ONCOGENE PRG4 0.012 0.1085 AQP7 0.008 0.0017 GCC2 0.069 0.0800 

CEBPA 0.066 0 PTTG1IP 0.012 0.1085 ZFP36L1 0.012 0.0046 ZNF513 0.055 0.0911 

DNMT3A 0.260 0 
   

RBMX 0.012 0.0056 KLF5 0.062 0.1184 

FLT3 0.270 0 
   

GPS2 0.007 0.0095 GPS2 0.028 0.2599 

IDH1 0.097 0 

   

CASP8 0.015 0.0104 NHLRC1 0.021 0.2635 

IDH2 0.102 0 
   

CDKN1B 0.008 0.0125 ONCOGENE 

NRAS 0.077 0 
   

UBC 0.008 0.0155 TP53 0.262 0 

TP53 0.077 0 

   

MED23 0.013 0.0224 NFE2L2 0.076 6.08E-
06 

U2AF1 0.041 0 

   

MYB 0.012 0.0407 ERBB3 0.117 1.08E-
05 

      

CCDC144N
L 0.008 0.1268 RARG 0.069 1.53E-

05 

      
GNRH2 0.003 0.2062 IRS4 0.014 0.6550 

      
HNF1A 0.009 0.7280 ELP5 0.014 0.6550 

      
ONCOGENE RPS6 0.021 0.6550 

      
AKT1 0.022 0 

   

      
PIK3CA 0.285 0 

   

      
TP53 0.338 0 

   

      

TBX3 0.022 9.01E-
10 

   

      

SF3B1 0.017 3.36E-
08 
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FOXA1 0.017 7.73E-
05 

   

      
HIST1H3B 0.008 0.0001 

   

      
MEF2A 0.014 0.0002 

   

      
PIK3R1 0.025 0.0008 

   

      
ATN1 0.017 0.0425 

   

      
AKD1 0.018 0.0431 

   Table 2 Significantly mutated genes identified by DOTS-Finder in four cancer types. Legend: S = 
Number of Samples , MNSp = Median number of Non-Silent mutations per patient , NS freq = Non-
synonymous mutations frequency among samples , Underlined genes are near significance 

4.1.5.2 Driver genes and tissue specificity 

We used DOTS-Finder on samples from 34 tumor types and identified a total of 301 

driver genes Table 2 and Appendix Table 1. Only 57 out of 301 genes were found in 

more than one tumor type, and most of the 25 genes present in at least three tumor types 

are well-known cancer driver genes (i.e. TP53, PTEN, RB1, NRAS, IDH1, SF3B1, 

CTNNB1, BRAF, ARID1A, NFE2L2, MLL3, KRAS, KDM6A, CDKN2A, STAG2, 

SMARCA4, SMAD4, PIK3R1, PIK3CA, MLL2, IL32, CREBBP, CDKN1B, NPAP1, B2M). 

Interestingly, genes found only in two different cancer types maintain tissue specificity, 

like, for example, ATRX, mutated only in low-grade glioma and in glioblastoma, 

probably being an important driver gene in tumors of the central nervous system. In 

addition, 244 genes displayed cancer specific patterns, being mutated in a single cancer 

type. Thus, the majority of tumor suppressor genes (TSGs) and oncogenes (OGs) are 

tissue-specific. For example, NKX3-1 and AR are found only in prostate 

adenocarcinoma, OGG1 is specific for renal cell carcinoma and NOX4 is specific for 

glioblastoma. In addition, we also found that about 54% of the genes in our list (163 out 

of 301) were not present in the 300 TSGs and 250 OGs identified by TUSON Explorer. 

For example, Thyroglobulin (TG), a well-studied gene in thyroid cancer (Rubio and 

Medeiros-Neto, 2009), is absent. We hypothesize that many new driver genes that are 

infrequently mutated might be tissue specific. Thus, it is very important to analyze the 

mutation signatures of individual tumor types, especially of those cancer types for which 

large sample size is unavailable and which will not reach saturation in the next future. 
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4.1.5.3 Breast carcinoma  

We applied DOTS-Finder to the list of 1046 Breast carcinoma (BRCA) samples. We 

found a poor overlap between the TCGA official publication (Koboldt et al., 2012) and 

our results (Figure 9, Panel A), but all the known cancer genes for this tumor type are 

retained, while our results do not encompass any notorious “fishy gene” like RYR2 or 

OR6A2 (Lawrence et al., 2013), which are instead present in the TCGA publication. The 

TCGA publication also misses known breast cancer associated genes, like FOXA1 

(Robinson et al., 2013) and CASP8 (Catucci et al., 2011).  We identified 3 new driver 

candidates, not present in previous publications: AQP7, MEF2A and UBC. AQP7 

encodes the aquaporin 7, an integral-membrane protein that plays important roles in 

water and fluid transport and cell migration. Recent discoveries of AQP involvement in 

cell migration and proliferation suggest that AQPs play key roles in tumor biology 

(Verkman et al., 2008). MEF2A encodes a DNA-binding transcription factor that is 

involved in several cellular processes, including cell growth control and apoptosis. It was 

recently shown that NOTCH-MEF2 synergy may be significant for modulating human 

mammary oncogenesis (Pallavi et al., 2012). UBC is a member of the ubiquitin family 

and involved in cell cycle and DNA repair. The role of ubiquitination is well stablished in 
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cancer, especially in breast (Ohta and Fukuda, 2004).

 

Figure 9 Comparative driver gene predictions in Breast Cancer and Thyroid Cancer. (A) The candidate 
driver genes predicted by DOTS-Finder in BRCA are compared against 4 previously reported predictions: 
MuSiC, MutSig, TUSON Explorer and the TCGA publication. The five-set Venn diagram shows the 
number of predicted genes that are in common between the different analyses and those uniquely 
predicted by each of them. The line delimiting each set and the name of the corresponding method are 
depicted in the same color. The diagram uses a graduated color ramp from light yellow to dark red to 
represent the overlap of an increasing number of tools that predict the same drivers. Although BRCA 
mutational landscape is highly heterogeneous among patients, all the methods agree on predicting the 
same 17 genes as drivers (darkest shade of red). In addition, DOTS-Finder is able to predict 7 genes that 
were never found by any method in BRCA. Also MutSig and TUSON Explorer retain unique predictions, 
respectively 11 and 5 possible driver candidates. This discrepancy is the reflection of the typical 
“mountains and hills” landscape of the BRCA genome, with few highly mutated genes (predicted by 
almost all the tools) and hundreds of low-frequency mutations (only identified by a specific tool). (B) 
Number of genes predicted by TUSON Explorer and DOTS-Finder in the THCA dataset. The former only 
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predicts a few driver genes (6); of these, two thirds are also identified by DOTS-Finder. Notably, our tool 
shows a much higher sensitivity than TUSON Explorer with 12 new predicted genes. 
 

4.1.5.4 Thyroid Carcinoma 

We applied DOTS-finder to the list of 326 Thyroid Carcinoma (THCA) samples from 

TCGA, identifying 12 driver genes. We could only compare the DOTS-Finder results 

with the results obtained by TUSON Explorer, since, to date, there are no published 

TCGA papers for Thyroid Carcinoma (Figure 9, Panel B). Three of our putative driver 

genes (TG, BRAF and RPTN), are also predicted by TUSON Explorer. TG and BRAF are 

known driver genes in THCA (Kimura et al., 2003; Rubio and Medeiros-Neto, 2009), 

while RPTN is a poorly characterized protein that has never been associated with THCA.  

We identified several putative driver genes that may have relevant functions in cancer 

development (Table 2): mutations in EMG1 have been recently identified in a screen for 

mediators of IGF-1 signaling in cancer (McMahon et al., 2010); germline mutations in 

PRDM9 are thought to influence genomic instability, increasing the risk of acquiring 

genomic rearrangements associated with childhood leukemogenesis  (Hussin et al., 

2013); PPM1D is an important interactor of TP53, is amplified in different types of 

cancers and encodes wip1, a protein involved in oncogenesis (Bulavin et al., 2002). 

Recently, mutations and variants of this gene were associated with DNA damage 

response (Dudgeon et al., 2013). Although only slightly above our threshold, we also 

detected PTTG1LP and DICER1 as putative OGs. Interestingly, pituitary tumor 

transforming gene (PTTG)-binding factor (PTTG1IP) encodes a poorly characterized 

proto-oncogene that has already been implicated in the etiology of thyroid tumors (Read 

et al., 2011; Stratford et al., 2005). Loss of DICER1 is associated with the development of 

many cancers; somatic missense mutations affecting DICER1 are common in non-

epithelial ovarian tumors and these mutations show an oncogenic behavior (Heravi-

Moussavi et al., 2012).  
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4.1.5.5 Acute Myeloid Leukemia 

We applied DOTS-Finder to the 196 samples in TCGA Acute Myeloid Leukemia (AML) 

dataset and we were able to confirm the large majority of findings from previously 

reported analyses (Kandoth et al., 2013; Lawrence et al., 2014; Network, 2013) (Figure 

10) and to discover three new driver candidates, as shown in Table 2. Unfortunately, we 

could not compare our results with TUSON Explorer, as AML samples were not 

analyzed. In particular, we identified as driver three genes with low mutations frequency 

(<=1%): CBFC, CBX7 and CALR. CBFC and CBX7 have been already implicated in AML 

pathogenesis. CBFC is the most common translocation target in AML, involved in a 

chromosomal rearrangement that results in the fusion of CBFB and MYH11 genes, 

associated with the acute myeloid leukemia subtype M4Eo (Kundu and Liu, 2001). CBFB 

has a role in hematopoiesis (Kundu et al., 2002) and it is a direct target of RUNX1 (Hart 

and Foroni, 2002), a well-known driver gene of AML. CBX7 is a component of the 

Polycomb repressive complex 1 and it is causally linked to cancer development (Klauke 

et al., 2013). Interestingly, we classified this gene as a tumor suppressor, and this finding 

is consistent with the fact that loss of CBX7 gene expression correlates with a highly 

malignant phenotype in thyroid cancer (Pallante et al., 2008) and reduces survival of 

colorectal cancer patients (Pallante et al., 2010) CBX7 is specifically expressed in 

hematopoietic stem cells and its overexpression enhances self-renewal and can induce 

leukemia (Scott et al., 2007). CALR was recently found mutated in some forms of 

myeloproliferative neoplasms, a group of disorders related to AML (Klampfl et al., 2013). 

Although near significance, we also detected BCOR, a transcriptional corepressor. BCOR 

mutations are implicated in myelodysplastic syndromes and AML with normal 

karyotype (Grossmann et al., 2011). In addition, BCOR has been recently found in acute 

promyelocytic leukemia as a novel fusion partner of RARA (Yamamoto et al., 2010). 
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Figure 10 Venn diagrams of the set of candidate driver genes predicted by several tools in Bladder 
Carcinoma and Acute Myeloid Leukemia. (A) Comparison of driver genes predicted by five methods in 
Bladder Carcinoma. Only 8% of all the genes identified by at least one resource are identified by all 
methods. This percentage rises to 20% if we exclude the candidate driver genes coming from the TCGA 
publication. Nevertheless, there is a poor concordance among the methods as MutSig and DOTS-Finder 
identifying respectively 14 and 12 non-overlapping candidate drivers. (B) Comparison of driver genes 
predicted by four methods in Acute Myeloid Leukemia. The AML mutational spectrum has 50% of the 
genes shared by all the four resources analyzed. Nevertheless, DOTS-Finder was able to identify the 
following new driver candidates: CBFC, CBX7, CALR and BCOR. 
 

4.1.5.6 Bladder Carcinoma 

We applied DOTS-Finder to the list of 145 Bladder Carcinoma (BLCA) samples. We 

have identified 21 driver genes, of which 6 are also found in the official TCGA paper 
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(Guo et al., 2013) but their prediction is not properly comparable with our findings as it 

contains only 99 samples. Our results are instead consistent with MuSiC, MutSig and 

TUSON Explorer as shown in Appendix Table 2. Five driver genes were uniquely 

identified by DOTS-Finder and three of them (SPTAN1, TXNIP, RARG) have functions 

relevant to cancer development or have been previously associated with cancer. SPTAN1 

encoded protein has been implicated in DNA repair and cell cycle regulation (Metral et 

al., 2009). TXNIP acts as a suppressor of tumor cell growth and loss of TXNIP expression 

facilitates BLCA. Notably TXNIP might be an important target for the prevention or 

treatment of bladder cancer (Nishizawa et al., 2011). Lastly, RARG encodes a retinoic 

acid receptor that acts as a ligand-dependent transcription factor that regulates cell 

growth and survival (Altucci et al., 2007). In addition, we also detected the following 

genes near significance: the known tumor suppressors KLF5 and GPS2 and the 

oncogenes IRS4, RPS6 and ELP5. KLF5 encodes a member of the Kruppel-like factor 

subfamily, which plays important roles in cell proliferation and cell cycle regulation 

(Chen et al., 2006) and it has been described as a tumor suppressor in several cancer 

types (Chen et al., 2003). Mutations in GPS2 have been previously identified in 

medulloblastoma (Pugh et al., 2012). The insulin receptor substrate 4 (IRS4) and the 

Ribosomal Protein S (RPS6) may play a role in cancer development and progression via 

their effect on cell growth and proliferation. ELP5 may play a role in cancer due to its 

involvement in histone acetyltransferase activity (Winkler et al., 2002). 

4.1.5.7 Atypical tumor suppressor genes and oncogenes 

The concept of TSG and OG has evolved over time. In conventional wisdom, TSGs are 

nonfunctional in tumors and require biallelic loss of function to manifest tumorigenicity 

(Payne and Kemp, 2005); OGs are typically characterized by acquired or enhanced 

function and a single mutated allele is sufficient (Xu et al., 2013). Thus, three levels of 

information are required to classify a cancer driver gene as an OG or a TSG: functional, 
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structural and genetic. The functional level is defined by a gain or loss of a biochemical 

function. It requires understanding of the actual role of the gene in tumorigenesis and of 

the pathways in which it is involved. Functional changes result from and can be 

predicted based on the structural information; this is what we ultimately do by dividing 

mutations into truncating (TSG related) or missense (OG related) ones and analyzing 

their pattern. The genetic effect defines the dominant or recessive characteristics of the 

driver gene. At the genetic level, a mutated gene can be dominant or recessive depending 

on how many dysfunctional copies are required to exert its effect (Table 3). 

  FUNCTIONAL EFFECT 
  Gain Loss 

GENETIC 
EFFECT 

Dominant Typical 
OncoGene 

Dominant 
Negative 
TSG 

Recessive - Typical 
TSG 

Table 3 Genetic and Functional effect of mutations in oncogenes and tumor suppressors. A driver 
cancer gene is defined by a genetic effect (dominant, recessive) and a functional effect (gain or loss). These 
two components ultimately define the tumor suppressor and oncogene characteristics that we try to infer 
from the mutational landscape (structural effect) 
 

Typically, the functional information is missing or poorly understood for new driver 

candidates and the genetic information (allelic-specific) is not directly available in cancer 

sequencing studies. Thus, the OG and TSG classification must be inferred from the 

structural level. It is not surprising that our tool can classify many genes as being both 

TSGs and OGs within the same cancer type, or even put them into different categories 

according to the tumor context. This apparent misclassification might cast a light on the 

particular behavior of some genes. There are four possible structural scenarios of 

mutations in a gene, as shown in Table 4. The first two are the same ones shown in 

Figure 2: a clustered missense mutation landscape with no truncating mutations, 

implying a typical gain-of-function OG like KRAS, and diffuse and predominant 
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truncating mutations with no missense pattern like APC, underlying a loss-of-function 

TSG. 

  STRUCTURAL LANDSCAPE 

 Missense clustered no clustered Any 

 Truncating no diffuse diffuse Clustered 

BIOLOGICAL 
CLASSIFICATION 

Oncogene 

Typical (gain-of-
function) 

none found none found 

Atypical 
(gain of 
function 
through loss 
of 
inhibition).  

e.g. KRAS e.g. NPM1 

Tumor 
Suppressor 

Atypical (dominant 
negative, gain-of-
function) 

Typical (loss-of-
function) 

Atypical (possible 
dominant negative, gain-
of-function*) 

none found 

e.g. SMARCA4 in 
Lymphoma e.g. RB1 e.g. TP53 in UCEC 

or DNMT3A in AML 

Table 4 Inference of biological classification by structural effect of mutational landscape. Inferring the 
biological role of oncogenes and TSGs in cancer via the mutational landscape can lead to borderline results 
in the classification. A careful confrontation with the literature can cast a light on the peculiar 
characteristics of driver genes in the different tumor types. *A mixed mutational landscape with diffuse 
truncating and clustered missense in the same tumor type must be carefully analyzed. We should 
understand whether truncating and missense mutations are mutually exclusive and what is the allelic 
status (heterozygosity or homozygosity) of the two different patterns. 
 

In Figure 11, we present four genes with atypical patterns. TP53 in endometrial 

carcinoma (Panel A) has a landscape of mutations that can be considered borderline for 

both the OG and TSG score definitions, with a consistent number of diffuse truncating 

mutations (around 20%) and a concentration of missense mutations on the DNA 

binding site. According to our tool, the duality of TP53 is revealed in many tumor types 

and can mask a possible dominant negative effect, as summarized in (Oren and Rotter, 

2010). Similarly, and strongly supported by the literature (Kim et al., 2013), DNMT3A in 

Panel B, presents diffuse truncating mutations and a visible missense cluster on the 

cytosine C5 DNA methylation domain. In both genes, a patient-specific mechanism, 

which can distinguish the two different patterns, is probably implicated. In Panel C, we 

analyze two different patterns of mutations in SMARCA4 in different tumor types. 

Although considered a TSG (Medina et al., 2008), SMARCA4 is classified as a true TSG 

only in lung adenocarcinoma, with 11 out of 18 truncating mutations diffuse all over the 
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gene body. In lymphoma, the situation is the opposite: none of the 6 mutations found is 

truncating, and 3 are clustered on amino acid 973 on the SNFN 2 domain of the protein. 

DOTS-Finder classifies this gene differently according to the tumor type, suggesting a 

dominant negative effect of SMARCA4 which is able to regulate its own expression with 

just one mutated copy (Magnani and Cabot, 2009), as previously described for this 

cancer (Medina and Sanchez-Cespedes, 2008). 

 

Figure 11 Mutational patterns of atypical tumor suppressor genes and oncogenes. (A) TP53 mutational 
landscape in uterine corpus endometrial cancer. DOTS-Finder classifies this gene as a TSG as well as an 
oncogene. While this gene retains many truncating mutations, which are diffused all over the gene body, it 
also encompasses a high number of clusterized missense mutations affecting DNA binding. (B) DNMT3A 
mutational landscape in Acute Myeloid Leukemia. The pattern of mutations shows diffuse truncating 
mutations and an evident missense cluster on the cytosine C5 DNA methylation domain. The two types of 
mutations (truncating and missense) do not share the same domains. This pattern could reflect a double 
mechanism of action of this gene in different patients. (C) SMARCA4 mutational landscape in lymphoma 
B-cell compared with lung adenocarcinoma. SMARCA4 is reported in literature as a typical loss-of-
function TSG and its mutational pattern in lung is consistent with this classification (diffuse truncating 
mutations). In lymphoma no truncating mutations are called, and half of the missense mutations affect 
amino acid 973. DOTS-Finder classifies SMARCA4 as a TSG in lung but as an oncogene in lymphoma, 
following its clustered missense pattern. We suspect a possible dominant negative effect in this second 
example (see Table 3). (D) NPM1 mutational landscape in acute myeloid leukemia. This gene is reported 
as a gain-of-function oncogene, however, it shows a peculiar mutational landscape: 99% of its mutations 
are truncating, but they are clustered on the c-terminal of amino acid 288. Mutation p.W288fs truncates 
the protein without deactivating it; NPM1 is instead delocalized from the nucleus to the cytoplasm. The 
total numbers of truncating sites and missense mutations are indicated in the panels. The mutations are 
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mapped on the corresponding canonical protein ideogram, therefore, not all the mutations can be 
represented (e.g. splice sites mutations are not included in the figure). 
 

The last example in Panel D refers to NPM1, which is a shuttling protein involved in 

AML. Although NPM1 is almost exclusively characterized by truncating mutations 

(53/54) and is classified as a TSG by DOTS-Finder, NPM1 is instead a typical 

gain/switch-of-function gene (Mariano et al., 2006). The truncating mutations are, in 

fact, clustered as p.W288fs, a four base insertion that deactivates the c-terminal and 

delocalizes the protein (Grisendi et al., 2006).  

4.1.5.8 The importance of considering subsets of samples 

Analyzing the pattern of genetic alterations in tumor subsets classified by clinical or 

other biologic parameters can reveal important insight in individual pathogenic 

mechanisms and suggest possible therapeutic avenues. For instance, in lung 

adenocarcinoma (LUAD), about 25-30% of the cases are not attributable to tobacco 

smoking as they are found in people that have never smoked (never smokers - NS). 

Studies have revealed that LUAD in NS is a completely different disease from any type of 

lung cancer arising in smokers (LUAD included), as it differs in terms of clinical and 

pathological features, with diverse prognosis and strategy of care (Rudin et al., 2009). 

The difference in the mutational landscape (Govindan et al., 2012) supports the 

hypothesis that NS lung adenocarcinomas are driven by distinct genetic mechanisms. To 

identify additional driver genes with a role in the development of lung cancer in NS, we 

applied DOTS-Finder to the somatic mutations of the 50 NS patients present in the 

LUAD samples of the TCGA. These samples constitute approximately 10% of the 

population; our driver candidate predictions are reported in Appendix Table 3. At the 

top of the list of predicted OGs is EGFR, consistent with the fact that EGFR is a key 

oncogenic player in LUAD NS. Beside the identification of very well-known cancer 

genes such as SMAD4, STK11, SETD2, MET, KEAP1, TP53 and KRAS, we also identified 
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several putative driver genes that might have relevant cancer development functions: 

somatic mutations in GRM1 disrupt signaling with multiple downstream consequences 

(Esseltine et al., 2013); mutations in RPL5 has been recently described as a potential 

oncogenic factor in T-cell acute lymphoblastic leukemia (De Keersmaecker et al., 2013); 

inactivating mutations in the SHA gene, which has a role as TSG, have been identified in 

familial paragangliomas (Bardella et al., 2011; Francis et al., 2013); WRN encodes a 

strand DNA breaks: defects in this gene are the cause of the aging-promoting Werner 

syndrome and copy number variations or epigenetic inactivation have been recently 

found in LUAD NS (Job et al., 2010) and non-small cell lung cancer (Agrelo et al., 2006) 

respectively. 

Similarly, kidney cancer can be classified in different histological subtypes, the most 

common being Kidney Renal Clear Cell Carcinoma (KIRC), Papillary Cell Carcinoma 

(KIRP) and Kidney Chromophobe (KICH). Applying DOTS-Finder separately on each 

kidney dataset Appendix Table 1, we observed a subtype-specific pattern of genetic 

alterations. KIRC and KIRP share only SETD2, KIRC and KICH have only TP53 in 

common, and there are no common driver genes between KIRP and KICH. By analyzing 

all the datasets together we can predict two new putative driver genes, GFRAL and 

STAG2, not appearing in the single analyses. Since the KIRC subset is predominant in 

terms of sample size, the aggregated analysis can recapitulate 69% of its genes, while it 

can only identify 50% of KICH and 27% of KIRP genes. In KIRP, we lose the following 

candidate driver genes, which then appear to be tumor specific: KDM6A, SRCAP, SAV1, 

DARS, OGG1, MET, ATP10A; similarly, in KICH we lose CDKN1A. 

4.1.5.9 Small sample size analysis. The --lax option 

DOTS-Finder sets the threshold for OG-S and TSG-S as a function of both the mutation 

rate of the analyzed tumor and the sample size of the input dataset (see section 4.1.4.6). 

These thresholds have a default lower boundary. Nevertheless, for very small sample 



 64	

sizes, these thresholds can still be too high to let genes pass the functional step. We 

decided to introduce an option called --lax that ignores the imposed lower boundary and 

allows more genes to pass the functional step in the presence of a small sample size.  In 

Table 5 we show the analysis of two different tumors, the oligodendroglioma dataset (16 

patients) and the carcinoid dataset (54 patients) obtained using the --lax option of 

DOTS-Finder.  

	
Table 5 Application of the --lax option to two small cancer datasets. Results of DOTS-Finder obtained 
analyzing Oligodendroglioma and Carcinoid datasets with default option and with the --lax option. The 
thresholds imposed by DOTS-Finder can be too high to let any driver candidate to pass the functional 
step. With small sample size or very low mutation rate tumors, an option called --lax can be used to make 
DOTS-Finder less stringent in the first step of the analysis. Legend: NS freq = Frequency of non-
synonymous mutations among samples. Underlined genes are near significance 
 
  
 

In the left column of Table 5 we present the result of the analysis of 16 exome 

sequencings from oligodendroglioma patients (Yip et al., 2012). Without the --lax 

option, DOTS-Finder recapitulates the knowledge regarding this rare brain tumor by 

identifying mutations in CIC, IDH1 and FUBP1 (Alentorn et al., 2012). The same dataset 

upon the --lax option reveals other possible driver candidates, like the known cancer 

genes PIK3CA and NOTCH1, the never reported PDCD6IP, a gene expressed in the 

nervous system and involved in cell death, HIVEP2 and KCNH6, two genes previously 

reported in leukemia, and RIN1, an important Ras interactor. 
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In the right column instead are the results for the carcinoid tumor (Francis et al., 2013). 

CDKN1B has been already reported for this cancer type, but with the lax option on, other 

possible driver candidates have emerged. In particular, the known cancer-associated 

gene ATM, TP53BP1, an enhancer of TP53 activation known to be involved in DNA 

damage response, PRDM9, described in the main text, in thyroid cancer and near 

significance, and ERN2, a pro-apoptotic gene involved in translational repression under 

endoplasmic reticulum stress. 

4.1.5.10  Comparison of DOTS-Finder to existing tools using Pan-Cancer12 data 

We compared the candidate driver genes predicted by DOTS-Finder against the 

predictions made by 5 methods: 1) MuSiC (Dees et al., 2012), 2) MutSig (Lawrence et al., 

2013), 3) OncodriveFM (Gonzalez-Perez and Lopez-Bigas, 2012), 4) OncodriveCLUST 

(Tamborero et al., 2013a) and 5) ActiveDrive (Reimand et al., 2013), and described in a 

Pan Cancer comparative analysis of 12 different tumor types (Pan-Cancer12) 

(Tamborero et al., 2013b). All these methods, except MutSig, are publicly available and 

implemented as tools. Since the analysis described in Pan-Cancer12 contains the 

candidate driver genes derived from a cross-methodology that includes a pathway 

analysis and a series of sequential filters, we retrieved the output of each method from 

Synapse at the following accession numbers: syn1715784 for MutSig, syn1701498 for 

both OncodriveFM and OncodriveCLUST, and syn1713813 for MuSiC. As the original 

output of ActiveDriver was unavailable, we used the genes predicted by ActiveDriver 

that were present in the aggregated results. Then, we run DOTS-Finder on the Pan-

Cancer12 dataset syn1729383. Furthermore, we compared our results with the 

predictions made by an additional available tool, MutSigCV version 1.4 (Lawrence et al., 

2013), by  using  default parameters on the same input dataset (Figure 12). The predicted 

driver genes for all the above-cited tools can be found in Tables S1 in (Melloni et al., 

2014). For statistical comparison, we evaluated precision and recall of all the methods 
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against 162 genes belonging to the Cancer Gene Census (version 68). We selected these 

162 genes since they are the ones targeted by single nucleotide variants (SNVs) and small 

insertions and/or deletions (InDels) mutations. The other CGC genes are amplified, 

translocated or targeted by large insertions/deletions in cancer, thus being outside the 

scope of our study. To obtain a unique measure of accuracy of the predictions, we 

aggregated precision and recall through the F1-Score, a well-established balanced value 

of accuracy calculated as the harmonic mean of precision and recall. Since we have no a 

priori knowledge of the true negatives and we only know the true positives, measures 

that take into consideration only precision and recall are preferable in this context. In 

this sense, a method with a good balance between precision and recall ensures that the 

predicted genes that are not in CGC could be reliable driver candidates. For example, as 

shown in Figure 12, Panel D, a method like MuSiC shows a recall comparable to DOTS-

Finder, but a lower precision.  
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Figure 12 DOTS-Finder results compared to the Pan-Cancer12 analysis. (A) Six-way Venn diagram of 
DOTS-Finder and 5 other tools. This panel shows the number of putative driver genes that are predicted 
individually by each tool or in common by multiple tools. The diagram uses a graduated color ramp from 
light yellow to dark red to represent the overlap of an increasing number of tools that predict the same 
drivers. A full concordance between these methods can be obtained only for 12 genes among the 654 
uniquely identified by at least one method (they are present in region with the darkest shade of red). This 
is due to the fact that each method is implemented for assessing different aspect of drivers’ behaviors. 
Therefore, an approach that combines different complementary methods, as proposed by Tamborero et 
al., is certainly preferable. (B) Pan-Cancer12 aggregated results compared to DOTS-Finder and CGC. This 
panel shows the existing overlap between the list of high confidence drivers and candidate drivers 
provided by both Pan-Cancer12 analysis and DOTS-Finder, crossed with the entire list of CGC genes 
(522). DOTS-Finder is able to retrieve 4 new CGC genes (CALR, CREBBP, KDR, KIAA1549) that none of 
the other methods were able to confirm. Interestingly, CALR has been recently added to the CGC. In 
addition, 65 new genes are predicted by DOTS-Finder as possible driver candidates, including CBX7 and 
UBC, described in this paper. (C) Heatmap of the similarity between 7 methods. This heatmap is built on 
the number of overlapping genes between each pair of tools normalized by row. Therefore, the 
dendrogram on the left side of the plot indicates the similarity between pairs of methods compared to all 
the remaining ones. Results show that DOTS-Finder is close to MutSig and MutSigCV algorithms in terms 
of cross-predicted genes. It is instead very different from both MuSiC and OncodriveFM, which form an 
independent cluster disjointed from all the others. (D) Statistical comparison of all the methods against the 
162 CGC genes targeted by SNVs and/or InDels mutations. In this plot we compared the precision (X-
axis), recall (Y-axis) and F1-Score (harmonic mean between precision and recall; circles area) of 6 different 
available tools, including DOTS-Finder, against the 162 CGC genes used as a gold standard reference. In 
terms of F1-Score (harmonic mean between precision and recall), DOTS-Finder is the best performer. The 
aggregation of 3 different methods used by the latest MutSig strategy reaches an F1-Score of 0.45. However 
this strategy is not publicly available. DOTS-Finder and MutSig comprehensive approaches and the entire 
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Pan-Cancer12 analysis confirm that an approach that takes into consideration different sources of 
information is certainly preferable. 
 

This indicates that we can provide the same number of true outputs with fewer attempts. 

According to this measure, DOTS-Finder is the best tool among the available ones with 

an F1-Score of 0.36 (precision=0.37, recall=0.35) (shown in Figure 12, Panel D). 

4.1.5.11 Statistical power using a small number of cancer samples 

One of the main strength of DOTS-Finder is its ability to retrieve reliable results even 

using a small number of cancer samples as input. Our double step procedure ensures a 

higher sensitivity to the deviation from the null hypothesis of being a passenger-mutated 

gene. In order to assess this characteristic, we collected the data from the latest bladder 

cancer TCGA dataset (238 patients) and run our pipeline against MutSigCV 1.4 using 

default parameters. We decided to use MutSigCV for this statistical comparison, as it is 

the available method with the best performance after DOTS-Finder. We retrieved 31 

significant driver genes against the 26 of MutSigCV, with 16 common predictions. Then, 

we randomly down-sampled our dataset at several sampling fractions (5%, 10%, 15%, 

20%, 30%, 40%, 50%, 70% and 90%) and selected 5 different subsamples for each 

fraction. We end up with 9x5 subsamples made up of a minimum of 12 to a maximum of 

214 patients. We then run both DOTS-Finder and MutSigCV on all the 45 subsamples 

and collected the number of identified drivers. Our results show that DOTS-Finder is 

superior in terms of absolute output Figure 13, Panel A, especially for small sample size 

(from 12 to 48 patients).  
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Figure 13 Comparative saturation analysis and performance analysis for a range of sample sizes. (A) 
Comparative saturation analysis. Here we show the absolute output in terms of number of significant 
genes found by DOTS-Finder (blue line) and MutSigCV (red line) for every subset from each down-
sampling fraction. DOTS-Finder is able to provide a consistent output even with a very limited number of 
patients (a minimum of 10 genes identified with just 12 patients while MutSigCV retrieves 0 or 1 gene at 
best - always TP53). (B) Comparative F1-Score. In this panel we compared every prediction on the 
subsamples to the full output of each tool considering the whole dataset (N=238). Our predictions are not 
only consistent, but maintain an F1-Score distribution that is uniformly higher than MutSig at any 
downsampling level. This difference is much more evident for small samples. (C) Precision-Recall plot for 
DOTS-Finder. Here we present the precision-recall output of every subsample compared to the significant 
genes found on the entire dataset. With just the 5% of the entire dataset, DOTS-Finder is able to predict an 
average of 20% of the full output with a precision of almost 40%. 
 

Our tool is also able to recapitulate its own results in terms of precision and recall better 

than MutSigCV, at any level of downsampling (Figure 13, Panel B). However, this 

difference is more evident for subsamples with very small fractions (from 5% to 30%). 

Finally, as shown in Figure 13, Panel C, we can observe that DOTS-Finder can 

recapitulate up to 40% of the results of the entire 238 patients-dataset, using just 5% of 

the dataset (12 patients), with a precision of almost 50%. 

4.1.6 Discussion 

DOTS-Finder is the first published software that can identify driver genes and can 

classify them as TSGs and/or OGs and it can also be used to identify driver genes with 

atypical patterns of mutations (Figure 11). In addition, it is the first software that can be 

used by a vast and diverse scientific community as it is easy to install and use, does not 
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need the availability of property software, and does not require the use of low-level and 

hard to access files (e.g. as bam files, coverage files). 

We have applied DOTS-Finder on publicly available datasets containing the mutation 

profile of 34 cancer types. We have obtained plausible driver genes for many low 

mutation rate cancers like gliomas, acute myeloid leukemia and prostate cancer. Notably, 

we have obtained results that are consistent with the literature even with some high 

mutation rate tumor types, like Head and Neck Squamous Cell Carcinoma and Bladder 

Cancer, where the risk of falling into the “fishy genes” trap is higher.  

Our tool outperforms other available methods in terms of precision-recall, considering 

CGC as a gold standard. Importantly, DOTS-Finder has confirmed the predictions made 

by other methods and discovered novel driver candidates never identified before. 

Using DOTS-Finder, researchers can identify driver genes in large public databases and 

also in user-defined samples stratified for a given characteristic, as the software is 

specifically designed to identify driver genes even in small datasets (e.g. obese/normal 

weight, male/female etc.). The use of few samples in cancer is justified by the high 

molecular heterogeneity present in tumors. Indeed, we believe that the results produced 

by DOTS-Finder could be very useful for those researchers who want to identify driver 

genes in user-defined datasets, in order to investigate the significance or relevance of 

particular somatic mutations in relation to specific clinical questions. 
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4.2 LowMACA: exploiting protein family analysis for the identification of 

rare driver mutations in cancer 

This section of the results is adapted from (Melloni et al., 2016). DOTS-Finder concept 

was to create a tool able to detect driver genes and divide them between tumor 

suppressors and oncogenes. Nevertheless, there are many genes whose frequency of 

mutation is so low that any statistics would fail to detect them because of the lack of 

statistical power. Therefore, in order to distinguish drivers from passengers, the only 

straightforward solution would be to sequence more cases that is of course impractical 

from many different points of view (time, cost, etc.). Nevertheless, mutations are entities 

with a large context and many properties that can be exploited by aggregating them in 

larger mutations clusters. For examples, mutations can have predictable effects on the 

final protein product, or again, they belong to genes, which in turn, belong to pathways 

or families. Aggregating mutations increase statistical power at the expense of losing the 

granularity of each single mutation. In particular, the tool presented in this section, 

LowMACA, exploits protein families introducing multiple sequence alignment as an 

approach to find connections between genes that show similarity in the secondary 

structure. 

4.2.1 Abstract 

The increasing availability of resequencing data has led to a better understanding of the 

most important genes in cancer development. Nevertheless, the mutational landscape of 

many tumor types is heterogeneous and encompasses a long tail of potential driver genes 

that are systematically excluded by currently available methods due to the low frequency 

of their mutations. We developed LowMACA (Low frequency Mutations Analysis via 

Consensus Alignment), a method that combines the mutations of various proteins 
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sharing the same functional domains to identify conserved residues that harbor clustered 

mutations in multiple sequence alignments. LowMACA is designed to visualize and 

statistically assess potential driver genes through the identification of their mutational 

hotspots. We analyzed the Ras superfamily exploiting the known driver mutations of the 

trio K-N-HRAS, identifying new putative driver mutations and genes belonging to less 

known members of the Rho, Rab and Rheb subfamilies. Furthermore, we applied the 

same concept to a list of known and candidate driver genes, and observed that low 

confidence genes show similar patterns of mutation compared to high confidence genes 

of the same protein family. LowMACA is a software for the identification of gain-of-

function mutations in putative oncogenic families, increasing the amount of information 

on functional domains and their possible role in cancer.  In this context LowMACA 

emphasizes the role of genes mutated at low frequency otherwise undetectable by 

classical single gene analysis. LowMACA is an R package available at 

http://www.bioconductor.org/packages/release/bioc/html/LowMACA.html. It is also 

available as a GUI standalone downloadable at: 

https://cgsb.genomics.iit.it/wiki/projects/LowMACA 

4.2.2 Introduction 

As previously described, the identification of driver mutations in cancer can be enhanced 

by considering the position of the mutations on the proteins rather than their simple 

frequency in cancer cohorts (Vogelstein et al., 2013). For this reason, tools that combine 

frequency of mutations and their position on the genome have been recently developed 

for the identification of potential drivers in small cohorts of patients to increase 

statistical power (Davoli et al., 2013; Melloni et al., 2014; Tamborero et al., 2013a). 

Furthermore, other methods based on network analysis were developed to aggregate 

mutational information at the level of interaction pathways (Mutation Consequences 

and Pathway Analysis working group of the International Cancer Genome Consortium, 



 73	

2015). Nevertheless, as pointed out in a recent simulation based on saturation analysis 

on publicly available cancer data, we are still far from a true understanding of the genes 

mutated in less than 5% of the patients for almost any tumor type (Lawrence et al., 

2014). Due to the lack of the required sample size, methods able to assess the role of 

rarely mutated genes are needed. LowMACA represents a solution to increase the 

information content of alteration patterns by summing up mutations on properly 

aligned amino acids in different proteins belonging to the same family. The 

accumulation of somatic mutations in specific Pfam domains has been already observed 

in cancer, introducing the concept of domain landscapes of somatic mutations in 

addition to the well-known genomic landscape (Nehrt et al., 2012; Peterson et al., 2010; 

Yang et al., 2015a).Nevertheless, these approaches only rely on the frequencies of 

mutated domains in cancer. We enhance this approach by adding the positional 

information of mutations within the domains, eventually increasing the statistical power 

of the domain level analysis. With LowMACA, we are able to assess various aspects of 

somatic mutations at the level of protein families, including clustering in hotspots, 

conservation of mutated residues, pattern similarity across proteins and co-occurrence 

or mutual exclusivity among positions resulting significant by LowMACA criteria. In 

fact, one of the significant improvements over existing methods is the ability of 

LowMACA to test single driver mutations and not only driver genes. All these unique 

aspects are illustrated here in the context of the Ras superfamily and in the analysis of a 

state-of-the-art set of high confidence and putative driver genes (Tamborero et al., 

2013b). 
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4.2.3 Materials and Methods 

4.2.3.1 Software Implementation and Overview 

LowMACA is a computational tool for the analysis and visualization of somatic 

mutation data in cancer. It allows to properly assess the significance of hotspots of 

mutations shared across protein families and to show the interconnectivity among 

mutational patterns via different visualization methods. The software comes as an R 

package, fully integrated in the R/Bioconductor environment through the use of the 

AAMultipleAlignment class from the Biostrings library. The multiple alignment is 

performed with a wrapper around a clustal omega executable (Sievers et al., 2011) or the 

EBI soap webserver (McWilliam et al., 2013). At the present time, LowMACA is the only 

tool that allows using clustal omega within R storing results within a Biostrings class. 

Importantly, the LowMACA package implements a user-friendly GUI built with the 

shiny package, exploiting the interactive functionalities provided by D3 javascript and 

google charts plotting libraries. The tool comes with a pre-built annotation package 

named LowMACAAnnotation, that integrates the information of HGNC (Gray et al., 

2014), UNIPROT un and Pfam (Finn et al., 2007) with the aim of guiding the user 

through the analysis of highly conserved classes of proteins belonging to common Pfam 

domains. The LowMACAAnnotation package creates a one-to-one match between 

UNIPROT canonical proteins and HGNC gene symbols and provides all the Pfam 

sequences of each protein entry. 

LowMACA implements two conceptually different workflows: a Hypothesis Driven 

workflow and a Data Driven workflow. 

The Hypothesis Driven workflow consists of: 

1) Selecting proteins belonging to the same family (we suggest Pfam as a 

guideline). 
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2) Selecting one or more tumor types and classes of mutations that will be 

analyzed (see Methods section Input Data). 

3) Retrieving mutations from specified cancer samples. 

4) Aligning selected sequences along with their mutations 

5) Calculating statistics and evaluating significant hotspots with different 

parameter settings 

The Data Driven workflow consists of: 

1) Providing a dataset of mutations from a cancer cohort in a format derived 

from TCGA standard maf files (see Input Data). 

2) LowMACA collects all the genes that harbor at least one mutation and 

align their domains according to Pfam. Subsequently, the mutations are mapped on 

every consensus sequence created (one per Pfam analyzed). 

3) LowMACA analyzes the mutational pattern of every protein by itself. 

4) The hotspots found at point 2 and 3 are unified in one table and the list of 

putative driver mutations is presented (detailed information can be found in the 

package reference manual: 

http://bioconductor.org/packages/release/bioc/manuals/LowMACA/man/LowMAC

A.pdf).  

4.2.3.2 Input Data 

According to the choice of a Hypothesis Driven or Data Driven workflow, LowMACA 

requires different kinds of input. In the first case, LowMACA expects as input a Pfam ID 

of interest (e.g. “PF00001”) and/or gene names, provided as Entrez Gene IDs (Maglott et 

al., 2005) or HUGO Gene Symbols (Gray et al., 2014). In case only a Pfam ID is 

provided, the LowMACAAnnotation package will look for all the genes that contain the 

specified domain, otherwise, only the chosen genes are retained. By selecting a Pfam ID 

of reference, only the portion of the proteins mapping to the Pfam domain will be 
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considered in the analysis. If a set of gene identifiers is selected without specifying any 

Pfam ID, the entire protein sequences are considered for the analysis. LowMACA admits 

also the use of non-ambiguous gene aliases. The LowMACAAnnotation package is 

designed to assign only canonical proteins to the relative gene creating a one-to-one 

unique match. LowMACA retrieves mutational data via the R/CRAN package “cgdsr” 

which queries the Cancer Genomics Data Server (CGDS) hosted by the Computational 

Biology Center at Memorial-Sloan-Kettering Cancer Center (MSKCC) (Cerami et al., 

2012; Gao et al., 2013). Mutation data coming from personal databases can alternatively 

be used, following the instructions provided within the manual of our R-package. Since 

LowMACA looks for hotspots of mutations, the package keeps by default only the 

mutations that modify the protein without altering the reading frame or creating stop 

codons (collectively identified as missense type mutations). Other mutation types, such 

as frame shift InDels, nonsense mutations or splice-site mutations (collectively called 

truncating mutations), can be retrieved by modifying the parameters. By default, 

LowMACA will take into account all the tumors present within the cBioPortal 

repository, but mutations from specific cancer types can be selected. In case a data driven 

workflow is chosen, the user has to provide only mutation data. These data are a direct 

derivative of a common maf file as specified by TCGA and contains the mutations 

annotated by their gene, their amino acid change, sample of origin and type of mutation. 

A detailed description can be found in the package reference manual: 

http://bioconductor.org/packages/release/bioc/manuals/LowMACA/man/LowMACA.p

df. 

4.2.3.3 Alignment and Mapping 

Amino-acid sequences selected as described above are aligned using the multiple 

sequence alignment software Clustal Omega (Goujon et al., 2010; McWilliam et al., 2013; 

Sievers et al., 2011). Although the Pfam database is a comprehensive archive of cross-
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species alignments, we only refer to human proteins and each Clustal Omega alignment 

represents a unique combination of conserved and not conserved residues. Using the 

original HMM model of the protein family is a limiting factor in this case, as we would 

lose portions of alignments specific to human proteins only. Moreover, Clustal Omega 

can handle alignments involving whole protein sequences, rather than only Pfam 

domains. From the output of the multiple alignment, a consensus sequence including the 

most represented amino acid found at every position is created that is representative of 

all the sequences under investigation. The mutations coming from aligned sequences are 

remapped directly on the consensus with the aim of obtaining a unique mutational 

profile. Considering that LowMACA specifically aims at highlighting mutations that fall 

on conserved residues, two measures of conservation are taken into account at this point. 

The first one concerns the specific positions of the alignment. LowMACA calculates the 

Trident conservation score for this purpose (Valdar, 2002), which is a mixed measure 

that encompasses three different aspects of a local alignment: 

1) The entropy of the residues at the specific position. The more different 

amino acids are aligned the less conserved is the position. 

2) The chemical similarity according to the substitution matrix BLOSUM62 

3) The relative frequency of gaps 

The second measure is global and involves the entire sequence. The alignment procedure 

of the LowMACA engine is delicate due to the fact that including dissimilar sequences in 

the analysis can invalidate the whole LowMACA workflow. For this reason, sequence 

similarity for every pair of amino acid sequences is calculated, based on the k-tuple 

measure (Wilbur and Lipman, 1983), and a warning is prompted whenever an amino-

acid sequence differs too much from the others (threshold = 0.2). 

These measures are a safety net to avoid false positive results due to low quality 

alignments and become extremely useful if the user decides to perform analysis with 
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sequences not belonging to the same family. LowMACA provides the Pfam based 

framework as a guideline, but in theory every mutation profile can be compared. 

4.2.3.4 Statistical Testing 

4.2.3.4.1 Testing the randomness of the global mutational profile 

Once the sequences are aligned and the mutations have been remapped on the consensus 

sequence, LowMACA measures the information contained in the mutational pattern 

using Shannon’s definition of entropy (Melloni et al., 2014) 

𝐻 𝑋 = − 𝑃 𝑥! 𝑙𝑛𝑃 𝑥!

!

!

 

where 𝑃 𝑥! = !!
!

 is the frequency of mutations mapping to the position 𝑖  of the 

consensus alignment of length K and N is the total number of mutations. To statistically 

assess whether the pattern of mutations significantly differs from randomness, we 

compare 𝐻 𝑋  with the entropies of a bootstrap of one thousand random profiles. Each 

random profile is generated according to the following criteria: (i) the random profile 

has the same length of the consensus sequence generated from the analysis (i.e. K); (ii) 

the number of mutations that map on the random profile is equal to the total number of 

mutations that map on the consensus sequence (i.e. N); (iii) the probability of a mutation 

to fall onto a specific position of the random profile is proportional to the number of 

amino acids that map in the corresponding position of the multiple alignment. In this 

way, the more gaps are found in a position of the alignment, the lower is the probability 

that a mutation falls in that position in the random model. This last criterion is intended 

to correct the bias of finding more mutations in more conserved regions of the 

consensus. We fit the parameters of a Gamma distribution over the empirical 

distribution of the entropies calculated on the random profiles. This will be considered 

as the null distribution and used to assign a p-value to the global mutational profile. 
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4.2.3.4.2 Testing for the identification of hotspots of mutation 

LowMACA is also able to identify significant positions along the consensus sequence, as 

opposed to the large majority of driver gene identification approaches (Tamborero et al., 

2013b). The probability that the number of observed mutations 𝑛!on position i of the 

consensus sequence derives from a random pattern of mutations is calculated estimating 

the per-position null distribution of the number of mutations that are expected to fall on 

that specific position. The null distribution is modeled using the Gamma distribution 

whose parameters are estimated from the bootstrapped random profiles generated for 

testing the randomness of the global mutational profile. A per-position p-value that the 

observed number of mutations originated from the null distribution is then calculated 

and p-values of residues that fall onto conserved positions (Trident score > 0.1) are 

corrected to obtain per-position q-values using the Benjamini-Hochberg procedure for 

multiple testing correction (Benjamini and Hochberg, 1995). 

4.2.3.5 LowMACA Output 

Using a Hypothesis Driven workflow, LowMACA outputs a detailed report of the 

mutational landscape of the consensus sequence. It specifies if the entire mutation 

profile can be considered random (global p-value), and it reports all the mutation 

hotspots that exceed the random distribution (per-position p-value and relative FDR 

corrected q-value); see Statistical Model section. Mutations that fall onto significant 

positions of the consensus sequence can be retrieved in their original position with a 

reverse mapping provided by LowMACA. The mutational profile can be visualized with 

many LowMACA methods. These plotting capabilities are considerably extended 

through the GUI. The interactivity that this implementation allows is particularly useful 

to observe the dynamic connections among mutational profiles of different proteins. The 

following plot types are offered by the package: 
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1) A stacked barplot that specifies the relative frequency of mutation per 

sequence in each position (in the GUI this plot has interactive features). This 

representation also includes a graphical view of the trident score and a logo plot of 

the most represented amino acids at every position. 

2) A Protter style plot (Omasits et al., 2014) that represents the possible 

secondary structure of the consensus sequence with the significant positions found 

by LowMACA highlighted in red. 

3) An interactive network plot in which the nodes represent the single 

sequences and the edges are drawn based on the number of shared mutated residues. 

The thicker are the edges, the more positions are in common. This representation 

provides an overview of the similarity among sequences in terms of mutational 

profile. 

4) A heatmap of mutual exclusivity and co-occurrence of mutations at the 

entire sequence level and at single position level implemented with the R package co-

occur (Griffith et al., 2016). For example, it can represent mutual exclusivity between 

mutations in KRAS and NRAS and between KRAS G12 and NRAS G12 positions (see 

Figure 1A). 

The last two functionalities are only available through the LowMACA GUI. In a Data 

Driven workflow, the output is represented in a very similar way, but LowMACA takes 

care of analyzing all the Pfam domains through the mutations in the genes provided by 

the user in a single procedure. Every Pfam analysis can become a new LowMACA object 

and it can be viewed from a descriptive point of view as shown above in the Hypothesis 

Driven workflow. 

4.2.4 Results 

Our results are reported in three different sections. The first analysis is aimed at 

demonstrating the core concept of LowMACA using a known oncogenic family. Starting 
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from the cancer genes KRAS, NRAS and HRAS (that we will name RAS trio), similar in 

structure and mutational profile, we seek to extend this conservation to all the Ras 

superfamily members (in total, 133 different proteins belonging to the PF00071). We 

demonstrate how LowMACA can be used to show the oncogenic potential of different 

positions of the family and to encompass new putative driver genes through the sharing 

of conserved mutations (see section 4.2.4.1). We also evaluated mutual exclusivity of 

mutations that fall in specific positions of the consensus alignment (see section 4.2.4.2). 

Moreover, by collecting all the observed mutations that fall in PF00071, we show that 

LowMACA hotspots fall in positions that are expected to be damaging by 8 different 

predictors of phenotypic effect. Although LowMACA predictions and mutation damage 

assessments are in agreement with the other predictors, our tool is more specific in 

assessing driver mutations against a gold standard of known cancer driver mutations and 

disease associated mutations (see section 4.2.4.3).  The second analysis is aimed at 

assessing the state-of-the-art in driver genes at a domain level. By taking a curated list of 

high confidence drivers (HCDs) and a list of candidate driver genes (CDGs) derived 

from 5 different bioinformatic tools (Tamborero et al., 2013b), we study the 

relationships in terms of common mutations among these genes (see section 4.2.4.4). 

We show that 40% of all the HCDs share at least one domain with a CDG defining and 

expanding the same concept illustrated in the Ras example. Mutations that fall in known 

driver genes are shared both by other known drivers (like the tyrosine kinases EGFR, 

BRAF, FLT3 and JAK family) but also by less frequently mutated genes with a similar 

structure (like the receptor L domain genes ERBB2 with ERBB4). The third analysis 

shows, as a negative control, that silent mutations do not have the propensity to show 

significant pattern of mutations (see section 4.2.4.5). 
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4.2.4.1 Ras superfamily analysis 

We aligned and summarized the mutational landscape of the Ras superfamily, defined by 

PF00071 (Figure 14). This Pfam represents a large family of small GTPases that can be 

grouped in different subfamilies with specific biological characteristics (Wennerberg, 

2005). We performed our analysis in two steps. First, we aligned all the mutations of the 

entire family encompassing 133 sequences. Second, we performed the same analysis 

dividing the mutations by the four main subfamilies: 1) Ras subfamily, involved in cell 

proliferation (Pylayeva-Gupta et al., 2011), 2) Rheb subfamily, involved in neural 

plasticity (Li et al., 2008), 3) Rho subfamily, involved in cytoskeletal morphology (Hall, 

1998) and 4) Rab family, involved in cell trafficking (Stenmark, 2009). Analysis of the 

entire family found significant hotspots in the consensus alignment in positions 16, 17, 

102, and 282, as highlighted in Figure 14, Panel A. In this analysis, we discuss genes that 

have at least two mutations in any of the identified hotspots. These mutations are well 

conserved in the superfamily but appear mainly represented in the Ras subfamily. 

The main representative members of this proto-oncogenic subfamily are the known 

cancer genes that compose the RAS trio. Their mutations G12, G13, Q61 and A146, 

considered important drivers in many cancers (Janakiraman et al., 2010), map on the 

hotspots identified above. These three proteins share over 90% of sequence identity in 

the domain and are the most represented in terms of absolute number of mutations in 

these positions. Hotspots found in position 16 of the global alignment harbor mutations 

on residues G12 of RAP1B, on residue S13 of RERGL and G23 of RALB, which align with 

G12 of the RAS trio, while position 17 aligns with mutations on G85 in GEM, which 

aligns with G13 of the trio. Even if these proteins, (excluding the trio) are very rarely 

mutated, LowMACA identifies their alterations as putatively oncogenic (Figure 14, Panel 

B). All these proteins belong to the Ras subfamily, but a particular exception is 

represented by RERGL that harbors a recurrent S13F mutation: this protein is considered 
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part of the Ras subfamily but its sequence is very distant from the RAS trio (Figure 14, 

Panel C) and for this reason should be analyzed separately. 

 

Figure 14 Ras Family A) LowMACA results based on the alignment of the Ras superfamily (PF00071). 
The first barplot reports the most mutated proteins under significant hotspots in their original position. 
These hotspots are also highlighted in the second barplot with colored symbols. Labels in the second 
barplot report the position of the consensus, the FDR corrected p-value and the trident score of 
conservation (TS). The TS is reported only for hotspots identified in the alignment of all the 133 family 
members. Both barplots are truncated on non-informative positions. B) The panel shows a plot 
representing the mutual exclusivity between mutations that fall in the same position of the global 
consensus alignment. Significant patterns are highlighted with the color corresponding to the tumor type 
where the mutual exclusivity was found. We consider mutually exclusive the pairs with a corrected p-value 
below 0.05 using the R package cooccur C) The dendrogram is built on hamming distances between all 
human sequences of the Ras superfamily aligned via clustal omega. Genes that belong to the same 
subfamily, as described in (Hall et al., 1998), are represented with the same color. Significant hotspots 
(under gene names) are represented with the symbols used in Panel A. 
 

 

Another highly conserved mutation is located in the aligned position 102 that 

corresponds to mutations in Q61 in NRAS prevalently and is one of the residues 

involved in the binding function of all the Ras family members to GTP (Prior et al., 

2012). LowMACA analysis highlighted mutations aligned in position 102 also in other 

Ras members, in particular Q72 mutations in RRAS2. This gene has been extensively 

KRAS G12

HRAS G12

KRAS G13
HRAS G13

RAP1B G12 RERGL S13

RAC1 P29

NRAS Q61

RRAS2 Q72

HRAS Q61

RALB G23

35 135

[...]

282

M
ut
at
io
ns

Pr
ofi

le 0.
15

0.
00

0.
05

0.
10

0.
20

102

0.
0

0.
6

Co
ns
er
va
tio

n

1 11 23 35 47 59 71 83 95 274 289

p 4.34e-315
TS 0.28

p 3.1e-41
TS 0.34

p 1.5e-03 p 6.92e-146
TS 0.47

p 1.71e-05
TS 0.67

KRAS Q61
RAC1 A159

RHOA A161

KRAS A146

A

50
0

0
10

0
30

0
70

0

NRAS G12 HRAS G13

GEM G85

RHOF A175

1 5025 75 100 125 300

RAB11B R30
RAB35 R27

RAB8A R27
RAB3A R41

26

17

[...]
43 60 62

p 3.0e-02
p 3.1e-03 p 3.1e-03

[...]

113 134

RHEB Y35 RAB37 R91
RAB3B R83

RAB23 R28
RAB26 R135

RAB39A R84
RAB29 R79

RAB3C R101

16

#§ ¶ @

p 3.47e-02
p 2.73E-03

p 1.5e03

#
§

RHOA E40/Y42

¶

¶
@

@

@

@

@

GENE
GENE
GENE

GENE
GENE

Ras Subfamily
Rab Subfamily
Rheb Subfamily

Rho Subfamily
Unclassified

NRAS A146

B

C

R
AB

42
AR

H
G

AP
5

AR
H

G
AP

35
R

H
O

T2
R

H
O

T1
R

H
O

BT
B1

R
H

O
BT

B2

R
N

D
1

R
N

D
2

R
N

D
3

R
H

O
B

R
H

O
C

R
H
O
A

R
H

O
Q

R
H

O
J

C
D

C
42

R
H

O
G

R
AC

3
R

AC
2

R
A
C
1

R
H

O
U

R
H

O
V

R
H

O
D

R
H
O
F

R
AS

L1
0A

R
AS

L1
0B

N
KI

R
AS

2
N

KI
R

AS
1

R
AS

L1
1A

R
AS

L1
1B

R
AB

L2
A

R
AB

L2
B

IF
T2

7
R

AB
34

R
AB

36
R
A
B
29

R
AB

38
R

AB
32

R
A
B
23

R
AB

7B
R

AB
7A

R
AB

9A
R

AB
9B R

AB
27

B
R

AB
27

A
R

AB
24

R
AS

EF
R

AB
44

R
AB

41
R

AB
6C

R
AB

6A
R

AB
6B R

AB
40

C
R

AB
40

B
R

AB
40

AL
R

AB
40

A
R

AB
21

R
AB

17
R

AB
5B

R
AB

5A
R
A
B
5C

R
AB

31
R

AB
22

A
R
A
B
39
A

R
AB

39
B

R
AB

18
R

AB
25

R
AB

11
A

R
A
B
11
B

R
AB

2A
R

AB
2B

R
AB

14
R

AB
4A

R
AB

4B
R

AB
12

R
AB

15
R
A
B
37

R
A
B
26

R
A
B
3B

R
AB

3D
R
A
B
3A

R
A
B
3C

R
AB

13
R

AB
10

R
A
B
8A

R
AB

8B
R
A
B
35

R
AB

1C
R

AB
1A

R
AB

1B
R

AB
33

A
R

AB
33

B
R

AB
30

R
AB

19
R

AB
43 R

EM
2

R
EM

1
G
EM

R
R

AD
R

AS
D

2
R

AS
D

1
R

AS
L1

2
R
H
EB

R
H

EB
L1

R
ER

G
ER

AS
D

IR
AS

3
D

IR
AS

1
D

IR
AS

2
R

IT
1

R
IT

2
R

AL
A

R
A
LB

R
A
P1
B

R
AP

1A R
AP

2B
R

AP
2A

R
AP

2C N
R
A
S

H
R
A
S

K
R
A
S

M
R

AS
R

R
AS

R
R
A
S2

0
50

15
0

R
A
B
L3

R
AB

20
R

H
O

BT
B3

IF
T2

2

R
H

O
H

R
ER
G
L

D
N

AJ
C

27
R

AN
R

AB
28

10
0

H
ei

gh
t

16

17

26

35

60

62

102

113

134

282

blca
chol
coadread
hnsc
laml
luad

mm
paad
pcpg
skcm
stad
thca
ucec



 84	

analyzed at the transcriptional level but remains poorly investigated regarding the 

mutational context (Gutierrez-Erlandsson et al., 2013). RRAS2 has a role in pathways 

activated by the RAS trio, however, while the trio exerts its pro-proliferative activity via 

the activation of the Raf-ERK pathway of MAP kinases, RRAS2 activates this pathway 

poorly as it does not recruit Raf1 (Gutierrez-Erlandsson et al., 2013). Following the 

observation of several Q72 mutations in RRAS2, one might speculate on a possible 

activation of this gene in the same way as Q61 activates NRAS.  

Position 282, corresponding to an alanine in 146 in the RAS trio, represents a completely 

different case. This hotspot is extremely well conserved in all the members of the 

superfamily and represents the only case of a significantly mutated residue shared by two 

different Ras subfamilies (Ras and Rho). This mutation does not impair the affinity with 

GTP (like G12/13 and Q61) but rather seems to have an effect on the GTP-Ras steady-

state levels as reported by experimental assays (Janakiraman et al., 2010). RAC1, RHOA 

and RHOF emerge as putative oncogenes by this analysis, sharing mutations in this 

position. Among these, RAC1 and RHOA are already present in the Cancer Gene Census  

(Futreal et al., 2004), adding confidence to the hypothesis that also RHOF might play a 

role in cancer. Moreover, relatively elevated levels of RHOF were observed in 

lymphomas derived from the germinal centre (Gouw et al., 2005). 

Hotspots identified in the previous analysis correlate well with sequence similarity based 

on hamming distance (Figure 14, Panel C). For example, the aforementioned hotspots 

16, 17 and 102 belong specifically to the Ras subfamily, identified in orange in the 

dendrogram. This subfamily harbors two glycines in position 16 and 17 that are not 

shared by the entire superfamily. In fact, the 16/17 glycines can be substituted by the 

couple serine/glycine (Rab subfamily) or the couple glycine/alanine (Rho subfamily) 

(Wennerberg, 2005). The Rheb subfamily instead, composed of just two genes RHEB 

and RHEBL1, does not conserve any of the two marker residues and carries a distinctive 
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leucine in position 16. By analyzing mutations that fall individually in each of the four 

subfamilies, we were able to identify new putative oncogenes and new hotspots of 

mutation. In order to keep the reference with positions identified with the global 

analysis, we maintained the full alignment of all the proteins of PF00071 and then subset 

the genes of interest according to the four subfamilies (this alignment parameter is called 

“datum” in the LowMACA package).  

The analysis of the Rab subfamily (mostly represented in the central portion of the 

dendrogram in Figure 14, Panel C) highlights three new hotspots and 11 new putative 

oncogenes. Among these, RAB29 harbors 4 mutations in position 134 of the alignment 

that are predicted to be damaging by most of the functional predictor tools used in 

section 4.2.4.3 and reported in Appendix Table 4 (R79W in Colorectal cancer and R79L 

in Lung adenocarcinoma). The involvement of members of this subfamily in cancer has 

been widely demonstrated (Chia and Tang, 2009). 

The analysis of the Rho subfamily allowed the identification of new hotspots, which are 

mainly represented by RAC1 and RHOA. RAC1 marks a single hotspot found in position 

35 corresponding to mutations of the residue proline 29 (RAC1 P29). According to the 

most recent literature, P29 results altered in approximately 3.9% of TCGA skin 

cutaneous melanoma patients (Hodis et al., 2012) suggesting that RAC1 is a melanoma 

oncogene. The biological significance of the RAC1 P29 mutation remains unclear, 

although authors demonstrated that the mutation could destabilize the RAC1 inactive 

GDP-bound state in favor of its active GTP-bound state, creating a gain-of-function 

oncogenic event (Watson et al., 2014). In fact, the expression of RAC1 P29S in sensitive 

BRAF-mutant melanoma cell lines confers resistance to treatment with RAF inhibitors 

(Watson et al., 2014). Moreover, the P29S mutation has been reported in several cancers 

such as head and neck tumors (Stransky et al., 2011) and breast tumors (Forbes et al., 

2011). Other Rho subfamily members also share the hotspot 35: RAC2, RHOT1, RHOC. 
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Even though one single mutation was found for each gene in our dataset, this position is 

extremely well conserved (a proline is present in all four genes) and all the mutations 

were found in melanoma patients without a RAC1 P29 mutation (Appendix Table 4). 

The mutational hotspots 60 and 62, respectively corresponding to glutamate 40 and 

tyrosine 42 in RHOA, were observed in seven tumors (six head and neck, one breast) and 

affect the effector domain of RHOA. RHOA, is considered a gene encoding a protein that 

is clearly involved in cell proliferation (Lawrence et al., 2014). As for the case of RAC1, 

also RHOA shares its hotspots with other Rho subfamily members (these results are not 

reported in Figure 14 since only one mutation was found in our dataset). These genes 

include RHOH E39K for hotspot 60 and RHOC Y42C and RAC1 Y40S for hotspot 62. 

Both positions are still well conserved in the subfamily (Appendix Table 4).  

The analysis of the Rheb subfamily shows a significant number of mutations that fall in 

the hotspot 43. These mutations are mostly represented by Y35N hosted by RHEB and 

found present in Kidney Renal Clear Cell and Uterine Corpus Endometrioid 

Carcinomas in TCGA patients. Moreover, authors observed that mutations of RHEB 

(Y35N/C/H) increase phosphorylation of endogenous substrate S6 kinase (S6K1) of the 

mTOR signaling pathway (Grabiner et al., 2014), a protein kinase that plays key roles in 

cellular regulation (Wang and Proud, 2011). For the presence of the Y35N mutation, 

RHEB was recently highlighted as a novel cancer gene involved in cell proliferation 

(Lawrence et al., 2014), and cancer associated mutations in RHEB inducing mTORC1 

activity have been reported (Grabiner et al., 2014). The only other member of the 

subfamily (RHEBL1) shares a Y35H mutation in the same hotspot in one melanoma case 

in our dataset. 

4.2.4.2 Mutual exclusivity analysis 

In order to corroborate LowMACA results reported above, we performed mutual 

exclusivity analysis on significant mutations and hotspots. Mutual exclusivity between 
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mutations on genes of the same pathway is a critical measure to assess if the pathway is 

relevant for cancer. The reason is that after the first mutation occurs, there is no selective 

pressure for a second mutation in another gene of the same pathway (Vandin et al., 

2012). While generally performed gene-wise (Ciriello et al., 2012), the particular 

characteristics of LowMACA allow us to extend this concept to mutations that map on 

conserved residues within Pfam domains. If a putative driver mutation is found to be 

mutually exclusive with a known driver, its significance is enhanced as it possibly exerts 

the same function in cancer. We implemented mutual exclusivity analysis using the R 

package cooccur for a genomic analysis (Griffith et al., 2016), stratifying mutation data by 

tumor type. Our results revealed that hotspots in positions 16, 17, and 102 cover the 

large majority of mutually exclusive patterns (Figure 14, Panel A). This is a confirmation 

of the known exclusivity pattern of the mutations in KRAS and NRAS even among 

different positions within the genes themselves (Figure 15, right panel). In general, 

mutations in position 16 and 102 can be seen as a signature of two types of cancer: 

colorectal, characterized by KRAS G12, and melanoma, characterized by NRAS Q61 

(Figure 15, left panel) (Janakiraman et al., 2010). 

 
Figure 15 Mutual Exclusivity in the Ras Family. In these panels we show a plot representing the mutual 
exclusivity between mutations that fall in the same residue of individual proteins (left panel) and genes 
(right panel). Significant patterns are highlighted with the color corresponding to the tumor type where 
the exclusivity was found. We consider mutual exclusive the pairs with a corrected p-value below 0.05 
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using the R package cooccur. In the left panel we narrow down the patterns described in figure 1B, 
highlighting the major role of KRAS G12 and NRAS Q61. Notably, RAC1 P29 and RHOA Y42 (described 
in the main text as potential new driver mutations) retain a pattern of mutual exclusivity with NRAS Q61 
and KRAS G12, respectively. In the right panel it is possible to appreciate that mutual exclusivity between 
minor genes always occurs with the RAS trio. These genes cover many of the RAS subfamilies, in 
particular RAB3C (Rab subfamily), DIRAS2 and RRAS2 (Ras subfamily) and RAC1 and RHOA (Rho 
subfamily). 
 
These two highly frequent mutations allowed us to infer a possible driver role for less 

frequent mutations. For example, mutations in positions 26, 60 and 134 in colorectal 

cancer are mutually exclusive with position 16. Both hotspots are supported by this 

analysis in the Rab and Rho subfamilies. Similarly, position 102 is mutually exclusive 

with 26 and 35 in melanoma and 113 in thyroid cancer, further supporting the role of the 

aforementioned subfamilies. 

4.2.4.3 Comparison with functional impact tools 

We retrieved every amino acid substitution occurring in the RAS superfamily from the 

cBioPortal database (more than 10’000 different samples) and we annotated our 

predictions (if a mutation falls under a significant hotspot of LowMACA, as presented in 

the Ras superfamily analysis in section 4.2.4.1). The 2294 unique substitutions found in 

PF00071 cover 2264 positions and 130 proteins of the 133 RAS superfamily genes. 

LowMACA predicts as significant 150 mutated residues under 11 hotspots (Figure 14), 

which correspond to 215 different substitutions. We also annotated this dataset 

including the predictions of functional impact from 8 different tools using ANNOVAR 

(Wang et al., 2010). These tools include PolyPhen2 (Adzhubei et al., 2010), Mutation 

Assessor (Reva et al., 2011), Mutation Taster (Schwarz et al., 2014), SIFT (Sim et al., 

2012), MetaLR (Dong et al., 2015), LRT (Chun and Fay, 2009), FATHMM (Shihab et al., 

2013a) and RadialSVM (http://genomics.usc.edu/software/11-icages) and are aggregated 

in the dbNSFP database (Liu et al., 2013). The functional impact of an amino acid 

variation can be assessed in many different ways (across species conservation, 

stoichiometric similarity between original and substitute amino acid, change of protein 
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conformation etc.), but all the algorithms share a similar output, assessing if a mutation 

could be considered “tolerated” or “damaging”. We summarize this information as a 

damaging comprehensive score: the proportion of tools that predict the variation as 

damaging, ranging from 0 (all prediction as “tolerated”) to 1 (8 out 8 prediction of 

damaging mutation). In Figure 16, Panel A, we show how the 2264 positions are 

classified in terms of this damaging score. This score is calculated on the actual amino 

acid substitution and not on the position, so in case there are more possible variations, 

the median damaging score is considered (like in the case of KRAS G12 that can be 

substitute by V, A, K and other amino acids and a unique damaging score exists for every 

change). 

 

Figure 16 Comparison of LowMACA Ras mutations with functional impact tools. A) Distribution of 
damaging scores with respect to LowMACA classification in significant and non significant mutations B) 
Fraction of significant mutations in LowMACA for each class of damaging score. Damaging score is 
calculated as the fraction of dbNSFP tools (8 tools) that classify a specific mutation as damaging. 
 

There is a significant difference (p-value of the two tails t-test = 5.49e-08) between the 

score calculated on the positions not considered by LowMACA and those that fall under 

LowMACA hotspots. This can be interpreted as a positive concordance between the 

LowMACA predictions (based on actual data) on the RAS family and their impact on the 

protein they belong to as calculated by the dbNSFP tools. This simply means that in 

cancer, the most frequent mutations are also the most damaging. In Figure 16, Panel B, 
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we show how the predictions of LowMACA are distributed. The majority of our 

predictions fall beyond the majority voting of the tools (5/8 and higher). To better 

understand the difference between dbNSFP tools and LowMACA, we further annotated 

our dataset with four databases of manually curated variations in the human genome 

predicted as disease-associated. These four databases include two databases for disease-

associated variations, Humsavar (UNIPROT database of human polymorphism at 

protein level, www.uniprot.org/docs/humsavar), clinvar version 20140929 (Landrum et 

al., 2014) and two cancer-specific databases created by the Washington University, 

CiViC (Clinical Interpretation of Variants in Cancer, 

https://civic.genome.wustl.edu/#/home) and DoCM (Database of Curated Mutations 

http://docm.genome.wustl.edu/) . CiViC and DoCM are not published yet. We then test 

the predictions of LowMACA against the union of Humsavar and clinvar and against the 

union of CiViC and DoCM. In both cases, there is a significant positive association (p-

value << 0.01 and OR >>1) (Appendix Table 5), meaning that predictions made by 

LowMACA are strongly in accordance with known results. Furthermore, we can 

appreciate a good overall recall and accuracy against these databases: 74% (32/43) and 

95% (21/22) of recall for disease-associated and cancer-associated variants respectively 

with an accuracy of 15% and 10%. We performed the same analysis against those 

variants evaluated as damaging by more than 50% of the dbNSFP tools. Although still 

positively associated to pathogenic variations, the results are less striking (p-value 3.6e-

05 and 1.89e-03 for disease-associated and cancer-associated respectively). While still 

maintaining a good recall, the accuracy is extremely poor. This is not surprising since 

functional prediction tools are not intended to find mutations that actually occur in 

cancer or other diseases, but simply to assess if a possible variation could be harmful to 

the affected protein. LowMACA has the ability to discern those mutations that actually 

occur in patients, enhancing the accuracy of a true functional prediction. 
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4.2.4.4 Analysis of driver genes: comparison with available tools 

In this section, we analyzed the state-of-the-art driver genes identified with different 

bioinformatics tools under the lens of the protein families they belong to. In particular, 

we focused our attention on the 435 genes identified by a unifying approach as presented 

in (Tamborero et al., 2013b). In this study, driver genes are divided in two categories, 

291 High Confidence Driver (HCDs) and 144 Candidate Driver Genes (CDGs), 

according to several criteria, which include: 1) the number of bioinformatic tools that 

identify the gene as potential driver (5 tools were taken into consideration), 2) if the gene 

belongs to a list of manually curated cancer genes as provided by the Cancer Gene 

Census (CGC) (Futreal et al., 2004), 3) if the gene belongs to the same pathway in the 

KEGG database (Kanehisa et al., 2014). With this analysis we want to add address two 

questions: what Pfam domains are contained in driver genes and what are the candidate 

driver mutations shared between HCDs and CDGs according to LowMACA criteria. 

Since we are considering missense mutations, most of the tumor suppressors contained 

in the driver gene list will not be covered by LowMACA. In fact, tumor suppressors tend 

to lose their function during tumorigenesis and mutational landscapes are typically 

represented by sparse truncating mutations all over the gene body (Vogelstein et al., 

2013). In this case, no clear clusters can be seen at single amino acid level because for a 

gene to lose its protein function there are generally no preferential positions. 

Furthermore, many tumor suppressors are singletons in the Pfam database, in the sense 

that their main domain can only be found in the genes themselves or in few other 

members (e.g. P53 Pfam, PF00870, is only shared by three genes TP53, TP63, TP73, 

Suppressor APC, PF11414, belongs to APC and APC2 only). Nevertheless, highly 

mutated tumor suppressors like TP53, VHL, RB1 ARID1, PTEN and APC form actual 

hotspots that resulted significant in the LowMACA analysis (Zhao et al., 2013). To 

appreciate the full results, see Table S2 in (Melloni et al., 2016). Other known tumor 
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suppressors such as WT1, CEBPA or CDKN1A are instead missed by our analysis. The 

case of TP53 is particularly interesting as it tends to form clusters of missense mutations 

specifically on its P53 domain that probably exert oncogenic or dominant negative 

functions (Melloni et al., 2014). The fact that some tumor suppressors are identified and 

some are not depends in large part from the frequency of mutations. As the frequency 

increases, the sensitivity is enhanced and preferential positions of disruption emerge. 

Preferential mutation spots, even in tumor suppressors, are generally explained by 

possible dominant negative or oncogenic signature of certain tumor suppressors 

(Mahmoud et al., 1997; Papa et al., 2014) but also by a higher susceptibility to 

carcinogens of certain codons in these genes compared to other codons (Rivlin et al., 

2011). 577 different Pfam domains are covered by the driver gene list, approximately one 

tenth of the entire Pfam-A database: 440 in the HCD list, 223 in the CDG list and 86 in 

common (Figure 17, Panel A). To assess whether the overlap between the Pfam domains 

contained in the lists of CDG and HCD is greater than expected, we randomly sampled 

the same amount of genes that are contained in the two lists and measured the overlap of 

the contained Pfam domains. On average, we found a smaller overlap (57± 7), but also 

a smaller number of Pfam domains in the CDG-sized samples (194± 11) and in the 

HCD-sized samples (355± 15). 
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Figure 17 Other oncogenic Pfam families A) Venn diagram of the represented Pfam domains in the list 
of 291 high confidence drivers and 144 candidate drivers. A total of 577 different Pfam domains are 
covered by these genes with 86 Pfam domains shared between the two lists. B) Heatmap representation of 
significant Pfam domains in the “Kinase” network. Every row represents a patient of 17 different tumor 
types. A strong mutual exclusivity between tyrosine kinases, kinases and CH domain is shown. C) PI3K 
networks in driver genes. Every circle represents a distinct Pfam domain and the size represents the 
number of genes that contain the specified Pfam domain. Color indicates if significant hotspots were 
found in the LowMACA analysis (red is significant, green is not significant). Two domains are connected 
if they are found together on the same gene/protein. Edge thickness represents the number of genes that 
harbor both Pfam domains at the vertices (minimum 2). Blue color indicates mutual exclusivity and 
orange depicts significant co-occurrence. 
 

We conclude that driver genes contain more domains than the rest of the other human 

genes  (p=7e-9 and p=4e-3 for HCD and CDG, respectively, via z-test) but their overlap 

is not significant (p=0.38 via chi-squared test). The first two significant p-values can be 

interpreted as an expected enrichment in functional portions for the driver gene list 

compared to the rest of human genes. The not significant overlap instead could be 

interpreted as an enrichment of singletons caused by the great amount of tumor 

suppressors but also as a lack of connections between the two lists from the domain 

point of view. We performed LowMACA analysis in order to find significant hotspots of 

mutations at two different levels: 1) all the domains were analyzed by aligning the 

specific sequences of each HCD and CDG that harbors them and 2) the entire protein 
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was scanned for hotspots considering just its sequence, without any alignment. The 

second analysis was performed to look for protein-specific hotspots that could be found 

outside of the Pfam domains and to prevent the exclusion of genes that are not 

considered by the Pfam-A database (e.g. WT1). Obviously, conservation plays no role in 

this case. Our results identified hotspots of mutation in 11 out of the 137 Pfam domains 

that were found only in CDG (8%), 32 out of the 86 Pfam domains that were shared both 

by CDG and HCD (37%) and 188 Pfam domains that were found only in HCD (53%). 

The higher number of domains that were found significant in HCD compared to CDG 

reflects the increased number of mutations in each category. Overall, 52 out of 144 

candidates (36%) and 177 out of 291 drivers (60%) are supported by LowMACA 

analysis, either by single sequence analysis or Pfam analysis. Hotspots that are supported 

with single-sequence analysis (found in 140 genes for HCDs and in 35 genes for CDGs) 

highlight genes that do not need further support from Pfam companion genes for their 

identification. Pfam analysis added support to further 37 driver genes and 17 candidates. 

Compared to the number of genes identified on single sequences, the analysis of the 

Pfam domains increased the number of identified genes by 26% in HCD and by 50% in 

the CDG categories, reflecting the fact that LowMACA is particularly useful in 

identifying genes that mutate at low frequency. In fact, the major gain is found in the 

CDG category whose genes are typically less frequently mutated. To better characterize 

recurrence of Pfam domains within the CDG and HCD genes, we built a group of 

networks where vertices are Pfam domains and edges connect domains that are included 

together in at least two protein sequences (Figure 18).  
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Figure 18 Complete Network of Pfam domains harbored by driver genes. 577 different domains are 
included in the list of 453 driver genes from Tamborero et al. that are represented by each circle in the 
plot. In red, we highlight those Pfams that harbor at least one significant hotspot, in green those that 
resulted not significant. An edge connects two domains if at least two genes harbor both the Pfam domains 
at the vertices. Blue edges are drawn if the domains are mutually exclusive (Fisher test < 0.05 is light blue, 
< 0.01 is deep blue and OR < 1), yellow if co-occurrening (Fisher test < 0.05 is light brown, < 0.01 is orange 
and OR > 1), grey if not significant. Excluding domains connected by only one gene, 110 out of the 577 are 
represented in this figure. 
 
The three main connected graphs are represented by the “PkinaseTyr” network, the 

“PI3K” network (Figure 17, Panel C) and the “HelicaseC” network, which were named 

after their main hub. The “PkinaseTyr” network encompasses major oncogenes like 

BRAF, EGFR, FLT3 and ERBB2 for PF07714 (Pkinase_tyr, Additional file 2: Table S3 

highlighted in green) and STK11, CHEK2, MAPKinases (MAP3K1/3/4) and activin 

receptors (ACVR1B) for PF00069 (PKinase). We specifically analyzed the 10 domains 

which resulted significant with LowMACA and represent them as a heatmap (Figure 17, 

Panel B): mutated subjects in at least one of the Pfam sequences are depicted in red, 
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while subjects with a wild type domain are depicted in blue. For many tumor types, in 

particular bladder (BLCA, in black), breast (BRCA, in red) and colorectal (COADREAD, 

in orange), a clear mutually exclusive pattern is visible, where subjects with mutations in 

Pkinase have a wild type tyrosin kinase and vice versa (p=5.18e-60, Odds Ratio 0.26 

under Fisher exact test). In glioblastoma (GBM, in green), the majority of patients have a 

mutation on the Furin-like domain (PF00757), mutually exclusive with tyrosine kinases. 

The most studied missense mutation in this tumor type is in fact EGFR A289V/D/T, 

known for being resistant to anti-EGFR inhibitor used in lung cancer (Vivanco et al., 

2012). This alanine residue is perfectly conserved within the Furin-like domain among 

other epidermal growth factor genes and appears mutated also in ERBB2 and ERBB4, 

although not in glioblastoma. 

The “HelicaseC” network encompasses genes of various families, which are not strictly 

connected to each other at the functional level. The Helicase_C domain (PF000271) is 

the largest significant member of this module and encompasses HCDs as CHD4, 

SMARCA4 and ATRX with two highly conserved arginine residues mutated at low 

frequency in various tumor types. These mutations affect the corresponding arginine of 

CDH7, SMARCAD1 and DDX3X, which are considered as candidate drivers by the 

analysis of Tamborero and colleagues (Tamborero et al., 2013b). 

The “PI3K” network is instead a strictly interconnected module with a strong degree of 

mutual exclusivity between the domains that compose it (blue edges in (Figure 17, Panel 

C). The mutations in these Pfam domains belong for the large majority to three main 

HCDs (PIK3CA, PIK3CB and PIK3CG). In particular, PIK3CA is one of the most 

mutated genes in many types of cancers. The most relevant mutations appear to be in 

position 24, 27, and 28 of the multiple alignment of PF00613 (PI3Ka domain) that 

correspond to E542, E545 and Q546 in PIK3CA (Appendix Table 6). These mutations 

can be found conserved also in the other two HCDs at low frequency and a similar role 
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has been already assessed for PIK3CB (Pang et al., 2009). As we have shown, the overlap 

between Pfam domains in HCDs and CDGs is not significantly higher than expected 

from random sampling. This suggests that the current concept of driver genes could be 

biased due to inappropriate consideration of infrequently mutated genes within the same 

family. For this reason, we decided to extend our analysis to other possible candidates 

not present in the list of Tamborero et al. (Tamborero et al., 2013b) in the same way as 

we did for the Ras family. We thus analyzed all the proteins within the following Pfam 

domains: PF00794 (PI3K_rbd) PF00792 (PI3K_C2) PF00454 (PI3_PI4_kinase), PF02192 

(PI3K_p85B) and PF00613 (PI3Ka). These domains are all shared by the 3 

aforementioned HCDs and encompass the majority of their mutations. We found low 

frequency mutations in PIK3C2A, PIK3C2G and PIK3CD, other members of this kinase 

family, which were never considered as potential driver candidates before. The first two 

genes belong to the class II of PI3Ks and their role in human diseases is still unclear 

(Vanhaesebroeck et al., 2010). PIK3CD, instead, belongs to the same class I of 

PIK3CA/B/G and has been found amplified or overexpressed in cancer (Kok et al., 2009). 

4.2.4.5 Analysis of silent mutations 

We run as a negative control a LowMACA analysis using a database of silent mutations 

on the Pfam domains which were involved with a major role in the previous sections: 

Ras supefamily (PF00071), Pkinase_tyr (PF07714), Helicase_C (PF00271) and PI3Ka 

(PF00613). This analysis is aimed at assessing whether non-random pattern emerge from 

silent mutations. We downloaded TCGA data from TCGA original repositories and 

performed the analysis on this subset since the cBioportal database exclude silent 

mutations. The analysis of 676, 1144, 216 and 37 silent mutations that fall on the Ras, 

Pkinase_tyr, Helicase_C and PI3Ka, respectively, do not show any significant hotspot. 

On the contrary, 5 hotspots are identified in Ras domain, 10 in Pkinase_tyr, 2 in 
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Helicase_C and 3 in PI3Ka when analyzed with non-silent mutations (Figure 19). 

 

Figure 19 Barplots showing the stacking of silent and non-silent mutations within the 4 main Pfams 
discussed within the text (PF00071 - Ras superfamily, PF07714 - Pkinase_tyr, PF00271 - Helicase_C 
and PF00613 - PI3Ka). On the x-axis it is depicted the position in the global alignment, while on the y-
axis the mutation frequency of ach position. The blue dashed line represent the threshold of significant 
mutation frequency, which is different for each position of the global alignment. Bars above the dashed 
blue line are significant in terms of their p-vlaue. Red asterisks highlight the residues that are significant 
after Benjamini-Hochberg procedure for multiple testing correction of p-value, which is performed only 
on conserved positions (see Methods). For silent-mutations analysis, a database was collected from TCGA 
original repositories and supplied as external repository for LowMACA analysis (see software Vignette for 
further information). The analysis shows that no hotspots are identified in any of the Pfams checked with 
the use of the silent mutations database, while at least two hotspots per Pfam are identified when the 
repository of non-silent mutations is used (canonical analysis). In particular, 5 hotspots are identified in 
Ras domain, 10 in Pkinase_tyr, 2 in Helicase_C and 3 in PI3Ka. 
 

4.2.5 Discussion 

We developed LowMACA, a software aimed at characterizing low frequency mutations 

involving specific residues within the consensus sequence of protein families. 

LowMACA maps the mutations observed in different members of a protein family to the 

multiple alignment of the family members. The resulting consensus protein is suitable to 

summarize the mutation patterns of different proteins and increases the amount of 

information on functional domains and their possible role in cancer. All the mutations 

selected by LowMACA frequently fall upon specific positions of the consensus protein 

and these can be considered as “highly conserved” in cancer. 
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Moreover, we have identified patterns of statistically significant mutual exclusivity 

(mutex) among the identified mutations. The presence of these patterns helps to clarify 

the meaning of all the mutations belonging to specific pathways indicating exclusive 

roles of the involved genes in cancer. For example, the mutex analysis between RAC1 

and NRAS in skin melanomas (Figure 15) confirms the relevance of the role of RAC1, 

which is co-mutated with NRAS, in gain-of-function oncogenic GTP mediated events. 

The RAC1 P29L mutation has been experimentally expressed in C. Elegans neurons 

displaying defects in axon guidance and branching errors that were not seen in 

equivalent transgenic lines expressing wild-type Rac1. Loss of function of the Rac1 gene 

did not show any pattern of alteration of axon guidance, demonstrating that Rac1 P29L 

is a gain of function mutation (Alan and Lundquist, 2013). These results suggest that a 

sort of “code switch” between mutations in NRAS and in RAC1 occurs, probably 

generating different patterns of cell migration. Translating the experimental 

observations concerning RAC1 from a neuronal system to cancer is not straightforward. 

However, it is tempting to speculate that cancer can orchestrate a complex mechanism of 

choices depending on the environmental context where it develops. The mutex analysis 

between Rho members and the RAS trio in cancer represents an example of how one out 

of the many mechanisms underlying cell growth and metastatic processes can provide a 

selective advantage to cancer cells.  

The identification of mutex patterns concerning other proteins belonging to the Ras 

family suggests that beyond KRAS, HRAS and NRAS other minor genes, such as RRAS2, 

could play a “Ras-like” role in promoting pro-proliferative activity via the activation of 

the Raf-ERK pathway of MAP kinases (Gutierrez-Erlandsson et al., 2013) in uterine and 

cervical cancers (Figure 15). This finding supports the hypothesis that RRAS2 has a 

vicariant role in wild type KRAS cancers. Other mutual exclusivities have been observed 

between HRAS and RHOA, in head and neck squamous cell carcinoma (HNSC) and 
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between DIRAS2 and KRAS in colorectal cancer. The phenomenon by which minor 

proteins in a family domain can harbor the “same” mutations harbored by known 

drivers is observable also in other Pfam domains encompassed in the PI3K family. These 

findings highlight a possible role of minor members of this kinase family in cancer (e.g. 

PIK3C2A, PIK3C2G and PIK3CD). LowMACA allows focusing on this phenomenon and 

helps formulating a possible explanation: cancers cells that gain a selective advantage 

from major driver mutations in one type of cancer may gain a similar selective advantage 

from corresponding mutations in closely related proteins in other types of cancer where 

the related protein plays a prominent role due to tissue specific differences in gene 

expression or environmental constraints such as exposure to therapeutic agents. In 

extending LowMACA analyses to other Pfam domains we also demonstrated the 

existence of liaisons among genes considered high confidence drivers with other genes 

that are considered candidate drivers. The presence of low-frequency mutations in 

ERBB2 and ERBB4 that correspond to known driver mutations in tyrosine kinases such 

as EGFR, BRAF, FLT3 and JAK further strengthens this concept. 

Nevertheless, Ras subfamilies also show specific hotspots that reflect the subtle 

differences played by genes of each subfamily in cellular homeostasis. The Rho subfamily 

genes have roles in regulating cytoskeletal dynamics and deregulation of Rho proteins 

contributes to tumorigenesis and metastasis, while Ras subfamily proteins mainly 

function in regulating cell proliferation (Wennerberg, 2005). 

LowMACA is intended as an algorithm that emphasizes low-frequency mutations in 

genes containing a Pfam domain. Nevertheless, we cannot generalize this concept to all 

driver genes. For example, genes such as TP53, VHL, RB1 or APC, show distinct patterns 

of somatic driver mutations that are not shared by other members of their family (like 

TP63 and TP73 or APC2). These tumor suppressors should be considered as singletons 

and this characteristic underlines the difference between tumor suppressors and 
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oncogenes. Thus, LowMACA is particularly useful for the identification of gain-of-

function mutations in putative oncogenic families. 

LowMACA emphasizes the role of genes mutated at minor frequency in cancer, which 

are often neglected by current analyses. The possibility to classify patients associated to 

signatures of low-frequency mutations identified by our software represents a promising 

route for future work. At the same time, a more accurate classification of driver genes 

may shed light on molecular mechanisms underlying cancer that until now were not yet 

considered. 

 

4.3 A knowledge-based framework for the discovery of cancer 

predisposing variants using large-scale sequencing breast cancer 

data.  

 
This last section of the results represents an attempt to apply a genomic-based approach, 

like the ones seen in the first two sections, to a typical case-control genetic study on 

exome sequencing data. What is generally performed in a genetic case-control 

framework is to seek for SNPs with a strong imbalance in terms of allele count between 

cases and controls, taking into account how rare or common is the SNP in the 

population. While this seems to be the most unbiased approach, it is hard to reach the 

required statistical power when using exome sequencing data because the number of 

SNPs to test is extremely high (possibly millions of tests) and the cost to reach an 

adequate sample size is impractical. What we know is that cancer has a double 

“mutation” mechanism. It is not only a familial disease but also a somatic disease, with 

changes in DNA at the somatic level that, as pointed out in Rhaman 2014, are 

substantially overlap with each other. At least half of the known cancer predisposing 

genes are also known somatic driver genes and that suggests that what we know about 
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the somatic changes can be used to get more insights into predisposition. The search of 

somatic mutations that correspond to germline variants was the starting point of this 

section that has been further expanded to design a complete framework for predisposing 

variants discovery. 

4.3.1 Abstract 

The landscape of cancer predisposing genes has been extensively investigated in the last 

30 years with various methodologies ranging from candidate gene to genome-wide 

association studies. However, sequencing data are still poorly exploited in cancer 

predisposition studies due to the lack of statistical power when comparing millions of 

variants at once.  

Here, to overcome these power limitations, we propose a knowledge based framework 

trained on the characteristics of known cancer predisposing variants and genes. Under 

our framework, we take advantage of a combination of previously generated datasets of 

sequencing experiments to identify novel breast cancer predisposing variants comparing 

the normal genomes of 673 breast cancer patients of European origin against 27,173 

controls matched by ethnicity. 

We detect several expected variants on known breast cancer predisposing genes like 

BRCA1 and BRCA2 and 19 variants on genes associated with other cancer types, like 

RET and AKT1. Furthermore, we detect 185 variants that overlap with somatic 

mutations in cancer and 50 variants associated with 41 possible loss-of-function-genes, 

including PIK3CB and KMT2C. Finally, we find a set of 19 variants as potentially 

pathogenic and negatively associated with age at onset that have never been associated to 

breast cancer. 

In this study we demonstrate the usefulness of a genomic-driven approach nested in a 

classic case-control study to prioritize cancer predisposing variants. In addition, we 

provide a resource containing variants that may affect susceptibility to breast cancer. 
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4.3.2 Introduction 

Breast cancer is one of the most common cancers with greater than 1,300,000 cases and 

450,000 deaths per year worldwide (Koboldt et al., 2012) and it is estimated that ~5-10% 

of women have germline mutations that lead to hereditary predisposition to breast 

cancer (Ripperger et al., 2008). Specific mutations in BRCA1 and BRCA2 are known to 

be responsible for inherited susceptibility to breast cancer in families with early-onset 

disease(Campeau et al., 2008). In particular, it has been demonstrated that the risk for 

first-degree relatives of an affected person is increased by two-fold and BRCA1/2 

mutation carriers account for just 20% of this enhanced risk (Ripperger et al., 2008). 

Mutations in other genes, such as PALB2, PTEN and TP53, have been associated with 

increased risk of breast cancer. Unfortunately, many familiar breast cancers (~50%) are 

still unexplained at the genetic level and many predisposing variants are yet to be found 

(Fachal and Dunning, 2015).  

Historically, beside the use of linkage analysis, which requires families with a penetrant 

phenotype, the analysis of candidate genes has allowed the discovery of the majority of 

well-known cancer predisposing genes (Rahman, 2014). Conversely, genome wide 

association studies (GWAS), which have been extensively used, have the ability to 

discover cancer predisposing genes on a genome wide scale with a pure data driven 

approach but suffer from lack of precision (Ward and Kellis, 2012). In fact, the results of 

GWAS can only indicate regions where the real pathogenic variants actually reside. The 

use of whole-exome sequencing (WES) and whole-genome sequencing (WGS) data, 

although able to overcome the aforementioned limitations of GWAS, has been poorly 

exploited due to power limits imposed by testing millions of variants simultaneously. 

Furthermore, Next Generation Sequencing (NGS) data are more expensive and less 

reliable in terms of accuracy of the genotype call, so that a statistical power comparable 

to the largest GWAS studies is technically unreachable (Zheng et al., 2013). Nevertheless, 
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WES or WGS have the advantage that they can identify rare variants that may influence 

cancer risk while the concept of linkage disequilibrium (LD) used by GWAS mainly 

relies on common single nucleotide polymorphisms (SNPs) with minor allele frequency 

(MAF) generally greater than 5%. Actually, we can hypothesize that only a fraction of the 

heritability can be ascribed to common genetic variants while rare variants can convey 

the remaining heritability (Kiezun et al., 2012).  

A straightforward case-control comparison on allele frequencies would be both 

underpowered and incomplete, since most rare potentially pathogenic variants would be 

excluded because they lack the required statistical power. Thus, we propose a 

computational framework that is trained on our knowledge of the characteristics of 

known cancer predisposing genes and variants. Under our framework, we studied the 

normal genomes coming from 673 breast cancer patients of European origin from The 

Cancer Genome Atlas (TCGA) against over 27’000 control genotypes unselected for 

cancer phenotype from the Exome Aggregation Consortium (ExAC) database with 

matched ethnicity (Figure 20). 

We filtered and integrated allele-counting comparisons with custom annotations coming 

from the state-of-the-art databases, somatic mutations data and GWAS studies to assess 

the probability of facing a true pathogenic variant. In particular, we take advantage of the 

characteristics of somatic driver genes (like their gain or loss-of-function) to emulate a 

candidate gene analysis. Cancer is in fact a unique case where disease causes and disease 

predisposition are strongly tightened, with a clear definition of gain-of-

function/oncogenes and loss-of-function/tumor suppressor genes (Rahman, 2014). 

Giving cancer unique characteristics, we were able to prioritize a set of genes and 

variants with a top-down approach in contrast to GWAS analysis: first, we isolate the 

best candidates through fine-mapping and second, we rank them using statistical 

analysis. 
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Figure 20 Workflow scheme for the whole analysis. Blue cylinders represent data (both obtained from 
available databases or processed during the analysis), hexagons are the analyzed datasets of cases and 
controls, while red squares and triangles represent analysis and output. Flag shapes represent post process 
annotation and statistical testing. Brown trapezoids represent the three main analysis branches presented 
in this paper. 
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4.3.3 Materials and Methods 

4.3.3.1 Control Data 

We used the aggregated results from the ExAC database (http://exac.broadinstitute.org/) 

as control population (Lek et al., 2016). This resource aggregates data from more than 

60’000 samples with germline genotype data, of which 33’370 were classified as of 

European origin. The original data source is both from population studies (1000 

Genome Project, HapMap, Exome Sequencing Consortium) and from disease related 

studies (including part of the TCGA). To overcome the overlap with tumor samples, we 

used the data cleaned from any cancer sample, for a total of 53’105 samples of which 

27’173 are of Caucasian origin. 

4.3.3.2 Case Data 

We downloaded from the TCGA (http://cancergenome.nih.gov/) the original BAM files 

of the normal sample for all the 695 women and men of Caucasian origin diagnosed with 

breast cancer. We used 673 (7 men and 666 women) out of the 695 samples discarding 

whole genomes and samples not derived from blood specimens. We analyzed the BAM 

files, following the exact same GATK pipeline and the same level of sensitivity used by 

ExAC (see section 4.3.3.4). We retrieved from the TCGA open access database, the 

available clinical information for these patients, including age and sex. 

4.3.3.3 Annotation Data 

To better characterize our variants, we took advantage of several external databases and 

in-house datasets for annotation. In particular, we used ANNOVAR to obtain 

information on gene, protein change, and type of variant (missense mutations, 

truncating mutations, InDels etc.) (Wang et al., 2010). Only variants found within the 

coding sequence and classified as non-synonymous were retained. ANNOVAR also 

annotated the variants with the 9 different tools for prediction of phenotypic effect 
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(SIFT, Polyphen2_HDIV, Polyphen2_HVAR, LRT, MutationTaster, MutationAssessor, 

FATHMM, RadialSVM, LR) that are included in dbNSFP (Liu et al., 2013). We 

summarized this information as a comprehensive deleteriousness score calculated as the 

proportion of tools that calls a particular variant as damaging or probably damaging. 

Finally, ANNOVAR provided information about the presence of the variant as a somatic 

mutation in the COSMiC database (Forbes et al., 2011) and if the mutation is present in 

the ClinVar database (Landrum et al., 2014). This information was integrated with 

custom annotations from other public resources. We integrated our annotation by 

checking for the presence of the variant in the cBioPortal database (Cerami et al., 2012) 

for the same amino acidic change and in other database of known disease causing and 

cancer related mutations: CIViC (https://CIViC.genome.wustl.edu), DoCM 

(http://docm.genome.wustl.edu/) and Humsavar 

(http://www.uniprot.org/docs/humsavar). These resources provided the evidence of 

overlap between our case variants and somatic mutation in cancer. The annotated genes 

were flagged if they belong to three categories according to biological and cancer related 

characteristics: genes known to be predisposing for cancer, genes known to be driver in 

cancer at somatic level and genes involved in DNA repair. The first list was created based 

on the most recent literature, including (Futreal et al., 2004; Rahman, 2014; Vogelstein et 

al., 2013; Walsh et al., 2010) and represents the state–of-the-art of the knowledge on 

cancer predisposing genes (323 genes). The list of known somatic drivers was created 

using an in-house tool for detecting driver genes (Melloni et al., 2014) and adding the 

most recent literature and state-of-the-art tools (Davoli et al., 2013; Dees et al., 2012; 

Futreal et al., 2004; Lawrence et al., 2014; Vogelstein et al., 2013) for a total of 413 genes. 

Finally a comprehensive list of genes involved in DNA repair was retrieved from (Lange 

et al., 2011) including 166 genes. In total, we considered as our target gene list a total of 

758 unique genes. In addition, we also tried to classify these genes as potential oncogenes 
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or tumor suppressors based on the joint results of (Davoli et al., 2013; Melloni et al., 

2014; Rahman, 2014; Schroeder et al., 2014; Vogelstein et al., 2013). The tools and 

literature used in this classification are the ones able to distinguish between tumor 

suppressor and oncogenes based on their mutational pattern or experimental results. In 

case of discordant results, the gene is considered both as tumor suppressor and 

oncogene. In total, we were able to classify 119 genes as oncogenes and 235 genes as 

tumor suppressors based on the results of both literature and bioinformatics algorithms. 

It is noteworthy that, when the same gene is found both as predisposing gene and 

somatic driver, known predisposing loss-of-function genes corresponds to somatic 

tumor suppressors and known gain-of-function genes to driver oncogenes. The extent of 

this overlap between cancer predisposing genes and somatic driver genes has been 

estimated to be over the 50% of the cancer predisposing genes list (Rahman, 2014). 

We retrieved a dataset of known breast cancer associated SNPs from GWAS studies 

included in the Human Genome Research Institute’s Catalog of Published Genome-wide 

Association Studies (version 2016-05-08) (Welter et al., 2014). A p-value of 5X10-8 was 

used as threshold. We manually selected the publications included in the catalog under 

the ontology “breast cancer” with a study in a fully European origin cohort during 

discovery phase and presenting SNPs associated with the disease and not with some of 

its characteristics. For example, we removed studies about drug resistance, 

chemotherapy adverse events or levels of proteins in breast tissue. These variants are not 

directly associated with the disease but represent a flag for a probable region where the 

disease-causing variant could be found. In total we collected a list of 130 SNPs from 23 

studies. Using HapMap recombination data (Frazer et al., 2007), we created the 

boundaries of such regions as all the DNA regions surrounding the GWAS SNPs below a 

recombination rate of 20 cM/Mb (Machiela et al., 2015). If one of our variants fall into 

one these regions, its distance from the flag GWAS SNP is annotated. In fact, there is no 
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direct relationship between physical distance and genetic distance but since we are inside 

low recombination regions, we can consider bp distance as a proxy for cM distance. 

4.3.3.4 Data Preprocess 

Case data preprocess was based on the whole GATK pipeline used by the ExAC 

consortium (Lek et al., 2016). This included Picard MarkDuplicates, local realignment 

around InDels, base quality recalibration, haplotype call, joint genotyping and variant 

quality score recalibration (http://picard.sourceforge.net/) (McKenna et al., 2010). Our 

pipeline included also splitting multiallelic sites and left aligning them both for case and 

controls in order to obtain a perfect match of Chromosome, Position, Reference and 

Alternative alleles. Working with biallelic sites is generally preferred, especially during 

annotation. A multiallelic site in fact, would have complete different variant effect 

according to the alternative alleles. The genotype call was retained if the genotype quality 

was higher than 20 and the depth of sequencing was higher than 10. Such filter was used 

to obtain robust genotype calls. Even if breast cancer is way more common in women 

compared to men, our case dataset is composed by 7 men and 666 women. We therefore 

fixed the ploidity for men on chromosome X in non-pseudo autosomal regions. For 

every heterozygous call, only the most probable allele was retained and one single allele 

was counted for every homozygous call. We used bcftools/vcftools, variant tools (vt) and 

in-house scripts (Danecek et al., 2011; Tan et al., 2015) to process the post-call data. 

We created a custom allele counting procedure so that for every biallelic variant, the 

reference count was constant for every possible alternative allele. This procedure is not 

standard but allowed us to test every alternative allele against the exact number of 

reference alleles called at the site and it is useful in case of filtering for any criteria 

because the number of reference alleles is never lost and we could easily re-aggregate the 

data to create a multiallelic test as explained in the Statistical Analysis section. 
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4.3.3.5 Statistical Analysis 

As mentioned in the introduction, statistical power is a critical issue in genome wide 

case-control studies. In particular, exome data are even more underpowered compared 

to GWAS since potentially millions of variants can be tested at a time. The initial call 

from all the 673 samples included millions of variants that were filtered to keep only 

coding and non-synonymous events. Since we did not perform any imputation and we 

applied a strict quality filter after the raw calls, retaining only exonic variants was the 

best way to maximize coverage in a dataset composed for the large majority by exome 

sequencing data (including all cases). At this point, we divide the testing procedure into 

different branches (Figure 20): 

1. Frequency and annotation based analysis 

2. Loss-of-function gene-wise testing 

3. Age-dependent polygenic modeling 

4.3.3.5.1 Frequency and annotation based analysis 

The frequency and annotation based analysis is made up of simple annotation and 

filtering step-wise procedure (as summarized in Figure 22). Rare (control MAF below 

1%) non-synonymous variants were retained and only the ones with a case MAF greater 

than the control are kept. Subsequently, only damaging mutations with a deleterious 

score of at least 0.5 (majority of tools for prediction of phenotypic effect considering the 

mutation as damaging) were selected. The pipeline is then divided in two branches. On 

one side (left arm of Figure 22) we sought for those variants that classified as somatic in 

any type of tumors using COSMIC and cBioPortal databases. On the other side, we took 

into consideration only variants that fall into LD blocks of previously annotated breast 

cancer associated SNP in GWAS studies. 

4.3.3.5.2 Loss-of-function gene-wise testing 
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The LOF testing is a gene-wise test that seeks for imbalance in allele count in truncation 

events between cases and controls. In this testing procedure, we looked for truncations, 

frame shift InDels or nonsense mutations that retain by definition a higher probability of 

creating a loss-of-function event. In this context, we wanted to emulate the way driver 

somatic tumor suppressors genes are generally discovered, using the frequency of any 

rare truncation controlled by the same frequency in control cohort (Davoli et al., 2013; 

Melloni et al., 2014; Vogelstein et al., 2013). We first filtered out common events (over 

5% in the control cohort) and then we performed, for every variant, a simple one-tail 

fisher count test between minor/major allele count between cases and controls. For every 

gene, we aggregated all the p-values obtained from the tests using Stouffer method 

(Stouffer S et al., 1949) to obtain a single value per gene. In this procedure a weight that 

is proportional to the inverse of control frequency, was applied so that the more a variant 

is rare, the higher is the weight applied in the aggregation step. Finally, we retained only 

genes belonging to our target gene list with an FDR corrected p-value below 0.05.  

4.3.3.5.3 Age-dependent polygenic model 

The Age-dependent polygenic model branch is instead a stepwise procedure. Like for the 

LOF procedure, we calculated a minor/major fisher count test variant-wise between 

cases and controls, including all variants, without applying any filter to the MAF of the 

control cohort. For multiallelic sites, reference and alternatives composed a matrix of 

2*(n+1) where 1 represents the reference counts and n the number of different 

alternative alleles. A bootstrap version of fisher test was used in this case. The calculated 

p-values were added as an explanatory variable in the step-wise procedure. We also run 

other commonly used human genetics statistical tests to be added as explanatory 

variables, both gene-wise and variant-wise. Using RVtest, we were able to run SKAT-O, 

CMC, Kbac tests for the gene-wise level and Wald and SingleScore tests for the variant-
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wise level (Zhan et al., 2016). All the aforementioned tests used the 1000 genome original 

genotype calls as control cohort, since we need the full genotypes in order to run them 

and they were not available for the ExAC database. 

The workflow is composed by: 

1) Creating a set of variants that accounts for every variation in our case samples 

reported as pathogenic in at least one of the following databases: Humsavar, 

DoCM, ClinVar or CIViC. Variants were further subset for a manually curated 

list of cancer related keywords. This list included both direct cancer or neoplastic 

events predisposition as well as cancer related syndromes (like Li-Fraumeni or 

Von Hippel Lindau syndromes) for a total of 38 variants in 24 different genes 

(Appendix Table 7) 

2) Creating a set of negative controls from the list of ClinVar annotated variants that 

have been tested as non-pathogenic. 

3) Implementing a random forest classifier using a dichotomous response variable 

(pathogenic, non-pathogenic) with a training set that included all the variants in 

point 1) and 2) (Breiman, 2001). The features used for classification are reported 

in Figure 23 and included all the tests described above, MAF in cases and 

controls, number of homozygous and heterozygous calls, deleteriousness score 

and a dummy variable describing if the variant was a truncation event or a simple 

missense variant. A tree based algorithm like the random forest is particularly 

powerful in problems where the interaction of various features is a critical point 

for the model. The output of this analysis was the relative number of trees 

classifying a variant as pathogenic. We call this score Pathogenicity Score. 

5) The variants that did not belong to the training set were selected and we filtered 

for the ones that show a Pathogenicity Score of at least 0.5 (majority voting in the 

random forest procedure) 
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6) The final step of the model was to correlate our variants with the age at initial 

pathological diagnosis. The variants found at point 5) switched from being subjects to 

become explanatory variables with a value of 0, 1 and 2 according to the state of double 

major allele, heterozygous or homozygous minor allele. With such a dataset, we build a 

robust elastic net linear model by running 100 models in parallel under various subsets 

of the dataset (Zou and Hastie, 2005). This procedure guarantees that the average beta 

values and the number of times a feature is in all the elastic net models remain stable. A 

penalized linear model like the elastic net is preferable for its ability of assessing the 

direction and the magnitude of the contribution of each variant. In the case of the age for 

example, we are interested in understanding what are the variant with a negative beta or, 

in other terms, the ones that contributes to the decrease of age at onset. Considering that 

a male patient has a risk of getting cancer one hundred times less than a female of the 

same age, a male patient age is rescaled with a logit function in order to correspond to 

the same risk of a younger woman. To build the risk function at age classes, we used data 

from the Cancer Research UK report 1996-2011, available at 

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-

cancer-type/breast-cancer. 

4.3.4 Results 

4.3.4.1 Pathogenic and Breast Cancer Related variants 

We first asked whether known breast cancer predisposing variants were present in our 

dataset. We collected from the literature a list of 17 known breast cancer susceptibility 

genes (Table 6) (Rahman, 2014; Vogelstein et al., 2013; Walsh et al., 2010). We expected 

to find some pathogenic variants in these genes, as they comprise a part of the known 

genetic cause of breast onset. 
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Gene 

Somatic 
Driver 
Gene 

Total 
Number of 

variants 

Number of 
Pathogenic 

Variants 

Number of 
Truncating 
Variants 

Number of highly 
damaging 
mutations 

ATM X	 21	 		 		 5 
BRCA1 x	 18	 2	 		 3 
BRCA2 X	 21	 5	 		 2 
BRIP1 		 5	 1	 		   
CDH1 X	 3	 1	 		   
CHEK2 x	 6	 2	 1	   
MRE11A 		 4	 		 		 1 
NBN 		 5	 1	 2	   
PALB2 		 1	 		 		   
PRKAR1A 		 		 		 		   
PTEN X	 		 		 		   
RAD50 		 5	 		 		   
RAD51C 		 3	 		 1	   
STK11 x	 3	 		 		   
TP53 X	 4	 		 		 1 

Table 6 List of the most important breast cancer predisposing genes and variants found in our case 
dataset. The second column reports if the gene is considered also a somatic driver gene (breast cancer 
somatic driver genes are reported with a bold capital X).  Other columns report the number of non-
synonymous variants found in total, the number of variants considered pathogenic and the number of rare 
truncating variants (control minor allele frequency below 1%) that are not already included in the list of 
pathogenic variants. The last column shows instead all the missense variants that are not considered 
pathogenic with a very high deleteriousness score (8/9 tools to predict functional damage report the 
variant as damaging). Our pathogenic reference is ClinVar and Humsavar databases. 
 

Considering both known pathogenic and truncating variants on these 17 genes (Table 6), 

we obtained a total of 16 different mutations that cover 36 out of 673 of our cases (~5%). 

We decided to take into account also rare truncating variants because they are generally 

considered de facto pathogenic when the gene exerts its oncogenic function via loss-of-

function. This is the case for all the known predisposing genes in breast cancer and, in 

general, for the large majority of Cancer Predisposing Genes (CPGs) (Rahman, 2014). 

The frequency of the identified variants in the breast cancer dataset is compatible with a 

sample of sporadic cases, especially given the fact that many potential pathogenic 

variations are still not reported in databases like ClinVar (Landrum et al., 2014). 

Furthermore, the complete lack of any variation on PTEN and PRKAR1A can be 

explained by the rarity of finding mutations on these genes. The cancer syndromes 

connected to these genes (Cowden Syndrome and Carney Complex) are in fact 

extremely infrequent in the population: the first has an incidence of 1 in 200’000 
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individuals (Hobert and Eng, 2009), the latter a total prevalence of few hundreds 

reported cases (Stratakis et al., 2001). It is noteworthy that 8 out of 15 of the genes 

reported in Table 6 are also known somatic driver genes and 5 of these 8 genes are 

specifically considered driver in breast cancer. All of them are predicted or possess 

tumor suppressor functions. The second question we asked was whether other cancer 

pathogenic variants could be found in our case dataset. It is in fact known that many 

cancer predisposing genes can lead to complex tumor syndromes in which more than 

one tumor type can arise (Rahman, 2014). Known examples are the aforementioned 

BRCA1 and BRCA2 that are linked to both breast and ovarian cancer (Petrucelli et al., 

2010) or the more recent discovery of PALB2, connected to breast and pancreatic tumors 

(Jones et al., 2009; Rahman et al., 2007). We therefore seek for all those variants 

connected to additional cancer or cancer syndrome genes and we found 28 different 

variants on 24 genes. Among them, the 19 variants with a control MAF below 1% are 

reported in Table 7.  

Variant	
Control	
MAF	

Case	
MAF	

log2	MAF	
Ratio	

Summary	of	ClinVar	and	Humsavar	
Annotation	

COL7A1	-	R1538C	-	
(3,48619779,G,A)	 0.002%	 0.07%	 5.35	 Malignant	Melanoma	

RET	-	V804M	-	(10,43614996,G,A)	 0.017%	 0.54%	 4.96	 MEN2A	Syndrome|Thyroid	Carcinoma	

AKT1	-	E17K	-	(14,105246551,C,T)	 0%	 0.08%	 4.47	 Colon	Ovary	and	Breast	Cancer	

FANCC	-	R185*	-	(9,97912338,G,A)	 0.006%	 0.07%	 3.76	 Fanconi	Anemia	

FLCN	-	H429fs	-	(17,17119708,-,G)	 0.054%	 0.70%	 3.68	 Renal	Cell	Carcinoma	

MSH6	-	T955fs	-	(2,48030639,-,C)	 0.213%	 2.61%	 3.62	 Lynch	Syndrome	

ELAC2	-	R741H	-	(17,12896274,C,T)	 0.072%	 0.23%	 1.66	 Prostate	Cancer	

RET	-	Y791F	-	(10,43613908,A,T)	 0.244%	 0.69%	 1.50	 MEN2A	Syndrome|Thyroid	Carcinoma	

FLCN	-	R239C	-	(17,17125879,G,A)	 0.033%	 0.08%	 1.20	 Renal	Cell	Carcinoma	

PKHD1	-	T36M	-	(6,51947999,G,A)	 0.075%	 0.15%	 0.98	 Colorectal	Cancer	
GALNT12	-	D303N	-	
(9,101594229,G,A)	 0.185%	 0.30%	 0.72	 Colorectal	Cancer	

PRF1	-	N252S	-	(10,72358722,T,C)	 0.501%	 0.82%	 0.72	 Non-Hodgkin	Lymphoma	

SDHD	-	G12S	-	(11,111957665,G,A)	 0.992%	 1.04%	 0.07	 Cowden	Disease	3	

TSC1	-	H681Y	-	(9,135779052,G,A)	 0.561%	 0.52%	 -0.11	 Neoplastic	Syndrome	

AR	-	R727L	-	(X,66937326,G,T)	 0.083%	 0.07%	 -0.16	 Prostate	Cancer	

SDHD	-	H50R	-	(11,111958677,A,G)	 0.975%	 0.82%	 -0.25	 Cowden	Disease	3	

MUTYH	-	Y165C	-	(1,45798475,T,C)	 0.256%	 0.15%	 -0.78	
MYH-associated	polyposis|Endometrial	
Carcinoma	

APC	-	R396C	-	(5,112154969,C,T)	 0.155%	 0.08%	 -1.00	 Gardner	syndrome	

ASCC1	-	N290S	-	(10,73892817,T,C)	 0.173%	 0.07%	 -1.22	 Esophageal	Carcinoma	
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Table 7 List of rare cancer-related pathogenic variants (control MAF below 1%). This list includes 
all those genes that are not considered breast cancer predisposing but are connected to other types of 
cancer or cancer syndromes. 
 

Although only 13 variants out of 19 have a minor allele frequency in the cases higher 

than controls, the results from this simple annotation are quite unexpected. For example, 

we found COL7A1, a collagen gene linked to epydermolysis bullosa that is a severe skin 

syndrome with elevated life-time risk of melanoma (Martins et al., 2009). MAF 

frequency in our dataset is at least 1 order of magnitude higher than in controls. We also 

detected two variants on RET, a gene connected to MEN2A syndrome with an extremely 

high penetrant risk of thyroid cancer (Eng, 1999) that to our knowledge has been 

connected to breast cancer at the level of expression and thus as a possible therapeutic 

target (Morandi et al., 2011). Evidences of a connection to another thyroid cancer related 

syndrome (MEN1) have been recently demonstrated in breast cancer (Dreijerink et al., 

2014), but a suggestion to a link to MEN2A is completely novel and it would represent 

an unusual case of an gain-of-function mutation linked to breast cancer risk. 

Interestingly, we identified 3 truncating or frameshift alterations on FANCC, FLCN and 

MSH6, three loss-of-function genes respectively associated to Fanconi Anemia (as 

PALB2, BRCA1 and RAD51C reported in Table 6) (D’Andrea, 2010), renal cell 

carcinoma (Stamatakis et al., 2013) and Lynch Syndrome (Baglietto et al., 2010), with no 

previous direct connections to breast cancer. Lastly, we discovered AKT1 E17K, a variant 

linked to many cancer types, including breast cancer, at the somatic level. It is reported 

in databases such as ClinVar or OMIM (that are generally focused on hereditary genetic 

traits) because it is considered a high frequency somatic driver mutation (Bleeker et al., 

2008). This gene has also been connected to a minority of Cowden Syndrome cases along 

with PIK3CA because it belongs to the same pathway as PTEN, whose mutations are 

causative of 85% of the cases (Hobert and Eng, 2009). This variant is particularly relevant 

because it represents both a case of gain-of-function mutation in a breast cancer 
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oncogene that is frequently seen somatically mutated in tumors and also a risk associated 

germline variant in our dataset.  

 

Figure 21 Distribution of pathogenic and truncating variants on breast cancer genes in our case 
dataset of 673 breast cancer patients. This oncoprint plot reports three classes of high confidence breast 
cancer predisposing genes (rows) and each column represents one of the samples with at least one of these 
mutations. In blue, we report variants on known breast cancer predisposing genes (complete list in Table 
1). A star is reported if the variant is a truncation but is not reported as pathogenic in databases ClinVar or 
Humsavar. Otherwise the variant is present in these databases. Pathogenic variants that affect genes related 
to cancer or cancer syndromes but are not strictly listed as breast cancer pathogenic are reported in black 
and include genes like RET (thyroid cancer) or APC (colon cancer) 
 

To summarize our findings, we draw a heatmap of all the aforementioned variants in our 

dataset (Figure 21). If we sum up all the cases with at least 1 of these mutations, we 

approximately cover the 20% of our dataset with 19 non breast related pathogenic 

variations, 12 pathogenic breast related and 4 truncating variants on breast CPGs. It is 

noteworthy, that MSH6 alone covers the 5% of patients, although the MAF is much 

lower because this calculation considers also missing genotype calls and heterozygous 

and homozygous calls. We can also notice that co-occurent mutations are quite rare: 

only 13 out of 135 samples have more than one variant, while the remaining 122 are hit 

by a single variation. Furthermore, variant frequency in the dataset is extremely 

unbalanced: the top 7 variants in Figure 21 cover the 15% of the patients while the 

remaining 28 the missing 5%. 
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4.3.4.2 Analysis of rare variants in target cancer genes 

The most simple and straightforward way of prioritizing predisposition candidates is to 

look at rare variants, which can be defined as variants with MAF < 1% in the controls. 

We concentrated our efforts on non-synonymous variants (~70’000) and we filter for 

rare variants where the prevalence in the cases is higher than controls, retaining only 

~50’000 variants (see Figure 22).  

 

Figure 22 Analysis of rare variants. This flowchart represents the step-wise procedure in the central arm 
of Figure 20 and is performed by filtering from 73544 coding non-synonymous variants to 16014 rare 
variants (MAF < 1%) with a deleteriousness score over 0.5 and where MAF in the cases is higher than 
controls. Rare variants are prioritized into two branches: on the left variants falling in GWAS breast cancer 
LD blocks are retained, on the right, variants overlapping with cancer somatic mutations from COSMIC or 
cBioPortal are reported. For both datasets, overlaps are reported at the initial level and after filtering for 
variants belonging to our list of 758 target genes (known cancer predisposing genes, known somatic driver 
genes and DNA repair genes). Final common list of 6 variants on our target gene list that was found both 
as overlapping with somatic mutations and falling into a GWAS LD block is reported. 
 

Then, we filtered out variants with a deleteriousness score lower than 0.5 or, in other 

words, where 4 or less of the 9 methods included in dbNSFP evaluated the variant as 

possibly damaging (see section 4.3.3.5.1) (Liu et al., 2013). The dataset at this is point is 

composed by over 16'000 variants to prioritize and we look for two specific 
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characteristics: we explored what are the rare variants that overlap with cancer somatic 

mutations and we also check if some of them fall into regions of low recombination 

(thus, possible LD) with breast cancer associated SNPs from GWAS studies to further 

confirm our results. We used COSMIC and cBioportal databases to create the largest set 

of somatic variants from WGS and WES studies, including over 50 different tumor 

subtypes, and we look for a perfect match between our variants and these somatic 

mutations (Forbes et al., 2011; Gao et al., 2013). To create GWAS blocks we designed 

regions around 130 manually selected SNPs from the NHGRI-GWAS catalog (see 

section 4.3.3.3) (Welter et al., 2014). 2441 variants on 16'000 are also found somatically 

mutated from cBioPortal database or COSMIC database. Among those matched 

variants, only 73 falls into GWAS regions over a total of 437 (Figure 22 and Appendix 

Table 8).  The overlap of these two groups is apparently random as this is not 

significantly different from a bootstrap of random overlaps (p-value of permutation Z 

test = 0.19). This result suggests two important aspects of this section: first, the missing 

enrichment of somatic mutations in GWAS associated regions confirmed the results of 

Machiela et al. (Machiela et al., 2015) and secondly while GWAS are designed to work 

on common variants, somatic mutations are usually rare. Thus these two types of 

analysis represent two different layers of hereditability. 

Since somatic mutations in cancer are mainly passenger, a simple overlap with a somatic 

mutation cannot suggest a real involvement in cancer predisposition (Vogelstein et al., 

2013). Therefore, we decided to further subset our 2441 SNPs to include only variants on 

a list of manually curated target genes (see section 4.3.3.3) with a higher probability of 

being real drivers. Only 6 variants in 4 genes ended up having all the characteristics 

included in this analysis. These variants form a list of highly valuable candidates (Figure 

22) as theorized by one of the ICOGS flagship paper (Michailidou et al., 2013). In 

particular, RAD51B is a known breast cancer associated gene (Golmard et al., 2013) 
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TET2 variant discovered in our dataset is only ~80kb away from an ICOGs SNP 

rs9790517. In addition, TET2 has already been associated with breast cancer at the RNA 

level (Yang et al., 2015b) and it is considered a known somatic driver in leukemia and 

melanoma (Ficz and Gribben, 2014). Another ICOGs variant (rs132390 on EMID1) is in 

a low recombination region along with NF2 R335C variation. NF2 has been associated to 

the hereditary neurofibromatosis syndrome 2 and mutates both at germinal and somatic 

level in breast cancer (Schroeder et al., 2013). The same ICOGs SNP has been found in 

LD with CHEK2, a known breast cancer associated gene. Although our HapMap data do 

not support this linkage disequilibrium, we found a variant on this gene (rs201206424) at 

approximately the same distance as the NF2 variant described above (~400kb) 

(Michailidou et al., 2013). This CHEK2 variant has also been found as somatically 

mutated in breast cancer. Two different alterations were found on EP300 in LD with the 

ICOGs SNP rs6001930. EP300 has a well-established role as a tumor suppressor but it is 

poorly investigated as a breast cancer predisposing gene (Gayther et al., 2000). 

Excluding the aforementioned 6 SNPs, 37 variants are monomorphic in the ExAC 

database that represents our control (Appendix Table 9). The first positions sorted by 

MAF ratio are occupied by truncating variants on PIK3CB, KMTC2 and NBN. The first 

two genes are known somatic drivers, and in particular the second one has also been 

classified as a tumor suppressor (as the truncating mutation suggests). The same genes 

will be considered, as a whole, as significant loss-of-function genes in the next section of 

the results (see section 4.3.4.3). NBN instead, has been already associated with increased 

risk of breast cancer via the Nijmegen syndrome being part of an important DNA repair 

pathway (Varon et al., 1998). Nevertheless, the specific frameshift mutation found 

(I166fs), has never been associated with this syndrome before but has been found 

somatically mutated in breast cancer using our annotation. The most relevant result of 

this analysis branch is probably the variant E17K on AKT1 (rs121434592) that has been 
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already described in the previous section. This gene is a known somatic driver kinase 

and this mutation has been found in 46 different samples in the cBioPortal database in 

many different tumor types, including breast. E17K is also reported by CIViC and 

DoCM databases list of curated somatic driver mutations (Bleeker et al., 2008). This 

variant, along with ATM R337C (rs138398778) is reported in the list of cancer hotspots 

curated by Chang et al. (Chang et al., 2016) and they both represents a case of known 

somatic driver mutation that can be considered a cancer predisposing variant. In 

addition, we found other germline variants present in more than 2 samples in COSMIC 

or cBioPortal on the following genes: HNF1A, FGFR3, ASXL1. Interestingly, all these 

genes are included in our list of cancer predisposing genes or somatic driver genes and 

none of them has been connected to breast cancer predisposition before. 

4.3.4.3 Analysis of loss-of-function genes 

We decided to focus on possible loss-of-function genes involved in predisposition to 

breast cancer because the large majority of cancer predisposing genes are in fact recessive 

loss-of-function variants (Rahman, 2014). In particular, we wanted to explore the 

existing overlap between somatic driver tumor suppressors and loss-of-function 

predisposition to breast cancer following a somatic driver gene discovery pipeline as 

discussed in the previous section. It is known that truncating mutations plays a major 

role in targeting potential tumor suppressors (Vogelstein et al., 2013), so we selected 

from our dataset only the truncating variants under a softer filter of frequency of 5% in 

the control population, for a total of 2522 different truncating events on 1931 different 

genes. On this reduced dataset, we looked for imbalance between control and case 

frequency in any of the truncation spots with a gene-wise testing procedure (see section 

4.3.3.5.2). After testing and correcting for false discovery rate, we filtered for candidate 

genes in our 758 target gene list to seek for really potential overlapping 

driver/predisposing genes and to emulate a candidate gene analysis. Only 94 genes have 
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at least one truncating variant with a frequency in control cohort below 0.05, of which 41 

passed the p-value threshold (Appendix Table 10). As a proof of concept, known breast 

cancer predisposing genes like BRCA1, BRCA2 and CHEK2 are in fact selected by our 

procedure. Other known breast cancer predisposing genes, such as TP53 or PALB2, are 

instead not found truncated in our dataset because they are too rare for our detection 

power in a non-familiar selected dataset (Table 6) (Antoniou et al., 2014). Nevertheless, 

TP53 has one missense variant included in the list of the 176 overlapping with somatic 

mutations and this particular variant has never been reported as pathogenic before 

(rs138729528), being completely novel in our control dataset. Among the 41 significant 

LOF candidates, FGFR3, PIK3CB, HNF1A and KMTC2 were also highlighted as 

somatically mutated by the previous analysis but in this case we were able to add a 

defined loss-of-function role. In addition, another member of the homeobox family 

(HNF1B) has one of the lowest p-values. This gene has been connected to predisposition 

to ovarian cancer, but no association with breast cancer has been previously described 

(Shen et al., 2013). With similar characteristics, we found the anaplastic lymphoma 

kinase (ALK), a known driver gene and predisposing gene in lung cancer and 

neuroblastoma, with few evidence of association with breast cancer (Siraj et al., 2015). 

The majority of the genes in this list harbor 1 to 2 different truncation points. CRIPAK 

appears to be a particular exception with 27 different truncations in various point of the 

gene body. This abundance of frameshifts and non-sense variants at various points of the 

protein can be partially explained by the fact that CRIPAK is intronless and like other 

genes with this feature (like CDR1 or AD7C-NTP) it tends to accumulate these variations 

for evolutionary reasons (Okamura et al., 2006) and is probably a false positive result.  

4.3.4.4 Polygenic age-dependent model 

In the last section of the results, we moved from a pure case-control study to a more 

association-like study. In all the previous analysis, we always put a filter on the 
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frequency, selecting rare (control MAF < 1%) or low frequency variants (control MAF < 

5%). In this analysis, exploiting a trait that can be considered complex as age at 

pathological diagnosis, we used every non-synonymous variant in our dataset (Figure 

20). As explained in section 4.3.3.5.3, we implemented a double step machine learning 

approach composed by 1) a tree-based classification with variants as subjects 

(dimensionality reduction step) 2) a penalized linear model regressing age to the 

genotypes of the cases, so that the variants become now covariates (feature selection 

step). In the first step, the final goal is to assign a “Pathogenicity Score”, or in other 

words, a probability value that represents how similar to the prototypes in the training 

set and far from the negative set our variants are. These two sets are represented by 

known pathogenic variations and a series of variants tested as simple polymorphisms. 

An interesting side effect of the procedure is also that we could assign a score of 

importance to the features that are responsible for the classification machinery. We 

started with a dataset of prototypes (our training set) composed by 38 pathogenic and 

706 non-pathogenic variants (see section 4.3.3.5.3). The overall model on the training 

set reports a very low out-of-bag error of 3.5% in the classification process with an area 

under the ROC curve of 0.84 (see Figure 23, Panel B). 
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Figure 23 Polygenic age-dependent model breakdown. A) The feature rank of the Random Forest model 
according to the mean decrease of Gini index is reported. At the top, the most important variable is 
deleteriousness score (see Panel C). B) ROC curve on random forest training model. An AUC of 0.84 is 
reached under the supervision of the training dataset formed by reported pathogenic and non-pathogenic 
variants according to a dataset of curated cancer predisposing variants. C) The top predictor in our 
random forest model is reported without the influence of the other variants. Although it cannot represent 
the real tree scheme of the model, there is a clear positive trend between increased deleteriousness score 
(X-axis) and the number of trees classifying a variable as pathogenic (Y-axes). Furthermore, the 
pathogenic score starts increasing after the 0.56 threshold (5 over 9 predictors of phenotypic effect 
classifying the variant as damaging). 
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Using this algorithm, we could learn the main characteristics of pathogenic and non-

pathogenic variants, as shown in Figure 23, Panel A, and we used these characteristics to 

classify a test set of unknown variants. The mean decrease in the Gini index represents 

the ability of each feature to separate the class pathogenic from the non-pathogenic as 

the amount of homogeneity gained after each node split that contains the feature under 

exam. Using our random forest model, we then classified the unknown variants in the 

test set. We tried to represent the behavior of each top feature in the classification 

problem by comparing the feature value with the corresponding probability of 

pathogenicity assigned by the random forest model. This probability is calculated as the 

proportion of trees that classify the variant as pathogenic in a total of 100’001 trees built 

in the training procedure. For example, the random forest model has the tendency of 

assigning high probability to more deleterious variants, as a clear linear trend is visible 

between deleteriousness and RF score assignment (see in Figure 23, Panel A). In fact, the 

majority of the known pathogenic variants (the red dots) fall into the top two 

deleteriousness score category compared to the non-pathogenic variations (the blue 

dots) that appear to fall in every category without a specific pattern. Interestingly, the 

results of widely used test of associations like SKAT or SingleScore do not seem to 

provide sufficient adherence to pathogenic variations, according to the Gini Index 

ranking (Figure 23, Panel A) and justify our use of a more genomic and knowledge-

based approach rather than a pure statistical method. However, to develop the random 

forest model, the prototypes we used for pathogenic and non-pathogenic variants are not 

exclusively breast-related and have no direct connection to our dataset. Thus, we decided 

to define the variants as features that could be associated with patient characteristics.  

If we used the whole dataset, we would end up with a matrix in form of 673 samples (one 

for each patient) and more than 70’000 features (one for each variant). This model would 
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suffer from a heavy curse of dimensionality. In order to reduce the number of features 

entering in this second clinical model, we set a standard threshold of 0.5 in the 

pathogenicity probability coming from the random forest that allows a high level of 

specificity (almost 100%) while still retaining a good sensitivity (~60%). This threshold 

allows retaining a variant with some evidence of being pathogenic and discarding the 

majority of non-pathogenic noisy variants. A variant is retained in the clinical model if: 

1. The Pathogenicity Score is greater than 0.5 (majority voting in random forest 

procedure) 

2. It is not part of the training set 

With this filter we ended up with 4045 variants entering in the second step and therefore 

reducing the risk of an inflated dimensionality. The model we used for the polygenic 

analysis is a robust elastic net. More details about the procedure can be found in section 

4.3.3.5.3. We run a regression model of age at initial pathological diagnosis to the 

genotype of our subjects. The controls are therefore not included in this procedure. 

While in the first procedure the output was represented by the Pathogenicity Score, in 

this case we ranked the features (now the variants) as being negatively associated with 

age. The result of the elastic net model can be influenced in case the number of subjects 

is lower than the number of features (4045 variants as features and 673 age values as 

subjects). That is why we used a permutation based multi model that allows a robust 

ranking. Furthermore, like any other shrinkage method, not all the features are retained, 

in order to reduce the degrees of freedom of the model. The variants are ordered by the 

number of time a feature is retained in the model with a negative beta since the higher 

the number of times, the lower the age when the variant is present. Final results include a 

list of 19 variants retained in at least 10% of the 100 models, of which 15 with a negative 

beta in more than 50% of the 100 models (Table 8). 
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Variant	 Approved	Name	
Control	
MAF	

Case	
MAF	

Protein	
Change	

Mean	Beta	
ElasticNet	

Negative	Beta	
Percentage	

MRPL24	-	1,156708335,C,T	

mitochondrial	
ribosomal	protein	
L24	 0.0000%	 0.074%	 W54*	 -2.78	 1.00	

CST4	-	20,23667825,-,C	 cystatin	S	 0.0129%	 0.300%	 V81fs	 -5.09	 1.00	

PARD6A	-	16,67696278,C,T	

par-6	family	cell	
polarity	regulator	
alpha	 0.0018%	 0.078%	 R256*	 -1.86	 1.00	

TRIOBP	-	22,38121788,-,C	
TRIO	and	F-actin	
binding	protein	 0.0059%	 0.471%	 S1075fs	 -3.64	 1.00	

ZNF85	-	19,21132125,C,T	 zinc	finger	protein	85	 0.0000%	 0.085%	 R205*	 -4.36	 1.00	

FOXP4	-	6,41553185,A,G	 forkhead	box	P4	 0.0018%	 0.091%	 K147R	 -8.04	 1.00	

PKHD1	-	6,51890490,A,C	

polycystic	kidney	and	
hepatic	disease	1	
(autosomal	recessive)	 0.0000%	 0.075%	 M1373R	 -5.33	 1.00	

SURF1	-	9,136218808,A,T	 surfeit	1	 0.0000%	 0.081%	 L179Q	 -6.49	 1.00	

HIST2H2AB	-	1,149859084,TT…GT,-	
histone	cluster	2,	
H2ab	 0.0000%	 0.074%	 T121fs	 -3.59	 0.97	

STIM2	-	4,27004586,G,A	
stromal	interaction	
molecule	2	 0.0000%	 0.081%	 V281I	 -1.65	 0.97	

CPA3	-	3,148597632,C,T	
carboxypeptidase	A3	
(mast	cell)	 0.0000%	 0.074%	 R178*	 -5.47	 0.94	

TMCO3	-	13,114188422,-,G	
transmembrane	and	
coiled-coil	domains	3	 0.0326%	 0.742%	 A469fs	 -1.93	 0.93	

SERPINF2	-	17,1649022,CCTG,-	
serpin	peptidase	
inhibitor,	clade	F		 0.0000%	 0.080%	 A62fs	 -1.74	 0.84	

PYGL	-	14,51383751,G,A	
phosphorylase,	
glycogen,	liver	 0.0037%	 0.149%	 R276C	 -0.08	 0.71	

FNIP2	-	4,159790466,C,A	
folliculin	interacting	
protein	2	 0.0016%	 0.101%	 S893*	 -0.86	 0.58	

CPPED1	-	16,12758817,G,A	

calcineurin-like	
phosphoesterase	
domain	containing	1	 0.0000%	 0.074%	 R149*	 -0.14	 0.44	

OR52B4	-	11,4388943,G,A	

olfactory	receptor,	
family	52,	subfamily	
B,	member	4	
(gene/pseudogene)	 0.0018%	 0.076%	 R195*	 4.81	 0.09	

SCN10A	-	3,38755496,G,A	

sodium	channel,	
voltage	gated,	type	X	
alpha	subunit	 0.0037%	 0.074%	 R1155C	 1.62	 0.08	

ZNF683	-	1,26694960,G,A	
zinc	finger	protein	
683	 0.0000%	 0.089%	 R35*	 1.18	 0.03	

Table 8 Results from the polygenic age-dependent model. A double-step machine learning algorithm 
selects variant based on a series of pathogenic prototypes and then further selects them using a 
permutation based multi-model regression over age at onset. Variants in this set are negatively associated 
with age and are divided in three layers: on top, variants negatively associated in at least 80% of the models 
and with an average beta less than -1.5, in the middle, variants retained in at least 40% of the model with 
poor average beta, at the bottom, variants found negatively associated only in a few model. 
 

We noticed several desired features of the final set of variants. First, without imposing a 

filter on the control MAF, we selected for rare variants in the population, so that all our 

19 variants have a MAF in the control set way below the 1% threshold and a MAF in the 

cases above the corresponding one in the controls. Furthermore, more than a half of 

these variants are completely novel in the ExAC dataset. Second, 13 of the 19 variants are 

classified as truncation events and all the other 6 missense events have a deleteriousness 

score higher than 0.8, thus evaluated as almost certainly damaging. Lastly, another 

confirmation of the importance of evaluating somatic events overlapping with germline 
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mutations is the fact that we noticed a double enrichment in variants found also as 

somatic.  

Among the initial dataset of 73’354 variants, only the ~13% of them are found as somatic 

events in COSMIC or cBioPortal. After the random forest procedure, this frequency 

increases up to ~17% among the 4045 retained variants (p-value of binomial test: 8.78e-

11) and after the elastic net selection to the ~26% (although not significant, 5 of the 19 

variants are also found as somatic).  

None of the genes found using this procedure belong to the list of target genes nor are 

found within breast cancer associated SNPs low recombination regions and there are 

very few literature reports of a known involvement in cancer, making their selection a 

completely novel finding (Table 8). Excluding variants on TMCO3, TRIOBP, PYGL and 

CST4, all the remaining 15 involved one single sample in our dataset, therefore so rare 

that any simple statistical approach would probably not detect them. Like briefly 

mentioned before, this set of variants and genes are mostly not involved in cancer, except 

for PKHD1, a gene involved in polycystic kidney disease and a high risk of renal cancer 

that has also been mentioned in the first section of the results for another known 

pathogenic variant (Sharp, 2005). Other genes reported in Table 8 with some evidence of 

cancer involvement includes STIM2, which have been associated to allelic loss in 4p in 

several tumor types, including breast (Shivapurkar et al., 1999) and FOXP4, an 

important member of the forkhead box transcription factor that are widely known to be 

involved in tumorigenesis and cell-growth (Myatt and Lam, 2007). Although not directly 

implicated in tumorigenesis, other genes appears to be promising candidates being part 

of families involved in cancer, including SERPINF2, a member of serpin family that has a 

clear role in cancer cell survival (Valiente et al., 2014) PARD6A, member of the PAR 

family, involved in cell cycle gatekeeping and interactor of other major cancer pathways 

like MAPK and PI3K (Marques and Klefström, 2015) and finally HIST2H2AB, part of 
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the cluster 2 of histones whose parallel family in cluster 1 is highly mutated in many 

cancer types (Lawrence et al., 2014; Timp and Feinberg, 2013) 

4.3.5 Discussion 

The use of NGS technologies has revolutionized the study of human cancers by allowing 

the simultaneous identification of multiple somatic mutations but it can also offer the 

possibility to look for the presence of cancer susceptibility variants and 

genes. Interestingly, taking advantage of sequenced normal genomes of cancer patients, 

recent studies have suggested that the susceptibility due to rare variants in sporadic 

cancers can be much more common that previously anticipated (Schrader KA et al., 

2016). However, it remains challenging to determine the pathogenicity and the clinical 

significance of these germline variants since many of them are rare and not well 

characterized. Our study represents one of the first attempts to prioritize germline 

variants that may predispose to breast cancer using sequencing data.  

We developed a computational framework based on the characteristics of somatic 

mutations to identify putative cancer predisposing variants. In particular, we provided 

an analysis of rare variants and we detected 185 variants that overlap with somatic 

mutations in cancer. Furthermore, we carried out an analysis of truncating mutations on 

suspected tumor suppressors, revealing known and new possible loss-of-function 

candidates. We detected 50 variants associated with 41 possible loss-of-function-genes, 

including PIK3CB and KMT2C. Lastly, we built a robust age-dependent polygenic model 

that involves a mixture of supervised and regression based algorithm to uncover variants 

at any frequency level. With this model, we identified a set of 19 variants potentially 

pathogenic and negatively associated with age at onset belonging to genes that have 

never been associated to breast cancer. Furthermore, we checked if any of the identified 

candidate variants falls into GWAS known breast cancer susceptibility regions. 
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In our study we detected several expected variants on known breast cancer predisposing 

genes like BRCA1 and BRCA2, which are a confirmation of the validity of this study. We 

also identified 19 variants on genes that are known to be predisposing for other cancer 

types or cancer syndromes, like RET and AKT1, that have never been previously 

associated with breast cancer predisposition. 

To our knowledge, there are few examples in the literature attempting an analysis on 

predisposing genetic makeup in cancer that exploit sequencing data (Kanchi et al., 2014; 

Lu et al., 2015). While these works design an in depth analysis of known predisposing 

genes, they lack of a sufficiently extended control dataset, using respectively ~400 normal 

controls against a dataset of ovarian cancer cases of approximately the same size (Kanchi 

et al., 2014) and ~1000 samples against ~4000 cases of various cancer types (Lu et al., 

2015). The use of the ExAC database, that comprises over 27'000 control samples, 

allowed a higher resolution that we emphasize at the level of the single variants within a 

candidate predisposing gene, discerning variants of scarce significance from true 

candidate pathogenic variations. Furthermore, we introduce more variables in our 

knowledge-based approach, including also over 20 years of breast cancer GWAS data 

and patients' characteristics like age of onset. In particular, the latter information is used 

as a new explanatory variable to further enlarge our set of candidates beyond the limits 

of already known cancer-related genes and not only as a confirmation of association 

between early onset and known predisposing genes. 

We know that our analysis have several limitations. First, to improve our understanding 

on the association of rare variants to breast cancer hereditability, we should sequence a 

larger number of individuals and possibly extend our analysis to other ethnicities. For 

example, we should use an independent longitudinal cohort to clarify the prevalence of 

the identified variants or a smaller cohort of suspected familial cases. Secondly, genomic 

data could be associated to patients’ family history, since in the TCGA clinical data this 
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information is missing. Lastly, we have provided a valuable resource of potential new 

cancer-related variants that could be characterized from a functional point of view.  

In this study we have developed a genomic-driven approach able to prioritize cancer 

predisposing variants using a case-control genetic scheme. We demonstrate the use of 

public available sequencing data to better characterize known susceptibility genes and to 

identify novel cancer predisposing variants. The opportunity to classify individuals 

according to their risk of developing hereditary-based cancer, will improve clinical 

management of breast cancer patients in terms of genome-tailored prevention strategies, 

programs for early diagnosis and possible treatments. 

5 Discussion 

Although each section is independent from each other, this work has a clear common 

background and objective. As anticipated in the introduction, one of the most important 

targets of NGS genomics was to create a sort of catalogue of what is driving cancer in 

human. The three sections can be therefore summarized in 3 sentences: 

1. Distinguish driver genes from passengers and divide them in tumor suppressors 

and oncogenes (section 4.1) 

2. Focusing on oncogenes, expand the reservoir of cancer genes by finding 

connections in secondary structure between proteins. Even very low mutation 

frequency could have a functional meaning by transferring knowledge between 

proteins (section 4.2) 

3. Apply an approach similar to the first two sections to a dataset of germline 

variants (section 4.3) 

The common thread in fact, despite the type of data, either somatic or germline, remains 

the hunt for cancer genes and to distinguish driver mutations or pathogenic variants 

from passenger mutants. Since the first articles about genome-wide mutation profiles in 
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cancer (2006-2007), the necessity of a clear picture for each tumor type cancer gene has 

become a major challenge in cancer genomics, in particular under the grand design of 

the personalized medicine field. As anticipated in section 2.5, from the bioinformatics 

point of view, the real game changer was the possibility to obtain sufficient data to reach 

statistically meaningful conclusion. Around 2013, when a sufficient amount of the 

TCGA data was made available, it was soon realized that even hundreds of samples were 

not sufficient to disentangle the extraordinary heterogeneity in the mutational spectrum 

of the various cancer types. In particular for highly unstable and fast-mutating tumor 

types like melanoma or lung cancer, where variability is even more accentuated. In the 

course of a few years, the subject of distinguish drivers from passengers will probably 

drying over because we are probably reaching a point of saturation of what can be 

discovered through this data and techniques. It is true of course that we lack of a 

sufficiently large sample size to overcome the variability issues but it also true that the 

first genomic and personalized based clinical trials have shown poor results and this 

should be the fundamental reason behind this research field (Tourneau et al., 2015). 

What is probably still missing is the knowledge around other level of the same kind of 

data. For example, the lessons learnt from the TCGA experience (a project that is now at 

its conclusion) could be applied to data from metastases, where mutational spectrum is 

even more elusive than the primary and only small size studies have been published. 

Another very close field that could benefit from driver and passengers analyses is the 

clonal evolution field and how mutations evolve and spread in that layer of heterogeneity 

that is called intra-tumor. The “discovery phase” on primary tumors has probably 

reached its peak, but the entire experience and tools could be transferred to new areas of 

interest.    
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5.1 Driver gene discovery 

At the time DOTS-Finder was conceived, there was already an explosion of interest in 

creating tools for driver discovery. Our vision of mutational process, in fact, is the result 

of a long evolution of DNA from normal cell up to point of sequencing. The order of the 

events is unknown and particularly hard to reconstruct, since what we know from exome 

or genome sequencing is a snapshot of a heterogeneous tumor at a precise moment in 

time. The need of statistical methods to distinguish noisy passenger mutations from 

important drivers was therefore a necessity to understand how a tumor evolved, what 

pathways were mainly involved and ultimately, how to restore the normal phenotype. 

Many approaches were already present that tackled this problem from various angles 

(frequency, position of mutations, severity of the mutations, etc.) but an overall view was 

evident. Driver genes can be elusive if mutated at very low frequency, so that a positional 

approach that tries to check for mutational pattern, rather than mutational frequency, 

have proven to be a very effective compared to simple frequency based methods (see 

section 4.1.2). In fact, the research of patterns of mutations sounds more “ratiometric”, 

although statistically more disputable, since it relies on a clear side effect (or better the 

original cause) of oncogene and tumor suppressor behavior. Nevertheless, there is a 

plethora of other factors to take into account, like length of the gene, position of the gene 

along the genome, expression levels, replication time. The positional approach, in this 

sense, is less greedy in terms of required information because it closes the gene in its own 

environment and do not need the estimation of a global background mutation rate. 

Expression or replication time data are not necessary and gene length is taken 

automatically into account. Nevertheless, it is not sufficient to distinguish all oncogenes 

and tumor suppressor, so that’s why we implemented the two-step approach.  

In section 4.1.5.11, we show instead one of the main feature of DOTS-Finder. Compared 

to our best competitor (MutSigCV), DOTS-Finder is superior in terms of accuracy and 
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recall when subsets of various sizes are used instead of all the available data (Lawrence et 

al., 2013). This feature allows calling driver genes even in a situation of scarce evidence of 

not being passenger. Large sequencing studies like TCGA encompass thousands of 

patients of the most common tumor types, but rare tumors do not have the same 

amount of free data, both for a difficulty in finding patients diagnosed with that 

particular disease but also because of smaller investments compared to major tumor 

types like breast or lung cancer. Driver discovery tools are not particularly useful in 

everyday bioinformatics work, because they represent the very final step of an analysis 

on mutation data that is hardly performed more than once. Furthermore, a tool that 

needs hundreds of samples to reach a sufficient statistical power becomes useful only for 

very large and expensive studies. Pilot studies with sample size around 20-30 patients are 

way more common and so DOTS-Finder can become handy in situations like these. 

Another important point that has been emphasized during DOTS-Finder development is 

both the small amount of data preprocessing in order to run the tool and very little 

system requirements. DOTS-Finder was originally developed in python but soon we 

realized that R could overcome certain mathematical passages more easily (in particular 

related to oncogene and tumor suppressor scores) and python was used mostly as a shell 

for the whole architecture. MutSigCV, for example, is written in Matlab, which is not 

freely available. Moreover, tools like MuSiC or OncodriveFM require demanding input 

file or a certain amount of data preprocessing that we specifically avoid (Dees et al., 2012; 

Gonzalez-Perez and Lopez-Bigas, 2012). MuSiC, being in fact only a part of a larger 

toolset, can only work with the original BAM files that are both hard to obtain in many 

cases and more difficult to manage compared to VCF or MAF. OncodriveFM instead 

requires calculations of SIFT and Polyphen2 scores and therefore requires a non-

standard input format. DOTS-Finder tries to overcome such difficulties requiring a 
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standard MAF input file (see section 4.1.4.2) and uses python under virtualenv and R 

implementation with very few dependencies. 

The creation of this tool was therefore powered by i) the need of a more comprehensive 

approach to discover cancer driver that could be superior to the sum of its parts ii) 

simplicity, in the sense that the data required to run the tool is minimal iii) to create an 

instrument that could be really used for a pilot study on a few cases. 

5.2 Oncogenes and driver mutations discovery 

LowMACA was born under different premises compared to DOTS-Finder. The first 

attempt at the realization of this tool was having the possibility to characterize families of 

proteins rather than unique genes. Driver discovery tools are generally aimed at a global 

analysis on a set of specific samples but they lack the possibility to interrogate a specific 

set of genes given all available knowledge across tumor types. LowMACA set up uses a 

list of genes and Pfam IDs as input and mutation data are collected for the requested 

input only. Compared to DOTS-Finder and other similar tools, this tool is indeed way 

more usable on a regular basis. In the same way a web resource can be useful to check the 

mutations of a specific gene, LowMACA was created under a similar concept. What we 

did was to rely on a web resource (the cBioPortal) that updates constantly its database, so 

that mutations could be downloaded on the fly to check for potential driver mutations 

(Gao et al., 2013). What is new in LowMACA is the possibility to aggregate genes under 

the same Pfam or on other criteria and align them to form a new consensus protein 

where all the mutations of the original genes are remapped. Again, usability is a crucial 

point like it is for DOTS-Finder, but switching the input data from mutation to genes 

makes it even more appealing from the standing point of a usage on the long run. For 

LowMACA, the whole implementation was packed in an R library in order to maintain 

compatibility with the database package cgdsr from cBioPortal. Furthermore, an 

accompanying data package was implemented too, that greatly simplify the task of 
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searching for families of genes. The entire Pfam along with Uniprot is automatically 

available to the user and a perfect one-to-one match between gene symbols and 

canonical proteins was created to uniform sequence databases and dictionaries (Finn et 

al., 2007; Gray et al., 2014; The UniProt Consortium, 2014). Moreover, a Shiny 

implementation of the package was created outside of the Bioconductor repository that 

further simplifies the possibility of an on-the-fly analysis. A completely web-based 

implementation was in fact discarded as a viable possibility because the calculations 

performed by R are sometimes too complex and time consuming to fit usual web timing. 

LowMACA also introduces a few new ideas into the driver discovery universe. In 

particular, being an aggregating method, it tries to overcome the limits of rare mutation 

boundaries. A very simple but effective analysis of what is in fact the required sample 

size to be confident enough to distinguish any driver from passenger can be found in 

(Lawrence et al., 2014). The statistical power of MutSig (and by inference of any other 

driver discovery tool) is inversely proportional to the mutation rate of the specific tumor 

type, so that a tumor like melanoma, with a very high number of mutation per patient 

would require thousands of sequenced cases to be completely saturated in term of driver 

genes discovered. LowMACA, by aggregating mutational profiles, represents a sort of 

shortcut that has been proposed in various forms in recent years, in particular via 

pathway or network analysis (Ciriello et al., 2012; Vandin et al., 2012). The advantage of 

LowMACA over pathway analysis is that the position of the mutation is retained and 

doesn’t lose its meaning. This allowed us to be able not only to collect information over 

driver genes but also on driver mutations, finding connections between genes that are 

not clearly visible unless the sequences and mutational profiles are blatantly similar (see 

the case of KRAS, NRAS and HRAS). In fact, the special case of the RAS trio served as a 

proof of concept that a similar mechanism do exists and that mutations are also cancer 

specific in terms of gene and position (see section 4.2.4.1) within the same gene (a 
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particularly interesting case is represented by EGFR in lung and brain tumors, as shown 

in section 4.2.4.4). Nevertheless, there are certain limitations. LowMACA, for example, 

uses an amino acidic dictionary based on secondary structure connections. This choice 

creates a series of inherent biases, that can be summarized as i) the Pfam database, based 

on predicted similarities given by an HMM model ii) the alignment algorithm that could 

get stuck in local minima, in particular in the case of hundreds of sequences aligned at 

the same time iii) the difficulty of judging the alignment goodness of each single base. 

Under this view, pathway analysis does not suffer from these biases, since it works on a 

more biological level that is constituted mostly by literature findings and partially by 

predicted connections. For example, in the case of HotNet2, an efficient network-based 

driver discovery tools, the pathway architecture is not even superimposed (Leiserson et 

al., 2015). It is the algorithm itself that creates the network reducing any source of 

external bias caused by erroneous database entries. These drawbacks are therefore 

insurmountable in case we want to investigate single mutations using secondary 

structure similarities and a couple of safety nets have been implemented. First of all, the 

Valdar score can be fine tuned according to user specification in order to accept a 

minimum level of similarity for each base aligned (Valdar, 2002). Secondly, the 

possibility to aggregate mutations using a Gaussian density was borrowed from the 

oncogene score of DOTS-Finder framework without any imposition on the choice of 

bandwidth (in DOTS-Finder, the bandwidth was set with Silverman’s rule of thumb 

(Silverman, 1986). Both Valdar score and bandwidth can be easily changed in the Shiny 

based application following user specifications. 

As explained above, LowMACA is dedicated to exploratory analysis rather than 

deterministic results like normal driver discovery tools, as many parameters can be used 

at the same time to fine-tune the results. In particular the choice of which are the genes 

to align is of paramount importance. In the section dedicated to RAS family we show a 
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way to overcome the limits of Pfam by using literature to separate a large family (around 

130 different proteins) into more homogeneous subfamilies, mixing de facto secondary 

structure similarities with defined biological functions. Three possible follow-ups of this 

work come from this possibility: 

1. Deconstruct Pfam families following other criteria or even implement a more 

stringent HMM to create user-defined families. For example, subdividing large 

families into more biologically meaningful clusters, like we did for the RAS 

superfamily. 

2. Implement new dictionaries, for example using amino acid motifs. In this case 

the sequences to align become shorter and as a result, families increase in size. 

3. Changing alphabet. Amino acids are convenient to work with because there 

exists an intrinsic stechiometric similarity that facilitates alignment evaluation. 

Furthermore, databases such as GenBank or Pfam are a useful precompiled 

resource. Using directly genomic regions based on nucleobases alphabet, other 

kind of structures can be analyzed, in particular outside of the coding region, like 

for example, binding site motifs. 

Even though LowMACA was able to show connections between proteins via their 

mutational patterns, it does not answer to the question of why a gene mutates way more 

frequently than others in the same family. This is the case of the RAS family too, where 

KRAS is the leading gene and all the others follow. If the structure and the function are 

the same or at least very similar, why KRAS mutates and RRAS2 does not? We think 

there are at least three possible scenarios to disentangle this question that involve the 

probability of mutation and the function of the proteins: 

1. If the probability of mutation is constant in the family and the function of all the 

proteins is truly interchangeable, it could be a matter of expression. A mutation 

on KRAS or RRAS2 could be seen with same probability but the selective growth 
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advantage is much stronger in the first case because KRAS is more expressed and 

its oncogenic potential is greater. This explains the fact that KRAS (ubiquitously 

expressed) is mutated in many cancer types, including pancreas, lung and colon, 

while NRAS is typically found in melanoma and leukemia (Downward, 2003). 

2. The probability of mutation is constant but the function is slightly different. 

Although the RAS trio shares ~85% of their protein sequence, if the function is 

different so it is their oncogenic potential. This could be true both at wild type 

level and in the mutated form. It has demonstrated, for example, that NRAS and 

HRAS are not essential for mouse embryonic development while KRAS knock-

down showed embryonic lethality (Johnson et al., 1997). Furthermore, drugs 

developed on HRAS models showed no effect on KRAS mutations, confirming 

different behaviors also in the mutated form (Baines et al., 2011). 

3. The probability of mutation is different from gene to gene. While this is certainly 

true, because mutation rate depends on replication time, expression and 

upstream epigenetic factors (Lawrence et al., 2013), these differences were seen 

on large portion of the genome and it is probably hard to demonstrate for genes 

within the same family. 

5.3 Bridging the gap between genetics and genomics 

As briefly mentioned in the introduction of this final discussion, the scope of section 4.3 

was an attempt at bridging the gap between genetic and genomic analysis. Broadly 

speaking, the two main categories of genetic studies can be summarized as case-control 

(our case) and trait association studies. Case-control genetic studies follow a scheme 

starting from statistical evaluation of variants enriched in cases compared to controls 

and subsequently fine-maps variants with a biological meaning. This is certainly a 

rigorous approach from the statistical point of view but it has its drawbacks. Sample size, 

for example, is a crucial point because the more positions are tested the higher is the 
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probability to find false positive results. In the same way, rare pathogenic variants are 

more prone to be called as false negative because of their scarce odds to find them. Rare 

variants play an important role in disease predisposition because they are generally 

associated with penetrant phenotypes. Genomic studies, on the other hand, do not 

always follow such scheme. Often, a knowledge-based approach that exploits ontologies, 

pathways or simply literature enters in the decision process of highlighting relevant 

results from the very beginning of the study. These information sources could be used as 

simple filters to retain the best candidates for the analysis or in other cases through what 

we can call an “approach by prototypes”. This methodology is based on previous 

knowledge on how a predisposing gene or variant should present (the prototypes) and 

searches for all the variations that are as closed as possible to known pathogenic events. 

At the same time, variants that are proved not to be pathogenic can be used as a negative 

control. This is not any different from any machine learning approach with a training 

and test set. 

As mentioned in section 4.3.2, our approach wants to use a typical genomic (knowledge-

based) approach applied to genetic data. Using regular genetic techniques is not 

particularly indicated with exome sequencing data and up to the date, very few examples 

have proven to work on cancer data (see section 4.3.5). Both the examples reported 

(Kanchi et al., 2014; Lu et al., 2015) used a sort of pre filtering technique, in particular to 

show the ability to highlight genes like BRCA1 or BRCA2 that are known CPGs and are 

usually tested via small target sequencing panels. Most of their results, however, are 

aimed at pinpointing genes rather than variants. On the contrary, we wished to maintain 

a variant-wise approach (that is way more informative as it highlights potential 

pathogenic variations), but that comes at the cost, again, of losing statistical power. We 

therefore tried to move a step forward and add new layers of complexity to the problem. 
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Under our framework, only coding non-synonymous variants are retained and various 

genomic-style methodologies are used: 

1. Use variants that overlap with somatic mutations, in known driver genes, with a 

high deleteriousness score (see section 4.3.4.2 and 4.3.3.3). This approach is 

based on the assumption that what is seen in cancer as somatic could probably be 

harmful in the germline too. Passenger mutations are possibly filter out using the 

knowledge from what are the driver gene candidates (Rahman, 2014) and a 

prediction of damage based on the estimation of phenotypic effect (Liu et al., 

2013) 

2. Select truncating variants on tumor suppressor candidates, which is a technique 

borrowed from DOTS-Finder, adapted to take into account a case-control 

scheme that is not present when dealing with somatic mutations only 

3. Develop a hybrid approach based first on selecting those variants that have 

characteristics similar to known pathogenic variants (prototype approach). Use 

the genotype of the selected variants like an association trait study, by running a 

regression over age at disease onset (GWAS-like approach) 

In the same way as LowMACA represented a shortcut for a lack of sufficient sample size 

when dealing with rare somatic mutations, this approach can be seen as a shortcut to 

overcome the same lack on different data. The 673 cases we used in this study are orders 

of magnitude smaller than GWAS studies on cancer like the COGs consortium that 

comprises over 200’000 genotyped samples (Sakoda et al., 2013). In fact, an approach 

based on alignment that emphasizes oncogenes (gain-of-function) rather than tumor 

suppressors (loss-of-function) was also hypothesized in the early phase of this analysis. 

Unfortunately, there are potential pitfalls in following this approach: 

• While oncogenes are common in cancer, they are very rare in the germline. A 

part from a few cases (like for example RET), at least 90% of known cancer 
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predisposing genes are in fact loss-of-function. This is not surprising since 

oncogenes are dominant and with a strong neoplastic transformation potential. 

This is in most cases, deleterious for embryonal development. 

• LowMACA doesn’t take into account the minor allele frequency of the variant in 

both cases and controls because the individual itself represents the control in 

cancer and somatic mutations are generally rare by definition. An extra effort 

should be considered to implement an approach that take into account cases and 

controls that is a potentially fruitful follow-up of this work. 

5.4 Conclusion 

In this work, by the results of three distinct studies, we built a comprehensive 

computational framework to study cancer mutations. Cancer is indeed a unique disease 

where the edge between predisposition and disease development factors does not create a 

defined distinction that can be exploited as a source of mutual biological information. In 

the NGS era, we envisage a unified approach that clearly defines cancer etiology from 

DNA somatic mutations based on a deep understanding of the genetic risk components. 
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7 List of Abbreviations 

AML: Acute Myeloid Leukemia 

BAM: Binary Annotation Format 

BLCA: Bladder Carcinoma 

BMR: Background Mutation Rate 

BRCA: Breast Carcinoma 

Bp: base pair 

CDG: Candidate Driver Gene 

CGC: Cancer Gene Census 

CIViC: Clinic Interpretation of Variants in Cancer 

CMC: Combined Multivariate and Collapsing Method 

COSMIC: Catalogue of Somatic Mutations in Cancer 

DoCM: Database of Curated Mutations 

DOTS-Finder: Driver Oncogene and Tumor Suppressor Finder 

ExAC: Exome Aggregation Consortium 

FDR: False Discovery Rate 

GATK: Genome Analysis Tool Kit 

GUI: Graphic User Interface 

GWAS: Genome Wide Association Study 

HCD: High Confidence Driver Gene 

InDel: Small Insertion-Delition 

Kbac: Kernel-based Adaptive Cluster Test 

LOF: Loss-of-function 

LowMACA: Low frequency Mutation Analysis using Consensus Alignment 

MAF: Minor Allele Frequency and Mutation Annotation Format 

MCC: Matthews Correlation Coefficient 
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MNSp: Median number of Non-Silent mutations per patient 

NCDG: New Candidate Driver Gene 

NGS: Next Generation Sequencing 

NS: Never Smoker 

OG: Oncogene 

OG-S: Oncogene Score 

Ras Trio: the genes KRAS, NRAS and HRAS 

SKAT-O: Sequence Kernel Association Test Optimal 

SNP: Single Nucleotide Polymorphism 

SNV: Single Nucleotide Variant 

TCGA: The Cancer Genome Atlas 

THCA: Thyroid Cancer 

TSG: Tumor Suppressor Gene 

TSG-S: Tumor Suppressor Gene Score 

WES: Whole Exome Sequencing 

WGS: Whole Genome Sequencing 
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8 Appendix 

Multiple	Mieloma	 Carcinoid	

205	 54	

53	 33	
Gene 
name NS freq q-value	

Gene 
name NS freq q-value	

TP53	 0.0732	 0.0000	 CDKN1B	 0.093	 0.000	

SP140	 0.0293	 0.1088	 PRDM9	 0.056	 0.035	

FGFR3	 0.0244	 0.2249	 CACNA1E	 0.074	 0.054	

PLXDC2	 0.0195	 0.2249	 LAX	

EZR	 0.0146	 0.3487	
Gene 
name NS freq q-value	

NRAS	 0.1805	 0.0000	 CDKN1B	 0.0926	 0.0000	

CCND1	 0.0439	 0.0000	 PRDM9	 0.0556	 0.0182	

TP53	 0.0732	 0.0000	 ATM	 0.0741	 0.0291	

ACTG1	 0.0341	 0.0000	 ERN2	 0.0370	 0.1107	

BRAF	 0.0634	 0.0000	 TP53BP1	 0.0741	 0.1005	

EGR1	 0.0341	 0.0003	
	 	 	KRTDAP	 0.0098	 0.0003	
	

  tumor	suppressors	

DTX1	 0.0293	 0.0010	
	

		 oncogenes	

MOGAT3	 0.0195	 0.0056	
	

		
additional	genes	below	the	threshold	of	
significance	

TRAF2	 0.0049	 0.0150	
	

NS freq 
frequency	of	non	silent	mutations	in	
the	patients	

IDH1	 0.0146	 0.0817	
	 	 	

Lung	Small	Cell	Carcinoma	 Rhabdoid_Tumor	

73	 33	

178	 5	
Gene 
name NS freq q-value	

Gene 
name NS freq q-value	

RB1	 0.4384	 0.0000	 SMARCB1	 0.2121	 0.0000	

TP53	 0.7808	 0.0000	 LAX	

MYH2	 0.1644	 0.0009	
Gene 
name NS freq q-value	

MNDA	 0.0822	 0.0045	 SMARCB1	 0.2121	 0.0000	

HCN1	 0.2192	 0.0045	 ZNF433	 0.0606	 0.0165	

KIF21A	 0.1507	 0.0045	 SMARCB1	 0.2121	 0.0000	

NLRP8	 0.0685	 0.0518	 GABRB2	 0.0606	 0.0167	

ZIM3	 0.0685	 0.0531	
	 	 	IL1RAPL2	 0.0959	 0.0557	
	 	 	IL26	 0.0411	 0.0572	
	 	 	ROBO4	 0.0959	 0.0572	
	 	 	SLIT2	 0.0959	 0.0572	
	 	 	ELAVL2	 0.1096	 0.0733	
	 	 	TP53	 0.7808	 0.0000	
	 	 	COL22A1	 0.2055	 0.0000	
	 	 	OR4K17	 0.0548	 0.0142	
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MCF2	 0.0822	 0.0159	
	 	 	OR5F1	 0.0411	 0.0159	
	 	 	IL1RAPL2	 0.0959	 0.0249	
	 	 	UBE2NL	 0.0411	 0.0249	
	 	 	NPAP1	 0.1096	 0.0479	
	 	 	OR5B2	 0.0411	 0.0479	
	 	 	DIP2C	 0.0959	 0.0771	
	 	 	

Neuroblastoma Liver Hepatocellular Carcinoma 

283 152 

14 44 
Gene 
name NS freq q-value	

Gene 
name NS freq q-value	

ZNF717	
0.02120141

3	 0.000151487	 ALB	
0.07894736

8	 0	

ALK	
0.08480565

4	 0	 ARID1A	
0.09868421

1	 1.03E-09	

IL18RAP	
0.01413427

6	 0.094614427	 AXIN1	
0.05921052

6	 1.30E-09	

SIGLEC1	
0.01413427

6	 0.094614427	 ERRFI1	
0.02631578

9	 0.000314282	

LAX	 ARID2	
0.05921052

6	 0.000542467	
Gene 
name NS freq q-value	 RPS6KA3	

0.03947368
4	 0.001846214	

ZNF717	
0.02120141

3	 0.000540186	 SIGLEC12	
0.02631578

9	 0.019178482	

ALK	
0.08480565

4	 0	 ZNF226	
0.02631578

9	 0.019580451	

MYCN	
0.01766784

5	 0.002450297	 ACVR2A	
0.03289473

7	 0.051847305	

		
	

		 BRD7	
0.01973684

2	 0.133207108	

		
	

		 CTNNB1	
0.11842105

3	 0	

		
	

		 TP53	
0.26315789

5	 0	

		
	

		 WWP1	
0.05263157

9	 2.25E-06	

		
	

		 NFE2L2	
0.04605263

2	 2.62E-05	

		
	

		 UBR3	
0.05263157

9	 0.001837446	

		
	

		 USP25	
0.02631578

9	 0.00675368	

		
	

		 IGSF10	
0.04605263

2	 0.01772374	

		
	

		 VIM	
0.02631578

9	 0.020421845	

		
	

		 ZNF804B	
0.03289473

7	 0.036041033	

Biliary Tract Astrocytoma 

9 52 

22 1 
Gene 
name NS freq q-value	

Gene 
name NS freq q-value	

TP53	
0.66666666

7	 7.87E-09	 FGFR1	
0.07692307

7	 6.84E-06	

ROBO2	
0.22222222

2	 0.014403669	
	 	 	

MLL3	
0.22222222

2	 0.033543191	
	 	 	LAX	
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Gene 
name NS freq q-value	

	 	 	
TP53	

0.66666666
7	 5.11E-08	

	 	 	
SMAD4	

0.44444444
4	 1.68E-05	

	 	 	
RNF43	

0.33333333
3	 0.001132554	

	 	 	
NDC80	

0.22222222
2	 0.007054856	

	 	 	
ROBO2	

0.22222222
2	 0.037449541	

	 	 	
MLL3	

0.22222222
2	 0.109015372	

	 	 	
ARID1A	

0.11111111
1	 0.945938479	

	 	 	
TP53	

0.66666666
7	 6.71E-10	

	 	 	
SMAD4	

0.44444444
4	 7.31E-06	

	 	 	
GNAS	

0.22222222
2	 0.008241586	

	 	 	
RNF43	

0.33333333
3	 0.057650829	

	 	 	
Hematological	NS	 Lymphoma B-cell 

473	 83 

10	 70 
Gene 
name NS freq q-value	

Gene 
name NS freq q-value	

MLL2	
0.06342494

7	 0	 SGK1	
0.12048192

8	 0	

FAM46C	
0.01902748

4	 4.94E-08	 TNFRSF14	
0.10843373

5	 2.02E-13	

NPM1	
0.01479915

4	 1.08E-07	 FBXO11	
0.09638554

2	 1.58E-10	

WT1	
0.01902748

4	 1.08E-07	 CREBBP	
0.24096385

5	 1.30E-08	

TMEM30A	
0.01479915

4	 0.000904284	 B2M	
0.07228915

7	 1.33E-08	

RUNX1	
0.01691331

9	 0.001985932	 DUSP2	
0.04819277

1	 0.000766125	

FAM5B	
0.01057082

5	 0.087584538	 HNRNPU	
0.04819277

1	 0.0430406	

ZRSR2	 0.00845666	 0.087584538	 PFN1	
0.02409638

6	 0.091884294	

ASXL1	
0.01268498

9	 0.226676493	 NFKBIA	
0.03614457

8	 0.105566134	

BCOR	 0.00845666	 0.634568733	 C10orf12	
0.04819277

1	 0.222787593	

BCL2	
0.09090909

1	 0	 ETS1	
0.04819277

1	 0.409245387	

CCND3	
0.02959830

9	 0	 MLL2	
0.16867469

9	 0.937228598	

CREBBP	
0.03805496

8	 0	 BCL2	
0.24096385

5	 0	

EZH2	
0.07399577

2	 0	 MYC	
0.20481927

7	 0	

ID3	
0.03171247

4	 0	 PIM1	
0.18072289

2	 0	

MYC	
0.04439746

3	 0	 SGK1	
0.12048192

8	 0	

MYD88	
0.02536997

9	 0	 TP53	 0.21686747	 0	

SF3B1	
0.03594080

3	 0	 ACTB	
0.08433734

9	 4.96E-10	

SGK1	 0.02536997 0	 MYD88	 0.08433734 2.98E-09	
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9	 9	

TP53	
0.09090909

1	 0	 CREBBP	
0.24096385

5	 3.94E-09	

CARD11	
0.03171247

4	 2.90E-13	 SMARCA4	
0.07228915

7	 1.18E-07	

NRAS	
0.02748414

4	 6.62E-12	 EZH2	
0.07228915

7	 0.000143132	

MEF2B	
0.02325581

4	 1.08E-11	 CARD11	 0.13253012	 0.00068373	

PIM1	
0.02325581

4	 1.47E-11	 STAT6	
0.04819277

1	 0.00246889	

IRF4	
0.01479915

4	 2.92E-09	 BCR	
0.08433734

9	 0.003671572	

FLT3	
0.02325581

4	 5.74E-07	 ZNF608	
0.06024096

4	 0.010139367	

Chronic Lymphocytic Leukemia (CLL) Soft Tissue Sarcoma 

223 15 

15 5 
Gene 
name NS freq q-value	

Gene 
name NS freq q-value	

ATM	
0.03587443

9	 1.03E-06	 ZIC3	
0.06666666

7	 0.00425854	

CHD2	 0.02690583	 0.001993193	
	 	 	

KDM6A	
0.02242152

5	 0.00913055	
	 	 	ARID1A	 0.01793722	 0.968290143	
	 	 	SPEN	 0.01793722	 0.968290143	
	 	 	

MYD88	
0.05381165

9	 0	
	 	 	

SF3B1	
0.11210762

3	 0	
	 	 	

TP53	
0.09417040

4	 0	
	 	 	RPS15	 0.01793722	 1.77E-08	
	 	 	MED12	 0.01793722	 0.018970565	
	 	 	

LYN	
0.01345291

5	 0.020293661	
	 	 	

Oligodendroglioma	 Acute	Lymphoblastic	Leukemia	(ALL)	

16	 125	

17.5	 7	
Gene 
name NS freq q-value	 LAX	

FUBP1	 0.125	 0.04722897	
Gene 
name NS freq q-value	

CIC	
0.41666666

7	 0	 PHF6	 0.056	 3.99E-06	

IDH1	
0.41666666

7	 0	 TP53	 0.048	 6.92E-05	

LAX	 PHF6	 0.056	 2.30E-05	
Gene 
name NS freq q-value	

	 	 	
CIC	

0.41666666
7	 0	

	 	 	FUBP1	 0.125	 0.173117289	
	 	 	CIC	 0.9375	 0	
	 	 	IDH1	 0.9375	 0	
	 	 	NOTCH1	 0.3125	 5.12E-05	
	 	 	PIK3CA	 0.25	 0.00027747	
	 	 	PDCD6IP	 0.125	 0.019122225	
	 	 	PKD1L2	 0.125	 0.022348156	
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SLC26A3	 0.125	 0.022348156	
	 	 	FARP2	 0.125	 0.034964368	
	 	 	HIVEP2	 0.125	 0.039569068	
	 	 	KCNH6	 0.125	 0.039569068	
	 	 	RIN1	 0.125	 0.039569068	
	 	 	RNPEPL1	 0.125	 0.039569068	
	 	 	

Stomach Adenocarcinoma Head and neck squamous cell carcinoma 

300 416 

127.5 116	
Gene 
name NS freq q-value	

Gene 
name NS freq q-value	

CBWD1	 0.0967	 0.0000	 CASP8	 0.0841	 0.0000	

SEC31A	 0.0300	 0.0000	 CDKN2A	 0.1731	 0.0000	

TP53	 0.3867	 0.0000	 FAT1	 0.1947	 0.0000	

ARID1A	 0.1667	 0.0166	 NOTCH1	 0.1707	 0.0000	

TP53	 0.3867	 0.0000	 TP53	 0.6779	 0.0000	

PGM5	 0.0833	 0.2196	 MLL2	 0.1538	 0.0000	

		
	

		 AJUBA	 0.0433	 0.0000	

		
	

		 EPHA2	 0.0409	 0.0000	

		
	

		 NSD1	 0.0962	 0.0001	

		
	

		 ZNF750	 0.0361	 0.0003	

		
	

		 RASA1	 0.0409	 0.0009	

		
	

		 B2M	 0.0168	 0.0035	

		
	

		 BAGE5	 0.0264	 0.0150	

		
	

		 PRB3	 0.0216	 0.0252	

		
	

		 ITGA8	 0.0361	 0.0422	

		
	

		 HRAS	 0.0409	 0.0000	

		
	

		 PIK3CA	 0.1755	 0.0000	

		
	

		 TP53	 0.6779	 0.0000	

		
	

		 NFE2L2	 0.0505	 0.0000	

		
	

		 FBXW7	 0.0505	 0.0004	

		
	

		 EP300	 0.0673	 0.0022	

		
	

		
HIST1H2B
F	 0.0096	 0.0048	

		
	

		 RHOA	 0.0120	 0.0477	

Esophageal Adenocarcinoma Medulloblastoma 

159 336 

117 9 
Gene 
name NS freq q-value	

Gene 
name NS freq q-value	

TP53	 0.3208	 0.0000	 TCH1	 0.0506	 0.0000	

CDKN2A	 0.0566	 0.0000	 MLL2	 0.0565	 0.0000	

ARID1A	 0.0566	 0.1499	 CTDNEP1	 0.0238	 0.0000	

CNTNAP4	 0.0566	 0.1499	 CREBBP	 0.0268	 0.0005	

SMARCA4	 0.0629	 0.1499	 GPS2	 0.0089	 0.0151	

TP53	 0.3208	 0.0000	 LDB1	 0.0119	 0.0510	

DOCK2	 0.1069	 0.0000	 FBXW7	 0.0149	 0.1464	

ZNF208	 0.0755	 0.0000	 TCF4	 0.0179	 0.1464	

EPHA6	 0.0440	 0.0204	 BCOR	 0.0149	 0.1512	

CNBD1	 0.0314	 0.0318	 ARID2	 0.0089	 0.2960	
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ELMO1	 0.0629	 0.0425	 CTNNB1	 0.0744	 0.0000	

RYR3	 0.1069	 0.0484	 DDX3X	 0.1101	 0.0000	

NYAP2	 0.0377	 0.0662	 SMARCA4	 0.0565	 0.0000	

GABRA6	 0.0503	 0.0897	 TP53	 0.0298	 0.0000	

		
	

		 SMO	 0.0208	 0.0000	

		
	

		 CREBBP	 0.0268	 0.0001	

		
	

		 SF3B1	 0.0089	 0.0090	

		
	

		 TBR1	 0.0089	 0.0090	

		
	

		 CLEC12B	 0.0119	 0.0387	

Skin Melanoma Low Grade Glioma 

390 228 

237.5 42 
Gene 
name NS freq q-value	

Gene 
name NS freq q-value	

CDKN2A	 0.1385	 0.0000	 ATRX	 0.4211	 0.0000	

DNAH7	 0.2487	 0.0000	 CIC	 0.1886	 0.0000	

TP53	 0.1641	 0.0000	 FUBP1	 0.0965	 0.0000	

PTEN	 0.0897	 0.0000	 TCF12	 0.0395	 0.0000	

B2M	 0.0231	 0.0282	 IL32	 0.0263	 0.0000	

BRAF	 0.5154	 0.0000	 EMG1	 0.0175	 0.0009	

C10orf71	 0.0718	 0.0000	 IDH1	 0.7675	 0.0000	

CCDC141	 0.0949	 0.0000	 TP53	 0.5088	 0.0000	

CDKN2A	 0.1385	 0.0000	
	 	 	MUC16	 0.4487	 0.0000	
	 	 	NPAP1	 0.1564	 0.0000	
	 	 	NRAS	 0.2564	 0.0000	
	 	 	PRB3	 0.0615	 0.0000	
	 	 	RAC1	 0.0795	 0.0000	
	 	 	RGPD4	 0.1154	 0.0000	
	 	 	STK19	 0.0385	 0.0000	
	 	 	TCEB3CL	 0.0590	 0.0000	
	 	 	TRIOBP	 0.1231	 0.0000	
	 	 	HNRNPCL1	 0.0641	 0.0001	
	 	 	IDH1	 0.0385	 0.0057	
	 	 	

Kidney Papillary Cell Carcinoma Kidney	Chromophobe	

111 65	

66 11	
Gene 
name NS freq q-value	

Gene 
name NS freq q-value	

IL32	 0.0360	 0.0006	 PTEN	 0.0923	 0.0000	

NF2	 0.0631	 0.0006	 CDKN1A	 0.0308	 0.0187	

SETD2	 0.0631	 0.0086	 KIAA0947	 0.0462	 0.0232	

SCAF11	 0.0450	 0.0098	 TP53	 0.2000	 0.0000	

KDM6A	 0.0450	 0.0595	
	 	 	SMARCB1	 0.0270	 0.0595	
	 	 	SRCAP	 0.0721	 0.0643	
	 	 	SAV1	 0.0270	 0.0690	
	 	 	DARS	 0.0270	 0.0917	
	 	 	CDC27	 0.0360	 0.0993	
	 	 	OGG1	 0.0270	 0.0993	
	 	 	



 167	

MET	 0.0811	 0.0002	
	 	 	ATP10A	 0.0450	 0.0688	
	 	 	NFE2L2	 0.0270	 0.0688	
	 	 	PCF11	 0.0631	 0.0688	
	 	 	

Kidney	All	 Kidney	Clear	Cell	Carcinoma	

534	 355	

64	 71	
Gene 
name NS freq q-value	

Gene 
name NS freq q-value	

BAP1	 0.0712	 0.0000	 BAP1	 0.0958	 0.0000	

PBRM1	 0.2416	 0.0000	 KDM5C	 0.0620	 0.0000	

SETD2	 0.0899	 0.0000	 PBRM1	 0.3465	 0.0000	

VHL	 0.3052	 0.0000	 SETD2	 0.1127	 0.0000	

KDM5C	 0.0412	 0.0000	 VHL	 0.4479	 0.0000	

PTEN	 0.0356	 0.0000	 SCAF4	 0.0254	 0.0355	

NF2	 0.0243	 0.0049	 BAP1	 0.0958	 0.0000	

GFRAL	 0.0131	 0.0337	 MTOR	 0.0901	 0.0000	

STAG2	 0.0281	 0.0685	 MUC4	 0.1183	 0.0000	

SMARCB1	 0.0131	 0.0852	 SETD2	 0.1127	 0.0000	

MTOR	 0.0693	 0.0000	 TP53	 0.0254	 0.0038	

MUC4	 0.0843	 0.0000	 MUC2	 0.0338	 0.0108	

TP53	 0.0449	 0.0000	 TRIM51	 0.0113	 0.0376	

MUC2	 0.0300	 0.0145	 SPAM1	 0.0169	 0.0405	

SMARCA4	 0.0243	 0.0145	 OR5H1	 0.0085	 0.0501	

SPAM1	 0.0150	 0.0145	 SMARCA4	 0.0225	 0.0603	

NFE2L2	 0.0150	 0.0255	
	 	 	

Pancreatic Adenocarcinoma Glioblastoma 

401 361 

16 65 
Gene 
name NS freq q-value	

Gene 
name NS freq q-value	

RNF43	 0.0449	 0.0000	 NF1	 0.1191	 0.0000	

SMAD4	 0.1471	 0.0000	 PIK3R1	 0.1136	 0.0000	

TP53	 0.2195	 0.0000	 PTEN	 0.2825	 0.0000	

ARID1A	 0.0349	 0.0000	 RB1	 0.0776	 0.0000	

MLL3	 0.0574	 0.0002	 TP53	 0.2521	 0.0000	

MEN1	 0.0175	 0.0497	 NOX4	 0.0249	 0.0000	

KRAS	 0.3541	 0.0000	 RPL5	 0.0194	 0.0000	

TP53	 0.2195	 0.0000	 ZNF431	 0.0111	 0.0000	

CTNNB1	 0.0224	 0.0000	 STAG2	 0.0332	 0.0001	

GNAS	 0.0224	 0.0000	 TPTE2	 0.0222	 0.0052	

SF3B1	 0.0200	 0.0001	 ATRX	 0.0443	 0.0054	

CDH10	 0.0200	 0.0019	 CHD8	 0.0277	 0.0378	
ANKRD20A
4	 0.0050	 0.0025	 NBPF9	 0.0166	 0.0669	

GABRQ	 0.0100	 0.0091	 EGFR	 0.2188	 0.0000	

PRAMEF11	 0.0075	 0.0142	 PIK3CA	 0.1025	 0.0000	

CHGB	 0.0150	 0.0223	 PIK3R1	 0.1136	 0.0000	

MYH6	 0.0150	 0.0406	 TP53	 0.2521	 0.0000	

TEX2	 0.0175	 0.0566	 IDH1	 0.0388	 0.0000	
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GPR133	 0.0150	 0.0910	 ABCC9	 0.0305	 0.0117	

KANSL1	 0.0175	 0.0910	 KCNB2	 0.0194	 0.0273	

		
	

		 PIK3R5	 0.0305	 0.0283	

		
	

		 TRABD2A	 0.0111	 0.0283	

		
	

		 AMER3	 0.0194	 0.0658	

		
	

		 KHDC3L	 0.0083	 0.0658	

Colorectal Adenocarcinoma Lung Squamous Cell Carcinoma 

328 179 
90	 290 

Gene 
name NS freq q-value	

Gene 
name NS freq q-value	

APC	 0.6463	 0.0000	 CDKN2A	 0.1453	 0.0000	

TP53	 0.5152	 0.0000	 CSMD3	 0.4525	 0.0000	

TGIF1	 0.0183	 0.0813	 TP53	 0.7877	 0.0000	

KRAS	 0.4329	 0.0000	 COL11A1	 0.1955	 0.0000	

SMAD4	 0.1372	 0.0000	 MROH2B	 0.1453	 0.0000	

TP53	 0.5152	 0.0000	 EPB41L3	 0.0950	 0.0006	

NRAS	 0.0762	 0.0000	 CLSTN2	 0.0950	 0.0013	

KRTAP1-3	 0.0122	 0.0157	 PTEN	 0.0782	 0.0032	

		
	

		 REG3G	 0.0447	 0.0035	

		
	

		 MYH8	 0.1173	 0.0054	

		
	

		 DPPA4	 0.0670	 0.0061	

		
	

		 MLL2	 0.1955	 0.0070	

		
	

		 BAI3	 0.1229	 0.0086	

		
	

		 PRIM2	 0.0726	 0.0086	

		
	

		 RB1	 0.0670	 0.0086	

		
	

		 ADAM2	 0.0670	 0.0137	

		
	

		 DNAH5	 0.1788	 0.0174	

		
	

		 ELTD1	 0.1006	 0.0284	

		
	

		 ACSM2B	 0.0726	 0.0371	

		
	

		 NFE2L2	 0.1508	 0.0000	

		
	

		 TP53	 0.7877	 0.0000	

		
	

		 ZNF208	 0.1341	 0.0004	

Uterin Carcinoma Ovarian Adenocarcinoma 

248 503 

66 51 
Gene 
name NS freq q-value	

Gene 
name NS freq q-value	

ARID1A	 0.3347	 0.0000	 TP53	 0.6759	 0.0000	

ARID5B	 0.1169	 0.0000	 BRCA1	 0.0398	 0.0000	

CTCF	 0.1815	 0.0000	 NF1	 0.0497	 0.0000	

IK	 0.0323	 0.0000	 CDK12	 0.0298	 0.0005	

PIK3R1	 0.3347	 0.0000	 RB1	 0.0278	 0.0007	

PTEN	 0.6492	 0.0000	 IL21R	 0.0159	 0.0212	

RPL22	 0.1250	 0.0000	 SNTG1	 0.0159	 0.0418	

ZFHX3	 0.1774	 0.0000	 TP53	 0.6759	 0.0000	

CTNNB1	 0.2984	 0.0000	 PPP2R1A	 0.0139	 0.4807	

KRAS	 0.2137	 0.0000	
	 	 	PIK3R1	 0.3347	 0.0000	
	 	 	PTEN	 0.6492	 0.0000	
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TP53	 0.2782	 0.0000	
	 	 	PPP2R1A	 0.1089	 0.0016	
	 	 	

Lung Adenocarcinoma Prostate Adenocarcinoma 

244 403 

231 39 
Gene 
name NS freq q-value	

Gene 
name NS freq q-value	

COL11A1	 0.2049	 0.0000	 PTEN	 0.0496	 0.0000	

STK11	 0.0820	 0.0000	 KDM6A	 0.0273	 0.0001	

TP53	 0.5205	 0.0000	 OR2T35	 0.0099	 0.0001	

TPTE	 0.1025	 0.0000	 CDKN1B	 0.0174	 0.0009	

CDKN2A	 0.0574	 0.0070	 GPATCH4	 0.0124	 0.0954	

CHDC2	 0.0451	 0.0073	 APC	 0.0323	 0.1001	

RBM10	 0.0492	 0.0435	 SPOP	 0.0844	 0.0000	

TAAR5	 0.0328	 0.0486	 TP53	 0.1315	 0.0000	

PNLIP	 0.0287	 0.2889	 FOXA1	 0.0298	 0.0000	

SMARCA4	 0.0697	 0.2889	 NKX3-1	 0.0174	 0.0059	

KRAS	 0.2746	 0.0000	 AR	 0.0223	 0.0253	

TP53	 0.5205	 0.0000	 CTNNB1	 0.0199	 0.0337	

EGFR	 0.1189	 0.0287	 LPAR1	 0.0149	 0.0974	

NPAP1	 0.1393	 0.0568	
	 	 	Appendix Table 1 Application of DOTS-Finder to 30 tumor types. The frequency of non-silent 

mutation is reported for every gene (NS Freq) with a q-value < 0.1. Genes around the threshold of 
significance are reported in yellow. In white, detected oncogenes are reported, in green, detected tumor 
suppressors. Under each tumor type name, number of samples and median number of non-silent 
mutations per sample are reported in the order. 
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Breast	
Cancer	

	 	 	 	 	 	1046	 	
	 	 	36	 	
	 	 	

DOTS-Finder	 TCGA	-	Publication	 Music	
TUSON	
Explorer	 Mutsig	

Gene	name	 NS	freq	 q-value	 		 		 		 		

CBFB	 0.0210	 0.0000	 TP53	 MAP2K4	 TP53	 PIK3CA	

CDH1	 0.0621	 0.0000	 PIK3CA	 PIK3CA	 GATA3	 TP53	

GATA3	 0.0946	 0.0000	 GATA3	 KRAS	 MAP3K1	 GATA3	

MAP2K4	 0.0392	 0.0000	 MAP3K1	 TP53	 CDH1	 MAP3K1	

MAP3K1	 0.0698	 0.0000	 MLL3	 TBL1XR1	 MLL3	 PTEN	

PTEN	 0.0402	 0.0000	 CDH1	 PIK3R1	 PTEN	 AKT1	

TP53	 0.3375	 0.0000	 MAP2K4	 CBFB	 MAP2K4	 CTCF	

TBX3	 0.0220	 0.0000	 RUNX1	 GATA3	 RB1	 CBFB	

MLL3	 0.0650	 0.0000	 PTEN	 MAP3K1	 NCOR1	 MLL3	

AOAH	 0.0191	 0.0000	 TBX3	 CDH1	 TBX3	 MAP2K4	

CTCF	 0.0210	 0.0000	 PIK3R1	 NCOR1	 AOAH	 RUNX1	

RUNX1	 0.0239	 0.0000	 AKT1	 RB1	 RUNX1	 CDH1	

NCOR1	 0.0382	 0.0000	 CBFB	 MALAT1	 MED23	 SF3B1	

RB1	 0.0210	 0.0000	 TBL1XR1	 TBX3	 ARID1A	 PIK3R1	

NCOR2	 0.0315	 0.0003	 NCOR1	 PTEN	 RBMX	 ARID1A	

STXBP2	 0.0096	 0.0004	 CTCF	 ARID1A	 NF1	 NCOR1	

AQP7	 0.0076	 0.0017	 ZFP36L1	 CTCF	 CDKN1B	 KRAS	

ZFP36L1	 0.0115	 0.0046	 GPS2	 AKT1	 HNF1A	 SPEN	

RBMX	 0.0124	 0.0056	 SF3B1	 RUNX1	 CCDC144NL	 RB1	

GPS2	 0.0067	 0.0095	 CDKN1B	 MLL3	 MYB	 MLL	

CASP8	 0.0153	 0.0104	 USH2A	 SF3B1	 KDM6A	 ERBB2	

CDKN1B	 0.0076	 0.0125	 RPGR	 NF1	 ZFP36L1	 TBL1XR1	

UBC	 0.0076	 0.0155	 RB1	 FOXA1	 SETD2	 CDKN1B	

MED23	 0.0134	 0.0224	 AFF2	 VEZF1	 NCOR2	 HIST1H3B	

MYB	 0.0115	 0.0407	 NF1	 CDKN1B	 TBL1XR1	 FOXA1	

CCDC144NL	 0.0076	 0.1268	 PTPN22	 		 ARID2	 CASP8	

GNRH2	 0.0029	 0.2062	 RYR2	 		 FOXA1	 MED23	

HNF1A	 0.0086	 0.7280	 PTPRD	 		 DUSP16	 TBX3	

AKT1	 0.0220	 0.0000	 OR6A2	 		 BRCA2	 CUL4B	

PIK3CA	 0.2849	 0.0000	 HIST1H2BC	 		 CBFB	 STAG2	

TP53	 0.3375	 0.0000	 GPR32	 		 CTCF	 MYB	

TBX3	 0.0220	 0.0000	 CLEC19A	 		 PIK3CA	 RAB40A	

SF3B1	 0.0172	 0.0000	 CCND3	 		 AKT1	 EP300	

FOXA1	 0.0172	 0.0001	 SEPT13	 		 SF3B1	 FGFR2	

HIST1H3B	 0.0076	 0.0001	 DCAF4L2	 		 		 GNPTAB	

MEF2A	 0.0143	 0.0002	 		 		 		 ERBB3	

PIK3R1	 0.0249	 0.0008	 		 		 		 ACVR1B	

ATN1	 0.0172	 0.0425	 		 		 		 		

AKD1	 0.0182	 0.0431	 		 		 		 		
Thyroid	

Carcinoma	
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326	 	
	 	 	19	 	
	 	 	

DOTS-Finder	
	 	 	 	Gene	name	 NS	freq	 q-value	 	TUSON	Exlorer	

	 	 	TG	 0.0491	 0.0000	 TG	
	 	 	EMG1	 0.0184	 0.0000	 RPTN	
	 	 	RPTN	 0.0245	 0.0000	 MLL3	
	 	 	PPM1D	 0.0153	 0.0054	 DNMT3A	
	 	 	TMCO2	 0.0092	 0.0056	 CHD2	
	 	 	IL32	 0.0092	 0.0152	 BRAF	
	 	 	DNMT3A	 0.0153	 0.2896	

	 	 	 	BRAF	 0.5613	 0.0000	
	 	 	 	HRAS	 0.0368	 0.0000	
	 	 	 	NRAS	 0.0798	 0.0000	
	 	 	 	TG	 0.0491	 0.0000	
	 	 	 	DNASE2	 0.0092	 0.0694	
	 	 	 	PRDM9	 0.0184	 0.0816	
	 	 	 	DICER1	 0.0092	 0.1070	
	 	 	 	ZNF845	 0.0184	 0.1070	
	 	 	 	PRG4	 0.0123	 0.1085	
	 	 	 	PTTG1IP	 0.0123	 0.1085	
	 	 	 	

AML	
	 	 	 	 	 	196	 	

	 	 	11	 	
	 	 	

DOTS-Finder	 	 	 	
	

Gene	name	 NS	freq	 q-value	
TCGA	-	
Publication	 Music	 Mutsig	

	CEBPA	 0.0663	 0.0000	 CEBPA	 NPM1	 FLT3	
	NPM1	 0.2755	 0.0000	 DNMT3A	 FLT3	 DNMT3A	
	RUNX1	 0.0918	 0.0000	 FLT3	 DNMT3A	 NPM1	
	TET2	 0.0867	 0.0000	 IDH1	 IDH2	 IDH2	
	TP53	 0.0765	 0.0000	 IDH2	 IDH1	 IDH1	
	WT1	 0.0612	 0.0000	 NPM1	 RUNX1	 TET2	
	RAD21	 0.0255	 0.0000	 NRAS	 TET2	 NRAS	
	PHF6	 0.0306	 0.0000	 RUNX1	 NRAS	 RUNX1	
	STAG2	 0.0306	 0.0000	 TET2	 TP53	 WT1	
	EZH2	 0.0153	 0.0007	 TP53	 CEBPA	 U2AF1	
	ASXL1	 0.0255	 0.0014	 WT1	 WT1	 TP53	
	HNRNPK	 0.0102	 0.0083	 KRAS	 KRAS	 KRAS	
	CALR	 0.0102	 0.0142	 U2AF1	 KIT	 PTPN11	
	CBFB	 0.0102	 0.0572	 KIT	 U2AF1	 KIT	
	CBX7	 0.0051	 0.0948	 PTPN11	 PTPN11	 SMC3	
	BCOR	 0.0102	 0.1971	 PHF6	 MIR142	 STAG2	
	CEBPA	 0.0663	 0.0000	 SMC3	 PHF6	 PHF6	
	DNMT3A	 0.2602	 0.0000	 FAM5C	 SMC3	 RAD21	
	FLT3	 0.2704	 0.0000	 SMC1A	 SMC1A	 CEBPA	
	IDH1	 0.0969	 0.0000	 RAD21	 STAG2	 ASXL1	
	IDH2	 0.1020	 0.0000	 STAG2	 RAD21	 SFRS2	
	NRAS	 0.0765	 0.0000	 HNRNPK	 ASXL1	 SMC1A	
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TP53	 0.0765	 0.0000	 EZH2	 EZH2	 PAPD5	
	U2AF1	 0.0408	 0.0000	

	
		 EZH2	

	

	 	 	
		 		 PDSS2	

	

	 	 	
		 		 MXRA5	

	

	 	 	
		 		 KDM6A	

	Bladder	
Carcinoma	

	 	 	 	 	 	145	 	
	 	 	177	 	
	 	 	

DOTS-Finder	 TCGA	-	Publication	 Music	
TUSON	
Explorer	 Mutsig	

Gene	name	 NS	freq	 q-value	 		 		 		 		

ARID1A	 0.2414	 0.0000	 UTX	 TP53	 ARID1A	 TP53	

CDKN1A	 0.1448	 0.0000	 TP53	 ARID1A	 KDM6A	 KDM6A	

KDM6A	 0.2138	 0.0000	 ARID1A	 KDM6A	 CDKN1A	 RB1	

TP53	 0.2621	 0.0000	 CREBBP	 MALAT1	 MLL2	 PIK3CA	

ELF3	 0.0759	 0.0000	 EP300	 CDKN1A	 TP53	 ARID1A	

MLL2	 0.2621	 0.0000	 HRAS	 MLL2	 MLL	 MLL2	

EP300	 0.1517	 0.0000	 RB1	 RB1	 FAT1	 CDKN1A	

RB1	 0.1103	 0.0000	 PIK3CA	 ELF3	 MLL3	 ERCC2	

SPTAN1	 0.0966	 0.0000	 FGFR3	 PIK3CA	 ELF3	 STAG2	

MLL3	 0.2000	 0.0000	 STAG2	 FBXW7	 RB1	 RXRA	

CREBBP	 0.1310	 0.0000	 SYNE1	 PRX	 STAG2	 TBC1D12	

STAG2	 0.0897	 0.0001	 ERCC2	 ERCC2	 FBXW7	 NFE2L2	

FOXQ1	 0.0483	 0.0060	 KRAS	 EP300	 EP300	 C3orf70	

TXNIP	 0.0552	 0.0079	 MLL	 MLL3	 CREBBP	 ERBB3	

FAT1	 0.1103	 0.0370	 NF1	 FGFR3	 ARHGAP35	 ELF3	

FBXW7	 0.0690	 0.0428	 SYNE2	 STAG2	 ASXL2	 FBXW7	

GCC2	 0.0690	 0.0800	 ANK3	 		 TSC1	 FGFR3	

ZNF513	 0.0552	 0.0911	 CSMD3	 		 FOXQ1	 FOXQ1	

KLF5	 0.0621	 0.1184	 ELF3	 		 PIK3C2B	 CREBBP	

GPS2	 0.0276	 0.2599	
ESPL1	

		
No	
Oncogenes	 HRAS	

NHLRC1	 0.0207	 0.2635	 LRP2	 		 		 SNX25	

FOXA1	 0.0414	 0.2872	 ANK2	 		 		 TSC1	

TP53	 0.2621	 0.0000	 ATM	 		 		 MGA	

NFE2L2	 0.0759	 0.0000	 CHD6	 		 		 EZR	

ERBB3	 0.1172	 0.0000	 ERBB2	 		 		 CDKN2A	

RARG	 0.0690	 0.0000	 ERBB3	 		 		 DDX5	

IRS4	 0.0138	 0.6550	 FAT4	 		 		 RHOA	

ELP5	 0.0138	 0.6550	 KALRN	 		 		 PHF6	

RPS6	 0.0207	 0.6550	 LAMA4	 		 		 MLL3	

	 	 	

MLL3	 		 		 BCLAF1	

	 	 	

NCOR1	 		 		 TGFBR2	

	 	 	

NFE2L3	 		 		 EPHA2	

	 	 	

PDZD2	 		 		 SETD2	

	 	 	

PIK3R4	 		 		 		

	 	 	

TRAK1	 		 		 		

	 	 	

TRRAP	 		 		 		
Appendix Table 2 Results of DOTS-Finder on 4 tumor types and comparison with existing tools. The 
frequency of non-silent mutation is reported for every gene (NS Freq) with a q-value < 0.1. Genes around 
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the threshold of significance are reported in yellow. In white, detected oncogenes are reported, in green, 
detected tumor suppressors. Under each tumor type name, number of samples and median number of 
non-silent mutations per sample are reported in this order. 
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Lung adenocarcinoma non smoker Lung Adenocarcinoma 

62 244 
83.5	 231 

Gene name NS freq q-value	 Gene name NS freq q-value	
TP53	 0.3065	 0.0000	 COL11A1	 0.2049	 0.0000	
NBPF1	 0.1290	 0.0000	 STK11	 0.0820	 0.0000	
IL32	 0.0645	 0.0005	 TP53	 0.5205	 0.0000	
KEAP1	 0.0806	 0.0005	 TPTE	 0.1025	 0.0000	
STK11	 0.0806	 0.0005	 CDKN2A	 0.0574	 0.0070	
RPL5	 0.0484	 0.0008	 CHDC2	 0.0451	 0.0073	
SDHA	 0.0484	 0.0008	 RBM10	 0.0492	 0.0435	
OR5B3	 0.0484	 0.0012	 TAAR5	 0.0328	 0.0486	
PSME2	 0.0323	 0.0019	 PNLIP	 0.0287	 0.2889	
OR4C16	 0.0484	 0.0098	 SMARCA4	 0.0697	 0.2889	
SETD2	 0.0645	 0.0100	 KRAS	 0.2746	 0.0000	
ECI1	 0.0323	 0.0200	 TP53	 0.5205	 0.0000	
FKBP2	 0.0323	 0.0495	 EGFR	 0.1189	 0.0287	

CEBPZ	 0.0484	 0.0495	 NPAP1	 0.1393	 0.0568	

SMAD4	 0.0968	 0.0517	
	 	 	RBM10	 0.0484	 0.0665	
	 	 	UXS1	 0.0323	 0.0764	
	 	 	MET	 0.0645	 0.0904	
	

  tumor	suppressors	

EGFR	 0.3226	 0.0000	
	

		 oncogenes	

KRAS	 0.1290	 0.0000	
	

		
additional	genes	below	the	
threshold	of	significance	

CASP8	 0.0484	 0.0000	
	

NS freq 
frequency	of	non	silent	
mutations	in	the	patients	

PLP2	 0.0323	 0.0024	
	 	 	AQP10	 0.0323	 0.0029	
	 	 	PAPPA2	 0.1129	 0.0029	
	 	 	REG1B	 0.0484	 0.0029	
	 	 	BROX	 0.0323	 0.0030	
	 	 	MC5R	 0.0323	 0.0030	
	 	 	OR52I1	 0.0323	 0.0030	
	 	 	SPTA1	 0.1290	 0.0030	
	 	 	KCNMB1	 0.0484	 0.0047	
	 	 	NDUFAF3	 0.0323	 0.0050	
	 	 	PAQR9	 0.0323	 0.0074	
	 	 	EFCAB12	 0.0323	 0.0084	
	 	 	PRSS45	 0.0161	 0.0134	
	 	 	OR2T4	 0.0323	 0.0162	
	 	 	C11orf63	 0.0484	 0.0195	
	 	 	HSD17B6	 0.0323	 0.0228	
	 	 	MCF2	 0.0484	 0.0228	
	 	 	TCRB	 0.0323	 0.0228	
	 	 	PSG3	 0.0323	 0.0272	
	 	 	ITGA2B	 0.0323	 0.0296	
	 	 	COL25A1	 0.0645	 0.0379	
	 	 	OR1M1	 0.0484	 0.0410	
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OR2W3	 0.0484	 0.0410	
	 	 	PROKR2	 0.0484	 0.0410	
	 	 	WRN	 0.0484	 0.0410	
	 	 	NCKIPSD	 0.0323	 0.0488	
	 	 	PLD2	 0.0323	 0.0603	
	 	 	CR2	 0.1129	 0.0619	
	 	 	DPY19L2	 0.0484	 0.0622	
	 	 	HSPA5	 0.0323	 0.0622	
	 	 	OR14A16	 0.0323	 0.0695	
	 	 	GRM1	 0.0484	 0.0869	
	 	 	Appendix Table 3 Results of DOTS-Finder obtained from the complete LUAD dataset and the non-

smoker LUAD subset. The frequency of non-silent mutation is reported for every gene (NS Freq) with a 
q-value < 0.1. Genes around the threshold of significance are reported in yellow. In white, detected 
oncogenes are reported, in green, detected tumor suppressors. Under each tumor type name, number of 
samples and median number of non-silent mutations per sample are reported in this order. 
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Gene 
Symbol 

Protein 
change SIFT 

Polyp
hen2 LRT 

Mutation 
Taster 

Mutation 
Assessor FATHMM 

Radial 
SVM 

Met
a LR 

% 
Damaging 

RAB29 A16T T P N D N T T T 0.25 

RAB29 E116K T B N D L T T T 0.125 

RAB29 E68Q D D D D M D D D 0.875 

RAB29 P117L T P N D L T T T 0.25 

RAB29 Q60E D P D D M T D D 0.75 

RAB29 R69H D D D D M T D D 0.75 

RAB29 R79L D D D D M T D D 0.75 

RAB29 R79W D D D D H T D D 0.875 

RAB29 V13E D D D D M T D D 0.75 

RAB29 W151* T . D D . . . . 0.25 

RAB29 W62L D D D D H D D D 1 

RAC1 A159V D D D D H D D D 1 

RAC1 A59T D D D D M D D D 0.875 

RAC1 A88E D P D D N T T T 0.5 

RAC1 C18F D D D D H T D D 0.875 

RAC1 C18Y D D D D H T D D 0.875 

RAC1 D63H D D D D H T D D 0.875 

RAC1 D63N D D D D M T D D 0.75 

RAC1 D65N D P D D M T D D 0.75 

RAC1 E31D D B D D N T T T 0.375 

RAC1 G142S D D D D H T D D 0.875 

RAC1 G15S D D D D H D D D 1 

RAC1 I21M D D D D L T D D 0.75 

RAC1 K116N D D D D H D D D 1 

RAC1 K116R D D D D H D D D 1 

RAC1 K116T D D D D H D D D 1 

RAC1 L177V D B D D L T T T 0.375 

RAC1 L53V D P D D M D D D 0.875 

RAC1 N39S D P D D L T D D 0.75 

RAC1 N92I D D D D H T D D 0.875 

RAC1 N92K D P D D M T D D 0.75 

RAC1 P140L D B D D N T T T 0.375 

RAC1 P29L D D D D M T D D 0.75 

RAC1 P29S D P D D L T T D 0.625 

RAC1 P29T D P D D M T D D 0.75 

RAC1 P34H D D D D H T D D 0.875 

RAC1 P34S D D D D M T D D 0.75 

RAC1 P87L D B D D M T D D 0.625 

RAC1 Q162R D D D D N T T T 0.5 

RAC1 Q61R D D D D M D D D 0.875 

RAC1 R102L T B D D L T T T 0.25 

RAC1 R68H D P D D H T D D 0.875 

RAC1 S71F D D D D M T D D 0.75 

RAC1 S86I D P D D M T D D 0.75 

RAC1 V14E D D D D H D D D 1 

RAC1 V46G D D D D H T D D 0.875 



 177	

RAC1 V85M D P D D M T D D 0.75 

RAC1 Y32C D D D D H T D D 0.875 

RAC1 Y40S D P D D M T D D 0.75 

RAC2 A27V T B D D L T T T 0.25 

RAC2 C18R D D D D H T D D 0.875 

RAC2 D124E T B D D N T T T 0.25 

RAC2 E62K D P D D H D D D 1 

RAC2 F82L D B D D H D D D 0.875 

RAC2 G15D D D D D H D D D 1 

RAC2 G30R D P D D L T T T 0.5 

RAC2 I110F T B D D L T T T 0.25 

RAC2 I21M D D D D L T D D 0.75 

RAC2 K130R T B D D N T T T 0.25 

RAC2 P136H D D D D M T D D 0.75 

RAC2 P29L T T T T T T T T 0 

RAC2 Q162H D P D D M T D T 0.625 

RAC2 R102Q T B D D L T T T 0.25 

RAC2 R102W D D D D H T D D 0.875 

RAC2 R174W D D D D M T D D 0.75 

RAC2 T35I D D D D H D D D 1 

RAC2 V168M D D D D M T D D 0.75 

RAC2 V36A . B D D M T D D 0.5 

RAC2 V93I D B D D N T T T 0.375 

RAC2 W97* T . D D . . . . 0.25 

RHOC D120N D D U D H D D D 0.875 

RHOC D124fs D D D D D D D D 1 

RHOC D59E D P D D M D D D 0.875 

RHOC E125Q T B . D N T T T 0.125 

RHOC E142K D B . D M T T T 0.25 

RHOC E64K D D D D H D D D 1 

RHOC G178D D B . D N T T T 0.25 

RHOC K162N T B . D H T T T 0.25 

RHOC P31S D D D D L T T T 0.5 

RHOC R145W D D . D L T T T 0.375 

RHOC R150W D P . D M T T T 0.375 

RHOC R168L D P . D L T T T 0.375 

RHOC R68Q D B D D L T T T 0.375 

RHOC S73A D B D D L T T T 0.375 

RHOC S73fs D D D D D D D D 1 

RHOC V24I D B D D M T T T 0.375 

RHOC Y42C D P D D M T D T 0.625 

RHOT1 A83V T D D D M T D D 0.625 

RHOT1 D106H T B D D N T T T 0.25 

RHOT1 D91N D B D D L T T T 0.375 

RHOT1 E12K D D D D M T D D 0.75 

RHOT1 E39Q T D D D M T D D 0.625 

RHOT1 P30L T D D D M T D D 0.625 

RHOT1 P43S D D D D M T D D 0.75 

RHOT1 P48fs D D D D D D D D 1 

RHOT1 R104K T B D D N T T T 0.25 



 178	

RHOT1 S156L D D D D M T D D 0.75 

RHOT1 V84I T D D D L T T T 0.375 

RHOT1 Y82H D D N D M D D D 0.75 
Appendix Table 4 Breakdown of the analysis of some Rab and Rho subfamily members. This table 
represents all the mutations found in more than 10000 cancer patient (cBioportal Database) on the RAS 
superfamily Pfam (PF00071). An extended version comes as a supplementary of (Melloni et al., 2016).  
SIFT - D: Deleterious (sift<=0.05); T: tolerated (sift>0.05) 
Polyphen2 - D: Probably damaging (>=0.957), P: possibly damaging (0.453<=pp2_hdiv<=0.956); B: benign 
(pp2_hdiv<=0.452) 
LRT - D: Deleterious; N: Neutral; U: Unknown 
Mutation Taster - A" ("disease_causing_automatic"); "D" ("disease_causing"); "N" ("polymorphism"); "P" 
("polymorphism_automatic") 
Mutation Assessor - H: high; M: medium; L: low; N: neutral. H/M means functional and L/N means non-
functional 
FATHMM - D: Deleterious; T: Tolerated 
Radial SVM - D: Deleterious; T: Tolerated 
LR - D: Deleterious; T: Tolerated 
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LowMACA VS 
Disease Associated 
snps Fisher Test Result         

p-value 5.30E-27 
  

Disease Associated 
Mutations 

alternative 
hypothesis: OR different from 1 

  
no yes 

Confidence Interval 18.30 - 84.98 LowMACA 
Not 
Predicted 2257 11 

Odds Ratio 38.17336152 Predicted 172 32 
Accuracy 0.156862745  

  
  

Recall 0.744186047  
  

  
F1-Score 0.259109312         

      dbNSFP VS Disease 
Associated snps Fisher Test Result         

p-value 3.56E-05 
  

Disease Associated 
Mutations 

alternative 
hypothesis: OR different from 1 

  
no yes 

Confidence Interval 1.98 - 10.11 dbNSFP Tolerated 1286 9 
Odds Ratio 4.250413143 Damaging 1143 34 
Accuracy 0.028887001 

   
  

Recall 0.790697674 
   

  
F1-Score 0.055737705         

      LowMACA VS 
Cancer Associated 
snps Fisher Test Result         

p-value 1.36E-22 
  

Cancer Associated 
Mutations 

alternative 
hypothesis: OR different from 1 

  
no yes 

Confidence Interval 41.14 - 9985.34 LowMACA notPredicted 2267 1 
Odds Ratio 260.147541 Predicted 183 21 
Accuracy 0.102941176  

  
  

Recall 0.954545455  
  

  
F1-Score 0.185840708         

      dbNSFP VS Cancer 
Associated snps Fisher Test Result         

p-value 1.89E-03 
  

Cancer Associated 
Mutations 

alternative 
hypothesis: OR different from 1 

  
no yes 

Confidence Interval 1.64 - 20.40 dbNSFP Tolerated 1291 4 
Odds Ratio 5.012510785 Damaging 1159 18 
Accuracy 0.015293118 

   
  

Recall 0.818181818 
   

  
F1-Score 0.030025021         
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Appendix Table 5 Statistical Results from the comparison of dbNSFP results and LowMACA results. A 
set of known pathogenic variants taken from Humsavar and Clinvar and a set of known cancer related 
mutations taken from DoCM and CiviC was compared to the results detected by LowMACA and the 
aggregated score from 8 different predictors of phenotypic effect. 
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Pfam 
ID Pfam Name 

Multiple 
Alignment 

Position 

Consensus 
Amino 

Acid 

Trident 
Conservation 

Score 
Genes Mutated in Multiple 
Align Position 

Position 
Qvalue 

PF00454 PI3_PI4_kinase 57 C 0.4922 MTOR 1.31E-02 

PF00454 PI3_PI4_kinase 365 L 0.3596 
ATM|ATR|PI4KAP2|MTOR|
PIK3C2A|PIK3CA|PRKDC 1.35E-03 

PF00613 PI3Ka 24 E 0.1122 PIK3C2A|PIK3CA 5.68E-61 

PF00613 PI3Ka 27 E 0.2313 PIK3CA|PIK3CB|PIK3CG 1.31E-136 

PF00613 PI3Ka 28 E 0.2391 PIK3CA|PIK3CB 1.90E-16 

PF00792 PI3K_C2 1 E 0.1445 PIK3C2A|PIK3CA 4.21E-02 

PF00792 PI3K_C2 16 E 0.3616 PIK3CA|PIK3C2A|PIK3CB 4.21E-02 

PF00792 PI3K_C2 108 C 0.1332 PIK3CA|PIK3C2A 1.15E-08 

PF00792 PI3K_C2 140 E 0.3173 
PIK3C2G|PIK3CA|PIK3CG|P
IK3CD 4.21E-02 

PF00792 PI3K_C2 142 E 0.1362 PIK3CA|PIK3CB 5.44E-08 

PF00792 PI3K_C2 173 A 0.2408 PIK3CA|PIK3CD|PIK3CG 4.87E-02 

PF02192 PI3K_p85B 8 R 1.0000 PIK3CA|PIK3CB|PIK3CD 1.57E-07 

PF02192 PI3K_p85B 51 E 1.0000 PIK3CA|PIK3CD 1.10E-03 

PF02192 PI3K_p85B 58 R 1.0000 PIK3CA|PIK3CD 1.90E-12 

PF02192 PI3K_p85B 63 R 0.3856 PIK3CA|PIK3CB 2.03E-04 

PF02192 PI3K_p85B 76 G 0.3591 PIK3CA 5.27E-03 

PF02192 PI3K_p85B 78 R 0.3661 PIK3CA 1.67E-04 
Appendix Table 6 Results of LowMACA on the main PI3K families. In purple, the main Pfam PF00613 
encompasses the family I of PIK3, composed by known cancer genes PIK3CA and PIK3CB. 
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Variant Humsavar Disease ClinVar Disease 

SDHB - 1,17354297,A,G   Neoplastic_Syndromes\x2c_Hereditary 

MUTYH - 1,45798475,T,C   Endometrial_carcinoma|Neoplastic_Syndromes\x2c_Hereditary 

RNASEL - 1,182554557,C,T   Prostate_cancer\x2c_susceptibility_to 

RET - 10,43613908,A,T 
Multiple_neoplasia_2A_(MEN2A)_[MIM
:171400] Familial_medullary_thyroid_carcinoma 

RET - 10,43614996,G,A 
Medullary_thyroid_carcinoma_(MTC)_[
MIM:155240] MEN2A_and_FMTC,MEN2_phenotype 

PRF1 - 10,72358722,T,C 
Familial_hemophagocytic_lymphohistioc
ytosis_2_(FHL2)_[MIM:603553] Malignant_lymphoma\x2c_non-Hodgkin 

ASCC1 - 10,73892817,T,C   Barrett_esophagus|Esophageal_adenocarcinoma 

TYR - 11,89017961,G,A   Cutaneous_malignant_melanoma_8 

SDHD - 11,111957665,G,A   
Cowden_disease_3|Paragangliomas_1|Carcinoid_tumor_of_intestin
e|Pheochromocytoma 

SDHD - 11,111958677,A,G   
Carcinoid_tumor_of_intestine|Neoplastic_Syndromes\x2c_Heredita
ry 

BRCA2 - 13,32907129,T,C Breast_cancer_(BC)_[MIM:114480] 
BRCA1_and_BRCA2_Hereditary_Breast_and_Ovarian_Cancer|Neo
plastic_Syndromes\x2c_Hereditary 

BRCA2 - 13,32912007,C,T   
BRCA1_and_BRCA2_Hereditary_Breast_and_Ovarian_Cancer|Neo
plastic_Syndromes\x2c_Hereditary 

BRCA2 - 13,32912553,C,T   
BRCA1_and_BRCA2_Hereditary_Breast_and_Ovarian_Cancer|Neo
plastic_Syndromes\x2c_Hereditary 

BRCA2 - 13,32914974,ACAA,-   
BRCA1_and_BRCA2_Hereditary_Breast_and_Ovarian_Cancer|Neo
plastic_Syndromes\x2c_Hereditary 

BRCA2 - 13,32972852,C,T   
BRCA1_and_BRCA2_Hereditary_Breast_and_Ovarian_Cancer|Neo
plastic_Syndromes\x2c_Hereditary 

TSHR - 14,81609723,A,C   Malignant_melanoma 

AKT1 - 14,105246551,C,T 

Breast_cancer_(BC)_[MIM:114480]|Prote
us_syndrome_(PROTEUSS)_[MIM:17692
0] 

Breast_adenocarcinoma|Carcinoma_of_colon|Neoplasm_of_ovary|P
roteus_syndrome 

CDH1 - 16,68845646,G,A   
not_provided|Neoplastic_Syndromes\x2c_Hereditary|Hereditary_dif
fuse_gastric_cancer 

ELAC2 - 17,12896274,C,T   Prostate_cancer\x2c_hereditary\x2c_2 

ELAC2 - 17,12915009,G,A 
Prostate_cancer,_hereditary,_2_(HPC2)_[
MIM:614731] Prostate_cancer\x2c_hereditary\x2c_2 

FLCN - 17,17119708,-,G   
Multiple_fibrofolliculomas|Pneumothorax\x2c_primary_spontaneou
s|not_provided|Neoplastic_Syndromes\x2c_Hereditary 

FLCN - 17,17125879,G,A 
Renal_cell_carcinoma_(RCC)_[MIM:144
700]   

BRCA1 - 17,41245664,ACTG,-   
BRCA1_and_BRCA2_Hereditary_Breast_and_Ovarian_Cancer|Brea
st-ovarian_cancer\x2c_familial_1 

BRCA1 - 17,41245683,G,A   Familial_cancer_of_breast|Breast-ovarian_cancer\x2c_familial_1 

BRIP1 - 17,59793412,G,A   
Fanconi_anemia\x2c_complementation_group_J|Neoplastic_Syndro
mes\x2c_Hereditary 

MSH6 - 2,48030639,-,C   
Lynch_syndrome|not_provided|Neoplastic_Syndromes\x2c_Heredit
ary 

CHEK2 - 22,29121058,C,T Prostate_cancer_(PC)_[MIM:176807]   

CHEK2 - 22,29121087,A,G   Li-Fraumeni_syndrome_2|Colorectal_cancer\x2c_susceptibility_to 

VHL - 3,10183605,C,T 
Pheochromocytoma_(PCC)_[MIM:17130
0] not_specified|Von_Hippel-Lindau_syndrome|not_provided 

COL7A1 - 3,48619779,G,A   Malignant_melanoma 

APC - 5,112154969,C,T   
Gardner_syndrome|not_provided|Neoplastic_Syndromes\x2c_Here
ditary|not_specified|Adenomatous_polyposis_coli 

PKHD1 - 6,51947999,G,A 
Polycystic_kidney_disease,_autosomal_re
cessive_(ARPKD)_[MIM:263200] 

Polycystic_kidney_disease\x2c_infantile_type|COLORECTAL_CAN
CER\x2c_PROTECTION_AGAINST|not_provided 

MSR1 - 8,16012594,G,A   
Malignant_tumor_of_prostate|BARRETT_ESOPHAGUS/ESOPHA
GEAL_ADENOCARCINOMA 

NBN - 8,90983460,G,A   
Microcephaly\x2c_normal_intelligence_and_immunodeficiency|Neo
plastic_Syndromes\x2c_Hereditary|not_specified 

FANCC - 9,97912338,G,A   
Fanconi_anemia\x2c_complementation_group_C|Neoplastic_Syndr
omes\x2c_Hereditary 

GALNT12 - 9,101594229,G,A 
Colorectal_cancer_1_(CRCS1)_[MIM:608
812]   

TSC1 - 9,135779052,G,A   Neoplastic_Syndromes\x2c_Hereditary 

AR - X,66937326,G,T   Prostate_cancer_susceptibility 

Appendix Table 7 Positive set of cancer associated variants. This set of 38 variants is composed by 
mutations associated with any kind of cancer, including breast, and is used as a reference set of positive 
controls in our age-dependent polygenic model (see sections 4.3.3.5.3 and 4.3.4.4). 
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Variant log2FoldFreq 
Control 
MAF 

Case 
MAF avsnp142 

Protein 
Change 

Deleteriousness 
Score 

MYH7B,20,33585277,33585277,C,A 25.7930 0.0000 0.0058 rs540290584 A1236D 0.78 

NAALADL1,11,64812885,64812885,G,A 23.6046 0.0000 0.0013   P694L 0.89 

FKBP8,19,18650369,18650369,C,T 23.4982 0.0000 0.0012   V152I 0.89 

SLC12A7,5,1075570,1075570,G,A 23.3124 0.0000 0.0010 rs372681736 A628V 0.67 

EHBP1L1,11,65348582,65348582,C,T 23.1859 0.0000 0.0010   R230* 1.00 

PELI3,11,66241362,66241362,G,A 23.1318 0.0000 0.0009   R162Q 0.78 

TET2,4,106164793,106164793,T,C 22.9502 0.0000 0.0008   C1221R 0.56 

NF2,22,30069387,30069387,C,T 22.9362 0.0000 0.0008   R335C 0.78 

COL1A1,17,48263191,48263191,C,T 22.8817 0.0000 0.0008 rs146035171 R1399H 0.89 

AMPD1,1,115218614,115218614,G,A 22.8794 0.0000 0.0008 rs587779370 R496C 1.00 

MYH7B,20,33577664,33577664,G,A 22.8639 0.0000 0.0008   R612Q 0.56 

DFFA,1,10523562,10523562,C,T 22.8464 0.0000 0.0008 rs574523820 R186H 0.67 

SGCA,17,48246600,48246600,G,A 22.8356 0.0000 0.0007   W244* 1.00 

ANO8,19,17441686,17441686,G,A 22.8291 0.0000 0.0007   T315M 0.56 

DHTKD1,10,12126673,12126673,C,T 22.8248 0.0000 0.0007 rs141125831 R149W 0.67 

NAALADL1,11,64824854,64824854,G,A 22.8248 0.0000 0.0007   R198C 0.67 

COLGALT1,19,17690300,17690300,C,T 22.8248 0.0000 0.0007   R426W 0.78 

NDUFA6,22,42482261,42482261,G,A 22.8248 0.0000 0.0007   R131W 0.89 

ARHGEF5,7,144075893,144075893,C,T 22.8248 0.0000 0.0007   R1524* 1.00 

PIK3R2,19,18266970,18266970,G,A 7.1063 0.0003 0.0357   R94H 0.56 

CORO1B,11,67209552,67209552,C,T 6.3551 0.0000 0.0015   R70H 0.78 

NEFH,22,29881809,29881809,C,T 5.6188 0.0000 0.0008   A394V 0.89 

BBS1,11,66297334,66297334,C,T 5.4727 0.0000 0.0008 rs577426256 R462C 0.78 

SYVN1,11,64896178,64896178,-,G 5.4211 0.0001 0.0025   R534fs 1.00 

DDX49,19,19035507,19035507,C,T 5.3482 0.0000 0.0007   R310W 0.89 

PIK3C2B,1,204438071,204438071,-,G 5.3437 0.0000 0.0008   R287fs 1.00 

SF3A1,22,30733026,30733026,G,A 5.3352 0.0000 0.0007   R699C 0.56 

DUSP18,22,31059662,31059662,C,T 5.3349 0.0000 0.0007 rs202138261 R110H 1.00 

RAD51B,14,68352609,68352609,G,A 5.3349 0.0000 0.0007 rs548280411 R159H 0.56 

MRPS30,5,44811233,44811233,C,T 5.3344 0.0000 0.0007 rs201364888 R242* 1.00 

SLC12A7,5,1064287,1064287,G,A 4.9346 0.0000 0.0011   R840C 1.00 

OR2A5,7,143747859,143747859,G,A 4.3353 0.0000 0.0007 rs372476887 R122Q 0.78 

PDE4DIP,1,144879312,144879312,G,A 4.3352 0.0000 0.0007 rs371331495 R1380W 0.56 
APITD1-CORT,1,10511574,10511574,-
,C 4.0169 0.0003 0.0056   A80fs 1.00 

CEP250,20,34067191,34067191,C,T 3.8338 0.0001 0.0008 rs199810583 R744W 0.56 

TBX10,11,67400532,67400532,C,T 3.7520 0.0001 0.0007 rs535008516 V198M 0.89 

GDF5,20,34025551,34025551,-,G 3.7513 0.0001 0.0009   L53fs 1.00 

RIN1,11,66100043,66100043,G,A 3.5774 0.0002 0.0022 rs2282532 P686S 0.56 

RAD51B,14,68352608,68352608,C,T 3.3348 0.0001 0.0007 rs61755649 R159C 0.67 

SLC6A19,5,1221267,1221267,T,G 3.1453 0.0002 0.0016 rs483352699 F514V 0.89 

TP53INP2,20,33296585,33296585,-,C 3.0891 0.0001 0.0008   S14fs 1.00 

EP300,22,41574637,41574637,C,T 3.0133 0.0001 0.0007 rs145312648 R2308C 0.78 

MYO9B,19,17311582,17311582,C,T 2.7561 0.0001 0.0007   R1503C 1.00 

NNT,5,43655960,43655960,G,A 2.7455 0.0002 0.0015 rs139987446 R693H 1.00 

CNBD2,20,34560629,34560629,C,T 2.6349 0.0002 0.0015 rs150690141 R44W 0.67 

ARHGEF5,7,144077001,144077001,A,G 2.5476 0.0001 0.0008   E1549G 0.67 

GHR,5,42718765,42718765,C,T 2.5409 0.0001 0.0007 rs34853905 R364C 0.78 

PC,11,66616566,66616566,G,A 2.3293 0.0003 0.0016 rs148492494 A1114V 1.00 
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EP300,22,41573050,41573050,T,G 2.1793 0.0011 0.0050   C1779G 1.00 

PLEKHH1,14,68045912,68045912,G,A 2.0428 0.0006 0.0023 rs201225859 G971R 0.89 

PDE4DIP,1,144866636,144866636,C,T 2.0135 0.0002 0.0007 rs367741522 R1869Q 0.56 

SPAG4,20,34207652,34207652,G,T 1.9482 0.0003 0.0010 rs369926602 R354L 0.67 

SGSM3,22,40800319,40800319,C,T 1.9127 0.0002 0.0009 rs138251871 R13W 0.56 

FBN1,15,48704816,48704816,G,A 1.8760 0.0008 0.0030 rs61746008 R2726W 0.56 

PDE4DIP,1,144866687,144866687,C,T 1.7908 0.0006 0.0022 rs139494606 R1852Q 0.56 

PPA2,4,106320294,106320294,G,A 1.7468 0.0002 0.0007 rs138215926 P62L 0.89 

NOBOX,7,144096940,144096940,C,T 1.7361 0.0002 0.0008 rs201947677 R355H 1.00 

CLSTN1,1,9804590,9804590,T,C 1.4929 0.0003 0.0008 rs375488055 N356S 0.89 

PDE4DIP,1,145015874,145015874,G,A 1.4282 0.0003 0.0007   R72* 1.00 

TRIP13,5,916035,916035,A,G 1.0875 0.0003 0.0007 rs143798038 S384G 0.89 

MVB12A,19,17535470,17535470,C,T 0.9719 0.0004 0.0008 rs143800574 A248V 0.56 

TMEM134,11,67235051,67235051,G,A 0.9680 0.0066 0.0129 rs143199541 R84* 1.00 

FAM83C,20,33876601,33876601,T,G 0.9654 0.0024 0.0047 rs200589769 H225P 0.56 

CYP2D6,22,42524814,42524814,A,G 0.7631 0.0045 0.0076 rs199535154 L162P 0.78 

NIM1K,5,43246067,43246067,G,C 0.6935 0.0005 0.0007 rs55663207 E64Q 0.78 

MYH7B,20,33582133,33582133,C,T 0.6846 0.0029 0.0046 rs200371401 R919C 0.89 

MYH7B,20,33575964,33575965,AT,- 0.6768 0.0009 0.0015 rs571047145 M538fs 1.00 

DPP3,11,66249736,66249736,C,T 0.2753 0.0006 0.0008 rs142478050 A22V 0.67 

HNF4G,8,76470800,76470800,C,T 0.2467 0.0006 0.0007 rs201625743 R251C 1.00 

FCHO1,19,17886852,17886852,G,A 0.2403 0.0007 0.0008 rs199761608 R305H 0.56 

CARNS1,11,67191572,67191572,C,T 0.2290 0.0020 0.0024 rs200939791 R662C 0.78 

DNAJB7,22,41257815,41257815,G,A 0.1175 0.0027 0.0030 rs149771105 R62W 1.00 

PDE4DIP,1,144857705,144857705,G,A 0.0125 0.0022 0.0022 rs146619065 R2117W 0.56 

Appendix Table 8 List of variants falling in GWAS LD blocks of breast cancer associated SNPs. A list of 
437 variants falls in this category, of wich 73 are also found somatically mutated in cancer and are hereby 
reported. For the complete list of filters used to obtain this table, refer to Figure 22. 
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Variant log2FoldFreq 
Case 
MAF avsnp142 

Protein 
Change 

Deleteriousness 
Score 

PIK3CB,3,138413709,138413709,-,G 25.2329 0.0039   R116fs 1.00 

KMT2C,7,151945349,151945349,T,A 23.8270 0.0015 rs201039690 K724* 1.00 

NBN,8,90990520,90990536,ATTGGACGTCCACAAAT,- 23.8270 0.0015   I166fs 1.00 

HNF1A,12,121416792,121416792,C,T 23.4119 0.0011   T74M 0.78 

ASXL1,20,31022331,31022331,C,T 23.2945 0.0010   R606W 0.56 

POLE,12,133225574,133225574,G,A 23.0025 0.0008   R1364C 0.89 

PTCH1,9,98211539,98211539,G,A 22.9761 0.0008   R1206C 0.89 

AKT1,14,105246551,105246551,C,T 22.9666 0.0008 rs121434592 E17K 0.67 

TET2,4,106164793,106164793,T,C 22.9502 0.0008   C1221R 0.56 

NF2,22,30069387,30069387,C,T 22.9362 0.0008   R335C 0.78 

MAP2K2,19,4117473,4117473,C,T 22.9201 0.0008   G83S 0.89 

MSH6,2,48027887,48027887,G,A 22.8884 0.0008   R792Q 0.67 

APC,5,112177788,112177788,G,A 22.8573 0.0008   R2148Q 0.78 

FGFR1,8,38275843,38275843,G,A 22.8421 0.0008   R356W 1.00 

DDB2,11,47256422,47256422,C,T 22.8399 0.0008   R273C 0.89 

FMR1,X,147011711,147011711,G,A 22.8323 0.0007   R193H 0.67 

ASPM,1,197073484,197073484,G,A 22.8313 0.0007 rs200202166 R1633C 0.56 

CEP57,11,95546134,95546134,C,T 22.8291 0.0007 rs387906977 R81* 1.00 

FANCD2,3,10133905,10133905,G,A 22.8291 0.0007   R1273Q 0.56 

ASPM,1,197073381,197073381,C,T 22.8270 0.0007   R1667H 1.00 

NOX4,11,89088203,89088203,G,A 22.8270 0.0007 rs374112961 R357* 1.00 

SETBP1,18,42532994,42532994,C,T 22.8270 0.0007   T1230I 0.56 

FAT1,4,187549401,187549401,C,G 22.8270 0.0007 rs138797966 E1573Q 0.78 

JAK2,9,5069154,5069154,C,T 22.8270 0.0007   R487C 0.89 

DHX9,1,182841496,182841496,C,T 22.8248 0.0007   R528C 0.67 

DHX9,1,182841497,182841497,G,A 22.8248 0.0007   R528H 0.67 

ATM,11,108235818,108235818,T,C 22.8248 0.0007 rs371619067 Y2954H 0.56 

KCNJ5,11,128781800,128781800,G,A 22.8248 0.0007   R211Q 1.00 

ABCC11,16,48234267,48234267,C,T 22.8248 0.0007 rs200200325 V668M 0.89 

TP53,17,7578407,7578407,G,A 22.8248 0.0007 rs138729528 R43C 1.00 

TRIM37,17,57165733,57165733,C,T 22.8248 0.0007 rs201317687 R67H 0.56 

EPB41L3,18,5396207,5396207,G,A 22.8248 0.0007 rs138017302 S767L 0.78 

POLQ,3,121195392,121195392,C,T 22.8248 0.0007   A2134T 0.78 

FAT1,4,187584680,187584680,G,C 22.8248 0.0007   P1118R 0.56 

FBN2,5,127641568,127641568,C,T 22.8248 0.0007 rs140276399 R1832H 0.67 

MYB,6,135539105,135539105,C,T 22.8248 0.0007   T552M 0.67 

KMT2C,7,151945051,151945051,A,G 22.8248 0.0007 rs2838171 I823T 0.78 

Appendix Table 9 List of variants that overlap with cancer somatic mutations. From a total of 185 
overlapping variants on candidate driver genes, we reported all the monomorphic sites in the ExAC 
database (MAF in the controls = 0). 
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Gene 
Symbol 

REF 
count 

ALT 
count 

Exac REF 
count 

Exac ALT 
count 

Number of truncating 
events 

Stouffer Compoud 
Qvalue 

ALK 1093 189 55873 809 1 1.13E-115 

HNF1B 1204 142 64362 1052 1 9.89E-64 

CNOT3 1216 66 63843 184 1 1.09E-52 

MSH6 1270 34 64712 138 1 1.22E-22 

HNF1A 688 22 32536 88 1 2.94E-14 

ASXL1 341 13 43003 85 1 2.48E-11 

SMOX 1174 8 61840 47 1 1.09E-04 

CRIPAK 28672 521 1490842 3057 27 1.16E-04 

FLCN 854 6 62572 34 1 1.61E-04 

ANAPC1 2476 22 105814 269 2 5.67E-04 

FGFR3 1244 4 64820 13 1 2.07E-03 

AHNAK2 3865 5 193999 10 3 2.50E-03 

PIK3CB 1263 5 65030 29 1 3.15E-03 

KMT2C 6174 134 296450 5956 5 7.93E-03 

JAG1 1314 2 64504 2 1 1.43E-02 

CHEK2 1342 2 65439 3 1 2.23E-02 

POLR1A 1162 24 58860 664 1 2.79E-02 

FANCM 2627 3 130509 99 2 4.59E-02 

SPRY4 351 1 61286 1 1 4.66E-02 

HLA-B 1050 6 87400 2338 2 4.66E-02 

COL18A1 278 105 44002 33065 2 4.66E-02 

IL32 141 1 10067 0 1 4.66E-02 

CDC27 1193 1 63698 0 1 4.66E-02 

BBS10 1249 1 64820 0 1 4.66E-02 

PARP1 1273 1 65248 0 1 4.66E-02 

IKBKB 1279 1 65106 0 1 4.66E-02 

FBN2 1295 1 65443 0 1 4.66E-02 

BRCA2 1315 1 64690 0 1 4.66E-02 

ERCC6 1331 1 65474 0 1 4.66E-02 

UROD 1339 1 65431 0 1 4.66E-02 

CEP57 1341 1 65470 0 1 4.66E-02 

RNASEL 1343 1 65468 0 1 4.66E-02 

BRCA1 1343 1 65444 0 1 4.66E-02 

POLN 1339 1 65234 0 1 4.66E-02 

ATR 1345 1 65482 0 1 4.66E-02 

SIN3A 1345 1 65412 0 1 4.66E-02 

PTPRB 1345 1 65360 0 1 4.66E-02 

TYR 1343 1 65176 0 1 4.66E-02 

MSH4 1343 1 65122 0 1 4.66E-02 

NLRP3 1345 1 65138 0 1 4.66E-02 

NOX4 1343 1 59130 0 1 4.99E-02 
Appendix Table 10 List of candidate loss-of-function genes. We report all those genes with an excess 
of truncating events in cases compared to controls with a compound q-value < 0.05. 


