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Abstract: We apply a definition of generalised super Calabi-Yau variety (SCY) to su-

permanifolds of complex dimension one. We get that the class of all SCY’s of bosonic

dimension one and reduced manifold equal to P1 is given by P1|2 and the weighted

projective super space WP1|1
(2). Then we compute the corresponding sheaf cohomology

of superforms, showing that the cohomology with picture number one is infinite di-

mensional, while the de Rham cohomology remains finite dimensional. Moreover, we

provide the complete real and holomorphic de Rham cohomology for generic projective

super spaces Pn|m. We also determine the automorphism groups, which for P1|2 results

to be larger than the projective supergroup. Finally, we show that P1|2 is self mirror,

whereas WP1|1
(2) has a zero dimensional mirror. The mirror map for P1|2 endows it with

a structure of N = 2 super Riemann surface.
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1 Introduction

“Super-mathematics” has a quite long history, starting from the pioneering papers by

Martin, [1, 2] and Berezin, [3, 4], before the discovery of supersymmetry in physics1.

After its appearance in physics in the 70s, however, supergeometry has catched more

attention in the mathematical community, and corresponding developments appeared

not only in numerous articles but also in devoted books, see e.g. [6]-[15]. In most of the

1Even though anticommutation was proposed yet previously by Schwinger and other physicists, see

[5] for a more detailed account.
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concrete applications of supersymmetry, like in quantum field theory or in supergravity,

algebraic properties play a key role, whereas geometry has almost always a marginal

role (apart from the geometric formulation of superspace techniques; see further below).

This is perhaps the reason why some subtle questions in supergeometry (see for example

[12]) have not attracted too much the attention of physicists and, as a consequence,

the necessity of further developments has not been stimulated.

String theory makes exception. Perturbative super string theory is expected to be

described in terms of the moduli space of super Riemann surfaces, which results to be

itself a supermanifold. However, some ambiguities in defining super string amplitudes

at genus higher than one suggested, already in the 80s, that the geometry of such super

moduli space may not be trivially obtained from the geometry of the bosonic underlying

space [16]. More than twenty years of efforts have been necessary in order to be able

to unambiguously compute genus two amplitudes; cfr. e.g. the papers by D’Hoker

and Phong [17]- [27], which also include attempts in defining genus three amplitudes,

without success but renewing the interest of the physical community in looking for a

solution to the problem of constructing higher genus amplitudes. Through the years,

various proposals have been put forward, see e.g. [28]-[48].

However, most of such constructions were based on the assumption that the su-

permoduli space is projected (see below for an explanation), but a careful analysis

of perturbative string theory and of the corresponding role of supergeometry [49]-[53]

suggested that this could not be the case. Indeed, it has been proved in [54] (see also

[55]) that the supermoduli space is not split and not projected at least for genus g ≥ 5.

Obviously, such result gave rise to new interest in understanding the peculiarities of

supergeometry with respect to the usual geometry, in particular from the viewpoint of

algebraic geometry.

A second framework in which supergeometry plays a prominent role is the geomet-

ric approach to the superspace formalism, centred on integral forms (discussed e.g. in

[56–58]; see below), whose application in physics can be traced back to [49, 59]. Super-

space techniques are well understood and used in quantum field theory, supergravity

as well as in string theory (see e.g. [60, 61]). They provide a very powerful method to

deal with supersymmetric multiplets and to determine supersymmetric quantities, such

as actions, currents, operators, vertex operators, correlators, and so on. However, even

when the superspace formulation exists, it is often difficult to extract the component

action. This occurs often in supergravity, in which the superdeterminant of the super-

vielbein is needed for the construction of the action, making the computation pretty

cumbersome in a number of cases. On the other hand, the so-called “Ectoplasmic In-

tegration Theorem” (EIT) [62]-[65] can be used in order the extract the component
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action from the superspace formulation.

Generally, supermanifolds are endowed with a tangent bundle (generated by com-

muting and anticommuting vector fields) and with an exterior bundle; thus, one would

näıvely expect the geometric theory of integration on manifolds to be exported tout

court in supersymmetric context. Unfortunately, such an extension is not straightfor-

ward at all, because top superforms do not exist, due to the fact that the wedge prod-

ucts of the differentials dθ (θ being the anticommuting coordinates) are commuting,

and therefore there is no upper bound on the length of the usual exterior d-complex. In

order to solve this problem, distribution-like quantities δ(dθ) are introduced, for which

a complete Cartan calculus can be developed. Such distributions δ(dθ) then enter

the very definition of the integral forms [66]-[71], which are a new type of differential

forms requiring the enlargement of the conventional space spanned by the fundamental

1-forms, admitting distribution-like expressions (essentially, Dirac delta functions and

Heaviside step functions). Within such an extension of the d differential, a complex

with an upper bound arises, and this latter can be used to define a meaningful geo-

metric integration theory for forms on supermanifolds. In recent years, this led to the

development of a complete formalism (integral-, pseudo- and super- forms, their com-

plexes and related integration theory) in a number of papers by Castellani, Catenacci

and Grassi [58, 73, 74].

In [73], the exploitation of integral forms naturally yielded the definition of the

Hodge dual operator F for supermanifolds, by means of the Grassmannian Fourier

transform of superforms, which in turn gave rise to new supersymmetric actions with

higher derivative terms (these latter being required by the invertibility of the Hodge

operator itself). Such a definition of F was then converted into a Fourier-Berezin

integral representation in [75], exploiting the Berezin convolution. It should also be

recalled that integral forms were instrumental in the recent derivation of the superspace

action of D = 3, N = 1 supergravity as an integral on a supermanifold [76].

Furthermore, in [74], the cohomology of superforms and integral forms was dis-

cussed, within a new perspective based on the Hodge dual operator introduced in

[73]. Therein, it was also shown how the superspace constraints (i.e., the rheonomic

parametrisation) are translated from the space of superforms Ω(p|0) to the space of in-

tegral forms Ω(p|m) where 0 6 p 6 n, with n and m respectively denoting the bosonic

and fermionic dimensions of the supermanifold; this naturally let to the introduction of

the so-called Lowering and Picture Raising Operators (namely, the Picture Changing

Operators, acting on the space of superforms and on the space of integral forms), and

to their relation with the cohomology.

In light of these achievements, integral forms are crucial in a consistent geometric

(superspace) approach to supergravity actions. It is here worth remarking that in
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[58] the use of integral forms, in the framework of the group manifold geometrical

approach [77, 78] (intermediate between the superfield and the component approaches)

to supergravity, led to the proof of the aforementioned EIT, showing that the origin of

that formula can be understood by interpreting the superfield action itself as an integral

form. Subsequent further developments dealt with the construction of the super Hodge

dual, the integral representation of Picture Changing Operators of string theories, as

well as the construction of the super-Liouville form of a symplectic supermanifold [79].

A third context in which super geometry may be relevant is mirror symmetry. In

[80], Sethi proposed that the extension of the concept of mirror symmetry to super

Calabi-Yau manifolds (SCY’s) could improve the definition of the mirror map itself,

since supermanifolds may provide the correct mirrors of rigid manifolds. Such a con-

jecture has been strengthened by the works of Schwarz [84, 85] in the early days, but

it seems to have been almost ignored afterwards, at least until the paper of Aganagic

and Vafa [86] in 2004, in which a general super mirror map has been introduced and,

in particular, it has been shown that the mirror of the super Calabi-Yau space P3|4

is, in a suitable limit, a quadric in P3|3 × P3|3. This is a quite interesting case, since

these SCY’s are related to amplitude computations in (super) quantum field theories,

see e.g. [87]. Since then, a number of studies on mirror symmetry for SCY’s has been

carried on, see for example [88]-[91]. However, a precise definition of SCY is currently

missing, and, consequently, the definition of mirror symmetry and its consequences is

merely based on physical intuition.

The aim of the present paper is to provide a starting point for a systematic study

of SCY’s, by addressing the lowest dimensional case: SCY’s whose bosonic reduction

has complex dimension one.

In section 2 we collect some definitions in supergeometry and introduce the projective

super spaces, which will play a major role in what follows. We will not dwell into a

detailed exposition, and we address the interested reader e.g. to [11] and [12] for a

mathematically thorough treatment of supergeometry. We also recall that an operative

exposition of supergeometry, aimed at stressing its main connections with physics, is

given in [49].

In section 3 we will be concerned with the geometry of the projective super space P1|2

and of the weighted projective super space WP1|1
(2). Čech and de Rham cohomology of

super differential forms are computed for these super varieties: here some interesting

phenomena occur. Indeed we will find that on the one hand one there might be some

infinite-dimensional Čech cohomology groups as soon as one deals with more than one

odd coordinate (as in the case of P1|2); on the other hand this pathology gets cured at the
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level of de Rham cohomology, where no infinite dimensional groups occur. Our interest

in these two particular supermanifolds originates from the fact that, together with the

class of the so-called N=2 super Riemann surfaces (N = 2 SRS’s) which will be shortly

addressed in what follows, P1|2 and WP1|1
(2) are indeed the unique (non-singular) SCY’s2

having reduced manifold given by P1. These are therefore the simplest candidates to

be considered, as one is interested into extending the mirror symmetry construction in

dimension 1 to a super geometric context, pursuing a task initially suggested in [80].

Moreover, despite we keep our attention to the case n|m = 1|2 we also provide the de

Rham cohomology of projective super spaces having generic dimension.

In section 4 we will then construct the mirrors of the projective super spaces P1|2 and

WP1|1
(2), following a recipe introduced in [86]. Moreover, we will show that, surprisingly,

by means of the mirror construction, P1|2 actually gives a concrete example of N = 2

SRS.

Finally, the main results and perspectives for further developments are discussed in

section 5, whereas an appendix is devoted to illustrating the coherence of the adopted

rule of signs.

2 Supermanifolds and Projective Super Spaces

2.1 Definitions and Notions in Supergeometry

In general, the mathematical basic notion that lies on the very basis of any physical

supersymmetric theory is the one of Z2-grading: algebraic constructions such as rings,

vector spaces and algebras and so on have their Z2-graded analogs, that in the context

of physics are usually called super rings, super vector spaces and super algebras respec-

tively.

A ring (A,+, ·), for example, is called a super ring if (A,+) has two subgroups A0 and

A1, such that A = A0 ⊕ A1 and

Ai · Aj ⊂ A(i+j)mod 2 ∀ i, j ∈ Z2. (2.1)

The generalisation of vector spaces to super vector spaces and of algebras to super

algebras follows the same lines.

Given an homogeneous element with respect to the Z2-grading of a super ring we can

define an application, called parity of the element, as follows:

a 7−→ |a| ..=

{
0 a ∈ A0

1 a ∈ A1
. (2.2)

2In the sense specified further below.
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Elements such that |a| = 0 (a ∈ A0) are called even or bosonic, and elements such that

|a| = 1 (a ∈ A1) are called odd or fermionic.

Notice that, up to now, there is no supersymmetric structure linked to any super

commutativity of elements, which is provided by the super commutator, a bilinear map

acting as follows on two generic homogeneous elements a, b in a super ring A,

(a, b) 7−→ a · b− (−1)|a|·|b| b · a. (2.3)

By additivity, this extend to a map [·, ·] : A× A→ A.

We say that a super ring is super commutative if all the super commutators among

elements vanish (or in other words, the center of the super ring is the super ring it-

self), that is, on the homogeneous elements, one has a · b = (−1)|a|·|b| b · a, for all

a ∈ Ai, b ∈ Ai with i ∈ Z2. Supergeometry only deals with this class of super rings,

allowing for anti-commutativity of odd elements. This has the following obvious fun-

damental consequence: all odd elements are nilpotent.

A basic but fundamental example of super commutative ring (actually algebra) is pro-

vided by the polynomial superalgebra over a certain field k which will be denoted as

k[x1, . . . , xp, θ1, . . . , θq], where x1, . . . , xp are even generators, and θ1, . . . , θq are odd gen-

erators. The presence of the odd anti commuting part implies the following customary

picture for this super algebra:

k[x1, . . . , xp, θ1, . . . , θq] ∼= k[x1, . . . , xp]⊗k
∧

[θ1, . . . , θq] (2.4)

which makes apparent that the theta’s are generators of a Grassmann algebra. Even

and odd superpolynomials might be expanded into the odd (and therefore nilpotent)

generators as follows

Peven(x, θ) = f0(x) +

q∑
i<j=1

fij(x)θiθj +

q∑
i<j<k<l=1

fijkl(x)θiθjθkθl + . . . (2.5)

Podd(x, θ) =

q∑
i=1

fi(x)θi +

q∑
i<j<k=1

fijk(x)θiθjθk + . . . (2.6)

where the f ’s are usual polynomials in k[x1, . . . , xp] and we have written θiθj instead

of θi ∧ θj for the sake of notation.

As one wishes to jump from pure algebra to geometry, it is customary in physics

to look at a supermanifold M of dimension p|q (that is, of even dimension p and odd

dimension q) as described locally by p even coordinates and q odd coordinates, as

a generalisation of the standard description of manifolds from differential geometry.
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Even if this is feasible [49], the presence of nilpotent elements makes it preferable in

the context of supergeometry to adopt an algebraic geometric oriented point of view

and look at a supermanifold as a certain locally ringed space [11] [12] [14] [54].

Taking this global point of view, we define a super space M to be a Z2-graded

locally ringed space, that is a pair (|M |,OM ), consisting of a topological space |M | and

a sheaf of super algebras OM over |M |, such that the stalks OM ,x at every point x ∈ |M |
are local rings. Notice that this makes sense as a requirement, for the odd elements are

nilpotent and this reduces to ask that the even component of the stalk is a usual local

commutative ring.

Morphisms between super spaces become morphisms of locally ringed spaces, that is

they are given by a pair

(φ, φ]) : (|M |,OM ) −→ (|N |,ON ) (2.7)

where φ : |M | → |N | is a continuous function and φ] : ON → φ∗OM is morphism of

sheaves (of super rings or super algebras) and it needs to preserve the Z2-grading.

Clearly, OM contains the subsheaf of ideals of all nilpotents, call it JM , which is gen-

erated by all odd elements of the sheaf: this allows us to recover a purely even super

space, (|M |,OM /JM ), which is called reduced space underlying M and denoted by

Mred. There always exists a close embedding Mred ↪→ M , given by the morphism

(id|M |, i
]) : (|M |,OM /JM )→ (|M |,OM ), where i] : OM → id|M |∗OM /JM = OM /JM .

A special super space can be constructed as follows: given a topological space |M |
and a locally free sheaf of O|M |-modules E , we can take OM to be the sheaf

∧• E∨: this

makes OM out of a super commutative sheaf whose stalks are local rings. Similarly to

[54], we denote super spaces constructed this way S(|M |, E).

Examples of this construction are affine super spaces Ap|q ..= S(Ap,O⊕qAp ): here Ap is

the ordinary p-dimensional affine space over A and OAp is the trivial bundle over it.

Super spaces like these are common in supersymmetric field theories, where one usually

works with Rp|q or Cp|q.

A supermanifold is defined as a super space which is locally isomorphic3 to S(|M |, E)

for some topological space |M | and some locally free sheaf of O|M |-module E .

Following this line of thought, then, one recovers (out of a globally defined object!)

the original differential geometric induced view that physics employs, where a real su-

permanifold of dimension p|q is a one that locally resembles to Rp|q and, likewise, a

complex supermanifold of dimension p|q is a one that locally resembles to Cp|q, defined

above: the gluing data are encoded in the cocycle condition that the structure sheaf

must satisfy.

3In the Z2-graded sense: here indeed isomorphisms are isomorphisms of super algebras.
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Given a supermanifold M , we will call Mred the pair (|M |,OM /JM ), which is an ordi-

nary manifold presented as a locally ringed space of a certain type: as above, we will

always have a closed embedding Mred ↪→ M .

It is worth noticing that, on the contrary, the definition of supermanifold does not

implies the existence of a projection M → Mred: this would correspond to a morphism

of (id|M |, π
]) : (|M |,OM ) → (|M |,OM /JM ), where π] is a sheaf morphism that em-

beds OM /JM into OM , and also to endow the sheaf OM with the structure of sheaf of

OMred
-modules. In the case such a projection does exist, the supermanifold is said to be

projected. Thinking of the supermanifold in terms of the gluing data between open sets

covering the underlying topological space, projectedness of the supermanifold implies

that the even transition functions can be written as functions of the ordinary local

coordinates on the reduced manifold only: there are no nilpotents (e.g. bosonisation

of odd elements) at all. Obstruction to the existence of such projection for the case of

the supermoduli space of super Riemann surfaces has been studied in [54] and it is an

issue that has striking consequences in superstring perturbation theory, as mentioned

early on in the introduction.

A stronger condition is realised when the supermanifold is globally isomorphic to some

local model S(|M |, E). Such supermanifolds are said to be split. If this is the case, not

only the even transition functions have no nilpotents, but the odd transition functions

can be chosen in such a way that they are linear in the odd coordinates. This bears a

nice geometric view of split supermanifolds: they can be looked at globally as a vector

bundle Ẽ → Mred on the reduced manifold having purely odd fibers, as the definition

of a supermanifold we have provided above suggests by itself.

2.2 Projective Super Spaces and Weighted Projective Super Spaces

The supermanifolds known as (complex) projective super spaces, call it Pn|m, have been

discussed extensively in the literature and introduced from several different point of

view, both in mathematics and in physics, being of fundamental importance in twistor

string theory.

Complex projective spaces are mostly looked at formally as a quotient of the super

spaces Cn|m by the even multiplicative group C×, so realising a super analog of the

set of homogeneous coordinates [X1 : . . . : Xn : Θ1 : . . . : Θm] obeying [X1 : . . . :

Xn : Θ1 : . . . : Θm] = [λX1 : . . . : λXn : λΘ1 : . . . : λΘm], where λ ∈ C× (see

for example [54], [49]). In contrast with this global construction by a quotient, a

popular local construction realises Pn|m mimicking the analogous constructions of Pn

as a complex manifold, that is by specifying it as n+1 copies of Cn|m glued together by

the usual relations. This construction relies on the possibility to pair the usual bosonic

local coordinates with q fermionic anticommuting local coordinates: such an intuitive
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approach can be made rigorous using the functor of points formalism [15]. A more

rigorous treatment connecting the requested invariance under the action on C× with

the structure of the sheaf of super commutative algebra characterising the projective

super space can be found in [56].

An elegant construction of the projective super space that goes along well with the

notions introduced above is given in [12]. Pn|m can actually be presented as a (split)

complex supermanifold, as follows. We consider a super C-vector space V = V0⊕V1 of

rank n+1|m. As one can imagine, the topological space underlying the super projective

space coincides with the usual one and it is given by the projectivization of the even

part of V , we call it simply Pn. This tells that Pn can be covered by n + 1 open sets

{Ui}i=0,...,n, characterised by

Ui ..= {[X0 : . . . : Xn] ∈ Pn : Xi 6= 0} (2.8)

so one can form a system of local affine coordinates on Ui given by z
(i)
j

..= Xj /Xi for

j 6= i. Intuitively, as above, we would like to have something similar for the odd part of

the geometry: this is achieved by realising a sheaf of super algebras on Pn, as follows:

Ui 7−→

(
m⊕
`=0

∧̀
V ∨1 ⊗OPn(−1)

)
(Ui). (2.9)

This is mapped isomorphically to the structure sheaf OPn|m of the projective super

space, by a map induced by

V ∨1 ⊗OPn(−1)(Ui) 3 Θα ⊗X−1
i 7−→ θ(i)

α
..=

Θα

Xi

∈ OPn|m(Ui), (2.10)

where we stress that Θα is a generator for V ∨1 , X−1
i is a section of OPn(−1) over Ui

and the θ
(i)
α , where α = 1, . . . ,m are promoted as local odd coordinates over Ui for the

projective super space Pn|m.

This construction makes apparent that, in the notation introduced in the previous

section, Pn|m = S(Pn, V1 ⊗OPn(1)).

One can also read out the transition rules on Ui ∩ Uj, even and odd, that are usually

written as:

z
(i)
k =

z
(j)
k

z
(j)
i

, θ(i)
α =

θ
(j)
α

z
(j)
i

. (2.11)

In the language of morphisms of ringed spaces, we would have an isomorphism

(φUi∩Uj , φ
]
Ui∩Uj) : (Ui ∩ Uj,OPn|m(Ui)bUj) −→ (Ui ∩ Uj,OPn|m(Uj)bUi) (2.12)
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with φUi∩Uj : Ui ∩ Uj → Ui ∩ Uj being the usual change of coordinate on projective

space and φ]Ui∩Uj : OPn|m(UjbUi)→
(
(φUi∩Uj)∗OPn|m

)
(UibUj), so that

(
φUi∩Uj

)
∗ (z

(i)
k ) =

z
(j)
k

z
(j)
i

,
(
φUi∩Uj

)
∗ (θ(i)

α ) =
θ

(j)
α

z
(j)
i

. (2.13)

We note, incidentally, that the cocycle relation is indeed satisfied.

Before we go on, we generalise a little the construction above, to allow us for treat

in a somehow unified way also the weighted projective super spaces: we will be actually

interested in the case the odd part of the geometry carries different weights compared

to the even part, which is made by an ordinary projective space.

Since above we have taken V = V0⊕V1 to be a super C-vector space, then it has a well

defined notion of dimension, namely n + 1|m, and we can actually take a basis for it.

Focusing on the odd part, we take {Θα}α=1,...,m as a system of generators for V1. Then,

we might realise a more general sheaf of super algebras by

Ui 7−→
•∧(

m⊕
α=1

Θ∨α ⊗OPn(−wα)

)
(Ui). (2.14)

In other words, each odd variable has been assigned a weight wα, which reverberates

in the transition functions: the ordinary case of Pn|m is recovered assigning wα = 1 for

each α = 1, . . . ,m.

We will call this space weighted projective super space and we will denote it by

WPn|m(w1,...,wm), where the string (w1, . . . , wm) gives the fermionic weights. In this pa-

per we will be particularly concerned with low dimensional examples of projective and

weighted projective super space, namely P1|2 and WP1|1
(2), whose geometry will be studied

in some details in the following section.

2.3 Vector Bundles over P1P1P1, Grothendieck’s Theorem and cohomology of

OPn(k)OPn(k)OPn(k)-bundles

In this section we recall and comment a classification result due to Grothendieck which

will be heavily exploited to study projective super spaces having reduced space given

by P1. Moreover, for future use, the cohomology of OPn(k)-bundles is given.

The main result about vector bundles on P1 is that any holomorphic vector bundle

of rank n is isomorphic to the direct sum of n line bundles and the decomposition is
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unique up to permutations of the line bundles, that is

E ∼=
n⊕
i=1

OP1(ki), (2.15)

where the ordered sequence k1 ≥ k2 ≥ . . . ≥ kn is uniquely determined (see [92] for a

complete proof). We will refer at it as Grothendieck’s Theorem. Basically, it guarantees

that the only interesting vector bundles on P1 are the line bundles on it, which in turn

are all of the form OP1(k) for some k ∈ Z (recall that Pic(P1) ∼= Z).

Concretely, since every (algebraic) vector bundle over C is trivial, the restriction of a

vector bundle E over P1 of rank n to the standard open sets U0
..= {[X0 : X1] : X0 6=

0} ∼= C and U1
..= {[X0 : X1] : X1 6= 0} ∼= C is trivial. Choosing the coordinates

z ..= X1

X0
on U0 and w ..= X0

X1
= 1

z
on U1 we have that an isomorphism EbU0→ O⊕nP1 bU0 is

equivalent to an isomorphism of OP1(U0) = C[z]-modules as follows

φ0 : E(U0)
∼=−→ OP1(U0)⊕n = C[z]⊕n. (2.16)

Likewise, we have an isomorphism of OP1(U1) = C [z−1]-modules

φ1 : E(U1)
∼=−→ OP1(U1)⊕n = C

[
z−1
]⊕n

. (2.17)

Clearly, two such isomorphisms φi and φ′i gives an automorphism φi ◦ φ′i : C[t]⊕n →
C[t]⊕n where t = z for i = 0 and t = z−1 for i = 1, so φi ◦ φ′i determines an invertible

n× n matrix, having coefficients in C[t].

The composition φ01
..= φ0 ◦ φ−1

1 gives the glueing relation between the two trivial

bundles over U0 and U1: it is again given by an invertible n×n matrix having coefficient

in C[z, z−1]: its determinant is equal to zk for some k ∈ Z up to a non-zero constant.

Thus, classifying rank n vector bundles over P1 corresponds to classifying invertible

matrices M ∈ GL(n,C[z, z−1]) up to the following equivalence:

M(z, z−1) ∼ A(z)M(z, z−1)B(z−1) A(z) ∈ GL(n,C[z]), B(z−1) ∈ GL(n,C[z−1]).

By a theorem due to Birkhoff, M(z, z) belongs to the same class of a diagonal matrix

Md = diag(zk1 , . . . , zkn) where ki ∈ Z. Therefore any bundle over P1 is isomorphic to a

direct sum of line bundles OP1(k1)⊕ . . .⊕OP1(kn).

By looking at vector bundles over P1 as sheaves of locally free OP1-modules, the

theorem reduces the problem of computing sheaf cohomology over P1 to computing

the sheaf cohomology of OP1(k), which is well-known. In general, for k ≥ 0 one has
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H0(Pn,OPn(k)) = C[x0, . . . , xn](k), the degree-k linear subspace of the polynomial ring,

therefore

h0(Pn,OPn(k)) =

(
k + n

k

)
=

(n+ k)!

k! · n!
k ≥ 0, (2.18)

and if k < 0 one has Hn(Pn,OPn(k)) =
〈
xi00 · . . . · xinn : ij < 0,

∑n
i=0 ij = k

〉
C. It is an

exercise in combinatorics to see that

hn(Pn,OPn(k)) =

(
|k| − 1

|k| − n− 1

)
k < 0, |k| ≥ n+ 1. (2.19)

These results will be used to compute the cohomology in the following section.

3 The Geometry and Cohomology of P1|2P1|2P1|2 and WP1|1
(2)

WP1|1
(2)WP1|1
(2)

3.1 Super Calabi-Yau Varieties

The physical approach to Calabi-Yau’s geometries in a supersymmetric context has

employed the differential geometric point of view, defining a super Calabi-Yau mani-

fold (SCY) as a Ricci-flat supermanifold. Indeed there exists a generalisation of tensor

calculus to a supersymmetric context, making sense out of the notion of super Rieman-

nian manifold, super curvature tensor and super Ricci tensor.

The crucial observation regarding projective super spaces is that there exists a gener-

alisation of the Fubini-Study metric to the supersymmetric context. Let us consider

Pn|m, then it can be given a super Kähler potential

Ks = log

(
n∑
i=0

XiX̄i +
m∑
j=1

ΘjΘ̄j

)
(3.1)

defined everywhere on Pn|m that reduces to the ordinary Fubini-Study potential as one

restrict it to the underlying reduced manifolds. Locally, on a patch of the projective

super space, it takes the form

Ks = log

(
n∑
i=1

ziz̄i +
m∑
j=1

θj θ̄j

)
. (3.2)

Notice that in this complex differential geometric context the variables are paired with

their anti-holomorphic analogs, as customary in theoretical physics.

The super Kähler form is defined in the local patch to be

Ωs ..= ∂∂̄Ks or analogously Ωs ..= ∂A∂B̄K
sdXAdXB̄ (3.3)
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where ∂ and ∂̄ are the holomorphic and anti-holomorphic super derivatives: we refer

to the Appendix A for details. Then the super metric tensor is simply given by

Hs
AB̄

..= ∂A∂B̄K
s, (3.4)

and the Ricci tensor reads

RicAB̄
..= ∂A∂B̄ log (BerHs) . (3.5)

Notice that the only modification compared to the ordinary complex geometric case is

that the determinant of the metric has been substituted by the Berezinian [11] [49] of

the super metric.

Remarkably, as one chooses the projective super spaces of the form Pn|n+1 for n ≥ 1

(note that P0|1 ∼= C0|1), endowed with the super Fubini-Study metric defined as above,

then one gets a vanishing super Ricci tensor!

We stress that, as it is common in the context of super geometry, even an easy calcula-

tion might present some difficulties, due to the anti-commutativity of some variables.

One needs to establish and keep coherent conventions throughout the calculations. As

an example, a detailed computation of the vanishing of the super Ricci tensor in the

case of P1|2 is reported in Appendix A. The same calculation can be easily generalised

to any Pn|n+1 for n ≥ 2.

Actually, defining a SCY manifold by requiring that its super Ricci tensor vanishes

appears as a very strong request. Moreover, it is not that useful, for it is often hard to

write down super metrics for interesting classes of supermanifolds: for example there

is not straightforward generalisation of the super Fubini-Study metric to the case of

weighted projective super spaces. Moreover, by the result in [88] a Ricci-flat Kälher

supermetric on WP1|1
(2) does not exist. Still, it is possible to give a weaker but certainly

more useful definition:

Definition 1 We say that an orientable super projective variety X is super Calabi-Yau

if its Berezinian sheaf is trivial, that is BerX ∼= OX .

Notice that this definition is again the super analog of the usual algebraic geometric

definition of an ordinary CY variety, that calls for a trivial canonical sheaf. Indeed,

the Berezinian sheaf is, in some sense (see [11] [12] [49]), the super analog of the

canonical sheaf, since the sections of the Berezinian transform as densities and it turns

out that they are the right objects to define a meaningful notion of super integration,

the Berezin integral. In other words, then, a SCY variety is one whose Berezinian sheaf

has an everywhere non-zero global section.
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We now start making use of the Grothendieck splitting theorem to prove the triv-

iality of the Berezian sheaf of the supermanifolds P1|2 and WP1|1
(2) and hence confirm

that they are both SCY varieties. The strategy we will use throughout to compute

the cohomologies will be to look at the varieties as split supermanifolds, therefore, in

this case, as the total space of vector bundles over P1, the reduced manifold, having

odd fibers. Then, we will achieve the splitting into line bundles over P1 and we will

compute their cohomology.

We start considering P1|2. Following what established above, we have two patches,

we now call Uz and Uw: passing from one patch to the other, yields the following

transformations 
w 7−→ z = 1

w

φ0 7−→ θ0 = φ1

w

φ1 7−→ θ1 = φ2

w

. (3.6)

The structure sheaf, OP1|2 , is therefore locally generated by

OP1|2(Uz) =
〈
1
〉
OP1|2 (Uz)

=
〈
1, θ0, θ1, θ0θ1

〉
OP1 (Uz)

, (3.7)

where in the last equality we are looking at it as a locally free OP1-module. Considering

the transformation rules in the intersection, we find the following factorisation as OP1-

modules:

OP1|2 = OP1 ⊕OP1(−1)⊕2 ⊕OP1(−2). (3.8)

Notice that the cohomology can be readily computed as h0(P1|2,OP1|2) = 1 and

h1(P1|2,OP1|2) = 1.

Using a notation due to Witten [49], the Berezinian sheaf over P1|2 is locally generated

by an element of the form

Ber P1|2(Uz) =
〈
[dz|dθ0, dθ2]

〉
OP1|2 (Uz)

. (3.9)

Under a coordinate transformation, call it Φ, taking local coordinates w|φ0, φ1 to z|θ0, θ1

as above, the Berezinian transforms as follows:

[dw|dφ0, dφ1] 7−→ [dz|dθ0, dθ1] = Ber(Φ)[dw|dφ0, dφ1]. (3.10)

Therefore one gets:

Ber

 −1/w2 0 0

−θ0/w
2 1/w 0

−θ1/w
2 0 1/w

 =
−1/w2

1/w · 1/w
= −1. (3.11)
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This trivial transformation implies the triviality. More precisely, viewing Ber P1|2 as a

OP1-module, one finds the following factorisation:

Ber P1|2 ∼= OP1 ⊕OP1(−1)⊕2 ⊕OP1(−2) ∼= OP1|2 , (3.12)

and under the correspondence 1 7→ [dz|dθ0, dθ1], one has

Ber P1|2 ∼= OP1|2 , (3.13)

as expected. The cohomology is obviously the same as the one of the structure sheaf.

Things go in same way as one consider the structure sheaf and the Berezinian sheaf of

WP1|1
(2), remembering that one has transformations of the following form{

w −→ z = 1
w

φ −→ θ = φ
w2 .

(3.14)

Again, one finds that the Berezinian has a trivial transformation on the intersection

and we have a correspondence 1 7→ [dz|dθ] and an isomorphism

BerWP1|1
(2)

∼= OWP1|1
(2)

. (3.15)

This confirm that also the weighted projective space WP1|1
(2) is a SCY variety, in the

weak sense.

3.2 The Sheaf Cohomology of Differential and Integral Forms

To a large extent, generalisation of the ordinary commuting geometry to the richer

context of supergeometry is pretty straightforward and it boils down to an application

of the “rule of sign” [11] [12]. One issue stands out for its peculiarity: the theory of

differential form and integration. The problematics concerned with this topic have been

recently investigated by Catenacci et al. in a series of papers (here we will particularly

refer to [56]) and reviewed by Witten in [49]. We briefly sketch the main points, by

leaving the details of the constructions to the literature.

As one tries to generalise the complex of forms (Ω•, d•) to supergeometry using the

1-superforms {dθi}i∈I constructed out of the θi, then it comes natural to define wedge

products such as dθ1 ∧ . . . ∧ dθn to be commutative in the dθ’s, since the θ’s are

odd elements. This bears a very interesting consequence: the complex of superforms

(Ω•s, d
•
s) is bounded from below but not from above! For example, superforms such as

(dθi)n ..= dθi ∧ . . . ∧ dθi do make sense and they are not zero, such as their bosonic

counterparts. The problematic aspect resides in that there is no notion of a top-

form, therefore a coherent notion of “super integration” is obtained only at the cost of
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enlarging the complex of superforms and supplementing it with the so-called integral

forms. Using the notation of [56], the basic integral form are given by {δ(dθi)}i∈I and its

higher derivatives {δ(n)(dθi)}i∈I , for n > 0. Here the use of the symbol δ should remind

the Dirac delta distribution - and indeed an integral form satisfies similar properties

[56] -: it sets to zero terms in dθi and therefore, in some sense, it lowers the degree of a

superform. For this reason an integral form is assigned a non-positive degree: indeed in

the context of supergeometry one can also have negative degree forms. This is better

understood by mean of an example. Let us take the super space C2|2, then we can

consider the following superform

ωs = dz1dz2(dθ2)4δ(2)(dθ1), (3.16)

where the wedge products are understood. Then dz1dz2(dθ2)4 carries a degree of 6,

while the integral form δ(2)(dθ1) lower the degree by 2, so as a whole, we say that ωs
has degree 4 and we signal the presence of an integral form (of any degree) by saying

that it has picture number equal to 1. Therefore, this enlarged complex of superforms

is characterised by two numbers, the degree of the form n and their picture number s

and we have that ωs ∈ Ωn=4;s=1

C2|2 . Notice, incidentally, that the picture number cannot

exceed the odd dimension of the supermanifold and operators linking complexes having

different picture numbers - called picture changing operators - can be defined.

In [56] the sheaf cohomology of superforms and integral forms of P1|1 has been

studied, proving that just by adding an anti-commuting dimension, the cohomology

becomes far richer. There is, though, a substantial hole in the literature: no sheaf

cohomology of superforms and integral forms has ever been computed for supermani-

folds having extended supersymmetries, that is more than one odd dimensions. In this

scenario the computation of the cohomology for the case of P1|2 acquires value, besides

being an example of cohomology of a SCY variety.

We will see indeed that as soon as one has more than a single odd dimension, when the

picture number is middle-dimensional (that is, it is non-zero and not equal to the odd

dimension of the manifold), then one finds that the space of superforms is infinitely

generated and its cohomology may be infinite-dimensional!

This result calls, from a mathematical side, for a better understanding of the (algebraic)

geometry of the complex of superforms and integral forms. Moreover, from the phys-

ical side, the possible usage and purposes of forms having middle-dimensional picture

number should be investigated and clarified.

We now compute the sheaf cohomology of superforms of P1|2. We will carry out the

computation in some details for the first case, namely the space of superforms having
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null picture number, Ωn;0

P1|2 , to elucidate our method and we leave to the reader all the

other cases that follow the same pattern.

As a OP1|2-module, Ωn;0

P1|2 is locally generated by:

Ωn;0

P1|2(Uz) =
〈
{dθi0dθn−i1 }i=0,...,n, {dzdθj0dθ

n−1−j
1 }j=0,...,n−1

〉
OP1|2 (Uz)

. (3.17)

By looking at it as a (locally free) OP1-module, we might find the transformations of

its generators. The first block of generators transform as (up to unimportant constants

and signs)

dθi0dθ
n−i
1 =

1

wn
dφi0dφ

n−i
i +

1

wn+1
φ0dwdφ

i−1
0 dφn−i1 +

1

wn+1
φ1dwdφ

n
0dφ

n−1−i
1 ,

θ0dθ
i
0dθ

n−i
1 =

1

wn+1
φ0dφ

i
0dφ

n−i
1 +

1

wn+2
φ0φ1dwdφ

i
0dφ

n−1−i
1 ,

θ1dθ
i
0dθ

n−i
1 =

1

wn+1
φ1dφ

i
0dφ

n−i
1 +

1

wn+2
φ0φ1dwdφ

i−1
0 dφn−i1 ,

θ0θ1dθ
i
0dθ

n−i
1 =

1

wn+2
φ0φ1dφ

i
0dφ

n−i
1 .

The second block, instead, has only diagonal terms:

dzdθj0dθ
n−1−j
1 =

1

wn+1
dwdφi0dφ

n−1−j
1 ,

θ0dzdθ
j
0dθ

n−1−j
1 =

1

wn+2
φ0dwdφ

i
0dφ

n−1−j
1 ,

θ1dzdθ
j
0dθ

n−1−j
1 =

1

wn+2
φ1dwdφ

i
0dφ

n−1−j
1 ,

θ0θ1dzdθ
j
0dθ

n−1−j
1 =

1

wn+2
φ0φ1dwdφ

i
0dφ

n−1−j
1 ,

where we recall that i = 0, . . . , n and j = 0, . . . , n−1. Before going on we observe that,

for n fixed, looking at Ωn;0

P1|2 as a OP1-module, we will have

dimOP1 Ωn;0

P1|2 = 4(n+ 1) + 4n = 8n+ 4 (3.18)

terms in the factorisation. This is its dimension as a vector bundle/locally free sheaf

of OP1-modules.

The strategy that we will follow will be to group together pieces having similar form,

evaluating their transformations and afterwards factorising them into a direct sum of

line bundles over P1 by means of Grothendieck splitting theorem, by treating the off-

diagonal terms in the transition functions matrix: we recall that, in the notation above,

we will be free to perform C[w]-linear operations in the columns and C[1/w]-linear op-

erations in the rows.
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To this end, we now keep our attention on the diagonal terms that do not need any

further investigation: we will get n + 1 terms and n standing-alone terms out of

θ0θ1dθ
i
0dθ

n−i
1 and dzdθj0dθ

n−1−j
1 , so these contribute to the factorisation with terms

of the form

OP1(−n− 2)⊕n+1 ⊕OP1(−n− 1)⊕n. (3.19)

So we are left with 8n+ 4− (n+ 1)− n = 6n+ 3 terms to give account to.

The other terms need some carefulness. We start dealing with the terms coming from

the transformation of dθi0dθ
n−i
1 : these couples with the ones coming from θ0dzdθ

j
0dθ

n−1−j
1

and θ1dzdθ
j
0dθ

n−1−j
1 whenever i = j in the pairing with θ0dzdθ

j
0dθ

n−1−j
1 and i = j+ 1 in

the pairing with θ1dzdθ
j
0dθ

n−1−j
1 . We therefore need to consider n− 1 (since this holds

true in the case i = 1, . . . , n− 1) identical 3× 3 matrices of the following form: 1/wn 1/wn+1 1/wn+1

0 1/wn+2 0

0 0 1/wn+2

 C1−wC2−→

 0 1/wn+1 1/wn+1

−1/wn+1 1/wn+2 0

0 0 1/wn+2

 ,

 0 1/wn+1 1/wn+1

−1/wn+1 1/wn+2 0

0 0 1/wn+2

 C1↔C2−→

 1/wn+1 0 1/wn+1

1/wn+2 −1/wn+1 0

0 0 1/wn+2

 ,

 1/wn+1 0 1/wn+1

1/wn+2 −1/wn+1 0

0 0 1/wn+2

 R2−1/wR1−→

 1/wn+1 0 1/wn+1

0 −1/wn+1 −1/wn+2

0 0 1/wn+2

 ,

 1/wn+1 0 1/wn+1

0 −1/wn+1 −1/wn+2

0 0 1/wn+2

 C3−C1−→

 1/wn+1 0 0

0 −1/wn+1 −1/wn+2

0 0 1/wn+2

 ,

 1/wn+1 0 0

0 −1/wn+1 −1/wn+2

0 0 1/wn+2

 R2+R3−→

 1/wn+1 0 0

0 −1/wn+1 0

0 0 1/wn+2

 .

So this bit contributes with terms of the following forms:

OP1(−n− 1)⊕2n−2 ⊕OP1(−n− 2)⊕n−1 (3.20)
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to be added to the previous ones. This boils the number of the remaining pieces down

to 6n+ 3− (3n− 3) = 3n+ 6.

Now it is important to notice that we have not given account for some terms in the

counting above yet: we need indeed to consider separately 4 terms that group into two

identical 2× 2 matrices. Indeed the term i = 0 of dθi0dθ
n−i
1 , that is dθn1 , couples to the

term j = 0 (which was left out of the counting above) into the term θ1dzdθ
j
0dθ

n−1−j
1 ,

that is θ1dzdθ
n−1
1 . This gives a 2× 2 matrix of the form:(

1/wn 1/wn+1

0 1/wn+2

)
C1−wC2−→

(
0 1/wn+1

−1/wn+1 1/wn+2

)
,

(
0 1/wn+1

−1/wn+1 1/wn+2

)
C1↔C2−→

(
1/wn+1 0

1/wn+2 −1/wn+1

)
,

(
1/wn+1 0

1/wn+2 −1/wn+1

)
R2−1/wR1−→

(
1/wn+1 0

0 −1/wn+1

)
.

The very same holds true in the case i = n for dθi0dθ
n−i
1 , that is dθn0 , and j = n for

θ0dzdθ
j
0dθ

n−1−j
1 , that is θ0dzθ

n−1
0 . So we have a pair of identical contributions that sums

up to the ones already accounted:

OP1(−n− 1)⊕4. (3.21)

So this adds up 4 terms to the counting above, leaving us with 3n + 2 terms to be

accounted for.

The terms θ0dθ
i
0dθ

n−i
1 and θ1dθ

i
0dθ

n−i
1 , couple with the last term, θ0θ1dzdθ

j
0dθ

n−1−j
1 , in

the cases i = 0, . . . n − 1 for θ0dθ
i
0dθ

n−i
1 and i = 1, . . . , n for θ1dθ

i
0dθ

n−i
1 and for all j.

Therefore we have 3n identical 3× 3 matrices of the form: 1/wn+1 0 1/wn+2

0 1/wn+1 1/wn+2

0 0 1/wn+3

 R2−R1−→

 1/wn+1 0 1/wn+2

−1/wn+1 1/wn+1 0

0 0 1/wn+3

 ,

 1/wn+1 0 1/wn+2

−1/wn+1 1/wn+1 0

0 0 1/wn+3

 C1−C2−→

 1/wn+1 0 1/wn+2

0 1/wn+1 0

0 0 1/wn+3

 ,

 1/wn+1 0 1/wn+2

0 1/wn+1 0

0 0 1/wn+3

 C1−wC3−→

 0 0 1/wn+2

0 1/wn+1 0

1/wn+2 0 1/wn+3

 ,
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 0 0 1/wn+2

0 1/wn+1 0

1/wn+2 0 1/wn+3

 C1↔C3−→

 1/wn+2 0 0

0 1/wn+1 0

1/wn+3 0 1/wn+2

 ,

 1/wn+2 0 0

0 1/wn+1 0

1/wn+3 0 1/wn+2

 R1−1/wR3−→

 1/wn+2 0 0

0 1/wn+1 0

0 0 1/wn+2

 .

So we have the following contribution to the factorisation:

OP1(−n− 1)⊕n ⊕OP1(−n− 2)⊕2n. (3.22)

Notice that we have to take into account separately the terms corresponding to i = n

for θ0dθ
i
0dθ

n−i
1 and i = 0 for θ1dθ

i
0dθ

n−i
1 , yielding an identical (diagonal) contribution of

the form: OP1(−n− 1)⊕2.

These last 2n + 2 terms complete the enumeration. We are therefore ready to write

down the whole factorisation for n > 0:

Ωn;0

P1|2
∼= OP1(−n− 2)⊕4n ⊕OP1(−n− 1)⊕4n+4.

We are finally in the position to count the dimensions of the cohomology groups:

h0(Ωn;0

P1|2) = 0, h1(Ωn;0

P1|2) = 8n2 + 8n. (3.23)

This terminates the discussion of the form with null picture number. All the other cases,

having non-null picture number are treated in an analogous way, by remembering the

transformation of the integral forms of type δ(n)(dθi) [56]. We now list their factorisation

as OP1-modules.

The space of superforms having maximal picture number and degree is locally generated

by

Ω1;2

P1|2(Uz) =
〈
dzδ(dθ0)δ(dθ1)

〉
OP1|2 (Uz)

. (3.24)

Considering the transformation among the two charts yields the factorisation

Ω1;2

P1|2
∼= OP1 ⊕OP1(−1)⊕2 ⊕OP1(−2) ∼= OP1|2 . (3.25)

So we can easily compute the dimensions of the cohomology groups, which are exactly

the same as the ones of the structural sheaf:

h0(Ω1;2

P1|2) = 1, h1(Ω1;2

P1|2) = 1. (3.26)
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It is not surprising that this is the same as the Berezinian line bundle over P1|2: indeed

elements of this sheaf are in some sense the supersymmetric analog of the ordinary

top-form for a manifold, and we (Berezin-)integrate them, as one can integrate sections

of the Berezinian sheaf. These two peculiar supersymmetric sheaves are fundamental

in theory of integration on supermanifold.

We are left with the group Ω−n;2

P1|2 , for n ≥ 0 (which deserve some attention and book-

keeping such as Ωn;0

P1|2). It is locally generated by

Ω−n;2

P1|2 (Uz) =
〈
{δ(i)(dθ0)δ(n−i)(dθ1)}i=0,...,n, dz{δ(j)(dθ0)δ(n+1−j)(dθ1)}j=0,...,n+1

〉
OP1|2 (Uz)

,

which give the following factorisation

Ω−n;2

P1|2
∼= OP1(n+ 1)⊕4n+5 ⊕OP1(n)⊕4n+6 ⊕OP1(n− 1).

The dimensions of the cohomology groups then read

h0(Ω−n;2

P1|2 ) = 8(n+ 2)(n+ 1), h1(Ω−n;2

P1|2 ) = 0. (3.27)

By pulling together all the cohomologies, we have the following result:

h0(Ωn;m

P1|2) =


1 n = 0, m = 0

0 n > 0,m = 0

8(n+ 2)(n+ 1) n ≤ 0, m = 2

1 n = 1, m = 2

, (3.28)

h1(Ωn;m

P1|2) =


1 n = 0, m = 0

8n(n+ 1) n > 0,m = 0

0 n ≤ 0,m = 2

1 n = 1, m = 2

. (3.29)

Notice that so far we have not carried out the computation of superforms having picture

number equal to 1: as anticipated, these are infinitely generated as a locally free sheaf

and they give infinite dimensional cohomology.

The generators read

Ωn≥0;1

P1|2 (Uz) =
〈
{δ(i)(dθ0)dθn+i

1 }i∈N, dz{δ(i+1)(dθ0)dθn+i
1 }i∈N,

{δ(i)(dθ1)dθn+i
0 }i∈N, dz{δ(i+1)(dθ1)dθn+i

0 }i∈N
〉
OP1|2(Uz)

. (3.30)

This is factorised as ⊕
i∈N

(
O⊕8

P1 (−n− 1)⊕O⊕8
P1 (−n)

)
(3.31)
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this gives h0(Ωn>0;1

P1|2 ) = 0, while, remarkably, h0(Ω0;1

P1|2) = h1(Ωn≥0;1

P1|2 ) =∞!

Similarly, one finds

Ωn<0;1

P1|2 (Uz) =
〈
{δ(|n|+i)(dθ0)dθi1}i∈N, dz{δ(|n|+i+1)(dθ0)dθi1}i∈N,
{δ(|n|+i)(dθ1)dθi0}i∈N, dz{δ(|n|+i+1)(dθ1)dθi0}i∈N

〉
OP1|2(Uz)

(3.32)

having factorisation ⊕
i∈N

(
O⊕8

P1 (|n| − 1)⊕O⊕8
P1 (|n|)

)
(3.33)

which again gives infinite dimensional cohomology.

The computation of the cohomology of WP1|1
(2) is much easier and it can be performed

following the same lines as above. Also, having no middle picture number, there are

no infinitely generated modules and infinite cohomologies.

By means of Grothendieck theorem, the complete sheaf cohomology is thus given by

h0(Ωn;m

WP1|1
(2)

) =


1 n = 0, m = 0

0 n > 0,m = 0

4n+ 6 n ≤ 0, m = 1

1 n = 1, m = 1

, (3.34)

h1(Ωn;m

WP1|1
(2)

) =


1 n = 0, m = 0

8n n > 0,m = 0

0 n ≤ 0, m = 1

0 n = 1, m = 1

. (3.35)

We signal, by the way, a pathology which looks like it can apply to any weighted pro-

jective space.

While the Berezinian sheaf is isomorphic to the structural sheaf of WP1|1
(2) - and indeed

it has analogous factorisation and cohomology - one finds instead that the sheaf of the

“top-superform” Ω1;1

WP1|1
(2)

is not! To see that, it is enough to check the different factori-

sation and therefore the different cohomologies: one finds indeed that h1(Ω0;0

WP1|1
(2)

) = 1

while h1(Ω1;1

WP1|1
(2)

) = 0.

3.3 de Rham Cohomology of WP1|1
(2)

WP1|1
(2)WP1|1
(2) and P1|2P1|2P1|2

Having at disposal the sheaf cohomology of superforms on the super varieties WP1|1
(2)

and P1|2, we now aim to compute their holomorphic de Rham cohomology.
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Before we start, a nod to the adopted notation is due: given a supermanifold M , we

will denote its de Rham cohomology groups as Hn;m
dR (M ) where n refers to the usual

degree of the forms and m refers to their picture number.

We also stress that the boundary operator of the complex, acts as d : An;m
M → An+1;m

M ,

where An;m
M is the freely generated module of the n-forms having fixed picture number

m that are defined everywhere, that is An;m
M
∼= H0(Ωn;m

M ). In other words, the bound-

ary operator d does not change the picture number of the form, and it just raises the

degree of the form, so - as in ordinary purely bosonic geometry - we are just moving

horizontally on the complex and we cannot jump from on complex to the other, by

picture changing procedure.

For the sake of clarity, we start from where we left, and we take on the computation

of the de Rham cohomology of the weighted projective super space WP1|1
(2), where the

sheaf cohomology of superforms is always finite. We will adopt a cumbersome but effec-

tive method, that has the advantages to display explicitly a basis of generators for the

various de Rham groups. This is remarkable for it possibly sets a more concrete ground

for the observations in [82] and especially in the interesting [83], where it is observed

that the BRST cohomology of a (super) A-model is isomorphic to the cohomology of

the superforms on the target space, that is a supermanifold M .

The starting point to compute the de Rham cohomology of the weighted projective

super space WP1|1
(2) is to look at its zeroth Čech cohomology, computed above. This

actually gives us two results for free: the first one is that H0;0
dR (WP1|1

(2)) = C, and it is

generated by the constant function 1. The second result that can be easily red is that

we have Hn;0
dR (WP1|1

(2)) = 0 for n > 0, indeed Čech cohomology guarantees that there are

no everywhere defined forms of degree n > 0.

Let us now consider H1;1
dR (WP1|1

(2)), Čech cohomology tells that there is one everywhere

defined form, which is locally given by dzδ(0)(dθ), that generates the group: this is also

trivially closed for in particular d(δ(n)(dθ)) = 0 (see [56]), so the question is whether

dzδ(0)(dθ) is exact or not. To answer the question one needs to look at H0(Ω0;1

WP1|1
(2)

) = C6.

In this case it is easy to see that

dzδ(0)(dθ) = d(zδ(0)(dθ)) (3.36)

where zδ(0)(dθ) ∈ H0(Ω0;1

WP1|1
(2)

), so the form is exact and one gets H1;1
dR (WP1|1

(2)) = 0.

We now look with some more attention to the de Rham cohomology connected to

Hn;1(WP1|1
(2)) = C4n+6, where n ≤ 0. Let us consider a generic form expanded as it
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belongs to a freely-generated module over OP1 . We have that:

ω = (F0(z) + θF1(z)) δ(n)(dθ) + (G0(z) + θG1(z)) dzδ(n+1)(dθ)

=
(
wn+2F0(1/w) + φwnF1(1/z)

)
δ(n)(dφ)+

+
(
−wn+1G0(1/w) + φ

(
−wn+1F0(1/w)− wn−1G1(1/w)

))
dwδ(n+1)(dφ) (3.37)

where F0, F1, G0, G1 are polynomials. By changing the coordinates to Uw we find that

the form remains everywhere defined if and only if degF0 = n+2, degF1 = n, degG0 =

n+ 1, degG1 = n, where G1 has the constraint that the coefficient of its highest degree

monomial is equal to the coefficient of the highest degree of F0, which indeed yields

a total of 4n + 6 free parameters, as already computed above. So far, this is nothing

but another method to find the zeroth-dimensional Čech cohomology, without using

Grothendieck’s theorem, as done in [56] for the case of P1|1. If on the one hand it is

certainly not efficient - especially as one needs to deal with more than one fermionic

dimension -, it is true that on the other hand, in the context of the de Rham cohomol-

ogy, it has the advantage to make explicit in terms of the coefficients the basis of the

zeroth cohomology group of everywhere defined forms.

However, we stress that a careful analysis of the various pieces involved in the com-

putation carried out by mean of Grothendieck’s theorem would have led to the same

result in term of the basis of the space of everywhere defined forms. Here we opted for

this more rough method as long as the computations are easy-to-follow.

The most interesting group is the zeroth: we find that degF0 = 2, degF1 = 0, degG0 =

1, degG1 = 1, and explicitly, we have

F0(z) = az2 + bz + c, (3.38)

F1(z) = d, (3.39)

G0(z) = ez + f, (3.40)

G1(z) = −a. (3.41)

Gathering together the terms having the same coefficients we find the following basis:

a→ δ(0)(dθ)− θdzδ(1)(dθ), (3.42)

b→ zδ(0)(dθ), (3.43)

c→ z2δ(0)(dθ), (3.44)

d→ θδ(0)(dθ), (3.45)

e→ dzδ(1)(dθ), (3.46)

f → zdzδ(1)(dθ). (3.47)
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Then one can verify that the module of the closed forms is generated by

Z0;1
dR (WP1|1

(2)) =
〈
θδ(0)(dθ), dzδ(1)(dθ), zdzδ(1)(dθ)

〉
OP1

. (3.48)

Actually, the forms dzδ(1)(dθ), zdzδ(1)(dθ) are easily seen to be exact, indeed

dzδ(1)(dθ) = d
(
zδ(1)(dθ)

)
, (3.49)

zdzδ(1)(dθ) = d

(
1

2
z2δ(1)(dθ)

)
, (3.50)

and both the forms on the right-hand side are everywhere defined, that is they are in

H0(Ω−1;1

WP1|1
(2)

). So we conclude that H0;1
dR (WP1|1

(2)) = C and the group is generated by the

closed form θδ(0)(θ).

Writing explicitly the forms, we can see that all the other groups Hn;1
dR (WP1|1

(2)) for n > 0

are trivial: one finds that Zn;1
dR (WP1|1

(2)) is actually non-zero - there are closed forms -,

but Zn;1
dR (WP1|1

(2))
∼= Bn;1

dR (WP1|1
(2)) - all the closed forms are exact and do not contribute

to the de Rham cohomology. Summing up, we have:

hn;m
dR (WP1|1

(2)) =


1 n = 0, m = 0

0 n > 0,m = 0

1 n = 0, m = 1

0 n 6= 0, m = 1.

(3.51)

We now move to the holomorphic de Rham cohomology of P1|2: again, the starting

point will be to look at the forms defined everywhere. By mean of our previous com-

putations in sheaf cohomology of superforms, we see that H0;0
dR (P1|2) = C and it is

generated by the constant function 1 and Hn;0
dR (P1|2) = 0, indeed there are no globally

defined forms.

Let us now consider the case n = 1,m = 2 - corresponding, as observed, to a sort of

top-form -: the relative group is locally generated by the superform dzδ(0)(dθ0)δ(0)(dθ1),

which extends globally: this is certainly closed and moreover, one can easily see it is ex-

act, for d(zδ(0)(dθ0)δ(0)(dθ1)) = dzδ(0)(dθ0)δ(0)(dθ1) and zδ(0)(dθ0)δ(0)(dθ1) ∈ H0(Ω0;2

P1|2).

This tells that H1;2
dR (P1|2) = 0.

We now take on the groups Hn;2
dR (P1|2) for n ≤ 0. The most interesting case is given by

H0;2
dR (P1|2): the relative Čech cohomology group has dimension 16 and we will study it

carefully. We should be considering forms of the kind

ω =(F0(z) + F1(z)θ0 + F2(z)θ1 + F3(z)θ0θ1)δ(0)(dθ0)δ(0)(dθ1)+

(G0(z) +G1(z)θ0 +G2(z)θ1 +G3(z)θ0θ1)dzδ(0)(dθ1)δ(1)(dθ1)+

(H0(z) +H1(z)θ0 +H2(z)θ1 +H3(z)θ0θ1)dzδ(1)(dθ1)δ(0)(dθ1),
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where the F ’s, G’s and H’s are all polynomials, whose degree is identified as above, by

studying whenever the form remains defined everywhere under a change of local chart,

from Uz to Uw.

There are 10 closed forms:

Z0;2
dR (P1|2) =

〈
δ(0)(dθ0)δ(0)(dθ1), θ0dzδ

(0)(dθ0)δ(1)(dθ1), θ1dzδ
(1)(dθ0)δ(0)(dθ2),

θ0δ
(0)(dθ0)δ(0)(dθ1), θ0δ

(0)(dθ0)δ(0)(dθ1), zdzδ(0)(dθ0)δ(1)(dθ1),

dzδ(0)(dθ0)δ(1)(dθ1), zdzδ(1)(dθ0)δ(0)(dθ1), dzδ(1)(dθ0)δ(0)(dθ1),

θ1θ2δ
(0)(dθ0)δ(0)(dθ1)

〉
OP1

.

The only closed form that it is not exact is given by θ0θ1δ
(0)(dθ0)δ(0)(dθ1), which is

therefore a generator for the group H0:2
dR (P1|2) = C.

Indeed, let us consider for example the closed form dzδ(1)(dθ0)δ(0)(dθ1), one has:

dzδ(1)(dθ0)δ(0)(dθ1) = d(−θ1dzδ
(1)(dθ0)δ(1)(dθ1)), (3.52)

remembering that dθ1δ
(1)(dθ1) = −δ(0)(dθ1).

As in the case of the weighted projective super space, going on in the negative degree,

one finds that the closed forms are all exact, and we have Hn;2
dR (P1|2) = 0 for n ≤ −1.

This is to be connected, at the end of the day, to the dimension of the space H0(Ωn;2

P1|2)

for n ≤ −1, and again in turns to the transformation properties of the integral forms,

which allow for a huge space of globally defined forms.

We now consider the space of everywhere defined forms having picture number

equal to 1, which is somehow the most sensitive one, for as we have seen above, it

yielded an infinite dimensional sheaf cohomology. Before going on, we recall that Ωn≥0;1

P1|2

is infinitely generated as locally free sheaf, and its generators read

Ωn≥0;1

P1|2 (Uz) =
〈
{δ(i)(dθ0)dθn+i

1 }i∈N, dz{δ(i+1)(dθ0)dθn+i
1 }i∈N,

{δ(i)(dθ1)dθn+i
0 }i∈N, dz{δ(i+1)(dθ1)dθn+i

0 }i∈N
〉
OP1|2(Uz)

. (3.53)

The factorisation is ⊕
i∈N

(
O⊕8

P1 (−n− 1)⊕O⊕8
P1 (−n)

)
. (3.54)

First thing to observe is therefore that there are no globally defined forms for n > 0!

It follows that the de Rham cohomology is Hn>0;1
dR (P1|2) = 0.

All the other modules, for n ≤ 0 gives an infinite dimensional zeroth (Čech) cohomology
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group.

We start analysing, as usual, the n = 0 module. Since the generators read

Ω0;1

P1|2(Uz) =
〈
{δ(i)(dθ0)dθi1}i∈N, dz{δ(i+1)(dθ0)dθi1}i∈N,
{δ(i)(dθ1)dθi0}i∈N, dz{δ(i+1)(dθ1)dθi0}i∈N

〉
OP1|2(Uz)

, (3.55)

we can just deal with the first two block, and the other ones are symmetric up to the

exchange θ0 ↔ θ1.

For the sake of convenience, let us consider separately the case i = 0 and i > 0, for

some attention is requested as one deals with i = 0 in the transformations.

In this case, i = 0, one has:

ω =(F0(z) + θ0F1(z) + θ1F2(z) + θ0θ1F3(z))δ(0)(dθ0)+ (3.56)

(G0(z) + θ0G1(z) + θ1G2(z) + θ0θ1G3(z))dzδ(1)(dθ0). (3.57)

From Čech cohomology computation we expect 4 free parameters that yield:

H0(Ω0;1

P1|2)bi=0=
〈
zδ(0)(dθ0)− dzδ(1)(dθ0), δ(0)(dθ0), θ0δ

(0)(dθ0), dzδ(1)(dθ0)
〉
. (3.58)

The last three forms are closed, but only θ0δ
(0)(dθ0) is not exact, indeed

δ(0)(dθ0) = d(−θ0δ
(1)(dθ0)) dzδ(1)(dθ0) = d(zδ(1)(dθ0)) (3.59)

and −θ0δ
(1)(dθ0), zδ(1)(dθ0) are globally defined. Analogously, we have that θ1δ

(0)(dθ1)

is closed and not exact, therefore it is non-zero in the quotient.

In the case i 6= 0 one is led to consider the transformation of

ω = (F0(z) + F1(z)θ0 + F2(z)θ1 + F3(z)θ0θ1) δ(i)(dθ0)dθi1+ (3.60)

(G0(z) +G1(z)θ0 +G2(z)θ1 +G3(z)θ0θ1) dzδ(i+1)(dθ0)dθi1. (3.61)

One has:

H0(Ω0;1

P1|2)bi 6=0=
〈
zδ(i)(dθ0)dθi1 + θ1dzδ

(i+1)(dθ0)dθi1 + θ2dzδ
(i)(dθ0)dθi−1

1 , δ(i)(dθ0)dθi1,

θ0δ
(0)(dθ0)dθi1 + θ1δ

(i−1)(dθ0)dθi−1
1 , dzδ(i+1)(dθ0)dθi1

〉
. (3.62)

It can be seen that δ(i)(dθ0)dθi1 and dzδ(i+1)(dθ0)dθi1 are closed forms for every i ≥ 1,

but they are also exact, for

δ(i)(dθ0)dθi1 = d(−θ0δ
(i+1)(dθ0)dθi1), dzδ(i+1)(dθ0)dθi1 = d(zδ(i+1)(dθ0)dθi1),
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so there is no contribution to the cohomology.

This applies at each n < 0, so there are no closed and not exact forms, and the complete

holomorphic de Rham cohomology of P1|2 reads

hn;m
dR (P1|2) =



1 n = 0, m = 0,

0 n > 0,m = 0,

2 n = 0, m = 1,

0 n 6= 0, m = 1,

1 n = 0, m = 2,

0 n 6= 0, m = 2.

(3.63)

The generators of the non-trivial groups are

H0;0
dR (P1|2) =

〈
1
〉
OP1

, (3.64)

H0;1
dR (P1|2) =

〈
θ1δ

(0)(dθ1), θ2δ
(0)(dθ2)

〉
OP1

, (3.65)

H0;2
dR (P1|2) =

〈
θ1θ2δ

(0)(dθ1)δ(0)(dθ2)
〉
OP1

. (3.66)

As anticipated above, this is an interesting result, for it shows that the oddity con-

nected to an infinite-dimensional Čech cohomology, is cured at the level of the de

Rham cohomology, which is what really matters from the physical point of view, since

it is connected to the physical observables and it enters the evaluation of correlation

functions [83]. We expect this kind of behaviour to be characteristic for supermanifolds

having more than one fermionic dimension.

3.4 The complete de Rham cohomology of Pn|mPn|mPn|m

For the sake of completeness and for future reference we write down the whole holo-

morphic and real de Rham cohomology for general projective superspaces Pn|m. This

can be computed by using the same tedious direct method as above (see also [56]).

In the holomorphic case one gets (notice that for j = 0, i cannot be negative)

H i;j
dR(Pn|m) =

{
C(mj ) i = 0, j = 0, . . . ,m,

0 i 6= 0, j = 0, . . . ,m.
(3.67)

In the real case one gets instead

H i;j
dR(Pn|m) =

{
R(mj ) i = 2k, k = 0, . . . , n, j = 0, . . . ,m,

0 i = 2k + 1, k = 0, . . . , n− 1, j = 0, . . . ,m.
(3.68)

The generators in the holomorphic case are given by a straightforward generalisation

of the case P1|2 displayed above. In the real case they are

ωk,Ij
..= ∧kωFS ⊗

∧
`∈Ij

θ`δ(dθ`) (3.69)
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where Ij ⊆ {0, 1, . . . ,m} has cardinality j, and ωFS is the ordinary Fubini-Study form.

3.5 Automorphisms and Deformations of P1|mP1|mP1|m

The method we developed to compute the cohomology of projective super spaces over

P1 easily allows also to evaluate the cohomology of the super tangent space.

Computing the super Jacobian of the change of coordinates, we get

∂z = −w2∂w − w
n∑
i=1

φi∂φi (3.70)

∂θi = w∂φi (3.71)

for i = 1, . . .m. The super tangent sheaf is locally generated by the following elements:

TP1|nUz =
〈
∂z, {θJ∂z}J=(j1,...,jm), {∂θi}i=1,...,m, {θJ∂θi}

i=1,...,m
J=(j1,...,jm)

〉
OP1 (Uz)

(3.72)

where J = (j1, . . . , jm) is a multi-index such that |J | = 1, . . . ,m and ji = {0, 1}. For

example, we can have elements like this: θ1θ3∂z = θJ=(1,0,1,0...,0)∂z. Notice there are a

total of (m+ 1) · 2m generators.

These have the following transformation rules:

∂z = −w2∂w − w
m∑
i=1

φi∂φi

θJ∂z =

(
1

w

)|J |−1

φJ

(
−w∂w −

m∑
i=1

φi∂φi

)
∂θi = w∂φi

θJ∂θi =

(
1

w

)|J |−1

φJ∂φi , (3.73)

where we stress that, depending on J , many terms might be zero in the transformation

of θJ∂z, namely all the terms in the sum over i such that i ∈ J .

Using Grothendieck’s theorem as above, one can compute the zeroth cohomology group

of the tangent sheaf, whose dimension is:

h0(TP1|m) = (m+ 2)2 − 1 + δm,2. (3.74)

Notice that (m+2)2−1 is just the number of generators of the Lie algebra associated to

the super group PGL(2|m), which is the supersymmetric generalisation of the ordinary

Möbius group PGL(2,C), the automorphisms group of the projective line P1.
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It is worth to notice the presence of the “correction” δn,2, which, incidentally, makes its

appearance in the case of the super CY variety P1|2. This correspond to the presence

of a further global vector field, (locally) given by θ1θ2∂z ∈ H0(TP1|2), which clearly does

not belong to sl(2|2), the Lie algebra of PGL(2|2), as already noticed in [13] and more

recently in [72].

Integrating this global vector field, we get the “finite” version of the automorphism

ψ : P1|2 → P1|2, which is what is called a “bosonisation” in physics; locally it is given

by:

ψbUz : (z, θ1, θ2) 7−→ (z + θ1θ2, θ1, θ2), (3.75)

ψbUw : (w, φ1, φ2) 7−→ (w − φ1φ2, φ1, φ2). (3.76)

Before we go on, it is important to stress that among all the projective super spaces

Pn|m - not only among P1|m! -, the case of P1|2 represents, remarkably, the unique

exception: indeed, it is the only case in which the automorphism group is larger than

PGL(n+ 1|m,C),4 unlike to what stated in [72]. For reduced dimension 1 this excep-

tion has been first observed in [13], page 41.

This and other issues will be the subject of a forthcoming paper, where different meth-

ods to compute the cohomology of projective super spaces in a more general setting

will be introduced and discussed.

As for the deformations, given by h1(TP1|m), one finds

h1(TP1|m) = (m+ 2)
[
(m+ 2) + (m− 4)2m−1

]
− (m− 2)2m−1 − 1. (3.77)

We can see therefore that P1|1, together with P1|3 and the super CY variety P1|2 are

rigid as they have no deformations, while in the case m ≥ 4, we start finding a non-zero

h1(TP1|m). For instance, for m = 4 we find h1(TP1|4) = 19. We leave to future works a

careful investigation of the structure of these deformations.

4 A Super Mirror Map for SCY in Reduced Dimension 111

In [80] has been suggested that the puzzle of mirror of rigid (ordinary) CY manifolds

could be solved by enlarging the category of interest to mirror symmetry as to include

also super manifolds, in particular SCY manifolds. Later on, triggered by the pre-

vious [93] and [87], Aganagic and Vafa proposed a path integral argument to obtain

the mirror of Calabi-Yau supermanifolds as super Landau-Ginzburg theories [86]: the

construction is exploited to compute the mirror of SCY manifolds in toric varieties and

4the bosonic reduction of PGL(n + 1|m)
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in particular to compute the mirror of the “twistorial” (actually super) Calabi-Yau P3|4

[87]. Remarkably, after a suitable limit of the Kälher parameter t, the mirror has a

geometric interpretation: it is a quadric in the product space P3|3×P3|3 and it is again

a SCY manifold.

Being us interested into enlarging the mirror symmetry map for elliptic curves to

a supersymmetric context, here we will apply the construction of [86] in the case of

bosonic dimension equal to 1 and reduced manifold given by P1, that is to the two

SCY’s P1|2 and WP1|1
(2). In doing that, in contrast with [86], we will not need to take

any limit of the Kähler parameter: a further geometric investigation carried out by

some suitable change of coordinates, shows that P1|2 is actually self-mirror and it is

mapped to itself. The mirror of the weighted projective super space WP1|1
(2) instead is

not a geometry.

Before we go into the actual computation, we underline that a further, mathematically

oriented, analysis needs to be carried out. Despite the effort in [86], many issues remain

indeed not that clear, such as for example the role of the Kähler parameter t. It is

indeed a matter of question how to define mathematically and in full generality a super

analog of the ordinary Kähler condition in the supersymmetric context and therefore

how to identify a super Kähler variety.

4.1 Mirror Construction for P1|2P1|2P1|2

Following [86], we construct the dual of the LG model associated to P1|2: it turns out

this is given by a σ-model on a super Calabi-Yau variety in P1|1 × P1|1, which is again

a SCY variety given by P1|2. In other words, P1|2 gets mapped to itself!

We will focus on the holomorphic part of the potential, where XI , YI for I = 0, 1 are

bosonic/even super fields and ηI , χI for I = 0, 1 are fermionic/odd super fields (that

is, the lowest component of their expansion is a bosonic field and a fermionic field

respectively), while t is the Kähler parameter, mentioned above. This is given by

WP1|2(X, Y, η, ξ) =

∫ 1∏
I=0

DYIDXIDηIDχIδ

(
1∑
I=0

(YI −XI)− t

)

· exp

{
1∑
I=0

e−YI + e−XI + e−XIηIχI

}
.

By a field redefinition,

X1 = X̂1 + Y0, Y1 = Ŷ1 + Y0, (4.1)
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the path-integral above takes the following form

∫
DY0DX0DŶ1DX̂1

1∏
I=0

DηIDχIδ (Y0 −X0 + Y1 −X1 − t)

· exp
{
e−Y0 + e−X0 + e−Ŷ1−Y0 + e−X̂1−Y0 + e−X0η0χ0 + η1χ1e

−X̂1−Y0

}
.

Integrating in X0, the delta imposes the following constraint on the bosonic fields:

X0 = Y0 + (Y1 −X1)− t. (4.2)

Plugging this inside the previous path integral one gets

∫
DY0DŶ1DX̂1

1∏
I=0

DηIDχI exp
{
e−Y0 + e−Y0−(Y1−X1)+t + e−Ŷ1−Y0 + e−X̂1−Y0

}
· exp

{
e−Y0−(Y1−X1)+tη0χ0 + η1χ1e

−X̂1−Y0

}
.

We now perform the fermionic Dη0Dχ0 integration. We have that∫
Dη0Dχ0 exp

{
e−Y0−(Y1−X1)+tη0χ0

}
=

=

∫
Dη0Dχ0e

−Y0−(Y1−X1)+t (1 + η0χ0) = −e−Y0−(Y1−X1)+t. (4.3)

Therefore one gets,

−
∫
DY0DŶ1DX̂1Dη1Dχ1e

−Y0−(Y1−X1)+t

· exp
{
e−Y0

(
1 + e−(Y1−X1)+t + e−Ŷ1 + e−X̂1 + η1χ1e

−X̂1

)}
.

Now, e−Y0 might be interpreted as a multiplier, and we change coordinates to

e−Y0 = Λ, DY0 = −Λ−1DΛ, (4.4)

therefore the integral reads∫
Λ−1DΛDŶ1DX̂1Dη1Dχ1Λe−(Y1−X1)+t

· exp
{

Λ
(

1 + e−(Y1−X1)+t + e−Ŷ1 + e−X̂1 + η1χ1e
−X̂1

)}
.
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Finally, we change coordinates by redefining the fields as

e−X̂1 = x1, DX̂1 = −Dx1

x1

, (4.5)

e−Ŷ1 = x1y1, DŶ1 = −Dy1

y1

, (4.6)

η1 =
η̃1

x1

, Dη = x1Dη̃. (4.7)

Notice that the Berezinian enters the transformation of the measure! This brings the

path-integral in the following form

WP1|2 =

∫
DΛ
Dy1

y1

Dx1

x1

(x1Dη̃1)Dχ1

(
y1e

t
)

exp
{

Λ
(
1 + ety1 + x1 + x1y1 + η̃1χ1

)}
=

∫
DΛDy1Dx1Dη̃1Dχ1e

t exp
{

Λ
(
1 + ety1 + x1 + x1y1 + η̃1χ1

)}
. (4.8)

We can actually throw the factor et, which is not integrated over, in the normalisation

and perform the integration over the Lagrange multiplier Λ, that constraints the theory

on the following hypersurface

1 + x1 + x1y1 + η̃χ+ ety1 = 0. (4.9)

By redefining the field ỹ1 = 1 + y1 we obtain the more symmetric form

1 + x1ỹ1 + η̃χ+ et(ỹ1 − 1) = 0. (4.10)

Putting the equation in homogeneous form, we have

P1|1 × P1|1 ⊃ X0Ỹ0 +X1Ỹ1 + η̃χ+ et(X0Ỹ1 −X0Ỹ0) = 0. (4.11)

This is a quadric, call it Q, in P1|1 × P1|1, with homogeneous coordinates [X0 : X1 : η̃]

and [Ỹ0 : Ỹ1 : χ] respectively, and it is a super Calabi-Yau manifold. In the following we

will drop the tildes and we just call the homogenous coordinates of the super projective

spaces [X0 : X1 : η] ≡ [X0 : X1 : η̃] and [Y0 : Y1 : η] ≡ [Ỹ0 : Ỹ1 : χ]. We now re-write the

equation for Q in the following form:

X0((1− et)Y0 + etY1) +X1Y1 + ηχ = 0. (4.12)

If we set

`(Y0, Y1) ..= (1− et)Y0 + etY1 (4.13)
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it is not hard to see that the reduced part Qred in P1 × P1 is obtained just by putting

the odd coordinates to zero, as

P1 × P1 ⊃ X0 `(Y0, Y1) +X1Y1 = 0 (4.14)

and one can see that Qred ∼= P1.

We are now interested into fully identifying Q as a known variety: we observe that as

embedded into P1|1×P1|1, it is covered by the cartesian product of the usual four open

sets:

U0 × V0 = {[X0 : X1 : η] : X0 6= 0} × {[Y0 : Y1 : χ] : Y0 6= 0}, (4.15)

U0 × V1 = {[X0 : X1 : η] : X0 6= 0} × {[Y0 : Y1 : χ] : Y1 6= 0}, (4.16)

U1 × V0 = {[X0 : X1 : η] : X1 6= 0} × {[Y0 : Y1 : χ] : Y0 6= 0}, (4.17)

U1 × V1 = {[X0 : X1 : η] : X1 6= 0} × {[Y0 : Y1 : χ] : Y1 6= 0}. (4.18)

Notice that so far we need all of the four open sets to cover Q, for indeed:

Qred ∩ {X0 = 0} = [0 : 1]× [1 : 0] ∈ U1 × V0, (4.19)

Qred ∩ {X1 = 0} = [1 : 0]× [1 : 1− e−t] ∈ U0 × V0, (4.20)

Qred ∩ {Y0 = 0} = [1 : −et]× [0 : 1] ∈ U0 × V1, (4.21)

Qred ∩ {X0 = X1 = 1} = [1 : 1]× [et + 1 : et − 1] ∈ U1 × V1. (4.22)

We aim to find a suitable change of coordinates that allow us to use just two open sets.

Let us now change coordinates to

Y ′0
..= `(Y0, Y1), Y ′1

..= Y1, (4.23)

X ′0
..= X0, X ′1

..= X1, (4.24)

η′ ..= η, χ′ ..= χ, (4.25)

so that the equation for Q becomes

X ′0Y
′

0 +X ′1Y
′

1 + η′χ′ = 0. (4.26)

Now, changing again the coordinates, by exchanging Y ′0 with Y ′1 , and dropping the

primes for convenience, we get the following equation for Q

X0Y1 +X1Y0 + ηχ = 0. (4.27)

It is clear that

Qred ∩ {X0 = 0} = Qred ∩ {Y0 = 0} = [0 : 1]× [0 : 1] ∈ U1 × V1, (4.28)

Qred ∩ {X1 = 0} = Qred ∩ {Y1 = 0} = [1 : 0]× [1 : 0] ∈ U0 × V0. (4.29)
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Therefore, this change of coordinates allows us to cover Q by just two open sets:

UQ ..= Q∩ (U0 × V0), (4.30)

VQ ..= Q∩ (U1 × V1), (4.31)

we can therefore choose the following (affine) coordinates:

UQ : z ..=
X1

X0

, u ..=
Y1

Y0

, θ0
..=

η

X0

, θ1
..=

χ

Y0

, (4.32)

VQ : w ..=
X0

X1

, v ..=
Y0

Y1

, φ0
..= − η

X1

, φ1
..=

χ

Y1

. (4.33)

Upon using these affine coordinates, we get the following two affine equation for Q of

UQ and VQ respectively:

UQ : z + u+ θ0θ1 = 0, (4.34)

VQ : w + v − φ0φ1 = 0, (4.35)

which describe lines in C2|2. We notice that this two equations are glued together using

the relations

w =
1

z
, v =

1

u
, (4.36)

φ0 = −wθ0, φ1 = vθ1. (4.37)

We now would like to characterise the variety Q by its transition functions in order to

identify it with a well-known one. By the previous equation, we may take as proper

bosonic coordinates u and v, as

z = −u− θ0θ1, (4.38)

w = −v + φ0φ1. (4.39)

We already know that v = 1
u

and φ1 = θ1
u

, so we still have to deal with φ0 :

φ0 = −θ0

z
=

θ0

u+ θ0θ1

=
θ0(u− θ0θ1)

(u+ θ0θ1)(u− θ0θ1)
=
θ0u

u2
=
θ0

u
, (4.40)

which tells that the variety Q ⊂ P1 × P1 is actually nothing but P1|2.

This shows that the super mirror map proposed by Vafa and Aganagic makes the

supermanifold P1|2 self-mirror, actually it is mapped to itself. This goes along well

with what happens in the case of elliptic curves: an elliptic curve is mirror of another

elliptic curve.
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4.2 P1|2P1|2P1|2 as a N = 2N = 2N = 2 Super Riemann Surface

We recall that a N = 2 super Riemann surface is, by definition, a 1|2 complex su-

permanifold M such that the super tangent sheaf TM has two 0|1 subbundles D1 and

D2, locally generated by vector fields D1, D2 that are integrable, i.e. D2
i = fDi for

some odd function, and D1 ⊗ D2,D1,D2 generate TM at any point. The reader may

look into [81] and [50] for details and the more recent articles [82] and [83] for further

developments and some physical interpretations.

We now show that P1|2 is indeed a N = 2 super Riemann surface. In order to find

the needed 0|1 line bundles D1 and D2 we adopt the method envisaged in [50] on page

107, that is we find two maps p1 : P1|2 → X1 and p2 : P1|2 → X2, with X1, X2 two

suitable 1|1 supermanifolds, and will define Di as the sheaf kernel of the differential

dpi : TP1|2 → p∗iTXi . These two maps are immediately available from the model of P1|2

contained in P1|1×P1|1 found in the previous section, when we computed the mirror of

P1|2. Indeed we can set X1 = X2 = P1|1 and the map pi equal to the restriction of the

i-th projection πi : P1|1 × P1|1 → P1|1 to P1|2. To give explicit local calculations of the

vector fields D1, D2 that generate the line bundles D1,D2 and to show that they have

all the required properties, we can use the equations (4.34) and (4.35) of the open sets

UQ and VQ as sub-supermanifolds of A2|2. For example from the equation

z + u+ θ0θ1 = 0

in the open affine A2|2 ⊂ P1|1 × P1|1 with coordinates z, u, θ0, θ1, we see that

p1(z, u, θ0, θ1) = (z, θ0) (4.41)

p2(z, u, θ0, θ1) = (u, θ1). (4.42)

Then D1 has sections given by those vector fields α∂z +β∂u + γ∂θ0 + δ∂θ1 that evaluate

to 0 on the elements z, θ0, z + u + θ0θ1. Then α = γ = 0 and β = δθ0. They are the

multiples of

D1 = ∂θ1 + θ0∂u.

Similarly one finds that the vector field

D2 = ∂θ0 − θ1∂z

generates all the vector fields on UQ that vanish on u, θ1, z + u+ θ0θ1. Since D1 and

D2 vanish on z + u + θ0θ1, they are tangent vector fields on UQ that by construction

generate the kernels D1 and D2 of the differentials dp1 and dp2. The reader can easily

check that D2
1 = D2

2 = 0 and that

{D1, D2} = D1D2 +D2D1 = ∂u − ∂z
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and this latter is equal to ∂u when evaluated on an element of OUQ . As u is a bosonic

coordinate for UQ, we see that {D1, D2}, D1, D2 generate TP1|2 at any point of UQ.

Similar formulas are obtained for the open VQ.

4.3 Mirror Construction for WP1|1
(2)

WP1|1
(2)WP1|1
(2)

In the case of weighted projective super space, we need to evaluate the following po-

tential in order to find the dual theory:

WWCP1|1
(1,1|2)

=

∫
(DY1DY2)DXDηDχδ (Y1 + Y2 − 2X − t)

· exp
{
e−Y1 + e−Y2 + e−X(1 + ηχ)

}
. (4.43)

Performing the integration in the fermionic variables, yields

WWCP1|1
(1,1|2)

=

∫
(DY1DY2)DXe−Xδ (Y1 + Y2 − 2X − t)

· exp
{
e−Y1 + e−Y2 + e−X

}
. (4.44)

Now we can integrate the field X. Up to factors to throw away in the normalisation,

the delta gives:

WWCP1|1
(1,1|2)

=

∫
(DY1DY2)e−Y1/2−Y2/2 exp

{
e−Y1 + e−Y2 + e−Y1/2−Y2/2+t/2

}
. (4.45)

We then define the new variables

yi = e−Yi/2, i = 1, 2. (4.46)

The measure changes as follows −1
2
y−1
i Dyi = DYi, therefore, up to factors in the

normalisation one gets:

WWCP1|1
(1,1|2)

=

∫
(Dy1Dy2) exp

{
y2

1 + y2
2 + et/2y1y2

}
. (4.47)

We therefore see that in the case of WP1|1
(2) we do not get directly a geometry. However,

we can further introduce the new variables λ and x defined by

y1 = y2x, y2
2 = λ, (4.48)

so that, omitting an inessential constant factor, we get

WWCP1|1
(1,1|2)

=

∫
(DxDλ) exp

{
λ
(
x2 + 1 + et/2x

)}
. (4.49)

Thus, λ is a multiplier and the geometric phase reduces to two points parametrized by

t. This is a zero dimensional bosonic model in accordance with the results of Schwarz

[84].
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5 Conclusions

In the present paper we have investigated some basic questions about super Calabi-

Yau varieties (SCY’s). We have introduced a very general definition of a SCY, which

contains a large class of varieties, including the usual Calabi-Yau manifolds and several

projective super spaces. We then restricted our analysis to the SCY with complex

bosonic dimension 1, proving that - beyond the usual elliptic curves - it contains the

class of N = 2 SRS’s and the projective super spaces P1|2 and WP1|1
(2). As a byproduct

of the mirror map construction, we realised at the very end that P1|2 is indeed a N = 2

SRS: this provides a concrete realisation of a N = 2 SRS by a map - the mirror map

- into the cartesian product of two copies of P1|1. A comment is in order here. In the

present paper we have referred to [50] for the definition of N = 2 SRS: in this case the

proof of triviality of the Berezinian bundle is given in [82]. Nevertheless there exists a

more general definition of N = 2 SRS given in [81]. To our best knowledge, it is not

completely obvious that the two definitions do actually coincide: indeed the definition

of N = 2 SRS in [81] includes the definition in [50] and, as a consequence, this should

imply that all the N = 2 SRS’s in [50][82][83] are holomorphically split. Still, we feel

like this topic deserve some more study.

Next, we have computed the super cohomology groups, which include integral forms,

showing that for extended supersymmetric varieties a puzzle arises: when the picture

number is not maximal nor vanishing, then the corresponding Čech cohomology groups

are infinitely generated. Surely, this result will deserve a much deeper investigation; for

instance, it would be interesting to understand if it enjoys a geometrical interpretation.

Anyway, remarkably, we have shown that this sort of pathology is cured whenever

one considers the de Rham cohomology of superforms, which is always finite, even

when the corresponding group in Čech cohomology is infinite-dimensional. The same

phenomenon occurs in arbitrary dimension n|m as we have seen by explicitly computing

the de Rham cohomology of Pn|m. The computation of the sheaf cohomology also

allowed us to determine the automorphisms of P1|2 and WP1|1
(2), which, on the other hand,

are rigid manifolds. It is interesting to note that for SCY with fermionic dimension

larger than 1, the automorphism supergroup is larger than the superprojective group.

A more systematic analysis of the automorphism group will be presented in a deserved

paper. Finally, we have applied the mirror map defined in [86], showing that P1|2 is self-

mirror (and, indeed, mapped to itself), whereas WP1|1
(2) is mapped to a zero dimensional

bosonic model.

Even though we have chosen to work with an apparently elementary example, we see

that highly non trivial aspects appear and some questions remains unsatisfied. For

example, we have not been able to provide a suitable definition of Kähler structure (or
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Kähler moduli space) for SCY varieties. On one hand, SCY’s of bosonic dimension

n = 1 having P1 as reduced space, are simple enough in order to allow a complete

analysis and shed some light on new interesting properties of supermanifolds; on the

other hand, they are too simple for providing a rich list of examples hinting to suitable

solutions to the unanswered questions. The natural prosecution would then be to

include properly the whole class of N = 2 super Riemann surfaces, that are indeed

SCY’s having bosonic dimension 1, and, more interestingly, to analyse SCY’s with

bosonic dimension 2, that is super K3 varieties.

Despite the results discussed above, we still cannot take our definition of SCY manifold

as a definitive one. At the moment, indeed, the triviality of the Berezinian bundle

alone appears as a provisional condition, maybe allowing for too many varieties to

enter the class. From this point of view, our definition might be considered as a pre-

SCY condition. In this context, one might wonder whether the existence of a Ricci-flat

metric is a natural condition to add, but in some meaningful example, such as WP1|1
(2),

it does not even exist. This may suggest that Ricci-flatness is not the natural condition

to add to the triviality of the Berezinian bundle. These and other topics are currently

under investigation.

Acknowledgments

SN would like to thank Ron Donagi for having suggested this stimulating research

topic. SN and SLC would like to thank Gilberto Bini and Bert van Geemen for valuable

discussions.

AM and RR would like to thank the Department of Science and High Technology,
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A Super Fubini-Study Metric and Ricci Flatness of P1|2P1|2P1|2

We take on the computation of the super Ricci tensor for P1|2 starting from the local

form, say in Uz, of the Kähler potential, given by

Ks = log(1 + zz̄ + θ1θ̄1 + θ2θ̄2). (A.1)

This can of course be expanded in power of the anticommuting variables as in [80], but

it is not strictly necessary to our end.

In the following we will adopt this convention: we use latin letters i, j, . . . for bosonic

indices, Greek letters α, β, . . . for fermionic indices and capital Latin letters A,B, . . .

will gather both of them. The convention on the unbarred and barred indices goes as

usual.

The holomorphic and anti-holomorphic super derivatives are defined as follows (in the

local patch):

∂ ..= ∂zdz + ∂θαdθα, ∂̄ ..= ∂z̄dz̄ + ∂θ̄ᾱdθ̄ᾱ, (A.2)

where α, ᾱ = 1, 2: in other words we have ∂ ..= ∂AdX
A and ∂̄ ..= ∂ĀdX̄

Ā with

dXA = (dz|dθ1, dθ2) and dX̄Ā = (dz̄|dθ̄1, dθ̄2). It is important to stress that while the

holomorphic derivative ∂ acts as usual from the left to the right, the anti-holomorphic

derivative ∂̄ acts from the right to the left instead (even if it is written on left of the

function acted on). We also stress that ∂ and ∂̄ behave as a standard exterior derivative

d on forms. As such the derivatives “do not talk” at all with the forms and only acts

on functions, while the forms in ∂ or ∂̄ are moved to the right and in turn do not talk

to the functions acted by the derivatives. This means that, for example, considering

the local expression for a (holomorphic) 1-form acted on by ∂, we will find:

∂(f(z|θ1, θ1)dθ1) = (∂Bf(z|θ1, θ1))dXBdθ1. (A.3)

Coherently, we will never consider expression of the kind dXBf(z|θ)dθ1, so that we will

never have to commute or anti-commute a form with a function to get ±f(z|θ)dXBdθ1:

forms and functions just don’t talk to each other and the form in ∂ and ∂̄ are moved

the right.

We now define the super Kähler form as

Ωs ..= ∂∂̄Ks or analogously Ωs = ∂A∂B̄K
sdXAdX̄B̄. (A.4)

The super metric tensor Hs
AB̄

can then be red out of it, similarly to the ordinary complex

geometric case:

Hs
AB̄ = ∂A∂B̄K

s. (A.5)
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We now deal with the derivative of the super Kähler potential Ks. Remembering that

∂B̄ acts from the right, it is straightforward to check that:

∂B̄K
s = ∂B̄ log(1 + zz̄ + θ1θ̄1 + θ2θ̄2) =

zdz̄ + θ1dθ̄1 + θ2dθ̄2

1 + zz̄ + θ1θ̄1 + θ2θ̄2

. (A.6)

We now have a product of functions: since we are dealing with anti-commuting objects

we need to make a careful use of the generalized Leibniz rule

∂(f · g) = (∂f) · g + (−1)|∂||f |f · (∂g). (A.7)

We will put f ..= zdz̄ + θ1dθ̄1 + θ2dθ̄2 and g ..= 1/(1 + zz̄ + θ1θ̄1 + θ2θ̄2) in the following

computation.

While the first bit of the ∂ derivative is pretty straightforward and simply gives

(∂f) · g =
1

1 + zz̄ + θ1θ̄1 + θ2θ̄2

(
dzdz̄ + dθ1dθ̄1 + dθ2dθ̄2

)
, (A.8)

the second contribution need some extra care: to avoid errors, we may split the deriva-

tives in ∂ by linearity, bearing in mind the non-trivial commutation relation in the

generalised Leibniz rule above.

We have the following contribution from (−1)|∂||f |f · (∂g):

∂z

(
z

1 + |z|2 + θ2

)
dzdz̄ + ∂z

(
θ1

1 + |z|2 + θ2

)
dzdθ̄1 + ∂z

(
θ2

1 + |z|2 + θ2

)
dzdθ̄2

=
−|z|2dzdz̄ − θ1z̄dzdθ̄1 − θ2z̄dzdθ̄2

(1 + |z|2 + θ2)2 (A.9)

where we have written θ2 ..= θ1θ̄1 + θ2θ̄2. Notice, incidentally that the minus signs

above do not come from the commutation relation, but just from the derivative: the

commutation relation gives contribution when ∂θi is involved

∂θ1

(
z

1 + |z|2 + θ2

)
dθ1dz̄ + ∂θ1

(
θ1

1 + |z|2 + θ2

)
dθ1dθ̄1 + ∂θ1

(
θ2

1 + |z|2 + θ2

)
dθ1dθ̄2

=
−zθ1dθ1dz̄ + θ1θ̄1dθ1dθ̄1 + θ2θ̄1dθ1dθ̄2

(1 + |z|2 + θ2)2 , (A.10)

∂θ2

(
z

1 + |z|2 + θ2

)
dθ2dz̄ + ∂θ2

(
θ1

1 + |z|2 + θ2

)
dθ2dθ̄1 + ∂θ2

(
θ2

1 + |z|2 + θ2

)
dθ2dθ̄2
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=
−zθ2dθ2dz̄ + θ2θ̄1dθ2dθ̄1 + θ2θ̄2dθ2dθ̄2

(1 + |z|2 + θ2)2 . (A.11)

Putting together all the pieces we have:

∂∂̄Ks =
1

(1 + |z|2 + θ2)2

[
(1 + θ2)dzdz̄ + (1 + |z|2 + 2θ1θ̄1 + θ2θ̄2)dθ1dθ̄1+

+ (1 + |z|2 + θ1θ̄1 + 2θ2θ̄2)dθ2dθ̄2 − θ1z̄dzdθ1+

− θ2z̄dzdθ2 − zθ̄1dθ1dz̄ − zθ̄2dθ2dz̄ + θ2θ̄1dθ1dθ̄2 + θ1θ2dθ2dθ̄1

]
,

so the supermetric reads

Hs
AB̄ =


1 + θ2 −θ1z̄ −θ2z̄

−zθ̄1 1 + |z|2 + 2θ1θ̄1 + θ2θ̄2 θ2θ̄1

−zθ̄2 θ1θ̄2 1 + |z|2 + θ1θ̄1 + 2θ2θ̄2

 . (A.12)

Using the metric one can generalise the expression for the Ricci tensor one has in

ordinary complex geometry, by substituting the determinant with the Berezinian:

RicAB̄ = ∂A∂B̄ log (BerHs) . (A.13)

So the first thing we need to evaluate to prove the (super) Ricci flatness of P1|2 is the

Berezinian of the super metric above.

We recall that in general, considering a generic square matrix X valued in a super

commutative ring, we have

Ber(X) = det(A) det(D − CA−1B) (A.14)

where A,B,C,D are the blocks as enlightened above. Notice that A and D are even

while B and C are odd.

We underline that in our case, to make sense out of the expression above we have to

look at CA−1B as Kronecker product, as follows:

CA−1B → A−1 · C ⊗B, (A.15)

A−1 consisting of a single even element.

We start from the computation of A−1 · C ⊗B. We have:

A−1 =

(
1 + θ2

(1 + |z|2 + θ2)2

)−1

, (A.16)
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C =
1

(1 + |z|2 + θ2)2

(
−zθ̄1

−zθ̄2

)
, (A.17)

B =
1

(1 + |z|2 + θ2)2
(−θ1z̄, −θ2z̄) . (A.18)

This leads to:

A−1 · C ⊗B =
1

(1 + θ2)(1 + |z|2 + θ2)2

(
−zθ̄1

−zθ̄2

)
⊗ (−θ1z̄, −θ2z̄)

= − |z|2

(1 + θ2)(1 + |z|2 + θ2)2

 θ1θ̄1 θ2θ̄1

θ1θ̄2 θ2θ̄2

 (A.19)

where the overall minus sign comes from the commutation relation of the theta’s. It is

actually convenient to multiply (1 + θ2)−1 out: first of all we observe

1

(1 + θ2)
= 1− θ2 + 2θ4 (A.20)

where θ4 ..= θ1θ̄1θ2θ̄2. So the product above becomes:

A−1 · C ⊗B = − |z|2

(1 + |z|2 + θ2)2

 θ1θ̄1 − θ4 θ2θ̄1

θ1θ̄2 θ2θ̄2 − θ4

 . (A.21)

Therefore one has the following expression:

D − CA−1B =
1

(1 + |z|2 + θ2)2

·

 1 + |z|2 + (2 + |z|2)θ1θ̄1 + θ2θ̄2 − |z|2θ4 (1 + |z|2)θ2θ̄1

(1 + |z|2)θ1θ̄2 1 + |z|2 + θ1θ̄1 + (2 + |z|2)θ2θ̄2 − |z|2θ4

 .

We now need to evaluate the determinant of the square matrix above:

det(D−CA−1B) =
1

(1 + |z|2 + θ2)4

[
(1 + |z|2)2 + (1 + |z|2)θ1θ̄1

+ (1 + |z|2)(2 + |z|2)θ2θ̄2 + (1 + |z|2)(2 + |z|2)θ1θ̄1 + (1 + |z|2)θ2θ̄2+

+ θ4 + (2 + |z|2)2θ4 − 2|z|2(1 + |z|2)θ4 + (1 + |z|2)2θ4
]

(A.22)
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where we have isolated on different lines the zeroth, quadratic and quartic contribution

in the theta’s. We can simplify a little the expression above to get:

det(D − CA−1B) =
(1 + |z|2)2

(1 + |z|2 + θ2)4

[
1 +

3 + |z|2

1 + |z|2
θ2 +

6 + 4|z|2

(1 + |z|2)2
θ4
]
. (A.23)

To evaluate the full Berezinian we need to invert the determinant we just got. This

yields:

1

det(D − CA−1B)
= (1 + |z|2 + θ2)4

[
1− 3 + |z|2

1 + |z|2
θ2 − 2

6 + 4|z|2 + |z|4

(1 + |z|2)2
θ4
]
. (A.24)

Putting together the pieces, we can evaluate the full Berezinian:

Ber(Hs) =
(1 + |z|2 + θ2)2(1 + θ2)

(1 + |z|2)2

[
1− θ2 − 2

1 + |z|2
θ2 − 2

6 + 4|z|2 + |z|4

(1 + |z|2)2
θ4
]

= 1.

Remembering that RicAB̄ = ∂A∂B̄ log(Ber(Hs)), since we have found that Ber(Hs) = 1,

this leads us the the conclusion:

RicAB̄ = 0. (A.25)

P1|2 is Ricci-flat and therefore it is a super Calabi-Yau manifold in the strong sense.
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