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ABSTRACT: We apply a definition of generalised super Calabi-Yau variety (SCY) to su-
permanifolds of complex dimension one. We get that the class of all SCY’s of bosonic
dimension one and reduced manifold equal to P! is given by P'? and the weighted
projective super space WIP’%S Then we compute the corresponding sheaf cohomology
of superforms, showing that the cohomology with picture number one is infinite di-
mensional, while the de Rham cohomology remains finite dimensional. Moreover, we
provide the complete real and holomorphic de Rham cohomology for generic projective
super spaces P*™. We also determine the automorphism groups, which for P!? results
to be larger than the projective supergroup. Finally, we show that P'? is self mirror,
whereas W]P’ég has a zero dimensional mirror. The mirror map for P*? endows it with
a structure of N = 2 super Riemann surface.
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1 Introduction

“Super-mathematics” has a quite long history, starting from the pioneering papers by
Martin, [1, 2] and Berezin, [3, 4], before the discovery of supersymmetry in physics'.
After its appearance in physics in the 70s, however, supergeometry has catched more
attention in the mathematical community, and corresponding developments appeared
not only in numerous articles but also in devoted books, see e.g. [6]-[15]. In most of the

!'Even though anticommutation was proposed yet previously by Schwinger and other physicists, see
[5] for a more detailed account.



concrete applications of supersymmetry, like in quantum field theory or in supergravity,
algebraic properties play a key role, whereas geometry has almost always a marginal
role (apart from the geometric formulation of superspace techniques; see further below).
This is perhaps the reason why some subtle questions in supergeometry (see for example
[12]) have not attracted too much the attention of physicists and, as a consequence,
the necessity of further developments has not been stimulated.

String theory makes exception. Perturbative super string theory is expected to be
described in terms of the moduli space of super Riemann surfaces, which results to be
itself a supermanifold. However, some ambiguities in defining super string amplitudes
at genus higher than one suggested, already in the 80s, that the geometry of such super
moduli space may not be trivially obtained from the geometry of the bosonic underlying
space [16]. More than twenty years of efforts have been necessary in order to be able
to unambiguously compute genus two amplitudes; cfr. e.g. the papers by D’Hoker
and Phong [17]- [27], which also include attempts in defining genus three amplitudes,
without success but renewing the interest of the physical community in looking for a
solution to the problem of constructing higher genus amplitudes. Through the years,
various proposals have been put forward, see e.g. [28]-[48].

However, most of such constructions were based on the assumption that the su-
permoduli space is projected (see below for an explanation), but a careful analysis
of perturbative string theory and of the corresponding role of supergeometry [49]-[53]
suggested that this could not be the case. Indeed, it has been proved in [54] (see also
[55]) that the supermoduli space is not split and not projected at least for genus g > 5.
Obviously, such result gave rise to new interest in understanding the peculiarities of
supergeometry with respect to the usual geometry, in particular from the viewpoint of
algebraic geometry.

A second framework in which supergeometry plays a prominent role is the geomet-
ric approach to the superspace formalism, centred on integral forms (discussed e.g. in
[56-58]; see below), whose application in physics can be traced back to [49, 59]. Super-
space techniques are well understood and used in quantum field theory, supergravity
as well as in string theory (see e.g. [60, 61]). They provide a very powerful method to
deal with supersymmetric multiplets and to determine supersymmetric quantities, such
as actions, currents, operators, vertex operators, correlators, and so on. However, even
when the superspace formulation exists, it is often difficult to extract the component
action. This occurs often in supergravity, in which the superdeterminant of the super-
vielbein is needed for the construction of the action, making the computation pretty
cumbersome in a number of cases. On the other hand, the so-called “Ectoplasmic In-
tegration Theorem” (EIT) [62]-[65] can be used in order the extract the component



action from the superspace formulation.

Generally, supermanifolds are endowed with a tangent bundle (generated by com-
muting and anticommuting vector fields) and with an exterior bundle; thus, one would
naively expect the geometric theory of integration on manifolds to be exported tout
court in supersymmetric context. Unfortunately, such an extension is not straightfor-
ward at all, because top superforms do not exist, due to the fact that the wedge prod-
ucts of the differentials df (f being the anticommuting coordinates) are commuting,
and therefore there is no upper bound on the length of the usual exterior d-complex. In
order to solve this problem, distribution-like quantities 6(df) are introduced, for which
a complete Cartan calculus can be developed. Such distributions §(df) then enter
the very definition of the integral forms [66]-[71], which are a new type of differential
forms requiring the enlargement of the conventional space spanned by the fundamental
1-forms, admitting distribution-like expressions (essentially, Dirac delta functions and
Heaviside step functions). Within such an extension of the d differential, a complex
with an upper bound arises, and this latter can be used to define a meaningful geo-
metric integration theory for forms on supermanifolds. In recent years, this led to the
development of a complete formalism (integral-, pseudo- and super- forms, their com-
plexes and related integration theory) in a number of papers by Castellani, Catenacci
and Grassi [58, 73, 74].

In [73], the exploitation of integral forms naturally yielded the definition of the
Hodge dual operator % for supermanifolds, by means of the Grassmannian Fourier
transform of superforms, which in turn gave rise to new supersymmetric actions with
higher derivative terms (these latter being required by the invertibility of the Hodge
operator itself). Such a definition of % was then converted into a Fourier-Berezin
integral representation in [75], exploiting the Berezin convolution. It should also be
recalled that integral forms were instrumental in the recent derivation of the superspace
action of D = 3, N = 1 supergravity as an integral on a supermanifold [76].

Furthermore, in [74], the cohomology of superforms and integral forms was dis-
cussed, within a new perspective based on the Hodge dual operator introduced in
[73]. Therein, it was also shown how the superspace constraints (i.e., the rheonomic
parametrisation) are translated from the space of superforms Q® to the space of in-
tegral forms Q®™ where 0 < p < n, with n and m respectively denoting the bosonic
and fermionic dimensions of the supermanifold; this naturally let to the introduction of
the so-called Lowering and Picture Raising Operators (namely, the Picture Changing
Operators, acting on the space of superforms and on the space of integral forms), and
to their relation with the cohomology.

In light of these achievements, integral forms are crucial in a consistent geometric
(superspace) approach to supergravity actions. It is here worth remarking that in



[58] the use of integral forms, in the framework of the group manifold geometrical
approach [77, 78] (intermediate between the superfield and the component approaches)
to supergravity, led to the proof of the aforementioned EIT, showing that the origin of
that formula can be understood by interpreting the superfield action itself as an integral
form. Subsequent further developments dealt with the construction of the super Hodge
dual, the integral representation of Picture Changing Operators of string theories, as
well as the construction of the super-Liouville form of a symplectic supermanifold [79].

A third context in which super geometry may be relevant is mirror symmetry. In
[80], Sethi proposed that the extension of the concept of mirror symmetry to super
Calabi-Yau manifolds (SCY’s) could improve the definition of the mirror map itself,
since supermanifolds may provide the correct mirrors of rigid manifolds. Such a con-
jecture has been strengthened by the works of Schwarz [84, 85] in the early days, but
it seems to have been almost ignored afterwards, at least until the paper of Aganagic
and Vafa [86] in 2004, in which a general super mirror map has been introduced and,
in particular, it has been shown that the mirror of the super Calabi-Yau space P3!*
is, in a suitable limit, a quadric in P3P x P33, This is a quite interesting case, since
these SCY'’s are related to amplitude computations in (super) quantum field theories,
see e.g. [87]. Since then, a number of studies on mirror symmetry for SCY’s has been
carried on, see for example [88]-[91]. However, a precise definition of SCY is currently
missing, and, consequently, the definition of mirror symmetry and its consequences is
merely based on physical intuition.

The aim of the present paper is to provide a starting point for a systematic study
of SCY’s, by addressing the lowest dimensional case: SCY’s whose bosonic reduction
has complex dimension one.

In section 2 we collect some definitions in supergeometry and introduce the projective
super spaces, which will play a major role in what follows. We will not dwell into a
detailed exposition, and we address the interested reader e.g. to [11] and [12] for a
mathematically thorough treatment of supergeometry. We also recall that an operative
exposition of supergeometry, aimed at stressing its main connections with physics, is
given in [49].

In section 3 we will be concerned with the geometry of the projective super space P2
and of the weighted projective super space WIP%; Cech and de Rham cohomology of
super differential forms are computed for these super varieties: here some interesting
phenomena occur. Indeed we will find that on the one hand one there might be some
infinite-dimensional Cech cohomology groups as soon as one deals with more than one
odd coordinate (as in the case of P'1?); on the other hand this pathology gets cured at the



level of de Rham cohomology, where no infinite dimensional groups occur. Our interest
in these two particular supermanifolds originates from the fact that, together with the
class of the so-called N=2 super Riemann surfaces (N = 2 SRS’s) which will be shortly
addressed in what follows, P2 and WIP’}; are indeed the unique (non-singular) SCY’s?
having reduced manifold given by P!. These are therefore the simplest candidates to
be considered, as one is interested into extending the mirror symmetry construction in
dimension 1 to a super geometric context, pursuing a task initially suggested in [80].
Moreover, despite we keep our attention to the case n|m = 1|2 we also provide the de
Rham cohomology of projective super spaces having generic dimension.

In section 4 we will then construct the mirrors of the projective super spaces P2 and
W]P’%;, following a recipe introduced in [86]. Moreover, we will show that, surprisingly,
by means of the mirror construction, P'? actually gives a concrete example of N = 2
SRS.

Finally, the main results and perspectives for further developments are discussed in
section 5, whereas an appendix is devoted to illustrating the coherence of the adopted
rule of signs.

2 Supermanifolds and Projective Super Spaces

2.1 Definitions and Notions in Supergeometry

In general, the mathematical basic notion that lies on the very basis of any physical
supersymmetric theory is the one of Zs-grading: algebraic constructions such as rings,
vector spaces and algebras and so on have their Zs-graded analogs, that in the context
of physics are usually called super rings, super vector spaces and super algebras respec-
tively.

A ring (A, +, -), for example, is called a super ring if (A, +) has two subgroups A, and
Ay, such that A = Ay & A; and

A; - Aj C A(z’+j)mod2 VZ,j € Zo. (2.1)

The generalisation of vector spaces to super vector spaces and of algebras to super
algebras follows the same lines.

Given an homogeneous element with respect to the Zs-grading of a super ring we can
define an application, called parity of the element, as follows:

0 CLEA()

. 2.2
1 a < Al ( )

a»—>\a]::{

2In the sense specified further below.



Elements such that |a| = 0 (a € Ap) are called even or bosonic, and elements such that
la| =1 (a € Ay) are called odd or fermionic.

Notice that, up to now, there is no supersymmetric structure linked to any super
commutativity of elements, which is provided by the super commutator, a bilinear map
acting as follows on two generic homogeneous elements a, b in a super ring A,

(a,b) — a-b— (=1)p. g, (2.3)

By additivity, this extend to a map [-,-] : A x A — A.

We say that a super ring is super commutative if all the super commutators among
elements vanish (or in other words, the center of the super ring is the super ring it-
self), that is, on the homogeneous elements, one has a - b = (—1)l'p . q, for all
a € A;,b € A; with ¢ € Zy. Supergeometry only deals with this class of super rings,
allowing for anti-commutativity of odd elements. This has the following obvious fun-
damental consequence: all odd elements are nilpotent.

A basic but fundamental example of super commutative ring (actually algebra) is pro-
vided by the polynomial superalgebra over a certain field k£ which will be denoted as
klxy,...,xp,61,...,0,], where xq,. .., x, are even generators, and 6, . .., 6, are odd gen-
erators. The presence of the odd anti commuting part implies the following customary
picture for this super algebra:

Koy, w01, 0] 2 K, ap) @k A1, 0 (2.4)

which makes apparent that the theta’s are generators of a Grassmann algebra. Even
and odd superpolynomials might be expanded into the odd (and therefore nilpotent)
generators as follows

q
Peyen(,6) ) + Z Fi@)0:0;+ > fuu(@)00,0:0 + ... (2.5)
i<j=1 1<j<k<l=1
Poa(x,0) = Zfz )0; + Z Fije(@)0:6,6) + .. (2.6)
1<j<k=1
where the f’s are usual polynomials in k[zq,...,z,] and we have written 6,6, instead

of 0; A 0; for the sake of notation.

As one wishes to jump from pure algebra to geometry, it is customary in physics
to look at a supermanifold M of dimension p|q (that is, of even dimension p and odd
dimension ¢) as described locally by p even coordinates and ¢ odd coordinates, as
a generalisation of the standard description of manifolds from differential geometry.



Even if this is feasible [49], the presence of nilpotent elements makes it preferable in
the context of supergeometry to adopt an algebraic geometric oriented point of view
and look at a supermanifold as a certain locally ringed space [11] [12] [14] [54].

Taking this global point of view, we define a super space M to be a Zs-graded
locally ringed space, that is a pair (|M], Oq), consisting of a topological space |M| and
a sheaf of super algebras Oy over ||, such that the stalks Oy, at every point x € |M|
are local rings. Notice that this makes sense as a requirement, for the odd elements are
nilpotent and this reduces to ask that the even component of the stalk is a usual local
commutative ring.

Morphisms between super spaces become morphisms of locally ringed spaces, that is
they are given by a pair

(0,0°) = (1], Onr) — (7], On) (2.7)

where ¢ : |M| — |A| is a continuous function and ¢* : Oy — ¢,Oy is morphism of
sheaves (of super rings or super algebras) and it needs to preserve the Zs-grading.
Clearly, O, contains the subsheaf of ideals of all nilpotents, call it J,,, which is gen-
erated by all odd elements of the sheaf: this allows us to recover a purely even super
space, (|M|,Oar /T, ), which is called reduced space underlying M and denoted by
M,.q. There always exists a close embedding M,.q — M, given by the morphism
(idjar)s i) = (|M], Oar | Tor) = (1M, Oar), where i : Oar = idjas Ot | Tog = Oot | T -

A special super space can be constructed as follows: given a topological space |M|

and a locally free sheaf of O)g-modules &, we can take Oy to be the sheaf A*EY: this
makes Oy, out of a super commutative sheaf whose stalks are local rings. Similarly to
[54], we denote super spaces constructed this way &(|],E).
Examples of this construction are affine super spaces API7 .= G(AP, Off): here AP is
the ordinary p-dimensional affine space over A and Oy» is the trivial bundle over it.
Super spaces like these are common in supersymmetric field theories, where one usually
works with RPl4 or CPle.

A supermanifold is defined as a super space which is locally isomorphic® to S(|M|, £)
for some topological space || and some locally free sheaf of Oj4,-module &.
Following this line of thought, then, one recovers (out of a globally defined object!)
the original differential geometric induced view that physics employs, where a real su-
permanifold of dimension p|q is a one that locally resembles to RPI? and, likewise, a
complez supermanifold of dimension p|q is a one that locally resembles to C?!¢, defined
above: the gluing data are encoded in the cocycle condition that the structure sheaf
must satisfy.

3In the Zo-graded sense: here indeed isomorphisms are isomorphisms of super algebras.



Given a supermanifold M, we will call M,.q4 the pair (|[M|, Oar /7,,), which is an ordi-
nary manifold presented as a locally ringed space of a certain type: as above, we will
always have a closed embedding M,.q — M.

It is worth noticing that, on the contrary, the definition of supermanifold does not
implies the existence of a projection M — M,.4: this would correspond to a morphism
of (idjag, 7)) : (|M], Os) — (|M|,Onr /| Tor), where w# is a sheaf morphism that em-
beds Oar / 7,, into Oy, and also to endow the sheaf Oy with the structure of sheaf of
Oa..,-modules. In the case such a projection does exist, the supermanifold is said to be
projected. Thinking of the supermanifold in terms of the gluing data between open sets
covering the underlying topological space, projectedness of the supermanifold implies
that the even transition functions can be written as functions of the ordinary local
coordinates on the reduced manifold only: there are no nilpotents (e.g. bosonisation
of odd elements) at all. Obstruction to the existence of such projection for the case of
the supermoduli space of super Riemann surfaces has been studied in [54] and it is an
issue that has striking consequences in superstring perturbation theory, as mentioned
early on in the introduction.

A stronger condition is realised when the supermanifold is globally isomorphic to some
local model &(|], £). Such supermanifolds are said to be split. If this is the case, not
only the even transition functions have no nilpotents, but the odd transition functions
can be chosen in such a way that they are linear in the odd coordinates. This bears a
nice geometric view of split supermanifolds: they can be looked at globally as a vector
bundle £ — M,y on the reduced manifold having purely odd fibers, as the definition
of a supermanifold we have provided above suggests by itself.

2.2 Projective Super Spaces and Weighted Projective Super Spaces

The supermanifolds known as (complex) projective super spaces, call it P"™ have been
discussed extensively in the literature and introduced from several different point of
view, both in mathematics and in physics, being of fundamental importance in twistor
string theory.

Complex projective spaces are mostly looked at formally as a quotient of the super
spaces C"™ by the even multiplicative group C*, so realising a super analog of the
set of homogeneous coordinates [X; : ... : X, : ©; : ... : O] obeying [X; : ... :
Xp 010000, = DXy 000 AX, 2 A0 L MOy, where A € CF (see
for example [54], [49]). In contrast with this global construction by a quotient, a
popular local construction realises P*™ mimicking the analogous constructions of P
as a complex manifold, that is by specifying it as n+ 1 copies of C*™ glued together by
the usual relations. This construction relies on the possibility to pair the usual bosonic
local coordinates with ¢ fermionic anticommuting local coordinates: such an intuitive



approach can be made rigorous using the functor of points formalism [15]. A more
rigorous treatment connecting the requested invariance under the action on C* with
the structure of the sheaf of super commutative algebra characterising the projective
super space can be found in [56].

An elegant construction of the projective super space that goes along well with the
notions introduced above is given in [12]. P"™ can actually be presented as a (split)
complex supermanifold, as follows. We consider a super C-vector space V =V, ® V; of
rank n+1|m. As one can imagine, the topological space underlying the super projective
space coincides with the usual one and it is given by the projectivization of the even
part of V', we call it simply P". This tells that P" can be covered by n + 1 open sets
{U;}izo....n, characterised by

U ={Xo:...: X,] €P": X; #0} (2.8)

so one can form a system of local affine coordinates on U; given by z]@ = X /X, for
j # 1. Intuitively, as above, we would like to have something similar for the odd part of
the geometry: this is achieved by realising a sheaf of super algebras on P", as follows:

U — (é AW @ opn(—m) (Uy). (2.9)

This is mapped isomorphically to the structure sheaf Opnm of the projective super
space, by a map induced by

. O,
VY ® Opn(—1)(U;) 3 0q @ X1 — 00 = < € Opnim (Uy), (2.10)

1

where we stress that ©, is a generator for V)Y, X, is a section of Opn(—1) over U;

and the 6% ), where o = 1, ..., m are promoted as local odd coordinates over U; for the
projective super space P,
This construction makes apparent that, in the notation introduced in the previous
section, P*I™ = G(P", V; @ Opn(1)).
One can also read out the transition rules on U; N Uj, even and odd, that are usually
written as:

o) =k 00 = = (2.11)

2 2

(4)

In the language of morphisms of ringed spaces, we would have an isomorphism

(bvinw,» Bhr,,) + (Ui N Uy, Opnion (Ui [,) — (Ui O U, Opim (U) 07, (2.12)



with ¢u,nv; @ U; N U; — U; N U; being the usual change of coordinate on projective
space and qb?]imUj : Opnim (Uj|v,) — ((qSUmUj)*OWm) (Uily,), so that

0y _ 7 y _ O
(Pviru,), () = G (¢vinw;), (69)) = NOR (2.13)

(4
2 2

We note, incidentally, that the cocycle relation is indeed satisfied.

Before we go on, we generalise a little the construction above, to allow us for treat

in a somehow unified way also the weighted projective super spaces: we will be actually
interested in the case the odd part of the geometry carries different weights compared
to the even part, which is made by an ordinary projective space.
Since above we have taken V = V@ V; to be a super C-vector space, then it has a well
defined notion of dimension, namely n + 1|m, and we can actually take a basis for it.
Focusing on the odd part, we take {©,}a=1__m as a system of generators for V;. Then,
we might realise a more general sheaf of super algebras by

U; —> /\ (é oY ® opn(—wa)> (U)). (2.14)

In other words, each odd variable has been assigned a weight w,, which reverberates
in the transition functions: the ordinary case of P"™ is recovered assigning w, = 1 for
eacha=1,...,m.

We will call this space weighted projective super space and we will denote it by
W]P’?LT._WM), where the string (wy,...,w,,) gives the fermionic weights. In this pa-
per we will be particularly concerned with low dimensional examples of projective and
weighted projective super space, namely P! and W]P’zg, whose geometry will be studied

in some details in the following section.

2.3  Vector Bundles over P!, Grothendieck’s Theorem and cohomology of
Opn (k)-bundles

In this section we recall and comment a classification result due to Grothendieck which
will be heavily exploited to study projective super spaces having reduced space given
by PL. Moreover, for future use, the cohomology of Opx (k)-bundles is given.

The main result about vector bundles on P! is that any holomorphic vector bundle
of rank n is isomorphic to the direct sum of n line bundles and the decomposition is

— 10 —



unique up to permutations of the line bundles, that is
£ =P Opi (ky), (2.15)
i=1

where the ordered sequence k1 > ko > ... > k, is uniquely determined (see [92] for a
complete proof). We will refer at it as Grothendieck’s Theorem. Basically, it guarantees
that the only interesting vector bundles on P! are the line bundles on it, which in turn
are all of the form Op: (k) for some k € Z (recall that Pic(P') = Z).
Concretely, since every (algebraic) vector bundle over C is trivial, the restriction of a
vector bundle &€ over P! of rank n to the standard open sets Uy = {[X, : Xi] : Xo #
0} 2 C and Uy = {[Xo : Xi] : X; # 0} = C is trivial. Choosing the coordinates
X Xo

X1 R
z = % on Up and w := X

equivalent to an isomorphism of Op1(Uy) = C[z]-modules as follows

L on U; we have that an isomorphism & |y,— Op" |1, is

b0 : E(Up) — Opi(Up)®" = C[2]®". (2.16)
Likewise, we have an isomorphism of Op:(U;) = C [z~ !]-modules
¢1: EU)) — Op(U)®" = C [z~ (2.17)

Clearly, two such isomorphisms ¢; and ¢, gives an automorphism ¢; o ¢, : C[t]®" —
C[t]®™ where t = z for i = 0 and ¢t = 27! for i = 1, s0 ¢; o ¢; determines an invertible
n X n matrix, having coefficients in C[t].

The composition ¢g; = ¢ 0 ¢;" gives the glueing relation between the two trivial
bundles over Uy and U;: it is again given by an invertible n X n matrix having coefficient
in C[z,z7!]: its determinant is equal to 2* for some k € Z up to a non-zero constant.
Thus, classifying rank n vector bundles over P! corresponds to classifying invertible
matrices M € GL(n,C|z,27']) up to the following equivalence:

M(z,271) ~ A(2)M(z, 2 Y)B(z™) A(z) € GL(n,C[2]), B(z™') € GL(n,C[z71]).

By a theorem due to Birkhoff, M(z, z) belongs to the same class of a diagonal matrix
My = diag(z*, ..., zF) where k; € Z. Therefore any bundle over P! is isomorphic to a
direct sum of line bundles Opi (k1) @ ... ® Op1(ky,).

By looking at vector bundles over P! as sheaves of locally free Opi-modules, the
theorem reduces the problem of computing sheaf cohomology over P! to computing
the sheaf cohomology of Op:(k), which is well-known. In general, for & > 0 one has

- 11 -



H°(P", Opn(k)) = Clxg, ..., 2,)%, the degree-k linear subspace of the polynomial ring,
therefore

RO(P", Opn (k) = (’ﬁ”) — % k>0, (2.18)

and if k < 0 one has H"(P", Opn(k)) = (z( - ... 2l 14; <0, Sr,i;= /{:>(C. It is an

n
exercise in combinatorics to see that

[k =1

W (P, Opn (k) = (|k| o 1) k<0, k| >n+1. (2.19)

These results will be used to compute the cohomology in the following section.
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3 The Geometry and Cohomology of P12 and W]P’(2)

3.1 Super Calabi-Yau Varieties

The physical approach to Calabi-Yau’s geometries in a supersymmetric context has
employed the differential geometric point of view, defining a super Calabi-Yau mani-
fold (SCY) as a Ricci-flat supermanifold. Indeed there exists a generalisation of tensor
calculus to a supersymmetric context, making sense out of the notion of super Rieman-
nian manifold, super curvature tensor and super Ricci tensor.

The crucial observation regarding projective super spaces is that there exists a gener-
alisation of the Fubini-Study metric to the supersymmetric context. Let us consider
P*™ then it can be given a super Kihler potential

K* = log (Z XiXi+ ) @j@J) (3.1)
i=0 Jj=1

defined everywhere on P*™ that reduces to the ordinary Fubini-Study potential as one
restrict it to the underlying reduced manifolds. Locally, on a patch of the projective
super space, it takes the form

i=1 j=1

Notice that in this complex differential geometric context the variables are paired with
their anti-holomorphic analogs, as customary in theoretical physics.
The super Kéahler form is defined in the local patch to be

Q° := 90K*® or analogously Q°:= 0,05K°dX*dX" (3.3)
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where 9 and 0 are the holomorphic and anti-holomorphic super derivatives: we refer
to the Appendix A for details. Then the super metric tensor is simply given by

H g = 0405K°, (3.4)
and the Ricci tensor reads
Ric,p == 0405 log (BerH?) . (3.5)

Notice that the only modification compared to the ordinary complex geometric case is
that the determinant of the metric has been substituted by the Berezinian [11] [49] of
the super metric.

Remarkably, as one chooses the projective super spaces of the form P! for n > 1
(note that PO = C')| endowed with the super Fubini-Study metric defined as above,
then one gets a vanishing super Ricci tensor!

We stress that, as it is common in the context of super geometry, even an easy calcula-
tion might present some difficulties, due to the anti-commutativity of some variables.
One needs to establish and keep coherent conventions throughout the calculations. As
an example, a detailed computation of the vanishing of the super Ricci tensor in the
case of P! is reported in Appendix A. The same calculation can be easily generalised
to any P*"*1 for n > 2.

Actually, defining a SCY manifold by requiring that its super Ricci tensor vanishes
appears as a very strong request. Moreover, it is not that useful, for it is often hard to
write down super metrics for interesting classes of supermanifolds: for example there
is not straightforward generalisation of the super Fubini-Study metric to the case of
weighted projective super spaces. Moreover, by the result in [88] a Ricci-flat Kélher
supermetric on WIP’%; does not exist. Still, it is possible to give a weaker but certainly
more useful definition:

Definition 1 We say that an orientable super projective variety X is super Calabi-Yau
if its Berezinian sheaf is trivial, that is Berx = Ox.

Notice that this definition is again the super analog of the usual algebraic geometric
definition of an ordinary CY variety, that calls for a trivial canonical sheaf. Indeed,
the Berezinian sheaf is, in some sense (see [11] [12] [49]), the super analog of the
canonical sheaf, since the sections of the Berezinian transform as densities and it turns
out that they are the right objects to define a meaningful notion of super integration,
the Berezin integral. In other words, then, a SCY variety is one whose Berezinian sheaf
has an everywhere non-zero global section.
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We now start making use of the Grothendieck splitting theorem to prove the triv-
iality of the Berezian sheaf of the supermanifolds P'? and WIP’%S and hence confirm
that they are both SCY varieties. The strategy we will use throughout to compute
the cohomologies will be to look at the varieties as split supermanifolds, therefore, in
this case, as the total space of vector bundles over P!, the reduced manifold, having
odd fibers. Then, we will achieve the splitting into line bundles over P! and we will
compute their cohomology.

We start considering P'?. Following what established above, we have two patches,
we now call U, and U,: passing from one patch to the other, yields the following
transformations

qbo — 00 =% . (36)

The structure sheaf, Opi2, is therefore locally generated by

OPU?(UZ) = <1>O]P1\2(Uz) = <1’90’9179091>0P1(Uz)’ (37)

where in the last equality we are looking at it as a locally free Opi1-module. Considering
the transformation rules in the intersection, we find the following factorisation as Op:i-
modules:

Op12 = Op1 B Opl(—1)®2 @ OPI(—Q). (38)

Notice that the cohomology can be readily computed as h(P?, Opij2) = 1 and

hY (P2, Opyp2) = 1.

Using a notation due to Witten [49], the Berezinian sheaf over P!? is locally generated
by an element of the form

Berpuz (U.) = ([d=Id6o, d6]),, (3.9)

12(U=)’

Under a coordinate transformation, call it ®, taking local coordinates w|¢q, ¢1 to 2|6y, 04
as above, the Berezinian transforms as follows:

[dw|dgb0, d¢1] — [dZ|d00, d@l] = Ber(@)[dw|d¢>o, d¢1] (310)

Therefore one gets:

~1/w* 0 0
—1/w?
—0;/w* 0 1/w Wi
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This trivial transformation implies the triviality. More precisely, viewing Berpi2 as a
Op1-module, one finds the following factorisation:

Berpiz = Op1 @ Op1 (=1)%2 @ Op1(—2) =2 Opape, (3.12)
and under the correspondence 1+ [dz|dfy, db,], one has
Ber]puz = Opuz, (313)

as expected. The cohomology is obviously the same as the one of the structure sheaf.
Things go in same way as one consider the structure sheaf and the Berezinian sheaf of
W]P’%;, remembering that one has transformations of the following form

(3.14)

Again, one finds that the Berezinian has a trivial transformation on the intersection
and we have a correspondence 1 +— [dz|df] and an isomorphism

BeTWP;\; =0
2

. 3.15
WP (3.15)

This confirm that also the weighted projective space W]P’ég is a SCY variety, in the
weak sense.

3.2 The Sheaf Cohomology of Differential and Integral Forms

To a large extent, generalisation of the ordinary commuting geometry to the richer
context of supergeometry is pretty straightforward and it boils down to an application
of the “rule of sign” [11] [12]. One issue stands out for its peculiarity: the theory of
differential form and integration. The problematics concerned with this topic have been
recently investigated by Catenacci et al. in a series of papers (here we will particularly
refer to [56]) and reviewed by Witten in [49]. We briefly sketch the main points, by
leaving the details of the constructions to the literature.

As one tries to generalise the complex of forms (£2°,d®) to supergeometry using the
l-superforms {df#'};c; constructed out of the §%, then it comes natural to define wedge
products such as df' A ... A d0™ to be commutative in the df’s, since the §’s are
odd elements. This bears a very interesting consequence: the complex of superforms
(2, d?) is bounded from below but not from above! For example, superforms such as
(dO")" == df" A ... A df" do make sense and they are not zero, such as their bosonic
counterparts. The problematic aspect resides in that there is no notion of a top-
form, therefore a coherent notion of “super integration” is obtained only at the cost of
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enlarging the complex of superforms and supplementing it with the so-called integral
forms. Using the notation of [56], the basic integral form are given by {§(d#")};c; and its
higher derivatives {6 (df?)};cs, for n > 0. Here the use of the symbol ¢ should remind
the Dirac delta distribution - and indeed an integral form satisfies similar properties
[56] -: it sets to zero terms in df* and therefore, in some sense, it lowers the degree of a
superform. For this reason an integral form is assigned a non-positive degree: indeed in
the context of supergeometry one can also have negative degree forms. This is better
understood by mean of an example. Let us take the super space C?2, then we can
consider the following superform

ws = dz1dz(d6*) 6 (dhY), (3.16)

where the wedge products are understood. Then dz;dzy(df?)* carries a degree of 6,
while the integral form 6 (df') lower the degree by 2, so as a whole, we say that wi
has degree 4 and we signal the presence of an integral form (of any degree) by saying
that it has picture number equal to 1. Therefore, this enlarged complex of superforms
is characterised by two numbers, the degree of the form n and their picture number s
and we have that w, € Qgé;s:l
exceed the odd dimension of the supermanifold and operators linking complexes having

. Notice, incidentally, that the picture number cannot

different picture numbers - called picture changing operators - can be defined.

In [56] the sheaf cohomology of superforms and integral forms of P!' has been
studied, proving that just by adding an anti-commuting dimension, the cohomology
becomes far richer. There is, though, a substantial hole in the literature: no sheaf
cohomology of superforms and integral forms has ever been computed for supermani-
folds having extended supersymmetries, that is more than one odd dimensions. In this
scenario the computation of the cohomology for the case of P2 acquires value, besides
being an example of cohomology of a SCY variety.

We will see indeed that as soon as one has more than a single odd dimension, when the
picture number is middle-dimensional (that is, it is non-zero and not equal to the odd
dimension of the manifold), then one finds that the space of superforms is infinitely
generated and its cohomology may be infinite-dimensional!

This result calls, from a mathematical side, for a better understanding of the (algebraic)
geometry of the complex of superforms and integral forms. Moreover, from the phys-
ical side, the possible usage and purposes of forms having middle-dimensional picture
number should be investigated and clarified.

We now compute the sheaf cohomology of superforms of P'2. We will carry out the
computation in some details for the first case, namely the space of superforms having

— 16 —



null picture number, 2™, to elucidate our method and we leave to the reader all the

p1|27
other cases that follow the same pattern.

As a Opij2-module, Q"0 is locally generated by:

]P1|2

OO, (U.) = ({dBiddy Y ico,.. e {d=d0}d0T ™ 7Y 20, 1)

IP’HQ 777777777 1|2(Uz

(3.17)

By looking at it as a (locally free) Opi-module, we might find the transformations of
its generators. The first block of generators transform as (up to unimportant constants
and signs)

$rdwdyde ™',

. A 1 . A . )
A3ty = —ddide ™ + qbodwdqbl_ldgb”_z

n+1
i — 1 i n—z‘ n—1—i
Oodbdby ™" = W%d%d% o +2 —— goprdwdyddy ™,

L —1 1 7 n—1u 7— n—1u
0.d0;doy :ngldgbodqﬁl +wn+2¢o¢1dwd¢0 Ydgr—,

o 1 - :
Oo0rdbudOT ™" = —5 Podrdpdd ™.

The second block, instead, has only diagonal terms:

1

dzdglder "7 = bdor

Hodzdegde?‘l_J = n+2¢odwd¢od¢” =,

01dzd6}de; ' = n+2¢1dwdq§0dq§" I

0u0,d=d0d0T " = g0y dwddidgn T,

n+2

where we recall that ¢ = 0,...,nand j =0,...,n— 1. Before going on we observe that,
for n fixed, looking at Qg;ﬁz as a Opi-module, we will have

dime,, Qpil, = 4(n+1) +4n = 8n + 4 (3.18)

PL2

terms in the factorisation. This is its dimension as a vector bundle/locally free sheaf
of Opi-modules.

The strategy that we will follow will be to group together pieces having similar form,
evaluating their transformations and afterwards factorising them into a direct sum of
line bundles over P! by means of Grothendieck splitting theorem, by treating the off-
diagonal terms in the transition functions matrix: we recall that, in the notation above,
we will be free to perform Clw]-linear operations in the columns and C[1/w]-linear op-
erations in the rows.
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To this end, we now keep our attention on the diagonal terms that do not need any
further investigation: we will get n + 1 terms and n standing-alone terms out of
0001d0LdOT " and dzdf)df] "7, so these contribute to the factorisation with terms

of the form
Opi(—n — 2)" & Op1 (—n — 1) (3.19)

So we are left with 8n+4 — (n+ 1) — n = 6n + 3 terms to give account to.

The other terms need some carefulness. We start dealing with the terms coming from
the transformation of dfdf?~": these couples with the ones coming from 6ydzd6}d67 "
and 0,dzd6}dA7 "7 whenever i = j in the pairing with fydzd6}df? "7 and i = j+1 in
the pairing with Hldzdé’éde?_l_j . We therefore need to consider n — 1 (since this holds

true in the case i = 1,...,n — 1) identical 3 x 3 matrices of the following form:
1/11)” 1/wn+1 1/,wn+1 0 1/wn+1 1/wn+1
0 1/w™™2 0 G —1 /w1 /w2 0 :
0 0 1/w"? 0 0  1/w"?
0 1/wn+1 1/wn+1 1/wn+1 0 1/wn+1
—1/w™ w0 o jwnt? —1 /w0 ,
0 0 1/ w"? 0 0 1/wn*?
l/wnJrl 0 l/wnJrl . . 1/,wn+1 0 1/wn+1
—1/w
1/wn+2 _1/wn+1 0 2 _/> 1 0 _1/wn+1 _1/wn+2 ,
0 0 1/wn ™2 0 0 1/wn*?
1/wn+1 0 1/wn+1 1/wn+1 0 0
0 _1/wn+1 _1/wn+2 03;6;1 0 _1/wn+1 _1/wn+2 ,
0 0 1/ w2 0 0 1/ w2
1/wn Tt 0 0 1/wn ! 0 0
0 —1/w" —1/wmt? flatlis 0 —1/w"* 0
0 0 1/ w2 0 0 1 /w2

So this bit contributes with terms of the following forms:

Op1(—n — 1) 2 @ Op1 (—n — 2)®"! (3.20)
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to be added to the previous ones. This boils the number of the remaining pieces down
to 6n +3 — (3n — 3) = 3n + 6.

Now it is important to notice that we have not given account for some terms in the
counting above yet: we need indeed to consider separately 4 terms that group into two
identical 2 x 2 matrices. Indeed the term 7 = 0 of d%d@?‘i, that is df7, couples to the
term j = 0 (which was left out of the counting above) into the term Hldzdeng?_l_j,
that is #,dzd0?'. This gives a 2 x 2 matrix of the form:

<1/wn 1/wn+l) C1—_w>02 ( O 1/wn+1 ) 7

0 1/wn+2 _1/wn+1 1/wn+2

( 0 1/w”+1)cﬁc>*2<1/w”+l 0 )

—1 /w1 w2 /w2 —1/w" !

/w0 Ra—1/whs /w0

1/wn+2 _1/wn+1 0 _1/wn+1 :
The very same holds true in the case i = n for dfydd? ", that is df}, and j = n for
Bodzdf?dAy "7 | that is Hydz671. So we have a pair of identical contributions that sums

up to the ones already accounted:
Op1 (—n — 1)%4, (3.21)

So this adds up 4 terms to the counting above, leaving us with 3n + 2 terms to be
accounted for.

The terms 6ydfidf" " and 6,dAidA" ", couple with the last term, 66, dzd#df; "7, in
the cases i = 0,...n — 1 for 6yd0idf7 " and i = 1,...,n for 6;d0id0} " and for all j.
Therefore we have 3n identical 3 x 3 matrices of the form:

/w0 1/w" 1/wn ! 0 1/ w2
0 1jw™t 1jwm+? | R 1t et 0 ,

0 0 1/umt? 0 0 1w

1/wn+l 0 1/wn+2 1/wn+l 0 1/wn+2
1w w0 e 0 1/w 0 :

0 0 1/ w3 0 0 1 /w3

1/wn+1 0 1/wn+2 0 0 1/wn+2
0 1/w™ 0 G 0 1/w™ 0 ,

0 0 1/wn+3 1/wn+2 0 1/wn+3



0 0 1/w*? /w2 0 0
C1+C3

0 1/w"™ 0 — 0 1/w™™ 0 ,
/w2 0 1/ w"® /w0 1/w"
1w 0 0 1w 0 0
0 Lwrtt o | 0 1wt o
Yw™ 0 1juw? 0 0 1/wt

So we have the following contribution to the factorisation:
Opi(—n — 1)®" & Op1 (—n — 2)%*". (3.22)

Notice that we have to take into account separately the terms corresponding to ¢ = n
for 0od#ido7 " and i = 0 for 0,dA}d0 ", yielding an identical (diagonal) contribution of
the form: Opi(—n — 1)%2.

These last 2n + 2 terms complete the enumeration. We are therefore ready to write
down the whole factorisation for n > 0:

O, = Opi(—n — 2)%" @ Opi (—n — 1)+,

We are finally in the position to count the dimensions of the cohomology groups:

QX)) =0,  hHQY),) = 8n? + 8n. (3.23)

Ip:l\? [PJI\Q

This terminates the discussion of the form with null picture number. All the other cases,
having non-null picture number are treated in an analogous way, by remembering the
transformation of the integral forms of type 5™ (d6") [56]. We now list their factorisation
as Opi-modules.

The space of superforms having maximal picture number and degree is locally generated

by

Q5L (U.) = (dz6(dbo)5(dbr)) 0.1V (3.24)
Considering the transformation among the two charts yields the factorisation
Q. = Op @ Op (—1)*? @ Op1 (—2) = Opaa. (3.25)

So we can easily compute the dimensions of the cohomology groups, which are exactly
the same as the ones of the structural sheaf:

RO QL2

PLi2

) — 1, hl(Ql;Q

P2

)= 1. (3.26)
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It is not surprising that this is the same as the Berezinian line bundle over P'1?: indeed

elements of this sheaf are in some sense the supersymmetric analog of the ordinary

top-form for a manifold, and we (Berezin-)integrate them, as one can integrate sections

of the Berezinian sheaf. These two peculiar supersymmetric sheaves are fundamental

in theory of integration on supermanifold.

We are left with the group Q;‘EQ, for n > 0 (which deserve some attention and book-
n;0

keeping such as quz)' It is locally generated by

Qo2 (U) = ({69 ()8 (d61) }imo, .y d=z{0) (dBo)8" 19 (d61)} o ”+1>OP1‘2(U2)’

which give the following factorisation

Q]I_Dl’rllf = O]pl (?7, —+ 1)694n+5 () O]pl (n)@4n+6 @D O]pl (TL — 1)

The dimensions of the cohomology groups then read

Q) =8(n+2)(n+1),  RYQE) =0. (3.27)

P12 PLi2

By pulling together all the cohomologies, we have the following result:

1 n=0 m=0
: >0,m=0
hO(QEm) = e 3.28
(2pie) 8n+2)(n+1) n<0, m=2" (3:28)
1 n=1m=2
1 n=0 m=0
: 8n(n+1) n>0m=0
1 nymy __ )
B Q) = o, (3.29)
1 n=1m=2

Notice that so far we have not carried out the computation of superforms having picture
number equal to 1: as anticipated, these are infinitely generated as a locally free sheaf
and they give infinite dimensional cohomology.

The generators read

Q07 =<{5(i)(d90)d9?+i}ieN, dz {0 (dfy)doT Y sen,

P2
{69)(d6y)dfy ™+ Yien, d={00) (d61) A0y ien). (3.30)

Pl2(0,)

This is factorised as

P (0 (—n—1) & O (—n)) (3.31)

1€N
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this gives hO(Q;ﬁS;l) = 0, while, remarkably, hO(Q%ﬁQ) = hl(Qgﬁg;l) = 00!

Similarly, one finds
QU (U.) =({6U"FD (d0o)dbi }ier, dz{8"HD (dBo)db] }ien,
{6Un+9)(d6y)d6f Yien, dz{5UMHHV(d61)d6} }ien) (3.32)

PH2(U2)
having factorisation
P (02 (In| - 1) & OF(|n])) (3.33)
ieN

which again gives infinite dimensional cohomology.

The computation of the cohomology of WIP’;S is much easier and it can be performed
following the same lines as above. Also, having no middle picture number, there are
no infinitely generated modules and infinite cohomologies.

By means of Grothendieck theorem, the complete sheaf cohomology is thus given by

1 n=0 m=0
O = g meome (334
1 n=1 m=1
1 n=0 m=0
hl(Qg’%;): 3" Z;g ”;;01 . (3.35)

0 n=1,m=1

We signal, by the way, a pathology which looks like it can apply to any weighted pro-
jective space.

While the Berezinian sheaf is isomorphic to the structural sheaf of WIP%S - and indeed
it has analogous factorisation and cohomology - one finds instead that the sheaf of the

“top-superform” Q' || is not! To see that, it is enough to check the different factori-
WPl
sation and therefore the different cohomologies: one finds indeed that hl(Q?V;’?Pm) =1

)
while R1(Q5 ) = 0.
WP
3.3 de Rham Cohomology of WIF’:S and P2

1)1

Having at disposal the sheaf cohomology of superforms on the super varieties W]P’(2)

and P'?, we now aim to compute their holomorphic de Rham cohomology.

— 922 —



Before we start, a nod to the adopted notation is due: given a supermanifold M, we
will denote its de Rham cohomology groups as H;" (M) where n refers to the usual
degree of the forms and m refers to their picture number.

We also stress that the boundary operator of the complex, acts as d : A%™ — ALTH™,
where A" is the freely generated module of the n-forms having fized picture number
m that are defined everywhere, that is AL = H°(Q,"™). In other words, the bound-
ary operator d does not change the picture number of the form, and it just raises the
degree of the form, so - as in ordinary purely bosonic geometry - we are just moving
horizontally on the complex and we cannot jump from on complex to the other, by
picture changing procedure.

For the sake of clarity, we start from where we left, and we take on the computation
of the de Rham cohomology of the weighted projective super space W]P’ég, where the
sheaf cohomology of superforms is always finite. We will adopt a cumbersome but effec-
tive method, that has the advantages to display explicitly a basis of generators for the
various de Rham groups. This is remarkable for it possibly sets a more concrete ground
for the observations in [82] and especially in the interesting [83], where it is observed
that the BRST cohomology of a (super) A-model is isomorphic to the cohomology of
the superforms on the target space, that is a supermanifold M.

The starting point to compute the de Rham cohomology of the weighted projective
super space WIP%S is to look at its zeroth Cech cohomology, computed above. This

actually gives us two results for free: the first one is that Hgﬁ(WPzg) = C, and it is
generated by the constant function 1. The second result that can be easily red is that
we have ngg (W]Pz;) =0 for n > 0, indeed Cech cohomology guarantees that there are
no everywhere defined forms of degree n > 0.

Let us now consider H ;}% (W]P’%g), Cech cohomology tells that there is one everywhere
defined form, which is locally given by dz8® (d), that generates the group: this is also
trivially closed for in particular d(6™(df)) = 0 (see [56]), so the question is whether

dz6(dh) is exact or not. To answer the question one needs to look at H O(Qg\;;;u) = C°S.
@
In this case it is easy to see that

dz6©(df) = d(z0(dh)) (3.36)

where 26 (df) € HO(Q&}P}&), so the form is exact and one gets H (WIP’%;) =0.
We now look with some more attention to the de Rham cohomology connected to

H ml(WIP’zg) = C*"*° where n < 0. Let us consider a generic form expanded as it
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belongs to a freely-generated module over Op:1. We have that:

= (Fy(2) + 0F1(2)) 6"(dB) + (Go(2) + 0G1(2)) dz6" 1 (dh)
= (" Fy(1/w) + pw"F(1/2)) 6™ (dg)+
+ (—w" T Go(1/w) + ¢ (—w" T Fy(1/w) — w" Gy (1/w))) dws" T (dg)  (3.37)

where Fy, F1, Gy, G; are polynomials. By changing the coordinates to U,, we find that
the form remains everywhere defined if and only if deg Fy = n+2,deg F} = n,deg Gy =
n+1,deg G = n, where G has the constraint that the coefficient of its highest degree
monomial is equal to the coefficient of the highest degree of Fj, which indeed yields
a total of 4n 4 6 free parameters, as already computed above. So far, this is nothing
but another method to find the zeroth-dimensional Cech cohomology, without using
Grothendieck’s theorem, as done in [56] for the case of P!, If on the one hand it is
certainly not efficient - especially as one needs to deal with more than one fermionic
dimension -, it is true that on the other hand, in the context of the de Rham cohomol-
ogy, it has the advantage to make explicit in terms of the coefficients the basis of the
zeroth cohomology group of everywhere defined forms.

However, we stress that a careful analysis of the various pieces involved in the com-
putation carried out by mean of Grothendieck’s theorem would have led to the same
result in term of the basis of the space of everywhere defined forms. Here we opted for
this more rough method as long as the computations are easy-to-follow.

The most interesting group is the zeroth: we find that deg Fy = 2,deg I} = 0,deg Gy =
1,deg Gy = 1, and explicitly, we have

Fo(2) = az® + bz + ¢, (3.38)
Fi(z) =d, (3.39)
Go(z) = ez + f, (3.40)
Gi(z) = —a. (3.41)

Gathering together the terms having the same coefficients we find the following basis:

a — 69(dh) — 0dz6M (dh), (3.42)
b — 209 (dh), (3.43)
c— 2260 (dp), (3.44)
d — 05 (d), (3.45)
e — dz0W(d#), (3.46)
f— 2dz6W(dh). (3.47)
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Then one can verify that the module of the closed forms is generated by

Zga(WPy)) = (051 (df), dz6 (db), 2dz6M(d6)),, . (3.48)

Actually, the forms dz0™ (df), zdz5") (df) are easily seen to be exact, indeed
dz6W(dh) = d (261 (d9)) (3.49)
2dz0W (df) = d (%,2«25(1)(619)) : (3.50)

and both the forms on the right-hand side are everywhere defined, that is they are in

H O(QK\;;}H). So we conclude that Hjy (WIP’%‘Q;) = C and the group is generated by the
@
closed form 65 (9).

Writing explicitly the forms, we can see that all the other groups Hgﬁl (W]P’zg) forn >0
are trivial: one finds that Zgg (WIP’;;) is actually non-zero - there are closed forms -,
but Z7 (W]P’ég) ~ pi (WP']) - all the closed forms are exact and do not contribute

©)
to the de Rham cohomology. Summing up, we have:

1 n=0 m=0

n;m 1)1 0 n>0,m:()
har (WP(%) Y1 =0 m=1 (3.51)
0 n#0, m=1.

We now move to the holomorphic de Rham cohomology of P': again, the starting
point will be to look at the forms defined everywhere. By mean of our previous com-
putations in sheaf cohomology of superforms, we see that Hyy(P'?) = C and it is
generated by the constant function 1 and ng%o (P'2) = 0, indeed there are no globally
defined forms.

Let us now consider the case n = 1,m = 2 - corresponding, as observed, to a sort of
top-form -: the relative group is locally generated by the superform dz8® (d6,)6© (d6,),
which extends globally: this is certainly closed and moreover, one can easily see it is ex-
act, for d(26()(df,)5) (d6;)) = d=6(©(db)5© (d6;) and 26 (df)6® (dby) € HO(Q],).
This tells that H > (P'?) = 0.

We now take on the groups Hg]f (P') for n < 0. The most interesting case is given by
HYZ(P'2): the relative Cech cohomology group has dimension 16 and we will study it
carefully. We should be considering forms of the kind

w =(Fy(2) + F1(2)00 + Fa(2)01 + F3(2)0001)6 (d00)6 (d6,)+
(Go(2) + G1(2)80 + G2(2)01 + G3(2)000,)dz6 (dh,)6™V (db,)+
(Ho(2) 4+ Hy(2)0 + Hy(2)0y + Hs(2)0001)dz6™M (d6,)5 (db,),
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where the F’s, G’s and H'’s are all polynomials, whose degree is identified as above, by
studying whenever the form remains defined everywhere under a change of local chart,
from U, to U,.

There are 10 closed forms:

Z9R(P2) =(6(dBy)6 ) (d6:), 0pdz6 (dy)6 ™M (6, ), 01dz6™) (dBy)6 ™ (db,),
000 (dBy)6© (dby), B0 (dBy) 5 (dby), 2d=6 (dBy)d ™V (d6, ),
dz6© (dhy)6M (dy), zdz6™M (dBy) 6 (dby), dz6™M) (dhy)6 (dby),
0,626 (dfy)5® (d91)>% :

The only closed form that it is not exact is given by 60,6 (dfy)0® (d6,), which is
therefore a generator for the group H3Z(P'?) = C.
Indeed, let us consider for example the closed form dz6™ (dfy)d® (df,), one has:

dz6M ()0 (dhy) = d(—6,dz6M (dhy)6™M (db,)), (3.52)

remembering that df;0™ (df,) = —5©(db,).

As in the case of the weighted projective super space, going on in the negative degree,
one finds that the closed forms are all exact, and we have Hir (P'?) = 0 for n < —1.
This is to be connected, at the end of the day, to the dimension of the space H 0(9;?2)
for n < —1, and again in turns to the transformation properties of the integral forms,

which allow for a huge space of globally defined forms.

We now consider the space of everywhere defined forms having picture number

equal to 1, which is somehow the most sensitive one, for as we have seen above, it
n>0;1

yielded an infinite dimensional sheaf cohomology. Before going on, we recall that {257,

is infinitely generated as locally free sheaf, and its generators read

QL (UL) =({69(do)doT Y ien, dz{6(dy)dOy ™ }ien,

P2
{6D(d6,)dor "} ien, dz{d(i“)(d&l)d93+i}i€N>O . (3.53)
Pl12(U,)
The factorisation is
P (05 (—n—1) ® OFF(—n)) . (3.54)
€N

First thing to observe is therefore that there are no globally defined forms for n > 0!
It follows that the de Rham cohomology is H7 " (P'?) = 0.
All the other modules, for n < 0 gives an infinite dimensional zeroth (Cech) cohomology
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group.
We start analysing, as usual, the n = 0 module. Since the generators read

1
QY

P2

(U.) =({6(df)db; }ien, dz{6"TV(dby)db! }ien,

{69(d6,)d6} }ien, dz{amn(del)deg}ie@%% ; (3.55)

we can just deal with the first two block, and the other ones are symmetric up to the
exchange 6y < 0.

For the sake of convenience, let us consider separately the case ¢ = 0 and ¢ > 0, for
some attention is requested as one deals with ¢ = 0 in the transformations.

In this case, i = 0, one has:

(Go(2) 4 00G1(2) + 61Ga(2) + 006, G3(2))dz0M (dby). (3.57)

From Cech cohomology computation we expect 4 free parameters that yield:

HO QY

P2

) Lico= {209 (df) — dz6)(dby), 6 (), 05V (dby), dz6M (dby)).  (3.58)
The last three forms are closed, but only 8,0 (dfly) is not exact, indeed
5O (dhy) = d(—0p6W (dby))  dz6W(dby) = d(26W (dby)) (3.59)

and —0,0™ (dby), 261V (dby) are globally defined. Analogously, we have that 6,5 (d;)
is closed and not exact, therefore it is non-zero in the quotient.
In the case ¢ # 0 one is led to consider the transformation of

w = (Fy(2) + Fi(2)0 + Fy(2)601 + F3(2)000y) 67 (dbo)db: + (3.60)
(Go(2) + G1(2)00 + Go(2)0; + Gs(2)0e6,) dz6V) (dby)db:. (3.61)
One has:
HO(Q00,) Lizo= (269 (d0o)db} + 01d=6"1 (db)d0; + 05d=6" (dby)de; ", 51 (db,)do:,

000 (dfo)db; + 6,60~ (dby)doi ", d=60 Y (dfo)db}). (3.62)

It can be seen that 6@ (dfy)df: and dz60+) (db,)ddi are closed forms for every i > 1,
but they are also exact, for

60 (dBo)do: = d(—0y6" TV (dBy)de),  dz6"TV(dby)de: = d(260FY (dby)de?),
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so there is no contribution to the cohomology.
This applies at each n < 0, so there are no closed and not exact forms, and the complete
holomorphic de Rham cohomology of P'”? reads

(

1 n=0, m=0,

0 n>0,m=0,

: 2n=0 m=1
hap' (PH2) = ’ ’ 3.63
dR ( ) 0 n 7£ 0’ m = 1’ ( )

1 n=0, m=2,

L0 n#0, m=2.

The generators of the non-trivial groups are
Hai (P'?) = (1), (3.64)
HY(P1?) = (6,60 d@l) 020 (db>)),, (3.65)
pl
Hyg (P'P?) = (6160561 (d6,)5 (d6y)),, - (3.66)
Pl

As anticipated above, this is an interesting result, for it shows that the oddity con-
nected to an infinite-dimensional Cech cohomology, is cured at the level of the de
Rham cohomology, which is what really matters from the physical point of view, since
it is connected to the physical observables and it enters the evaluation of correlation
functions [83]. We expect this kind of behaviour to be characteristic for supermanifolds
having more than one fermionic dimension.

3.4 The complete de Rham cohomology of P*™

For the sake of completeness and for future reference we write down the whole holo-
morphic and real de Rham cohomology for general projective superspaces P™"™. This
can be computed by using the same tedious direct method as above (see also [56]).

In the holomorphic case one gets (notice that for 7 = 0, ¢ cannot be negative)

(5) =0, j=
0 1#£0,7=0,....m
In the real case one gets instead
Yo (/':;L) .: pum .:
H%(P”'m): R @ 2k, k=0,...,n, j 0,....,m, (3.68)
0 1=2k+1, k=0,....n—1, j=0,...,m.

The generators in the holomorphic case are given by a straightforward generalisation
of the case P! displayed above. In the real case they are

Wity = Nwps ® [\ 0,5(d6y) (3.69)

ZEI]'
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where I; C {0,1,...,m} has cardinality j, and wgg is the ordinary Fubini-Study form.

3.5 Automorphisms and Deformations of P!™

The method we developed to compute the cohomology of projective super spaces over
P! easily allows also to evaluate the cohomology of the super tangent space.
Computing the super Jacobian of the change of coordinates, we get

d. = —w?dy — w Z $i0s, (3.70)
8@. = wa@. (371)

for i = 1,...m. The super tangent sheaf is locally generated by the following elements:

i=1,...m 1= 17 .

Totele = (04020} s (1Y ™" 000N TG 0 ) (872)
where J = (ji, ..., jm) is a multi-index such that |J| =1,...,m and j; = {0,1}. For
example, we can have elements like this: 0,050, = 0;-(1,0,1,..00.. Notice there are a
total of (m + 1) - 2™ generators.

These have the following transformation rules:

NE
ejagi:(a) ¢ 10,,, (3.73)

where we stress that, depending on J, many terms might be zero in the transformation
of 6;0., namely all the terms in the sum over 7 such that ¢ € J.

Using Grothendieck’s theorem as above, one can compute the zeroth cohomology group
of the tangent sheaf, whose dimension is:

RO (Tpiim) = (m +2)> = 1+ G0 (3.74)

Notice that (m+2)%—1 is just the number of generators of the Lie algebra associated to
the super group PGL(2|m), which is the supersymmetric generalisation of the ordinary
Moébius group PGL(2,C), the automorphisms group of the projective line P*.
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It is worth to notice the presence of the “correction” 4, 2, which, incidentally, makes its
appearance in the case of the super CY variety P12, This correspond to the presence
of a further global vector field, (locally) given by 61050, € H°(Tp12), which clearly does
not belong to s[(2|2), the Lie algebra of PGL(2|2), as already noticed in [13] and more
recently in [72].

Integrating this global vector field, we get the “finite” version of the automorphism
¢ : P2 — PY2 which is what is called a “bosonisation” in physics; locally it is given
by:

V], (2,01,02) — (2 + 010,01, 0,), (3.75)
Ulv,: (w, @1, 92) > (W — G162, d1, ¢2). (3.76)

Before we go on, it is important to stress that among all the projective super spaces
P*™ _ not only among P'™! - the case of P'? represents, remarkably, the unique
exception: indeed, it is the only case in which the automorphism group is larger than
PGL(n + 1|m, C),* unlike to what stated in [72]. For reduced dimension 1 this excep-
tion has been first observed in [13], page 41.

This and other issues will be the subject of a forthcoming paper, where different meth-
ods to compute the cohomology of projective super spaces in a more general setting
will be introduced and discussed.

As for the deformations, given by h'(Tpim), one finds
A (Tprm) = (m+2) [(m+2) + (m — 4)2" 7] = (m —2)2" " — 1. (3.77)

We can see therefore that P!, together with P'® and the super CY variety P'? are
rigid as they have no deformations, while in the case m > 4, we start finding a non-zero
h!(Tpiim). For instance, for m = 4 we find h'(Tps) = 19. We leave to future works a

careful investigation of the structure of these deformations.

4 A Super Mirror Map for SCY in Reduced Dimension 1

In [80] has been suggested that the puzzle of mirror of rigid (ordinary) CY manifolds
could be solved by enlarging the category of interest to mirror symmetry as to include
also super manifolds, in particular SCY manifolds. Later on, triggered by the pre-
vious [93] and [87], Aganagic and Vafa proposed a path integral argument to obtain
the mirror of Calabi-Yau supermanifolds as super Landau-Ginzburg theories [86]: the
construction is exploited to compute the mirror of SCY manifolds in toric varieties and

4the bosonic reduction of PGL(n + 1|m)
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in particular to compute the mirror of the “twistorial” (actually super) Calabi-Yau P34
[87]. Remarkably, after a suitable limit of the Kélher parameter ¢, the mirror has a
geometric interpretation: it is a quadric in the product space P?13 x P33 and it is again
a SCY manifold.

Being us interested into enlarging the mirror symmetry map for elliptic curves to
a supersymmetric context, here we will apply the construction of [86] in the case of
bosonic dimension equal to 1 and reduced manifold given by P!, that is to the two
SCY’s P'? and WIP’%S In doing that, in contrast with [86], we will not need to take
any limit of the Kahler parameter: a further geometric investigation carried out by
some suitable change of coordinates, shows that P'? is actually self-mirror and it is
mapped to itself. The mirror of the weighted projective super space WIP’E; instead is
not a geometry.
Before we go into the actual computation, we underline that a further, mathematically
oriented, analysis needs to be carried out. Despite the effort in [86], many issues remain
indeed not that clear, such as for example the role of the Kéahler parameter ¢t. It is
indeed a matter of question how to define mathematically and in full generality a super
analog of the ordinary Kahler condition in the supersymmetric context and therefore
how to identify a super Kéhler variety.

4.1 Mirror Construction for P2

Following [86], we construct the dual of the LG model associated to P'2: it turns out
this is given by a o-model on a super Calabi-Yau variety in P!' x P!, which is again
a SCY variety given by P2, In other words, P!> gets mapped to itself!

We will focus on the holomorphic part of the potential, where X, Y; for I = 0,1 are
bosonic/even super fields and 7y, xy for I = 0,1 are fermionic/odd super fields (that
is, the lowest component of their expansion is a bosonic field and a fermionic field
respectively), while ¢ is the Kéhler parameter, mentioned above. This is given by

1 1
We2 (X, Y, 1,€) = / [ I PYiDXDniDx16 (Z(YI - Xp) - t)
I=0

1=0
1
- exp {Z eV e 4 e_X’mXI} .
1=0
By a field redefinition,
Xi = X1+ Yo, Vi =Y+, (4.1)
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the path-integral above takes the following form

/ DY,;DX,DY; DX, f[ DniDx16 (Yo — Xo+ Y1 — X; — 1)
1=0
- exp {e*YO +e Ko 4 €7Y17Y0 + ein*YO + e*X‘)noXo + mxle*XrYO} .
Integrating in Xy, the delta imposes the following constraint on the bosonic fields:
Xo=Yo+ Y1 —Xy) —t. (4.2)

Plugging this inside the previous path integral one gets

1
/ DY, DY DX, [[ DDy exp {e’YO peYom(M=XHt g oTiYo 4 e*XI*YO}
I=0

—Yo—(Y1—X1)

- exp {6 roxo + mxle’Xl’Yo} :

We now perform the fermionic DnyDy, integration. We have that

/DUODXO exp {6_Y0_(Y1_X1)+t770X0} =

_ /DnopxoeYo(Yle)th (14 noxo) = —e Yom(Vi=X1)+t (4.3)
Therefore one gets,

cexp {7 (1 eI e g N e )
Now, e~¥° might be interpreted as a multiplier, and we change coordinates to
e =A, DY, = —A"'DA, (4.4)
therefore the integral reads

- exp {A (1 + e~ M=X0)+t 4 e*Y1 + e*Xl + mxle’fﬁ) } .
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Finally, we change coordinates by redefining the fields as

X o Dxy

(& = T, DXl = - s (45)
1
3 N D
eV = g1y, DY, = _%, (4.6)
1
m = % Dy = D, (4.7)
1

Notice that the Berezinian enters the transformation of the measure! This brings the
path-integral in the following form

Dy, Dx - -
Wepijz = /DA%x—l(mDm)Dxl (ylet) exp {A (1 + ety + 2+ 21y + 771X1)}
1 T
= /DADy1D$1Dﬁ1DX16t exp {A (1 +elyy + 21 + 2y + ﬁ1X1)} ) (4.8)

We can actually throw the factor €', which is not integrated over, in the normalisation
and perform the integration over the Lagrange multiplier A, that constraints the theory
on the following hypersurface

14 21 + zys +10x + e'yy = 0. (4.9)
By redefining the field ¢; = 1 + y; we obtain the more symmetric form
1+ 2y +7x + e (g — 1) = 0. (4.10)
Putting the equation in homogeneous form, we have
P x P15 XY, + X1Y5 + iy + (XY — XoY,) = 0. (4.11)

This is a quadric, call it Q, in P! x P with homogeneous coordinates [ X, : X : 7]
and [570 Y x| respectively, and it is a super Calabi-Yau manifold. In the following we
will drop the tildes and we just call the homogenous coordinates of the super projective
spaces [Xo: X1 :n] = [Xo: Xy : 7] and [V : Vi 1] = [V : Vi 1 x]. We now re-write the
equation for Q in the following form:

Xo((1 = €Yy +€'Yy) + XiYy +nx = 0. (4.12)
If we set

(Yo, Y1) == (1 — €)Yy + €'V (4.13)
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it is not hard to see that the reduced part Q,.q in P! x P! is obtained just by putting
the odd coordinates to zero, as

P! x P' O Xol(Yo, Y1)+ X1V =0 (4.14)

and one can see that Q,.q = P'.
We are now interested into fully identifying Q as a known variety: we observe that as
embedded into P! x P! it is covered by the cartesian product of the usual four open

sets:
Up x Vo ={[Xo: X1 :1n]: Xo#0} x{[Yo:Y1:x]: Yy #0}, (4.15)
Upgx Vi ={[Xo:X1:1n]: Xo#0} x{[Yo:Y1:x]|: Y1 #0}, (4.16)
Uy x Vo={[Xo:X1:m]: X1 #0} x{[Yo:Y1:x]:Yy#0}, (4.17)
Uy xVi={[Xo:X1:n]: X1 #0} x{[Yo:Y1:x]: Y1 #0} (4.18)

Notice that so far we need all of the four open sets to cover Q, for indeed:

QreaN{Xo =0} =[0:1] x[1:0] € Uy x Vp, (4.19)
QreaN{X1 =0} =[1:0] x[1:1—¢e""] €UyxV, (4.20)
Qreg N{Yo =0} =[1:—€] x[0:1] € Uy x V4, (4.21)
QreaN{Xo=X1=1}=[1:1x[e"+1:e' =1 €U x V. (4.22)

We aim to find a suitable change of coordinates that allow us to use just two open sets.
Let us now change coordinates to

Y = (Yo, Vi), Y =¥, (4.23)
X} = X, X=X, (4.24)
n =mn, X =X (4.25)

so that the equation for Q@ becomes
XYy + XY +n'x" =0. (4.26)

Now, changing again the coordinates, by exchanging Y with Y/, and dropping the
primes for convenience, we get the following equation for Q

XoY1 + XYy +nx =0. (4.27)

It is clear that
Qrea N {XO = O} = Qrea N {Yb = O} = [0 : 1] X [0 : 1] e U; X Vi, (428)
QreaN{X1 =0} = QeaN{Y1 =0} =[1:0] x [1:0] € Uy x V. (4.29)
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Therefore, this change of coordinates allows us to cover Q by just two open sets:

Ug = QN (Up x Vo), (4.30)
Vo= 0n (U; x Vi), (4.31)

we can therefore choose the following (affine) coordinates:

X3 Y; n X
U : = — = — 6 = — 9 = — 432
Q z X()’ Uu }/67 0 Xoy 1 %7 ( )
Xo Yo n X

Upon using these affine coordinates, we get the following two affine equation for Q of
Ug and Vg respectively:

UQ P z+u+ 0091 = O, (434)
VQ Pw+v— ¢0¢1 = 07 (435)

which describe lines in C?2. We notice that this two equations are glued together using
the relations

1 1
== == 4.
W=y v=" (4.36)
¢0 = _wGOa ¢1 = ’091. (437)

We now would like to characterise the variety Q by its transition functions in order to
identify it with a well-known one. By the previous equation, we may take as proper
bosonic coordinates u and v, as

Z=—UuU— 0081, (438)
w = —v+ Pop1.

We already know that v = % and ¢, = %1, so we still have to deal with ¢ :
90 90 00(11, — 0001) 90u 00

=0 _ = = =— 4.4
¢0 z u -+ 49061 (U + 9091)(U — 9091) u? u ’ ( 0)

which tells that the variety @ C P! x P! is actually nothing but P*/2.

This shows that the super mirror map proposed by Vafa and Aganagic makes the
supermanifold P'? self-mirror, actually it is mapped to itself. This goes along well
with what happens in the case of elliptic curves: an elliptic curve is mirror of another
elliptic curve.
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4.2 P as a N =2 Super Riemann Surface

We recall that a N = 2 super Riemann surface is, by definition, a 1|2 complex su-
permanifold M such that the super tangent sheaf 73, has two 0|1 subbundles D; and
Ds, locally generated by vector fields Dy, Do that are integrable, i.e. D? = fD; for
some odd function, and D; ® Dy, Dy, Dy generate Ty, at any point. The reader may
look into [81] and [50] for details and the more recent articles [82] and [83] for further
developments and some physical interpretations.

We now show that P!? is indeed a N = 2 super Riemann surface. In order to find
the needed 0|1 line bundles D; and D, we adopt the method envisaged in [50] on page
107, that is we find two maps p; : P'? — X; and p, : P — X,, with Xy, X, two
suitable 1|1 supermanifolds, and will define D; as the sheaf kernel of the differential
dp; : Tpii2 — D Tx,. These two maps are immediately available from the model of P2
contained in P'" x P'I* found in the previous section, when we computed the mirror of
P'2. Indeed we can set X; = X, = P!I' and the map p; equal to the restriction of the
i-th projection m; : P x P — PU to P2, To give explicit local calculations of the
vector fields Dy, Dy that generate the line bundles Dy, Dy and to show that they have
all the required properties, we can use the equations (4.34) and (4.35) of the open sets
Ug and Vg as sub-supermanifolds of A%?. For example from the equation

4 —|— u —I— 9001 = O
in the open affine A?? ¢ P!I' x P! with coordinates z, u, 8y, 61, we see that
p1(27u760791) = (2760) (441)
p2(z7u700791) - (u,@l). (442)

Then D; has sections given by those vector fields a0, + 50, + Y0y, + 0y, that evaluate
to 0 on the elements z, 6y, z + u + 0pf;. Then o =~ = 0 and g = d6,. They are the
multiples of

Dy = 0y, + 6p0,.

Similarly one finds that the vector field
Dy = 9, — 010,

generates all the vector fields on Ug that vanish on u, 61, z 4+ u + 6y6;. Since D; and
D5 vanish on z + u + 6y, they are tangent vector fields on Ug that by construction
generate the kernels Dy and D, of the differentials dp; and dps. The reader can easily
check that D? = D3 = 0 and that

{D1,D3} = D1Dy + DyDy = 0, — 0,
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and this latter is equal to d, when evaluated on an element of Op,. As u is a bosonic
coordinate for Ug, we see that {D;, Do}, D1, Dy generate Tpi2 at any point of Ug.
Similar formulas are obtained for the open V.

1]1

)]

In the case of weighted projective super space, we need to evaluate the following po-

4.3 Mirror Construction for WP

tential in order to find the dual theory:

W i
WECP (1 112

- / (DY, DY) DXDnDx6 (Vi + Vs — 2X — 1)
cexp{e™ +e e X (1+nx)}. (4.43)

Performing the integration in the fermionic variables, yields

Wientlt
WCP(1,1|2)

= /(DYlDYz)DXe‘Xé (Y14 Yy —2X — t)
cexp{e M +e 4 e}, (4.44)

Now we can integrate the field X. Up to factors to throw away in the normalisation,
the delta gives:
W

11
WEP (1 1)2)

= / (DY\DYa)e /22 2 exp e 4 e 4 ¢ MI/ATR/2H2L 0 (445)

We then define the new variables

y; = e V2 i=1,2. (4.46)

The measure changes as follows —%y[ Dy, = DY;, therefore, up to factors in the
normalisation one gets:

Wwwalm) = /(Dleyg) exp {yf + 5+ et/leyg} . (4.47)

We therefore see that in the case of WIP’%S we do not get directly a geometry. However,
we can further introduce the new variables A and z defined by

Y1 = Yo, ?/g = A, (4-48)

so that, omitting an inessential constant factor, we get

W i
WECP (1 112

= /(Da:D/\) exp{A (2 +1+ et/2x)} : (4.49)

Thus, A is a multiplier and the geometric phase reduces to two points parametrized by
t. This is a zero dimensional bosonic model in accordance with the results of Schwarz
[84].
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5 Conclusions

In the present paper we have investigated some basic questions about super Calabi-
Yau varieties (SCY’s). We have introduced a very general definition of a SCY, which
contains a large class of varieties, including the usual Calabi-Yau manifolds and several
projective super spaces. We then restricted our analysis to the SCY with complex
bosonic dimension 1, proving that - beyond the usual elliptic curves - it contains the
class of N = 2 SRS’s and the projective super spaces P'? and WIP’%; As a byproduct
of the mirror map construction, we realised at the very end that P' is indeed a N = 2
SRS: this provides a concrete realisation of a N = 2 SRS by a map - the mirror map
- into the cartesian product of two copies of P!, A comment is in order here. In the
present paper we have referred to [50] for the definition of N =2 SRS: in this case the
proof of triviality of the Berezinian bundle is given in [82]. Nevertheless there exists a
more general definition of N = 2 SRS given in [81]. To our best knowledge, it is not
completely obvious that the two definitions do actually coincide: indeed the definition
of N =2 SRS in [81] includes the definition in [50] and, as a consequence, this should
imply that all the N = 2 SRS’s in [50][82][83] are holomorphically split. Still, we feel
like this topic deserve some more study.

Next, we have computed the super cohomology groups, which include integral forms,
showing that for extended supersymmetric varieties a puzzle arises: when the picture
number is not maximal nor vanishing, then the corresponding Cech cohomology groups
are infinitely generated. Surely, this result will deserve a much deeper investigation; for
instance, it would be interesting to understand if it enjoys a geometrical interpretation.
Anyway, remarkably, we have shown that this sort of pathology is cured whenever
one considers the de Rham cohomology of superforms, which is always finite, even
when the corresponding group in Cech cohomology is infinite-dimensional. The same
phenomenon occurs in arbitrary dimension n|m as we have seen by explicitly computing
the de Rham cohomology of P*™. The computation of the sheaf cohomology also
allowed us to determine the automorphisms of P2 and WIP’%;, which, on the other hand,
are rigid manifolds. It is interesting to note that for SCY with fermionic dimension
larger than 1, the automorphism supergroup is larger than the superprojective group.
A more systematic analysis of the automorphism group will be presented in a deserved
paper. Finally, we have applied the mirror map defined in [86], showing that P'? is self-
mirror (and, indeed, mapped to itself), whereas WIP’%; is mapped to a zero dimensional
bosonic model.

Even though we have chosen to work with an apparently elementary example, we see
that highly non trivial aspects appear and some questions remains unsatisfied. For
example, we have not been able to provide a suitable definition of Kéhler structure (or
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Kahler moduli space) for SCY varieties. On one hand, SCY’s of bosonic dimension
n = 1 having P! as reduced space, are simple enough in order to allow a complete
analysis and shed some light on new interesting properties of supermanifolds; on the
other hand, they are too simple for providing a rich list of examples hinting to suitable
solutions to the unanswered questions. The natural prosecution would then be to
include properly the whole class of N = 2 super Riemann surfaces, that are indeed
SCY’s having bosonic dimension 1, and, more interestingly, to analyse SCY’s with
bosonic dimension 2, that is super K3 varieties.

Despite the results discussed above, we still cannot take our definition of SCY manifold
as a definitive one. At the moment, indeed, the triviality of the Berezinian bundle
alone appears as a provisional condition, maybe allowing for too many varieties to
enter the class. From this point of view, our definition might be considered as a pre-
SCY condition. In this context, one might wonder whether the existence of a Ricci-flat
metric is a natural condition to add, but in some meaningful example, such as W]P’ég,
it does not even exist. This may suggest that Ricci-flatness is not the natural condition
to add to the triviality of the Berezinian bundle. These and other topics are currently
under investigation.
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A Super Fubini-Study Metric and Ricci Flatness of P2

We take on the computation of the super Ricci tensor for P'? starting from the local
form, say in U,, of the Kahler potential, given by

K° = log(l +zZ+ Qle_l + 629_2). (Al)

This can of course be expanded in power of the anticommuting variables as in [80], but
it is not strictly necessary to our end.

In the following we will adopt this convention: we use latin letters i, j, ... for bosonic
indices, Greek letters «, 3, ... for fermionic indices and capital Latin letters A, B, ...
will gather both of them. The convention on the unbarred and barred indices goes as
usual.

The holomorphic and anti-holomorphic super derivatives are defined as follows (in the
local patch):

a = azdz + 39ad9a, 5 = agdz —+ a@ade_@, (A2>

where a,@ = 1,2: in other words we have 0 = 04dX* and 0 = aAd)’(f‘ with
dX* = (dz|dby, db;) and dX* = (dz|df, d,). Tt is important to stress that while the
holomorphic derivative 0 acts as usual from the left to the right, the anti-holomorphic
derivative 9 acts from the right to the left instead (even if it is written on left of the
function acted on). We also stress that 9 and 0 behave as a standard exterior derivative
d on forms. As such the derivatives “do not talk” at all with the forms and only acts
on functions, while the forms in @ or @ are moved to the right and in turn do not talk
to the functions acted by the derivatives. This means that, for example, considering
the local expression for a (holomorphic) 1-form acted on by 0, we will find:

O(f(2|61,6,)d6,) = (05 f (2|01, 60,))dXPdb,. (A.3)

Coherently, we will never consider expression of the kind dX? f(2]0)df;, so that we will
never have to commute or anti-commute a form with a function to get & f(z|0)dX B db;:
forms and functions just don’t talk to each other and the form in 0 and 9 are moved
the right.

We now define the super Kahler form as

Of == 00K*® or analogously Q° = aA(?BKSdXAd)_(B. (A.4)

The super metric tensor H? 5 can then be red out of it, similarly to the ordinary complex
geometric case:

H' = 0405K°. (A.5)
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We now deal with the derivative of the super Kahler potential K°. Remembering that
0z acts from the right, it is straightforward to check that:

zdZ + Hldél + ezdéz
1 +zz + 610_1 + 620_2‘

OpK® = 0glog(1+ 2z + 0,0, + 050,) = (A.6)

We now have a product of functions: since we are dealing with anti-commuting objects
we need to make a careful use of the generalized Leibniz rule

o(f - g) = (0f) - g+ (=1)2WIf . (9g). (A7)

We will put f = 2dz + 0,d;, + 02df and g = 1/(1 + 22 + 6,0, + 620,) in the following
computation.
While the first bit of the 0 derivative is pretty straightforward and simply gives

1

0 N = =
( f) g 1+Z§+91¢91+02‘92

the second contribution need some extra care: to avoid errors, we may split the deriva-
tives in 0 by linearity, bearing in mind the non-trivial commutation relation in the
generalised Leibniz rule above.

We have the following contribution from (—1)PIf1f . (9g):

z _ 91 — 02 —
| ————— | dzd | —————— ) dzdf [ ————=—— | dzdf
0 (1+|zl2+92) o (1+lzl2+02) A0 (1+|z|2+92) .

. —|Z’2d2d2 — Hlfdzdél — GQZdZdQ_Q
(1+ |22 + 62)?

(A.9)

where we have written 62 := 6,0, + 650,. Notice, incidentally that the minus signs
above do not come from the commutation relation, but just from the derivative: the
commutation relation gives contribution when 0y, is involved

z _ 01 — 02 —~
— =) dbyd — L) d6,dd — 2 ) db,df
I (1+|z|2+02) 1d= + O, (1+|z|2+92> 191+ O, (1+|z|2+02) 1

—291d91d2 + 91§1d91d9_1 + 92§1d01d§2
- 2 , (A.10)
(1+ |22+ 62)

& = 81 = 02 —
Opy | —————= | dbodz + Oy, | ——————5 | dO2db; + Oy, | —————= | dB2dO
‘92(1+|z|2+02) 202 92(1+\z|2+92) 2001 % 92(1+|z|2+92) S
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—z92d62d2 + QQéldGQdél + 92§2d92dé2
(1+ |2]2 4 62)° '

(A.11)

Putting together all the pieces we have:

1
(14 |22+ 62)

DOK*® =

5 [(1 +0%)dzdz + (1 + |2|* + 2610, + 090,)d6,d0,+

+ (14 |2]* + 610, + 20505)d02d0y — 6, Zd2d6,+
— 022d2d02 — z9_1d01d2 — z§2d92d2 + Qge_ld@lde_g + 9102d92d6’_1 s

so the supermetric reads

1+ 62 —0,z —0y%
Hiyp= | —200 |1+ [2* + 26010, + 650, 6,6, . (A12)
—Zég 91@2 1+ |Z’2 + 91@1 + 292@2

Using the metric one can generalise the expression for the Ricci tensor one has in
ordinary complex geometry, by substituting the determinant with the Berezinian:

Ricyp = 0405 log (Ber H?) . (A.13)

So the first thing we need to evaluate to prove the (super) Ricci flatness of P'? is the
Berezinian of the super metric above.

We recall that in general, considering a generic square matrix X valued in a super
commutative ring, we have

Ber(X) = det(A4) det(D — CA™'B) (A.14)

where A, B,C, D are the blocks as enlightened above. Notice that A and D are even
while B and C' are odd.

We underline that in our case, to make sense out of the expression above we have to
look at CA™'B as Kronecker product, as follows:

CA'B— A'.C®B, (A.15)

A~ consisting of a single even element.
We start from the computation of A™1 - C' ® B. We have:

1+ 62 -t
Al = Al
(<1+rz|2+92>2) ’ (4.16)
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o 1 —261
C= Aoy (—ze‘z) ’ (A.17)

1 _ _
B = (1 T ‘2’2 n 92)2 (—912, —922) . (A18)

This leads to:

1 —20
-1 . _= —1 - z - z
A7 C®B (1+92)(1+|2|2+92>2(_292)(8)( 01z, —0,2)
’Z|2 610_1 920_1
_ (A.19)
2 2 2)2 _ _
T+ +PP \ 0 s

where the overall minus sign comes from the commutation relation of the theta’s. It is
actually convenient to multiply (1 + 6%)~! out: first of all we observe

1

where 6* := 6,0,0505. So the product above becomes:

019_1 — 94 ‘928_1

2
AV CoB——— (A.21)
1 2 | p2)2 _ _
R Y N
Therefore one has the following expression:
D—-CA'B= !
(1422 4 62)2
L+ |22+ (2 + |2]2)010, + 0505 — |2|?0* (1+ |2]?)020,
(1 + |Z|2)91§2 1+ |Z|2 + 9191 + (2 + |Z|2)92é2 — |Z|294

We now need to evaluate the determinant of the square matrix above:

det(D—CA™'B) = 1+ |22+ (1 + |20,

1 [(
(1 + |22+ 62)*
+ (14224 |2*)0202 + (1 + [2)*)(2 + [2]*)010, + (1 + |2|*)020,+

+ 0"+ (24 |2)%0" — 2|22(1 + |2)2)0" + (1 + |2)*)%0* (A.22)
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where we have isolated on different lines the zeroth, quadratic and quartic contribution
in the theta’s. We can simplify a little the expression above to get:

(I + |2
(14 |2]2 + 62)*

det(D — CA™'B) = LA e

[1 + (A.23)
To evaluate the full Berezinian we need to invert the determinant we just got. This

yields:

1
det(D — CA'B)

342y 642 2!
1+ [z[? (1+2[*)?

= (L+ [P+ 601 o). (a20

Putting together the pieces, we can evaluate the full Berezinian:

Ber(H*) =

(1+ [2|> + 0%)%(1 + 6?) [1_92_ 2 s 6—|—4|z|2+|z|494] _
(1+[2[*) 1+ |z[? (1+[2[*)? -

Remembering that Ric,z = 0405 log(Ber(H?)), since we have found that Ber(H?®) = 1,
this leads us the the conclusion:

Ric,z = 0. (A.25)

P'? is Ricci-flat and therefore it is a super Calabi-Yau manifold in the strong sense.
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