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FOREWORD   

The present study focus attention on “Aspects of cellular iron homeostasis: NRAMP transporter 

function and eryptosis” combining aspects of both basic (first chapter: “Iron transporters NRAMP1 

and NRAMP2 from Dictyostelium discoideum as a model of cellular iron homeostasis”) and applied 

physiology (second chapter: “Effects of xenobiotics on the suicidal death of erythrocytes”). Iron 

plays a central role in a large number of essential cellular functions but it is also potentially toxic 

being able to generate reactive oxygen species (ROS), that can damage DNA, phospholipids and 

proteins. Thus, it is of utmost importance for both the cells and the organism to maintain iron 

homeostasis ensuring iron supply but preventing accumulation of excess iron. SLC11 and SLC40 

families are involved in iron transport and play an important role in the maintenance of iron 

homeostasis. The SLC11 family is comprised of two members, SLC11A1 and SLC11A2. SLC11A1 is 

expressed in the phagolysosome of macrophages and in the tertiary granules of neutrophils. It plays 

an important role in innate resistance against bacterial infection. SLC11A2 (also known as DMT1) is 

a key player in iron metabolism and is expressed in the proximal duodenum, immature erythroid 

cells, brain, placenta and kidney. Intestinal iron absorption is mediated by SLC11A2 at the apical 

membrane of enterocytes and is followed by basolateral exit via SLC40A1. D. discoideum represents 

a model for the study of cellular iron homeostasis, showing subcellular localization of iron 

transporters resembling that of macrophages. Moreover, Dictyostelium cells resemble 

macrophages for their ability to engulf bacteria and death cell, to discriminate between self and 

non-self and to fight potential pathogens. The Dictyostelium genome shares with mammals many 

genes regulating iron homeostasis; in particular, D. discoideum expresses the ortholog of SLC11A1 

transporter in phago-lysosomes and that of SLC11A2 in the contractile vacuole. Mutations that 

reduce DMT1 activity in human patients are associated with a severe defect in erythroid iron 

utilization and are correlated with several diseases. DMT1 deficiency leads to an impaired erythroid 

differentiation hallmarked by accumulation of immature forms of erythroblast, accelerated death 

of erythroid precursors and a decrease survival in the erythroid progenitors. Thus, iron deficiency is 

associated with shortened life span of erythrocytes. The accelerated clearance of erythrocytes can 

be attributed to excessive hemolysis or induction of programmed cell death of erythrocytes, called 

eryptosis. Eryptosis is fostered by an increase in cytosolic calcium; iron deficient erythrocytes when 

exposed to stress conditions has been demonstrated to activate Ca2+-permeable cation channel 

allowing Ca2+ entry. Ca2+ entry through this channels leads to activation of a scramblase with 

subsequent phosphatidylserine exposure, and to activation of the Gardos channels leading to KCl 

loss  and cell shrinkage.  
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1. ABBREVIATIONS 

ABCB transporter: subfamily of ABC transporters (ATP-binding cassette transporters) 

Bcg: bacille Calmette-Guerin 

cDNA: complementary deoxyribonucleic acid 

cRNA: complementary ribonucleic acid (in vitro synthesis) 

CV: contractile vacuole 

DCT1: divalent cation transporter 1 

Dcytb: duodenal cytochrome b 

DMT1: Divalent Metal Transporter-1 

DNA: deoxyribonucleic acid 

dNTPs: deoxynucleotides 

EDTA: ethylenediaminetetraacetic acid 

EGTA: glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid  

Hepes: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HH: hereditary hemochromatosis  

Mes: 2-(N-morpholino)ethanesulfonic acid 

MnTH: divalent metal cation transporter 

NRAMP: natural resistance-associated macrophage protein 

NRAMP1: natural resistance-associated macrophage protein 1 

NRAMP2: natural resistance-associated macrophage protein 2 

PCR: polymerase chain reaction 

rDMT1: rat DMT1 

RBCs: red blood cells 

ROS: reactive oxigen species 

SCL11A1: solute carrier 11A 

SD: standard deviation 

SEM:  standard error of the mean  
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SLC11: solute carrier family 11 

SLC11A1: solute carrier family 11, Member 1 

SLC11A2: solute carrier family 11, Member 2 

SLC40: solute carrier 40 

SLC40A1: solute carrier 40, Member 1 

Smf: family of yeast metal ion transporters 

Smf1 : family of yeast metal ion transporters 1 

Smf2: family of yeast metal ion transporters 2 

Smf3: family of yeast metal ion transporters 3 

SOFA: single oocyte fluorescence assay 

TfR: transferrin receptor 

TMA: tetramethylammonium 

TMDs: transmembrane domains 

V-ATPase: vacuolar-type H+-ATPase 
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2. ABSTRACT 

Iron plays a central role in a large number of essential cellular functions but it is also potentially 

toxic being able to generate reactive oxygen species (ROS). Dictyostelium discoideum harbours 

several iron genes with the exception of transferrin, ferritin and TfR [1, 2] and represents a model 

for the study of cellular iron homeostasis showing subcellular localization of iron transporters 

(NRAMP) resembling that of macrophages. The ortholog of NRAMP1 transporter is expressed in 

phago-lysosomes and is involved in resistance to bacterial infection; that of NRAMP2 is located in 

the contractile vacuole and contributes synergistically with NRAMP1 to regulate iron homeostasis. 

To better understand the function of Dictyostelium NRAMP proteins, they were expressed in 

Xenopus laevis oocytes by cRNA injection and functionally tested by radiochemical techniques and 

by two novel assays based on metal-induced changes in calcein fluorescence. To increase surface 

localization at the plasma membrane, the N- and C- terminus of both proteins were replaced with 

the corresponding regions of murine transporter DMT1, that is highly expressed at the plasma 

membrane of X. laevis oocytes [3]. Radiochemical assays showed that NRAMP1 induced iron 

transport is proton-dependent and it is inhibited by Mn2+, Cd2+, Co2+, Ni2+, Cu2+ and to a lesser 

extent by Zn2+. In calcein-injected oocytes expressing NRAMP1 and analyzed using confocal 

microscopy, Fe2+, Mn2+ and but not Fe3+ or Cu2+ led to fluorescence quenching due to their transport 

and accumulation into the cytoplasm of the oocytes. The novel assay SOFA showed that also Co2+ 

induced calcein quenching due to its transport into the oocytes. To conclude, Dictyostelium 

NRAMP1 is an electrogenic proton-dependent divalent metal ion transporter with a cation 

selectivity comparable to that of rat DMT1 [4]. NRAMP1 colocalizes with V-ATPase in the 

membrane of phago-lysosomes. Therefore, it exploits the proton gradient maintained by the V-

ATPase to mediate the efflux of iron and manganese from the phago-lysosomes to the cytosol after 

bacterial engulfment. Preliminary studies showed that D. discoideum NRAMP2 can transport 

ferrous iron at neutral pH and it appears independent from proton gradient, nevertheless its 

transport activity is strongly reduced compared with that observed for NRAMP1. The transport 

activity of NRAMP2 is Na+-dependent. 

Keywords: NRAMP1, NRAMP2, iron homeostasis, Xenopus laevis oocytes 
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3. INTRODUCTION  

3.1 NRAMP family  

Metal ions are involved in many metabolic processes in every living cell. On the other hand, these 

essential nutrients are toxic at elevated levels. For this reason, shortage or excess in metal ions, as 

a result of genetic disorders as well as malnutrition, may lead to death or severe diseases [5]. Iron 

plays a central role in a large number of essential cellular functions but it is also potentially toxic 

being able to generate reactive oxygen species (ROS), that can damage DNA, phospholipids and 

proteins; therefore, it is of utmost importance, for both the cells and the organism, to maintain iron 

homeostasis ensuring iron supply and preventing accumulation of excess iron. Abnormal iron 

uptake has been implicated in hemochromatosis, anemia, atherosclerosis, and in neurological 

diseases such as Parkinson's, Alzheimer's, Huntington's, Friedreich's ataxia and Pica [5-14]. To 

prevent such disorders, cells must maintain metal ion homeostasis through highly regulated 

processes of uptake, storage and secretion [5]. The NRAMP family of metal ion transporters is 

involved in the maintenance of ion homeostasis and is conserved in different organisms, from 

bacteria to human [2]. In prokaryotes, MntH family (manganese transporters) is related to the 

NRAMP proteins [15]. Smf1 and Smf2 are two NRAMP homologs in yeast and they are manganese 

transporters, while Smf3 probably transports iron from the vacuole to the cytosol [16, 17]. In plants 

were found NRAMP homologs which play an important role in seed germination [2, 18, 19]. In 

Drosophila the Malvolio protein regulates manganese and ferrous iron  homeostasis [20-22]. In 

mammals, the SLC11A family includes two genes, NRAMP1 (SLC11A1) and DMT1 (SLC11A2, 

formerly NRAMP2). NRAMP1 is responsible of the metal transport across the phagosomal 

membrane of macrophages, and defective NRAMP1 causes sensitivity to several intracellular 

pathogens. DCT1 (or DMT1 or NRAMP2) can transport metal ions at the plasma membrane of cells 

of both the duodenum and in peripheral tissues, and defective DCT1 may lead to anemia [5, 23]. 

Functional characterization of Smf1 and mammalian DMT1 in Xenopus laevis oocytes have shown 

that they mediate proton-dependent metal ion transport [24, 25]. DMT1 is an electrogenic 

symporter of several metals and protons and exploits the proton gradient which gives the energy 

required for its activity [4, 5, 24]. Mammalian NRAMP1 transport iron, manganese and copper 

together with protons, but the directionality of transport has long been a matter of debate [5, 26, 

27].  
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3.2 Mammalian iron transporters: families SLC11 and SLC40 

The SLC11 family is comprised of two members, SLC11A1 and SLC11A2. SLC11A1 is expressed in the 

phagolysosome of macrophages and in the tertiary granules of neutrophils. It plays an important 

role in innate resistance against bacterial infection. SLC11A2 is a key player in iron metabolism and 

is expressed in the proximal duodenum, immature erythroid cells, brain, placenta and kidney [23]. 

SLC11A2 also mediates iron transport into the cytosol across the membrane of endocytotic vesicles 

of the TfR-cycle. Intestinal iron absorption is mediated by SLC11A2 at the apical membrane of 

enterocytes and is followed by basolateral exit via SLC40A1 [23]. Approximately 80% of the iron 

comes from the breakdown of hemoglobin following macrophage phagocytosis of senescent 

erythrocytes. Both SLC11A1 and SLC11A2 play an important role in macrophage iron recycling. 

SLC40A1 is the unique member of the SLC40 family and is involved in cellular iron efflux. SLC11A1 

and SLC11A2 share 66% identity and 82% similarity at the amino acid sequence level [23]. SLC11 

transporters are transmembrane proteins that exploit the H+-electrochemical gradient as the 

driving force necessary for their transport activity. They usually transport divalent metal ions, such 

as Mn2+, Fe2+, Cd2+, Co2+, Zn2+, Ni2+, and Pb2+ [3, 5]. It has been shown that mammalian members of 

the SLC11 family have 12 transmembrane domains (TMDs) [28] with a conserved hydrophobic core 

of 10 TMDs [29, 30] that plays an important role in H+-dependent metal transport [31, 32]. A 

conserved metal transport signature was found within the cytoplasmic loop between TMD 8 and 9. 

Furthermore, a DPGN motif between TMD 1 and 2 is conserved across species and is essential for 

the transport function of these proteins. The loop between TMD 7 and 8 has been shown to be 

extracellular [33, 34] and the presence of a glycosylated loop in this region is conserved in almost 

all sequences [23].  

 

3.2.1 SLC11A1: Natural resistance-associated macrophage protein-1 (NRAMP1)  

SLC11A1, also known as NRAMP1 (Natural resistance-associated macrophage protein-1), was 

identified in 1993 by positional cloning of the mouse chromosome 1 locus Bcg/Lsh/Ity [23, 35]. 

NRAMP1 is a 90-100 kDa integral transmembrane protein which is expressed in the phagosome of 

macrophages and in tertiary granules of neutrophils. It plays an important role in mouse innate 

resistance to bacterial infection. Naturally occurring or experimentally induced mutations at 

NRAMP1 cause susceptibility to infection by several intracellular parasites, including Salmonella, 

Mycobacterium, and Leishmania [23, 36-38]. Furthermore, polymorphic variants of NRAMP1 are 

associated with human susceptibility to tuberculosis and leprosy [33, 39, 40]. Mouse susceptibility 

to bacterial infections is associated with a single loss of function mutation at position G169D in the 
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predicted TMD 4 of the NRAMP1 protein [41]. Schematic secondary structure representation of 

NRAMP1 is shown in Fig. 1 [26].  The main function of this protein seems to be the regulation of 

intraphagosomal metal concentration, in particularly of iron and manganese [38]. During the 

maturation process of the phagosome, NRAMP1 is recruited to the phagosomal membrane after 

bacterial engulfment and colocalizes with the lysosomal-associated membrane protein 1 (LAMP1) 

[23]. Moreover, it is present in gelatinase-positive tertiary granules of neutrophils [42]. Mammalian 

NRAMP1 transports iron, manganese and copper together with protons, but the directionality of 

transport has been a matter of debate [5, 26, 27]. 

 

 

Fig. 1: Schematic secondary structure representation of SLC11A1 [23].  SLC11A1 representation shows the 
consensus transport signature (blue) and the DPGN motif (green). The amino acid mutated that leads to 
susceptibility to infection in mice is indicated in red. The N- and C-termini are denoted by NH2 and COOH. The 
grey cylinders indicate the proposed transmembrane regions. 
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3.2.2 SLC11A2: Divalent metal transporter-1 

SLC11A2 is also known as DMT1, DCT1 and NRAMP2. This protein was cloned from a rat duodenal 

cDNA library prepared from rat mRNA fed with a low-iron diet using the Xenopus oocytes 

expression system [23]. NRAMP2 transports divalent metal ions and is involved in iron absorption. 

DMT1 is the major iron transporter at the apical membrane of intestinal cells, enabling dietary iron 

uptake in the duodenum [2]. Another isoform is expressed at the cell surface and in endosomes 

and facilitates transferrin-independent iron uptake in most peripheral tissues [2, 3, 23, 27, 42, 43]. 

Mutations in this gene are associated with hypochromic microcytic anemia with iron overload [44-

46]. Altered DMT1 expression may lead to iron deposition in neuronal cells and neurodegenerative 

disorders [47, 48]. Multiple transcript variants encoding different isoforms have been found for this 

gene. It has been shown that the NRAMP2 gene is mutated (G185R) in mk mice and Belgrade (b) 

rats, both of which display a severe iron deficiency associated with reduced intestinal iron uptake, 

impaired iron acquisition by peripheral tissues and microcytic anemia [23, 46]. Moreover, NRAMP2 

represents the major, transferrin-independent, intestinal iron uptake system of mammals [38]. 

NRAMP2 is an electrogenic symporter of a variety of metals and protons [4, 5, 24]. Schematic 

secondary structure representation of NRAMP2 is shown in Fig. 2 [23].  
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Fig. 2: Schematic secondary structure representation of NRAMP2 [23].  NRAMP2 representation shows the 
locations of known human mutations resulting in microcytic anemia (pink), the DPGN motif (green), 
consensus transport signature (blue), and residues directly involved in the transport mechanism of SLC11A2 
(yellow). The N- and C-termini are denoted by NH2 and COOH. The grey cylinders indicate the proposed 
transmembrane regions. 

 

3.2.3 SLC40A1: Ferroportin 1 

SLC40A1 is also known as Ferroportin1, Ireg1 and MTP1. It was described as an iron efflux protein in 

enterocytes in 2000 [49-51]. SLC40A1 is the unique member of the SLC40 transporter family. The 

human SLC40A1 gene encodes a protein of about 62 kDa. SLC40A1 is a highly conserved protein 

with 90-95% homology among human, mouse and rat orthologs [51, 52]. Fig. 3 shows the proposed 

membrane topology of ferroportin based on the model of Liu et al. (2005) [53, 54]. Iron appears to 

exit cells in a unique common pathway that generally involves SLC40A1. SLC40A1 is expressed is 

several tissue, in particular duodenum (basolateral portion), macrophages, liver Kupffer cells, 

placenta and kidney. It plays a critical role in body iron homeostasis [23, 51, 55]. Type IV hereditary 

hemochromatosis (HH) is also called “ferroportin disease” and is the result of mutations in 

SLC40A1. Furthermore, it has been demonstrated that SLC40A1 levels may decrease in malignant 

tissue from breast cancer patients and in malignant breast cancer cell lines [56]. The complete loss 
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of SLC40A1 expression was found to be lethal in mammals [50]. Recently, it has been shown that 

SLC40A1 is also a manganese transporter and not only an iron transporter [57-59]. 

 

 

 

 

Fig. 3: Schematic secondary structure representation of ferroportin [23]. Highlighted circles indicate the 
locations of human mutations that result in iron overload disease (red), amino acid substitutions that 
interfere with hepcidin binding (green), and hepcidin-induced ferroportin internalization (orange) and 
degradation (blue). The N- and C-termini are denoted by NH2 and COOH. The grey cylinders indicate the 
proposed transmembrane regions. 

 

3.3 Systemic iron homeostasis 

Iron is an essential element for almost all living organisms and it participates in a wide variety of 

metabolic processes, including oxygen transport, DNA synthesis and electron transport [60]. 

Because it may accept or donate electrons, free iron is highly reactive and toxic [61]. Iron is 

potentially toxic because it may foster ROS production and the generation of highly reactive 

radicals through Fenton reaction [62, 63]. Disorders of iron metabolism are among the most 
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common diseases of humans, ranging from anemia to iron overload and possibly to 

neurodegenerative diseases [60]. Thus, iron concentration in body tissues must be finely regulated 

in order to avoid several diseases. Proteins may contain iron in the prosthetic form of iron-sulfur 

clusters or heme, or it can be directly coordinated by amino acid side chains, for example histidine, 

glutamate, aspartate and tyrosine. Iron-containing proteins can carry or store oxygen (for example 

hemoglobin or myoglobin). They may catalyze metabolic and antimicrobial redox reactions 

(cytochromes, ribonucleotide reductase, nitric oxide synthase, NADPH oxidase, myeloperoxidase) 

and play an important role in iron transport or storage (transferrin, lactoferrin and ferritin) [61]. 

Iron-containing proteins are essential for energy metabolism and play a role in signaling pathways 

as well as host defense [61]. The average adult human contains  3-4 g iron, most of which (2-3 g 

iron) is distributed in the haemoglobin of RBCs and developing erythroid cells and serves in oxygen 

transport [61]. Iron is also present in macrophages (up to 600 mg), whereas excess body iron is 

stored in the liver [64, 65]. The liver and the spleen are iron-rich tissues where iron is stored in 

macrophages and hepatocytes in a specialized cytoplasmic iron storage protein, called ferritin [61]. 

Iron balance is maintained by the control of dietary iron absorption in the duodenum (Fig. 4). 

Dietary iron is predominately present in the duodenum as heme bound iron or non-heme ferric 

iron [23]. Iron uptake involves the reduction of Fe3+ in the intestinal lumen by duodenal 

cytochrome b (Dcytb) before being transported across the intestinal epithelium by DMT1 [61]. 

Transepithelial iron transport is completed when Fe2+ is exported across the basolateral membrane 

into bloodstream via ferroportin [23]. Fe2+ is oxidized by hephaestin and Fe3+ is then bound to the 

serum iron-transport protein transferrin [61]. It is an iron-binding blood plasma glycoproteins that 

control the level of free iron in biological fluids and regulates also tissue iron transport for 

utilization and storage. Iron is deposited in liver and cells of the reticuloendothelial system. 

Transferrin receptor-1 (TfR1) is involved in cellular iron uptake. Iron released from the transferrin-

receptor complex into the endosomes is transported out of the phagosome to the cytosol by 

SLC11A2 [42, 43, 46]. Ferritin may bind most intracellular iron for storage.  
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Fig. 4: Intestinal iron absorption [23]. 

 

 

The total iron content of transferrin may undergo daily turnover to sustain erythropoiesis and the 

transferrin iron pool is replenished by iron recycled from senescent RBCs and by dietary iron. 

Macrophages play an important role in body iron homeostasis as the main iron supply for 

erythropoiesis derives from the iron recycled by these cells after phagocytosis of senescent 
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erythrocytes [38, 66]. This process is achieved by macrophages of the spleen, bone marrow and 

also in the Kupffer cells. Thus, senescent RBCs are cleared by macrophages, which can metabolize 

haemoglobin and haem, and release iron into the blood flow [61]. It has been shown that NRAMP2 

is associated with erythrocyte-containing phagosomes [38]. Iron released from erythrocytes 

degradation is transported out of the phagosome by NRAMP2 [23] (Fig. 5). Moreover, NRAMP1 has 

been suggested to be involved in metal export from phagosomes to the cytosol. Iron transported to 

the cytosol could be used for metabolic purposes, stored in ferritin or transported out of the cell by 

ferroportin [23]. Macrophages lacking both NRAMP1 and DMT1 show reduction 

in iron recycling efficiency [67]. NRAMP1 is involved in iron recycling during conditions of increased 

erythrophagocytosis [23, 38]. 

 

 

 

 

Fig. 5: Macrophages iron transport (NRAMP1 and NRAMP2) [23]. 
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3.4 Dictyostelium NRAMP proteins 

Dictyostelium discoideum is a forest soil-living amoeba belonging to the phylum Amoebozoa and it 

is exceptional in its ability to alternate between unicellular and multicellular forms (Fig. 6) [1, 68]. In 

particular, Dictyostelium cells proliferate as solitary cell until bacteria are consumed. Many 

prokaryotic species are present in the forest soil and they can be used as food for this social 

amoeba [1]. Starvation triggers a change in life cycle, forcing Dictyostelium cells to gather into 

aggregates to produce a multicellular organism, called “slug” [1]. The slug gives rise to the fruiting 

body composed of a slender stalk bearing on the top a ball of fully differentiated spores [69]. 

 

 

Fig. 6: Dictyostelium discoideum (life cycle) [68]. 

 

The social amoeba Dictyostelium discoideum has been particularly useful for the study of cell 

motility, chemotaxis, phagocytosis, endocytic vesicle traffic, cell adhesion, pattern formation, 

caspase-independent cell death, and, more recently, autophagy and social evolution [1, 70]. D. 

discoideum represents a model for the study of cellular iron homeostasis showing subcellular 

localization of iron transporters resembling that of macrophages. Moreover, Dictyostelium cells 

resemble macrophages for their ability to engulf bacteria and death cell, to discriminate between self 

and non-self and to fight potential pathogens. The Dictyostelium genome shares with mammals 

many genes regulating iron homeostasis; in particular, D. discoideum expresses the ortholog of 

https://en.wikipedia.org/wiki/Amoeboid
https://en.wikipedia.org/wiki/Amoebozoa
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NRAMP1 transporter in phago-lysosomes and that of NRAMP2 in the contractile vacuole, a structure 

involved in osmoregulation. The distinct localization of  the two proteins in different compartments 

suggests that both contribute synergistically to regulate iron homeostasis. Iron is gained by 

degradation of ingested bacteria and efflux via NRAMP1 from phagosomes to the cytosol after 

bacterial engulfment (Fig. 7) [1]. Iron transport to the cytosol is important in order to deplete the 

bacteria from this essential metal and represents the major source of iron for Dictyostelium cells. In 

addition to the NRAMP proteins, the Dictyostelium genome encodes other proteins which are known 

to be involved in cellular iron homeostasis (Fig. 7). Homologs of mammalian mitoferrin, Fe-S and 

heme ABCB transporters, frataxin and also a cytosolic and a mitochondrial aconitases are found [71, 

72]. Two distantly-related ferroportin-like proteins exist, but no homologs for transferrin or 

transferrin receptors [1]. 

 

 

Fig. 7: Genes regulating iron homeostasis in Dictyostelium. The major source of iron for Dictyostelium cells 
are engulfed bacteria which are degraded in phago-lysosomes. The NRAMP1 transporter is recruited to 
phagosome shortly after uptake and is retrieved during post-lysosomal maturation. NRAMP2 is localized in 
the membrane of the contractile vacuole (CV) [1]. 

 

It has been shown that NRAMP gene disruption increases Dictyostelium sensitivity to infection, 

enhancing intracellular growth of Legionella or Mycobacteria [1]. Iron is an essential element for 

pathogens. In particular, Legionella, Mycobacteria or Salmonella can assimilate significant amounts 

of iron for their metabolism and virulence [73-76]. Thus, depleting iron from the phagosome via 



 
23 

 

NRAMP1 could be an host defense strategy to starve the pathogen for iron. The contractile vacuole 

membrane is studded with the V-ATPase, which can pump H+ inside the lumen [77, 78]. Moreover, 

the V-ATPase is also recruited to phagosomes or macropinosomes shortly after their engulfment 

[79]. NRAMP1 and NRAMP2 colocalize with the vacuolar ATPase that can provide the electrogenic 

potential regulating their transport activity. On the other hand, hindering co-recruitment of the V-

ATPase by the pathogen, in particular Legionella, could avoid acidification of the vacuole, 

neutralizing NRAMP1-dependent iron transport to the cytosol (Fig. 8) [80]. 

 

 

 

Fig. 8: NRAMP1 activity and its manipulation by Legionella [1]. (Left) NRAMP1 colocalizes with the vacuolar 
ATPase. The activity of the V-ATPase can provide the electrogenic potential necessary for NRAMP1  transport 
activity, in order to deplete the bacteria from an essential nutrient element. (Right) L. pneumophila is taken 
up in Dictyostelium cells by macropinocytosis. The pathogen may inhibit fusion of its vacuole with acidic 
vesicles bearing the V-ATPase, thus neutralizing the electrogenic potential. 

 

To better understand the function of Dictyostelium NRAMP proteins, they were expressed in 

Xenopus laevis oocytes by cRNA injection and functionally tested by radiochemical techniques and 

by two novel assays based on metal-induced changes in calcein fluorescence. Injecting cRNA 

encoding the wild-type proteins resulted in a very low level of functional expression, which was not 

surprising as both NRAMP1 and NRAMP2 are not plasma membrane proteins. To increase 

expression at the plasma membrane, both N- and C- terminus of the two proteins were replaced 
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with the corresponding regions of  murine DMT1 [2]. DMT1, which has been successfully expressed 

in Xenopus oocytes [3, 16, 24, 81], is used as internal control for the characterization of iron 

transport as it shows an high level expression at the plasma membrane of Xenopus oocytes. DMT1 

is the divalent metal transporter 1, also known as Natural Resistance-Associated Macrophage 

Protein 2 (NRAMP2) and Divalent Cation Transporter 1 (DCT1) [23].  

 

3.5 Xenopus oocytes: a heterologous expression system 

X. laevis oocytes were utilized in this study as a system of heterologous expression to characterize 

NRAMP1 and NRAMP2 iron transporters. Xenopus laevis is an African aquatic frog of the Pipidae 

family (Fig. 9) and is a medium-sized acquatic frog native of Africa with a smooth skin and a large 

clawed rear feet [82]. For many years X. laevis was used as a biological assay to establish human 

pregnancy status but nowadays this frog is utilized in research laboratories for their eggs and 

oocytes, which are used in developmental biology and for heterologous expression. Xenopus is 

used also as a tool to study vertebrate embryology and development, basic cell and molecular 

biology, genomics, neurobiology and toxicology. 

 

 

Fig. 9: X. laevis frog [82]. 
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Detailed studies by electron and fluorescence microscopy of amphibian oocytes were performed in 

the last decades [83-85]. The oocytes stage were characterized by Dumont (1972) into six different 

stages, according to the dimensions and pigmentation of the oocytes [83] (Fig. 10). The first stage 

consists of small (50 to 100 μm) colorless oocytes and the cytoplasm is transparent. They are also 

chacterized by large nuclei and mitochondrial masses that are clearly visible in the intact oocyte. 

The second stage oocytes range up to 450 μm in diameter, and appear white and opaque. Pigment 

synthesis and vitellogenesis begins during Stage III. The yolk accumulation (vitellogenesis) continues 

through Stage IV (600 to 1000 μm) and the animal and vegetal hemispheres become differentiated. 

By Stage V (1000 to 1200 μm) the oocytes have nearly reached their maximum size. Stage VI 

oocytes are characterized by the unpigmented equatorial band. They range in size from 1200 to 

1300 μm, are postvitellogenic and ready for ovulation [83]. 

 

 

 

Fig. 10: Maturation stage of X. laevis oocytes (Scale bar = 1 mm) [83]. Oogenesis in the anuran X. laevis is 
divided into six stages based on the anatomy of the developing oocyte. 

 

In adult female oogenesis is asynchronous and therefore all the six stages of oocyte development 

occur at the same time [86]. The oocytes are surrounded by different layers of cellular and non-

cellular material. The plasma membrane of the oocytes is surrounded by the vitelline membrane, 

which is a non-cellular glycoprotein fibrous layer. Moreover, there is a layer of follicle cells 

electrically connected to the oocyte by gap junctions, a connective tissue layer, and an epithelial 

cells layer relying the ovary wall. This complete structure is called “follicle” [87-90]. Xenopus 

oocytes provide an important expression system for molecular biology. By injecting DNA or cRNA 

into the oocyte or developing embryo, scientists can study specific proteins in a controlled system. 

This allows rapid functional expression of manipulated DNAs (or cRNA); this is particularly useful to 

characterize membrane transporters or channels (Fig. 11) [91]. To conduct this study, X. laevis 
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oocytes were used as a system of heterologous expression to characterize iron transporters from 

Dictyostelium discoideum. 

 

 
 

Fig. 11: Xenopus oocytes as important heterologous expression system [91]. Heterologous cRNA can be 
easily injected into Xenopus oocytes and mature expressed proteins can be characterized using several 
techniques, such as radiochemistry,  electrophysiology or immunocytochemistry. 
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4. AIM OF STUDY 

The aim of this project is the functional characterization of iron transporters NRAMP1 and NRAMP2 

from Dictyostelium discoideum as a model of cellular iron homeostasis. Dictyostelium NRAMP 

proteins belong to NRAMP family, which is conserved from bacteria (MntH protein) to humans 

(SLC11 proteins). Moreover, Dictyostelium cells show subcellular localization of iron transporters 

resembling that of macrophages. The ortholog of NRAMP1 transporter is expressed in phago-

lysosomes and plays an important role in resistance to bacterial infection; that of NRAMP2 is 

located in the contractile vacuole, a structure involved in osmoregulation. D. discoideum resembles 

macrophages for its ability to engulf bacteria and dead cell, to discriminate between self and non-

self and to fight potential pathogens. It could also be used as a basic model to study iron transport 

and to investigate the subcellular localization of iron transporters. The functional characterization 

of Dictyostelium NRAMP proteins could be important in order to define their role in physiological 

and pathological iron-dependent processes, i.e. resistance to bacterial infection, effects on growth, 

differentiation and development. 
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5. MATERIALS AND METHODS 

5.1 Oocytes harvesting and selection 

Oocytes were obtained from adult female of Xenopus laevis by means of surgery operation and 

manually defolliculated [92] after a treatment of 40 minutes using 1 mg/ml Collagenase NB 4 

Standard Grade (SERVA) at room temperature in Ca2+-free ORII medium (in mM: NaCl, 82.5; KCl, 2; 

MgCl2, 1; HEPES/Tris, 5; pH 7.5). Healthy V-VI stadium oocytes [83] were then selected for injection 

and maintained at 16°C in Barth’s solution (in mM: NaCl, 88; KCl, 1; MgSO4, 0.82; CaCl2, 0.41; 

Ca(NO3)2, 0.33; NaHCO3, 2.4; HEPES/Tris, 10; pH 7.5) supplemented with 50 mg/l gentamicin sulfate 

and 2.5 mM sodium pyruvate. The experiments were carried out according to the institutional and 

national ethical guidelines (Legislative Decree: 26/2014, permit No. 1/2013 to M. Castagna).  

 

5.2 Oocytes expression of DMT1 and NRAMP proteins 

The chimeric constructs NRAMP1/DMT1 and NRAMP2/DMT1 were produced using the scheme 

shown in Fig. 12 [2]. Chimeric cDNAs and RNAs were prepared as described previously [93]. The 

restriction sites HpaI at the N-terminus and NsiI at the C-terminus were inserted by PCR primer 

amplification of the central portion of cDNA coding for the proteins in pGEMT vector. Rat DMT1 in 

pSPORT1 was instead mutagenized by site directed mutagenesis with overlapping primer to insert 

the Eco47III site and then the NsiI site. The chimeric constructs were amplified in Escherichia coli 

cells (JM109 strain) and plasmidic DNAs were extracted using affinity column chromatography (KIT 

“WIZARD clean up system”, Promega). The plasmidic DNAs were linearized by Not1 digestion and 

corresponding cRNAs were in vitro transcribed and capped (Ribo m7G Cap Analog, Promega) using 

T7 RNA polymerase (Promega). The cRNAs obtained were used to inject X. laevis oocytes and 

functionally tested by radiochemical techniques and by two different novel assays based on metal-

induced changes in calcein fluorescence after four days post-injection. 
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Fig. 12: Scheme of the chimeric proteins [2]. In grey are shown the 12 TMDs of Dictyostelium protein 
NRAMP1 or NRAMP2, while in black are shown the C- and N- terminus of rat DMT1 (NP037305.2). Chimeric 
cDNAs were prepared by linking together the two portion of cDNA coding for N- (60 amino acids) and C- 
terminus (19 amino acids) of murine DMT1 in pSPORT1 and the coding sequence of Dictyostelium NRAMP1 or 
NRAMP2. To generate chimeric cDNAs, the restriction sites HpaI at the N-terminus (position +96 and +291 for 
Dictyostelium NRAMP1 and NRAMP2, respectively) and NsiI at the C-terminus (position +1533 and +1749 for 
NRAMP1 and NRAMP2, respectively) were inserted by PCR primer amplification of the central portion of 
cDNA coding for the proteins NRAMP in pGEMT vector. Rat DMT1 in pSPORT1 was instead mutagenized by 
site directed mutagenesis with overlapping primer to insert the Eco47III site (at position +171) and then the 
NsiI site (at position +1713). The final NRAMP1 in pSPORT1 vector is coding for a protein with the first 59 
amino acids of rat DMT1 replacing the 32 residues at the N-terminus of Dictyostelium NRAMP1 and with the 
21 C-terminal amino acids replacing the last 19 amino acid of the rat protein. In the NRAMP2 chimera, the 
same N-terminus and C-terminus of rat DMT1 replace the first 97 and the last 46 residues of Dictyostelium 
NRAMP2.  

 

5.3 Radiotracer uptake 

Uptake experiments in Xenopus oocytes were performed 4 days post cRNA injection [2]. The uptake 

solution contained 55FeCl2 and in mM: NaCl, 100; KCl, 1.8; CaCl2, 0.6; MgCl2, 0.6; Mes or Hepes 10 

Mm at pH 5.5, 6.5, 7.5 or 8.0. 1 mM ascorbic acid (freshly prepared) was added to maintain iron in 

the reduced form unless otherwise indicated. Groups of 8-10 oocytes were incubated for 5 or 60 

min (as indicated) in uptake solution, washed in ice-cold uptake solution devoid of FeCl2 and Ca2+ 

(Wash solution), dissolved in 10% SDS solution and then counted in a liquid scintillation counter 

[94]. The external uptake solution contained in mM: NaCl or ChCl, 98; MgCl2, 1; CaCl2, 1.8, Hepes or 

Mes. The final pH values of 5.5, 6.5, 7.5 or 8.0 were adjusted with HCl and NaOH. 
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5.4 Calcein transport assay and confocal fluorescence imaging 

For metal transport in Xenopus oocytes, control oocytes and oocytes transfected with cRNA 

encoding for NRAMP1, NRAMP2 or rDMT1 were injected with a 50 nl drop of a 0.025 mM calcein 

dissolved in intracellular solution (in mM: KCl, 130; NaCl, 4; MgCl2, 1.6; EGTA, 5; HEPES, 10; Glucose, 

5; pH 7.6). The nominal volume of a 1.2 mm diameter oocyte is 1 μL; therefore, a 50 nL injected 

drop will be diluted 20 times. Following calcein injection, the oocytes were placed in TMA 

(tetramethylammonium) solution at pH 5.5 containing or not divalent metals at a final 

concentration of 0.1 mM and observed at the confocal microscope (Zeiss LSM 5 EXCITER confocal 

laser-scanning microscope) equipped with a 5x Plan Neofluar 0.15 objective. Images of single 

oocytes were taken every 10 sec for a total of 10 min, by using excitation at 488 and emission at 

505-550 nm. For F/F0 quantification, the fluorescence intensity at time 0 (F0) and at subsequent 

times (F) was calculated in the entire area of the oocytes using ImageJ. Changes in fluorescence 

intensity in the entire oocyte or in selected spots were proportionally linear with time. 

 

5.5 Single Oocyte Fluorescence Assay (SOFA)  

For metal transport in Xenopus oocytes, control oocytes and oocytes expressing chimeric NRAMP1 

and NRAMP2 or rDMT1 were injected with a 50 nl drop of a 0.025 mM calcein in intracellular 

solution (in mM: KCl, 130; NaCl, 4; MgCl2, 1.6; EGTA, 5; HEPES, 10; Glucose, 5; pH 7.6). Following 

calcein injection, the oocytes were placed for 5 or 60 min in uptake solution. The solutions 

contained the indicated concentration of FeCl2 and in mM: NaCl, 100; KCl, 1.8; CaCl2, 0.6; MgCl2, 

0.6; Mes or Hepes 10 mM at pH 5.5 and 7.5 (the final pH values of 5.5 and 7.5 were adjusted with 

HCl and NaOH). 1 mM ascorbic acid (freshly prepared) was added to maintain ions in the reduced 

form. The oocytes were subsequently washed in ice-cold uptake solution devoid of FeCl2 and Ca2+
 

(Wash solution). SDS 10% and ORII solution were added to each oocyte and subsequently 

homogenized using CAT Scientific Homogenizer (GLAS-COL, Model 099C K4424, Terre Huate, USA). 

The oocytes were centrifuged (15000 rpm per 10 min a 4°C) after homogenization. The 

supernatants were harvested and put in 96-wells black plate (96-well microplates BRANDplates® 

with F-bottom). Fluorescence was measured from each well utilizing Tecan fluorescence reader 

(Infinite® F500) by using excitation at 488 and emission at 505-550 nm. 
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5.6 Statistics 

For uptake experiments, the results are expressed as arithmetic means ± SEM, whereas for calcein 

assays the data are calculated as mean ± S.D. As indicated in the figure legends, statistical analysis 

is performed using Student’s t-Test.  
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6. RESULTS  

6.1 NRAMP1 transport activity 

6.1.1 Uptake induced by NRAMP1 

The present study investigated the transport activity of Dictyostelium NRAMP1, the protein 

recruited to the phagosomal membrane and involved in iron recycling. The bar charts in Fig. 13 

show that both NRAMP1 and DMT1 mediate iron uptake when expressed in X. laevis oocytes. 

Moreover, Mn2+ competition of 100 µM iron uptake induced by NRAMP1 and 10 µM iron uptake 

induced by murine DMT1 were analyzed using radioactive uptake techniques. As a result, Mn2+ 

partially inhibits iron uptake induced by NRAMP1 and DMT1. Therefore, these two transporters 

could be permeable to Mn2+.  

 

 

 

 

 

 

 

 

Fig. 13: 55FeCl2 uptake in Xenopus laevis oocytes expressing NRAMP1 or DMT1 (internal control) and Mn2+ 
inhibition of 55FeCl2

 uptake induced by NRAMP1 or DMT1.  1 mM Mn2+ inhibition of 100 µM FeCl2 uptake 
induced by NRAMP1 at pH 6.5 (on the left) and 1 mM Mn2+ inhibition of 10 µM FeCl2 uptake induced by 
DMT1 at pH 6.5 (on the right). The white columns represent the uptake in control oocytes and the grey 
columns indicate the uptake induced by cRNA injected oocytes. Bars represent the mean ± S.E.M. of 8-10 
oocytes in a representative experiment of three independent experiments. Both NRAMP1 and rDMT1 
mediate iron uptake, which is inhibited by Mn2+. P<0.001 for NRAMP1 control versus non inj. control; P<0.003 
for NRAMP1 Mn2+ versus NRAMP1 control (Student’s t-test). 

 

Experiments were performed to investigate the H+-dependence of NRAMP1 (Fig. 14). NRAMP1 

transport activity increased decreasing the pH of the external medium. The highest value of uptake 

can be reach at pH 5.5, nevertheless its activity is strongly reduced at pH 8. Therefore, NRAMP1 is 

H+-dependent. 
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Fig. 14: H+-dependence of NRAMP1 activity.  100 µM 55FeCl2 uptake induced by NRAMP1 at different pH (5.5, 
6.5, 7.5, 8). The white columns represent the uptake in control oocytes and the grey columns indicate the 
uptake induced by cRNA injected oocytes. Bars represent the mean ± S.E.M. of 8-10 oocytes in a 
representative experiment of three independent experiments. P<0.05 for cRNA inj. pH 5.5 versus cRNA inj. pH 
6,5; P <0.004 for cRNA inj. pH 5.5 versus cRNA inj. pH 8 (Student ’s t-test). 

 

Further experiments were performed in order to investigate the Na+ effect on the activity of 

NRAMP1 or DMT1 (Fig. 15). Na+ does not affect the activity of these transporters. NRAMP1 and 

DMT1 induce a comparable level of iron uptake in both presence and absence of Na+. 

 

 

 

 

 

 

 

Fig. 15: Na+-dependence of 55FeCl2 uptake induced by NRAMP1 or DMT1 (internal control).  100 µM FeCl2 
uptake induced by NRAMP1 (on the left) or 10 µM FeCl2 uptake induced by DMT1 (on the right) in the 
presence or absence of Na+ at pH 6.5. The white columns represent the uptake in control oocytes and the 
grey columns indicate the uptake induced by cRNA injected oocytes. Bars represent the mean ± S.E.M. of 8-
10 oocytes in a representative experiment of three independent experiments. P<0.001 for NRAMP1 or DMT1 
versus non inj. control. No statistical significance in the absence or presence of Na+. 

0

5

10

15
Ctrl
Inj

5.5 6.5 7.5 8

pm
ol

/ o
oc

/ 5
 m

in

0

5

10

15

20

25 Ctrl
Inj

+Na+ -Na+

NRAMP1

pm
ol

/ o
oc

/ 6
0 

m
in

0

10

20

30

40

50 Ctrl
Inj

+Na+ -Na+

DMT1

pm
ol

/ o
oc

/ 6
0 

m
in



 
34 

 

In order to explore the cation selectivity of NRAMP1, further experiments were performed  in the 

absence or presence of 1 mM of Mn2+, Zn2+, Cd2+, Ni2+, Co2+ or Cu2+. As shown in Fig. 16, all these 

divalent cations partially inhibit radioactive iron uptake and to a lesser extent by Zn2+. Therefore, 

NRAMP1 seems to be permeable to all these divalent cations. 

 

 

 

 

 

 

 

 

Fig. 16:  Divalent ions competition of  55FeCl2 uptake in Xenopus laevis oocytes expressing NRAMP1: divalent 
ions competition of 100 µM FeCl2 uptake induced by NRAMP1 at a concentration of 1 mM for all cations at pH 
6.5. Data shown represent the residual uptake expressed as percent of the control condition in the absence 
of divalent cations. Bars represent the mean ± S.E.M. of data obtained from 8-10 of three independent 
experiments. P<0.04 for each metal versus control (Student’s t-test). 

 

6.1.2 Calcein assays in oocytes expressing NRAMP1 or DMT1 using confocal microscopy 

Using a novel assay with calcein, this study demonstrates that NRAMP1, similarly to rat DMT1, 

transports ferrous iron and Mn2+, but not ferric iron or copper (Fig. 17). Uptake experiments allow 

to study the inhibition of iron uptake induced by divalent metal ions but calcein experiments allow 

to measure calcein quenching due to the flux of ions through the plasma membrane of Xenopus 

oocytes.  
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Fig. 17: Live imaging of divalent metals transport induced by NRAMP1 or DMT1 in Xenopus oocytes using 
calcein fluorescence and confocal microscopy. In the presence of Mn2+ or Fe2+ fluorescence decreased within 
minutes. The fluorescence changes over time were quantified by measuring the ratio of fluorescence 
intensity at the time indicated in the abscissa (F) vs. fluorescence at time 0 (F0). Mean ± S.D. are shown for 
each group of oocytes [NRAMP1 n values are: Mn, 3; Fe(II), 8; Fe(III), 4; Cu, 5; DMT1 n values are: Mn, 2; 
Fe(II), 8; Fe(III), 8; Cu, 7]. Statistical analysis was undertaken at the 9-min time point using a two-tailed 
Student’s t-test, assuming unequal variance: Fe(II) versus control was P<0.05 in all cases; Cu2+ versus control 
was P<0.05 for NRAMP1. Scale bars: 0.5 mm. 

 

6.1.3  Single Oocyte Fluorescence Assay (SOFA) compared to uptake techniques 

SOFA (Single Oocyte Fluorescence Assay) is a novel technique based on metal-induced changes in 

calcein fluorescence. This assay allow to measure calcein quenching due to the flux of ions through 

the plasma membrane of Xenopus oocytes. Preliminary experiments using SOFA confirmed the data 
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obtained with uptake assay (Fig. 18), showing that both NRAMP1 and DMT1 can transport ferrous 

iron. As a result, their activity is enhanced at pH 5.5. 

 

 

 

 

 

 

 

 

Fig. 18: H+-dependence of NRAMP1 and DMT1 activity analyzed using SOFA and uptake techniques. 100 µM 
FeCl2 uptake induced by NRAMP1 and DMT1 at pH 5.5 and 7.5 analyzed by SOFA (A.) or uptake techniques 
(B.). The white columns represent the uptake induced by control oocytes, the grey and the black columns 
indicate the uptake induced by DMT1 or NRAMP1 expressing oocytes respectively. Bars represent the mean ± 
S.E.M. of 8-10 oocytes in a representative experiment of three independent experiments. P<0.05 for all the 
results shown (Student ’s t-test). 

 

To explore the divalent metal ions selectivity of NRAMP1 or DMT1, experiments were performed in 

the absence or presence of Fe2+ and Co2+. As shown in Fig. 19, the data obtained with the novel 

technique SOFA demonstrate that FeCl2 and CoCl2 could induce calcein quenching due to the flux of 

ions through the plasma membrane of Xenopus oocytes. Therefore, NRAMP1 and DMT1 could 

transport these divalent metals and Co2+ is a competitive inhibitor of iron uptake. 
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Fig. 19: CoCl2 uptake induced by NRAMP1 or DMT1 analyzed using SOFA and uptake techniques. Uptake 
induced by NRAMP1 and DMT1 in the presence of 100 µM FeCl2 or CoCl2 at pH 5.5 analyzed with SOFA assay 
(A.) and 100 µM FeCl2 uptake induced by NRAMP1 and DMT1 in the presence or absence of 1 mM CoCl2 at pH 
5.5 analyzed using uptake techniques (B.). The white columns represent the uptake induced by control 
oocytes, the grey and the black columns indicate the uptake induced by DMT1 or NRAMP1 expressing 
oocytes, respectively. Bars represent the mean ± S.E.M. of 8-10 oocytes in a representative experiment of 
three independent experiments.  P<0.05 for all the results shown (Student’s t-test). 

 

 

6.2 NRAMP2 transport activity  

6.2.1 Radioactive iron uptake induced by NRAMP2 

The present study investigates the transport activity of NRAMP2, the protein localized in the 

contractile vacuole of Dictyostelium discoideum. NRAMP2 can transport ferrous iron. As a result, its 

transport activity was highest at pH 7.5 and was strongly reduced at pH 5.5. Therefore, this 

transporter is not proton activated (Fig. 20). 
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Fig. 20: Uptake of  55FeCl2 in Xenopus laevis oocytes expressing NRAMP2: 100 µM FeCl2 uptake induced by 
NRAMP2 at pH 5.5 and 7.5. The white columns represent the uptake in control oocytes and the grey columns 
indicate the uptake induced by cRNA injected oocytes. Bars represent the mean ± S.E.M. of 8-10 oocytes in a 
representative experiment of three independent experiments. P<0.001 for cRNA inj. pH 5.5 versus cRNA inj. 
pH 7.5; NRAMP2 induces significant iron accumulation only at pH 7.5 (Student’s t-test). 

 

In order to check  the Na+-dependence of NRAMP2, experiments were performed in the absence 

and presence of Na+ (Fig. 21). The transport activity of NRAMP2 is strongly reduced in the absence 

of Na+ in the external medium. Therefore, its transport activity is Na+-dependent. 

 

 

 

 

 

 

 

 

Fig. 21: Na+-dependence of  55FeCl2 uptake induced by NRAMP2. 100 µM FeCl2 uptake induced by NRAMP2 in 
the presence or absence of Na+ at pH 7.5. The white columns represent the uptake in control oocytes and the 
grey columns indicate the uptake induced by cRNA injected oocytes. Bars represent the mean ± S.E.M. of 8-
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10 oocytes in a representative experiment of three independent experiments. P<0.05 for cRNA inj. oocytes in 
presence versus absence of Na+ (Student ’s t-test). 

 

6.2.2  Calcein assays in oocytes expressing NRAMP2 using confocal microscopy  

Live imaging of metal transport using confocal microscopy (Fig. 22) confirmed the results obtained 

with uptake experiments. NRAMP2 transport activity is limited to ferrous iron and no calcein 

quenching was detect in the presence of 100 µM Mn2+ in the external solution. 

 

 

Fig. 22: Live imaging of divalent metal transport induced by NRAMP2 in Xenopus oocytes using calcein 
fluorescence. In the presence of Fe2+ calcein fluorescence decreased for NRAMP2 expressing oocytes. The 
fluorescence changes over time were quantified by measuring the ratio of fluorescence intensity at the time 
indicated in the abscissa (F) vs. fluorescence at time 0 (F0). Mean ± S.D. are shown for each group of oocytes 
[NRAMP2 n values are: Mn, 2; Fe(II), 7; Fe(III), 11; Cu, 5]. Statistical analysis was undertaken at the 9-min time 
point using a two-tailed Student’s t-test, assuming unequal variance: Fe(II) versus control was P<0.05. Scale 
bars: 0.5 mm. 
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7. DISCUSSION 

Dictyostelium discoideum harbours several iron genes with the exception of transferrin, ferritin and 

TfR [1, 2] and represents a model for the study of cellular iron homeostasis showing subcellular 

localization of NRAMP transporters resembling that of macrophages. Dictyostelium discoideum 

expresses the ortholog of NRAMP1 transporter in phago-lysosomes and that of NRAMP2 in the 

contractile vacuole. Radiochemical assays showed that NRAMP1 induced ferrous iron transport is 

proton dependent and it is inhibited by Mn2+, Cd2+, Co2+, Ni2+, Cu2+ and to a lesser extent by Zn2+. In 

calcein injected oocytes expressing NRAMP1 and analyzed by confocal microscopy, Fe2+, Mn2+ but 

not Fe3+ or Cu2+ led to fluorescence quenching due to their transport and accumulation into the 

cytoplasm of the oocytes [2]. Therefore copper, that in uptake experiment inhibits iron uptake, 

actually  interacts with the transporter, probably blocking its transport activity, and it is a non-

competitive inhibitor of iron uptake (no quenching is detectable). Interestingly, metal ions binding 

studies in crystals of the homolog  ScaDMT have recently shown that copper binds to the same 

location as Mn2+ and Fe2+, but at a slightly shifted position [95]. This could explain why copper is not 

transported. Compared to competition experiments with radiolabeled tracer, calcein assays have 

thus the advantage to discriminate between Fe2+ competitors that are transported, such as Mn2+, or 

that just hinder transport, such as Fe3+ or Cu2+ [2]. Therefore we can also affirm that Mn2+ may 

compete with iron to be transported by NRAMP1. To better characterize the cation selectivity of 

NRAMP1, its transport activity was analyzed by a novel approach based on metal-induced changes 

in calcein fluorescence, called SOFA. This technique showed that also Co2+ is transported by 

NRAMP1 and confirms the data obtained with uptake experiments. SOFA (Single Oocyte 

Fluorescence Assay) and transport assays analyzed by confocal microscopy are two novel 

techniques that exploit calcein properties, allowing to measure calcein quenching due to the flux of 

ions through the plasma membrane of Xenopus oocytes induced by a specific transporter. These 

techniques constitute a valuable alternative to radioactive uptake assays, avoiding the use of 

radioactive elements, reducing the costs and the risks of the experiment. The functional 

characterization of Dictyostelium NRAMP1 reveals that it is a ferrous iron and manganese 

transporter and it shows an activity resembling that of murine DMT1 for H+-dependence and 

cationic selectivity. In Dictyostelium cells, NRAMP1 is associated with V-ATPase in phago-lysosomes, 

that maintains the proton gradient between phagosomal membrane and cytosol. Therefore, the 

functional characterization of NRAMP1 confirms its implication in the efflux of iron and manganese 

to the cytosol; indeed, iron is likely gained by degradation of ingested bacteria and efflux via 

NRAMP1 from phagosomes to the cytosol after bacterial engulfment. The transport of iron and 

manganese to the cytosol is important in order to deplete the engulfed bacteria from these 
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essential elements, blocking the growth of the bacteria and it represents a source of manganese or 

iron for Dictyostelium. The data about NRAMP2 are preliminary but it can transport ferrous iron at 

7.5 and it appears not proton activated. Further experiments reveal that its activity is enhanced by 

Na+. For D. discoideum, this could be important in order to allow iron flux between CV and cytosol. 

This data is in agreement with the fact that the vacuole internal pH is neutral, nevertheless the 

transport activity of this protein is strongly reduced compared with that observed for NRAMP1. 

This could be due to a defective localization or to a defective recycling of the transporter at the 

plasma membrane of Xenopus oocytes. 
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