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Abstract
Malware sandboxes are automated dynamic analysis

systems that execute programs in a controlled environ-
ment. Within the large volumes of samples submitted
every day to these services, some submissions appear to
be different from others, and show interesting character-
istics. For example, we observed that malware samples
involved in famous targeted attacks – like the Regin APT
framework or the recently disclosed malwares from the
Equation Group – were submitted to our sandbox months
or even years before they were detected in the wild. In
other cases, the malware developers themselves interact
with public sandboxes to test their creations or to develop
a new evasion technique. We refer to similar cases as
malware developments.

In this paper, we propose a novel methodology to au-
tomatically identify malware development cases from the
samples submitted to a malware analysis sandbox. The
results of our experiments show that, by combining dy-
namic and static analysis with features based on the file
submission, it is possible to achieve a good accuracy in
automatically identifying cases of malware development.
Our goal is to raise awareness on this problem and on the
importance of looking at these samples from an intelli-
gence and threat prevention point of view.

1 Introduction

Malware sandboxes are automated dynamic analysis
tools that execute samples in an isolated and instru-
mented environment. Security researchers use them to
quickly collect information about the behavior of suspi-
cious samples, typically in terms of their execution traces
and API calls. While customized sandboxes are often
installed in the premises of security companies, some
sandboxes are available as public online services, as it is
the case for Malwr [13], Anubis [10], ThreatExpert [14],
VirusTotal [16], and many others [5, 18, 4, 6, 15, 1, 3]

The main advantage of these systems is the fact that
the analysis is completely automated and easily paral-
lelizable, thus providing a way to cope with the over-
whelming number of new samples that are collected ev-
ery day. However, due to this extreme parallelization,
an incredible amount of reports are generated every day.
This makes the task of distinguishing new and important
malware from the background noise of polymorphic and
uninteresting samples very challenging.

In particular, two important and distinct observations
motivate our work. First, it is relatively common that
malware samples used to carry out famous targeted at-
tacks were collected by antivirus companies or public
sandboxes long before the attacks were publicly dis-
covered [25]. For instance, the binaries responsible for
operation Aurora, Red October, Regin, and even some
of the new one part of the Equation Group were sub-
mitted to the sandbox we used in our experiments sev-
eral months before the respective attacks appeared in the
news [11, 40, 17, 50, 45, 35]. The reasons behind this
phenomenon are not always clear. It is possible that the
files were automatically collected as part of an automated
network or host-based protection system. Or maybe a
security analyst noticed something anomalous on a com-
puter and wanted to double-check if a suspicious file ex-
hibited a potentially malicious behavior. It is even pos-
sible that the malware developers themselves submitted
an early copy of their work to verify whether it triggered
any alert on the sandbox system. Whatever the reason,
the important point is that no one paid attention to those
files until it was too late.

The second observation motivating our study is the
constant arm race between the researchers that put con-
tinuous effort to randomize their analysis environments,
and the criminals that try to fingerprint those systems
to avoid being detected. As a consequence of this hid-
den battle, malware and packers often include evasion
techniques for popular sandboxes [19] and updated in-
formation about the internal sandbox details are regu-
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larly posted on public websites [2]. These examples
prove that there must be a constant interaction between
malware developers and popular public malware analysis
services. This interaction is driven by the need to collect
updated information as well as to make sure that new
malware creation would go undetected. Even though de-
tecting this interaction might be very difficult, we be-
lieve it would provide valuable information for malware
triage.

Up to the present, malware analysis services have col-
lected large volumes of data. This data has been used
both to enhance analysis techniques [23, 46] and to ex-
trapolate trends and statistics about the evolution of mal-
ware families [24]. Unfortunately, to the best of our
knowledge, these datasets have never been used to sys-
tematically study malware development and support mal-
ware intelligence on a large scale. The only public excep-
tion is a research recently conducted by looking at Virus-
Total to track the activity of specific high-profile hacking
groups involved in APT campaigns [52, 27].

In this paper, we approach this objective by applying
data-mining and machine learning techniques to study
the data collected by Anubis Sandbox [10], a popular
malware dynamic analysis service. At the time we per-
formed our analysis, the dataset contained the analysis
reports for over 30 millions unique samples. Our main
goal is to automatically detect if miscreants submit their
samples during the malware development phase and, if
this is the case, to acquire more insights about the dy-
namics of malware development. By analyzing the meta-
data associated to the sample submissions, it might be
possible to determine the software provenance and im-
plement an early-warning system to flag suspicious sub-
mission behaviors.

It is important to understand that our objective is not
to develop a full-fledged system, but instead to explore a
new direction and to show that by combining metadata
with static and dynamic features it is possible to suc-
cessfully detect many examples of malware development
submitted to public sandboxes. In fact, our simple pro-
totype was able to automatically identify thousands of
development cases, including botnets, keyloggers, back-
doors, and over a thousand unique trojan applications.

2 Overview and Terminology

There are several reasons why criminals may want to in-
teract with an online malware sandbox. It could be just
for curiosity, in order to better understand the analysis
environment and estimate its capabilities. Another rea-
son could be to try to escape from the sandbox isolation
to perform some malicious activity, such as scanning a
network or attacking another machine. Finally, criminals
may also want to submit samples for testing purposes,

to make sure that a certain evasion technique works as
expected in the sandbox environment, or that a certain
malware prototype does not raise any alarm.

In this paper, we focus on the detection of what we call
malware development. We use the term “development”
in a broad sense, to include anything that is submitted by
the author of the file itself. In many cases the author has
access to the source code of the program – either because
she wrote it herself or because she acquired it from some-
one else. However, this is not always the case, e.g., when
the author of a sample uses a builder tool to automatically
generate a binary according to a number of optional con-
figurations (see Section 6 for a practical example of this
scenario). Moreover, to keep things simple, we also use
the word “malware” as a generic term to model any sus-
picious program. This definition includes traditional ma-
licious samples, but also attack tools, packers, and small
probes written with the only goal of exfiltrating informa-
tion about the sandbox internals.

Our main goal is to automatically detect suspicious
submissions that are likely related to malware develop-
ment or to a misuse of the public sandbox. We also want
to use the collected information for malware intelligence.
In this context, intelligence means a process, supported
by data analysis, that helps an analyst to infer the moti-
vation, intent, and possibly the identity of the attacker.

Our analysis consists of five different phases. In the
first phase, we filter out the samples that are not inter-
esting for our analysis. Since the rest of the analysis is
quite time-consuming, any sample that cannot be related
to malware development or that we cannot process with
our current prototype is discarded at this phase. In the
second phase, we cluster the remaining samples based
on their binary similarity. Samples in each cluster are
then compared using a more fine-grained static analysis
technique. Afterwards, we collect six sets of features,
based respectively on static characteristics of the submit-
ted files, on the results of the dynamic execution of the
samples in the cluster, and on the metadata associated to
the samples submissions. This features are finally pro-
vided to a classifier that we previously trained to identify
the malware development clusters.

3 Data reduction

The first phase of our study has the objective of reducing
the amount of data by filtering out all the samples that
are not relevant for our analysis. We assume that a cer-
tain file could be a candidate for malware development
only if two conditions are met. First, the sample must
have been submitted to the public sandbox before it was
observed in the wild. Second, it has to be part of a man-
ual submission done by an individual user – and not, for
example, originating from a batch submission of a secu-
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rity company or from an automated malware collection
or protection system.

We started by filtering out the large number of batch
submissions Anubis Sandbox receives from several re-
searchers, security labs, companies, universities and reg-
istered users that regularly submit large bulks of binaries.
As summarized in Table 1, with this step we managed to
reduce the data from 32 million to around 6.6 million
binaries. These samples have been collected by Anubis
Sandbox from 2006 to 2013.

Then, to isolate the new files that were never observed
in the wild, we applied a two-step approach. First, we re-
moved those submissions that, while performed by single
users, were already part of a previous batch submission.
This reduced the size of the dataset to half a million sam-
ples. In the second step, we removed the files that were
uploaded to the sandbox after they were observed by two
very large external data sources: Symantec’s Worldwide
Intelligence Network (WINE), and VirusTotal.

After removing corrupted or not executable files (e.g,
Linux binaries submitted to the Microsoft Windows
sandbox), we remained with 184,548 files that match our
initial definition of candidates for malware development.
Before sending them to the following stages of our anal-
ysis, we applied one more filter to remove the packed ap-
plications. The rationale behind this choice is very sim-
ple. As explained in Section 4, the majority of our fea-
tures work also on packed binaries, and, therefore, some
potential malware development can be identified also in
this category. However, it would be very hard for us to
verify our results without having access to the decom-
piled code of the application. Therefore, in this paper
we decided to focus on unpacked binaries, for which it
is possible to double-check the findings of our system.
The packed executables were identified by leveraging the
SigBuster [37] signatures.

Table 1 summarizes the number of binaries that are fil-
tered out after each step. The filtering phase reduced the
data to be analyzed from over 32 millions to just above
121,000 candidate files, submitted by a total of 68,250
distinct IP addresses. In the rest of this section we de-
scribe in more details the nature and role of the Symantec
and VirusTotal external sources.

Symantec Filter

Symantec Worldwide Intelligence Network Environment
(WINE) is a platform that allows researchers to perform
data intensive analysis on a wide range of cyber security
relevant datasets, collected from over a hundred million
hosts [28]. The data provided by WINE is very valuable
for the research community, because these hosts are com-
puters that are actively used by real users which are po-

Dataset Submissions

Initial Dataset 32,294,094
Submitted by regular users 6,660,022
Not already part of large submissions 522,699
Previously unknown by Symantec 420,750
Previously unknown by VirusTotal 214,321
Proper executable files 184,548
Final (not packed binaries) 121,856

Table 1: Number of submissions present in our dataset at
each data reduction step.

tential victims of various cyber threats. WINE adopts a
1:16 sampling on this large-scale data such that all types
of complex experiments can be held at scale.

To filter out from our analysis the binaries that are
not good candidates to belong to malware development,
we used two WINE datasets: the binary reputation and
the AntiVirus telemetry datasets. The binary reputation
dataset contains information about all of the executables
(both malicious and benign) downloaded by Symantec
customers over a period of approximately 5 years. To
preserve the user privacy, this data is collected only from
the users that gave explicit consent for it. At the time
we performed our study, the binary reputation dataset
included reports for over 400 millions of distinct bina-
ries. On the other hand, the AntiVirus telemetry dataset
records only the detections of known files that triggered
the Norton Antivirus Engine on the users’ machines.

The use of binary reputation helps us locating the exact
point in time in which a binary was first disseminated in
the wild. The AntiVirus telemetry data provided instead
the first time the security company deployed a signature
to detect the malware. We combined these datasets to
remove those files that had already been observed by
Symantec either before the submission to Anubis Sand-
box, or within 24 hours from the time they were first sub-
mitted to the sandbox.

VirusTotal Filter

VirusTotal is a public service that provides virus scan re-
sults and additional information about hundreds of mil-
lions of analyzed files. In particular, it incorporates the
detection results of over 50 different AntiVirus engines
– thus providing a reliable estimation of whether a file
is benign or malicious. Please note that we fetched
the VirusTotal results for each file in our dataset several
months (and in some cases even years) after the file was
first submitted. This ensures that the AV signatures were
up to date, and files were not misclassified just because
they belonged to a new or emerging malware family.

Among all the information VirusTotal provides about
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binaries, the most important piece of information we in-
corporate in our study is the first submission time of a
certain file to the service. We believe that by combining
the timestamps obtained from the VirusTotal and Syman-
tec datasets, we achieved an acceptable approximation of
the first time a certain malicious file was observed in the
wild.

4 Sample Analysis

If a sample survived the data reduction phase, it means
that (with a certain approximation due to the coverage
of Symantec and Virustotal datasets) it had never been
observed in the wild before it was submitted to the on-
line malware analysis sandbox. Although this might be
a good indicator, it is still not sufficient to flag the sub-
mission as part of a potential malware development. In
fact, there could be other possible explanations for this
phenomenon, such as the fact that the binary was just
a new metamorphic variation of an already known mal-
ware family.

Therefore, to reduce the risk of mis-classification, in
this paper we consider a candidate for possible develop-
ment only when we can observe at least two samples that
clearly show the changes introduced by the author in the
software. In the rest of this section we describe how we
find these groups of samples by clustering similar sub-
missions together based on the sample similarity.

4.1 Sample Clustering
In the last decade, the problem of malware clustering
has been widely studied and various solutions have been
proposed [31, 33, 51, 32]. Existing approaches typi-
cally use behavioral features to group together samples
that likely belong to the same family, even when the
binaries are quite different. Our work does not aim at
proposing a new clustering method for malware. In fact,
our goal is quite different and requires to group files to-
gether only when they are very similar (we are looking
for small changes between two versions of the same sam-
ple) and not when they just belong to the same family.
Therefore, we leverage a clustering algorithm that simply
groups samples together based on their binary similarity
(as computed by ssdeep [38]) and on a set of features we
extract from the submission metadata.

Moreover, we decided to put together similar binaries
into the same cluster only if they were submitted to our
sandbox in a well defined time window. Again, the as-
sumption is that when a malware author is working on a
new program, the different samples would be submitted
to the online sandbox in a short timeframe. Therefore, to
cluster similar binaries we compute the binary similari-
ties among all the samples submitted in a sliding window

of seven days. We then shift the sliding window ahead
of one day and repeat this step. We employ this sliding
window approach in order (1) to limit the complexity of
the computation and the total number of binary compar-
isons, and (2) to ensure that only the binaries that are
similar and have been submitted within one week from
each other are clustered together. We also experimented
with other window sizes (between 2 and 15 days) but
while we noticed a significant reduction of clusters for
shorter thresholds, we did not observed any advantage in
increasing it over one week.

Similarities among binaries are computed using the ss-
deep [38] tool which is designed to detect similarities on
binary data. ssdeep provides a light-weight solution for
comparing a large-number of files by relying solely on
similarity digests that can be easily stored in a database.
As we already discarded packed binaries in the data re-
duction phase, we are confident that the similarity score
computed by ssdeep is a very reliable way to group to-
gether binaries that share similar code snippets. After
computing the similarity metrics, we executed a simple
agglomerative clustering algorithm to group the binaries
for which the similarity score is greater than 70%. Note
that this step is executed separately for each time win-
dow, but it preserves transitivity between binaries in dif-
ferent sliding windows. For example, if file A is similar
to B inside window1, and B is similar to file C inside the
next sliding window, at the end of the process A, B and C
will be grouped into the same cluster. As a result, a sin-
gle cluster can model a malware development spanning
also several months.

Starting from the initial number of binaries, we identi-
fied 5972 clusters containing an average of 4.5 elements
each.

Inter-Cluster Relationships

The ssdeep algorithm summarizes the similarity using an
index between 0 (completely different) and 100 (perfect
match). Our clustering algorithm groups together sam-
ples for which the difference between the fuzzy hashes
is greater than the 70% threshold. This threshold was
chosen according to previous experiments [38], which
concluded that 70% similarity is enough to guarantee a
probability of misclassification close to zero.

However, if the malware author makes very large
changes on a new version of his program, our approach
may not be able to find the association between the two
versions. Moreover, the final version of a malware devel-
opment could be compiled with different options, mak-
ing a byte-level similarity too imprecise. To mitigate
these side effects, after the initial clustering step, we per-
form a refinement on its output by adding inter-clusters
edges whenever two samples in the same time window
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share the same submission origin (i.e., either from the
same IP address or using the same email address for the
registration). These are “weak” connections that do not
model a real similarity between samples, and therefore
they are more prone to false positives. As a consequence,
our system does not use them when performing its auto-
mated analysis to report suspicious clusters. However,
as explained in Section 6, these extra connections can be
very useful during the analysis of a suspicious cluster to
gain a more complete picture of a malware development.

After executing this refinement step, we were able to
link to our clusters an additional 10,811 previously iso-
lated binaries. This procedure also connected several
clusters together, to form 225 macro groups of clusters.

4.2 Intra-cluster Analysis

Once our system had clustered the binaries that likely
belong to the same malware development, we investigate
each cluster to extract more information about its char-
acteristics. In particular, we perform a number of code-
based analysis routines to understand if the samples in
the same cluster share similar code-based features.

Code Normalization

Code normalization is a technique that is widely used to
transform binary code to a canonical form [26]. In our
study, we normalize the assembly code such that the dif-
ferences between two binaries can be determined more
accurately. Under the assumption that two consecutive
variations of the same program are likely compiled with
the same tool chain and the same options, code normal-
ization can be very useful to remove the noise introduced
by small variations between two binaries.

There are several approaches that have been proposed
to normalize assembly code [36, 49, 34]. Some of them
normalize just the operands, some the mnemonics, and
some normalize both. In this paper, we chose to nor-
malize only the operands so that we can preserve the
semantics of the instructions. In particular, we imple-
mented a set of IDA Pro plugins to identify all the func-
tions in the code and then replace, for each instruction,
each operand with a corresponding placeholder tag: reg
for registers, mem for memory locations , val for con-
stant values, near for near call offsets, and ref for ref-
erences to memory locations. These IDA scripts were
run in batch mode to pre-process all the samples in our
clusters.

Programming Languages

The second step in our intra-cluster analysis phase con-
sists in trying to identify the programming language used

to develop the samples. The programming language can
provide some hints about the type of development. For
example, scripting languages are often used to develop
tools or probes designed to exfiltrate information from
the sandbox. Moreover, it is likely that a malware author
would use the same programming language for all the in-
termediate versions of the same malware. Therefore, if a
cluster includes samples of a malware development, all
samples should typically share the same programming
language. Exceptions, as the one explained in Section 6,
may point to interesting cases.

To detect the programming language of a binary we
implemented a simple set of heuristics that incorpo-
rate the information extracted by three tools: PEiD, the
pefile python library, and the Linux strings com-
mand. First, we use pefile to parse the Import Ad-
dress Table (IAT) and obtain the list of libraries that
are linked to the binary. Then, we search for program-
ming language specific keywords on the extracted list.
For example, the “VB” keyword in the library name is
a good indicator of using Visual Basic, and including
mscoree.dll in the code can be linked to the usage of
Microsoft .NET. In the second step of our analysis, we
analyze the strings and the output of PEiD to detect com-
piler specific keywords (e.g., type info and RTTI pro-
duced by C++ compilers, or “Delphi” strings generated
by the homonymous language).

With these simple heuristics, we identified the pro-
gramming language of 14,022 samples. The most rep-
resented languages are Visual Basic (49%), C (21%),
Delphi (18%), Visual Basic .Net (7%), and C++ (3%).
The large number of Visual Basic binaries could be a
consequence of the fact that a large number of available
tools that automatically create generic malware programs
adopt this language.

Fine-grained Sample Similarity

In this last phase, we look in more detail at the similar-
ity among the samples in the same cluster. In particular,
we are interested to know why two binaries show a cer-
tain similarity: Did the author add a new function to the
code? Did she modify a branch condition, or remove a
basic block? Or maybe the code is exactly the same, and
the difference is limited to some data items (such as a
domain name, or a file path).

To answer these questions, we first extract the time-
line of each cluster, i.e., the sequence in which each sam-
ple was submitted to the sandbox in chronological order.
Moving along the timeline, we compare each couple of
samples using a number of static analysis plugins we de-
veloped for IDA Pro.

The analysis starts by computing and comparing the
call graph of the two samples. In this phase we compare
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the normalized code of each function, to check which
functions of the second binary were present unchanged
in the first binary. The output is a list of additional func-
tion that were not present in the original file, plus a list of
functions that were likely modified by the author – i.e.,
those function that share the same position in the call
graph but whose code does not perfectly match. How-
ever, at this level of granularity it is hard to say if some-
thing was modified in the function or if the author just
removed the function and added another with the same
callee.

Therefore, in these cases, we “zoom” into the function
and repeat our analysis, this time comparing their con-
trol flow graphs (CFGs). Using a similar graph-based
approach, this time we look for differences at the basic
block level. If the two CFGs are too different, we con-
clude that the two functions are not one the evolution of
the other. Otherwise, we automatically locate the differ-
ent basic blocks and we generate a similarity measure
that summarize the percentage of basic blocks that are
shared by the two functions.

4.3 Feature Extraction

Based on the analysis described in the previous sections,
our system automatically extracts a set of 48 attributes
that we believe are relevant to study the dynamics of mal-
ware development.

This was done in two phases. First, we enriched each
sample with 25 individual features, divided in six cate-
gories (see the Appendix for a complete list of individual
features). The first class includes self-explanatory file
features (such as its name and size). The Timestamps
features identify when the sample was likely created,
when it was submitted to Anubis Sandbox, and when it
was later observed in the wild. While the creation time of
the binary (extracted from the PE headers) could be man-
ually faked by the author, we observed that this is seldom
the case in practice, in particular when the author submits
a probe or an intermediate version of a program. In fact,
in these cases we often observed samples in which the
compilation time precedes the submission time by only
few minutes.

The third category of features contain the output of the
VirusTotal analysis on the sample, including the set of la-
bels associated by all AntiVirus software and the number
of AVs that flag the sample as malicious. We then collect
a number of features related to the user who submitted
the sample. Since the samples are submitted using a web
browser, we were able to extract information regarding
the browser name and version, the language accepted by
the system (sometime useful to identify the nationality of
the user) and the IP from which the client was connect-
ing from. Two features in this set require more explana-

tion. The email address is an optional field that can be
specified when submitting a sample to the sandbox web
interface. The proxy flag is instead an attempt to identify
if the submitter is using an anonymization service. We
created a list of IP addresses related to these services and
we flagged the submissions in which the IP address of the
submitter appears in the blacklist. In the Binary features
set we record the output of the fine-grained binary anal-
ysis scripts, including the number of sections and func-
tions, the function coverage, and the metadata extracted
by the PE files. Finally, in the last feature category we
summarize the results of the sandbox behavioral report,
such as the execution time, potential runtime errors, use
of evasion techniques, and a number of boolean flags that
represent which behavior was observed at runtime (e.g.,
HTTP traffic, TCP scans, etc.)

In the second phase of our analysis we extended the
previous features from a single sample to the cluster that
contains it. Table 2 shows the final list of aggregated at-
tributes, most of which are obvious extensions of the val-
ues of each sample in the cluster. Some deserve instead a
better explanation. For instance, the cluster shape (A3)
describes how the samples are connected in the cluster:
in a tightly connected group, in a chain in which each
node is only similar to the next one, or in a mixed shape
including a core group and a small tail. The Functions
diff (B13) summarized how many functions have been
modified in average between one sample and the next
one. Dev time (B25) tells us how far apart in time each
samples were submitted to the sandbox, and Connect

Back (B24) counts how many samples in the cluster open
a TCP connection toward the same /24 subnetwork from
which the sample was submitted. This is a very com-
mon behavior for probes, as well as for testing the data
exfiltration component of a malicious program.

Finally, some features such as the number of crashes
(C8) and the average VT detection (D4) are not very in-
teresting per se, but they become more relevant when
compared with the number of samples in the cluster. For
example, imagine a cluster containing three very simi-
lar files. Two of them run without errors, while the third
one crashes. Or two of them are not detected by AV sig-
natures, but one is flagged as malware by most of the
existing antivirus software.

While we are aware of the fact that each feature could
be easily evaded by a motivated attacker, as described in
Section 6 the combinations of all them is usually suffi-
cient to identify a large number of development clusters.
Again, our goal is to show the feasibility of this approach
and draw attention to a new problem, and not to propose
its definitive solution.
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A: Cluster Features
A.1 Cluster id The ID of the cluster
A.2 Num Elements The number of samples in the cluster
A.3 Shape An approximation of the cluster shape (GROUP—MIX—CHAIN)
B: Samples Features
B.1-4 Filesize stats Min, Max, Avg, and Variance of the samples filesize
B.5-8 Sections stats Min, Max, Avg, and Variance of the number of sections
B.9-12 Functions stats Min, Max, Avg, and Variance of the number of functions
B.13 Functions diff Average number of different functions
B.14 Sections diff Average number of different sections
B.15 Changes location One of: Data, Code, Both, None
B.16 Prog Languages List of programming languages used during the development
B.17 Filename Edit Distance The Average edit distance of the samples’s filenames
B.18 Avg Text Coverage Avg text coverage of the .text sections
B.19-22 CTS Time Min, Max, Avg, and Variance of the difference between compile and the submission time
B.23 Compile time Flags Booleans to flag NULL or constant compile times
B.24 Connect back True if any file in the cluster contacts back the submitter’s /24 network
B.25 Dev time Average time between each submission (in seconds)
C: Sandbox Features
C.1 Sandbox Only Numer of samples seen only by the sandbox (and not from external sources)
C.2 Short Exec Number of samples terminating the analysis in less than 60s
C.4-6 Exec Time Min, Max, and Avg execution time of the samples within the sandbox
C.7 Net Activity The number of samples with network activity
C.7 Time Window Time difference between first and last sample in the cluster (in days)
C.8 Num Crashes Number of samples crashing during their execution inside the sandbox
D: Antivirus Features
D.1-3 Malicious Events Min, Max, Avg numbers of behavioral flags exibited by the samples
D.4-5 VT detection Average and Variance of VirusTotal detection of the samples in the cluster
D.6 VT Confidence Confidence of the VirusTotal score
D.7 Min VT detection The score for the sample with the minimum VirusTotal Detection
D.8 Max VT detection The score for the sample with the maximum VirusTotal Detection
D.9 AV Labels All the AV labels for the identified pieces of malware in the cluster
E: Submitter Features
E.1 Num IPs Number of unique IP addresses used by the submitter
E.2 Num E-Mails Number of e-mail addresses used by the submitter
E.3 Accept Languages Accepted Languages from the submitter’s browser

Table 2: List of Features associated to each cluster

AUC Det. Rate False Pos.

Full data 0.999 98.7% 0%
10-folds Cross-Validation 0.988 97.4% 3.7%
70% Percentage Split 0.998 100% 11.1%

Table 3: Classification accuracy, including detection and
false positive rates, and the Area Under the ROC Curve
(AUC)

5 Machine Learning

Machine learning provides a very powerful set of tech-
niques to conduct automated data analysis. As the goal
of this paper is to automatically distinguishing malware
developments from other submissions, we tested with a

number of machine learning techniques applied to the set
of features we presented in detail in the previous section.

Among the large number of machine learning algo-
rithms we have tested our training data with, we have
obtained the best results by using the logistic model
tree (LMT). LMT combines the logistic regression and
decision tree classifiers by building a decision tree whose
leaves have linear regression models [41].

Training Set

The most essential phase of machine learning is the train-
ing phase where the algorithm learns how to distinguish
the characteristics of different classes. The success of
the training phase strictly depends on a carefully pre-
pared labeled data. If the labeled data is not prepared
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carefully, the outcome of machine learning can be mis-
leading. To avoid this problem, we manually labeled a
number of clusters that were randomly chosen between
the ones created at the end of our analysis phase. Manual
labeling was carried out by an expert that performed a
manual static analysis of the binaries to identify the type
and objective of each modification. With this manual ef-
fort, we flagged 91 clusters as non-development and 66
as development. To estimate the accuracy of the LMT
classifier, we conducted a 10-fold cross validation and a
70% percentage split evaluation on the training data.

Feature Selection

In the previous section, we have presented a comprehen-
sive set of features that we believe can be related to the
evolution of samples and to distinguish malware devel-
opments from ordinary malware samples. However, not
all the features contribute in the same way to the final
classification, and some works well only when used in
combination with other classes.

To find the subset of features that achieves the opti-
mal classification accuracy while helping us to obtain the
list of features that contribute the most to it, we lever-
aged a number of features selection algorithms that are
widely used in machine learning literature: Chi-Square,
Gain Ratio and Relief-F attribute evaluation. Chi-square
attribute evaluation computes the chi-square statistics of
each feature with respect to the class, which in our case
is the fact of being a malware development or not. The
Gain Ratio evaluation, on the other hand, evaluates the
effect of the feature by measuring its gain ratio. Fi-
nally, the Relief-F attribute evaluation methodology as-
signs particular weights to each feature according to how
much they are successful to distinguish the classes from
each other. This weight computation is based on the
comparison of the probabilities of two nearest neighbors
having the same class and the same feature value.

While the order slightly differs, the ten most effective
features for the accuracy of the classifier for all three fea-
ture selection algorithms are the same. As also the com-
mon sense suggests, the features we extract from the bi-
nary similarity and the analysis of the samples are the
most successful. For example, the connect back feature
that checks if the sample connects back to the same IP
address of the submitter, the average edit distance of the
filenames of the samples, the binary function similar-
ity, and the sample compile time features are constantly
ranked on the top of the list. The submitter features and
the sandbox features are following the sample features in
the list. All of the features except the number of sand-
box evasions, the VirusTotal results, and the features we
extracted from the differences on the file sizes in the clus-
ters had a contribution to the accuracy. After removing

those features, we performed a number of experiments
on the training set to visualize the contribution of the
different feature sub-sets to the classification accuracy.
Figure 1 shows (in log-scale) the impact of each class
and combination of classes. Among all the classes the
samples-based features produced the best combination
of detection and false positive rates (i.e. 88.2% detection
rate with 7.4% false positives). In particular, the ones
based on the static and dynamic analysis of the binaries
seem to be the core of the detection ability of the sys-
tem. Interestingly, the cluster-based features alone are
the worst between all sets, but they increase the accuracy
of the final results when combined with other features.

The results of the final classifier are reported in Ta-
ble 3: 97.4% detection with of 3.7% false positives, ac-
cording to 10-folds cross validation experiment. Note
that we decided to tune the classifier to favor detection
over false positives, since the goal of our system is only
to tag suspicious submissions that would still need to be
manually verified by a malware analyst.

6 Results

Our prototype implementation was able to collect sub-
stantial evidences related to a large number of malware
developments.

In total, our system flagged as potential development
3038 clusters over a six years period. While this number
was too large for us to perform a manual verification of
each case, if such a system would be deployed we es-
timate between two and three alerts generated per day.
Therefore, we believe our tool could be used as part of
an early warning mechanism to automatically collect in-
formation about suspicious submissions and report them
to human experts for further investigation.

In addition to the 157 clusters already manually la-
beled to prepare the training set for the machine learning
component, we also manually verified 20 random clus-
ters automatically flagged as suspicious by our system.
Although according to the 10-fold cross validation exper-
iments the false positive rate is 3.7%, we have not found
any false positives on the clusters we randomly selected
for our manual validation.

Our system automatically detected the development of
a diversified group of real-world malware, ranging from
generic trojans to advanced rootkits. To better under-
stand the distribution of the different malware families,
we verified the AV labels assigned to each reported clus-
ter. According to them, 1474 clusters were classified as
malicious, out of which our system detected the develop-
ment of 45 botnets, 1082 trojans, 83 backdoors, 4 key-
loggers, 65 worms, and 21 malware development tools
(note that each development contained several different
samples modeling intermediate steps). A large fraction
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Figure 1: Classification success of different feature combinations.

Campaign Early Submission Time Before Public Disclosure Submitted by

Operation Aurora � 4 months US
Red October � 8 months Romania
APT1 � 43 months US
Stuxnet � 1 months US
Beebus � 22 months Germany
LuckyCat � 3 months US
BrutePOS � 5 months France
NetTraveller � 14 months US
Pacific PlugX � 12 months US
Pitty Tiger � 42 months US
Regin � 44 months UK
Equation � 23 months US

Table 4: Popular campaigns of targeted attacks in the sandbox database

of the clusters that were not identified by the AV sig-
natures contained the development of probes, i.e., small
programs whose goal is only to collect and transmit in-
formation about the system where they run. Finally,
some clusters also contained the development or testing
of offensive tools, such as packers and binders.

6.1 Targeted Attacks Campaigns
Before looking at some of the malware development
cases detected by our system, we wanted to verify our
initial hypothesis that even very sophisticated malware

used in targeted attacks are often submitted to public
sandboxes months before the real attacks are discovered.
For this reason, we created a list of hashes of known and
famous APT campaigns, such as the ones used in op-
eration Aurora and Red October. In total, we collected
1271 MD5s belonging to twelve different campaigns. As
summarized in Table 4, in all cases we found at least one
sample in our database before the campaign was publicly
discovered (Early Submission column). For example, for
Red October the first sample was submitted in February
2012, while the campaign was later detected in October

9
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2012. The sample of Regin was collected a record 44
months before the public discovery.

Finally, we checked from whom those samples were
submitted to the system. Interestingly, several samples
were first submitted by large US universities. A possi-
ble explanation is that those samples were automatically
collected as part of a network-based monitoring infras-
tructure maintained by security researchers. Other were
instead first submitted by individual users (for whom
we do not have much information) from several differ-
ent countries, including US, France, Germany, UK, and
Romania. Even more interesting, some were first sub-
mitted from DSL home Internet connections. However,
we cannot claim that we observed the development phase
of these large and popular targeted attacks campaigns as
in all cases the samples were already observed in the
wild (even though undetected and no one was publicly
aware of their existence) before they were submitted to
our sandbox. It is important to note that for this exper-
iment we considered the entire dataset, without apply-
ing any filtering and clustering strategy. In fact, in this
case we did not want to spot the development of the APT
samples, but simply the fact that those samples were sub-
mitted and available to researchers long before they were
publicly discovered.

We believe the sad message to take away from this ex-
periment is that all those samples went unnoticed. As a
community, there is a need for some kind of early warn-
ing system to report suspicious samples to security re-
searches. This could prevent these threats from flying
under the radar and could save months (or even years) of
damage to the companies targeted by these attacks.

6.2 Case studies

In the rest of this section we describe in more details
three development scenarios. While our system identi-
fied many more interesting cases, due to space limitation
we believe the following brief overview provides a valu-
able insight on the different ways in which attackers use
(and misuse) public sandboxes. Moreover, it also shows
how a security analyst can use the information collected
by our system to investigate each case, and reconstruct
both the author behavior and his final goal.

In the first example, the malware author introduced an
anti-sandbox functionality to a Trojan application. In this
case the analyst gathers intelligence information about
the modus operandi of the attacker and about all the de-
velopment phases.

In the second scenario, we describe a step by step de-
velopment in which the attacker tries to collect informa-
tion from the sandbox. This information is later used
to detect the environment and prevent the execution of
a future malware in the sandbox. In the last example,
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Figure 2: Anti-sandbox check - Timeline

we show how an attacker uses the sandbox as a testbed
to verify the behavior of the malware. In this case, the
author generated the binary using one of the many ded-
icated builder applications that can be downloaded from
the Internet or bought on the black market.

Example I: Anti-sandbox Malware
The cluster related to this example contains three sam-

ples. The timeline (summarized in Figure 2) already sug-
gests a possible development. In fact, the difference be-
tween the submission time and the compile time is
very small.

A quick look at the static features of the cluster shows
that the three samples are very similar, and share the
same strings as well as the same imphash (the import
hash [20, 21] recently introduced also by VirusTotal).
However, the first sample is composed of 21 functions,
while the last two samples have 22 functions. Our report
also shows how the first and the second samples differ for
two functions: the author modified the function start,
and introduced a new function CloseHandle. This in-
formation (so far extracted completely automatically by
our system) is a good starting point for a closer analysis.

We opened the two executables in IDA Pro, and
quickly identified the two aforementioned functions
(snippet in Figure 3). It was immediately clear that the
start function was modified to add an additional ba-
sic block and a call to the new CloseHandle function.
The new basic block uses the rdtsc x86 instruction to
read the value of the Timestamp Counter Register (TSC),
which contains the number of CPU cycles since the last
reset. The same snippet of assembly is called two times
to check the time difference. After the first rdtsc in-
struction there is a call to CloseHandle, using the times-
tamp as handler (probably an invalid handler). These two
well known tricks are here combined to detect the Anubis
Sandbox environment – due to the delay introduced by
its checks during program execution. The Anubis Sand-
box’s core is slower in looking up the handlers table, and
this time discrepancy is the key to detect the analysis en-
vironment. In this case the difference has to be less than
0E0000h, or the program would immediately terminate
by calling the ExitProcess function.

The last sample in the cluster was submitted only to
tune the threshold and for this reason there were no im-
portant differences with the second sample. The control

10
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First Sample Second Sample

Figure 3: Anti-sandbox check - Start function comparison

flow graph analysis performed automatically by our sys-
tem report a very high similarity between the first two
samples, in line with the little modifications we found in
the disassembled code. Finally, the behavioral features
extracted by our system confirm our hypothesis: the first
sample was executed until the analysis timeout, but the
execution of the second one terminated after only five
seconds.

The behavior described so far suggest malicious in-
tents. This is also confirmed by other cluster metadata.
For instance, while the first sample in the cluster was
unknown to VirusTotal, the last one was clearly identi-
fied as a common Trojan application. This suggests that
the original sample, without the timing check, has never
been used in the wild. Once more, the fact that all three
samples have been submitted days before the trojan was
first observed in the wild strongly supports the fact that
the person who submitted them was indeed the malware
author.

Example II: Testing a Trojan Dropper
The second cluster we want to describe is composed

of five samples. Our report indicates that the first four
are written in Delphi and the last one is written in Visual
Basic. This is already a strange fact, since the two pro-
gramming languages are quite different and it is unlikely
that they could generate similar binaries.

In this case the cluster timeline does not provide use-
ful information as all the Delphi samples share exactly
the same compilation time: 20th of June, 1992. Only the
Visual Basic sample had a compilation time consistent
with the submission. On the contrary, the submission
times provide an interesting perspective. All the samples
have been submitted in few hours and this might indi-
cate a possible development. In addition, there are two
IP addresses involved: one for the four Delphi samples
and one for the final Visual Basic version. The static fea-

tures of the first four samples show very little differences,
suggesting that these are likely just small variations of
the same program. In average, they share 169 out of
172 functions and 7 out of 8 PE sections. By inspect-
ing the changes, we notice that the attacker was adding
some threads synchronization code to a function respon-
sible for injecting code into a different process. The con-
trol flow graph similarity reported by our tool was over
98%, confirming the small differences we observed be-
tween each versions. Once the author was happy with the
result, she submitted one more sample, this time com-
pletely different from the previous ones. Despite the ob-
vious differences in most of the static analysis features,
the fuzzyhash similarity with sample 4 was 100%. A
rapid analysis showed that this perfect match was due
to the fact that the Visual Basic application literally em-
bedded the entire binary of the fourth Delphi program.
In addition, the behavior report confirmed that, once ex-
ecuted, the Visual Basic Trojan dropped the embedded
executable that was later injected inside a target process.
None of the Antivirus software used by VirusTotal rec-
ognized the first four samples as malicious. However,
the last one was flagged by 37 out of 50 AVs as a trojan
dropper malware.

It is important to stress that a clear advantage of our
system is that it was able to automatically reconstruct the
entire picture despite the fact that not all samples were
submitted from the same IP address (even though all lo-
cated in the same geographical area). Moreover, we were
able to propagate certain metadata extracted by our sys-
tem (for example the username of the author extracted
from the binary compiled with Visual Studio) from one
sample to the others in which that information was miss-
ing. This ability to retrieve and propagate metadata be-
tween different samples can be very useful during an in-
vestigation.

Another very interesting aspect of this malware devel-
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opment is the fact that after the process injection, the pro-
gram used a well known dynamic DNS service (no-ip)
to resolve a domain name. The IP address returned by the
DNS query pointed exactly to the same machine that was
used by the author to submit the sample. This suggests
that the attacker was indeed testing his attack before re-
leasing it, and this information could be used to locate
the attacker machine.

We identified a similar connect-back behavior in other
1817 clusters. We also noticed how most of these clus-
ters contain samples generated by known trojan builders,
like Bifrost [8] or PoisonIvy [9]. While this may seem to
prove that these are mostly unsophisticated attacks, Fire-
Eye [22] recently observed how the Xtremerat builder [7]
(which appeared in 28 of our clusters) was used to pre-
pare samples used in several targeted attacks.

Example III: Probe Development
In this last example we show an attacker fingerprint-

ing the analysis environment and how, at the end, she
manages to create her own successful antisandbox check.
The cluster consists of two samples, both submitted from
France in a time span of 23 hours by the same IP ad-
dress. The two samples have the same size, the same
number of functions (164), and of sections (4). There
is only one function (_start) and two sections (.text
and .rdata) presenting some differences. The two pro-
grams perform the same actions, they create an empty
text file and then they retrieve the file attributes through
the API GetFileAttributes. The only differences are
on the API version they use (GetFileAttributesA or
GetFileAttributesW) and on the file name to open.

At a first look, this cluster did not seem very inter-
esting. However the inter-cluster connections pointed
to other six loosely correlated samples submitted by the
same author in the same week. As explained in Section 4,
these files have not been included in the core cluster be-
cause the binary similarity was below our threshold. In
this case, these samples were all designed either to col-
lect information or to test anti-virtualization/emulation
tricks. For instance, one binary implemented all the
known techniques based on idt, gdt and ldt to de-
tect a virtual machine monitor [48, 47, 42]. Another one
simply retrieved the computer name, and another one
was designed to detect the presence of inline hooking.
Putting all the pieces together, it is clear that the author
was preparing a number of probes to assess various as-
pects of the sandbox environment.

This example shows how valuable the inter-clusters
edges can be to better understand and link together differ-
ent submissions that, while different between each other
at a binary level, are likely part of the same organized
“campaign”.

6.3 Malware Samples in the Wild

As we already mentioned at the beginning of the sec-
tion, out of 3038 clusters reported as malware develop-
ment candidates by our machine learning classifier, 1474
(48%) contained binaries that were detected by the an-
tivirus signatures as malicious (according to VirusTotal).

A total of 228 of the files contained in these clusters
were later detected in the wild by the Symantec’s an-
tivirus engine. The average time between the submission
to our sandbox and the time the malware was observed
in the wild was 135 days – i.e., it took between four and
five months for the antivirus company to develop a signa-
ture and for the file to appear on the end-users machines.
Interestingly, some of these binaries were later detected
on more than 1000 different computers in 13 different
countries all around the world (obviously a lower bound,
based on the alerts triggered on a subset of the Syman-
tec’s customers). This proves that, while these may not
be very sophisticated malware, they certainly have a neg-
ative impact on thousands of normal users.

7 Limitations

We are aware of the fact that once this research is pub-
lished, malware authors can react and take countermea-
sures to sidestep this type of analysis systems. For in-
stance, they may decide to use “private” malware check-
ers, and avoid interacting with public sandboxes alto-
gether. First of all, this is a problem that applies to many
analysis techniques ranging from botnet detection, to in-
trusion prevention, to malware analysis. Despite that, we
believe that it is important to describe our findings so that
other researchers can work in this area and propose more
robust methodologies in the future.

Moreover, as we mentioned in the introduction, af-
ter we completed our study someone noticed that some
known malware development groups were testing their
creation on VirusTotal [52, 27]. This confirms that what
we have found is not an isolated case but a widespread
phenomenon that also affects other online analysis sys-
tems. Second, now that the interaction between malware
developers and public sandboxes is not a secret anymore,
there is no reason that prevents us from publishing our
findings as well.

We are aware of the fact that our methodology is not
perfect, that it can be evaded, and that cannot catch all de-
velopment cases. However, we believe the key message
of the paper is that malware authors are abusing public
sandboxes to test their code, and at the moment we do
not need a very sophisticated analysis to find them. Since
this is the first paper that tries to identify these cases, we
found that our approach was already sufficient to detect
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thousands of them. Certainly more research is needed in
this area to develop more precise monitoring and early
warning system to analyze the large amounts of data au-
tomatically collected by public services on a daily basis.

8 Related Work

While there has been an extensive amount of research on
malware analysis and detection, very few works in the
literature have studied the datasets collected by public
malware dynamic analysis sandboxes. The most compre-
hensive study in this direction was conducted by Bayer et
al. [24]. The authors looked at two years of Anubis [10]
reports and they provided several statistics about mal-
ware evolution and about the prevalent types of malicious
behaviors observed in their dataset.

Lindorfer et al. [43] conducted the first study in the
area of malware development by studying the evolution
over time of eleven known malware families. In partic-
ular, the authors documented the malware updating pro-
cess and the changes in the code for a number of dif-
ferent versions of each family. In our study we look at
the malware development process from a different angle.
Instead of studying different versions of the same well
known malware, we try to detect, on a large scale, the au-
thors of the malware at the moment in which they interact
with the sandbox itself. In a different paper, Lindorfer et
al. [44] proposed a technique to detect environment sen-
sitive malware. The idea is to execute each malware sam-
ple multiple times on several sandboxes equipped with
different monitoring implementations and then compare
the normalized reports to detect behavior discrepancies.

A similar research area studies the phylogeny [30] of
malware by using approaches taken from the biology
field. Even if partially related to our work, in our study
we were not interested in understanding the relationship
between different species of malware, but only to detect
suspicious submissions that may be part of a malware
development activity.

In a paper closer to our work, Jang et al. [34] studied
how to infer the software evolution looking at program
binaries. In particular, the authors used both static and
dynamic analysis features to recover the software lin-
eage. While Jang’s paper focused mostly on benign pro-
grams, some experiments were also conducted on 114
malicious software with known lineage extracted from
the Cyber Genome Project [12]. Compared to our work,
the authors used a smaller set of static and dynamic fea-
tures especially designed to infer the software lineage
(e.g., the fact that a linear development is characterized
by a monotonically increasing file size). Instead, we use
a richer set of features to be able to distinguish mal-
ware developments from variations of the same samples
collected on the wild and not submitted by the author.

While our approaches share some similarities, the goals
are clearly different.

Other approaches have been proposed in the litera-
ture to detect similarities among binaries. Flake [29]
proposed a technique to analyze binaries as graphs of
graphs, and we have been inspired by his work for the
control flow analysis described in Section 4. Kruegel et
al. [39] proposed a similar technique in which they ana-
lyzed the control flow graphs of a number of worms and
they used a graph coloring technique to cope with the
graph-isomorphism problem.

Finally, one step of our technique required to cluster
together similar malware samples. There are several pa-
pers in the area of malware clustering [31, 33, 51, 32].
However, their goal is to cluster together samples belong-
ing to the same malware family as fastest as possible and
with the highest accuracy. This is a crucial task for all
the Antivirus companies. However, our goal is differ-
ent as we are interested in clustering samples based only
on binary similarity and we do not have any interest in
clustering together members of the same family based
on their behavior.

9 Conclusion

Public dynamic analysis sandboxes collect thousands of
new malware samples every day. Most of these submis-
sions belong to well known malware families, or are be-
nign files that do not pose any relevant security threat.
However, hidden in this large amount of collected data,
few samples have something special that distinguishes
them from the rest. In this paper, we discussed the im-
portance of looking at these samples from an intelligence
and threat prevention point of view.

We show that several binaries used in the most fa-
mous targeted attack campaigns had been submitted
to our sandbox months before the attack was first re-
ported. Moreover, we propose a first attempt to mine the
database of a popular sandbox, looking for signs of mal-
ware development. Our experiments show promising re-
sults. We were able to automatically identify thousands
of developments, and to show how the authors modify
their programs to test their functionalities or to evade de-
tections from known sandboxes. Around 1,500 of them
were real malware developments – some of which have
been later observed on thousands of infected machines
around the world.
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A: File Features
A.1 Filename The original name of the file submitted by the user
A.2 File size The size of the file
A.3 MD5 Simple hash used for lookup in other data sources
A.4 Fuzzy Hashes Using SSDeep algorithm
B: Timestamps
B.1 Submission time Time in which the sample was submitted to Anubis Sandbox
B.2 Compile time Time in which the binary was compiled
B.3 Symantec first Time the sample was first observed in the wild by Symantec
B.4 VirusTotal first Time in which the binary was first submitted to VirusTotal
C: AV Features
C.1 AV-Detection Number of AV that flag the samples as malicious (according to VirusTotal)
C.2 AV-Labels List of AV labels associated to the sample (according to VirusTotal)
D: User-based Features
D.1 User Agent User agent of the browser used to submit the sample
D.2 Languages Languages accepted by the user browser

(according to the accept-language HTTP header)
D.3 IP IP address of the user who submitted the file
D.4 IP Geolocation Geolocation of the user IP address
D.5 Email address Optional email address specified when the sample was submitted
D.6 Proxy Boolean value used to identify submission through popular anonymization proxies
E: Binary Features
E.1 N.Sections Number of sections in the PE file
E.2 N.Fuctions Number of functions identified by the disassembly
E.3 Code Coverage Fraction of .text segment covered by the identified functions
E.4 Programming Language Programming language used to develop the binary
E.5 Metadata Filenames and username extracted from the PE file
F: Behavioral Features
F.1 Duration Duration in seconds of the analysis
F.2 Errors Error raised during the analysis
F.3 Evasion Known anti-sandbox techniques detected by the sandbox itself
F.4 Behavior Bitstring Sequence of 24 boolean flags that characterize the behavior of the sample.

(has popups, has udp traffic, has http, has tcp address scan,
modified registry keys, . . . )

Table 5: List of Individual Features associated to each sample
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