
Heuristics for static cloudlet location

Alberto Ceselli, Marco Premoli 1

Department of Computer Science, Università Degli Studi di Milano, Crema, Italy

Stefano Secci 2

UPMC University Paris 06, UMR 7606, LIP6, F-75005, Paris, France

Abstract

Major interest is currently given to the integration of clusters of virtualization
servers, also referred to as ‘cloudlets’, into the access network to allow higher perfor-
mance and reliability in the access to mobile edge computing services. We tackle the
facility location problem arising in the planning of these networks. Due to the com-
plexity of the network topology, and the number of operational constraints, methods
from the literature are hard to adapt. While in [1] we discussed the application is-
sues, considering a real test case, in this paper we focus on the algorithmic ones,
providing matheuristics solution algorithms for the static case, and an experimental
insight on their computational behavior.

Keywords: telecommunications, facility location, matheuristics

Model. Let B be a set of access point (AP) locations. Let I, J and
K be a set of sites where aggregation, core nodes and cloudlet facilities can
be installed, resp.. Our static cloudlet location problem asks to design a two-
level AP-aggregation-core network, to locate cloudlets on it, and to assign APs
to cloudlets, minimizing installation costs, respecting cloudlet capacities and
service level agreements on maximum delay and available bandwidth on paths
between APs and cloudlets. We assume a superposition of stars topology:
any AP is connected to a single aggregation node, and each aggregation node
to a single core node, while a full mesh is built among cores. For each AP
s ∈ B, let δus be the number of users connecting to s and δbs their overall

1 Email: {alberto.ceselli, marco.premoli}@unimi.it
2 Email: stefano.secci@upmc.fr

Available online at www.sciencedirect.com

Electronic Notes in Discrete Mathematics 55 (2016) 21–24

1571-0653/© 2016 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

http://dx.doi.org/10.1016/j.endm.2016.10.006

http://www.elsevier.com/locate/endm
http://dx.doi.org/10.1016/j.endm.2016.10.006
http://dx.doi.org/10.1016/j.endm.2016.10.006
http://www.sciencedirect.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.endm.2016.10.006&domain=pdf

bandwidth consumption. Let li, mj, ck be the fixed cost for activating an
aggregation node in i ∈ I, a core node in j ∈ J and a cloudlet facility in
k ∈ K, resp.. Let C denote the number of users that each cloudlet can
serve. Let di,j and ui,j be the length and bandwidth capacity of each link
(i, j) ∈ E = (B×I)∪ (I×J)∪ (J×J). We assume low latency to be enforced
by imposing both a maximum sum of links’ length (D̄) and number of hops
(H̄) in a path from AP to its cloudlet, and a maximum distance (d̄) between
connected nodes. We define as Ssk the set of paths from APs to cloudlets
such that

∑
(i,j)∈p d(i,j) ≤ D̄, |p| ≤ H̄ and d(i,j) ≤ d̄ for all (i, j) ∈ p}, with

|p| denoting the number of links forming path p. We introduce three sets of
variables. The first corresponds to binary location variables: xi, yj and zk take
value 1 if sites i ∈ I, j ∈ J and k ∈ K, resp., are selected to host facilities.
The second corresponds to binary routing variables: rs,kp take value 1 if users
in AP s ∈ B are served by a cloudlet in k ∈ K, and the corresponding traffic is
routed along path p ∈ S̄sk. The third corresponds to network topology binary
variables: ts,i, wi,j and om,n take value 1 if a link is established between an AP
s and an aggregation node i, an aggregation node i and a core node j, two
core nodes m and n, resp.. Moreover, let U ∈ [0, 1], represent the maximum
allowed link utilization ratio. We formulate our problem as follows.

min
∑

i∈I

lixi +
∑

j∈J

mjyj +
∑

k∈K

ckzk (1)

s.t.
∑

p∈Ssk|i∈p

rs,kp ≤ xi , ∀s ∈ B, ∀k ∈ K, ∀i ∈ I (2)

∑

p∈Ssk|j∈p

rs,kp ≤ yj , ∀s ∈ B, ∀k ∈ K, ∀j ∈ J (3)

∑

p∈Ssk

rs,kp ≤ zk , ∀s ∈ B, ∀k ∈ K (4)

∑

k∈K

∑

p∈Ss,k

rs,kp = 1 , ∀s ∈ B (5)

∑

s∈B

∑

p∈Ss,k

δus r
s,k
p ≤ Czk , ∀k ∈ K (6)

∑

s∈B

∑

k∈K

∑

p∈Ss,k

|(i,j)∈p

δbsr
s,k
p ≤ u(i,j)U(wi,j + oi,j + ti,j) , ∀(i, j) ∈ E (7)

We minimize installation costs (1); (2)-(4) impose that no path can be selected
unless devices are installed on its sites; (5)-(7) ensure that each AP is assigned

A. Ceselli et al. / Electronic Notes in Discrete Mathematics 55 (2016) 21–2422

to a cloudlet; (6) impose that active cloudlets serve at most C users; (7) are
link utilization constraints. Moreover a set of topology constraints need to be
imposed, that are omitted here for the sake of brevity.

Algorithms. We devised matheuristics that consist of five phases: (i)
clustering of the APs in B, aggregating their demands in centers (ii) dynamic
generation of the center-cloudlet path variables rs,kp (iii) retrieval of a feasible
solution with a hierarchical rounding and pricing process (iv) refinement of
the solution with local branching (v) restart.

During phase (i) we create |B|/α clusters of APs by selecting centers. To
ensure feasibility we enforce that no AP is placed in a cluster if its distance
from the center is greater than d̄, and the distance between two centers is
computed as the maximum distance between one center and each of the APs
of the other cluster. To initialize the clustering we use a simplified model in
which cloudlets, aggregation and core nodes coincide. Therefore, a routing
path is always a direct link, the resolution process needs to find only cloudlet
locations, and only capacity constraints need to be enforced.

During phase (ii), as the cardinality of feasible paths sets Ssk grows com-
binatorially, we perform column generation on the set of variables rs,kp . The
pricing problem is a resource constrained shortest path problem on an acyclic
network, that we solve in pseudo polynomial time by dynamic programming.

At the end of the column generation process (phase iii) we start rounding
by selecting the location variable with highest fractional value, fix it to one,
and propagate that fixing. If the solution is still fractional, we resume column
generation to restore optimality, and we repeat the rounding and propagation
process. If infeasibility is detected we backtrack, fixing the last rounding
variable to zero, and column generation is resumed. If infeasibility is obtained
also in this way, we stop in a FAIL status. Whenever a feasible integer solution
is achieved, instead, we stop in a SUCCESS status. Instead of choosing an
arbitrary location variable for rounding, we consider in sequence variables zk,
yj, xi and rs,kp . Variables related to the topology are never rounded explicitly:
in case of SUCCESS, a small MILP problem remains to fix them. In case of
FAIL, instead, the solution produced in phase (i) is considered. That is, in
any case a feasible solution Ŝ is obtained after phase (iii), unless the instance
itself is infeasible.

During phase (iv) we try to improve the feasible integer solution Ŝ with
an ILP-based very large scale neighborhood search strategy, exploring a κ-
OPT neighborhood : we consider the restricted model produced by the last
column generation round, and we include the following local-branching con-

A. Ceselli et al. / Electronic Notes in Discrete Mathematics 55 (2016) 21–24 23

Table 1
Results on 100 nodes instances

α = 2 α = 3 α2 → 3

z
init

t z
∗

Δ z t z
∗

Δ z Δ z Δ t

μ 12.65 9055.70 11.37 10.01% 320.50 11.85 6.21% -4.43% 96.35%

σ 0.74 1884.33 0.70 5.26 75.80 0.64 4.33 5.41 0.95

max 13.32 11984.00 12.92 18.84% 489.00 13.12 10.73% -11.10% 97.27%

straint:
∑

k∈K|z̄k=1(1− zk) +
∑

k∈K|z̄k=0 zk ≤ �κ ·
∑

k∈K z̄k� where parameters

z̄k represent the values of the variables zk in Ŝ, and parameter κ represents
the fraction of zk variables whose values are allowed to flip with respect to
the current solution. We solve this restricted model with a general purpose
ILP Solver, setting a limit τ on the execution time. As a restart strategy
(phase v) we update the clustering and iterate steps (ii)–(iv). The informa-
tion given by the fractional solution found at the end of phase (ii) is used to
perform such an update: when a center i is fully associated to a cloudlet k
through a single path, the two clusters represented by i and k are joined and
a new representative is found by aggregating them; otherwise if center i is
fractionally associated through multiple paths to different cloudlets, then the
corresponding cluster is split, trying to improve a suitable connectivity mea-

sure that we devised, and whose formal definition is omitted for brevity. A
fixed number of restarts are performed, and the best solution found is retained.

Computational results. We implemented our algorithms in C++, using
CPLEX 12.6 to solve both LP and MILP problems. Our tests ran on an Intel
Core 2 Duo 3 GHz workstation with 2 GB of RAM. Parameters are set as
in [1]. We considered a dataset adapted from capacitated p-median instances
from the literature. Table 1 reports an overview of results on instances with
100 nodes. We first report the value of the solution found by the initial
clustering heuristics (zinit). Then we indicate average computing time, value
of the solutions and gap with respect to the initial solutions, comparing two
settings: clustering with α = 2 (second block) and α = 3 (third block). In
the last block we summarize the effect of moving from α = 2 to α = 3. Our
matheuristics lead to an average improvement of the initial solution of ∼ 10%
and ∼ 6%, resp.. We also note that using fewer clusters leads to major savings
in CPU time (∼ 96%) with a mild quality worsening (∼ 4%).

References

[1] A. Ceselli, M. Premoli, S. Secci, “Cloudlet Network Design Optimization”, in
Proc. of IFIP Networking 2015, 20-25 May, 2015, Toulouse, France.

A. Ceselli et al. / Electronic Notes in Discrete Mathematics 55 (2016) 21–2424

	References

