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Introduction

In the last decades, we have witnessed a massive developement in quantum technolo-
gies. Nowadays, we tread the path towards quantum computing, refine quantum com-
munication and cryptography schemes in order to secure reliable transmission of in-
formation, manage to implement teleportation protocols over optical fibers. All these
achievements and applications rest on quantum information theory, where quantum
physics and computer science come together to describe the benefits of using quantum
systems in information processing. In fact, storing information within quantum systems
allows exploiting features as nonclassicality or quantum correlations to push the effi-
ciency of communication protocols and quantum computing far beyond any achieved
classical limit. Quantum information theory thus provides the appropriate mathemati-
cal frame, describing quantum resources and setting the rules to manipulate and access
information.

The scientific community has put much effort into classifying quantum correlations
and scrutinizing their properties, fostered by the fact that correlations often stand as
key resource for quantum communication, computation [1], secure communication [2,3]
and estimation problems [4]. Historically, quantum correlations were uniquely identi-
fied with entanglement. However, this equivalence was progressively questioned and
nowadays the existence of more fundamental and profitable correlations as discord or
steering is accepted, limiting entanglement to capture aspects of correlations based on
non-separability. For instance, quantum discord, an information-deficit between quan-
tum and classical correlations, provides enhancement for computation [5, 6], is a key
resource for quantum information protocols [7] and has been proved robust against de-
coherence [8, 9]. Unfortunately, quantum correlations are fragile: in fact, quantum sys-
tems are continuously perturbed by the surrounding environment, which usually soft-
ens or even wipes out the quantum properties of a system, nullifying the benefits quan-
tum correlations provide. Indeed, environment-induced decoherence has portrayed for
years the role of uninvited (and undesirable) guest in communication schemes, quantum
cryptography and quantum information in general, and has been identified as the ulti-
mate obstacle to reliable quantum processing of information. Nevertheless, in the recent
years, it has been recognized that the action of an environment on a system may also
have some non-detrimental effects, at least for a transient. Indeed, non-trivial spectral
structures and memory effects [10–13] may induce recoherence and revivals of quantum
features. For this reason, more attention has been paid to studying the effects of noise
on the dynamics of the system, so to exploit decoherence or dissipation phenomena to
specific goals, within the context of environment engineering [14, 15].
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Introduction v

Along with quantum correlations, in the last decade a new figure of merit has emerged
as a potential resource for quantum technology: non-Markovianity. Non-markovianity
is properly defined in classical theory, but its extension to the quantum world is a chal-
lenging task and still is object of discussion. Indeed, many different definitions of quan-
tum non-Markovianity have been provided during the years [16–22], yet neither of these
fully recovers the sense of the classical definition. Qualitatively, the term ”non-Markovian”
is commonly used to address the dynamics of open systems that exhibit memory effects
in terms of recoherence or revivals of quantum correlations. Examples of such phe-
nomena occur in biological, solid-state systems [23–30], mechanical oscillators and har-
monic lattices [31–39]. For all these systems, the Born-Markov approximation leading
to Lindblad form Markovian master equations becomes too sketchy and does not lead
to a correct description of the dynamics, as a more detailed characterization of the envi-
ronment, including the spectral structure and the inherent memory effects, is required.
Besides, there is evidence that non-Markovian open quantum systems [40–44] can be
useful for quantum technology [45], accomplishing tasks unachievable with Markovian
processes [46–49]. However, whether non-Markovianity stands as a general pure re-
source for enhancing the efficiency of quantum protocols or computation, it is still sub-
ject of open debate.

A precise characterization of the vast range of noise-induced phenomena and a full
understanding of interaction mechanisms are essential for experimental implementa-
tions: on one hand, individuating regimes of recoherence or preservation of quantum-
ness is the first step towards implementation of reliable communication protocols; on
the other hand, decoherence may be exploited to specific tasks, such as preparation of
arbitrary quantum states [50, 51]. Historically, the problem of noise characterization is
tackled down by performing direct measurements on the environment, to the purpose
of tracing back to its spectral properties. Alternatively, noise can be characterized indi-
rectly, looking at its effects on the properties of quantum systems. Probing an environ-
ment by the use of small quantum systems is convenient for many reasons: firstly, the
features of a complex and large environment may be explored by just analyzing a sys-
tem with a small number of degrees of freedom; secondly, the use of quantum probes
allows to assess physical quantities that are not accessible by direct measurements. The
proper mathematical tools for indirect noise characterization is provided by quantum
estimation [52–55] and quantum discrimination [56] theories. The former allows to in-
fer the value of an unknown parameter with ultimate precision; the latter permits to
distinguish two environmental scenarios within a certain tolerance, given a set of mea-
surements performed on the probe.

There are two main paradigms to describe the dynamics of open quantum systems:
on the one hand, one may look at system and enviroment as a single global quantum sys-
tem whose evolution is governed by an overall unitary operator. Upon tracing out the
environment’ degrees of freedom, one then obtains the dynamics of the system. On the
other hand, one may consider the open quantum system under the action of external ran-
dom forces, i.e. coupled to a stochastic classical field. Here the partial trace is substituted
by the average over the different realizations of the stochastic field. While the system-
enviroment approach is more fundamental in nature, the approximations employed to
achieve manageable dynamical equations often preclude a detailed description of the
dynamics. Indeed, systems of interest for quantum technology generally interact with
complex environments, with many degrees of freedom, and a fully quantum description
may be challenging or even unfeasible. In these situations, classical stochastic modeling
of the environment represents a valid and reliable alternative. In fact, it has been shown
that for certain system-environment interactions a classical description can be found that
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is completely equivalent to the quantum description [57–62]. Besides, there are various
experimental evidences that many quantum systems of interest interact with classical
forms of noise, typically Gaussian noise [63–65].

This PhD dissertation collects my personal contribution to the analysis and under-
standing of the role played by classical noise in affecting the dynamics of the correla-
tions of a quantum system, paying serious attention to the overlap between the stochas-
tic approach and the full quantum portrait. I consider a quantum harmonic oscillator
coupled to a stochastic classical field, focusing the attention on two distinct decoherence
mechanisms acting on the system, phase diffusion and dissipation, looking for regimes
in which the stochastic approach successfully overtakes a full quantum description of
these physical phenomena. Moreover, I address decoherence and non-Markovianity in-
duced by external noise. As a first, case, I analyze the dynamics of quantumness of a
single quantum harmonic oscillator initially prepared in a maximally nonclassical state
and interacting with a classical noise. The dynamics of the system is ruled by a stochastic
time dependent Hamiltonian describing energy transfer to and from the environment.
As a second case, I address the study of the performance of phase communication chan-
nels where information is encoded on the quantum state of the system and then properly
retrieved after the system has suffered stochastic dephasing. As a third case, I consider
two quantum harmonic oscillators interacting with classical noise, addressing the effect
of the environment fluctuations on quantum correlations such as entanglement and dis-
cord and exploring the connection between non-Markovianity and possible evidence of
backflow of information from the environment into the system. Moreover, I describe the
effects of both local and common environment scenarios: in the former, each oscillator is
coupled to a separate stochastic field, while in the latter both oscillators interact with a
common classical source of noise. Finally, I design a proper strategy to distinguish what
classical noise a probe quantum system suffers, using the quantum correlations of an
entangled state of two harmonic oscillators as a resource for discrimination.

The thesis is organized as follows:

• In chapter 1, I review the basic elements and terminology of quantum mechanics
needed for a full comprehension of the content of this thesis. Then I discuss the
concept of non-Markovianity and introduce the tools of quantum discrimination
theory.

• In chapter 2 I review the basic concepts about stochastic processes, with a focus on
Gaussian processes. In particular, I analyze in full detail the physically meaningful
Ornstein-Uhlenbeck process.

• In chapter 3 I introduce my contribution to the characterization of stochasic inter-
actions, paying attention to the working regimes where a full quantum description
of a system-environment interaction may be substituted by an effective classical
(stochastic) one. In particular, I address the case of stochastic phase diffusion and
stochastic dissipation.

• In chapter 4 I address the study of both the dynamics of quantumness of highly
nonclassical states facing decoherence in a dissipative environment and the chan-
nel capacity of a phase-keyed comminication channel in presence of stochastic
phase diffusion, making a connection between the appearance of revivals of quan-
tum features and the characteristics of the stochastic field.

• In chapter 5 I address the dynamics of entanglement and discord for two harmonic
oscillators interacting with either separate or common stochastic fields and exam-
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ine the connection between non-Markovianity and revivals of correlations, usually
considered a sign of backflow of information from the environment to the system.

• In chapter 6 I address the problem of designing a proper protocol to successfully
discriminate whether a two-mode quantum systems is affected by noise on a local
or global scale.
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CHAPTER 1

Preliminaries

This chapter gathers all the preliminary notions needed to a full understanding of the
results of this research project. In the following, the reader finds a rapid and not yet
exhaustive review of key concepts of quantum optics and becomes familiar with the
notation used through this work.

1.1 Introduction to quantum mechanics

1.1.1 Basic quantum mechanics

In classical mechanics, a system is described by some observable quantities, e.g. energy,
position, momentum, whose dynamics is well defined by canonical equations of motion.
Indeed, such description entails in its formulation a lot of assumptions that are inher-
ently true in a classical framework but need to be disregarded in a quantum context: for
instance, in classical mechanics it holds true that the measurement process does not per-
turb the system and that all measurable quantities may be simultaneously performed.
In the quantum framework, none of these is correct. The measurement process needs to
be reconceived and the properties of the system, revealed by typically non-commuting
measurements, need to be considered as some information concealed within the system
itself. For this reason in quantum mechanics [66] one resorts to the concept of state, a
sort of container of all the information required to fully describe a system as an isolated
element.

From a mathematical point a view, a state is represented by a normalized vector |ψ〉
and all the possible states of the system form a complex vector space M with inner
product, that is, a Hilbert space. Since M is a vector space, a superposition principle
holds, that is, any linear combination of states is also a state:

|ψ〉 =

N∑
n=1

cn|ψn〉, (1.1)

where the quantities |cn|2 are interpreted as probabilities of finding the system respec-
tively in state |ψn〉 and therefore obey the constrain

N∑
n1

|cn|2 = 1. (1.2)

The superposition principle not only confers to quantum states a probabilistic represen-
tation but enables interference phenomena, that truly represent the authentic source of
innovation in quantum mechanics, along with the wave-particle dualism.

1



Preliminaries 2

In classical mechanics, the system dynamics is related to the evolution of its observ-
able quantities. In the quantum framework, the evolution of a system is described by a
time-dependent state |ψ(t)〉. The dynamics of the quantum state obeys the Schrödinger
equation

i~
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉 (1.3)

where H(t) is the Hamiltonian operator. The Schrödinger equation is linear and homo-
geneous, therefore it exists a linear operator U(t, t0) that turns an initial state |ψ(t0)〉 at
time t0 into

|ψ(t)〉 = U(t, t0)|ψ(t0)〉. (1.4)

U(t, t0) is called time evolution operator, it is unitary and satisfies the following set of
properties

U(t, t) = I, (1.5a)
U(t, t′′) = U(t, t′)U(t′, t′′), (1.5b)

U†(t, t′) = U(t′, t). (1.5c)

The time evolution operator drives a quantum system from a state to an other and
is stricty related to the Hamiltonian operator. It is easy to prove that U(t) obeys a
Schrödinger-like equation as well,

i~
∂

∂t
U(t, t0) = H(t)U(t, t0). (1.6)

Taking into account the initial condition U(t0, t0) = I, one finds the solution of Eq. 1.6,

U(t, t0) = I− i

~

∫ t

t0

H(t′)U(t′, t0)dt′, (1.7)

which is only formal, as the evolution operator appears on both sides of the equation.
An explicit solution may be found only in a small number of situations. For instance,

when the Hamiltonian operator does not depend on time, the time evolution operator is
U(t) = exp(−iH(t − t0)/~). In all the other situations, ths solution can be recast in the
so-called Dyson series

U(t) = I− i
∫ t

0

H(t1)dt1 +

(
− i
~

)2 ∫ t

t0

dt1

∫ t

t0

dt2H(t1)H(t2) + . . . =

= I +

∞∑
n=1

1

n!

(
− i
~

)n ∫ t

t0

dt1 · · ·
∫ t

t0

dtnT [H(t1) · · ·H(tn)], (1.8)

where T denotes the time ordering operator. The Dyson series is obtained by iterating
Eq. 1.7 and can be recast in a more compact way:

U(t, t0) = T

{
exp

(
− i
∫ t

0

H(t′)dt′
)}

. (1.9)

Time ordering is essential as long as the Hamiltonian is time-dependent, the only excep-
tion being when the Hamiltonian operator function is self-commuting at different times,
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that is, [H(t1), H(t2)] = 0. In that case, the evolution operator assumes a simpler form as
most of the terms of the Dyson series vanish.

An explicit form of the time evolution operator may be obtained under specific con-
ditions by means of the Magnus expansion [67, 68]. Magnus’ theorem implies that the
time evolution operator for linear dynamics can be recast in the form U(t) = exp[Ω(t)]
where Ω(t) satisfies the differential equation

dΩ(t)

dt
=

∞∑
n=0

Bn
n!

adnΩA (1.10)

where Bn are the Bernoulli numbers, A = −iH/~ and the adjoint is defined recursively
by

adk+1
Ω A = [Ω, adkΩA] with ad0

ΩA = A. (1.11)

Expanding in series the operator function Ω(t) and using the notation H(tk) = Hk, the
first terms of the series read

Ω(t) =

∞∑
k=1

Ωk(t), (1.12a)

Ω1(t) = − i
~

∫ t

t0

dt1H1, (1.12b)

Ω2(t) = − 1

2~2

∫ t

t0

dt1

∫ t1

t0

dt2[H1, H2], (1.12c)

Ω3(t) =
i

6~3

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3{[H1, [H2, H3]] + [[H1, H2], H3]}. (1.12d)

If the two-time commutator [H(t1), H(t2)] is proportional to the identity, as it will hap-
pen in one of the models presented afterwards, then only the first two terms of the series
survive, simplifying the final form of the evolution operator.

1.1.2 The measurement process

The measurement process assumes a deeper meaning in the quantum framework than
it used to do in the classical one. If in classical mechanics measuring a system allows to
reveal its properties without perturbing it, in a quantum scenario the state of the system
is irremediably affected by the measurement, which acts as an irreversible operation on
the state.

The mathematical representation of a quantum measurement is a set of measurement
operators {Mi}, acting on the state space of the measured system. Each Mi refers to an
outcome mi of the measurement that occurs with probability

pi = 〈ψ|M†iMi|ψ〉 (1.13)

where the measurement is supposed to act istantaneously on the initial state |ψ〉. The
conservation of probability requires a completeness relation∑

i

M†iMi = I. (1.14)
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The post-measurement state when Mi acts on the system is

|ψ〉 → Mi|ψ〉√
〈ψ|M†iMi|ψ〉

. (1.15)

A particular class of measurements is known as projective measurements. A projective
measurement is described by an Hermitian operator acting on the state space of the
measured system. The Hermitian operator admits a spectral decomposition

M =
∑
i

mi|i〉〈i| =
∑
i

miPi, (1.16)

where |i〉 is the eigenvector corresponding to eigenvalue mi = 〈ψ|Mi|ψ〉 and Pi is the
projector that leads the input state to the subspace associated to that very eigenvalue.

Projector operators Pi satisfy the orthogonality condition PiPj = δijPI and the com-
pleteness relation

∑
i Pi = I. The expected value of each projector Pi measures the

probability pi defined in 1.13 and the average value of the observable M then reads

〈M〉 =
∑
i

mipi =
∑
i

mi〈ψ|Pi|ψ〉. (1.17)

When a projective measurement is performed onto the system, the output state will al-
ways be an eigenstate of the measurement M , which implies there is no superposition
between two different output states. This holds true for projective measurements, but it
is not true in general.

In the most general case, the measurement process is represented by a set of positive-
semidefinite operators {Πd}

〈ψ|Πd|ψ〉 ≥ 0, for all |ψ〉, (1.18)

that forms a resolution of the identity ∑
d

Πd = I. (1.19)

The measurement process is therefore called positive operator valued measure or POVM.
Unlike projective measurements, there is no limitation on the number of elements a
POVM can be made of. Moreover, there is no requirement the elements Ed be mutu-
ally orthogonal, which implies that the outputs of the measurement are not orthogonal
either.

1.1.3 Density operator

As long as the state of a system is described as a vector, the state is fully determined.
However, in practice, the state of a quantum system is often not perfectly known and
such lack of information prevents from defining a state in terms of vector. In these situ-
ations, the system is said to be in a statistical mixture of states |ψi〉 with probabilities pi.
The mathematical proper tool to describe statistical mixtures is the density operator ρ

ρ =
∑
i

pi|ψi〉〈ψi|, (1.20)
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where the states |ψi〉 not necessarily orthogonal.

Any complex matrix ρij that satisfies the following properties is an eligible represen-
tation of a density operator ρ:

1. ρ is Hermitian, that is, ρij = ρ∗ji;

2. the density matrix has unit trace, Tr[ρ] = 1;

3. ρ is a non-negative operator, that is, its expectation value over any vector |ψ〉
satisfies 〈ψ|ρ|ψ〉 ≥ 0. Of course, the eigenvalues of the density matrix are non-negative.

If one of the pi is unity, the density operator reduces to a single projector, ρ = |ψ〉〈ψ|
and the state of the system is perfectly known. In this case, the state is said to be pure
and satisfies the condition ρ2 = ρ, which implies Tr[ρ2] = 1.

Indeed, the condition Tr[ρ2] = 1 is not satisfied by any statistical mixture of states, so
a quantum system is said to be in a mixed state if Tr[ρ2] < 1. It is straightworward to
define the purity of a system as µ(ρ) = Tr[ρ2], such that a system is pure only if µ(ρ) = 1.

In the density operator formalism, the dynamics of a quantum system and the mea-
surement process slightly change: the dynamics of the system is now described by a
time-dependent density operator, its evolution still being conveyed by the time evolu-
tion operator, through the relation

ρ(t) = U(t, t0)ρ(t0)U†(t, t0). (1.21)

Besides, the probabilities defined in Eq. 1.13 read

pi = Tr[MiρM
†
i ], (1.22)

while the measurement maps the initial density operator ρ into a statistical ensemble of
states {pi, ρ′i} given by

ρ′i =
MiρM

†
i

Tr[MiρM
†
i ]
. (1.23)

Finally, the average value of the operator M reads

〈M〉 = Tr[ρM ]. (1.24)

1.1.4 Bipartite systems

The density operator of a composite system is defined in a Hilbert space which is the
tensor product of the vector spaces of each subsystem. In the case of a bipartite system,
the Hilbert space then is H = HA ⊗ HB and the density operator describes the state of
the joint subparts (usually referred as Alice and Bob). However, in many situations it is
interesting to describe the state of the subsystems and the mathematical tool needed is
called reduced density operator, which is defined as

ρA = TrB[ρ] (1.25a)
ρB = TrA[ρ] (1.25b)

where Trj [·] indicates the partial trace over the j-th subsystem.
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1.1.5 Open quantum systems

A realistic quantum system can hardly be pictured as isolated: indeed, the interaction
with the surrounding environment alters its dynamics and creates system-environment
correlations that prevent from describing the system as closed. The system is inextri-
cably correlated to the environment and can be then regarded as an open subpart of the
system-environment complex, but its dynamics fails to be described by means of unitary
evolutions.

The theory of open quantum systems provides the necessary tools to describe the
dynamics of an open system. In this framework, a system S and the environment B
form a composite system, whose Hilbert space is H = HS ⊗ HB . As a whole, the com-
posite system is described as a density operator, whose dynamics is ruled by a unitary
evolution. Conversely, the evolution of the reduced density operator representing the
quantum system may be retrieved from the evolution of the global state as

ρ′ = E(ρ) = TrB [U(ρ⊗ ρB)U†]. (1.26)

where ρ⊗ ρB is the factorized initial state of the global system.
E is called quantum dynamical map and describes the dynamics of the reduced system

alone. A dynamical map is linear and it is chosen to be trace-preserving. In order to keep
the positivity of density matrices in presence of entanglement with another extra-system,
a dynamical map E is also required to be completely positive, that is, its extension E ⊗ Ik
to any larger k-dimension space is a positive quantum map as well.

Complete positive maps admit the so-called Kraus representation [69]

E(ρ) =
∑
i

KiρK
†
i (1.27)

where Ki, called Kraus operators, act on the state space HS . These operators satisfy
the completeness condition

∑
K†iKi = I and each Ki is a quantum operation, so the

quantum map may be regarded as a sum of quantum operations acting on the input
state.

A dynamical map represents the solution of a differential equation, named quantum
master equation. Quantum master equations rule the evolution of reduced density opera-
tors and are directly derived from a microscopic quantum model of interaction between
the system and the environment. An important class of master equations contains those
that can be recast in the following form [70]:

d

dt
ρ(t) = −i[H(t), ρ(t)] +

∑
k

γk(t)

[
Lk(t)ρ(t)L†k(t)− 1

2
{L†k(t)Lk(t), ρ(t)}

]
(1.28)

where {O1, O2} = O1O2 + O2O1 and Lk are operators acting on the system Hilbert
space and depend on the specific model of interaction. Within this class, it is possible to
find both Markovian and non-Markovian master equations, depending on the behaviour
of the time-dependent coupling functions γk(t): the strong connection between the be-
haviour of the coupling functions and the concept of non-Markovianity will be explored
later in this chapter.

1.2 Quantum optics in phase space

The harmonic oscillator represents, along with the qubit, the most important concept in
quantum mechanics and quantum optics, as it may represent many physical systems,
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e.g. phonons, photons, bosonic systems in general. All along this dissertation, I present
models where the quantum system interacting with the environment is either a single
harmonic oscillator or a couple of bosonic modes. In the following, a short review [71]
of the basic notation about bosonic systems and phase space representation.

1.2.1 Basic notation

Each bosonic mode k = 1, . . . , n of a n-partite system is described by annihilation and
creation operators âk and â†k, satisfying the commutation relations [âj , â

†
k] = δkl. The free

Hamiltonian of n bosonic modes in natural units is given by

H =

n∑
k=1

(
â†kâk +

1

2

)
. (1.29)

It is convenient to define the position- and momentum-like operators as

q̂k =
1√
2

(âk + â†k) and p̂k =
1

i
√

2
(âk − â†k), (1.30)

where the commutation relations [q̂j , p̂k] = iδjk can be rewritten in the compact form

[R̂j , R̂k] = iΩjk (1.31)

where the quadrature vector R̂ = (q̂1, p̂1, . . . , q̂n, p̂n) was introduced along with the sym-
plectic matrix

Ω =

n⊕
k=1

ω ω =

(
0 1
−1 0

)
. (1.32)

1.2.2 Characteristic function and quasi-probability functions

The density operator ρ uniquely defines the characteristic function

χ[ρ](Λ) = Tr[ρ exp{−iΛTΩR̂}] (1.33)

The characteristic function describes the state of the system by means of its full statis-
tics, i.e. the moments of any order. Within the characteristic function it is possible to
distinguish the displacement operator D(Λ) with Λ =

(
λ

(1)
x , λ

(1)
y , . . . , λ

(n)
x , λ

(n)
y

)
:

D(Λ) = exp{−iΛTΩR̂} =

n⊗
k=1

Dk(λk) (1.34)

where Dk(λk) = exp{λkâ†k − λkâk}with λk = λ
(k)
x + iλ

(k)
y .

The characteristic function can be Fourier-transformed, obtaining the so called Wigner
function

W [ρ](X) =
1

(2π2)n

∫
d2nΛ exp{iΛTΩX}χ[ρ](Λ) (1.35)

whereX = (x1, y1, . . . , xn, yn)T .
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The Wigner function is a phase space distribution of the quantum state ρ. It is not the
only possible one: indeed, it is possible to define a whole class of phase space distribu-
tions using a more general definition

Ws[ρ](X) =
1

(2π2)n

∫
d2nΛ exp

{
1

2
s|Λ|2 + iΛTΩX

}
χ[ρ](Λ) (1.36)

where s addresses the order of the Wigner function. In particular, s = 0 returns the
Wigner function of Eq. 1.35, while s = 1,−1 define respectively the Husimi-Q and the
Glauber-P function. All these distributions are called quasi-probability functions: they
are Fourier-transforms of characteristic functions, as probability distributions in classical
theory, but are not positive in general. In particular, the Glauber-P function P (α) is the
distribution of a state ρ over the basis of coherent states:

ρ =

∫
d2αP (α)|α〉〈α| (1.37)

where d2α = dRe(α)dIm(α).
P (α) resembles a probability distribution but fails to be interpreted as a classical one,

as it may assume negative values or even be singular. The Glauber-P function is used to
address in a mathematical way the quantum-to-classical transition, as it will be shown
in Chapter 4.

1.2.3 Gaussian states

Gaussian states play a fundamental role in quantum information and quantum optics
for two reasons: on one hand, many states used in modern laboratories, e.g. the vac-
uum state, coherent states, single- and two-mode squeezed states, belong to the class
of gaussian states; on the other hand, the evolutions achievable with quantum technol-
ogy are described by linear or quadratic Hamiltonians which preserve gaussianity. In
the following, a short review of the basic properties and useful notation about gaussian
states.

The formalism of the characteristic and Wigner functions becomes extremely fruitful
when dealing with gaussian states. By definition, the state of n bosonic mode system is
said to be gaussian if its characteristic function is gaussian, that is,

χ[ρ](Λ) = exp{−1

2
ΛTΩσΩTΛ− iΛTΩ〈R̂〉} (1.38)

where the elements of the covariance matrix σ are defined as

σjk =
1

2
〈R̂jR̂k + R̂kR̂j〉 − 〈R̂j〉〈R̂k〉. (1.39)

The positivity of the density matrix ρ imposes a constraint on the the covariance matrix
σ

σ +
i

2
Ω ≥ 0, (1.40)

where Ω is defined in Eq.1.32. Of course, gaussian states have a Wigner function which
is gaussian as well and reads

W [ρ](X) =
exp{− 1

2 (X − 〈R̂〉)Tσ−1(X − 〈R̂〉)}
πn
√

det[σ]
. (1.41)
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Gaussian states are described by their first and second order-moments, i.e. first-moments
vector and covariance matrix. However, what really has put gaussian states on the crest
of a wave is that gaussianity is preserved in many quantum optical, optomechanical and
micromechanical systems, where Hamiltonians are linear and bilinear in the modes, that
is

H =

n∑
k=1

g
(1)
k â†k +

n∑
k≥l=1

g
(2)
kl â

†
kâl +

n∑
k,l=1

g
(3)
kl â

†
kâl + h.c., (1.42)

where the three building blocks are the generators of unitary symplectic operations cor-
responding to displacement

(
g

(1)
k

)
, phase shifts or two-mode mixing (g

(2)
kl ) and single or

two-mode squeezing (g
(3)
kl ).

An important theorem due to Williamson states that every covariance matrix can be
diagonalized through a symplectic transformation or, equivalently, every gaussian state
can be transformed into a thermal state by a symplectic trasnformation. Mathematically,
a 2n× 2n covariance matrix σ can always be written as

σ = SWST , (1.43a)

ρ = USνthU
†
S (1.43b)

where νth is a thermal state, US is a symplectic operator with corresponding matrix S
and W =

⊕n
k=1 dkI2 is a diagonal matrix. The set {dk} contains the moduli of the

eigenvalues of iΩσ, namely, the symplectic eigenvalues of σ. The Williamson theorem
is very meaningful: W is the covariance matrix of a n-mode thermal state, provided
that Nk = dk − 1

2 is the average number of photons in the k-th mode. Once again, the
positivity of the density operator ρ imposes thatW has to be a physical matrix, that is

Nk ≥ 0, dk ≥
1

2
, ∀k. (1.44)

However, there is no general recipe to retrieve the explicit form of the symplectic matrix
S, except in a few cases. For instance, in the case of a single-mode gaussian state, the
density operator ρ can be always broken down into the following form,

ρ = D(λ)S(ξ)νth(N)S†(ξ)D†(λ) (1.45)

where S(ξ) = exp{ξ(â†)2 − ξ∗â2} is the squeezing operator and νth(N) is the thermal
state

νth(N) =
1

N

∑
m

(
N

N + 1

)m
|m〉〈m|. (1.46)

Two-mode gaussian states will be largely used in Chapter 5, since the states include
the simplest entangled state that may be realized in modern quantum laboratories. To
introduce the subject, it is useful to first describe the class of gaussian state with the
same amount of entanglement. Such states are mutually connected by local symplectic
transformations. The most general two-mode gaussian state is:

σ =

(
A C

CT B

)
(1.47)

whereA,B and C are 2× 2 matrices that define four local symplectic invariant

I1 = det[A] I2 = det[B] I3 = det[C] I4 = det[σ]. (1.48)
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Every covariance matrix can be reduced to the following standard or normal form:

σ =

 a 0 c1 0
0 a 0 c2
c1 0 b 0
0 c2 0 b

 , (1.49)

where the values of a, b, c1 and c2 satisfy the conditions a2 = I1, b
2 = I2, c1c2 = I3 and

(ab − c21)(ab − c22) = I4. The symplectic eigenvalues of a generic two-mode covariance
matrix of a gaussian state only depends on the symplectic invariants by

d± =

√
∆(σ)±

√
∆(σ)2 − 4I4
2

(1.50)

with ∆(σ) = I1 + I2 + 2I3.

A relevant class of gaussian states is composed by the two-mode squeezed thermal
states, generated by applying the two-mode squeezing operator to a tensor product of
thermal states:

ρSTS = S2(r)νth(n̄1)⊗ νth(n̄2)S†2(r). (1.51)

σSTS =
1

2

(
A I2 Cσz
Cσz B I2

)
, (1.52)

where σz = diag(1,−1) is the z Pauli matrix and the parameters A,B,C are given by

A = cosh(2r) + 2n̄1 cosh2 r + 2n̄2 sinh2 r

B = cosh(2r) + 2n̄1 sinh2 r + 2n̄2 cosh2 r

C = (1 + n̄1 + n̄2) sinh(2r). (1.53)

In particular, the case n̄1 = n̄2 = 0 defines the twin-beam state (TWB).
Of course, the symplectic S of Eq. 1.43a is at hand in the case of a squeezed thermal

state, as it coincides with the two-mode squeezing operator S2(r) = exp{râ†b̂ + râb̂†}.
Moreover, it is possible to find the symplectic operator S for any two-mode gaussian
state with covariance matrix σ, which can be written down as [72]

σ = ATν(N̄1, N̄2)A, (1.54)

where ν(N̄1, N̄2) is the covariance matrix of a tensor product of single-mode thermal
states with average photon number N̄j = Nj − 1

2 , while

A = Sloc(r1, r2)R(ξ)StmR(η)Sl (1.55)

where Sl is the symplectic that drives the covariance matrix in standard form, Stm(r) =
diag(er, e−r, e−r, er), Sloc(r1, r2) = S(r1)⊕ S(r2).

1.2.4 Uhlmann Fidelity function

The Uhlmann Fidelity [73] is a very common tool in quantum optics to address how
similar two quantum states are and its formal definition is given by

F(ρA, ρB) =

[
Tr
√√

ρAρB
√
ρA

]2

. (1.56)
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The Uhlmann Fidelity is symmetric, ranges from 0 to 1 and reaches its maximum value
if and only if ρA = ρB. Moreover, it can be used to define the Bures distance DB(ρA, ρB)
as

DB(ρA, ρB) =

√
2
[
1−

√
F(ρA, ρB)

]
, (1.57)

which is a metric on the Hilbert space of the system.
The Uhlmann fidelity in Eq. 1.56 simplifies if one of the state, say, ρA is pure, ρA =

|ψ〉〈ψ|:
F(ρA, ρB) = 〈ψ|ρB|ψ〉. (1.58)

In addition, an explicit form of the Uhlmann Fidelity for gaussian states may be written
in terms of first momenta R̂ and covariance matrices σ. For single mode gaussian states,
the Fidelity reads

F(ρA, ρB) =
exp{− 1

2 (R̂1 − R̂2)T (σ1 + σ2)−1(R̂1 − R̂2)}
√

∆ + δ −
√
δ

, (1.59)

with ∆ = det[σ1 + σ2] and δ = 4 Π2
k=1(det[σk]− 1

4 ).

For two-mode gaussian states, the Fidelity reads

F(ρA, ρB) = Tr[ρ1ρ2](
√
X
√
X − 1)2 (1.60)

where X = 2
√
A+ 2

√
B + 1

2 and

A =
det[Ωσ1Ωσ2 − 1

4 I4]

detσ1 + σ2
, B =

det[σ1 + i
2Ω]det[σ2 + i

2Ω]

det[σ1 + σ2]
. (1.61)

1.3 Quantum correlations

Quantum systems may feature non-classicality in many guises. On one hand, quantum-
ness may lie in the state of the system, as there exist states with no classical counterpart,
e.g., Fock states or Schrödinger cat states; on the other hand, quantum systems may fea-
ture nonclassical correlations: entanglement and quantum discord fall in this category.

Entanglement addresses the correlations of interacting systems in terms of separabil-
ity and has stood for many years as the sole acknowledged form of nonclassical corre-
lation. However, disentangled states may exhibit nonclassical behaviour based on other
concepts apart from separability. For instance, the quantum discord measures correla-
tions that are not reproducible by local operations or classical communication and may
be non-zero even for separable states. In the following, I introduce the three types of cor-
relations involved in this dissertation: mutual information, entanglement and quantum
discord.

1.3.1 Mutual information

The mutual information is a form of classical correlation, extremely useful in communi-
cation protocols: in fact, the mutual information was first introduced in the context of
information theory in order to quantify the amount of knowledge shared by two part-
ners, the sender Alice and the receiver Bob, when sending information over a channel.
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Alice holds information in terms of a random variable X and its probability dis-
tribution p(x). The measure of uncertainty about the random variable X is naturally
described by the Shannon entropy

S(X) = −
∑
x

p(x) log2 p(x) (1.62)

which is additive, always positive and equals to zero when the probability distribution
is singular. The Shannon entropy can easily be extended to the case of two random
variables X,Y and reads

S(X,Y ) = −
∑
x,y

p(x, y) log2 p(x, y), (1.63)

where p(x, y) is the joint probability distribution of the two random variables. If X ad Y
are independent, S(X,Y ) = S(X) + S(Y ) as an immediate consequence of the additive
property of the Shannon entropy. If X and Y are not independent, gaining information
upon X removes uncertainty from Y and viceversa. The remaining uncertainty is given
by the conditional entropy

S(X|Y ) = −
∑
x,y

p(x, y) log2[p(x|y)] (1.64)

where p(x|y) = p(x,y)
p(y) is the conditional probability. Of course, joint and conditional

entropies are related: the amount of uncertainty about the couple of random variables
X and Y can always be seen as the uncertainty of X plus the unceartainty of Y once X
is known, that is

S(X,Y ) = S(X) + S(Y |X). (1.65)

Furthermore, the sum of the uncertainties of two random variables always exceeds their
joint entropy. The difference between these quantities is called mutual information

I(X : Y ) = S(X) + S(Y )− S(X,Y ) (1.66)

and assesses the amount of correlation between two random variables. If X and Y are
independent, the mutual information is zero, that is, measuring X does not reveal any
information about Y and viceversa.

All the expressions above have a quantum analog. In the quantum theory, the infor-
mation is stored in the density operator ρ, which takes over the probability distribution.
The quantum version of the Shannon entropy is called von Neumann entropy and is
given by

S(ρ) = −Tr[ρ log2 ρ]. (1.67)

The von Neumann and Shannon entropy share the same properties.
In a similar way, the quantum conditional entropy measures the information gained

from ρAB when ρB is known:

S(ρA|ρB) = S(ρAB)− S(ρB) (1.68)

Finally, the quantum mutual information can be written as

I(ρA : ρB) = S(ρA) + S(ρB)− S(ρA, ρB). (1.69)
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In the context of communication channels, the mutual information is used to assess the
efficiency of a communication protocol, that is, the strategies chosen by the two parties
to encode some information on a quantum state and decode it by a proper measure-
ment. The maximum amount of information achievable is called channel capacity, which
measures the maximum rate of information that can be reliably transmitted over a com-
munication channel.

1.3.2 Entanglement

Quantum systems may exhibit correlations that have no classical counterpart. Classi-
cal correlations are generated by local operations and classical communication (LOCC),
quantum correlations arise from peculiar features of quantum states. Differently to clas-
sical multipartite systems, a quantum system can live in a non-separable state, that is, a
state that cannot be written as a convex combination of tensor product states [74]

ρ
(sep)
AB =

∑
k

pkρ
(A)
k ⊗ ρ(B)

k . (1.70)

Non-separable states are called entangled states and the entanglement measures the de-
gree on non-separability of a quantum system. Entangled states cannot be reproduced
by any LOCC-schemes, which only generate classical separable states. Indeed, entan-
glement cannot increase under local operations and is even invariant if such operations
are unitary. As a result of the interaction with a noisy environment, a system may lose
quantum correlations and eventually turn from an entangled to a separable state. This
situation is referred as entanglement sudden death and an eventual increase is called
revival.

For bipartite systems, the most common measure of entanglement relies on the PPT
criterion (positivity under partial transposition): ρAB is separable if and only if the par-
tially transposed density ρTA

AB is a positive operator, where

ρ
TA
AB =

∑
k

pk(ρ
(A)
k )T ⊗ ρ(B)

k . (1.71)

The PPT criterion was introduced as a necessary condition by A. Peres [75] and proved
to be a sufficient condition for bypartite systems by R. Simon [76]. This criterion allows
to easily determine whether a state is entangled or not by only checking the sign of the
eigenvalues of ρTA

AB . If all the eigenvalues are positive the state is separable, othewise the
state is entangled.

The PPT criterion assumes an even easier look for gaussian states, benefiting from
the covariance matrix formalism. The covariance matrix associated to the partially trans-
posed density operator ρTB

AB has to satisfy

σ̃ +
i

2
Ω ≥ 0 (1.72)

where σ̃ = ∆Aσ∆A and the partial transposition operator ∆A = Diag(1,−1) ⊕ I2. The
four symplectic invariants of σ̃ are given by

Ĩ1 = I1, Ĩ2 = I2, Ĩ3 = −I3, Ĩ4 = I4. (1.73)
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The symplectic eigenvalues are then given by

d̃± =

√√√√∆̃(σ)±
√

∆̃(σ)2 − 4I4

2
(1.74)

where ∆̃(σ) = I1 + I2 − 2I3. The PPT criterion requires positivity of the partially trans-
posed density operator. In the covariance matrix formalism, such requirement implies
that all the symplectic eigenvalues of σ need to exceed the threshold value 1

2 . A gaussian
state is then separable if the smallest symplectic eigenvalue d̃− satisfies

d̃− ≥
1

2
. (1.75)

In order to transform this criterion into a suitable measure of entanglement, the logarith-
mic negativity N [77] is introduced

N = max{0, log2 2d̃−}. (1.76)

The logarithmic negativity is an increasing monotone function of d̃− and is zero when
condition 1.75 is satisfied.

1.3.3 Quantum Discord

The total amount of the correlations possessed by a bipartite quantum state ρAB is called
mutual information and is given by

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (1.77)

where S(ρj) is the Von Neumann entropy of the j-th subsystem. Usually, the mutual
information can be divided into two parts: a classical part C(ρAB) and a quantum part
D(ρAB), which takes name of quantum discord. The classical correlations, defined as the
maximum amount of information extractable from one subsytem by performing local
operations on the other, are given by

C(ρAB) = maxΠi

{
S(ρA)−

∑
i

piS(ρΠi
A|B)

}
(1.78)

where ρΠi
A|B = TrB(ρI⊗Πi) is the state after the measurement on system B with probability

pi = TrA,B(ρABI⊗Πi). The quantum discord is defined as the difference between the total
correlations and the classical correlations:

D(ρAB) = I(ρAB)− C(ρAB). (1.79)

The quantum discord then measures the amount of correlations whose origin cannot
be addressed to the action of local operations or classical communication. However,
computing the quantum discord may be challenging as it usually implies finding the
POVM that maximizes the classical correlations. In the case of Gaussian states, the form
of the POVM maximizing the classical correlations is known [78, 79] and the quantum
discord depends only on the covariance matrix by the relation

D(ρ) = h(
√
I2)− h(d−)− h(d+) + h

(√
Emin

)
, (1.80)
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where d− and d+ are the symplectic eigenvalues of the covariance matrix, I1, I2, I3, I4
are the so-called symplectic invariants, h(x) = (x+ 1

2 ) log(x+ 1
2 )− (x− 1

2 ) log(x− 1
2 ) and

Emin =


[

2|I3|+
√

4I23+(4I2−1)(4I4−1)

4I2−1

]2

if Rσ ≤ 1

I1I2+I4−I23−
√

(I1I2+I4−I23 )2−4I1I2I4
2I2

if Rσ > 1

(1.81)

where

Rσ =
4(I1I2 − I4)2

(I1 + 4I4)(1 + 4I2)I2
3

.

For Gaussian states satisfying the second condition, the maximum amount of extractable
information is achieved by measuring a canonical variable (e.g. by homodyne detection
in optical systems [80]). On the other hand, for states falling in the first set, the optimal
measurement is more general, and coincides with the projection over coherent states for
STSs. For a generic Gaussian state, with covariance matrix σ written in a block form

σ =

(
A C
CT B

)
(1.82)

the symplectic invariants are I1 = detA, I2 = detB, I3 = detC, I4 = detσ.

1.4 Quantum Discrimination Theory

In this section, I briefly summarize the basic concepts of quantum state discrimina-
tion [81–84] and introduce the tools required to implement a discrimination strategy.
The purpose of state discrimination is to distinguish, by looking at the outcome of a
measurement performed on the system, between two possible hypothesis on the prepa-
ration of the system itself. Optimal discrimination schemes are those minimizing the
probability of error upon a suitable choice of both the input state and the output mea-
surement. The minimum achievable probability of error, given a pair of output states,
may evaluated from the density operators of the two states and it is usually referred to
as the Helstrom Bound. Suppose to have a quantum system that may be prepared in
two possibile states, corresponding to the two hypotheses HA and HB,

HA : ρ→ ρA HB : ρ→ ρB. (1.83)

In order to determine which density matrix describes the true state of the quantum sys-
tem, one chooses a two-value positive-operator-valued measure (POVM) {EA, EB}with
EA + EB = I and EA, EB ≥ 0. Once the measurement is performed, the observer infers
the state of the system with an error probability Pe given by

Pe =
1

2
Tr[ρAEB] +

1

2
Tr[ρBEA]. (1.84)

It is possible to show that the minimum error probability is related to the trace distance
between the two states to discriminate, where the trace distance is

T (ρA, ρB) =
1

2
||ρA − ρB||1, (1.85)

with ||O||1 = Tr
√
O†O. Finally, the minimum error probability, also called Helstrom

bound, reads

Pe =
1

2
[1− T (ρA, ρB)]. (1.86)
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The trace distance provides a metric on the Hilbert space and is equal to zero if and only
if ρA = ρB while it reaches its maximum value 1 for orthogonal states. Therefore, the
error probability ranges from 0, when the two states are orthogonal, to 1, when the two
states are identical.

It is worth emphasizing that the performance of any POVM can not outdo the Hel-
strom Bound, which stands as the ultimate precision in discrimination protocols. Unfor-
tunately, evaluating the Helstrom Bound for continuous variable systems is a challeng-
ing task, as it requires performing a trace operation on infinite matrices. Nevertheless,
some lower and upper bounds can be found by means of the Uhlmann fidelity function.
In fact, defining the lower bound Fm and the upper bound FM

Fm ≡
1−

√
1−F(ρA, ρB)

2
, FM ≡

√
F(ρA, ρB)

2
, (1.87)

the error probability ranges within the interval defined by the two bounds [85]

Fm ≤ Pe ≤ FM . (1.88)

Another tighter upper-bound for the Helstrom Bound is given by the quantum Chernoff
bound (QCB) Q,

Q = inf
0≤s≤1

Tr[ρsAρ
1−s
B ]. (1.89)

Even though the QCB does not possess any natural operational meaning, i.e. it cannot
be directly related to a measurement process, it becomes a powerful tool in discrimina-
tion protocols featuring multicopy states and it is generally pretty easy to evaluate for
continuous variable systems. The QCB can be related to the Uhlmann fidelity function
and, by means of the QCB, Eq. 1.87 can be upgraded to

Fm ≤ Pe ≤
Q

2
≤ FM . (1.90)

The explicit formula for the QCB is cumbersome and won’t be reported here [86].

1.5 Non-Markovianity

The presence of the environment unavoidably affects the dynamics of a quantum system.
Because of the interaction, the quantum system correlates with the environment, result-
ing in an irreversible dynamics of its state. In this case, the evolution of the state ceases
to be pictured by unitary evolutions and dynamical maps are needed to its description
instead.

Within the irreversible dynamics, the quantum features of the system may disap-
pear once and for all or revive partially in time, the second option arousing suspicion
about the presence of memory effects. Dynamical maps whose evolution is character-
ized by such memory effects are usually named non-Markovian maps, in opposition to
Markovian maps, which describe memoryless dynamics. Such terminology characteriz-
ing dynamical maps is heritage of classical theory of stochastic processes, where Markov
processes identify discrete chains of time-labeled events whose probability distribution
at any time strictly depend exclusively on the output of the previous event. Formulating
a similar definition in a quantum scenario is a challenging task: knowing the output of
an event implies measuring and measuring affects posterior statistics, therefore the clas-
sical definition does not suit a quantum theory. Nowadays, a proper distinction between



Preliminaries 17

quantum Markovian and non-Markovian processes relies on the property of divisibility
of the dynamical map describing the evolution. A dynamical map E(t, t0) is said to be
divisible if it follows a decomposition rule such as

E(t, t0) = E(t, t1)E(t1, t0) ∀t1 : t ≥ t1 ≥ t0. (1.91)

where both E(t, t1) and E(t1, t0) are CPTP maps. A completely positive map is then said
to be non-Markovian if it violates the decomposition rule for some set of times.

Unfortunately, directly proving [87–89] the non-Markovian character of a dynamics
is not always possible, as in many situations the full analytic form of the time depen-
dent quantum dynamical map is missing. When the direct verification is not possible,
one may exploit witnesses of non-Markovianity, i.e. quantities that vanish in case of a
Markovian dynamics. Even though the witnesses may successfully capture the memory
feature of a non-Markovian process in many situations, they possess different physical
meaning and may be ineffective in some specific situation. In the following, I briefly re-
view two of the most common measures of non-Markovianity, the BLP and the Fidelity
measures.

1.5.1 BLP and Fidelity measures of non-Markovianity

The BLP measure was first proposed by Breuer, Laine and Piilo in Ref. [90]. The basic
idea behind the BLP measure lies on the fact that Markovian quantum maps are respon-
sible for an irreversible loss of distinguishability between two input states, differently
to non-Markovian maps, which may exhibit a partial regrowth of distinguishability in
time. The loss of distinguishability is usually given an interpretation in terms of flow of
information, travelling from the system into the environment, while a partial increase is
interpreted a sign of a reversed flow. The distinguishability between any two states ρA
and ρB is quantified by the trace distance defined in Eq. 1.85. From a mathematical point
of view, the BLP measure is based on the contractive properties of CPTP maps: in fact, a
CPTP map Φ is a contraction for the Trace distance,

T (ΦρA,ΦρB) ≤ T (ρA, ρB). (1.92)

This implies that no quantum operation can increase the distinguishability of two quan-
tum states. If a quantum evolution E(t, t0) is Markovian, the divisibility property in
Eq. 1.91 implies that, at any intermediate time between t and t0, the quantum evolution
splits into two CPTP quantum evolutions that are contractions for the Trace distance.
Therefore, any non-monotonic behaviour of the trace distance necessarily means that
the divisibility property is not satisfied. BLP introduce the rate of change of the trace
distance as

σ(ρA, ρB, t) =
d

dt
T (ρA(t), ρB(t)). (1.93)

While Markovian quantum evolutions always feature a negative rate σ, non-Markovian
evolutions may be characterized by a temporary positive derivative of the trace distance,
which implies an increase of distinguishability, i.e. a flux of information travelling back
to the system. The maximum total amount of information backflow is quantified by the
BLP measure:

NBLP = max
ρA,ρB

∫
σ>0

dt σ(t, ρA, ρB). (1.94)

The quantity NBLP collects all the information backflow and defines a sort of degree
of non-Markovianity. Of course, if NBLP > 0 the dynamics is non-Markovian, but the
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converse is not true in general. For this reason, the BLP measure can only be used to
witness non-Markovianity and does not hold as a definition of non-Markovianity by
itself.

An analogue measure of non-Markovianity can be defined on the Uhlmann Fidelity
function, as any CPTP map Φ is a contraction for the Bures distance as well:

DB(ΦρA,ΦρB) ≤ DB(ρA, ρB). (1.95)

In a very similar way, it is possible to define the rate of change of the Bures distance as

σB(ρA, ρB, t) =
d

dt
DB(ρA(t), ρB(t)). (1.96)

and associate a quantifier of non-Markovianity NB

NB = max
ρA,ρB

∫
σB>0

dt σB(t, ρA, ρB). (1.97)

The two measures of non-Markovianity indeed rely on the same mathematical con-
cept, albeit the BLP measure entails more physical sense as it is strictly related to the
error probability in discrimination protocols.

As previously anticipated, there is a strong connection between the non-Markovian
properties of a dynamical map and the form of master equation the map obeys. Indeed,
an operator Lt is the generator of a Markovian dynamics if and only if it can be written
in the so-called Lindblad form:

d

dt
ρ(t) = Lt[ρ(t)] = −i[H(t), ρ(t)] +

∑
k

γk(t)

[
Lk(t)ρ(t)L†k(t)− 1

2
{L†k(t)Lk(t), ρ(t)}

]
(1.98)

with γk(t) ≥ 0 for every k and time t. Therefore, if the coupling becomes negative at any
time t, the dynamics is non-Markovian.

1.6 Summary

• The density operator formalism allows to easily describe the state of a system, its
evolution and the effect of quantum measurements. The evolution of open quan-
tum systems is represented by means of CPTP maps.

• Quantum correlations are one of the best signature of nonclassicality and have
no classical counterpart. Entangled states are defined as non-separable states and
cannot be generated by any LOCC scheme. The quantum discord measures the
amount of correlations not originating from local or classical operations and may
be non-zero even in absence of entanglement.

• Quantum discrimination theory allows to guess with some error probability which
among two hypotheses is true by performing a set of measurements on the system.
The ultimate error probability is known as Helstrom bound, but other bounds as
the Fidelity and the Quantum Chernoff bound are used for continuous variable
systems.
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• The definition of non-Markovianity relies on the violation of the divisibiility prop-
erties of quantum maps. When the explicit form of the quantum map is not known,
non-Markovianity may be witnessed by means of the BLP or Fidelity measures,
both related to contractive properties of CPTP maps. According to the BLP mea-
sure, a non-Markovian dynamics may exhibit a partial increase of distinguishabil-
ity between quantum states and this regrowth is commonly interpreted as a back-
flow of information from the environment to the system.



CHAPTER 2

Stochastic processes

In this chapter, I shortly review the basic concepts about stochastic processes [91–94] and
introduce some relevant properties of the Ornstein-Uhlenbeck process.

2.1 General notions

Roughly speaking, a stochastic process describes the dynamics of some physical prop-
erty of a system that evolves with some indeterminacy, instead that obeying a determin-
istic law. Stochastic processes occur in many branches of knowledge, i.e. economics and
medicine. In physics, the most known example of stochastic process is the motion of a
particle in Brownion motion.

The property of the system that evolves randomly is addressed by a random variable
X that, in a given experiment, takes a particular value xi, which is called realization. Each
realization is assigned a probability pi = p(xi) in a discrete case. If the set of possible
realization is continuous, a probability distribution p(x) is needed. Of course, p(x) is
non-negative and normalized.

Random variables are meant to describe non-deterministic features of a physical pro-
cesses through probabilistic laws. However, in many practical situations, the probability
density p(x) is not known and information about the random variable is accessible only
through its statistics, i.e. expectation value, variance or higher order statistics.

A random variable X with a probability p(x) over the set of realizations {x, x ∈ R}
can be described by means of the characteristic function

χ(ξ) = E
[
eiξX

]
, (2.1)

which is related to the probability distribution p(x) through a Fourier transform:

χ(ξ) =

∫
eiλxp(x)dx. (2.2)

The characteristic function includes any information about the statistics of the random
variable, momenta and cumulants. The j-th order momentummk is defined asmk = E[Xk]
and can be generated by the characteristic function through

mj =
1

ij
djχ(ξ)

dξj

∣∣∣
ξ=0

. (2.3)

From the knowledge of the moments, the characteristic function can be written in terms
of the cumulants kj

χ(ξ) = 1 +

∞∑
n=1

(iξ)n

n!
mn = exp

{ ∞∑
n=1

(iξ)n

n!
kn

}
(2.4)

20
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where the cumulants and the momenta are related through the following formulas:

k1 = m1;

k2 = m2 −m2
1

k3 = m3 − 3m1m2 + 2m3
1

. . . . . . . . . (2.5)

The first and second order cumulants are respectively known as expectation value µ and
variance σ2: the expectation value µ of a random variable X with set of realizations
{x, x ∈ R} is the

µ = E[X] =

∫
xp(x)dx, (2.6a)

σ2 = E
[
(X − E[X])2

]
= E[X2]− E[X]2. (2.6b)

In general, the characteristic function needs the evaluation of any order moments. Nev-
ertheless, there is a whole class of random variables where the evaluation of only first
and second momenta is sufficient to a full characterization: gaussian random variables.

A gaussian random variable is described by a gaussian probability distribution p(x) =
1√

2πσ2
exp

[
− (x−µ)2

2σ2

]
, where µ is the expectation value and σ2 is the variance of the ran-

dom variable. The characteristic function is then given by

χ(ξ) = exp
[
iξµ− 1

2
σ2ξ2

]
(2.7)

and is related to the probability distribution p(x) by Fourier-transforming.

In order to address a stochastic process, i.e. the dynamical evolution of a non deter-
ministic physical property of a system, a collection {X(t), t ∈ T} of random variables is
needed. Each variable is defined on the same probability space and is indexed by a time
parameter t. Of course, random variables at different times may exhibit correlations. In
this context, it is useful to define the autocorrelation function K(t1, t2),

K(t1, t2) = E[X(t1), X(t2)] (2.8)

where t1 and t2 are two different instants of time. In particular, the stochastic processes
all over this dissertation are stationary, that is, they are not affected by a shift of time

E[X(t1 + τ)X(t2 + τ) . . . X(tn + τ)] = E[X(t1)X(t2) . . . X(tn)]. (2.9)

In the particular case of the autocorrelation function, a stationary process implies that
K(t1, t2) only depends The autocorrelation function may even be defined through its
Fourier-transform, i.e. through the power spectral density

S(ω) =

∫ ∞
−∞

K(τ)e−iωτdτ. (2.10)

Stochastic processes may feature memory effects. Intuitively, memory is associated to
physical processes in which a physical property at some time t depends on its value at
previous times. When the conditional probabilities satisfy

p(xn+1, tn+1|x1, t1; . . . ;xn, tn) = p(xn+1, tn+1|xn−k, tn−k), (2.11)
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the stochastic process is said to be non-Markovian of order k. When k = 0, the process is
said to be Markovian, that is, predictions upon the state at any time only depend on the
present state of the system or, equivalently, on the conditional transition probability and
the initial distribution.

In quantum optics, stochastic processes are often used to represent noisy classical
environments that interact with quantum systems. In particular, stochastic processes
well suit the case of fluctuating environments, which dynamics show no deterministic
behaviour but can be described by means of an autocorrelation function or a power
spectrum. In the particular case of gaussian processes, correlations or power spectra
are the only needed ingredients to define the process itself, so when addressing noisy
environments in terms of gaussian stochastic processes, the noise structure is chosen
heuristically.

The models presented in the following chapters will address decoherence phenom-
ena of quantum systems interacting exclusively with gaussian stochastic environments,
which will be investigated in a deeper way in the following section.

2.2 Gaussian stochastic processes

A stochastic process {X(t), t ∈ T} is said to be gaussian if, for any integer n and any
subset {t1, t2, . . . , tn}, the joint characteristic function of n random variables is given by

χ[X(t1),X(t2),...,X(tn)](ξ1, ξ2, . . . , ξn) =

E
[

exp

(
i

n∑
k=1

ξkX(tk)

)]
= exp

[
i
∑
k

ξkµk −
1

2

n∑
j,k

ξjξkK(tj , tk)

]
(2.12)

where the average value µk = EX(tk) and the covariance kernel is

K(tj , tk) = E[X(tj)X(tk)]− E[X(tj)]E[X(tk)]. (2.13)

Of course, the previous definition may be easily extended to a continuous case, by letting
the time interval [t0, t] take over the discrete set of values {tk}. Then, the continuous
gaussian stochastic process is such that

E
[

exp

(
i

∫ t

t0

ξ(s)X(s)ds

)]
=

exp

[
i

∫ t

t0

ξ(s)µ(s)ds− 1

2

∫ t

t0

∫ t

t0

ξ(s)ξ(s′)K(s, s′)ds ds′
]
, (2.14)

where the last term of Eq. 2.14 is singled out can be written as a β-function:

β(t, t0) =

∫ t

t0

∫ t

t0

ξ(s)ξ(s′)K(s, s′)ds ds′, (2.15)

which plays the role of variance of the gaussian stochastic process.

2.2.1 Examples of Gaussian processes

In this subsection, I present a small review of the main properties and notions about the
gaussian stochastic processes used further in this dissertation is presented, namely, the
Orstein-Uhlenbeck (OU) process and the Power-Law (PL).
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Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process is a very important example of stationary gaussian
process. The OU is used in the Brownian motion model to describe the stochastic be-
haviour of the velocity of a particle and can be used to address noisy environments with
Lorentzian spectra, as will be shown afterwards. A stochastic process is said to be a
Ornstein-Uhlenbeck process with zero mean if it satisfies:

µOU (t) = 0; (2.16a)

KOU (t, t0) =
λ

2tE
exp

{
− |t− t0|

tE

}
(2.16b)

where λ is a coupling parameter playing the role of the damping rate and tE is the char-
acteristic time of the environment. Intuitively, the parameter tE measures the time after
which the environment correlations cease to be significative and therefore can be inter-
preted as the amount of time the environment can store information for. If the correlation
time is short, the environment fails to save memory of what has happened before. From a
mathematical point of view, as tE → 0, the autocorrelation function approaches a Dirac-
delta distribution, that is, it represents a gaussian white noise. When the correlation time
is finite, the power spectrum is

SOU (ω) =
λ√

2π(1 + ω2t2E)
, (2.17)

which is a Lorentzian spectrum.

From Eq. 2.15, considering ξ(s) a constant function ξ(s) = ξ = 1, one obtains the
variance associated to the Ornstein-Uhlenbeck process:

βOU (t, t0) = λ tE

(
t− t0
tE

+ e−(t−t0)/tE − 1

)
. (2.18)

In sake of simplicity, I anticipate that in the next chapters the parameter tE will occasion-
ally be substituted by its inverse γ = 1/tE . The parameter γ intuitively addresses the
memory features of the environment and also plays the role of a cut-off frequency in the
Lorentzian spectrum.

Power-Law Process

The power-law process is characterized by the autocorrelation function

KPL(t, t0) =
a− 1

2

γλ

(1 + γ|t− t0|)a
(2.19)

where a > 2. This kernel of correlation generates a variance given by

βPL(t) =
λ

γ

[
(1 + γt)2−a + γt(a− 2)− 1

a− 2

]
. (2.20)
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2.2.2 Detuned gaussian processes

In the examples provided in the next chapters, quantum systems interact with classical
environments portrayed by stochastic processes. More explicitly, the quantum systems
interact with an external zero-mean stochastic field having a time-fluctuating complex
amplitude B(t)eiδt, where δ plays the role of the sytem-CSF detuning and the stochastic
field isB(t) = Bx(t)+iBy(t), whose real and imaginary parts are independent processes.

In this case, it is useful to define the random variable φ(t) = B(t)eiδt, such that its
real φx and imaginary φy parts are given by

φx(t) = Bx(t) cos δt−By(t) sin δt (2.21a)
φy(t) = Bx(t) sin δt+By(t) cos δt (2.21b)

From the mathematical point of view, in Chapter 3 the study of the dynamics requires
the evaluation of the joint characteristic function 2.14 of φx(t) and φy(t):

E
[
exp

(
i

∫ t

t0

(
ξxφx(s) + ξyφy(s)

)
ds

)]
=

exp

(
−1

2

∫ t

t0

∫ t

t0

E
[
ξ2
x φx(s)φx(s′) + 2ξxξyφx(s)φy(s′) + ξ2

yφy(s)φy(s′)
]
dsds′

)
=

exp

(
−1

2
(ξ2
x + ξ2

y)

∫ t

t0

∫ t

t0

cos[δ(s− s′)]K(s, s′)dsds′
)
, (2.22)

where, the condition E[Bx(s)Bx(s′)] = E[By(s)By(s′)] = K(s, s′) was assumed. Finally,
the explicit form of β(t), assuming ξx = ξy = 1, is

β(t, t0) =

∫ t

t0

∫ t

t0

cos[δ(s− s′)]K(s, s′) ds ds′. (2.23)

In the following, I report the explicit form of β(t) with t0 = 0 for the Ornstein-Uhlenbeck
process.

βOU (t) =
λ

[1 + (δ tE)2]2

{
t− tE + (δ tE)2(t+ tE)

+ tE e
−t/tE

[
(1− (δ tE)2) cos δ t− 2δ tE sin δ t

]}
. (2.24)

Let’s now focus on the explicit form of β(t) for the Ornstein-Uhlenbeck process, in order
to understand which parameters are relevant for the analysis of the dynamics of the
system. As a matter of fact, the function β(t) in (2.24) depends only on two parameters
(besides the time t), as it can be rescaled in units of tE by assuming δ̃ = δtE , λ̃ = λ tE ,
t̃ = t/tE , leading to the expression (in which tildes have already been dropped)

βOU (t) =
λ

[1 + δ2]2

{
t− 1 + δ2(t+ 1) + e−t

[
(1− δ2) cos δ t− 2δ sin δ t

]}
. (2.25)

As shown in the right panel of Fig. 2.1, the function βOU (t) presents oscillations in time
depending on the value of the parameter δ. In order to find the regimes of oscillation,
one formally imposes the condition dβ(t)/dt = 0, which leads to the following equation

λ
1− e−t(cos δt− δ sin δt)

1 + δ2
= 0 (2.26)
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Figure 2.1: Left panel: Contourplot of dβ(t)/dt = 0 as a function of t and δ. The purple curve
represents the solution of dβ(t)/dt = 0. The black dashed line represents the maximum value of
δ = δ0 for which β(t) does not oscillate. Right panel: β(t) for different values of δ. From bottom to
top, the other lines are for δ = 1 (blue), δ = 5 (yellow), δ = 10 (green), δ = 15 (red). An oscillating
behavior is present only if δ > δ0.

which can not be analitically solved. The left panel of Fig. 2.1 contains a numerical
plot of the solutions of (2.26) and shows the existence of a lower bound on the rescaled
detuning δ for the oscillations of βOU (t). The lower bound is represented by the black
dashed line, corresponding to

δ̃0 =
3π

2

[
ProductLog

(
3π

2

)]−1

' 3.644 ,

which is a value independent of λ (the tilde has been momentarily reinstated).

The existence of a threshold value for the presence of oscillations will be thoroughly
discussed in the following chapters in relation to the revivals of quantumness (Chapter
4) and correlations (Chapter 5). At this stage, let’s just notice that the existence of a
threshold binds the values of the correlation time of the environment tE and the true
detuning δ, as their product has to exceed δ̃0 in order to produce oscillations.

Finally, it is worth noting that a large value of δ̃ induces oscillations, but the corre-
sponding β(t) is really small compared to the values assumed in other regimes of de-
tuning. This fact becomes relevant in the context of stochastic interactions: in the next
chapters, β(t) plays the role of the noise added to the system after the interaction with a
classical environment. Therefore, a high value of detuning δ shields the evolution of the
system from the detrimental action of the environment.

2.3 Summary

• A collection of random variables {X(t), t ∈ T} parametrized by a discrete or con-
tinuous index t describes a stochastic process. Stochastic processes that are fully
characterized by their mean and variance are named Gaussian processes.
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• The Ornstein-Uhlenbeck process is a stationary Gaussian process, function of two
physical parameters: the coupling λ, the correlation time tE ( or its inverse γ).

• The variance β(t) of a δ-detuned Ornstein-Uhlenbeck process presents oscillations
if and only if the rescaled detuning δ̃ = δtE exceeds the threshold value δ̃0 ' 3.644.



CHAPTER 3

Stochastic modeling of quantum environments

In this chapter, I present two different models of interaction between a continuous vari-
able system and a noisy classical environment. I prove that modeling the environment
by means of classical stochastic fields allows a proper description of the dynamics in
presence of memory effects, without resorting to approximated quantum master equa-
tions. Furthermore, the use of classical stochastic fields enables the study of a larger class
of processes standard quantum equations are not able to represent. The models under
consideration reproduce two of the most common forms of noise a quantum system may
suffer, phase diffusion and dissipation.

3.1 Stochastic phase diffusion

The evolution of a quantum system facing phase diffusion noise is described by the
quantum master equation [95, 96]

d

dt
ρ =

Γ

2
L[â†â]ρ , (3.1)

where L[O]ρ = 2OρO† −O†Oρ− ρO†O and Γ is the phase damping rate. Following the
definition given in Chapter 1, the latter equation is in Lindblad form and therefore is
Markovian. The solution of the master equation is formally a gaussian channel GDP [ρ]

GDP [ρ] = ρ(t) =

∫ ∞
−∞

dψ
1√
σ(t)

exp

{
− ψ2

σ(t)

}
R(ψ)ρ(0)R†(ψ), (3.2)

where R(ψ) is the phase-shift operator R(ψ) = exp{−iψa†a}. Analogously, using the
decomposition over the Fock states and integrating over ψ, a generic gaussian channel
may be written as

GDP [ρ] =
∑
m,n

ρnme
− 1

2 (n−m)2σ(t)|n〉〈m|, (3.3)

where ρnm is the matrix element of the initial state of the system. The explicit solution
of the master equation 3.1 is obtained when σ(t) = Γt, i.e. when the variance of the
gaussian channel shows a linear behaviour in time.

The gaussian channel 3.2 describes the evolution of the system alone, once the de-
grees of freedom of the environment have already been traced out. However, the phase
diffusion master equation is obtained from a microscopic full quantum description of
the system-environment interaction. In the following, I will prove that the very same
dynamics can be reproduced by means of a stochastic action on the system.

27
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Let’s consider a quantum harmonic oscillator interacting with a classical external
field. The Hamiltonian of the system may be written as H = H0 + HDP where the free
and interaction Hamiltonians are given by

H0 = ~ω0â
†â (3.4a)

HDP = ~â†â
[
B̄(t)eiωt +B(t)e−iωt

]
, (3.4b)

with ω0 the natural frequency of the oscillator and B(t) a time-dependent fluctuating
field with central frequency ω described by a stochastic process whose complex conju-
gate is B̄(t). From now on, the Hamiltonian H is rescaled in units of ~ω0. As a straight-
forward consequence, the stochastic classical field B(t), its central frequency ω and the
time t become dimensionless quantities (in units of ω0 and ω−1

0 respectively).
Despite the interaction Hamiltionan is time-dependent, the evolution operator as-

sumes a very simple form, as the two-time commutator [H(t1), H(t2)] = 0. In this case,
the evolution operator trivially reads:

U(t) = R(φ(t)) (3.5a)

φ(t) =

∫ t

0

ds
[
B̄(s)eiωs +B(s)e−iωs

]
. (3.5b)

The system is then subject to a phase shift, where the phase depends on the stochastic
field B(t). The evolved state, using the decomposition over the Fock states, then reads:

ρ(t) =
[
R(t)ρ(0)R†(t)

]
B

=
∑
m,n

ρnm

[
e−iφ(t)(n−m)

]
B
|n〉〈m|, (3.6)

where the stochastic average [. . .]B depends on the specific stochastic field chosen and
still has to be evaluated.

In this model, the CSF B(t) = Bx(t) + iBy(t) is described by a Gaussian stochastic
process with zero mean [Bx(t)]B = [By(t)]B = 0 and diagonal structure of the autocor-
relation matrix

[Bx(t1)Bx(t2)]B = [By(t1)By(t2)]B = K(t1, t2) (3.7a)
[Bx(t1)By(t2)]B = [By(t1)Bx(t2)]B = 0. (3.7b)

The stochastic average in Eq.3.7a can then be easily performed, as the phase φ(t) is a
gaussian variable as well:[

e−iφ(t)(n−m)
]
B

= exp

{
−1

2
(n−m)2β(t)

}
, (3.8)

where β(t) can be expressed as

β(t) =

∫ t

0

∫ t

0

ds1ds2 cos [δ(s1 − s2)] K(s1, s2) . (3.9)

The evolution of the state of the system is then given by a Gaussian channel

ρ(t) =
∑
m,n

ρnme
− 1

2 (n−m)2β(t)|n〉〈m| (3.10)
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provided σ(t) = β(t). It is now possible to find a meeting point between the stochastic
interaction and the full quantum description of the phase diffusion noise: in fact, both
dynamics are described by gaussian channels, so the equivalence between the two inter-
actions holds as long as the variances of the channels are identical. As previously shown,
the full quantum dynamics features a variance linear in time. Therefore, the stochastic
interaction perfectly represents its quantum analogue only in a regime in which β(t) is
linear in time as well. In the following, I once again report the explicit form of the βOU (t)
function for the Ornstein-Uhlenbeck kernel and explore some particular regimes:

βOU (t) =
λ

[1 + (δ tE)2]2

{
t− tE + (δ tE)2(t+ tE)

+ tE e
−t/tE

[
(1− (δ tE)2) cos δ t− 2δ tE sin δ t

]}
. (3.11)

which leads to the following approximated expressions:

βOU (t) ' λt+ λtE e
−t/tE cos δt tE � 0 (3.12a)

βOU (t) ' λ

δ2tE
(1− cos δt) tE � 0, δ � 1 (3.12b)

βOU (t) ' λt2

2tE
(1− δ2t2) tE � 0, δ � 1 (3.12c)

As it is apparent from eq. 3.12a, it is possible to recover a linear regime of βOU (t) when
the correlation time of the environment approaches zero, i.e. when the classical noise has
a delta-correlated spectrum. Therefore, the stochastic model is a faithful representation
of quantum phase diffusion in the regime tE � 0, provided the coupling λ satisfies
λ = Γ.

3.2 Stochastic approach to Born-Markov master equation

3.2.1 From Brownian motion to Born-Markov master equation

The propagation of a mode of radiation in a noisy channel is usually described as the
interaction of the mode of the system with an extensive environment, a bath composed
of a large number of external modes, which may represent the free field or the phonon
modes of a solid. In a full quantum model [97, 98], the mode of the system a is coupled
to the bath modes ck with frequency ωk and the interaction Hamiltonian is given by

HI = â
∑
k

gkc
†
ke
−i(ωa−ωk)t + â†

∑
k

gkcke
i(ωa−ωk)t (3.13)

where gk are the coupling constants of each mode, while ωa denotes the system transition
frequency. Indeed, the interaction hamiltonian presented in Eq. 3.13 is the result of the
secular approximation on the more general quantum Brownian motion Hamiltonian:

H
(BM)
I =

∑
k

gk(a e−iωat + a†eiωat)(c e−iωkt + c†ke
iωkt) (3.14)
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where the two terms oscillating faster are neglected in the secular approximation.
The evolution of a quantum brownian particle is described by the master equation

given by

d

dt
ρ = −i[H0, ρ]+

−∆(t)[X, [X, ρ]] + Π(t)[X, {P, ρ}]− i

2
r(t)[X2, ρ] + iγ(t)[X, [P, ρ]], (3.15)

where ∆(t) and Π(t) are dissipative terms, whereas r(t) modifies the frequency of the
oscillator and γ(t) is a damping term.

The latter master equation can be solved, but a closed form for the time-dependent
parameters ∆(t),Π(t), r(t), γ(t) is achievable only in the weak coupling limit:

∆(t) =

∫ t

0

κ(s) cos(ωas) ds (3.16a)

Π(t) =

∫ t

0

κ(s) sin(ωas) ds (3.16b)

γ(t) =

∫ t

0

µ(s) sin(ωas) ds (3.16c)

r(t) =

∫ t

0

µ(s) cos(ωas) ds (3.16d)

where κ(s) and µ(s) are the noise and dissipation kernels, related to the correlation func-
tion (and the spectral density J(ω) ) of the environment:

κ(s) = 〈{F (s), F (0)}〉 = 2

∫ ∞
0

dωJ(ω) coth(ω/2KBT ) cos(ωs), (3.17a)

µ(s) = 〈[F (s), F (0)]〉 = −
∫ ∞

0

dωJ(ω) sin(ωs), (3.17b)

where F (t) =
∑
k

(
cke
−iωkt + c†ke

iωkt
)

is the overall external field.
Performing the secular approximation, the master equation 3.15 reduces to

d

dt
ρ(t) =

∆(t) + γ(t)

2
L[a]ρ+

∆(t)− γ(t)

2
L[a†]ρ. (3.18)

where the explicit expressions for ∆(t) and γ(t) depend on the spectral density J(ω).
The latter equation is a time-dependent quantum optical master equation. The solution of
this approximated master equation is represented by the characteristic function

χs[ρ(t)](µ) = exp

{
µTµ

2
(s− 2∆Γ(t))

}
χ[ρ(0)]

(
e−Γ(t)µ

)
(3.19)

where the quantities ∆Γ(t) and Γ(t) are given by

Γ(t) = 2

∫ t

0

γ(s) ds, (3.20a)

∆Γ(t) = e−Γ(t)

∫ t

0

eΓ(s)∆(s) ds. (3.20b)
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The coefficients ∆(t) and γ(t) play a fundamental role in determining whether the quan-
tum map is Markovian or not. In fact, the master equation 3.18 is in Lindblad form when
the coefficients ∆(t)± γ(t) ≥ 0 for any time t.

Assuming the environment is represented as a reservoir with Ohmic spectral density,
with Lorentz-Drude cut-off ωc,

JO(ω) =
2ω

π

ω2
c

ω2
c + ω2

, (3.21)

it is possible to evaluate the explicit expressions for γ(t) and ∆(t), which are reported in
Appendix A. Let’s now discuss some relevant regimes.

Long time limit

In the asymptotic limit t→∞, the coefficients γ(t) and ∆(t) tend to some constant values
∆M , γM given by

∆M = ωa
ω2
c

ω2
a + ω2

c

coth(ωa/2KT ) (3.22a)

γM = ωa
ω2
c

ω2
a + ω2

c

(3.22b)

In the asymptotic limit, the dynamics of the system is then ruled by the Born-Markov
quantum optical master equation

d

dt
ρ(t) =

Γ

2

{
(N + 1)L[a]ρ+NL[a†]

}
ρ, (3.23)

where N is the number of thermal photons in the environment, which is related to the
temperature T via N = (eω0/KT−1)−1, and Γ = γM is the dissipation rate.

The formal solution of the master equation 3.23 is easily expressed in terms of the
Wigner function of the output state

W [ρ(t)](X) =

∫
R2

d2ZGt(X|Z)W0(Z) (3.24)

whereW0(X) = W [ρ(0)](X) is the Wigner function of the input state and the propagator
Gt(X|Z) is given by

Gt(X|Z) =
exp

{
− 1

2 (X − e− 1
2 ΓtZ)TΣ−1

t (X − e− 1
2 ΓtZ)

}
2π
√

det[Σt]
. (3.25)

In the latter definition, Σt = (1−e−Γt)σ∞, with σ∞ is a 2×2 asymptotic diffusion matrix
σ∞ = Diag{N + 1

2 , N + 1
2}.

Let’s spend a few words about the general solution 3.24: the Wigner function of the
output state is a convolution between the wigner function of the input state and the
gaussian propagator. Therefore, the output Wigner function is not trivial, unless the
input state is gaussian. In that case, the gaussianity is preserved during the interaction
and the output state is gaussian as well. Assuming a gaussian input state, the evolution
of the covariance matrix follows:

σ(t) = e−Γtσ0 + (1− e−Γt)σ∞. (3.26)
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where σ0 is the input covariance matrix. Eq. 3.26 perfectly displays the Markovian
properties of the dynamics: the presence of the environment asymptotically erases the
contribution of the input state and the dynamics actually describes an irreversible ther-
malization process. Moreover, it’s worth noting that, for small times (Γt � 1) and high
temperature (N � 1), the output covariance matrix reduces to

σ(t) ' σ0 + Γtσ∞ ' σ0 +NΓt I2 (3.27)

which describes the detrimental action of the environment, adding thermal noise linearly
in time to the system in the early stage of the evolution.

Indeed, this kind of detrimental is a feature of gaussian channels [99–101]:

GN [ρ](∆) =

∫
C
d2µ

exp{−µT∆−1µ}
π
√

det[∆]
D(µ)ρD†(µ), (3.28)

equivalently described by the s-ordered characteristic function:

χs[GN [ρ](∆)](µ) = exp

{
− 1

2

(
sµTµ− 2µT∆µ

)}
χ0[ρ](µ). (3.29)

In fact, the covariance matrix of a gaussian state along this channel evolves as

σN = σ0 +
1

2
∆. (3.30)

By comparing 3.27 and 3.30, one obtains that, for small times Γt� 1 and high number of
photons N � 1, the gaussian channel is a solution of the Born-Markov quantum optical
master equation, provided the condition

∆ = 2NΓt I2. (3.31)

High temperature regime

In the high temperature regime T � 1, the explicit form of ∆(t) reads

∆(t) '
T�1

2KBT
ω2
c

ω2
c + ω2

0

{
1− e−ωct

[
cos(ω0t)−

ω0

ωc
sin(ω0t)

]}
, (3.32)

while γ(t) does not change as it is not temperature-dependent. Consequently, for large
temperature the master equation coefficients ∆(t)± γ(t) ' ∆(t) and Eq. 3.18 becomes

d

dt
ρ(t) '

T�1

∆(t)

2
L[a]ρ+

∆(t)

2
L[a†]ρ, (3.33)

which is a high temperature version (N � 1) of the Born-Markov master equation with
time-dependent coefficients. In this case, the non-Markovian features of the map only
depend on ∆(t), such that if ∆(t) is negative for some time t, the evolution is non-
Markovian.

Moreover, it is interesting to evaluate ∆Γ(t), as it plays a fundamental role in the
dynamics in the phase space: in fact, observing Eq. 3.19, it is possible to see that when
Γ(t)� 1, that is, Γt� 1 for the Born-Markov master equation, the characteristic function
becomes gaussian, which means that the solution of the time-dependent Born-Markov
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master equation turns into a Gaussian channel, provided ∆ = ∆Γ(t)I2. The explicit
expression of ∆Γ(t) for high temperature reads:

∆Γ(t) =
ωcKBT

(ω2
c + ω2

0)2

{
ω2

0(1 + ωct)− ω2
c (1− ωct)+

+ e−ωct
[
(ω2
c − ω2

0) cos(ω0t)− 2ωcω0 sin(ω0t)
]}

(3.34)

3.2.2 Stochastic approach to Born-Markov master equation

Now, let’s consider a quantum harmonic oscillator interacting with a classical external
field. The Hamiltonian of the system may be written as H = H0 + HSC where the free
and interaction Hamiltonians are given by

H0 = ~ω0a
†a (3.35a)

HSC = ~
[
aB̄(t)eiωt + a†B(t)e−iωt

]
, (3.35b)

with ω0 the natural frequency of the oscillator and B(t) a time-dependent fluctuating
field with central frequency ω described by a stochastic process with zero mean, whose
complex conjugate is B̄(t). Once again, the HamiltonianH is rescaled in units of ~ω0. As
a straightforward consequence, the stochastic classical field B(t), its central frequency ω
and the time t become dimensionless quantities (in units of ω0 and ω−1

0 respectively).
The Hamiltonian in the interaction picture reduces to:

HI(t) = ae−iδtB̄(t) + a†eiδtB(t), (3.36)

where δ = 1− ω is the detuning between the natural frequency of the oscillator and the
central frequency of the CSF (in units of ω0). The corresponding evolution operator is
given by

U(t) = T exp

{
−i
∫ t

0

dsHI(s)

}
, (3.37)

where T denotes time ordering.
Notice, however, that as far as B(t1)B̄(t2) = [B(t1)B̄(t2)]∗, the two-time commutator

[HI(t1), HI(t2)] is proportional to the identity

[HI(t1), HI(t2)] = 2 i sin [δ(t2 − t1)] B(t1)B̄(t2) I , (3.38)

and this form allows to evaluate time ordering using the Magnus expansion, which re-
sults to be exact at the second order already. According to the Magnus expansion, the
evolution operator may be written as

U(t) = exp(Ω1 + Ω2) (3.39)

where:

Ω1 = −i
∫ t

0

ds1HI(s1) = a†φt − aφ∗t (3.40a)

φt = −i
∫ t

0

ds1 e
iδs1B(s1) (3.40b)
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and

Ω2 =
1

2

∫ t

0

ds1

∫ s1

0

ds2 [HI(s1), HI(s2)] ∝ I. (3.41)

Since Ω2 is proportional to the identity the evolution of an initial density operator ρ(0)
reads

ρ(t) =
[
eΩ1ρ(0) eΩ∗1

]
B

=
[
D(φt)ρ(0)D†(φt)

]
B

(3.42)

where D(λ) is the displacement operator and [ . . . ]B denotes the average over the dif-
ferent realization of the stochastic process. Eq. (3.42) shows that the interaction Hamil-
tonian with a classical field results in a time-dependent displacement of argument φt,
related to the classical field B(t) and, then, strongly affected by its stochasticity.

Using the Glauber decomposition [102] for the initial state

ρ(0) =

∫
d2µ

π
χ0[ρ(0)](µ)D†(µ) , (3.43)

where χ0[ρ](µ) denotes the symmetrically ordered characteristic function, the state evolves
as

ρ(t) =

∫
d2µ

π

[
eµφ

∗(t)−µ∗φ(t)
]
B
χ0[ρ(0)](µ)D†(µ) , (3.44)

where, for any Gaussian stationary process, it is possible to write[
eµφ

∗(t)−µ∗φ(t)
]
B

= e−|µ|
2σ(t) (3.45)

and β(t) can be expressed as

β(t) =

∫ t

0

∫ t

0

ds1ds2 cos [δ(s1 − s2)] K(s1, s2) . (3.46)

The s-ordered characteristic function χs[ρ(t)](µ) of the evolved state is given by

χs[ρ(t)](µ) = χ0[ρ(0)](µ) exp

{
1

2
|µ|2 (s− 2β(t))

}
, (3.47)

which corresponds to a Gaussian noise channel:

ρ(t) = GN [β(t)I2] =

∫
d2µ

πβ(t)
e−
|µ|2
β(t) D(µ)ρ(0)D†(µ), (3.48)

As a result, while Eq.3.42 suggests that a single realization of the stochastic field drives
the input state over the phase space via a displacement operation, the stochastic average
of all these possible evolutions of the state results in a diffusive evolution, where β(t),
namely the variance of the Gaussian channel, plays the role of the diffusive coefficient.
The variance β(t) is only determined by the explicit stochastic process chosen.

Nevertheless, it is straightforward that the stochastic field approach allows to simu-
late the dynamics ruled by the time dependent Born-Markov master equation as long as
Γ(t) � 1 and in regime of high temperature. In fact, under these assumptions, the full
quantum model and the stochastic approach lead to dynamics described by a gaussian
channel and share the same characteristic function, as long as β(t) is chosen identical to
∆Γ(t).
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Along the line of what was done with stochastic dephasing, in order to have a perfect
equivalence between the stochastic approach and the full quantum model, one needs to
find a regime in which the variances of the channels are identical. Assuming the stochas-
tic field B(t) obeys a Ornstein-Uhlenbeck process, one finds that β(t) and ∆Γ(t) for a
Ohmic reservoir at large temperatures coincide by defining λ = ΓKBT and assuming
ω0 = δ, that is, the original Ohmic spectrum is detuned from the system frequency ω0.

This latter result is meaningful but not surprising: indeed, the correlation function
κ(s) in Eq. 3.17a for a Lorentz-Drude spectrum at high temperature reduces to

κ(s) '
T�1

2

∫ ∞
0

dω JLD(ω)
KBT

ω
cos(ωs)

= 2KBT

∫ ∞
0

dω JOU (ω) cos(ωs) = KBT KOU (s). (3.49)

For this reason, a classical stochastic field described by an Ornstein-Uhlenbeck process
faithfully represents the full quantum dynamics in the specified regimes and yields the
very same variance β(t) = ∆Γ(t).

Finally, it is important to stress that whatever specific gaussian process is chosen,
the stochastic approach is not able to reproduce all aspects of the quantum dynamics:
the stochastic description stands as an equivalent model only when the approximations
Γt� 1 and N � 1 are both valid.

3.3 Non-Markovianity of stochastic interactions

In this section, I address the study of the non-Markovianity of the stochastic interactions
presented before. Let’s start by reminding the conditions by which a quantum map E
is Markovian: on one hand, the dynamical map must be completely positive and trace
preserving (CPTP); on the other hand, a Markovian map has to be divisible, i.e. satisfy a
composition rule

E(t, t0) = E(t, t1)E(t1, t0) ∀t1 : t ≥ t1 ≥ t0. (3.50)

In both models, the composition of the maps corresponds to a convolution, leading to
E(∆t2)E(∆t1) = E(∆t1 + ∆t2). However, this condition holds if and only if

β(∆t1 + ∆t2) = β(∆t1) + β(∆t2), (3.51)

which depends on the properties of the kernel of correlations that determines the stochas-
tic process. In the case of Ornstein-Uhlenbeck and Power-Law processes, the divisibility
condition is not satisfied, as neither of the two processes features an additive variance
β(t), for any choice of finite and strictly positive parameters. Therefore, stochastic phase
diffusion and stochastic dissipation are both represented by non-Markovian dynamical
maps.

Nevertheless, in the regime of small correlation time of the environment, the variance
β(t) becomes a linear function of time and additivity is restored, which implies that the
map turns Markovian only when tE → 0, i.e. the very same regime in which the solutions
of the stochastic models satisfy the Markovian master equations.

As shown in the previous section, the stochastic approach allows to properly simulate
the dynamics ruled by the time-dependent Born-Markov master equation in the high
temperature regime, which is Markovian if and only if ∆(t) ≥ 0, as a negative coupling
rate would lead to a violation of the complete positivity of the map.
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Figure 3.1: Left panel: contourplot showing the condition ∆(t) = 0 as a function of temperature
T and ratio ω0/ωc. The ratio ω0/ωc tends to a asymptotic value δ̃0 retrieved classically. Right
panel: dynamics of the rate ∆(t) at high temperature T = 100 for many values of ratio δ̃ = ω0/ωc,
δ̃ = 1.25 δ̃0 (blue), δ̃ = δ̃0 (orange), δ̃ = 0.8333 δ̃0 (green). When δ̃ > δ̃0, the rate ∆(t) assumes
negative values.

The explicit mapping is given by β(t) = ∆Γ(t), where ∆Γ(t) is given by Eq. 3.20b.
An oscillating behaviour of β(t) actually addresses a temporary negative rate ∆(t), dis-
playing the non-Markovian features of the dynamics. As shown in Chapter 2, the oscil-
lations of β(t) depend on a dimensionless parameter δ̃0, such that any value larger than
this threshold induces oscillations. The very same threshold actually exists even in the
full quantum model at high temperatures: the left panel of Fig. 3.1 shows a contour-
plot of the values of temperature and ratio ω0/ωc such that ∆(t) = 0. The value of the
threshold changes with the temperature, approaching the asymptotic value δ̃0, obtained
with the stochastic approach. The right panel shows the time-dependence of the rate
∆(t) at high temperature. The figure shows that, when the ratio ω0/ωc is larger than
the threshold value δ̃0 (blue line), the rate assumes negative values, i.e. the dynamics is
non-Markovian.

As a result, the stochastic approach successfully manages to address and reveal the
non-Markovian features of the full quantum models it describes the dynamics of. There-
fore, classical stochastic fields may be used to properly introduce non-Markovian effects
without resorting to solve quantum master equations.

3.4 Summary

• The evolution of a quantum system affected by Markovian phase diffusion can al-
ways be portrayed by stochastic fields, the explicit mapping being given by setting
the coupling parameter λ = Γ.

• Stochastic fields may reproduce the dynamics of a quantum system ruled by a
time-dependent quantum optical master equation only in its early stage (Γt � 1)
and in the regime of high temperatures T � 1. The explicit mapping is obtained
setting λ = ΓN .
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• Stochastic phase diffusion and stochastic dissipation lead to non-Markovian dy-
namics. Moreover, the stochastic modelization fully captures the non-Markovianity
of the time-dependent quantum optical master equation: the very same thresh-
old δ̃0 triggering oscillations of β(t) actually distinguishes markovian and non-
markovian regimes of the full quantum dynamics.



CHAPTER 4

Stochastic approach to non-Markovian decoherence

This chapter is devoted to the analysis of the evolution of quantum features of systems
perturbated by stochastic noise. As shown in the previous chapter, under precise con-
ditions the stochastic noise may reproduce quantum environments in terms of faithful
mapping. Now, it is time to see how the forms of stochastic noise introduced affect the
dynamics of the quantum features. In particular, this chapter is divided in two: in the
first part, I analyze the evolution of quantumness of states facing stochastic dissipation,
comparing the results to those obtained with a full quantum Markovian environment;
in the second part, I study the performance of phase communication channels, focusing
on the benefits the stochastic approach confers.

4.1 Quantum-to-classical transition with noisy environment

Let’s consider a quantum harmonic oscillator interacting with a classical stochastic field.
The interaction Hamiltonian is

HI(t) = ae−iδtB̄(t) + a†eiδtB(t). (4.1)

In the previous chapter, the dynamics of a system subject to this kind of stochastic inter-
action was proven to be represented by a Gaussian channel

ρ(t) =

∫
d2µ

πβ(t)
e−
|µ|2
β(t) D(µ)ρ(0)D†(µ), (4.2)

where the variance β(t) depends on the specific stochastic process chosen. Also, as previ-
ously shown, the Gaussian channel faithfully describes the early stage of the thermaliza-
tion process of the system, and so does the stochastic mapping. Therefore, one expects a
system interacting with a classical noise to suffer decoherence, eventually lose its quan-
tum features and cross the border to the classical realm, i.e. relax to a statistical mixture
of classical-like states. Of course, this quantum-to-classical transition occurs in a finite
time, which will be addressed as survival time of nonclassicality.

As previously anticipated in Chapter I, the notion of nonclassicality relies on the
Glauber P -function. In fact, a state featuring a positive P -function is a statistical mixture
of coherent states, which are considered classical-like states because of their statistics.
Therefore, if the P -function of a state is positive, the state is said to be classical, otherwise
the state is nonclassical. This very definition may be expressed in a quantitative way by
means of the nonclassical depth.

38
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The nonclassical depth η of a quantum state [103] is defined as the minimum number
of photons to be added to a state in order to erase all of its quantum features. In terms of
the s-ordered Wigner functions, the nonclassical depth is given by

η =
1

2
(1− s̄) ,

where s̄ is the largest value of s for which the corresponding s-ordered Wigner function
Ws[ρ](α) is positive and may be seen as a classical probability distribution. In turn, η
definitely has to satisfy 0 ≤ η ≤ 1: on one hand, if η = 0, no photons need to be
added, which means that any s-ordered Wigner function is positive; on the other hand,
η = 1 implies that every Wigner function (except the Husimi Q that is always positive)
is nonclassical, Glauber P -function included.

The nonclassical depth allows to easily define the survival time of nonclassicality: a
nonclassical state turns classical in a finite time tQ when a noisy environment adds a
number of photons equivalent to the nonclassical depth of the initial state. Therefore, at
time tQ, the P -function of the state becomes strictly positive.

In this part of the dissertation, I use the nonclassical depth criterion to analyze the re-
lation between the survival time of nonclassicality and the parameters of the classical
stochastic field. In particular, I show that the correlation time of the environment and
the detuning play a fundamental role in inducing revivals of quantumness and increas-
ing the survival time of nonclassicality beyond the limit of a Markovian interaction, re-
trieved by performing the limit tE → 0.

Finally, I consider other three criteria of nonclassicality: the negativity of the Wigner
function, the Vogel criterion, based on the characteristic function, and the Klyshko cri-
terion for the photon-number distribution. While the sole nonclassical depth criterion
represents a proper (i.e., necessary and sufficient) criterion for nonclassicality, the other
quantities have the advantage of being good candidates for an experimental implemen-
tation.

Let’s start assuming the system is initially prepared in a Fock state |n〉 or in a su-
perposition of coherent states with opposite phases, the so-called Schrödinger-cat state:

|ψcat〉 =
1

N
(
|α〉+ | − α〉

)
(4.3)

where |α〉 indicates a coherent state and is N = 2
[
1 + exp(−2|α|2)

]
.

Since they have maximal nonclassical depth, Fock and cat states represent the proper
preparation to analyze the quantum-to-classical transition in full details. Actually, as will
be clearer afterwards, any pure state other than Gaussian pure states would be equally
good to address the dynamics of the nonclassical depth. On the other hand, sufficient
criteria as the Vogel criterion and the Klyshko criterion do depend on the specific state
under investigation, and thus having in mind a specific class of states will be of help to
properly address the detection of nonclassicality in realistic conditions.

The s-ordered characteristic and Wigner functions of the Schrödinger-cat state ρcat =
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|ψcat〉〈ψcat| are respectively given by

χs[ρcat](µ) =
2

N
e−

1
2 (1−s)|µ|2

[
cos (2 Imµα∗) + e−2|α|2 cosh (2 Reµα∗)

]
. (4.4a)

Ws[ρcat](ξ) =
2 e−

2|ξ|2
1−s

Nπ(1− s)

×

[
e

2s|α|2
1−s cos

(
4

1− s
Re ξα∗

)
+ e−

2|α|2
1−s cosh

(
4

1− s
Im ξα∗

)]
. (4.4b)

The s-ordered characteristic and Wigner functions of a generic Fock state ρF = |n〉〈n| are
respectively given by

χs[ρF ](µ) = exp

{
− (1− s)|µ|2

2
Ln(|µ|2)

}
, (4.5a)

Ws[ρF ](β) = (−1)n
2

π(1− s)

(
1 + s

1− s

)n
× exp

{
− 2|β|2

1− s

}
Ln

(
4|β|2

1− s2

)
. (4.5b)

where Ln(x) is the Laguerre polynomial of order n.

As it is apparent from their expressions, the s-ordered Wigner functions of both
classes of states are not positive function for any −1 < s ≤ 1. Correspondingly, the
nonclassical depth η of a Fock or cat state is equal to one [104] independently on α or
n, i.e. the cat and the number states are maximally nonclassical states independently on
their energy, as the first positive Wigner function corresponds to s = −1, i.e. the Husimi
Q function. More generally, the nonclassical depth is η = 1 [105] for any pure state other
than Gaussian pure states (squeezed coherent state); squeezed states have 0 ≤ η ≤ 1

2 de-
pending on the squeezing parameter, while coherent state have η = 0, properly captur-
ing the fact that they are the closest analog to classical states for the quantum harmonic
oscillator.

4.1.1 Dynamics of quantumness

Nonclassical depth

The interaction with the environment portrayed by the classical stochastic field turns the
initial P distribution into a positive function after a finite interaction time tQ. In addition,
depending on the value of coupling, correlation time or detuning revivals of coherence
(sudden birth of quantumness) may be observed. In order to determine these thresholds,
one should consider the evolved state ρ(t) and evaluate the time-dependent value of
the nonclassical depth. Actually, it is sufficient to evaluate the nonclassical depth only
for the initial state since the normally-ordered characteristic function χ1[ρ(t)](µ) (which
generates the P distribution) corresponds to the s̃-ordered characteristic function of the
initial cat state χs̃[ρ(0)](µ) (see Sec. 3.2.2):

χs[ρ(t)](µ) = χ0[ρ(0)](µ) exp

{
1

2
|µ|2 [s− 2β(t)]

}
= χs̃[ρ(0)](µ) . (4.6)

where s̃ = [s− 2β(t)].
As the nonclassical depth of the cat or the Fock states is equal to one, the P distri-

bution becomes positive when it turns into a Husimi Q function, which corresponds
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to s̃ = −1. This happens in a finite (dimensionless) time tQ that is straightforwardly
defined by

β(tQ) = 1, (4.7)

while for a state with initial nonclassical depth η0 the decoherence time tQ is given by
the solution of the equation β(tQ) = η0.

Let’s immediately spend a few words about the condition 4.7: for values of t such
that β(t) > 1, the P distribution is a positive function and the state is classical. It is
worth noticing that the nonclassical depth criterion only depends on β(t), that is, on the
amount of noise added to the system, which is indipendent on the initial state parameter
α or n. Moreover, as was shown in Chapter 2, β(t) is an oscillating function, so a suitable
choice of the parameters could bring to oscillations around the nonclassical depth value
η0, that is, revivals of quantumness.

Let’s now assume the stochastic field is generated by an Ornstein-Uhlenbeck process
and let’s firstly focus on the resonant interaction (δ = 0). In this case the non-rescaled
β(t) reduces to:

β(t) = λt+ λtE

(
e
− t
tE − 1

)
, (4.8)

and the equation β(t) = 1 has a single solution for any pairs of values of λ and tE , which
represents sudden death of quantumness without any revival. As anticipated previously,
the autocorrelation function of the process approches a Dirac delta in the limit of small
tE . Performing the limit at this state, one obtains lim

tE→0
β(t) = λt. This form of β(t)

leads to a Markovian regime resembling the Born-Markov optical master equation when
tE � 1 and λ = ΓN . In the Markovian limit the decoherence time t(M)

Q is given by:

t(M)

Q =
1

λ
=

1

ΓN
. (4.9)

In the non-Markovian case, one has

tQ =
1

λ
+ tE + tE ξ

(
−e−1−(λtE)−1

)
= t

(M)
Q + tE

[
1 + ξ

(
−e−1−t(M)

Q /tE
)]

(4.10)

where ξ(x) is the product-log function, i.e. the positive real solution y of the equation
x = yey . Using this expression, it is possible to show numerically that tQ > t(M)

Q for
any value of tE and λ, i.e. the non-Markovian character of the field preserves the initial
nonclassicality for longer times compared to the Markovian case. This is illustrated in
the left panel of Fig. 4.1 which shows the ratio tQ/t

(M)

Q as a function of γ = 1/tE for
different values of λ: the ratio is larger than unity for any value of γ and it increases for
increasing λ, i.e. nonclassicality is better preserved for larger coupling. For increasing γ,
the decoherence time tQ reaches the Markovian limit independently on the value of the
coupling.

Let’s analyze now what happens in presence of detuning between the natural fre-
quency of the system and the central frequency of the field. In this case the equation
β(t) = 1 may have more than one solution (fixing all the parameters δ, tE and λ) and
thus revivals of coherence may appear. The right panel of Fig. 4.1 shows the contour
plots σ(tQ) = 1 as a function of time and γ for different values of the detuning δ and
for a fixed value λ = 1 of the coupling. The regions lying to the right of the curves
correspond to β(t) > 1, i.e. classicality (CL), whereas regions of nonclassicality (NCL)
β(t) < 1 lie to the left. There are two main effects: i) at fixed γ the decoherence time tQ
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Figure 4.1: Evolution of quantumness according to the nonclassical depth criterion.
Left panel: resonant decoherence time tQ as a function of the memory parameter γ, for different
values of the coupling λ = 1 (solid brown), λ = 2 (dashed black) and λ = 3 (dot-dashed blue). For
γ →∞, tQ approaches the Markovian limit t(M)

Q independently on λ.
Right panel: contour plots of β(tQ) = 1, in the off-resonance case, as a function of γ for a fixed
value of the coupling λ = 1 and different values of the detuning δ = 0.3 (solid red), δ = 0.4
(dotted green) and δ = 0.5 (dot-dashed purple). The dashed blue curve is chosen as a reference
for the resonant case δ = 0. In the regions lying to the left of the curves we have β(t) < 1, i.e.
nonclassicality. The vertical line (dashed black) denotes points at fixed γ = 0.05 and the black
circles indicate the three solutions of β(tQ) = 1 for δ = 0.3. Correspondingly, the regions of
nonclassicality (NCL) and classicality (CL) are highlighted in the inset.

increases with the detuning, the effect is more pronounced for smaller γ; ii) revivals of
quantumness, i.e. sudden death followed by sudden birth of quantumness, appear at
fixed (and not too large) values of γ. This is illustrated in the right panel of Fig. 4.1 and
in the corresponding inset, where, for δ = 0.3 (solid red line) and γ = 0.05, β(t) displays
re-coherence effects. Notice that all the detuned curves satisfy the necessary condition
for an oscillating β(t), that is δ̃ > δ̃0. Nevertheless, only the red curve exhibits revivals
of quantumness. Notice also that for increasing γ, revivals disappear and tQ becomes
more and more independent on the detuning, thus further confirming that a large value
of γ approaches the Markovian limit.

Wigner negativity

A different notion of nonclassicality is based on the negativity of the Wigner function
which is never singular, but it can take on negative values for nonclassical states, such as
Fock states or superposition of coherent states [106]. The notion of nonclassicality arising
from the negativity of the Wigner function is not equivalent to the nonclassical depth and
it has been linked to non-local properties [107, 108]. More precisely, it has been shown
that posivity of the Wigner function implies that the corresponding quantum state can-
not violate any Bell inequality involving only position and momentum measurements.
In turn, squeezed vacuum states display a positive Wigner function even though their
nonclassical depth ranges from η = 0 to η = 1

2 , increasing with energy.
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Figure 4.2: Dynamics of quantumness according to the Wigner negativity criterion.
Left panel: Wigner decoherence time tW for a resonant interaction as a function of the memory
parameter γ, for different values of coupling λ = 1 (solid brown), λ = 2 (dashed black) and λ = 3
(dot-dashed blue). For γ →∞, tW approaches the Markovian limit t(M)

W independently on λ.
Right panel: contour plots of β(tW ) = 1

2
in the off-resonance case as a function of γ for a fixed

value of the coupling λ = 1 and different values of the detuning δ = 0.3 (solid red), δ = 0.4
(dotted green) and δ = 0.5 (dot-dashed purple). The dashed blue curve is chosen as a reference
for the resonant case δ = 0. In the regions lying to the left of the curves we have β(t) < 1

2
,

i.e. nonclassicality. The vertical line (dashed black) denotes points at fixed γ = 0.05 and the
black circle indicates the solutions of β(tW ) = 1

2
for δ = 0.3. Correspondingly, the regions of

nonclassicality (NCL) and classicality (CL) are highlighted in the inset.

It’s possible to evaluate the time tW in which the P function turns into a Wigner
function in the very same way the nonclassical depth time was evaluated in the previous
section. The condition that tW must satisfy, in order to change from a normally ordered
into a symmetrically ordered characteristic function, is

β(tW ) =
1

2
. (4.11)

Exactly as the nonclassical depth criterion, the Wigner decoherence time depends only
on β(t) and it is not affected by the initial state parameter α or n. For a state with initial
nonclassical depth equal to η0, the Wigner decoherence time is the solution of σ(tW ) =
η0 − 1/2 if η0 >

1
2 or tW = 0 otherwise.

In the Markovian limit γ � 1 the decoherence time t(M)
W of the cat or the Fock state is

simply half of t(M)
Q

t
(M)
W =

1

λ
=

1

2ΓN
=

1

2
t
(M)
Q . (4.12)

The behaviour of the Wigner decoherence time in the non-Markovian case is illustrated
in Fig. 4.2. The left panel shows that tW is significantly increased by the presence of
time correlations in the CSF (non-Markovian behavior), whereas the right panel reveals
re-coherence effects for certain values of the detuning and memory parameters. In par-
ticular, the vertical black line (γ = 0.05) intercepts the solid red line (δ = 0.3) just once,
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Figure 4.3: The ratio tW /tQ as a function of γ for different values of coupling λ = 1 (solid brown),
λ = 2 (dashed black) and λ = 3 (dot-dashed blue). For γ � 1 the ratio approaches the Markovian
value 1

2
, whereas for γ � 1 it approaches to the 1√

2
, due to the quadratic dependence on time of

β(t).

which means that revivals of nonclassicality revealed by the nonclassical depth criterion
(see Fig.1) are not captured by the Wigner criterion.

Fig. 4.3 displays a comparison between tQ and tW by showing their ratio as a function
of γ. For large values of the memory parameter γ (i.e. in the Markovian limit) the ratio
approaches 1

2 , according to Eq. (4.12). In all the other cases, the ratio increases and
approaches the limiting value 1√

2
for γ → 0. This may be understood as a consequence

of the behaviour of β(t), as reported in Eq. (3.12c). Indeed, β(t) is basically linear in time
for large γ, whereas it shows a quadratic behaviour for γ � 1.

The study of the Wigner negativity criterion in the off-resonance regime confirms
the main conclusions drawn from the analysis of the nonclassical depth: for δ 6= 0 the
Schrödinger cat coherence survives longer and sudden death and birth of nonclassicality
may appear.

Vogel criterion

The criteria illustrated previously allow to discriminate classical states from nonclassical
ones, and to follow the dynamics of decoherence, by inspecting the time evolution of a
quasi-probability distribution in the phase-space. Starting from the criterion based on
the posivity of the P-function a sufficient criterion, suitable for experimental implemen-
tation, has been suggested and developed [109] According to this criterion, a state is non-
classical (i.e. its P-function is singular) if there exists some complex number µ = (u, v)
such that the normally ordered characteristic function satisfies the following inequality

|χ1[ρ(tV )](µ)| > 1, (4.13)

where χ1[ρ(t)](µ) = χ0[ρ(t)](λ)ee
1
2
|µ|2

. It should be emphasized that this is only a suffi-
cient condition to characterize nonclassical states. However, it has an advantage stem-
ming from the fact that the symmetric characteristic function can be directly measured
via balanced homodyne detection [110]. It is worth noticing, however, that in contrast
with the two criteria shown previously, the Vogel criterion do depend on the state un-
der investigation, i.e. the smallest interaction time tV for which Eq. (4.13) is satisfied,
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Figure 4.4: (Color Online) Left panel: cat state Vogel time tV as a function of u, with |α| =
√

2.
Right panel: Vogel time tV as a function of u for Fock state |2〉. In both panels, γ = 0.05 and filled
regions correspond to |χ1[ρ(tV )(u, 0)| > 1. From bottom to top: the blue region represents the
resonant interaction (δ = 0), whereas the red (δ = 0.3), green (δ = 0.4) and purple (δ = 0.5) regions
correspond to the off-resonance case. The spots for the green and the purple regions indicate the
presence of revivals of nonclassicality.

depends on the amplitude α for the Schrödinger state or on the specific Fock state |n〉.
Here, I consider cat states with real amplitude α = α∗ =

√
2, the reason of this choice

being justified later (see next section). The Fock state |n = 2〉 is chosen such that the
number of photons approximates the cat mean number of photons 〈a†a〉 ' 2.

The plots in the left and right panels of Fig. 4.4, for cat and Fock states respectively,
show the regions for which |χ1[ρ(tV )](µ)| > 1, as a function of Re(µ) = u (with v = 0)
and varying the detuning parameter δ (different colors). As it is possible to see in both
figures, after a certain time tV nonclassicality disappears, but the sudden birth and sud-
den death of quatumness is present also according to the Vogel criterion (look, for exam-
ple, at the green and purple regions) and consistently with the two previous criteria, as
far as the off-resonance interaction (δ 6= 0) between the system and the CSF is set.

Klyshko Criterion

Klyshko introduced a criterion for nonclassicality based on the properties of the photon
number distribution of the state under investigation [111]. The criterion, which is only
sufficient for nonclassicality, may be seen as a generalization of the customary condition
on the Fano factor of the distribution, and states that the state ρ is nonclassical if there
exists an integer number n such that:

B(n) = (n+ 2)p(n)p(n+ 2)− (n+ 1)[p(n+ 1)]2 < 0, (4.14)

where p(n) = 〈n|ρ(t)|n〉 is the photon number probability of the state ρ. Analogously
to the Vogel criterion, this nonclassicality witness is of interest since it is experimen-
tally friendly, being based on the photon distribution, which may be obtained by photon
counting or by on-off detectors [112, 113]. The analysis of the Schrödinger cat nonclas-
sicality, according to the Klyshko criterion, discloses that B(1) becomes negative after
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Figure 4.5: (Color Online) Left panel: Dimensionless decoherence time tK for the Klyshko crite-
rion as a function of γ for the cat state with α =

√
2. Right panel: Decoherence time tK for the

Klyshko criterion as a function of γ for the Fock state |2〉. In both panels, dashed blue curve rep-
resents the resonant interaction (δ = 0), whereas solid red (δ = 0.3), dashed green (δ = 0.4) and
dot-dashed purple (δ = 0.5) curves refer to the off-resonance case. In the regions lying to the left
of the curves we have B(1) < 1, i.e. nonclassicality.

a certain time tK dependent on the detuning δ and the memory parameter γ. As it is
shown in the left panel of Fig. 4.5, the Klyshko criterion confirms that the cat survival
time increases for short γ and it is affected by detuning. Also in this case, sudden death
and birth of quantumness can be observed, as for fixed γ there exist more than one time
tK that satisfies the Klyshko criterion (4.14). A similar behaviour is shown for the Fock
state |2〉 in the right panel of Fig. 4.5, the only difference being the use of the quantity
B(0) instead of B(1) to detect the quantum-to-classical transition. As mentioned earlier,
the parameter α of the cat state is set to |α| =

√
2. In turn, this choice maximizes the

effectiveness of Klyshko criterion, i.e. is the value corresponding to the longest survival
time by Klyshko criterion [114].

4.1.2 Decoherence times comparison

In the previous sections I went through a quantitative analysis of the nonclassicality dy-
namics of the Schrödinger cat and the Fock state, analyzing four different nonclassicality
criteria. The interaction of a quantized harmonic oscillator with a CSF, in terms of an OU
process, allows to preserve the nonclassicality of each input state for certain periods of
times and this result has been confirmed by the different nonclassicality criteria. In or-
der to emphasize that Vogel and Klyshko criteria are only sufficient and that they do not
show any monotony properties, a quantitative analysis for both input states is shown in
Table 4.1, which contains the times corresponding to the sudden death of quantumness
achieved according to the four considered criteria, for several values of the detuning δ.
In particular, they are obtained by fixing the value of the parameter γ = 0.05, which is
responsible of an appreciable memory effect in the considered OU process.

As is apparent from the data, the times estimated with the Vogel criterion (or the
Klyshko criterion) are always shorter than the nonclassical depth and the Wigner nega-
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Schrödinger-cat state:

δ 0 0.3 0.4 0.5
tQ 6.676 8.982 47.467 81.091
tW 4.645 5.118 5.823 29.355
tV 4.272 4.624 5.067 16.773
tK 4.054 4.349 4.694 17.700

Fock (number) state:

δ 0 0.3 0.4 0.5
tQ 6.676 8.982 47.467 81.091
tW 4.645 5.118 5.823 29.355
tV 3.886 4.140 4.425 5.128
tK 5.412 6.253 21.329 49.527

Table 4.1: Dimensionless decoherence times, obtained for γ = 0.05, λ = 1 and different values of
the detuning δ, corresponding to the sudden death of quantumness of the evolved Schrödinger cat
state (Upper Table) and the evolved Fock state (Lower Table), according to the four nonclassicality
criteria: nonclassical depth (tQ), Wigner negativity (tW ), Vogel criterion (tV ) and Klyshko criterion
(tK ).

tivity decoherence times. This is consistent with the fact that Vogel and Klyshko criteria
provide only sufficient conditions for the loss of quantumness. Indeed, it is possible to
still have an amount of nonclassicality in the evolving state which is undetected by these
two criteria. Actually, Diosi demonstrated that for some nonclassical states the Vogel cri-
terion is not satisfied [115]. In other words, the evolved cat or Fock state may still show
some quantumness, according to other nonclassicality criteria, while the Vogel criterion
is no longer violated.

Data contained in Table 4.1 clearly show that it is not possible to establish any or-
der relation between the Vogel and the Klyshko decoherence times, and that the two
experimentally achievable criteria may fail to return decoherence times comparable to
the nonclassical depth time, which should be considered as the proper quantity to indi-
viduate the quantum to classical transition.

Power-law process

As mentioned in the introduction, the main conclusions of the analysis of the decoher-
ence are qualitatively independent on the nature of the CSF used to model the environ-
ment. In order to show this explicitly, and to briefly illustrate the quantitative effects of a
different modelling, I report here the results obtained for a Gaussian process character-
ized by a long range power-law autocorrelation function. The attention will be focused
on the nonclassical depth criterion, as it is the most relevant one. I report once again the
explicit form of βPL(t) for the power-law process in the case of the resonant interaction
(δ = 0) is the following:

β(t) = λt+ λ
(1 + γt)2−a − 1

γ(a− 2)
. (4.15)
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Figure 4.6: (Color online) Dynamics of quantumness according to the nonclassical depth criterion
for a cat states evolving in classical environment with power-law autocorrelation function. In both
panels, the dashed blue curve represents the resonant case δ = 0, whereas solid red (δ = 0.3),
dotted green (δ = 0.4), dot-dashed purple (δ = 0.5) curves refer to the off-resonance case. Left
panel: nonclassical depth time tQ as a function of γ in the case of a Gaussian power-law process, for
fixed a = 3 and λ = 1. For γ � 1 the nonclassical depth time tQ approaches the Markovian limit
independently of δ. Sudden death and birth of quantumness are highlighted by the circles along
the dashed black line at γ = 0.023 and, correspondingly, in the inset. Right panel: nonclassical
depth time tQ as a function of β and fixed γ = 0.023.

This expression can be approximated in some particular regimes to:

β(t) ' λt+
λγt2

(a− 2)(1 + γt)a
(γ � 1) (4.16)

β(t) ' λt2

2
(a− 1) (γ � 1) (4.17)

As apparent from (4.16), for γ → ∞ the nonclassical depth time approaches the Marko-
vian limit β(t) ∝ t. Also for the power-law process γ plays the role of a memory param-
eter. In the nonresonant case, the analytic form of β(t) is extremely complex and is not
reported in this dissertation, whereas the results are explained in the following.

The presence of sudden death and sudden birth of quantumness for the nonresonant
interaction is shown, for an initial cat state, in the left panel of Fig. 4.6, where, for fixed
γ and different choices of the detuning parameter δ 6= 0, more than one value of time tQ
satisfies nonclassical depth criterion. In the right panel of Fig. 4.6 I show the nonclassical
depth time as a function of the parameter a of power-law autocorrelation function. Fur-
thermore, the presence of sudden death and birth of nonclassicality depends not only
on the particular combination of parameters (δ, γ), but also on the parameter α itself.
Actually, Fig. 4.6 shows that nonclassicality revivals can be also observed for the power-
law process just like for the OU process, and that this phenomenon is mostly due to the
introduction of the detuning parameter.
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4.2 Phase communication channels in presence of noise

The transmission of classical information along an ideal bosonic quantum channel is
optimized by encoding information onto Fock number states, according to a thermal
distribution, and then retrieving this information by the measurement of the number
of photons [116–118]. This strategy allows to achieve the ultimate channel capacity, i.e.
to maximize the mutual information between the sender and the receiver, given a con-
straint on the overall energy sent through the channel, thus outperforming other encod-
ing/decoding scheme involving different degrees of freedom of the radiation field, e.g.
the amplitude or the phase.

Taking into account the unavoidable noise that affects the information carriers along
the channel, the situation becomes more involved and a question arises on whether dif-
ferent coding/encoding schemes may offer better or comparable performances. Indeed,
in the presence of a phase insensitive noise, e.g. amplitude damping, also coherent cod-
ing has been shown to achieve the ultimate channel capacity [119, 120].

In this section, I address communication channels based on phase encoding [121–123]
and analyze in details their performances in the presence of phase diffusion, which rep-
resents the most detrimental kind of noise affecting this kind of channel [124,125]. In par-
ticular, we will consider communication schemes where the information is encoded by
modulating the phase of a coherent signal, which then travels through a phase-diffusing
environment before arriving at the receiver station and being detected.

As shown in Chapter 3, the evolution of a system in presence of phase diffusion is
portrayed by a Gaussian channel where phase static noise is induced by a stationary en-
vironment. Moreover, stochastic interactions may successfully reproduce this kind of
evolution and even unlock the possibility of exploring in an easy way non-Markovian
dynamical noise scenarios. In this chapter, I test the efficiency of phase communica-
tion protocols in static and dynamical noisy environments, by evaluating the mutual
information for both ideal phase receivers and covariant phase-space-based ones (corre-
sponding to the marginal phase distribution of the Husimi Q-function). I then compare
their performances each other and with the capacity of other relevant channels.

4.2.1 Phase-keyed communication channels

A schematic diagram of a quantum phase communication channel is depicted in Fig. 4.7.
The sender encodes a finite number N of symbols using N different values of a phase
shift φk, where φk < φj if k < j and 0 ≤ k < N . I assume a choice of equidistant
phase values φk = 2πk/N . The phase φk is encoded onto a seed state ρ0 of a single-
mode radiation field by the unitary phase-shift operation U(φ) = exp(iφ a†a), a being
the annihilation operator, [a, a†] = 1, namely:

ρ0 → ρk ≡ U(φk)ρ0U
†(φk) . (4.18)

The signal then propagates along the channel to the receiver station, where it is detected
by a suitable measurement scheme in order to retrieve the information it carries. More
explicitly: the receiver performs a phase measurement on the output state and, once the
phase is measured, he chooses a strategy to associate the measured value to one of the
symbols of the sender’s alphabet. The inference strategy should match the (continuous)
output from the phase measurement to a symbol from a discrete alphabet. The straight-
forward choice consists in associating each phase value with the closest φk within a mar-
gin of error. To this aim the receiver divides the full phase range [0, 2π) into N bins,
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Figure 4.7: (Color online) Schematic representation of a phase communication channel. The
sender encodes a finite number N of symbols using N different values of a phase-shift φk =
2πk/N imposed to a seed coherent state ρ0. The signal then propagates along the channel, to the
receiver station, in the presence of either static or dynamical noise and it is finally detected by a
suitable measurement scheme in order to retrieve the carried information.

corresponding to the intervals

Ξj = [φj −∆, φj + ∆) ,

where ∆ = π/N and
⋃N
j=1 Ξj = [0, 2π). More generally, the width of each bin may be

different and dependent on j, though a symmetric choice is easily proven optimal. If φ
denotes the value of the receiver’s outcome, the inference rule is expressed as follows:

if φ ∈ Ξj ⇒ φ→ φj . (4.19)

The positive operator-valued measure (POVM) {Π(φj)} ≡ {Πj} describing the measure-
ment strategy employed by the receiver can be written as:

Πj =

∫ φj+∆

φj−∆

π(θ)dθ, (4.20)

where π(θ) is the actual POVM of the phase measurement performed by the receiver. A
POVM for a covariant phase measurement may always written as [126, 128]:

π(θ) =
1

2π

∞∑
n,m=0

An,me
−i(n−m)θ |n〉 〈m| , (4.21)

whereAn,m are the elements of a positive and Hermitian matrixA, which is measurement-
dependent. Covariance follows easily from Eq. (4.21), since U(φ)π(θ)U†(φ) = π(θ + φ)
and thus

Πj = U(φj)Π0U
†(φj). (4.22)

The combination of Eqs. (4.20) and (4.21) brings to an explicit form of the POVM Πj ,
given by

Πj =

∞∑
n,m=0

An,mfn−m(j)|n〉〈m| (4.23)
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where the structure of the POVM is determined by the resolution function

fd(j) =
1

2π

∫ φj+∆

φj−∆

e−idθdθ =
sin ∆π

πd
e−idφj , (4.24)

with the property
∑N
j=1 fd(j) = δd,0, where δ is the Kronecker delta.

The figure of merit to assess the performances of a communication channel is the
mutual information between sender and receiver. This quantity measures the amount of
information shared by the two parties and can be written as

I =

N−1∑
k,j=0

p(k, j) log2

p(k, j)

p(k) p′(j)

=

N−1∑
k,j=0

p(j|k)p(k) log2

p(j|k)

p′(j)
, (4.25)

where p(j|k) is the conditional probability of measuring a phase φj given the input phase
φk; p(k) is the a priori probability distribution of transmitting a φk-encoded seed state;
p(k, j) = p(j|k) p(k) is the joint probability to send the symbol φk and obtaining the
outcome φj and, finally, p′(j) ≡ p′(φj) is the probability of the outcome φj , given by
p′(j) =

∑N−1
k=0 p(j|k)p(k).

Maximization over the probability p(φk) leads to the so called channel capacity, i.e.
the maximum information transmitted through the channel per use. In particular, I ana-
lyze the case of uniform encoding probability, p(k) = N−1, i.e. the letters have the same
probability to be sent through the channel. The conditional probability of an outcome φ
falling in the bin Ξj given the initial state ρk is

p(φ ∈ Ξj |ρk) ≡ p(j|k) = Tr[ρkΠj ]. (4.26)

Under these conditions, the mutual information reduces to

I =
1

N

N−1∑
k,j=0

Tr[%kΠj ] log2

{
Tr[%kΠj ]

N−1
∑N−1
h=0 Tr[%hΠj ]

}
. (4.27)

By using the covariance property of the POVM and its explicit form given in Eq.
(4.23), the conditional probability can be expressed as

p(j|k) = Tr[ρkΠj ] = Tr[ρ0Πj−k]

=

∞∑
n,m=0

An,mfn−m(j − k)ρn,m. (4.28)

Note that
∑
k p(j|k) =

∑
k Tr[ρkΠj ] = 1, which follows from the symmetries of the res-

olution function, f−d(j) = fd(j), i.e. f−d(−j) = fd(j). Upon introducing the positive
quantity s = |j − k|, we obtain a simpler form for the mutual information

I ≡ I(N, n̄) = log2N +

N−1∑
s=0

q(s) log2 q(s) (4.29)
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where n̄ is the average number of photons of the seed signal and

q(s) =

∞∑
n,m=0

An,mfn−m(s)ρn,m

=
1

N

{
1 +

∞∑
n=0

∞∑
d=1

An,n+d [fd(s)ρn,n+d + c.c.]
}
. (4.30)

The function q(s) measures the probability of finding a 2πs/N phase difference between
the input and output signal, whatsoever value the encoded phase may assume.

The function q(s) and thus the performances of the communication channel do de-
pend on the measurement performed by the receiver through the matrix (An,m) and
on the seed state via the matrix elements ρn,m = 〈n|ρ0|m〉. In the following, I will fo-
cus on two particular phase measurements: the canonical phase measurement [126–130]
and a phase-space-based one, i.e. the marginal phase distribution obtained from the
Husimi Q-function [131–140]. The latter is a feasible phase measurement achievable,
e.g., by heterodyne or double-homodyne detection. For the canonical measurement one
has An,m = 1, whereas for the Q-measurement An,m = Γ[1 + 1

2 (n + m)](n!m!)−
1
2 , Γ[x]

being the Euler Gamma function.

4.2.2 Quantum phase communication channels with static phase diffusion

In this section, I address quantum phase communication channels in the presence of
phase diffusion, and start by considering situations where the environmental noise is
static. Any phase communication channel is based on the observation that the optical
field produced by a laser provides a convenient quantum system for carrying informa-
tion. In particular, coherence of laser source ensures that a well-defined phase can be
attributed to a light mode. Still, the unavoidable presence of noise generates a phase
diffusion, which ultimately limits the coherence of the light. The master equation gov-
erning the evolution of the light beam in a static phase diffusing environment may be
written as [125, 141]:

d

dt
ρ =

Γ

2
L[a†a]ρ , (4.31)

where Γ plays the role of the static phase noise factor. An initial state ρ(0) evolves with
time as

ρ(t) =

∞∑
n,m=0

e−
1
2 τ(n−m)2ρn,m|n〉〈m| , (4.32)

where the rescale time τ = Γt is introduced. One can easily see that the diagonal el-
ements ρn,n are unaffected by the phase noise, thus, energy is conserved, whereas the
off-diagonal elements decay away exponentially.

Let’s assume that the input seed is a coherent state of the radiation field, namely,
ρ0 = |α〉 〈α|with:

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 . (4.33)

Without lack of generality, α may be assumed real. The density matrix elements associ-
ated with the initial coherent state ρ0 are

ρn,m = e−n̄
n̄(n+m)/2

√
n!m!

, (4.34)
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Figure 4.8: (Color online) Phase communication channels in the presence of static phase diffusion.
The upper panels show the mutual informations for the ideal receiveir IC (left) and the Q one IQ
(right) as a function of the noise parameter τ = Γt for different values of the average number of
photons: from bottom to top, n̄ = 1 (dashed blue), n̄ = 2 (dotdashed orange), n̄ = 3 (solid green).
We set the alphabet size to N = 20.

where n̄ ≡ α2 is the average number of photons of the coherent state ρ0. Exploiting
Eq. (4.32), one finds that the state arriving at the receiver after the propagation through
the noisy channel has the following density matrix elements:

ρn,m → ρn,m(t) = e−
1
2 τ(n−m)2ρn,m, (4.35)

which can be used to evaluate the mutual information as written in Eq. (4.29) once the
POVM describing the measurement is given and, thus, the fn−m(s) are assigned.

The POVM describing the ideal (canonical) measurement is obtained from Eq. (4.21)
with An,m = 1, ∀n,m. In turn, the probability q(s) after the phase diffusion process
reads:

qC(s) =
1

N

{
1 + 2e−n̄

∞∑
n=0

∞∑
d=1

sinc
(
πd

N

)
e−

1
2d

2τ cos

[
πd

N
(2s+ 1)

]
n̄n+d/2√
n!(n+ d)!

}
, (4.36)

where sinc(x) = sin(x)/x. The mutual information IC directly follows from Eq. (4.29).
The probability qQ(s) for the Q-measurement process is obtained using An,m = Γ[1 +

1
2 (n+m)](n!m!)−

1
2 :

qQ(s) =
1

N

{
1 + 2e−n̄

∞∑
n=0

∞∑
d=1

sinc
(
πd

N

)
e−

1
2d

2

cos

[
πd

N
(2s+ 1)

]
Γ(1 + n+ d

2 )n̄n+d/2

n!(n+ d)!

}
.

(4.37)

The corresponding mutual information IQ is again obtained using Eq. (4.29).
The panels of Fig. 4.8 show the mutual information as a function of the rescaled time

variable τ , which plays the role of a noise parameter, for ideal (left panel) and Q (right
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Figure 4.9: The lower panel shows the ratio IQ/IC as a function of τ for different values of the
average number of photons: from bottom to top, n̄ = 1 (dashed blue), n̄ = 2 (dotdashed orange),
n̄ = 3 (solid green).

panel) phase-receivers and for different values n̄ of the average number of photons of
the seed state. The size of the alphabet is set to N = 20. As it is apparent from the plots,
phase diffusion leads to an unavoidable loss of information. The mutual information IQ
for Q receivers shows the same vanishing behavior in time as the ideal one IC , though
its value is always slightly smaller. In order to provide a quantitative assessment, I show
their ratio IQ/IC in Fig. 4.9, as a function of τ for different values of n̄. The ratio is
always below one, thus confirming that Q receivers are not as efficient as the ideal ones.
The ratio slighty increases with time, i.e. for long distance channels, and with the energy
of the seed signal.

In order to further assess the performances of phase channels let’s now compare the
mutual informations IC and IQ with the capacity of a (realistic) coherent channel and
with the ultimate quantum capacity of a single-mode channel, which is achieved by
the photon number channel. In a coherent channel information is encoded onto the
amplitude of a coherent signal and then retrieved by heterodyne or double-homodyne
detectors, the channel capacity is achieved by Gaussian modulation of the amplitude
and is given by

CCOH(η) = log(1 + ηn̄) , (4.38)

where n̄ is again the average number of photon per use of the channel, and η is the
overall (amplitude) loss along the channel. On the other hand, the ultimate quantum
capacity of a single-mode channel, which also saturates the Holevo-Ozawa-Yuen bound
[116], is achieved by the photon number channel

CPHN = (n̄+ 1) log2(n̄+ 1)− n̄ log2 n̄. (4.39)

where information is encoded onto the number of quanta transmitted through the chan-
nel according to a thermal distribution, and the decoding stage is performed by pho-
todetection.

At first, let’s address noiseless phase channels and consider, for both receivers, the
ratio between the corresponding mutual information and the ultimate capacity, i.e. γC =
IC/CPHN and γQ = IQ/CPHN . The two quantities are reported in the upper left panel of
Fig. 4.10 as a function of the number of symbols in the phase alphabet, and for different
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values of the average number of photons n̄. The plots reveal that an alphabet of about
N ' 50 symbols is enough to reach the asymptotic value of both ratios, and in turn of
IC and IQ. Also, the plots show that the ratio with the ultimate capacity is comparable
to that of noiseless coherent channels, with ideal phase receivers slightly outperforming
the coherent channel and the Q one being slightly outperformed. Using this size of the
alphabet, we have evaluated γC and γQ as a function of the average photon number n̄.
Results are shown in the upper right panel of Fig. 4.10, confirming that phase channels
with ideal receivers performs slightly better than coherent ones, whereas Q receivers
lead to slightly worse performances.

Let’s now compare phase channel with coherent ones in the presence of noise. In the
lower panels of Fig. 4.10 I show the ratios βk = Ik/CCOH , k = C,Q between the mutual
information of our phase channels and the capacity of the coherent channel as a function
of the noise parameters, τ and η of the two channels. Results for different values of the
average number of photons n̄ are shown. In both cases an energy-dependent threshold
on the amount of noise appears, above which phase channels become more effective
than coherent ones.

Finally, let’s discuss the performances of the two receivers in the relevant quantum
regime of low number of photons, n̄ � 1, and large number of letters, N � 1. As
it can be argued from the upper right of Fig. 4.10, both IC and IQ grow linearly with
n̄ for n̄ � 1, and this resembles the behaviour of both the coherent capacity and the
ultimate quantum capacity. This means that, albeit being suboptimal, phase channels
offer good performances when low energy should be transmitted through the channel.
This finding can be confirmed by expanding the mutual information up to the first order
in the average photon number of the seed signal, arriving at the expressions for the ideal
measurement and the Q-receiver one

IID
n̄�1'

n̄ sinc2( πN ) e−τ

log 2

N�1' n̄ e−τ

log 2
(4.40a)

IQ
n̄�1' π

4

n̄ sinc2( πN ) e−τ

log 2

N�1' π

4

n̄ e−τ

log 2
, (4.40b)

their ratio approaching the limiting value of π/4.

4.2.3 Dynamical phase diffusion

In many experimental situations, the exchange of information between sender and re-
ceiver takes place in noisy environments which cannot be described in terms of a Marko-
vian master equations. In such cases, a full quantum description of the interaction may
be inconvenient, as the approximations needed to obtain solvable dynamical equations
could preclude the study of interesting features of the dynamics itself.

In the following, I consider a stochastic phase diffusion model corresponding to the
quantum map

ρ(τ) =

∫ ∞
−∞

dφ√
2πβ(τ)

e−
φ2

2β(τ) U(φ)ρ(0)U†(φ), (4.41)

where, for convenience, I still use the rescaled time τ = Γt. The static environment of
the previous section is recovered for β(τ) = τ . The quantum map (4.41) turns the input
state ρk into a statistical mixtures of states with a time-dependent Gaussian distribution
of the phase around the original phase φk. In this model, I assume as stochastic process
a Ornstein-Uhlenbeck process, whose non-rescaled variance is given in Eq. 2.24.
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Figure 4.10: (Color online) The upper left panel shows the ratios γC (symbols joined by solid lines)
and γQ (symbols joined by dotted lines) as a function of the number of symbols in the alphabet
for noiseless phase channels (η = 1). Red circles correspond to n̄ = 1, blue squares to n̄ = 2 and
green triangles to n̄ = 3. Solid lines are the ratios CCOH/CPHN for the same three values of n̄ (from
bottom to top) with the same color code. The upper right panel shows the ratios γC (dotted red),
CCOH/CPHN (solid black) and γQ (dashed blue) for noiseless channels as a function of n̄ and for
a fixed value of N = 50. The lower panels show the regions βC > 1 and βQ > 1, respectively,
as functions of τ = Γt and η. From left to right we have the regions corresponding to n̄ = 1, 2, 3
(green, orange and blue, respectively). When βk > 1, k = C,Q, the phase channels become
more effective than coherent ones. The boundary of each region singles out an energy-dependent
threshold on the noise parameters.

In the Markovian limit τE � τ , the latter may be re-written as

σ(τ) ' τ (4.42)

whereas, in the presence of highly correlated environments τE � τ , it becomes

σ(τ) ' 1

2
τ2/τE. (4.43)

If the environment shows non-zero correlation time the dynamics of mutual information
may be dramatically altered, showing either a different decay rate or the appearance of



Stochastic approach to non-Markovian decoherence 57

0 1 2 3 4 5
τ

0.5

1

1.5

2

IC

0 1 2 3 4 5
τ

0.5

1

1.5

2

IQ

Figure 4.11: (Color Online) Phase communication channels in the presence of dynamical phase
diffusion. The upper panels show the mutual informations IC (left) and IQ (right) as function of
τ = Γt for different values of the correlation time τE of the environment. From bottom to top,
τE = 0.1 (solid brown), 1 (dotdashed purple) , 10 (dashed red). The lower solid green curve is the
mutual information in the static case. The other parameters read as follows: N = 20, n̄ = 3.

oscillations. In the following, I first analyze the case of a resonant enviroment with zero
detuning δ = 0 and then focus attention to nonresonant situations. In both cases, the
probabilities qk(s), k = C,Q are still given by Eqs. (4.36) and (4.37) with the replacement

exp

(
−1

2
d2τ

)
−→ exp

[
−1

2
d2σ(τ)

]
.

Let us start with the case of a resonant environment (δ = 0). Under such condition,
β(t) reduces to

β(τ) =
[
τ − τE(1− e−τ/τE )

]
(4.44)

and the channel appears to be more robust against the effects of noise, at least for a
short time dynamics, compared to the static case. In order to illustrate this feature, Fig.
4.11 shows the mutual informations IC and IQ as a function of τ for different values of
τE . As it is apparent from the plot, the presence of a non-zero correlation time of the
environment τE better preserves mutual information against phase diffusion for both
ideal and Q receiver. As it happens in the static case the mutual information vanishes
with time. However, a time-correlated environment allows a “concave dynamics” of the
mutual information, which lasts longer, the higher is the correlation time. This behaviour
is due to the transition from linear to quadratic behaviour of β(τ) (see Eq. 4.43), which
may be observed for increasing τE . I also show the mutual information for the static
case (solid green line) for comparison. Fig. 4.12 shows the ratio IQ/IC as a function of τ .
Upon comparing this plot with Fig. 4.9 it is possible to conclude that dynamical noise is
more detrimental for Q receivers than for ideal ones.

Let’s now analyze the effects of detuning between the frequency of the information
carrier and the central frequency of the CSF. As it is possible to see from the panels of
Fig. 4.13, the dynamics of the mutual information is strongly affected by the detuning
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Figure 4.12: The lower panel shows the ratio IQ/IC as a function of τ for the same values of τE
and of the other parameters. From top to bottom, τE = 0.1 (solid brown), 1 (dotdashed purple), 10
(dashed red). The lower solid green curve is the mutual information in the static case. The other
parameters read as follows: N = 20, λ = 1, n̄ = 3.
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Figure 4.13: (Color online) Phase communication channels in the presence of dynamical phase
diffusion. The panels show the mutual information IC (left) and IQ (right) as a function of τ = Γt
for different values of detuning. From top to bottom δ = 10 (red), δ = 6 (green), δ = 4.5 (orange),
and δ = 3.5 (blue). The other parameters are given by N = 20, λ = 1, n̄ = 3, τE = 1.

for both kind of receivers. On the one hand, the detuning contributes to the significative
slowdown of the damping of mutual information and, on the other hand, it is responsible
for the appearance of revivals of mutual information, present only when δ > δ0.
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4.3 Summary

• The quantum-to classical transition in a noisy dissipative environment occurs in a
finite time that depends exclusively on the nonclassical depth of the input state.

• The presence of classical memory in the environment strongly influences the de-
coherence time, increasing the survival time of nonclassicality and leading to dy-
namical sudden death and birth of quantumness.

• Phase commonication channels based on phase modulation of coherent states are
robust, especially for large alphabets in the low-energy regime, and their perfor-
mances are comparable to those of coherent channels in the presence of loss.

• In the presence of stochastic phase diffusion, phase channels become more robust,
the channel capacity being preserved by the time correlations of the environment.

• Detuning beyond the threshold value δ̃0 induces revivals of mutual information.



CHAPTER 5

Non-Markovianity vs backflow of information

In the previous chapters, I have shown that classical stochastic fields may reproduce
phase diffusive and dissipative environments, leading to non-Markovian dynamics of
the system. Moreover, I have shown that single-mode continuous variable systems may
exhibit recoherence phenomena and revivals of quantum features as quantumness or
mutual information in particular regimes of interaction. In this chapter, I address the
effects of classical stochastic fields on the evolution of correlations between two-mode
systems.

In this framework, the first goal is analyzing in details the dynamics of a bipartite
system made of two independent quantum harmonic oscillators interacting with clas-
sical fluctuating environments. In particular, I compare the dynamics of correlations in
two different environmental situations. On one hand, I consider a local noise model,
where each oscillator interacts with its own classical environment. On the other hand, I
consider the situation where both the oscillators interact with a common environment,
described by a single stochastic field. A similar analysis has been performed for qubit
systems [142, 143] revealing the existence of a rich phenomenology.

The second goal consists in better analyzing the connections between the dynamics of
quantumness, e.g. revivals of quantum correlations and the quantum-to-classical transi-
tion, and the non-Markovian features of the dynamical map. In particular, I investigate
the role of non-Markovianity itself (i.e. non-divisibility of the quantum dynamical map)
against the role of the backflow of information, which is a sufficient (but not necessary)
condition to prove non-Markovianity and, in turn, often used to witness its presence.

5.1 Local and global noise: the interaction model

Let’s consider two non-interacting harmonic quantum oscillators with natural frequen-
cies ω1 and ω2 and analyze the dynamics of this system in two different regimes: in the
first one, each oscillator is coupled to one of two independent non-interacting stochastic
fields, this scenario is dubbed as the local noise case. In the second regime, the oscillators
are coupled to the same classical stochastic field, so this case is referred to as common
noise. In both case, the Hamiltonian H is composed by a free and an interaction term.
The free Hamiltonian H0 is given by

H0 = ~
2∑
j=1

ωja
†
jaj . (5.1)

Unlike the free HamiltonianH0, which is the same in the description of both models, the
interaction term HI differs. In the following subsections, I introduce the local and the
common interaction Hamiltonian.

60
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5.1.1 Local interaction scenario

The interaction Hamiltonian HL in the local model reads

HL (t) =

2∑
j=1

ajB̄j(t)e
iδjt + a†jBj(t)e

−iδjt (5.2)

where the annihilation operators a1, a2 represent the oscillators, each coupled to a dif-
ferent local stochastic field Bj(t) with j = 1, 2, and δj = ωj − ω is the detuning between
the carrier frequency of the field and the natural frequency of the j-th oscillator. The
Hamiltonian is rescaled in units of a reference level of energy ~ω0. Under this condition,
the stochastic fields B1(t), B2(t), their central frequency ω, the interaction time t, and the
detunings all become dimensionless quantities.

The presence of fluctuating stochastic fields leads to an explicitly time-dependent
Hamiltonian, whose corresponding evolution operator is given by

U(t) = T exp

{
−i
∫ t

0

dsHL (s)

}
, (5.3)

where T is the time ordering. However, as the interaction Hamiltonian is linear in the
annihiliation and creation operators of the two oscillators, the two-time commutator
[HL (t1), HL (t2)] is always proportional to the identity. In particular, when the stochastic
fields satisfy the conditions Bj(t1)B̄j(t2) = Bj(t2)B̄j(t1), with j = 1, 2, the two-time
commutator becomes

[HL (t1), HL (t2)] =
∑
j=1,2

2i B̄j(t1)Bj(t2) sin [δj(t1 − t2)] I12 (5.4)

This form of the two-time commutator allows to use the Magnus expansion to simplify
the expression of the evolution operator (5.3) into

U(t) = exp (Ξ1 + Ξ2) (5.5)

where Ξ1 and Ξ2 are given by

Ξ1 = −i
∫ t

0

ds1HI(s1), (5.6a)

Ξ2 =
1

2

∫ t

0

ds1

∫ s1

0

ds2 [HI(s1), HI(s2)]. (5.6b)

The specific form of Ξ1 for the local (ΞL
1) scenario is given by

ΞL
1 =

2∑
j=1

(
a†jφj(t)− ajφ

∗
j (t)

)
(5.7)

where the displacement parameter φj(t) is given by

φj(t) = −i
∫ t

0

ds e−iδjsBj(s) with j = 1, 2. (5.8)
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The evolution of the density operator of the system then reads

ρL(t) =
[
eΞL

1 ρ(0)e(ΞL
1 )∗
]
B

=
[
D(φa, φb)ρ0D

†(φa, φb)
]
B

(5.9)

where Dj(α) = exp(αa†j − α∗aj) is the displacement operator, D(α1, α2) = D(α) =

D1(α1)D2(α2) and, once again, [. . .]B is the average over the realizations of the stochastic
fields.

In the local scenario, each CSF Bj(t) = B
(x)
j (t) + iB

(y)
j (t), is described as a Gaussian

stochastic process with zero mean [B
(x)
j (t)]F = [B

(y)
j (t)]F = 0 and autocorrelation matrix

given by [
B

(x)
j (t1)B

(x)
k (t2)

]
F

=
[
B

(y)
j (t1)B

(y)
k (t2)

]
F

= δjkKj(t1, t2), (5.10a)[
B

(x)
j (t1)B

(y)
k (t2)

]
F

=
[
B

(y)
j (t1)B

(x)
k (t2)

]
F

= 0. (5.10b)

where the kernel autocorrelation function of each process is different in the most general
case. By means of the Glauber decomposition of the initial state ρ(0)

ρ(0) =

∫
d4ζ

π2
χ[ρ(0)](ζ)D†(ζ), (5.11)

where χ[ρ](ζ) is the symmetrically ordered characteristic function, the density matrix of
the evolved state reads

ρL (t) = GL [ρ(0)] =

∫
d4ζ

π2
gL (ζ)D(ζ)ρ(0)D†(ζ) (5.12)

where gL (ζ) is a Gaussian function

gL (ζ) =
exp(− 1

2 ζ ·Ω · σ
−1
L ·ΩT · ζT )√

det[σL ]
(5.13)

where σL and the symplectic matrix Ω are given by

Ω =

(
0 1

−1 0

)
σL =

(
β1(t) I2 0

0 β2(t) I2

)
. (5.14)

The matrixσL is the covariance matrix of the noise function gL (ζ) and its matrix elements
are given by

βj(t, t0) =

∫ t

t0

∫ t

t0

ds1ds2 cos[δj(s1 − s2)]Kj(s1, s2). (5.15)

The dynamical map in Eq. (5.12) corresponds to a two-mode Gaussian noise channel
[144, 145], i.e a random displacement according to a Gaussian probability distribution.
In the local scenario, each mode evolves independently: the environment affects each
mode separately by adding a different noise βj(t,t0) to each subsystem.
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5.1.2 Common interaction scenario

The Hamiltonian HC in the common interaction model reads

HC (t) =

2∑
j=1

aje
iδjtB̄(t) + a†je

−iδjtB(t) (5.16)

where each oscillator, represented by the annihilation operators a1, a2, is coupled to a
common stochastic field B(t) which is described as a Gaussian stochastic process with
zero mean [B(x)]B = [B(y)]B = 0 and the very same autocorrelation matrix of the local
scenario.

Along the same lines of the local interaction model derivation, the Magnus expan-
sion simplifies the evaluation of the evolution operator. By asking the stochastic field to
satisfy the relation B(t1)B̄(t2) = B(t2)B̄(t1), the two-time commutator reads

[HC (t1), HC (t2)] = B̄(t1)B(t2)
∑
j=1,2

2i sin [δj(t1 − t2)] I12. (5.17)

The evolution operator for the common scenario is the same described in Eq. (5.5), where
the specific form of Ξ1 in the common interaction model is given by

Ξ C
1 =

2∑
j=1

(
a†jψj(t)− ajψ

∗
j (t)

)
(5.18)

where

ψj(t) = −i
∫ t

0

ds e−iδjsC(s) with j = 1, 2. (5.19)

The two displacement parameters ψ1(t) and ψ2(t) only differ for the detuning parame-
ters, which are different in the most general case.

The evolution of the density operator of the system reads

ρ(t) =
[
eΞ C

1 ρ(0)e(Ξ C
1 )∗
]
B

=
[
D(ψ1, ψ2)ρ0D

†(ψ1, ψ2)
]
B

(5.20)

which, following the same steps of the derivation shown before, leads to

ρC (t) = GC [ρ(0)] =

∫
d4ζ

π2
gC (ζ)D(ζ)ρ(0)D†(ζ) (5.21)

where we use the Gaussian function

gC (ζ) =
exp(− 1

2 ζ ·Ω · σ
−1
C ·ΩT · ζT )√

det[σC ]
(5.22)

σC being its covariance matrix, given by

σC =

(
β1(t) I2 R

R β2(t) I2

)
R =

(
βC (t) γC (t)

γC (t) βC (t)

)
(5.23)
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with the matrix elements given by

βc(t, t0) =

∫ t

t0

∫ t

t0

ds1ds2 cos[(δ1s1 − δ2s2)]K(s1, s2), (5.24a)

γc(t, t0) =

∫ t

t0

∫ t

t0

ds1ds2 sin[(δ1s1 − δ2s2)]K(s1, s2). (5.24b)

The local interaction adds noise to the two-mode systems affecting each subsystem sep-
arately, while in the common scenario the evolution is more involved: correlations be-
tween the modes arise from a non-direct interaction, which is vehiculated by the com-
mon classical stochastic field through the terms given in 5.24.

5.1.3 Covariance Matrix dynamics in local and common interaction

The dynamical maps described by Eqs. (5.12) and (5.21) belong to the class of Gaussian
channels , i.e. the evolution, in both regimes, preserves the Gaussian character of input
states. In turn, this is a useful feature, since in this case quantum correlations, entangle-
ment and discord, may be evaluated exactly and only depend on the covariance matrix
of the output state.

In order to get quantitative results, the environment fluctuations are described by
identical Ornstein-Uhlenbeck processes. Moreover, I assume the case of resonant oscil-
lators (ω1 = ω2 = ω0), which implies that the oscillators are identically detuned from the
central frequency of the classical stochastic field, i.e.

δ1 = δ2 = δ = 1− ω

ω0
.

This assumptions simplifies the expression of the state dynamics: in the local scenario,
leading to β1(t) = β2(t) = β(t) and, in turn,

ρL (t) = EL [ρ(0)](t) =

∫
d4ζ

(πβ(t))2
exp

(
− |ζ|

2

β(t)

)
D(ζ)ρ(0)D†(ζ) (5.25)

where β(t) with the Ornstein-Uhlenbeck kernel is given in Eq. 2.24.

In the common noise case, the condition of resonant oscillators implies β1(t) = β2(t) =
βc(t) = β(t) and γc(t) = 0, leading to simplified matricesR and σC given by

R =

(
β(t) 0

0 β(t)

)
σC =

(
β(t)I2 R

R β(t)I2

)
(5.26)

corresponding to the Gaussian channel

ρ(t) = EC [ρ(0)](t) =

∫
d2ζ

πβ(t)
exp

(
− |ζ|

2

β(t)

)
D(ζ, ζ)ρ(0)D†(ζ, ζ). (5.27)

The initial state ρ(0) of the system is assumed to be a generic squeezed thermal state ρSTS ,
which is a zero-mean Gaussian state, described by a Gaussian characteristic function σSTS

given in Eq. 1.52. As the squeezed thermal state is a Gaussian state and the dynamics
in both scenarios is described by a Gaussian channel, the output state at any time is
Gaussian as well, so it is determined only by the covariance matrix. By evaluating the
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Figure 5.1: Quantum correlations of STS for different values of the energy ε. Left panel: Entangle-
ment of a STS as a function of squeezing parameter γ. The STS is entangled as long as γ overtakes
a threshold value that depends on the energy ε. Right panel: Discord of a STS as a function of
squeezing parameter γ. The STS is always a discordant state unless γ = 0. In both panels, from
bottom to top, ε = 0 (blue line), ε = 1 (yellow line), ε = 2 (green line), ε = 3 (red line).

characteristic function of the evolved state, one finds that the covariance matrices of the
state at time t in the local and common scenarios are

βL (t) = σSTS + 2σL (t), (5.28a)
βC (t) = σSTS + 2σC (t) , (5.28b)

where σL (t) and σC (t) are given in Eqs. (5.14) and (5.26) respectively.
A closing remark about the output states: in the local scenario, the interaction with

the stochastic fields adds noise to the system without affecting the off-diagonal terms, so
the output state in the local scenario is always a STS, with a larger thermal component.
Conversely, the output state in the common scenario ceases to be an STS as soon as the
interaction starts.

5.2 Dynamics of Quantum Correlations

In order to assess the dynamics of entanglement and discord in the presence of noise,
it is useful to briefly review the static properties of quantum correlations [146] for a
squeezed thermal state. Considering the case of identical thermal states (n̄1 = n̄2 = n̄)
it is possible to use a convenient representation of STSs, built upon re-parametrizing the
covariance matrix by means of its total energy ε = 2(n̄ + ns + 2n̄ ns), with ns = sinh2 r,
and a normalized squeezing parameter γ ∈ [0, 1], such that

ns = γε n̄ =
(1− γ)ε

1 + 2γε
.

Note that, for γ = 0 the state has only thermal energy (ε = n̄) while for γ = 1 the total
amount of energy comes from the two-mode squeezing operation (ε = sinh2 r).

Fig.5.1 shows the quantum correlations of a STS as a function of the energy ε and
the squeezing parameter γ. The left panel shows that the STS is entangled as long as γ
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Figure 5.2: (Color Online) Dynamics of entanglement in presence of CSFs for different values of
rescaled detuning δ. Left panel: Entanglement dynamics in local scenario as a function of time t.
Right panel: Entanglement dynamics in common scenario as a function of time t. In both scenarios,
the entanglement possessed by the system may revive. In both panels, ε = 1, γ = 1, λ = 1, and,
from bottom to top, δ = 0 (blue), δ = 2 (yellow), δ = δ0 (green), δ = 4 (red), δ = 6 (purple), δ = 8
(brown).

overtakes a threshold value which depends on the total amount of energy. Conversely,
the quantum discord of a STS is always positive, unless the state is purely thermal, i.e.
with zero squeezing (γ = 0).

Let’s analyze the dynamics of quantum correlations of initially maximally entangled
squeezed thermal states (γ = 1) and two-mode thermal states (γ = 0) in presence of local
and common stochastic environments. In order to be able of comparing the results of the
different scenarios, the analysis is limited to the case of resonant oscillators and identical
the rescaled coupling constant λ(c) for the common scenario and λ(1), λ(2) for the local
scenario, λ(c) = λ(1) = λ(2) = λ (all the tildes indicating rescaled parameters have been
dropped).

Let’s start by addressing the dynamics of correlations of an initially entangled STS:
the panels in Fig. 5.2 show how the classical stochastic fields, whether they be local or
common, induce loss of correlations in time. However, the decay rate of correlations is
not the same in both scenarios: indeed, the presence of a common stochastic field is less
detrimental, i.e. the interaction with the same environment leads to a slower loss of cor-
relations. This effect may be seen as the consequence of the fact that the interaction of a
two-mode systems with a common environment may be rewritten as the nonsymmetric
interaction of two collective modes with separate enviroments. In particular, decoher-
ence strongly affects only one of the collective mode, and this mechanism is physically
responsible for a slower loss of correlations.

In both panels, the green line corresponds to δ = δ0, the threshold value over which
β(t) shows an oscillating behavior. As it is possible to see, δ = δ0 plays the role of the
threshold value also in the case of the correlations. In fact, revivals of entanglement
appear only for detunings bigger than δ0. However, the left panel allows to point out an
important issue: δ > δ0 is a necessary condition for an oscillating β(t), though revivals
of entanglement also depend on the rescaled coupling λ. In other words, when δ >
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Figure 5.3: Dynamics of discord in presence of CSFs for different values of rescaled detuning δ.
Left panel: Discord dynamics in local scenario as a function of time t. The initial discord decreases
in time. Right panel: Discord dynamics in common scenario as a function of time t. The initial
discord decreases, reaches a minimum and the increases monotonically as a consequence of the
interaction. In both panels, ε = 1, γ = 1, λ = 1, and, from bottom to top, δ = 0 (blue line), δ = 2
(yellow line), δ = δ0 (green line), δ = 4 (red line), δ = 6 (purple line), δ = 8 (brown line).

δ0, the symplectic eigenvalue d̃− flows in time in unison with β(t), without necessarily
violating the separability condition d̃− ≥ 1

2 . This explains the presence of a plateau in
the entanglement of the common scenario with δ = δ0.

Let’s now focus on the discord dynamics shown in Fig. 5.3. While the entanglement
shows a vanishing behaviour in both scenarios in any setup of parameters, the same
cannot be said for the quantum discord. While in the local scenario the initial discord
tends to vanish, the common interaction introduces some correlations which clearly arise
after the drop of the initial discord [147]. The effect of the common stochastic field on
the dynamics of the quantum discord is even clearer in the case of thermal input states
(squeezing parameter γ = 0). The upper left panel of Fig. 5.4 shows the discord evolu-
tion of the state ρ = ν1⊗ν2 in the common scenario. The interaction transforms the initial
zero-discord state into a discord state without affecting the separability of the input state
(the symplectic eigenvalue d̃− always satisfies the condition d̃− ≥ 1

2 , as is apparent from
the upper right panel of Fig. 5.4). Furthermore, the quantum discord tends to an asymp-
totic value which depends on both the energy ε and the squeezing parameter γ of the
input Gaussian state, but it is not affected by the parameters of the environment λ and
δ. Indeed, this can be seen as a consequence of the non-markovianity of the quantum
map, as the long-time dynamics is influenced by the input state. A contourplot of the
asymptotic value of the Discord as a function of ε and γ is shown in the lower right panel
of Fig. 5.4. Finally, it is worth mentioning that the POVM (see Eq.1.81) minimizing the
quantum discord changes in time preserving the continuity of the discord itself. As an
example, the lower left panel of Fig. 5.4 reports one particular scenario where the regions
corresponding to the two POVMs are coloured differently.
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Figure 5.4: Upper panels: Correlations of a two-mode thermal state. Left panel: discord dynamics
in time t for different values of δ. The initially zero-discord state becomes a discord state because
of the interaction. Right panel: dynamics of symplectic eigenvalue d̃− for different values of δ.
The state always remains separable, though becoming a discord state. In both panels we have ε =
1, γ = 0, λ = 1 and, from top to bottom, δ = 0 (blue line), δ = 2 (yellow line), δ = δ0 (green line),
δ = 4 (red line), δ = 6 (purple line), δ = 8 (brown line). Lower left panel: Regionplot of the POVM
minimizing the quantum discord. We set ε = 1, δ = 3, λ = 1. Lower right panel: contourplot of
the asymptotic value of the quantum discord as a function the input state parameters ε and γ. I set
δ = 3, λ = 1.

5.3 Non Divisibility vs Information Backflow

The presence of revivals of correlations might be interpreted as a signature of some form
of information backflow between the system and the environment, a phenomenon typi-
cally associated to non-Markovian effects. It is the purpose of this section to explore the
connections between non-divisibility and information backflow, analyzing the evolution
of the Fidelity of two input states.

As shown in Chapter 3, stochastic interactions lead to non-Markovian dynamics. Dif-
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Figure 5.5: Dynamics of Bures distance derivative and Fidelity for different values of rescaled
detuning δ in the local noise scenario. Left panel: derivative of Bures distance. Right panel:
dynamics of Fidelity. The Fidelity ceases to oscillate when δ is lower than the threshold value
δ0. The distinguishability of the input states diminishes monotonically in time and no backflow
of information is detected. The curves with a positive part of derivative of Bures distance have
δ > δ0 and correspond to the curves where oscillations of Fidelity are shown. In all panels, I set
ε1 = 2, ε2 = 1, γ1 = γ2 = 1, λ = 1 and, from top to bottom δ = 0 (blue line), δ = 2 (yellow line),
δ = δ0 (green line), δ = 4 (red line), δ = 6 (purple line), δ = 8 (brown line).

ferently to what happens in many situations, in the models presented non-Markovianity
can be straightforwardly proved, looking for violations of the divisibility property Marko-
vian quantum maps must satisfy. In fact, the composition of maps EL (∆t2)EL (∆t1) cor-
responds to a convolution, leading to EL (∆t2)EL (∆t1) = EL (∆t1 + ∆t2) if and only if

β(∆t1 + ∆t2) = β(∆t1) + β(∆t2). (5.29)

which is not satisfied for any choice of the parameters δ and λ, thereby implying that the
map is always non-Markovian. A similar proof can be obtained for the common noise
map EC (∆t).

Let’s now discuss the connections between revivals of correlations, non-divisibility
and information backflow [148–150]. As already mentioned in Chapter 1, non Marko-
vianity may be revealed by some witnesses, as the BLP measure or the analogue mea-
sure based on fidelity for CV systems. Both techniques are based on the contractive
property (valid for Markovian dynamics) of the trace distance and the Bures distance,
respectively. Therefore, a non-monotonous behaviour of the trace distance or the fidelity
is a signature of non-Markovianity. Furthermore, both these witnesses possess physical
meaning: the trace distance is directly related to the probability of discriminating two
states in time, whereas the Bures distance may be used to evaluate upper and lower
bounds of the very same error probability defined by the trace distance. Therefore, a
non-monotonous dynamics also implies a partial clawback of distinguishability of two
input states, which has been interpreted as a sign of a backflow of information [151].
Fig.5.6 shows the time evolution of the fidelity and the derivative of the Bures distance
between a pair of two-mode squeezed vacuum states (γ = 1) with different energies
(ε1 6= ε2). The existence of sets of parameters leading to a non-monotonous behaviour
of the fidelity and a region of positive derivative of Bures distance is enough to confirm
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Figure 5.6: Dynamics of Bures distance derivative and Fidelity for different values of rescaled
detuning δ in the common noise scenario. Left panel: derivative of Bures distance. Right panel:
dynamics of Fidelity. The Fidelity ceases to oscillate when δ ≤ δ0. The distinguishability of the
input states diminishes monotonically in time and no backflow of information is detected. The
curves with a partially positive derivative of Bures distance have δ > δ0 and correspond to the
curves where oscillations of Fidelity are shown. In all panels, I set ε1 = 2, ε2 = 1, γ1 = γ2 = 1, λ =
1 and, from top to bottom δ = 0 (blue line), δ = 2 (yellow line), δ = δ0 (green line), δ = 4 (red line),
δ = 6 (purple line), δ = 8 (brown line).

the already proven non-Markovianity of both maps. However, non-Markovianity is not
detected when δ ≤ δ0, where δ0 is the very same threshold obtained in chapter 2, i.e.
the threshold to observe revivals of correlations. The same behaviour is observed for
any choice of the involved parameters, confirming that non-divisibility itself is not a re-
source to preserve quantum correlations in this system, i.e. it is not sufficient to observe
recoherence phenomena. Rather, it represents a necessary prerequisite to obtain back-
flow of information, which is the true ingredient to obtain revivals of quantumness and,
in turn, the physically relevant resource.

5.4 Summary

• I have investigated the evolution of entanglement and quantum discord for two
harmonic oscillators interacting with classical stochastic fields. I analyzed two dif-
ferent regimes: in the first one, the two modes interact with two separate envi-
ronments describing local noise, whereas in the second case the two oscillators are
exposed to a common source of noise.

• The interaction with a classical environment always induces a loss of entangle-
ment, while the quantum discord shows a vanishing behaviour in the local sce-
nario but may exhibit a non zero asymptotic value in the common scenario, inde-
pendently on the the initial value of the discord.

• The interaction with a common environment is, in general, less detrimental than
the interaction with separate ones.

• I have proved the non-divisibility of the maps and found some structural bound-
aries on the existence of revivals of correlations in terms of a threshold value of the
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detuning between the natural frequency of the system and the central frequency of
the noise. The same threshold determines the presence of backflow of information,
associated to oscillations of the fidelity between a pair of initial states.

• Overall, non-divisibility in itself is not a resource to preserve quantum correlations
but is a necessary condition to obtain backflow of information, which is the true
ingredient to obtain revivals of quantumness.



CHAPTER 6

Environment discrimination

In general, environment-induced decoherence is detrimental for the quantum features
of a localized system: loss of nonclassicality [152, 153] or disentanglement may arise
asymptotically or after a finite interaction time [154–157]. On the other hand, extended
systems experience more complex decoherence phenomena: the subparts of a system
may interact with indepenent environments or, more interestingly, with a common one,
corresponding to collective decoherence or dissipation, which may result in preservation
of quantum coherence as well as preservation and creation of entanglement [158–163] or
superradiance [164–171].

Decoherence and dissipation into a common bath may arise spontaneously in some
structured environments, but it may also be engineered [14,15] to achieve specific goals.
In both cases, the common decoherence mechanism may mingle or even being over-
thrown by local processes, leading to undesidered loss of quantum features. The dis-
crimination between the presence of local or common environments is thus a relevant
tool to fight decoherence and preserve quantum coherence.

In this framework, the main goal of this section is to design a successful strategy
to discriminate which kind of interaction, either local or common, occurs when an ex-
tended quantum probe interacts with a classical fluctuating environment. This is a chan-
nel discrimination problem, addressed upon considering a quantum probe interacting
with either a local or a common bath, and then solving the corresponding state discrim-
ination problem. In particular, in order to assess the role of entanglement with nearly
analytic results, I consider a bipartite system made of two non interacting harmonic os-
cillators. The local noise scenario is described by the interaction of each oscillator with
independent CSFs whereas common noise is described as the coupling between the two
oscillators with the same CSF.

In this Chapter, I analyze in details discrimination strategies based on homodyne de-
tection, which has already proven to be useful in discrimination of quantum states [172]
or binary communication schemes [173]. Also, we analyze in details the performances
of Gaussian states used as probe preparation, including many lab-friendly input signals.

6.1 Discrimination protocol for classical environments

6.1.1 Input states

Before introducing the necessary tools for quantum state discrimination, I briefly dis-
cuss what kind of input states I am about to consider. In general, the optimization of a
channel discrimination protocol involves the optimization over the possible input states.
Considered that the stochastic diffusion preserves the gaussianity of input states, I limit
the analysis to gaussian input states.

72
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Among Gaussian states, I focus attention on three relevant classes, squeezed thermal
states (STSs), states obtained as a linear mixing of a single-mode Gaussian state with
the vacuum (SVs) and standard form SVs, i.e. SV states recast in standard form by lo-
cal operations. These classes of states may be generated by current quantum optical
technology and thus represent good candidates for the experimental implementations
of discrimination protocols. STSs and SVs are described by the covariance matrices σSTS

and σSV , respectively

σSTS =
1

2

 a 0 c 0
0 a 0 −c
c 0 b 0
0 −c 0 b

 σSV =
1

4

 m 0 s1 0
0 n 0 s2

s1 0 m 0
0 s2 0 n

 . (6.1)

In particular, I consider symmetrical thermal states ñ1 = ñ2 = ñ, that can be re-parametrized
setting ε = 2(n̄+ ns + 2n̄ ns), with ns = sinh2 r, and a normalized squeezing parameter
γ ∈ [0, 1], such that

ns = γε n̄ =
(1− γ)ε

1 + 2γε
.

The covariance matrix σSV corresponds to a density operator of the form

ρSV = R
(π

4

)(
S(r)νS†(r)⊗ |0〉〈0|

)
R†
(π

4

)
(6.2)

where S(r) = exp{r(a†1 − a
†
1)} is the single-mode squeezing operator and the rotation

operatorR(θ) = exp{θ(a1a
†
2 +a†1a2} corresponds to a beam-splitter mixing. The physical

state depends on two real parameters: the squeezing parameter r and the number n̄,
which are related to the parameters m,n, s1, s2 of eq. (6.1) by the relations

m = 1 + (1 + 2n)e2r,

n = 1 + (1 + 2n)e−2r,

s1 = (1 + 2n)e2r − 1,

s2 = (1 + 2n)e−2r − 1. (6.3)

Notice that only STSs already possess a covariance matrix in standard form. How-
ever, simply applying local squeezing to both modes the standard form of σSV can be
found. Of course, locally squeezing the modes dramatically changes the energy of the
Gaussian state but leaves quantities such purity and entanglement unmodified. These
states are referred to as standard form single-vacuum states as SSVs.

6.1.2 Quantum State Discrimination

In this section, I briefly summarize the basic concepts of quantum state discrimination
and introduce the tools required to implement a discrimination strategy. The purpose
of state discrimination is to distinguish, by looking at the outcome of a measurement
performed on the system, between two possible hypothesis on the preparation of the
system itself.

In the present case, the bipartite system is prepared in a given Gaussian state and the
state discrimination aims to distinguish which kind of noise, local or common, affects
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Figure 6.1: (Color Online) Contourplot of PQ (x1, x2) for a STS. The dark region between the two
dashed parallel lines represents a choice of Dc, the region of outputs associated to the inference of
common noise. States and channel parameters are set as follows: ε = 1, γ = 0.7, λ1 = λ2 = λ =
1, t = 1.

the system. This is done by a discrimination scheme applied to the output states of the
Gaussian maps (5.12) and (5.21). Since the two outputs are not orthogonal for any given
input, perfect discrimination is impossible and a probability of error appears. Optimal
discrimination schemes are those minimizing the probability of error upon a suitable
choice of both the input state and the output measurement. The minimum achievable
probability is known as the Helstrom Bound, which is based on the Trace Distance.

Unfortunately, for continuous variable systems, evaluating the Helstrom Bound is
a challenging task and one usually resorts to alternative upper bounds, such as the fi-
delity (1.87) and quantum Chernoff (1.89) bounds. However, even when evaluating the
Helstrom Bound is possible, it usually corresponds to a POVM which is difficult to im-
plement. In the following, I devote attention to feasible measurements and evaluate
their performances in the discrimination of local and common noise, comparing the er-
ror probability with the bounds discussed previously, looking for a suitable POVM.

6.1.3 Double Homodyne Measurement

In section 5.1, I have analyzed the dynamics in the presence of either local or common
noise. The two dynamical maps are different and, in particular, correlations between
the two oscillators appear exclusively in the common noise scenario, as it is apparent
from the presence of off-diagonal terms in the common noise matrix. As a matter of
fact, the correlation terms in the noise matrix corresponds the variances var(X1, X2) and
var(P1, P2), where Xj = 1√

2
(aj + a†j), Pj = 1

i
√

2
(aj − a†j) are the quadrature operators of

the two oscillatos. This argument suggests that joint homodyne detection of the quadra-
tures of the two modes may be a suitable building block to discriminate the two possible
environmental scenarios. In the following, I am about to consider the measurement of
all possible combinations of quadratures, (X1, X2), (P1, P2), (X1, P2) and (P1, X2) and
denote the corresponding POVMs as Π(q1, q2) = |q1, q2〉〉〈〈q1, q2| ≡ |q1〉〈q1| ⊗ |q2〉〈q2|
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Figure 6.2: (Color Online) Upper panels: Error probability PQ for different POVMs for (left) STS
(ε = 1, γ = 0.7), (center) SV (n = 1, r = 0.7) and (right) standard SV (n = 1, r = 0.7). The POVM
Π(x1, x2)(blue lower line) is always the most efficient. The POVMs Π(x1, p2) and Π(p1, x2) (upper
red and green) yield the same error probability PQ = 1

2
independently on the input state and are

useless for discrimination purposes. Lower panels: Optimal half-width T as a function of time for
POVMs Π(x1, x2) and Π(p1, p2). I set λ1 = λ2 = λ = 1.

with qj ∈ {xj , pj}, j = 1, 2 and |qj〉 being quadrature eigenstates. In order to implement
a discrimination strategy, it is necessary to define an inference rule connecting each pos-
sible outcome of the measurement to one of the two hypothesis: HL , the noise is due to
local interaction or HC , the noise is due to common interaction with the environment.
Denoting by Dc ⊂ R2 the region of outcomes leading to HC , i.e. to infer a common
noise, then the two-value POVM describing the overall discrimination strategy is given
by EC + EL = I, where

EC =

∫∫
Dc
dq1dq2 Π(q1, q2) EL = I− EC . (6.4)

The success probabilities, i.e. those of inferring the correct kind of noise, are given by
Pj = Tr[ρj Ej ], j = L,C respectively, whereas the error probability, i.e. the probability of
chosing the wrong hypothesis is given by

PQ =
1

2

(
Tr[ρL EC ] + Tr[ρC EL ]

)
=

1

2

(
1−

∫∫
Dc
dq1dq2 Tr [Π(q1, q2) (ρC − ρL )]

)
. (6.5)

The smaller is PQ , the more effective is the discrimination strategy. In order to suitably
choose Dc it is useful to analyze the behavior of the quantity

pQ (q1, q2) = Tr [Π(q1, q2) (ρC − ρL )] ,

in the (q1, q2) plane. Fig. 6.1 shows a contourplot of pQ (x1, x2) for a given input STS. This
probability is squeezed along the x1x2 direction, since a common environment induces
the build-up of correlations between the quadratures. For this reason, it is convenient to
chooseDc as the region between two straight lines at 45◦ and denote by T its half-width.
The same argument holds also for SV and standard SV.
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Figure 6.3: (Color Online) Error probability PQ for random Gaussian input states as a function of
the smallest symplectic eigenvalue d̃1 with POVM Π(x1, x2). The color scale classifies the initial
energy of the state. The error probability scales with the entanglement and the energy of the input
state. I set λ1 = λ2 = λ = 1, t = 1.

In the top panels of Fig. 6.2 I show a comparison between the error probability of the
four POVMs described above on some particular STSs (left), standard form SVs (center)
and SVs (right). As it is apparent from the plot, the POVMs Π(x1, p2) and Π(p1, x2) are
useless. In fact, the common environment does not correlate these couples of quadra-
tures. On the other hand, the POVM Π(x1, x2), represented by the blue lines, always
outperforms Π(p1, p2). The lower panels show the optimal values of the half-width T of
the region Dc as a function of the interaction time for the very same states.

6.2 Random input Gaussian states

In this section, I address the optimization of the discrimination protocol using Gaussian
states as input and the optimal homodyne-based POVM Π(x1, x2). The main purpose
is to figure out which Gaussian state leads to the optimal discrimination protocol and
understand which lab-friendly states, among the classes of STSs, SVs and SSVs, are the
most performant ones. Moreover, I analyze whether the efficiency of the discrimination
protocol is affected by some relevant properties of the input states. To this aim I evaluate
the error probability PQ as a function of energy and entanglement, at fixed purity. We
recall that the energy E and purity µ of a zero-mean valued two-mode Gaussian state
with covariance matrix σ are given by

E(σ) = Tr
(σ

2

)
− 1

µ(σ) =
1

4
√

detσ
, (6.6)

while the entanglement is quantified by the logarithmic negativity 1.76. In this part of
the dissertation, it is convenient to directly use d̃− as a quantifier for entanglement: when
d̃− < 1/2, the state is entangled, otherwise it is not.

Fig. 6.3 shows the error probability of randomly generated Gaussian states in stan-
dard form with purity µ = 0.6 at fixed time t = 1 as a function of the symplectic eigen-
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Figure 6.4: (Color Online) Error probability PQ as a function of the smallest symplectic eigenvalue
d̃1 with POVM Π(x1, x2) for standard form random Gaussian states (gray dots), STSs (blue upper
curve), SVs (red straight line) and SSVs (lower line). The color scale classifies the energies of the
SSV states. The error probability of SV states does not depend on the entanglement of the input
state. The most performant states are the SSVs. I set λ = 1.

value d̃1 of the input state, while the color scale classifies its initial energy. As is appar-
ent from the figures, for non-unitary purity, generating an always more entangled input
state does not necessarily imply an improvement in the efficiency of the discrimination
protocol. The same happens with energy: the error probability does not scale mono-
tonicly with the energy stored in the input state. Nevertheless, increasing the energy
and the entanglement of the input state at the same time, the error probability lowers
monotonicly.

Fig. 6.4 shows the efficiency of efficient STSs, SVs and SSVs with respect to all pos-
sible Gaussian states with the same purity (µ = 0.6). As a result, the most performant
states are the SSVs: these states form a lower bound for every random-generated state,
so representing the topmost suitable class state for discrimination protocols. One might
make a conjecture that for SSVs entanglement might be the only resource to discrimina-
tion: unfortunately, this is true as long as purity is fixed, as the energy of SSVs mono-
tonicly increases with entanglement, but false in general. Concerning SVs and STSs, it
is worth noting that STSs are easily outperformed by any other standard form Gaussian
state and that the error probability achieved with input SV states is not affected by a
change in the initial entanglement (note that SVs’ covariance matrix is not in standard
form, this explains why the red curve steps over the region of the standard form Gaus-
sian states).

Finally, Fig. 6.5 shows a comparison between the error probability achieved by some
lab-friendly states and the bounds introduced in section 1.4. In particular, I choose some
highly performant identically entangled STS and SSV. The left panel shows a compari-
son between the error probability for a STS with the fidelity and the Quantum Chernoff
Bound. The double homodyne measurement yields an error probability (green line) that
beats the Quantum Chernoff Bound (red line), The right panel shows a similar compari-
son for a SV state. In this case, even though the SV state yields a lower error probability
than a STS does, the QCB can only be saturated in the early dynamics.
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Figure 6.5: (Color Online) Comparison between error probability and fidelity and QCB bounds for
STS state (upper panel) and SSV state (lower panel). In both panels, the dashed lines represent the
upper bound FM (orange line) and lower bound Fm (blue line), the green line represents the error
probability PQ, the red line represents the QCB. Upper panel: I set ε = 1.956, γ = 0.6593, λ = 1.0.
Lower panel: I set n = 0.3333, r = 1.470, λ = 1.

6.3 Summary

• I have addressed the design of effective strategies to discriminate between the pres-
ence of local or common noise effect for a system made of two harmonic quantum
oscillators interacting with classical stochastic fields.

• Discrimination protocols based on joint homodyne detection of the position opera-
tors yield an error probability that may outperform the Quantum Chernoff Bound,
leading to a probability of error close to the Helstrom bound. In particular, I have
shown that the QCB can be overtaken by means of Gaussian states feasible with
current technology.

• The error probability achieved with joint homodyne measurement strictly depends
on the properties of the input state, as it lowers monotonicly with the energy and
the entanglement of the input state.



Conclusions

In this dissertation, I presented and discussed the results of the research carried out dur-
ing the three years of my PhD, mostly devoted to the analysis of the decohence of con-
tinuous variable systems subject to classical noise and the investigation of the efficiency
of a stochastic approach to describing quantum phenomena.

The interaction between quantum systems and the environment is generally respon-
sible for loss of coherence or quantumness of the system. However, reliable communica-
tion protocols, cryptographic schemes or any efficient quantum device, they all benefit
from using quantum correlations and require a coherent dynamics of quantum systems.
Thus, a deep understanding of decoherence or dissipation mechanisms and a proper
characterization of noise affecting the system are the first steps towards efficient quan-
tum technologies. The standard approach to address environment-induced decoherence
is to consider the quantum system interacting with a quantum bath. However, in many
system of interest, the environment is very complex, with many degrees of freedom, and
a full quantum description may be challenging or even unfeasible. In these situation,
classical stochastic modeling of the environment represents a valid and reliable alterna-
tive.

In this thesis, I have investigated the decoherence induced on continuous variable
systems by classical noise, focusing on two different decoherence mechanisms, phase
diffusion and dissipation. The aim was twofold: the first was individuating the working
regimes where a full quantum description of a system-environment interaction may be
substituted by an effective classical (stochastic) one; the second was the analysis of the
possible benefits introduced by the noise, either in preserving coherence of harmonic
systems or in enhancing their performances in communication and measurement proto-
cols.

In all the models presented, the quantum system under investigation interacts with
an external stochastic field having a time-fluctuating (complex) amplitude. The stochas-
tic noise is chosen Gaussian, i.e. fully characterized by its correlations function and by its
spectrum. In particular, I focused on a physically-meaningful noise-generating process:
the Ornstein-Uhlenbeck, characterized by a Lorentzian spectrum. The effects of noise
on the dynamics of the system depend on three main physical parameters: the coupling
with the system, its correlation time and the detuning between the frequencies of the
quantum system and those characterizing the classical noise.

As a first result, I have shown that the stochastic noise may take over the full quantum
description of Markovian dephasing channels: in the regime of small correlation time, a
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stochastic phase shift leads the quantum state to the very same dynamics induced by the
dephasing Markovian master equation. This result widens to continuous variable sys-
tems a previously known result achieved by Joynt and Crow, who proved that dephasing
channels for qubit systems could be classically simulated by random unitary evolutions.
Conversely, a perfect stochastic model of the time-dependent quantum optical master
equation, which rules the dynamics of a quantum harmonic oscillator interacting with
a non-zero temperature bath, is not achievable. Actually, a random displacement may
mimic quantum dynamics only at small times, when the spontaneous emission is negli-
gible or if the temperature of the bath is sufficiently high. The vary same result holds for
the Markovian quantum optical master equation, whose solution at high temperatures
can be simulated by means of a low correlated Ornstein-Uhlenbeck process. Moreover,
both stochastic models admit as solution for the system dynamics a gaussian channel
with variance β(t). The function β(t) is directly correlated to the Ornstein-Uhlenbeck
process and determines the necessary condition for the existence of revivals of any in-
teresting property or correlation of the system. In fact, it is possible to individuate a
threshold value δ̃0 such that any value of rescaled detuning (in units of the correlation
time) larger that δ̃0 induces revivals.

As a second result, I have shown that stochastic noise may turn useful to describe
physical interactions where the environment exhibits non-trivial features, for instance,
a non-zero correlation time of the environment. Furthermore, the stochastic description
allows exploring otherwise precluded scenarios, as the off-resonance interactions. While
the Markovian quantum optical and the dephasing master equations describe only res-
onant dynamics, usually inducing decoherence and featuring irreversible loss of cor-
relations, off-resonance stochastic interactions slow the decoherence process down and
even introduce revivals of coherence or correlations. In order to display such results, I
analyzed the evolution of quantumness of highly nonclassical states in a dissipative en-
vironment, the mutual information between two parties in presence of stochastic phase
diffusion and the evolution of entanglement and quantum discord of bipartite states.

In the first model, I analyzed the survival times of quantumness according to four dif-
ferent criteria introduced to witness nonclassicality, also relating them to experimentally
observable quantities. The results show that a correlated environment strongly influ-
ences the decoherence time, increasing the survival time of nonclassicality beyond the
Markovian limits and leading to dynamical sudden death and birth of quantumness, as
indicated by collapses and revivals of nonclassicality. In particular, sudden death and
sudden birth of quantumness may occur only when β(t) oscillates, that is, when the
rescaled detuning exceeds the threshold value δ̃0. In the second model, I addressed the
evolution of the performance of a phase-keyed communication channel in presence of
stochastic phase diffusion. In particular, I showed that phase-encoding, that is, encod-
ing information onto the phase of an input state, outperforms amplitude-encoding for
coherent states in terms of channel capacity. Moreover, the presence of a correlated en-
vironment enhances the performance of the communication scheme, while revivals of
mutual information appear for values of detuning beyond the threshold δ̃0.

As a third result, I have shown that stochastic interactions may be used in order to
better explore the relation between non-Markovianity and the evolution of the correla-
tions of quantum systems. In fact, when the non-Markovianity of a quantum map is not
provable by its definition, it may be revealed by some sufficient conditions as the BLP
and the Fidelity criteria, which are based on the assumption that Markovian dynam-
ics cannot produce any increase of distinguishability between two states in time. For
this reason, these markers of non-Markovianity are usually seen as a sign of a backflow



of information from the environment to the system. Within this context, stochastic in-
teractions prove to be a useful example: indeed, the models presented are analytically
non-Markovian whatever the parameters of the stochastic noise are, but the markers fail
to capture this non-Markovian feature if the system does not exhibit revivals of corre-
lations. Therefore, the models presented stand as a peculiar example, in which non-
Markovianity may be proved for any choice of parameters but revealed by the markers
only when information flows back to the system in terms of revivals of correlations, that
is, when β(t) features an oscillating behaviour, suggesting that the information back-
flow properly is the true resource to produce revivals. Moreover, I have shown that
the derivative of β(t) coincides with the dynamical damping rate of the time-dependent
quantum optical master equation. This implies that whenever β(t) oscillates in time, the
dynamical damping rate turns negative and the time-dependent master equation be-
comes non-Markovian. Indeed, I show that the threshold δ̃0 for the presence of revivals
is not a peculiar feature of the stochastic approach, but exists even in the full quantum
model as the minimum value of δ̃0 leading to a negative dynamical damping rate at high
temperature.

As a fourth result, I designed an experimentally feasible protocol to discriminate
whether a composite quantum system suffers decoherence and dissipation on a local or
global scale, individuating the optimal measure and the most suitable state to probe the
form of the environment, when it is portrayed by a classical field. Indeed, I showed that
a discrimination protocol based on standard measurements, as joint homodyne detec-
tion of the position operators, yields an error probability that may outperform typical
bounds for discrimination problems, such as the Quantum Chernoff Bound. Moreover,
I have shown that the QCB may easily be overtaken without resorting to any exotic in-
put quantum state: indeed, good discrimination protocols may be achieved by means of
Gaussian states feasible with current technology.

Quantum technologies exploit the properties of quantum systems. However, preser-
vation of coherence or quantum correlations of open systems is a relevant issue which
requires a deep understanding of the decoherence mechanisms and a full characteriza-
tion of noise, in particular when the environment may induce exploitable recoherence
phenomena.

In the last years, the role of non-Markovianity in preserving quantum correlations
has been thoroughly studied. In many situations, non-Markovianity stands as a resource
for quantum information processing, leading to a non-trivial evolution of entanglement
or discord [174, 175]. The results presented in this thesis show that non-Markovianity
actually sets the natural context for the existence of revivals of correlations, but the true
resource is represented by the backflow of information. Stochastic phase diffusion and
stochastic dissipation are non-Markovian interactions in terms of non-divisibility, but a
non-trivial dynamics of entanglement, discord or non-classicality happens only when
backflow of information is detected.

The external noise may then be exploited in order to preserve quantum correlations
by suitable reservoir engineering and the complexity of classical noise and its effects
on quantum systems may successfully be studied by discrimination schemes, based on
standard laboratories techniques.
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Appendix I

The explicit expression for ∆(t) valid for all temperatures is given by

∆(t) = ω0
r2

1 + r2

{
coth(πr0)− cot(πrc)e

−ωct(r cos(ω0t)− sin(ω0t))+

+
1

πr0
cos(ω0t)

[
F̄ (−rc, t) + F̄ (rc, t)− F̄ (ir0, t)− F̄ (−ir0, t)

]
− 1

π
sin(ω0t)

[
e−ν1t

2r0(1 + r2
0)

(
(r0 − i)Ḡ(−r0, t) + (r0 + i)Ḡ(r0, t)

)]
+

1

2rc

(
F̄ (−rc, t)− F̄ (rc, t)

)}
where r0 = ω0/2πkBT , rc = ωc/2πkBT and

F̄ (x, t) = 2F1(x, 1, 1 + x, e−ν1t)

Ḡ(x, t) = 2F1(2, 1 + x, 2 + x, e−ν1t)

where 2F1(a, b, c, z) is the hypergeometric function.
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[70] Á. Rivas, S. F. Huelga, M. B. Plenio, Quantum Non-Markovianity: Characterization,
Quantification and Detection, (2014).

[71] S. Olivares, Eur. Phys. J. Special Topics 203, 3-24 (2012).

[72] A. Serafini, F. Illuminati, S. Da Siena, J. Phys. B: At. Mol. Opt. Phys. 37 L21 (2004).

[73] P. Marian, T. A. Marian, Phys. Rev. A 86, 022340 (2012).

[74] R.F. Werner, Phys. Rev. A 40, 4277 (1989).

[75] A. Peres, Phys. Rev. Lett. 77, 1413 (1996)

[76] R. Simon, Phys. Rev. Lett. 84, 2726 (2000)

[77] G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)

[78] P. Giorda, M. G. A. Paris, Phys. Rev. Lett. 105, 020503 (2010).

[79] G. Adesso and A. Datta, Phys. Rev. Lett. 105, 030501 (2010).

[80] R. Blandino, M. G. Genoni, J. Etesse, M. Barbieri, M. G. A. Paris, P. Grangier, R.
Tualle-Brouri, Phys. Rev. Lett 109, 180402 (2012).

[81] C. W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York,
1976).

[82] A. Chefles, Contemp. Phys. 41, 401 (2000).

[83] J. A. Bergou, U. Herzog, and M. Hillery in Quantum State Estimation, Lecture Notes
in Physics, edited by J. Rehacek and M. G. A. Paris, Vol. 649 (Springer, Berlin, 2004),
pp. 417–465.

[84] A. Chefles, in Quantum State Estimation, Lecture Notes in Physics, edited by J. Re-
hacek and M. G. A. Paris, Vol. 649 (Springer, Berlin, 2004), pp. 467–511.

[85] S. Pirandola, Phys. Rev. Lett. 106 , 090504 (2011).

[86] C. Invernizzi, M.G.A. Paris, S. Pirandola, Phys. Rev. A, 84, 022334 (2011).

[87] A. Rivas, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 105, 050403 (2010).

[88] G. Torre, W. Roga and F. Illuminati, Phys. Rev. Lett. 115, 070401 (2015).

[89] L. A. M. Souza, H. S. Dhar, M. N. Bera, P. Liuzzo-Scorpo and G. Adesso, Phys. Rev.
A 92, 052122 (2015).

[90] H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009).

[91] E. Parzen, Stochastic Processes (Holden-Day Inc., Amsterdam, 1964).



Bibliography 88

[92] N. G. van Kampen, Stochastic processes in physics and chemistry (North-Holland,
Amsterdam, 1992).

[93] C. W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 1983).

[94] R. L. Stratonovich Topics in the Theory of Random Noise (1963).

[95] M. G. Genoni, S. Olivares, and M. G. A. Paris, Phys. Rev. Lett. 106, 153603 (2011).

[96] M. G. Genoni, S. Olivares, D. Brivio, S. Cialdi, D. Cipriani, A. Santamato, S. Vezzoli,
and M. G. A. Paris, Phys. Rev. A 85, 043817 (2012).

[97] S. Maniscalco, J. Piilo, F. Intravaia, F. Petruccione, A. Messina, Phys. Rev. A 70,
032113 (2004).

[98] H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford Uni-
versity Press, Oxford, 2002).

[99] R. J. Glauber, Phys. Rev. 131, 2766 (1963).

[100] A. S. Holevo, Probl. Peredachi Inf., 9, 3 (1973).

[101] A. Ferraro, S. Olivares, M.G.A. Paris, Gaussian states in continuous variable quantum
information, (Bibliopolis, Napoli, 2005).

[102] K. E. Cahill, R. J. Glauber, Phys. Rev. 177, 1882 (1969).

[103] C. T. Lee, Phys. Rev. A 44, R2775 (1991).

[104] M. Takeoka, M. Ban, M. Sasaki, J. Opt. B 4 114 (2002).

[105] N. Lutkenhaus, S. M. Barnett, Phys. Rev. A 51, 3340 (1995).

[106] A. Kenfack, K. Zyczkowski, J. Opt. B 6, 396 (2004).

[107] O. Cohen, Phys. Rev. A 56, 3484 (1997).

[108] K. Banaszek, K. Wodkiewicz, Phys. Rev. A 58, 4345 (1998).

[109] W. Vogel, Phys. Rev. Lett. 84, 1849 (2000).

[110] I. Lvovsky, J. H. Shapiro, Phys. Rev. A 65, 033830 (2002).

[111] D. N. Klyshko, Phys. Lett. A 213, 7 (1996).

[112] A. R. Rossi, S. Olivares, M. G. A. Paris, Phys. Rev. A 70, 055801 (2004).

[113] G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M. Genovese, G. Brida A.
Rossi and M. G. A. Paris, Phys. Rev. Lett. 95, 063602 (2005).

[114] J. Paavola, M. J. Hall, M. G. A. Paris, S. Maniscalco, Phys. Rev. A 84, 012121 (2011).
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