
UNIVERSITÀ DEGLI STUDI DI MILANO
SCUOLA DI DOTTORATO IN

Informatica

DIPARTIMENTO DI

Informatica

CORSO DI DOTTORATO

Informatica
XXVIII◦ Ciclo

TESI DI DOTTORATO DI RICERCA

Multidimensional Analysis of People’s

Behavior in Online Social Networks
INF/01

Dottorando:
Azadeh ESFANDYARI

Relatore:
Prof. Gian Paolo ROSSI

Correlatore:
Prof. Sabrina Tiziana GAITO

Coordinatore del Dottorato:
Prof. Paolo BOLDI

Anno Accademico 2015/2016



To my dear husband Ehsan



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 People’s behavior across social media . . . . . . . . . . . . . . . . . . . . . . 3
1.2 User identification across online social networks . . . . . . . . . . . . . 6
1.3 The effect of offline sociality on online interaction . . . . . . . . . . . . 7

2 People’s behavior across social media . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Data collection methodology . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Dataset characteristics and representativity . . . . . . . . . . . 19

2.4 The Usage of multiple social sites . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Centrality and activity correlation across social sites . . . . . . . . . 24

2.5.1 A case study on 4 social media. . . . . . . . . . . . . . . . . . . . . . 29
2.6 Temporal patterns in the posting activity . . . . . . . . . . . . . . . . . . . 31
2.7 Patterns in username usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 User Identification across Online Social Networks . . . . . . . . . . 39
3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Username based identification . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.2 Profile based identification . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.3 Network and content based identification . . . . . . . . . . . . . 42

3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.1 Username composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



Contents ii

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 Training and test sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.1 Finding candidate users . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Comparison with existing algorithms . . . . . . . . . . . . . . . . . 59
3.4.3 Features Importance Analysis . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Effect of offline sociality on online interactions . . . . . . . . . . . . . 63
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Communicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Clustering coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.3 Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



Chapter 1

Introduction

The ever increasing popularity of Online Social Networks (OSNs) is evidenced
by the huge number of users who are turning to Facebook,Twitter and other
social networks. Unlike the traditional Web, which is largely organized by
content, the users are first-class entities in online social networks. The users
join a network, publish their own content, and create links to other users in
the network. This basic user-to-user link structure facilitates the online in-
teraction by providing mechanisms for organizing both real-world and virtual
contacts, for finding other users with similar interests, and for locating content
and knowledge contributed or endorsed by friends. The rapid growth of these
online social networks provides a unique chance to study and understand the
online behavior of the people.

The online behavior of the people is influenced by different factors derived
from their real (i.e., offline) and virtual (i.e., online) life. For instance, the
friendship acceptance in an online social network might depend on the degree
of acquaintance, if the people have already met in some physical places or if
they share the same interests.

Studying people’s behavior becomes more complicated due to the fact that
people in their online life have access to a wide portfolio of social platforms
which allow them to differentiate their interests and convey diverse contents.
As a result, a user can be registered to many social media and interacts with
her/his friends’ circles through different channels. For instance, a user can
share her/his photos on the Instagram, organize an event on the Facebook
and maintain the relationships with workmates on the LinkedIn. Generally
speaking, we can gain more knowledge about human behavior by assuming a
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stratified reality where individuals act as bridges cutting across the various
levels and where their decisions are based on information coming from each
dimension.
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Fig. 1.1. The reference scenario of the thesis. At the first level people interact
face-to-face and in online level people may registered in several online social
media. From time t to time t+∆t the online interactions of B and C change
and a new link between them in Facebook layer is established maybe due to
their offline interactions in offline level.

The reference scenario of this thesis is illustrated in Fig1.1, where we
consider two main dimensions: offline and online. Online dimension includes
several layers that each one of which represents the social network of a social
media. People in offline plane have the real world interactions, while some of
these people also have online friendships in several layers of the online dimen-
sion. Fig1.1 also shows how real-world interactions in the offline dimension
results in interactions in some layer of online dimension. A, B and C have reg-
istered in both Facebook and Twitter, whereas A is the only user registered
in Google+. It can be noted that the offline interaction of B and C changes
their online interactions and a new link between them in Facebook layer is
established.

In this thesis, we explore the challenge of giving a complete picture of
people’s online behavior across multiple OSNs by aggregating layers of online
dimension and then investigate the effect of offline interactions on online link
creation.

Collecting and aggregating available data about an individual from dif-
ferent platforms is a first step to capture an all-around picture of people’s
online behavior. We first perform a multidimensional analysis of users’ be-
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havior across OSNs on a dataset gathered from the social media aggregator
Alternion. Then we focus on developing identification approach across OSNs
to integrate information about an individual from different sources beyond
social media aggregators.

Meetings and events are one of the favorite ways to get new friends in
real life. But the mechanism and the extent of the impact of offline meeting
events on the creation of online friendships have not yet been studied. We
exploit these connections between offline and online dimensions to investigate
the impact of offline sociality on the online.

As a matter of fact, we consider a small subset of the dimensions which may
also have an impact on many aspects in the realm of computer science (e.g.
recommendation systems, advertising, content dissemination, crowdsourcing,
social discovery, etc.).

1.1 People’s behavior across social media

Most of the studies on people’s behavior in the OSNs assume that people
get connected and establish relationships on a single social platform. This
approach, however, enables the achievement of a partial representation of
the online social behavior of individuals [59] because it is becoming evident
that individuals are used to expressing their sociality through multiple layers,
each associated to a specific medium, ranging from face-to-face and on-phone
communications to a variety of online social networks.

To face the new challenge of giving an all-around picture of people’s on-
line behavior, we perform a multi-faceted analysis of users’ behavior across
multiple social media sites.

Contributions
Only few works [9, 47, 1, 45] have analyzed the users’ behavior across online so-
cial networks, although they focus on specific behaviors as tagging or changes
in clickstream. One of the main barrier in this field is the lack of datasets
enabling the analysis of the single individual’s behavior across different sites.
Our study relies on a new rich dataset gathered from the social media ag-
gregator Alternion. The novelty of Alternion dataset is its multidimensional
and longitudinal nature. The dataset includes 19.680 distinct profiles from
different countries and in different languages. The dataset contains, for each
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individual, a list of her/is favorite social sites and a multidimensional times
series of posts, where each dimension corresponds to a specific social site.
In addition, each profile reports the degree of the user on the social networks
that make this information available. However, we are not able to get the node
neighborhoods since Alternion does not return the neighbors’ usernames. Al-
ternion dataset enables us to answer our research questions by performing a
variety of investigations that will mainly provide an in-depth understanding
of the social behavior of the people.

The first research question regarding the multiple adoption of social sites
is: How common is the use of multiple social media sites? We quantify this
phenomena and compute how many different social websites people are able
to manage. Membership distribution of users across sites has been studied in
[71] only, where authors showed that it follows a power-law distribution from
a dataset gathered in 2008. We extend that result, by confirming it on a more
recent and larger dataset, which relies on the current social platforms. Our
results show that on average a user is simultaneously registered on 5 social
sites, while more than 95% of the users have joined 17 platforms at most. In
fact, people are expressing their identity and their behaviors through multiple
communication media. Are the popularity of these users equally distributed
across the social sites in use?

Studying individual popularity across sites can be useful for designing the
popularity prediction algorithms, which in turn can help sites determine users
with the highest priority for friend recommendation algorithms. We verify if
statistically significant correlations between the degrees of the same group
of users in different sites exist. The presence of these correlations measures
whether or not popular users in one site maintain their centrality across me-
dia. The way the users distribute their popularity across sites has been studied
in [72] and [14]. However their analysis are different from the ones we have
done on Alternion. Buccafurri et al. [14] using very limited dataset just report
the average number of Twitter and Facebook friends. Zafarani and Liu [72] in-
vestigate how the maximum and minimum number of friends that individuals
have across sites changes as users join sites. For the first time in the litera-
ture, our analysis focuses on finding correlations between the popularity of the
same group of users in different sites. The analysis indicates that the user’s
popularity in a given social site barely corresponds or does not correspond at
all to his/her popularity on another social platform. This means that users
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may have a very different centrality across the services, i.e. a single user might
be a hub on one system and loose part of its hubbiness on the other. Does
the same correlation also exist between the activity level of the same group
of users across different platforms?

We measure the activity level of a user within a social media by means of
his/her posting activity. While the research presented in [1] [47] investigates
the individual tagging behavior in a small set of platforms, they mainly focus
on studying the dependency of the intensity and the variety of user tagging
activities on the features of the platform. To the best of our knowledge, there is
no research analyzing the posting activity of users across different OSNs. Our
posting activity analysis reveals that unlike the above discussion on centrality,
there is a more evident positive correlation between the posting activities
across social sites. The obtained values do not mean that users are equally
active on social media, however there is slightly positive tendency to be active
in different social sites. Do these results imply that users post on multiple
social media every day?

We introduce the post multiplexity index to measures the propensity of a
user of being multidimensional. The results show that most of the users tend
to prefer a single media per day while sometimes they adopt multiple social
media for posting. Is the activity dynamics of users uniformly distributed in
time or does the burstiness characterize how the people post on online social
media?

We analyze time-series associated to the posting activity of the single users
across multiple social platforms and unveil their statistical properties focusing
on measures which describe their level of burstiness. The results show that i)
singularly each event sequence keeps an high level of burstiness, i.e. the bursty
behavior of the aggregated interaction sequence is the union of bursty event
sequences and; ii) a period of high activity in the aggregated sequence does
not imply that the user is highly productive in each social media during the
same period.

As far as we know, this study represents the first attempt to deal with the
people’s activities on multiple social media by using a large set of social plat-
forms and users. The results represent novel insights about people’s behavior
across social media.

Chapter 2 is based on the following publications:
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M. Zignani, A. Esfandyari, S. Gaito, G.P. Rossi, "Following people’s behav-
ior across social media", In proceedings of the 11th International Conference
on Signal-Image Technology & Internet-Based Systems (SITIS), pages 428-
435, 2015.
M. Zignani, A. Esfandyari, S. Gaito, G.P. Rossi, "Walls-in-One: usage and
temporal patterns in a social media aggregator". Applied Network Science,
2016 ; 1(1):1-24.

1.2 User identification across online social networks

To take advantage of the full range of services that online social networks
(OSNs) offer, people commonly open several accounts on diverse OSNs where
they leave lots of different types of profile information. The integration of these
pieces of information from various sources can be achieved by identifying in-
dividuals across social networks. The ability to gather the public traces left
during the online activities would lead to a deeper understanding of the user’s
identity and behavior. This would improve service provisioning, enable ser-
vice customization and cross-domain recommendation, and give rise to other
services in different domains.

In chapter 3, we address the problem of user identification by treating it
as a classification task.

Contributions
First, we rely on common public attributes that are available through official
APIs of social networks to overcome the privacy issues. Second, we show that
using standard approach in the literature for selecting negative instances re-
sults in a high number of false positives in practice. Thus, we propose different
methods for building negative instances going beyond usual random selection
in order to investigate the effectiveness of each method in training the clas-
sifier. Third, two test sets with different levels of discrimination are setup
to evaluate the robustness and accuracy of our different classifiers. Finally,
we measure the effectiveness of the approach in real conditions by matching
a profile dataset extracted from Google+ with two other datasets obtained
from Facebook and Twitter.

Chapter 3 is based on the following publication:
A. Esfandyari, M. Zignani, S. Gaito, G.P. Rossi," User Identification across
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Online Social Networks in Practice: Pitfalls and Solutions". Journal of Infor-
mation Science (October 2016, DOI: 10.1177/0165551516673480 )

1.3 The effect of offline sociality on online interaction

As link creation in online social networks is one of the key-points to understand
the network growth, its mechanisms have been largely investigated. Studies
well mainly devoted to discover the mechanisms built on features intrinsic
to the network itself, as common neighbors. The role played by users’ offline
meetings on their online friendship creation has often been argued[56], but it
has not yet been studied, mainly because of the lack of available dataset.

More and more often offline events are advertised on online social net-
works, bridging the offline to the online users’ social activity. We leverage
this connection between offline and online sociality to build a novel dataset of
events advertised on Facebook which enables us to take a first step towards
understanding the effect of offline events on online link creation by performing
a temporal analysis on the social network built by people attending the event.
In particular, we aim at answering the following questions: How can partici-
pating in an event in Facebook, that is usually followed by physical attending
on the day of the event, change the structure of the online social network?
How do friendship relations among the attending people increase during the
event?

Contributions

In chapter 4, we perform a temporal analysis of the event social network,
constituted by people declaring to attend the event advertised on the Facebook
and the links between them. We explore how the network evolves during the
event time period. To evaluate the impact of an event on the social network of
its attendees, we investigate how the networks change at macroscopic level by
means of the network communicability, at mesoscopic level by analyzing the
clustering coefficient trend and at microscopic level by observing the increase
of users’ degree. We analyze the results and reveal the effect of the events on
the new friendship creation between the attending people.

Chapter 4 is based on the following publication:
A. Esfandyari, M. Zignani, S. Gaito, G.P. Rossi, "Impact of offline events on
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online link creation: a case study on events advertised on Facebook", Proceed-
ings of the 31st ACM/SIGAPP Symposium on Applied Computing (SAC),
2016.



Chapter 2

People’s behavior across social media

2.1 Introduction

During the last decade, large datasets describing online social networks have
been made available together with an extensive literature which enabled a
comprehensive description of OSNs. Most of these studies assume that people
connect and establish relationships on a single social platform. This approach,
however, enables the achievement of a partial representation of the online so-
cial behavior of individuals [59]. It is becoming evident that individuals are
used to expressing their sociality through multiple layers ranging from face-
to-face and on-phone communications to a variety of online social networks.
Especially in their online life, users have access to a wide portfolio of social
platforms which allow them to differentiate their interests and convey diverse
contents. As a result, a user can be registered to many social media and inter-
act with her/his friends’ circles throughout different channels. For instance, a
user can share her/his photos on the Instagram, organize an event on Facebook
and maintain the relationships with workmates on LinkedIn. These arguments
are quantitatively reported in a survey conducted in September 2014 1 where
it has been highlighted that the adoption of multiple social platforms is on the
rise. In fact, 52% of online users now use at least two social media, represent-
ing a significant increase since 2013, when the figures were close to 42%. The
diversification in the usage of the social platforms, in conjunction with their
specialization, is causing a fragmentation of users’ identities among diverse
social media. This process of identity fragmentation makes the understanding
1 http://www.pewinternet.org/2015/01/09/social-media-update-2014/
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of the online behaviors more difficult since the data are split and need to be
matched and fused.

In this chapter, we move towards the reduction of the above segmentation
by facing with the new challenge of giving a complete and compelling picture
of people’s online behavior. To this end, we move within the multidimensional
or multiplex network theory [44, 12, 10, 34, 17] since it provides the tools
and the models which better capture and measure the interplay/correlation
among the social sites’ users adopt. Specifically, the scenario we are dealing
with is well represented by a multigraph [74], a special case of an heteroge-
neous information network [62]. So far the multiplex network theory has been
applied to different real case studies, from citation [40], co-author [61] and
conference-author networks [63] to power grids [13], economic [41, 42, 6] and
biological networks [8]. However most of these studies assume that the un-
derlying multiplex network is static or well-known dynamical processes occur
onto them. On the contrary, little is known about the temporal interactions of
people when they have different communication media available, especially in
the online world. So the main goals of this research are i) applying the multi-
plex network theory to understand the on-going phenomenon of the adoption
of multiple social site; and ii) measuring how this process impacts on the
interaction dynamics.

In practice, the study of the behaviors of people across different online
social networks is at its very beginning. In fact, while many works have been
published about profile matching algorithms across sites [70, 15, 66, 23], only
a few works [9, 47, 1, 45] have analyzed the user’s behavior across sites, but
they focus on specific behaviors as tagging or changes in clickstream.

One of the main barriers in this field is the lack of datasets enabling the
analysis of the single individual’s behavior across different sites. This critical-
ity can be ascribed to a variety of motivations. First of all, people are unwilling
to make all information about their online social life public and, secondly, so-
cial site providers have less of an interest in providing tools to integrate other
social platforms. To overcome the data problem, in this study we rely on the
services offered by social media aggregators. A social media aggregator is a
Web service which allows users to collect and manage different social site ac-
counts through a single application. Most of these services offer to their users
a private space, where they can share a content simultaneously on multiple
media. Among these services, we retrieve data about users and their social
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sites from Alternion2, because it allows the users to make information about
their social sites public, unlike most of social media aggregators. Thus, it is
possible to collect data about their profiles with personal public information
and the posted contents.

This research offers a first data-driven contribution to the study of people’s
behaviors across social sites while addressing the following research questions:

• Q1: How common is the use of multiple social media sites? Does the same
hold for active users?

• Q2: Is a person’s popularity uniform, i.e. more or less equally distributed
across the social sites in use?

• Q3: Is users’ production alike in different social media ? Do the most active
users behave similarly on different media?

• Q4: How do people manage their posting activities during the day? Do
they post on multiple social media every day or do they alternate in the
choice of the publishing platforms?

• Q5: Are users coherent in the choice of their usernames, keeping their
identifiability across social sites?

By answering the above questions, we introduce the following main findings
and contributions. On the one hand, some findings confirm that the adoption
and the active usage of multiple social sites is gaining momentum and maybe
be studied through social media aggregators. On the other, we find that a
full multiplexity of the interactions and posting activity is difficult to reach
in short periods (day) but more evident in longer.

• Membership distribution across social media. The way users dis-
tribute their membership across sites has been recently studied in [71] and
has been the subject of a few market surveys. We confirm and extend these
results by means of a more recent dataset, which consequently relies on
the today’s most popular social websites. The usage of multiple social plat-
forms, raising in 2008, is now strengthening and social media aggregators
offer a chance to collect data about this phenomenon.

• Popularity across social media. By performing a correlation analysis
we investigate the maintenance of users’ popularity across social sites.
The analysis led to not straightforward results and this indicates that
user’s popularity in a given social site barely corresponds or does not

2 http://www.alternion.com
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correspond at all to his/her popularity on another social platform. The lack
of a strong degree correlation has been observed in different contexts such
as online/offline interactions [20], virtual worlds [64] and other multiplex
networks [52]. Here, we observe the same phenomenon in online social
platforms.

• Posting activity across social media. We aim at understanding
whether an active and productive user on a social media preserves his/her
aptitude on the other social media. Correlations between the posting rates
on different social sites show that an easy answer is not possible, although
we measure slightly positive correlations for many couples of social plat-
forms. These results represent one of the main novel insights of this re-
search since little is known about the users’ engagement in multiple social
media.

In general, the last two findings stress the fact that people, in a multiplex
scenario, change their importance and preferences from medium to medium.
The ability of handling some particular media better than others, the different
interests and the usability of the services may be the reasons behind this
behavior.

• Burstiness in temporal patterns. We have analyzed the posting inter-
event times both aggregated on all social sites, to get an overall picture of
the activity dynamics of users, and a per site evaluation, to get temporal
patterns specific to a social website. This way, we evaluate the dynamics
of the online activity by a true multidimensional approach. We discovered
that the posting activity on online social media is bursty and highly het-
erogeneous. In particular, the bursty behavior of the aggregated sequence
is the union of bursty posting event sequences on different social media.
Moreover, a period of high activity in the aggregated sequence does not
imply that the user is highly productive in each social media along the
same period.

• Temporal multiplexity. We introduce the post multiplexity index to
measure the propensity of a user to being multidimensional. The results
show that most of the users tend to prefer a single media per day while
sometimes they adopt multiple social media for posting.

The above results represent the first steps towards a multidimensional ap-
proach in the study of human dynamics [65] in communication and social
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networks. Some attempts to extend and model bursty dynamics can be found
in [57] and [31], however the layers are few or do not really represent commu-
nication channels. In this chapter, thanks to a large set of social media, we
highlight the multidimensional bursty nature of human dynamics in multiple
social sites. Specifically, we show that the overall burstiness is a consequence
of a complex mixture of non-stationary interests to the chosen social media.

• Patterns in username usage. We evaluate how users are coherent in
the choice of their username across social sites. Results show that users
often maintain the same username across different social websites, but are
more likely to change them among websites whose norms and scopes are
different.

• Alternion datasets. The above results rely on two new collected datasets
which capture multidimensional and longitudinal information about how
online users behave across multiple social platforms. To the best of our
knowledge, they represent the most updated available datasets which com-
bine posts, their contents and the multiple profiles of a large set of people.
The Alternion dataset allows us to quantify the multiple platforms usage
without requiring a periodical survey; on the other, additional information
about posts could be extracted to verify whether the same observations
hold for users’ engagement. Furthermore, posts provide the temporal in-
formation necessary to the study of multidimensional human dynamics in
online social networks.

The aforementioned results support the increasing awareness that single social
site studies provide a very partial description of human social behavior which
effectively needs a multisite approach to be described and fully understood. To
this end, social media aggregators, such as Alternion or About.me, represent
data collection to be deeply analyzed, provided that we take into account the
bias given by the typical users of these platforms.

2.2 The related works

Several studies have been performed to compare the users’ behavior among
different OSNs. Geo et al.[22] compare users’ behavior on two different mi-
croblogging platforms, Sina Weibo and Twitter. They analyze the access be-
havior and the textual features of microposts. Moreover, they investigate the
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temporal dynamics of microbloging behavior including the shift of user inter-
est over time.

Gyarmati and Trinh [26] analyze the characteristics of the activity of the
users of Bebo, MySpace, Netlog, and Tagged. They provide statistics of the
user’s behavior on a daily timescale.The main findings of the article conclude
that users’ online time spending can be modeled with Weibull distributions;
and the duration of OSN users’ online sessions shows power law distribution
characteristics.

Anh et al.[2] analyze sample networks from Cyworld, orkut, and MySpace
in terms of degree distribution, clustering coefficient, degree correlation, and
average path length.

Zhao et al.[73] compare the content of Twitter with a traditional news
medium, New York Times, using unsupervised topic modeling. They find that
although Twitter users show relatively low interests in world news, they ac-
tively help spread news of important world events.

Dwyer et al.[18] compare the attitudes and behavior of the users between
Facebook and MySpace. They show that the Facebook members are more
trusting of the site and its members, and more willing to include identifying
information in their profiles. Yet MySpace members are more active in the
development of new relationships.

Hughes et al.[28] examine the personality correlates of social and informa-
tional use of Facebook and Twitter. They show that personality is related to
online socialising and information seeking/exchange. Their results also reveal
that a preference for Facebook or Twitter is associated with differences in
personality.

Mislove et al.[49] present a large-scale measurement study and analysis of
the structure of four online social networks: Flickr, YouTube, LiveJournal, and
Orkut. Their results show that social networks are structurally different from
previously studied networks and have a much higher fraction of symmetric
links and also exhibit much higher levels of local clustering.

All of above mentioned studies do not consider the behavior of the same
group of people in different Systems. In fact, while many works have been
published about profile matching algorithms across sites [70], [15], [23], [66],
[30], only a few works [9], [47], [1], [72], [14] have analyzed the users’ behaviors
across sites.
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Benevenuto et al. [9] have performed a study on a clickstream dataset col-
lected from a social network aggregator, providing users with a single interface
for accessing multiple social networks. They analyze how a specific behavior
changes across sites without considering users that are shared across sites.
While Alternion includes information of the same group of people registered
in different social networks, including times series of posting activity in each
OSNs, centrality in each OSNs and other profile information in each OSNs,
Benvenuto et al.[9] dataset includes only clickstream information of different
users on different social network.

Meo et al. [47] collect datasets of tagging statistics of 1,467 users have
profiles on Flickr and Delicious and only 321 users have profiles in all the
three systems. While their dataset includes the number and the content of
tags for users in each platform, the time series of tags are not available. In
compared to this dataset, Alternion is a much more complete one containing
the profile information of 19.680 that enables analyzing various aspect of users
behavior across OSNs. Specifically, the number of social platforms amounts
to 152, from the most famous Facebook, Twitter to the less common Discus
or Zazzle. They study the characteristics of the user’s profiles from Flickr,
Delicious and StumbleUpon with respect to three different aspects: (1) the
intensity of user tagging activities, (2) tag-based characteristics of the user’s
profiles and (3) the semantic characteristics of the user’s profiles.

Abel et al. [1] focus on presenting the system Mypes. Mypes supports the
linkage and aggregation of user profiles available in various Social Web sys-
tems, such as Flickr, Delicious and Facebook. Their dataset consists of 3080,
3606, 1538, 2490 and 15947 public profiles from Facebook, LinkedIn, Twitter,
Flickr, and Google, respectively. They crawled profiles attributes such as first
name, last name and email, from each service. While Abel et al. [1] inves-
tigate the completeness of individual and aggregated Profiles attributes, we
focus mainly on the membership distribution, popularity and posting activity
analysis on our dataset Alternion. Among the users for whom they crawled
the Facebook, LinkedIn, Twitter, Flickr, and Google profiles were 338 users
who had accounts on all of these five different services. They use this part of
dataset to analyze the individual’s tagging behavior in different systems.

Zafarani and Liu [72] study the friendship and popularity of the users
across social media sites on a dataset of 96,194 users, each having accounts on
different sites. They show that the maximum number of the friends individuals
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have across sites increases linearly as the users join sites and their minimum
drops exponentially. Their analysis also reveals that the users’ joining multiple
sites cannot increase their average popularity and that the average popularity
converges to a fixed value as users join sites. For each individual in the dataset,
they have the number of friends a user has across different sites. Alternion
dataset includes more information rather than the number of friends.

Buccafurri et al. [14] study Friend distribution and the attitude of users to
have overlapping friendship relations on a dataset of 757 users, each having
accounts in both Facebook and Twitter.The dataset includes the number of the
friends that users have in both Twitter and Facebook. Moreover, it contains
a binary value for each user indicating whether the profile of the user in
Facebook is public or not. For privacy analysis, they count how many users of
the sample with two accounts choose to disclose their Facebook information
on the social network, thus making their Facebook account public.

Although, the recent studies that have analyzed the users’ behaviors across
OSNs are more relevant to this work, they consider limited aspects of human
behavior. All of the datasets in the literature are differ from our dataset
(Alternion) and cannot answer our research questions. Our analysis is based
on datasets of the same group of users with profiles on different social media
to have meaningful and well-founded results. We investigate those aspects of
human behavior across online social networks that have not been studied in
the literature.

2.3 Methodology

Nowadays, people have at their disposal a wide selection of online social sites,
each having its own peculiarity. This way, the adoption of multiple social
platforms by the same person is becoming increasingly spread. Now, people
can exploit and combine their favorite social media according to their needs.
For example, a tourist could share his/her position by Foursquare, meanwhile
s/he uses Twitter to communicate his/her mood and shares on Instagram a
selfie with the "Gioconda".

At the same time, people have recently shown a growing interest in tools
managing their online life in a centralized way, i.e. social media aggregators.
Social media aggregators allow the users to merge their own identities into
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a single profile by gathering their online activities from different social plat-
forms, such as Twitter, YouTube, LinkedIn, Facebook, and many others. The
aggregation is enabled by APIs provided by social networks, so that people
may have control on the data the aggregation platform can access.

Most of these services offer a private space to the users, where they can
share a content simultaneously on multiple media, but profiles with public
contents and public API are not available. The media aggregator Alternion
3 stands out because, unlike most of similar services, allows users to decide
which information about their social sites - including profile information and
contents - can be made public. Furthermore, the service retrieves data from
more than 200 social sites and manages social relationships among Alternion
profiles.

2.3.1 Data collection methodology

Fig. 2.1. An example of a profile page in Alternion. The red box high-
lights the social platforms shared by the user. A pop-menu shows the number
of relationships in each social network. The green box highlights the area
containing all the public posts gathered by the API of the services.

Since the service does not expose a public API, we developed a crawler
to retrieve the Alternion profiles and their public updates. An example of
an Alternion profile page is shown in Figure 2.1. The page exposes the social
sites associated to the Alternion identity. Each icon links to the relative profile
and shows the username chosen in the target social site. The "Updates" tab
3 http://www.alternion.com
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reports the public posts grouped by social sites. The content of each post
highly depends on the information released by APIs.

We collected registered users by exploiting a search function which returns
a different set of 40 random users every two minutes. Data collection started on
October 2014 and resulted in 19.680 distinct profiles from different countries
and in different languages. From a user’s profile, we extract the set of social
sites a user associates to the profile and all the public contents s/he had
published since the registration date. For each content, we gather information
about the social media used to post it, the content itself according to the
format returned by the APIs and the publication date. Furthermore, not to
overload the service and to respect politeness, we limit the number of contents
for each user to 10.000 at most. In practice, the dataset contains, for each
individual, a list of her/is favorite social sites and a multidimensional time
series of posts, where each dimension corresponds to a specific social site.
All the analysis, but username patterns reported in the last section, will be
performed on this dataset D1. In addition, each profile reports the degree of
the user on the social networks that make this information available. However,
we are not able to get the node neighborhoods since Alternion does not return
the neighbors’ usernames. Consequently, we are not able to build any network
from the information provided by the social media aggregator. Since we may
be able to build different types of relation by exploiting implicit links such
as mention, we model our dataset by a directed multigraph D = (V,E,D).
Each user (identity) is an element of V , while E ⊆ V × V × D, with D the
set of social media in Alternion, is the set of directed multi-edges. Finally, we
associate to each user u ∈ V a sequence of timestamped events (t, ped), where
pe represents a post published on the social media d ∈ D.

For the study of username patterns only, we collected a different dataset,
D2, whose characteristics are specifically designed to this aim. We adopted a
more targeted sampling approach by collecting 15.000 profiles with an English
first name 4 to make the text analysis of usernames more affordable. This way
we maintain the alphabet accordance between the username (typically ASCII
character) and the information about the identity (first and last name are
usually written in mother tongue). Finally, the dataset D2 contains for each
individual a list of her/is usernames.
4 http://census.gov
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2.3.2 Dataset characteristics and representativity

The dataset D15 contains the profile information of 19680 users, each report-
ing the platform Alternion among her/is social sites. Specifically, the number
of social platforms amounts to 152, from the most famous Facebook, Twitter
to the less common Discus or Zazzle. In Figure 2.2, we report the number of
users who share their profile information of a social site, while in Figure 2.3
we report the number of users for the top ten social platforms. As expected,
and ignoring Alternion, Facebook is the most used social site and the top 10
correspond to the most popular social media.

Fig. 2.2. Social site adoption. The number of users for each social platform.

In Figure 2.3, we also report the number of active users per social site.
An active user refers to a person who has published at least one content on
the profile page. About half of the profiles (9829) are active and do prefer
Twitter as publishing media. Although the Twitter result is expected due
to the Twitter intrinsic nature (interest and media broadcasting network),
LinkedIn and Google+ are more favorite than Facebook when we consider
active users, even if the continuous releases of new versions of the Facebook
API may influence the available information. Anywise we generally note that
the users who actively adopt social platforms always represent a fraction of
the registered users.

We obtain a deeper understanding if we combine the above results with
those presented in Figure 2.4, where we report the number of posts grouped by
5 The dataset is available by e-mail.
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Fig. 2.3. Social site engagement. The number of users/ active users for the
top ten social sites. Active users represent people who have published at least
one post on a social site.

social sites. Here, we note that the Facebook active users are more productive
than Google+ users. In fact, although they are fewer, Facebook users publish
more or less the same amount of posts as Google+’s. Finally, the results
in Figure 2.4 confirm the predominant role of Twitter in the production of
contents and posts, i.e. more than 6 million posts over an overall amount of
more than 8.5 million posting events.

Fig. 2.4. Posting activity. The number of posts for each social site.

As regards the posting activities of the active users, in Figure 2.5, we
show the distribution of the number of published contents per user. The post
sampling covers the time interval from 10 July 2005 to 10 November 2014. The
distribution seems to obey to a heavy tail with exponential cut-off. During
the examined period, we observed that the users have been quite productive:
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on average, the users have published about 800 different contents and half of
the users have produced more than 300 updates.

Fig. 2.5. Posting activity. The complementary cumulative distribution func-
tion (CCDF) of the number of posts published by each user.

The above results highlight that Alternion effectively captures a repre-
sentative sample of today’s users of social media sites, in terms of favorite
social sites and publishing media as compared with public available data 1

on social media usage. Indeed, the usage proportion across the social sites is
almost equal to those collected by aggregating the official statistics released
by the different social platforms. Despite data show an alignment between the
Alternion users and the users of the different social media, the representative-
ness issue of the dataset still persists. For instance, the users’ demography
is unbalanced towards western and English-speaking countries, the contents
posted on the Alternion profile depend on the API provided by the social
media. Lastly, the adoption of social media aggregators is more common and
useful to an audience active on social media. Nevertheless, it represents the
most recent dataset able to capture how users behave across multiple sites and
an easy tool for studying the on-going phenomenon of the multiple adoption
of social platforms.

2.4 The Usage of multiple social sites

In a survey conducted in September 2014 1, it has been highlighted that the
adoption of multiple social platforms is on the rise. In fact, 52% of online users
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now use at least two social sites representing a significant increase since 2013,
when the figures were close to 42%. On the one hand, the Alternion dataset
allows us to quantify this phenomenon without requiring a periodical survey;
on the other hand, additional information about posts could be extracted to
verify whether the same observations hold true for the users’ engagement.
Indeed, being registered to a service does not always imply using it.

To answer Q1 - How common is the use of multiple social sites? Does the
same hold true for active users? - we analyze how the users are distributed
across sites. The main goal of a social media aggregator is to group different
social sites into a single access point. This characteristic allows us to compute
how many different social websites people are able to manage. How users
distribute their membership across sites has been studied in [71] only, where
the authors have shown that it follows a power-law distribution from a dataset
gathered in 2008. Our goal is to extend that result, by confirming it on a
more recent and larger dataset, which relies on the current social platforms.
In Figure 2.6, we report the probability distribution function (PDF) of the
number of sites joined by a given person. On average, a user is simultaneously
registered on 5 social sites, while more than 95% of users have joined 17
platforms at most. Alternion results are consistent with the aforementioned
survey; indeed about 56% of Alternion users use at least three different social
platforms6. The behavior of active users gives a more direct and clear evidence

Fig. 2.6. Social sites per user. The PDF of the number of social sites joined
by each user (blue)/active user (green).

6 Alternion account is included by default, so counting starts from 1
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of the adoption of multiple sites. In fact, the publication of contents on a
specific social media confirms its adoption in practice and it is strictly related
to the user’s engagement. This way, we compute the distribution of the number
of social platforms being simultaneously used by each active user. As shown
in Figure 2.6, the observations about the multiple usage gets stronger: 73%
of the active users publish on at least two social networks. In general, the
propensity to adopt multiple social sites is becoming increasingly ingrained
amongst online users, especially if we consider the effective publishing on
different platforms.

The above analysis on the people’s propensity to be active on multiple
social media does not take into account the amount of the contents published
on each platform. To this end, we analyze the productivity of the users who
join more than one site simultaneously. Let p1, p2, . . . , pn indicate the number
of the posts of a user on the n sites where s/he is active and p̄ =

∑
pi/n the

average number of posts per site. For each active user, we compute p̄ and group
them by the number of multiple sites they have joined; then we calculate the
mean and the standard deviation of p̄ for each group. In Figure 2.7, we report
the above quantities as a function of the number of sites. The figure indicates
that i) the more sites a user joins, less posts for the site on average s/he
publishes, and ii) the users who post on few sites are more heterogeneous in
their activity since the standard deviation decreases as the number of the sites
increases. We suppose that the first remark is a consequence of the limited
human resources in terms of usable time and ability of handling multiple tasks
at the same time [48].

# social sites
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Fig. 2.7. Posts and number of sites. The average p̄ as a function of the
number of sites users have joined. The error bars report the standard devia-
tion.
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Finally, in Figure 2.8, we show the number of the users who have joined
different social sites by considering two classes: social media and social net-
works. The former denotes the social sites where relationships are implicit, the
latter indicates the social sites where the relationships are explicitly defined.
These figures show that more than 90% of the users have registered to at most
5 sites and some of them share information on more than 10 social media. In
general, we observe that it is more likely to adopt social media than social
networks.

Fig. 2.8. Social media and networks. The PDF of the number of social
sites joined by each user subdivided in social media and social networks.

2.5 Centrality and activity correlation across social sites

To answer Q2 - Is a person’s centrality uniform, i.e. more or less equally
distributed across the social sites in use? - we treat the user degree on different
social sites as an index of centrality in the network. This information, reported
on the Alternion profile, is not available for every site since just a few APIs
allow to retrieve this information. So, we limit our analysis on the degree to
Facebook, Twitter (in/out), LinkedIn and YouTube (in/out).

Q2 is meant to verify if statistically significant correlations between the
degrees of the same group of users in different sites exist. The presence of these
correlations measures whether or not popular users in one site maintain their
centrality across media. If we denote ksu as the degree of the node u in the site
s, we can evaluate the degree of correlation between pairwise social sites by
adopting different methods [11]. First we compute, for each pair of social sites,
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the joint distribution P (ks1, ks2) to obtain a characterization of the relations
between the degree sequences. For example, in Figure 2.9, where we show the
joint distribution for Facebook and LinkedIn, we observe a slightly positive
correlation, especially in the left bottom part of the distribution (dark blue
regions). In particular people with about 200 friends in Facebook and about
20/25 relationships in LinkedIn are more likely than others.

Fig. 2.9. Facebook and LinkedIn. The joint probability distribution esti-
mated by kernel density method.

By analyzing the joint distributions only, it is difficult to compare the
relations between a social site against the other ones. For this reason, we
compute the average degree of a node in a social site s1 conditioned on the
degree in the site s2. The resulting computation for LinkedIn conditioned on
Facebook has been shown in Figure 2.10. In this case, we observe an initial
increase of the average degree in LinkedIn as a function of the Facebook degree
up to about 500 friends. Then we observe a more unstable trend also due to a
low number of data points. In the Figure 2.11, we report a more pronounced
lack of correlation involving the out-degree in Twitter and YouTube. Here, we
cannot establish an increasing relation between the out-degrees, so people how
follow many users in Twitter would not follow the same amount of channels in
YouTube. The specificity of the two social platforms, i.e. news broadcasting
and video sharing, could be the cause for the weak correlation.
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Fig. 2.10. Facebook and LinkedIn. The conditional distributions of the
LinkedIn degree given Facebook degree. For each 50 size bin, we show the
degree distribution through the violin plot with its average (blue) and its
median (green).

Fig. 2.11. Twitter and YouTube. The conditional distribution of the out-
degree in YouTube given the Twitter out-degree. For each 50 size bin, we show
the degree distribution through the violin plot with its average (blue) and its
median (green).

Keeping Facebook as conditioning social site, we observe that the average
degree increases in some media like LinkedIn and Twitter, while the in/out
degrees in YouTube are uncorrelated with the Facebook degree; as shown in
Figure 2.12. The comparison between the degree and the in/out degree is dic-
tated by the inability to extract mutual links (more similar to a friendship
link in Facebook or LinkedIn) since we can only retrieve the counting of the
followers/followees in Twitter and YouTube. Finally, to get an overall picture
of the pairwise degree correlations, we apply a rank correlation analysis on
the different pairwise sequences. Rank correlation analysis allows us to test
if the ranking induced by the different degrees is similar or not. As a rank
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Fig. 2.12. Degree dependencies. The average degree in LinkedIn, Twitter
and YouTube as a function of the degree in Facebook.

correlation method, we compute the Kendall’s rank correlation coefficient τb7

on the ranking induced by the degrees. In Figure 2.13, we visualize the rank
correlation matrix, where each row (column) corresponds to a different social
site. A strong positive correlation does not exist, rather the scenario is multi-
faceted. In most pairs, there is only a limited positive correlation (0.1− 0.23)
between degree centralities. This means that users may have a very different
centrality across the services, i.e. a single user might be an hub on one system
and loose part of its hubbiness on the other. One reason may rely on the dif-
ferent goals of the services; whereas LinkedIn is business-oriented or Twitter
is an interest network, Facebook incorporates all the previous features. So, for
instance, LinkedIn may only capture a part of the Facebook friends.

Fig. 2.13. Degree rank correlation. The correlation matrix among the de-
gree sequences in the different social sites.

The above conjecture cannot be verified since we are not able to compute
the intersection between a node’s neighborhoods in different social networks
(information not provided by Alternion). However we can quantify and analyze
the difference between the neighborhoods in terms of their size. To this end,
7 τb takes into account ties.
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given a user u and two sites s1 and s2, we define the friend deviation ∆ks1s2u

as:
∆ks1s2u = ks1u − ks2u (2.1)

We compute the friend deviation between Facebook and Linkedin(∆kFLu ),
Facebook and Twitter(∆kFTu ), Facebook and YouTube(∆kFYu ), Twitter and
LinkedIn(∆kTLu ) and Twitter and YouTube(∆kTYu ) for the users who have
joined them. We report the trends of the friend deviations in Figure 2.14
sorted in decreasing order. We observe that ∆kFTu , ∆kFLu , ∆kFYu , ∆kTLu and
∆kTYu are positive for 5360 users (out of 8527), 3313 users (out of 4361), 2944
users (out of 3177), 2518 users (out of 4148) and 2760 users (out of 3098),
respectively. These results indicate that the users in our dataset prefer to cre-
ate friendships in Facebook rather than in LinkedIn, Twitter and YouTube.
Moreover, users prefer Twitter rather than LinkedIn and YouTube to estab-
lish friendships. One remarkable result is that the users preferring Twitter
rather than Facebook have significantly more friends than those they have in
Facebook. In general, maintaining the importance across social media is not
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Fig. 2.14. Friend deviation. The friend deviation scores sorted by decreasing
order.

a straightforward task and asks for a deeper understanding; for example it is
not clear how user’s neighborhoods in different media overlap.

Finally, we apply the above methodology i) to investigate how often the
users publish contents in different social sites, and ii) to asses if a form of
correlation exists between the amount of posts and the number of friends.
For point i), we are verifying whether users who post a lot and often on a
social platform, are equally active in other platforms (see Q3). We measure
the activity level of a user within a social media by means of the posting rate,
measured in number of posts per week. By considering the posting rate rather
than the post count, we mitigate the effects given by the adoption of social
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media in different periods. We report the results about the analysis of the
rank correlation matrix applied to pairwise posting rate sequences. In Figure
2.15, we visualize the Kendall’s coefficient τb for the most used pairs of sites.
Unlike the above discussion on centrality, there is a more evident positive
correlation between the posting activity across social sites. The obtained val-
ues do not mean that users are equally active on both social media, however
there is a positive tendency to be active in different social sites. In general,
the maintenance of the posting activity across social media is not a straight-
forward task, like in the degree analysis. By the second point, we wonder if

Fig. 2.15. Post rank correlation. Kendall’s coefficients on the posting rate
computed on some pairs of social media.

users with many friends in a OSN are more active and productive than people
with fewer friends. For this reason, we consider only the users whose degree
and posting rate are available and combine these information. The analysis of
the Kendall’s coefficient τb highlights a medium positive correlation between
the two variables for all the online social networks (τb ∈ [0.27, 0.4]) except
YouTube (τb = 0.1). High degree people tend to post and publish more than
those with few friends.

2.5.1 A case study on 4 social media.

Up to now the analysis has focused on the pairs of social media. In this section
we present a particular case study that involves 524 users who have joined
Google+, Pinterest, LinkedIn and Twitter. We select this subset of social
media because they have the highest number of users w.r.t. to other subsets
of 4 elements and their users are also very active. For instance in Twitter users
published 1025 elements on average, followed by LinkedIn (139.32), Google+
(137.55) and Pinterest (134.71). In fact, we observe that less than 40% of
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users in Google+, Pinterest and LinkedIn have more than 100 posts. While
in Twitter almost 87 percent of the users produced more than 100 posts.

In the light of the results about the moderate correlation among the post-
ing rates, we wonder if, in this group, people who actively post in a service
necessarily produce many posts in the other services. To this end, we denote
the top 5% of users in each media as most active users. Only two users are
the most active in all the services. 36%, 30% and 42% of the most active
users in Twitter are also the most active in Google+, Pinterest and LinkedIn
respectively. 23% and 14% of the most active users in Google+ are also the
most active in Pinterest and LinkedIn respectively. The above observations
support the presence of users who are very active pairwise but, whereas the
number of sites actively used increases, the number of posts and consequently
the productivity reduces as observed in the previous section.

We quantify the diversity of the posting activity across social media by
defining the posting deviation ∆ps1s2u of a user u as:

∆ps1s2u =
|nps1u − nps1u |

max(nps1u , np
s1
u )

(2.2)

where nps1u (nps2u ) denotes the number of posts of user u on the social media s1
(s2). ∆ps1s2u ranges from 0 to 1: if ∆p decreases towards 0, u tends to publish
the same number of posts both in s1 and s2. As shown in Figure 2.16, where
we report the posting deviation ∆p between Google+ and the other social
networks, this quantity decreases linearly. From the figure emerge that users’
behavior is more variable between Google+ and Twitter than the other social
networks. Only 9% of users show a post deviation less than 0.5. Most of the
users prefer to post on a single service. So, users who laboriously publish posts
in one service do not publish with the same rate in the other ones.
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2.6 Temporal patterns in the posting activity

It is a well established result that the human dynamics on communication
media are bursty and scarcely uniformly distributed in time, even removing
the effect of seasonal or circadian cycles [33, 57]. So we investigate whether the
burstiness characterizes how people post on online social media, too. Figure
2.17a) displays a typical posting activity of a user adopting different social
media simultaneously. The overall activity presents periods where the user
is almost inactive, interleaved with periods of high activity. We analyze the
statistical properties of the inter-event time ∆t, i.e. the period between two
consecutive posts published by the same users. Many studies have shown that
the inter-event time distribution in different human processes [21, 5, 33] (e.g.
mobile phone call, email, direct physical contact, link formation in online
social networks) is heavy-tailed. In Figure 2.18 we report the distribution of
the inter-event time resulting from the aggregation of the behavior of all the
users. The distribution seems to obey to a heavy-tailed law and supports the
hypothesis that the posting activity on online social media is bursty and highly
heterogeneous.

Fig. 2.17. Posting activities on different media. Posting activity on dif-
ferent social media. In a) the raster plot of the overall activity of a person who
uses many social media simultaneously. In b) the user’s activity split into the
six social media s/he is using.

The opportunity of tracking multiple online activities simultaneously al-
lows us to highlight the complexity of the users’ posting activity, which ap-
pears like a compound combination of the single activities on the different
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Fig. 2.18. Inter-event time. The distributions of the inter-event time be-
tween two successive posts published on different media (blue) and between
two whatever successive posts (green).

social media. For instance, the sequence of events in Figure 2.17 results from
the union of the activity of the user in six different social media. The example
emphasizes two characteristics of the event sequences: i) singularly each event
sequence keeps an high level of burstiness, i.e. the bursty behavior of the ag-
gregated sequence is the union of bursty event sequences and; ii) a period of
high activity in the aggregated sequence does not imply that the user is highly
productive in each social media along the same period. In the example (see
Figure 2.17) the user is initially active on BipTV only, then s/he begins to
adopt the other social media. But the activity on Twitter ceases almost imme-
diately and the other activities interchange like in Tumblr or Pinterest. The
characteristic i) can be captured by the distribution of the inter-event time on
each social media reported in Figure 2.19. Here, we extract the distributions
from the social media with the highest number of posts. From the analysis of
the distributions we infer two main insights: a) most of the distributions seem
to follow a heavy-tailed law and b) each social media is characterized by a
distribution that is far from the others. For example the probability of having
a short inter-event time is higher in Pinterest, Delicious or LastFM w.r.t the
other social media. To verify the observation ii) we analyze the distribution
of the inter-event time between two consecutive events that happen on dif-
ferent social media, a quantity strictly related to the propensity of switching
among the media. The distribution shown in Figure 2.19 is similar to the over-
all inter-event time distribution. The figure suggests that users alternate and
mix their activities. The heavy-tailed distribution also indicates that the time
to switch between different social media is likely to be short even if longer
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Fig. 2.19. Inter-event time in the same social media. The distributions
of the inter-event time between consecutive posts on the same social media.
The figure reports the distributions for the most used social media. For the
sake of readability we use a linear scale on the y-axis.

periods are possible. This finding suggests that during a single day a user
may publish on multiple social media. To this aim we introduce an index, the
post multiplexity Ω, which captures the number of days a user is active on
multiple social networks. Formally, let p(u, si) =< p0, p1, . . . , pT > denote the
sequence of posts published by the user u on the social media si, where pi indi-
cates the number of posts during the day i. We define a new binary sequence
p′(u, si), where p′i = δ(pi)

8 and the function dm(u) =
∑
si p
′(u, si) which

computes the number of social media used in each day. The post multiplex-
ity corresponds to the ratio between the number of days s.t. dm(u) = 1 and
the overall number of sampling days. The index measures the propensity of a
user of being multidimensional. A value close to 1 indicates that an individual
uses only a social network per day. The distribution of the post multiplexity
Ω has been reported in Figure 2.20. We consider different thresholds on the
number of sampling days to make the results independent of the length of the
sequence and reduce the effects of less active users. The distribution suggests
that completely multidimensional users are quite rare as well as unmultiplex
users; however most of the users tend to prefer a single media per day while
sometimes they adopt multiple social media for posting.
8 δ is the Heaviside function
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Fig. 2.20. Posting multiplexity. The distribution of Ω for different thresh-
olds on the number of posts per user.

2.7 Patterns in username usage.

Besides providing information about people’s behavior in using and posting
across social sites, the collected datasets sum up properties concerning the
choice of the username in different sites. The username represents the first
information provided to the social site, the first way of being identified in
the site and an element in the self-presentation. In fact, many behavioral
aspects flow into the choice of the username, not least the limited memory
capacity. On D2 we evaluate how users are coherent in the choice of the
username by computing the edit distance and the complement of the Jaccard
Index on the pairs (uji , u

k
i ) built from the set Ui of the usernames associated

to the individual i. The former quantifies how dissimilar two strings are by
computing the minimum number of operations to change uji into uki . The
allowed operation are the insertion, the deletion and the substitution of a
character with another. The latter computes the Jaccard coefficient on the sets
of characters of uji into u

k
i . In Figures 2.21 and 2.22 we report the distribution

of the above measures computed on each possible pair and in the inner figures
the same quantities computed on randomly shuffled pairs. In both cases we
obtain a peak at 0, indicating exact matches or the usage of the same character
set, while the randomization shift the peak of the distributions towards values
typical of dissimilar strings. However a portion of the pairs indicates that
people may change the username across social sites. An example is shown in
Figure 2.23 where the change of the username between Pinterest and Google+
is more evident w.r.t. the average behavior reported in the previous figures.
In fact, we observe that the decision of changing the username depends on
the pair of social sites.
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Fig. 2.21. Distance distributions between usernames. The distribution
of the complement of the Jaccard Index between pairs of usernames associated
to the same person.

Fig. 2.22. Distance distributions between usernames. The distribution
of the edit distance between pairs of usernames used by the same person.

2.8 Conclusion

To face the new challenge of giving an all-around picture of people’s online
behavior, in this chapter we perform an analysis on the same users across
multiple social media. Our study relies on a new rich dataset gathered from
the social media aggregator Alternion. It collects information about the way
users post their favorite contents, their centrality on different social media and
the usernames they choose. The study of this dataset led to the emergence
of two main insights. On the one hand, we confirmed that the on-going phe-
nomenon of the adoption of multiple social site is spreading. Not just people
sign up in many social media but they are active and exploit their services as
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Fig. 2.23. Google+ and Pinterest. The distribution of the complement
of the Jaccard coefficient computed on username pairs from Google+ and
Pinterest.

well. On the other, the temporal information about how and when users post
allowed us to investigate how people manage the opportunity of having differ-
ent communication channels at their disposal. As far as we know, this study
represents the first attempt to deal with the people’s activities on multiple
social media by using a large set of social platforms and users.

As regards the multiple adoption of social sites, the analysis of social me-
dia usage shows that the Alternion data captures the typical trend in today’s
users, despite the limitations discussed on the dataset section. The usage of
multiple platforms is gaining momentum. In fact, half of the users signed up
in at least three different social sites. This result stresses the importance of a
multiplex approach when conducting studies which rely on online social net-
works. In fact, people are expressing their identity and their behaviors through
multiple communication media. This observation is further strengthened by
the results about active users. The fact that 73% of active users publish on
at least two social sites means that people choose the right online channel to
communicate and convey their contents. Also in this case the multiplex ap-
proach is fundamental in the extraction of people’s interests and preferences.
To this end, we plan to exploit these first results to study how users build their
social identities across their social platforms [35]. In particular, we will verify
whether different social norms characterize the major social platforms and if
users adapt their self-presentation to these norms, as the results about the
choice of the username may suggest. Finally, we will ask whether the identity
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of a single user expressed through the contents s/he publishes is persistent
and coherent with the profile information.

The multiplex nature of the Alternion dataset allowed us to investigate
the maintenance of users’ popularity and centrality across social sites. In fact,
despite the plethora of communication media, individuals are not confident
with each media in the same way. For instance, someone better expresses and
communicates through video, others through texts or blogs. That may result
in different levels of engagement with fans or friends and, consequently, in
different degree centralities. To this end, we asked whether a person’s popu-
larity is uniform across the social sites. The analysis led to not straightforward
results and indicated that user’s popularity in a given social site barely corre-
sponds or does not correspond at all to his/her popularity on another social
platform. Nevertheless, a more evident positive correlation between the post-
ing activities across social platforms exists. In the future, we plan to analyze
the reasons behind the weak correlations we observe. In particular, we will
verify whether the social norms of the online platforms and the services they
provide impact on the centrality of the users.

The multidimensional and longitudinal nature of the dataset is funda-
mental in the understanding of the human dynamics in communication and
online social networks since it offers the opportunity to study how people han-
dle different media. The primary goal of our analysis was to characterize the
time-series associated to the posting activity of the single users across multiple
social platforms and unveil their statistical properties focusing on measures
which describe their level of burstiness. The analysis of the burstiness moved
in two directions: i) we classified the aggregated behavior of each single user;
and ii) within each user we characterized the bursty behavior in each single
social media. The results show that i) singularly each event sequence keeps
an high level of burstiness, i.e. the bursty behavior of the aggregated interac-
tion sequence is the union of bursty event sequences and; ii) a period of high
activity in the aggregated sequence does not imply that the user is highly
productive in each social media during the same period. These observations
represent the basis for a model of temporal patterns in multilayered social
network which combines the idea of attention allocation and novel models
which reproduce the human bursty dynamics [55]. We also plan to investi-
gate the interaction sequences through frequent pattern analysis in order to
highlight whether users are characterized by specific usage subsequences, i.e.
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they have a predefined scheduling in the usage of their preferred social me-
dia. The above analysis will be combined to the content analysis of the posts
to see if personal topics change along the observation period or users change
their posting behavior in terms of covered subjects or whether some social
platforms specialize on specific subjects.



Chapter 3

User Identification across Online Social Networks

Today, people spend part of their social life on the web, creating a virtual envi-
ronment where they can find and meet friends, share and create information,
and be engaged in a variety of social activities. The ability to gather the public
traces left during these online activities would lead to a deeper understanding
of the user’s identity and behavior. This would improve service provisioning,
enable service customization and cross-domain recommendation, and give rise
to other services in different domains.

Even though we are dealing with information that users have explicitly
designated as ’public’, chasing them throughout different social networks is
still a challenging research task. In fact, not all online services force users
to specify their real identity, nor do they adopt platform-specific user’s data
(profile fields, friendships, tags), all which makes the field-matching difficult.
In this scenario the identification of the same user across multiple social plat-
forms would represent a key step, for it would facilitate the data gathering
process.

How might the identification of a user be successful in practice when
considering different social platforms? The answer heavily depends on the
available data on the target OSNs. Accessing this kind of public data is
not a straightforward task and gives rise to privacy concerns. To over-
come these privacy issues, our proposed approach for identifying users across
Google+/Facebook and Google+/Twitter relies on public data made available
by their APIs. Among all fields returned by the APIs, we consider common
fields only. This leads us to adopt a dynamic set of identification properties
which flexibly adapts according to the systems under study, as opposed to the
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adoption of a pre-defined set like commonly assumed in literature (Carmag-
nola and Cena [15]).

In this chapter we propose an approach aimed at finding a match among
identities across online social networks based on minimum common profile
fields available through the APIs. We select the most effective features based
on the common fields and then use automated classifiers to match the input
profiles. According to the literature, in carrying out the identification task,
random construction is the only way to construct negative instances, i.e. pairs
of profiles corresponding to two different identities. The question which arises
is: are random negative instances representative of the population w.r.t. train-
ing the classifier? To answer this question, we construct negative instances in
three different ways and evaluate our trained classifiers on two different test
sets. The accuracy and robustness of the approach are evaluated on two novel
datasets collected from Google+, Facebook and Twitter. They consist respec-
tively of 8,000 Google+/Facebook users and 2,400 Google+/Twitter users 1.
Moreover, we analyze the applicability of the learnt classifiers in a real sce-
nario built on the Google+/Facebook users’ neighborhoods. By comparing
the proposed method with the approaches in Vosecky et al. [66]and Carmag-
nola and Cena [15], we show that our method is able to identify users with a
significantly higher degree of accuracy.

3.1 Related work

Several database research studies and information retrieval communities have
focused efforts on matching entities across different data sources [36], [67],
[51], [4], [60]. While addressing similar problems, they do not match accounts
directly across social networks.

In this section we summarize the studies related to the identification of in-
dividuals across different social media sites. We divide these studies into three
different categories according to the information they rely on: username based
identification, profile based identification and network and content based iden-
tification.
1 The datasets have been made publicly available at http://nptlab.di.unimi.

it/?page_id=360

http://nptlab.di.unimi.it/?page_id=360
http://nptlab.di.unimi.it/?page_id=360
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3.1.1 Username based identification

Solutions based on username start from the assumption that the username
is the minimum common factor available on several OSNs. Consequently, the
different methods rely exclusively on features extracted from the strings com-
posing usernames. Zafarani and Liu [70] proposed a methodology based on
users’ behavioral patterns when selecting their usernames. They demonstrate
that the environment, the personality and the human limitations result in
choices of the username that are not random but have redundancy. Identifi-
cation features are constructed on endogenous and exogenous factors and on
patterns due to human limitations. By using logistic regression, they obtained
0.930 and 0.927 of accuracy in the identification of the same user, before and
after a feature selection step. To the authors’ knowledge, Zafarani and Liu
[70]work is one of the most complete research studies on this topic since their
proposed features cover most of aspects of username creation.

The same authors [69] introduced a simple but interesting approach for
finding other possible usernames that a user may select when s/he is register-
ing on a social media. They empirically provided evidence on the possibility
of identifying corresponding identities across various communities using user-
names and a search engine. The approach starts by searching for a given
username on Google to find a set of keywords that might represent possi-
ble usernames in the target social networks. Then this set is extended by
adding/removing common prefixes and suffixes to/from its members. Finally,
in order to filter out usernames, the existence of each username in the set is
checked through the URLs that reside in the target community domain by
searching on Google. An accuracy of 0.66 is reported. Since the accuracy of
the approach depends heavily on the set of candidate usernames, its construc-
tion presents several challenges of its own. Furthermore the authors rely only
on Google search results to determine the correctness of the identification.

Perito et al. [54] as well have explored the possibility of linking users’ pro-
files simply by looking at their usernames. To link profiles that correspond to
the same identity they estimate the uniqueness of a username by exploiting
both a language model theory and Markov-Chain techniques. For each user-
name the learnt binary classifier checks all possible usernames in a list for
similarities. This makes the approach hard to use on a large scale.
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Since the username is available in all social sites, username based iden-
tification approaches do not cope with challenges associated to the public
information of users (e.g. heterogeneousness, incompleteness and falseness).
However the exclusive usage of features extracted from usernames results in
poor performances when two or more people have the same name or when
users differentiate their usernames due to matters of privacy, etc.

3.1.2 Profile based identification

Carmagnola and Cena [15] addressed the subject of user identification for
cross-system personalization among user-adaptive systems. They performed
some analyses for defining a set of identification properties, the importance
factors of each property and the relative thresholds. The proposed algorithm,
which compares user profile attributes based on the assigned importance fac-
tors, is applied to users belonging to three user-adaptive systems developed
in their research group. In the small test they used, 64 cases were positive
matching ("identified") while 16 were negative ("not identified"). The results
of the algorithm were respectively, "identified" in 59 out of 64 cases and "not
identified" in 14 out of 16 cases.

Vosecky et al. [66] proposed a similar threshold based approach for com-
paring profile fields. They defined a weightingvector to control the influence
of each profile attribute on the overall similarity. To compare user profile at-
tributes they used exact, partial and fuzzy string matching and achieved an
accuracy of 0.83.

Motoyama et al. [50] discussed a method for searching for and match-
ing individuals on Facebook and MySpace by using profiles attributes. Their
proposed method considers attributes as bags of words and calculates the sim-
ilarity between two accounts as the number of common words between profile
attributes. It does not account for common entities that have slightly different
names.

3.1.3 Network and content based identification

Iofciu et al. [29] proposed an approach for user identification based on user-
names and tags that users assigned to images and bookmarks. They also
suggested various strategies for comparing the profiles of two users and were
able to achieve an accuracy of about 0.6. Since matching accuracy via tags
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mainly depends on the number of tags assigned by a user, the accuracy of
their identification rose from about 0.6 to about 0.8 by aggregating users’
profiles from different sources.

Peled et al. [53] introduced an algorithm based on machine learning tech-
niques to match two user profiles from two different OSNs. The classifiers uti-
lized three types of features: name-based features, general user info based fea-
tures, and topological based features including the number of mutual friends
and mutual friends of friends of two users. Since the computation of the num-
ber of mutual friends strictly depends on the identification task, they just
count the number of friends with identical names in both circles of friends.
Their evaluation of the contribution of each feature in the classification process
shows that the name-based features are the most important.

Goga et al. [24] conducted an investigation of the reliability of matching
user profiles across real-world OSNs. They proposed a framework to under-
stand how profile attributes used in the matching schemes affect the overall
reliability. They used only public attributes, such as names, usernames, loca-
tion, photos, and friends. These public attributes are not necessarily available
through the APIs of the online social networks.

Jain et al. [30] proposed two identity search algorithms based on content
and network attributes. They improved the traditional identity search algo-
rithm founded on the attributes of the user profile. An average precision of 0.83
for the identity resolution process using profile, network and content identity
search methods and an image-based identity matching method is obtained.

Malhotra et al. [46] applied automated classifiers for identifying profiles
belonging to the same user across social networks. They used profile attributes
and connections of users on different social networks to generate the digital
footprints of the users. Their study indicates that user identification yields a
large number of false positives.

Some other studies also leverage user connections to match accounts on
social networks [38], [37], [68], [7].

The approaches in this category rely on data not retrievable by the APIs,
so making them difficult to apply. For instance, Google+ API does not expose
any resource to get the in/out neighbors, while Facebook requires the user’s
permission to access her/his friends.

Our approach belongs to the profile based category since it exploits fields
common to the social media, in addition to the features extracted from the
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usernames. In Section 3.4 we compare our method with two of the profile based
approaches. Moreover, in all the approaches based on classification techniques,
the only way to construct negative instances is random selection; we show,
however, that random construction in real scenarios yields a high rate of false
positives. To overcome these limitations, we propose different methods for
constructing negative instances. We do so by acting on the level of similarity.
Lastly, we investigate the effectiveness of each approach for identifying a user
across Google+/Facebook or Google+/Twitter.

3.2 Dataset

On most social networks users complete the basic information associated to
their profiles by inserting links to other external web resources. Most of the
time, these links refer to the different accounts users adopt in other social
network sites. This behavior make possible the collection of the accounts as-
sociated to an individual person.

Operationally, we began by gathering profile information from Google+; in
particular we exploit the technique in [25] to retrieve Google+ accounts. From
the Google+ sitemap file, we randomly extracted more than one million user
profiles. We analyzed the links referred to on each profile page, although only
2% of those users had indicated useful links. Although we limited our attention
to links pointing to Facebook and Twitter, the method can easily include other
social platforms. Depending on the social site a link pointed to, we retrieved
the profile information through the specific API: namely, Facebook Graph
API for Facebook and Twitter API for Twitter. The entire gathering process
is depicted in Figure 3.1, where, as a last step, we select profiles containing
Latin1 characters only. Finally, the different profile information associated
with the same Google+ user are stored in the ’Profile DB’, so that each
record contains a sequence of profiles P s, where s denotes the name of the
social network.

Unfortunately, profiles in ’Profile DB’ cannot be directly analyzed due to
two main weaknesses: a) the data returned by each API are different from
one another, in terms of field name and semantics (structural and semantic
heterogeneity); b) some fields are empty or unavailable since users may not
fill some common fields, may change a setting or may make some info private
(data incompleteness). Both issues were analyzed. Results are reported in
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Fig. 3.1. Data collection process. Once the links to other profiles have been
obtained, the ’URL Validator’ verifies whether the links are still valid and
points to an account through the social service APIs. The ’Profile Extractor’
gets the public information from each social site, while the ’Latin1 Charset
Filter’ detects the profiles containing Latin1 characters only. Each entry in
the ’Profile DB’ contains the profiles associated to each valid Google+ profile.

Figure 3.2. Regarding structural and the semantic heterogeneity, in Figure
3.2 we report — on the y-axis — all the fields returned by each social network
API. Although the number and the meaning of the fields are heterogeneous
across the social sites, for each pair of social sites we are able to identify
some common fields that mainly involve data about username. The available
common fields between Google+ and Facebook include username2, first name,
last name and gender. By contrast, in Google+ and Twitter profile common
fields are username3, full name, location and description.

To deal with data incompleteness, in Figure 3.2 we report the percentage of
empty or missing fields grouped by social site. We observe that fields related to
the name of the user — such as last, first and full name — contain information
that is valid for most of the profiles in each social site. Secondly, even though
2 In Google+ the username corresponds to the value associated to the field
displayName of the People resource, while in Facebook the username corresponds
to the field username in the User resource.

3 In Twitter the username corresponds to the field screen_name related to the
resource users.
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Fig. 3.2. Percentage of missing values in the fields of each social site.

the Google+ API offers more public fields than other social sites, its users
tend neither to fill these fields nor keep them private. By contrast, on Twitter
the same users are more prone to share information about where they live and
what they are like.

We address the above issues by applying a data cleansing phase which
removes the profiles with incomplete or missing data in the common fields.
The process generates two datasets that we will use for building and testing
the different user identification solutions:

• Google+/Facebook dataset (GF).GF dataset contains pairs of Google+
and Facebook profiles with common fields properly set. Initially the num-
ber of Google+ profiles linked to a valid Facebook account amounted to
14,000; however, after the cleansing phase, we discarded pairs (missing
values included) and thus obtained 8,000 valid ones.

• Google+/Twitter dataset (GT). As with the GF dataset, this collec-
tion contains valid pairs of profile from Google+ and Twitter. Initially it
consisted of 8,600 Google+/Twitter profile pairs, but after discarding pairs
(missing values included) we ended up with 2,400 valid ones.

3.2.1 Username composition

We exploit the users’ profiles to investigate how people in Google+, Facebook
and Twitter use their real names to compose usernames. Our analyses are
based on the first, last and full names provided by each user in her/is pro-
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files. These analyses are helpful for selecting the most efficient identification
features, in particular they help find redundant fields.

We identify four elements which contribute to the composition of the user-
name: the first name, the last name and the full name, denoted as FirstN,
LastN and FullN, respectively, while the fourth element (FullNnoSpace) is
obtained by eliminating spaces from the full name. Then, we verify whether
one of the above elements or their concatenations is/are substrings of the
original username. Results are shown in Table 3.1.

One of the most remarkable results is that 100% of Google+ usernames
contain the first name. We also observe that more than 45% of Facebook
usernames contain no part of the real name (i.e. first name and last name). As
expected, the most common way to generate Google+ usernames is by adding
a space between the first name and the last name (97.91%). Since the Twitter
API just returns the full name of users, the analyses on Twitter usernames do
not include first name and last name. In our dataset 29% of Twitter usernames
contain their full names. The results show that Google+ is considered as a
more formal platform by users. After these empirical observations, in Section
3.3.2 we select the most appropriate features.

Substring Google+(%) Facebook(%) Twitter(%)

FirstN 100 58.80 -
LastN 99.4 54.25 -
FullN 97.91 0.15 10.06
FullNnoSpace 0.52 9.97 29.19
LastNFirstN 0.96 1.05 -
FirstN.LastN 0 24.70 -
LastN.F irstN 0 0.76 -
LastN < space > FirstN 0.35 0 -
¬FirstN ∧ ¬LastN 0 45.74 -

Table 3.1. Username composition. Basic substrings and their main concate-
nations contained in the username.
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3.3 Methodology

In this section we present the methodology for solving the identification of
the same identity across different social media. First we formalize the identi-
fication problem as a classification task. Then we illustrate how we build the
feature set. We show that the construction of the negative instances in the
generation of the training set plays an important role. In fact, we stress that
the random construction of negative pairs results in a classifier which, in a real
application incorrectly assigns a lot of profiles to a single user. To reduce the
number of false positives we select negative instances by different methods.
Finally, we propose different ways to construct training and test sets on top
of which we evaluated different learning algorithms.

3.3.1 Problem definition

People leave plenty of various profile data and information on diverse OSNs.
These fingerprints may be exploited to identify individuals across social net-
works and to integrate these sources to get an all-around vision of the users.
However the amount of publicly available information about users’ profiles is
limited by the privacy setting and the APIs released by social media. Despite
the limited availability of information, a common set of attributes exists for
each pair of social sites. Usernames always represent the minimum common
factor but, most of the time, gender, location and/or a short description of the
person are made public by the APIs. Our methodology relies on these com-
mon attributes, which are available through social networks APIs, to identify
users across OSNs.

In the profile identification we ask if given two profiles P s1 and P s2 from
two different social sites s1 and s2, we can specify whether or not they be-
long to same individual. That corresponds to learn an identification function
f(P s1, P s2) such that

f(P s1, P s2) =

1 if P s1 and P s2 belong to the same identity

0 otherwise

where the function f(., .) depends on the set of attributes common to P s1 and
P s2. An identification function can be learned using a supervised learning
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technique that employs selected features. As required by the supervised ap-
proach, the labelled data is based on the datasets into ’ProfileDB’ (see Section
3.2), while the learning algorithms are the most adopted ones.

3.3.2 Feature extraction

As in most of the learning frameworks, the choice of the appropriate features
impacts the performance of the identification. Features are used as measures
to indicate whether two profiles on different OSNs are similar in terms of
behavioral patterns in the construction of usernames, in the composition of
the short description and in the definition of the location. According to the
available common profile fields through the APIs, most of the fields are string,
so we adopt the main measures for string fuzzy matching. Specifically, we use
the following metrics for comparing profile fields:

• Exact Match(EM). We use a string comparison function to check equal-
ity of data fields. We expect that this feature will be important for the
identification; in fact, Zafarani and Liu [69] have shown that individuals
tend to chose the same username.

• Longest common substring (LCS). Since adding prefix or suffix to a
username, name and etc. is a common behavior across social networks. It
can be detected by using LCS. We normalize this measure by dividing it
by the average length of the two original strings to get a value in [0, 1].

• Longest common sub-sequence (LCSS). We use the normalized
longest common sub-sequence for detecting abbreviations.

• Levenshtein distance (LD). The Levenshtein algorithm (also called
Edit-Distance) calculates the minimum number of edit operations that
are necessary to modify one string to obtain another string [39]. It ac-
counts for swapped letters, name shortening or the automatic composition
of the username, e.g. the username suggested by Google+ or Facebook is
a concatenation of the first name, a dot and the last name.

• Jaccard similarity (JS): To compute alphabet overlaps, we use Jaccard
similarity defined as the size of the intersection divided by the size of the
union of the sample sets.

• Cosine similarity with tf-idf weights: The cosine similarity between
two documents measures their similarity in terms of the angle between
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their representation in the Vector Space Model, where for each term in the
document set, we compute its tf-idf.

We employ exact match, longest common substring, longest common sub-
sequence, Levenshtein distance and Jaccard similarity to compare name-based
fields; otherwise, EM, LCS and JS are computed to evaluate the similarity of
the "location" field. The "description" fields that users provide about them-
selves are first tokenized by removing punctuations and stop words; then we
compute the cosine similarity between the two token sets. Finally, the exact
match is applied to compare the "gender" field.

Figure 3.3 shows the distribution of some features for profiles pairs be-
longing to same identity. In the figure we also report the distribution of corre-
sponding features for random pairs that do not belong to the same individual.
These analyses are based on the GF dataset.

(a) (b) (c)

Fig. 3.3. (a) LCSS distribution of first name pairs. (b) LCS distribution of
last name pairs. (c) JS distribution of username pairs

3.3.3 Training and test sets

Once the feature set is designed, the learning framework provides for the
construction of training and test datasets to learn the identification function
and then evaluate its performance in approximating the real one.

The datasets Google+/Facebook, GF, and Google+/Twitter, GT, only
contain positive instances, i.e. pairs of profiles corresponding to the same iden-
tity. But we need negative instances to train the different binary classifiers.
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In the literature, random construction is the means of choice for constructing
negative instances. It includes creating negative instances by randomly pro-
ducing pairs (P s1i , P s2j ), such that P s1i is the profile of the user i on the social
media s1 from one positive instance and P s2j is the j’s profile on the site s2
from a different positive instance (i 6= j) to ensure that they do not refer
to the same identity. Consider two positive pairs (P s1i , P s2i ) and (P s1j , P s2j ),
either (P s1i , P s2j ) or (P s1j , P s2i ) , to be constructed as negative instances in
order to hold uniqueness of negative instances. If we consider both of these
pairs as negative instances, the dataset would have a kind of redundancy with
no positive effect regarding learning the function.

We applied Multilayer Perceptron and Random Forest learning algorithms
to perform the classification task. The latter also assigns a probability to
the instance to be evaluated, i.e. the probability that a given pair of pro-
files in different social sites refers to the same identity. We compared the
learning techniques through the standard measures: accuracy, precision, re-
call and F-measure. Finally, the positive instances were randomly split into
training/test sets with a 70:30 ratio, then we inserted the random negative
instances. That results in training datasets TrainGF.1 and TrainGT.1 and in
test datasets TestGF.1 and TestGT.1. The performances reported in Table
3.3 (TrainGF.1-TestGF.1 and TrainGT.1-TestGT.1 rows) show that both the
Multilayer Perceptron and the Random Forest get very good performances
for the identification task obtaining 0.95-0.96 as the F-measure.

Given the high precision and the low number of false positives, we tested
our method in a real scenario. We applied the classifier trained on the train-
ing set obtained from the GF dataset to find the overlapping of the neigh-
borhoods of users in Facebook and Google+. As representative of a general
trend, here we focus on a random user who has 199 friends in her/his Face-
book network and 112 persons in her/his Google+ network including her/his
followers and followings. For each Google+ neighborhood of the random user
we performed the identification task with respect to all her/his neighbors
in Facebook. Namely, we want to discover common friends in Facebook and
Google+. In our crawled dataset, for the Facebook neighborhoods of a ran-
dom user only username and full name are available, while for her/his Google+
neighborhoods just usernames are available. We eliminated some features in
our training set to fit the current instances fields. Since in this real appli-
cation we do not have a ground-truth about the profile matching, we used
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the number of matched profiles for each candidate user as the main criterion
for comparing and evaluating our classifier. As shown in Figure 3.4, most of
Google+ friends have been matched with more Facebook friends. Specifically
the average amount of false positives for the classifier trained on TrainGF.1 is
6. In general we found analogous results for most of the accounts we retrieved.

Fig. 3.4. False positive rate.

By analyzing TrainGF.1 we observed that, with the exception of fields like
"gender" and "location", most of the random negative instances have com-
pletely different values for the corresponding fields. For example, in all 5,600
randomly constructed negative pairs based on the GF dataset, there were only
4 pairs with the same first name and one pair with same last name. However
in a real application the identification algorithm must identify a candidate
user in a group of users who usually belong to the same language, culture or
region. In general the candidates show a high similarity/homophily resulting
in a significant amount of similar fields. Therefore, applying a classifier trained
on a dataset containing only random negative instances may result in a high
rate of false positives. Thus, we propose two further methods to construct
negative instances by taking into account these issues, as shown in Figure 3.5.

In the first method (Train2 in Fig.3.5), we build negative instances to
provide a medium level of difficulty for the discrimination. To do this, 50% of
negative instances are constructed randomly. The remaining 50% are set up
in a way so that each negative instance has similar values at least in one field.
This ensures that the number of negative instances with similar values are
the same for each field. In the second method (Train3 in Fig.3.5) we construct
negative instances to provide a more difficult setting. All negative instances
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Fig. 3.5. The architecture of the proposed approach.

are set up in a way so that each negative instance has similar values at least
in one field. This ensures that the number of negative instances with similar
values are the same for each field.

We select our required instances from all possible negative instances that
can be constructed randomly from positive instances. We also create two dif-
ferent test sets to evaluate the accuracy and robustness of our different clas-
sifiers. We separate 30% of positive instances for testing. Our first test set
includes these positive instances and the same number of random negative
instances. The second test set includes positive and negative instances that
are difficult to discriminate; i.e., each positive instance has different values in
at least one field and each negative instance has similar values in at least one
field. Both test sets are balanced.

With respect to the identification between Google+ and Facebook pro-
files, we build the training datasets denoted as TrainGF.1, TrainGF.2 and
TrainGF.3, respectively. All the training sets include 11,200 instances: 5,600
negative instances and 5,600 positive instances.

Whereas all the negative instances in TrainGF.1 are produced randomly,
the negative instances in TrainGF.2 include 2,800 (50%) randomly constructed
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pairs, 1,400 (25%) pairs with same "first name" and 1,400 (25%) pairs with
same "last name". 50% of pairs with same "first name" or "last name" have
a same "gender": 1,400 pairs. We do not consider similarity in fields like
"username", because we found no negative pairs with same "username" in
all the possible randomly constructed negative instances. Moreover, personal
information (name, gender, etc.) has a main role in selecting usernames by
individuals. Therefore, negative instances with similarity in some personal
information fields may have a kind of similarity regarding "username". Finally,
negative instances in TrainGF.3 contain 2,800 (50%) pairs with the same "last
name" and 2,800 (50%) pairs with the same "first name". Lastly, 50% of
negative pairs in TrainGF.3 have a same "gender".

As for the construction of the test sets from the GF dataset, the first
test set — TestGF.1 — includes 2,400 positive instances and 2,400 random
negative instances. To create the second test set (TestGF.2), we select positive
instances that are not equal in "firstname", "lastname" or "gender". Negative
instances include (50%) pairs with the same "last name" and (50%) pairs with
the same "first name", while 50% of negative pairs in TestGF.2 have the same
"gender".

We apply the same procedure for the identification task between Google+
and Twitter. In this case 50% of negative instances in TrainGT.2 are built
randomly. Finding instances with exactly the same value for the field like "Full
name" is not possible since there is no match between the fields reporting first
and last name. Therefore the remaining 50% negative instances are built in
such a way so as to contain 33.3% pairs similar in the first part of the full
name, 33.3% of instances similar in the last part of the full name and 33.3% of
instances with same location. Also 50% of these instances have similarity in the
"description" field bigger than the average cosine similarity of "description"
field value in the all the positive instances. Finally, all negative instances in
TrainGT.3 are constructed in a way so that each instance has similar values
in at least one field.

To setup the test sets, the first testing set (TestGT.1) includes 50% positive
instances and 50% random negative instances, while the second testing set
(TestGT.2) includes positive instances that are different in at least one field.
All negative instances are built so as to have comparable values in at least one
field according to the same method adopted for constructing 50% of negatives
instances in TrainGT.2.
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3.4 Evaluation

Before evaluating the training sets on the different test sets, we validate our
approach using 10-fold cross validation. As in the testbed application, we
apply two different learning techniques: Multilayer Perceptron and Random
Forest. Our aim is to verify if different learning algorithms can further improve
the learning performance. These techniques have different learning biases,
and so we expect to observe different performances for the same task. As
seen in Table 3.2, results are not significantly different among these methods.
When sufficient information is available in features, the user identification
task is not sensitive to the choice of the learning algorithm. Using 10-fold cross

Table 3.2. Results of the evaluation on our datasets using 10-fold cross vali-
dation.

Train Random Forest Multilayer Perceptron
dataset Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure

TrainGF.1 97.38 0.974 0.974 0.974 97.19 0.973 0.972 0.972
TrainGF.2 93.48 0.937 0.935 0.935 93.21 0.935 0.932 0.932
TrainGF.3 91.63 0.921 0.916 0.917 91.59 0.922 0.916 0.917
TrainGT.1 94.82 0.950 0.948 0.948 94.22 0.944 0.942 0.942
TrainGT.2 91.27 0.916 0.913 0.912 91.35 0.917 0.914 0.913
TrainGT.3 91.63 0.919 0.916 0.916 90.76 0.909 0.908 0.907

validation, we get reasonably accurate results for both classification techniques
on different datasets. We evaluate the effectiveness of each method in training
the classifier on two test sets with different levels of discrimination. Table 3.3
shows the detailed results of applying the different learning techniques on the
datasets.

As shown in Table 3.3, we confirm that the construction of negative in-
stances in a random way is not a robust method. This is due to the fact
that performances vary greatly from one test set to the other. The training
on TrainGF.1 and TrainGT.1 results in the F-measure of 0.962 and 0.957
on TestGF.1 and TestGT.1 and in a worse F-measure of 0.551 and 0.844 on
TestGF.2 and TestGT.2, respectively. TestGF.1 and TestGT.1 contain ran-
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dom negative instances, while TestGF.2 and TestGT.2 include pairs that are
difficult to discriminate.

Table 3.3. Results of different classification techniques on the datasets.

Train dataset Test dataset
Random Forest Multilayer Perceptron
Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure

TrainGF.1
TestGF.1 0.962 0.964 0.962 0.962 0.96 0.961 0.960 0.960
TestGF.2 0.606 0.614 0.607 0.571 0.584 0.581 0.584 0.551

TrainGF.2
TestGF.1 0.926 0.933 0.927 0.927 0.927 0.936 0.928 0.927
TestGF.2 0.796 0.840 0.797 0.794 0.765 0.787 0.766 0.765

TrainGF.3
TestGF.1 0.890 0.890 0.890 0.870 0.916 0.926 0.916 0.916
TestGF.2 0.787 0.813 0.788 0.787 0.777 0.831 0.778 0.774

TrainGT.1
TestGT.1 0.954 0.955 0.954 0.954 0.957 0.958 0.957 0.957
TestGT.2 0.847 0.848 0.847 0.845 0.844 0.850 0.845 0.842

TrainGT.2
TestGT.1 0.933 0.935 0.933 0.933 0.919 0.921 0.920 0.919
TestGT.2 0.909 0.913 0.910 0.910 0.907 0.914 0.908 0.908

TrainGT.3
TestGT.1 0.897 0.898 0.898 0.898 0.901 0.901 0.901 0.901
TestGT.2 0.917 0.925 0.917 0.917 0.911 0.913 0.911 0.911

A different behavior characterizes the classifiers trained through the second
method (Train2) for building the training set. We observe the same patterns in
the evaluation results on both GF and GT datasets. In fact, classifiers trained
on datasets built based on the second method, TrainGF.2 and TrainGT.2,
get the best F-measure on the test sets and exhibit more robustness, while
classifiers trained on TrainGF.1 and TrainGT.1 show a high variation on the
different test sets.

We also consider tests on unbalanced datasets. Table 3.4 shows detailed
results on (75/25) and (25/75) unbalanced test sets. Although results on un-
balanced test sets are close to results on balanced train and test sets, our
second method shows better results also in the unbalanced setting. In fact,
the average results on unbalanced test sets including 25% positive instances
and 75% negative instances (TestGF.12, TestGF.22, TestGT.12, TestGT.22)
are slightly better than results on balanced tests sets. The results on (90/10)
and (10/90) unbalanced test sets are reported in Table 3.5. Again, they reveal
the effectiveness of our second method versus the others.

As shown in Table 3.3, results are not significantly different between the
two learning algorithms. In our experiments, Random Forest shows slightly
better results in most of the cases; consequently, its results on balanced
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Table 3.4. Results of different classification techniques on unbalanced test sets
((75/25) and (25/75)).

Train Test Distribution Random Forest Multilayer Perceptron
dataset dataset Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure

TrainGF.1 TestGF.11 75-25% 94.26 0.952 0.943 0.944 94.99 0.956 0.950 0.951
TestGF.12 25-75% 97.80 0.978 0.978 0.978 97.41 0.974 0.974 0.974
TestGF.21 75-25% 72.69 0.721 0.727 0.724 74.67 0.741 0.747 0.744
TestGF.22 25-75% 59.84 0.769 0.598 0.623 60.60 0.772 0.606 0.630

TrainGF.2 TestGF.11 75-25% 89.88 0.927 0.899 0.904 89.26 0.924 0.893 0.898
TestGF.12 25-75% 95.73 0.957 0.957 0.957 96.57 0.967 0.966 0.965
TestGF.21 75-25% 75.32 0.857 0.753 0.770 74.67 0.860 0.747 0.764
TestGF.22 25-75% 90.15 0.900 0.902 0.897 89.77 0.897 0.898 0.893

TrainGF.3 TestGF.11 75-25% 87.01 0.892 0.870 0.875 87.97 0.917 0.880 0.886
TestGF.12 25-75% 87.80 0.891 0.878 0.882 95.95 0.961 0.960 0.958
TestGF.21 75-25% 72.36 0.854 0.724 0.742 71.71 0.867 0.717 0.735
TestGF.22 25-75% 88.63 0.884 0.886 0.881 90.90 0.911 0.909 0.904

- TrainGT.1 TestGT.11 75-25% 94.82 0.956 0.948 0.950 95.34 0.959 0.953 0.955
TestGT.12 25-75% 95.68 0.957 0.957 0.957 96.20 0.962 0.962 0.962
TestGT.21 75-25% 83.43 0.827 0.834 0.828 84.43 0.837 0.844 0.837
TestGT.22 25-75% 60.96 0.797 0.610 0.632 67.10 0.815 0.671 0.692

TrainGT.2 TestGT.11 75-25% 92.24 0.938 0.922 0.925 90.34 0.920 0.903 0.907
TestGT.12 25-75% 95.86 0.958 0.959 0.958 93.44 0.934 0.934 0.934
TestGT.21 75-25% 90.41 0.923 0.904 0.908 89.22 0.915 0.892 0.897
TestGT.22 25-75% 94.29 0.943 0.943 0.943 92.54 0.925 0.925 0.925

TrainGT.3 TestGT.11 75-25% 91.03 0.922 0.910 0.913 88.96 0.901 0.890 0.893
TestGT.12 25-75% 91.37 0.921 0.914 0.916 88.62 0.897 0.886 0.889
TestGT.21 75-25% 90.41 0.922 0.904 0.908 90.02 0.924 0.900 0.905
TestGT.22 25-75% 94.73 0.948 0.947 0.948 95.17 0.951 0.952 0.951

datasets will be the reference method in the following experiments. Specif-
ically, we analyze 1) how the classifiers, trained with different training sets,
perform in the test bed application, and 2) whether our proposed method for
user identification outperforms other methods in the literature.

3.4.1 Finding candidate users

We repeated the test bed experiment: namely, overlapping the neighborhoods,
adopting the classifiers trained on the different sets. The results reported in
Figure 3.4 show that the classifier trained on TrainGF.2 exhibits the best re-
sults, with three matches per neighbor on average, while the classifier trained
on TrainGF.3 obtains the worst result with 21 matches per neighbor on aver-
age.

Since the Random Forest algorithm gives us the probability of a candidate
username belonging to an individual, we can rank the candidates so as to verify
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Table 3.5. Results of different classification techniques on unbalanced test sets
((90/10) and (10/90)).

Train Test Distribution Random Forest Multilayer Perceptron
dataset dataset Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure

TrainGF.1 TestGF.11 90-10% 93.86 0.962 0.939 0.945 94.26 0.961 0.943 0.948
TestGF.12 10-90% 98.78 0.988 0.988 0.988 97.97 0.981 0.980 0.980
TestGF.21 90-10% 76.19 0.821 0.762 0.789 78.57 0.841 0.786 0.811
TestGF.22 10-90% 54.09 0.865 0.541 0.628 55.45 0.875 0.555 0.639

TrainGF.2 TestGF.11 90-10% 87.39 0.944 0.874 0.893 87.05 0.942 0.871 0.891
TestGF.12 10-90% 98.58 0.986 0.986 0.986 98.45 0.984 0.985 0.984
TestGF.21 90-10% 71.82 0.929 0.718 0.776 70.23 0.922 0.702 0.764
TestGF.22 10-90% 94.09 0.940 0.941 0.940 94.09 0.940 0.941 0.940

TrainGF.3 TestGF.11 90-10% 85.97 0.938 0.860 0.882 85.63 0.939 0.856 0.880
TestGF.12 10-90% 96.69 0.968 0.967 0.967 98.58 0.986 0.986 0.986
TestGF.21 90-10% 67.85 0.927 0.679 0.745 65.87 0.926 0.659 0.729
TestGF.22 10-90% 93.18 0.930 0.932 0.931 95.00 0.947 0.950 0.947

TrainGT.1 TestGT.11 90-10% 93.99 0.963 0.940 0.946 94.82 0.966 0.948 0.953
TestGT.12 10-90% 97.30 0.975 0.973 0.974 96.48 0.970 0.965 0.966
TestGT.21 90-10% 87.05 0.876 0.871 0.873 88.24 0.884 0.882 0.883
TestGT.22 10-90% 61.05 0.883 0.611 0.688 62.10 0.893 0.621 0.696

TrainGT.2 TestGT.11 90-10% 91.09 0.953 0.911 0.922 89.85 0.947 0.899 0.912
TestGT.12 10-90% 97.51 0.976 0.975 0.975 95.85 0.963 0.959 0.960
TestGT.21 90-10% 88.96 0.939 0.890 0.904 87.76 0.936 0.878 0.895
TestGT.22 10-90% 94.21 0.944 0.942 0.943 92.63 0.930 0.926 0.928

TrainGT.3 TestGT.11 90-10% 90.68 0.945 0.907 0.918 89.64 0.942 0.896 0.910
TestGT.12 10-90% 90.89 0.944 0.909 0.919 88.19 0.932 0.882 0.898
TestGT.21 90-10% 89.20 0.940 0.892 0.906 88.48 0.943 0.885 0.901
TestGT.22 10-90% 94.21 0.947 0.942 0.944 95.26 0.950 0.953 0.951

whether or not the first positions contain the right profile. Specifically, for each
user u in the Google+ neighborhood, letM be the set of neighbors in Facebook
identified by the classifier and, for each nodem ∈M , let Pm be the probability
that m is the same individual as u. We selected as a correct matching the m
with the highest probability. Both the Google+ and Facebook neighborhoods
were checked manually for overlapping users. Methods for manual checking
were: checking for equal names, checking for similar profile pictures and other
available information. In 87.75% of the cases, the right profile happened to be
in first position by using TrainGF.2. This percentage falls to 10% and 82%
when using TrainGF.1 and TrainGF.3, respectively. All experiments in this
section show that the classifier trained on the dataset constructed through
our second method (Train2) exhibits better performances in a real scenario.
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3.4.2 Comparison with existing algorithms

The average performance of the classifiers trained on datasets based on the
second method (TrainGF.2 and TrainGT.2) is better than the others. Now we
need to compare the performance of the classifiers trained on these datasets
with some acceptable approaches in the literature. Thus, we consider Vosecky
et al. [66] and Carmagnola and Cena [15] methods for comparison. For imple-
menting these approaches, we have to calculate the required parameters and
thresholds on TrainGF.2 and TrainGT.2 and then evaluate the methods on
the test sets.

In Carmagnola and Cena [15] each identification property is characterized
by three parameters to calculate the importance factor of each property in the
identification process: a) level of uniqueness (UL), which represents how much
a property may assume the same value across different users. This property
is directly related to the capability of identifying the user; b) values per user
(VpU), representing the possibility for a feature, to be provided with different
values for a unique user to the systems s/he interacts with and c) misleading
level (ML), expressing the probability, for a feature, to be provided with a
false value. VpU and ML are inversely related to the ability to identify the
user. We report the values assumed by these three factors in Table 3.6.

Table 3.6. Calculated parameters for Carmagnola and CenaâĂŹs approach.

Username First name Last name Gender
TrainGF.2 UL 1.0 0.868 0.827 0.636

VpU 0.999 0.224 0.243 0.021
ML 0.520 0.218 0.242 0.056

Username Full name Location Description
TrainGT.2 UL 1.0 1.0 0.559 1.0

VpU 0.997 0.534 0.771 0.995
ML 0.493 0.343 0.477 0.493

After calculating the importance factor of each property by using UL,
VpU and ML, we use the following formula to combine the importance factors
values of all the matching properties.

IF = p+ (1− p)q + (1− p)(1− q)m+ (1− p)(1− q)(1−m)n (3.1)
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where p, q, m and n represent the importance factor of each identification
property whose values match. The IF must exceed the importance factor
threshold for the user to be considered as identified user.

Using the parameters and threshold of 0.82 calculated on TrainGF.2, the
F-measure of 0.816 and 0.490 is obtained on TestGF.1 and TestGF.2, respec-
tively. Moreover, by calculating the parameters and the threshold of 0.45 on
TrainGT.2, the best F-measure of 0.659 and 0.602 is obtained on TestGT.1
and TestGT.2, respectively. The main weakness of the Carmagnola and Cena’s
approach is that it uses only the exact match as similarity measure. That also
results in the lower accuracy on TestGT.1 than on TestGF.1. Moreover, since
in our GT dataset almost half of the available fields are not name-based, in-
cluding "location" and "description", the exact match is not a good choice
for comparing these fields.

Since TrainGT.2 and TestGT.2 contain negative instances with similarity
in the first part or last part of full names, better results are observed on
TestGT.2 than TestGF.2. It can be observed that our method outperforms
the method of Carmagnola and Cena by 0.111, 0.304, 0.274 and 0.308 on
TestGF.1, TestGF.2, TestGT.1 and TestGT.2, respectively.

In Vosecky et al. [66] a similarity vector V is defined as V (P s1, P s2) =<

v1, v2, ...vn >, such that vi = compi(fi,P s1 , fi,P s2) where fi,P s1 is the ith field
of profile P s1 , for eachvi, 0 � vi � 1, |V | = |P s1| = |P s2|.

For the purpose of the vector comparison algorithm, three categories of
field matching are distinguished: exact matching, partial matching and fuzzy
matching. A weight vector is defined to control the influence of each profile
attribute on the overall similarity. In line with the Vosecky’s method we se-
lected the weights and thresholds on our datasets, as reported in Table 3.7.
By calculating thresholds of 1.15 and 0.45 on TrainGF.2 and TrainGT.2, we

Table 3.7. Vosecky’s weight vectors for our datasets.

Calculating weights on: Username First name Last name Gender
TrainGF.2 1.2 0.5 0.7 0.2

Username Full name Location Description

TrainGT.2 0.8 0.9 0.4 0.2
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observe that the experiments on TestGF.1, TestGF.2, TestGT.1 and TestGT.2
show the best F-measure of 0.852, 0.535, 0.816, and 0.781, respectively. Our
proposed method outperforms Vosecky et al’s on the TestGF.1, TestGF.2,
TestGT.1 and TestGT.2 by 0.075, 0.259, 0.117 and 0.129, respectively. As
shown in Table 3.8, Vosecky’s method exhibits better results if compared with
Carmagnola and Cena’s approach since the former exploits different similarity
scores through the VMN function.

These experiments reveal that not only our proposed approach is robust
and achieves good results on the different test sets, but also that it outperforms
both Vosecky et al.’s and Carmagnola and Cena’s approaches.

Train sets Test sets Carmagnola and Cena. Vosecky et al. Our approach

TrainGF.2
TestGF.1 0.816 0.852 0.927
TestGF.2 0.490 0.535 0.794

TrainGT.2
TestGT.1 0.659 0.816 0.933
TestGT.2 0.602 0.781 0.910

Table 3.8. Performance comparison of the profile based approaches.

3.4.3 Features Importance Analysis

Until now, we proposed different features measuring similarity between two
fields. In this section we analyze how the feature’s importance changes among
datasets by using Information Gain Ratio.

The most import features in TrainGF.1 are all based on first name. This
result shows the flaw of the random selection approach as the number of
negative instances with same first name is too small to properly perform the
learning task. In TrainGF.2 we constructed enough negative instances with the
same first and last names. In this case, features based on other attribute like
username is ranked higher in the list, which is a more reasonable result. The
most important features in TrainGF.3 are based on username. In TrainGT.1,
TrainGT.2 and TrainGT.3 , the most important features are all based on full
name.

All these results show the importance of name-based features (username,
first name, last name, full name) in the identification process. The five top
important features on the datasets are presented in Table 3.9.
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Table 3.9. Most important features using the Random Forest classifier.

TrainGF.1 TrainGF.2 TrainGF.3 TrainGT.1 TrainGT.2 TrainGT.3

1 First names LCS First names LCS Usernames LCSS Full names LCS Full names LCSS Full names LCSS
2 First names LCSS First names LCSS Usernames JS Full names LCSS Full names LCS Full names LCS
3 First names JS Usernames LCSS Usernames LD Full names LD Full names JS Full names JS
4 First names LD First names JS First names LCS Full names JS Full names LD Full names LD
5 Last names LCS Usernames JS First names LCS Usernames LCS Usernames LCSS Usernames LCSS

3.5 Conclusion

In this chapter we have proposed an innovative methodology for connecting
people across Google+/Facebook and Google+/Twitter. Our method adopts
minimal common information available through the official APIs of Facebook,
Twitter and Google+ to drive features that can be used by supervised learning
to effectively connect users across different online social networks. Relying on
information available through APIs, our approach reduces privacy concerns
as well as difficulties in collecting user information. By focusing on all com-
mon properties that characterize the systems under study, rather than on a
predefined set of properties, we show that a better identification process can
be achieved. It is one which simply uses available information across different
platforms.

We constructed negative instances in three different ways, going beyond
the commonly adopted random selection to evaluate the robustness of our
identification algorithm on different datasets. Results show that the approach
can lead to a very effective identification method and methodology for building
reliable datasets. Moreover, we analyzed the success of our method in a real
scenario built on Google+/Facebook neighborhoods.

Experiments show the advantages of the proposed method in compari-
son to previous methods; they also indicate that constructed features contain
adequate information for connecting corresponding users.

Future work includes defining a framework for user identification across
multiple online social networks and analyzing the benefit of connecting users
in different domains.



Chapter 4

Effect of offline sociality on online interactions

Social network growth and evolution has been the subject of a wide literature
in the last decade, but still it is an open problem and a very challenging, yet
critical, issue. The fundamental process of network growth is link creation.
Link creation mechanisms have been extensively studied and modeled by using
features intrinsic to the network itself, shedding a light on the importance of
common neighbors, triadic closure and homophily [3, 27, 58]. We are all aware
and often arguing[56] that also the real life of users plays an important role in
their online friendship creation. Online social networks, especially Facebook,
born to be the mirror of human sociality and, at least partially, this still
holds. Meetings and events are favorite ways to get new friends in real life.
But the mechanism and the extent of the impact of offline meeting events on
the creation of online friendships has not yet been studied, mainly because of
the lack of available dataset.

More and more meetings and events are advertised on online social net-
works where people seek for their interesting events or are invited to an event.
They announce their attendance some days before the event and participate
the event physically on the day of the event. We leverage this functionality
of Facebook to collect a dataset of events advertised on Facebook along with
the information of nodes attending the event and temporally annotated new
links between users interested in the event.

We take a first step towards understanding the effect of offline events on
the graph structure of the social network where they are advertised. More
precisely, we perform a temporal analysis of the event social network, con-
stituted by people declaring to attend the event on Facebook and the links



4.1 Dataset 64

between them, and evaluate how it evolves during the event time period which
is assumed to last from one week before to one week after the event occurs.
We measure the network evolution from a global perspective by considering
its communicability and evaluating whether the event increases the total com-
municability of the event network. From a ’per node’ perspective, we evaluate
how much the event helps people expanding their ego-networks by consider-
ing user’s degree variation during the event time period. Since one common
mechanism of link creation in social networks is triadic closure, to make in-
depth-study, we compute the clustering coefficient and the number of new
triangles, too.

We discover that offline events highly impact the online social networks,
actually. To the authors’ knowledge, there is no research addressing the issue
of evaluating the impact of events on social networks like Facebook, but Liu
et al [43] who studied a very special class of online social networks, the event-
based social networks(EBSNs), only.

4.1 Dataset

Event 
scraper

"http://upcoming.yahoo.com/searc
h/?search_placeid=nE22HW2eAJQa
f7o-&type=Events"

Event names
Keywords 
Extractor

Keywords Facebook 
Events 

Extractor

"https://graph.facebook.com
/search?fields=id,name,venu
e&type=event&q="+keyword
+"&access_token="+token

venue 
filter

Event IdAttending 
People 

Extractor

"https://graph.facebook.com/
"+eventid+"/"+"attending"+"?

access_token="+token

Relations 
Extractor

Attending 
peopleIDs.xml

"https://graph.facebook.com/fql?q=SELECT uid1 FROM 
friend WHERE uid1= "+attending_Id[i]+ and uid2="+
attending_Id[k] +"&access_token="+token

Links between 
Attending 
people.xml

Fig. 4.1. Data collection procedure.

Using Facebook API and web scraping, we extracted a set of events that
toke place in a European city 1. To this aim, we developed a crawler to re-
1 The visualization of the dynamic graphs of events can be found
at the following link:https://www.dropbox.com/sh/00waikvphcu0dsh/
AADVqFqSLUF-5YA7cIbZ9s5Za?dl=0

https://www.dropbox.com/sh/00waikvphcu0dsh/AADVqFqSLUF-5YA7cIbZ9s5Za?dl=0
https://www.dropbox.com/sh/00waikvphcu0dsh/AADVqFqSLUF-5YA7cIbZ9s5Za?dl=0
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trieve the name of the events from Upcoming Yahoo web site2. We split each
event name into its keywords in order to gather more events by querying each
keyword from Facebook Graph API. The collected events whose venue field is
not our target city are filtered out. After requesting the username of attend-
ing people from the API, it was possible to retrieve the friendship relations
between them. Events with too few attending people are not considered in the
following analysis. The detailed method of our data collection is illustrated in
Figure 4.1.

The collected events range from cultural, art, musical and entertainment
activities to informal get-together. The list of the events and their details
are presented in Table 4.1. We consider the social network built by people
attending the events and their friendship relations on Facebook and study its
evolution from one week before the start date to one week after the end date.
Note that we consider only people attending the events as nodes and only
friendships between attendees as links. The number of nodes and links of the
six events advertised on the social network at the end of the observation period
is presented in Table Table 4.1, while their evolution over time is presented
in Figure 4.2.
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Fig. 4.2. The evolution of the number of nodes and links over time for each
event. Vertical dashed lines indicate the start and end date of the event.

2 http://upcoming.yahoo.com
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Table 4.1. Events advertised on Facebook and some properties about the re-
lated social networks.

Event ID Event name Start Date End date Number of nodes Number of links
E1 Otello Party 5/9/13 5/19/13 122 230
E2 Image Art Fair 5/10/13 5/10/13 90 194
E3 Radio Live Concert 5/11/13 5/11/13 29 53
E4 Adam Carpet Live Concert 5/11/13 5/12/13 99 250
E5 Talent Scout Festival 5/18/13 5/18/13 36 69
E6 A Comics Festival 5/18/13 5/19/13 306 550

4.2 Results

We perform a temporal analysis of the event social networks given by all Face-
book users attending the event and their links. Specifically, we investigate how
the networks change at macroscopic level by means of the network communi-
cability, at mesoscopic level by analyzing the clustering coefficient trend and
at microscopic level by observing the increase of users’ degree.

4.2.1 Communicability

To evaluate the impact of an event on the social network of its attendees from a
macroscopic point of view, we analyze how its communicability changes over
the event time period. In fact, in this very special kind of social networks,
which are very limited and driven by a meeting, the most relevant feature is
understanding how a piece of information might flow across the whole network
and the communicability measures how easy is to send a message between two
nodes.

Many topological and dynamical properties of complex networks are de-
fined by assuming that most of the contents on the network flows along the
shortest paths. However, there are different scenarios in which non shortest
paths are used to reach the network destination. Thus the consideration of
the shortest paths only does not account for the global communicability of a
complex network [19]. Estrada and Hatano [19] defined the communicability
between two nodes by giving larger weights to the shorter walks and smaller
weight to the longer walks. The communicability between two distinct nodes
i and j is computed as:
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C(i, j) =
∞∑
k=1

(Ak)ij
k!

= [eβA]ij

where A is adjacency matrix of the network, and β is a tuning parameter. The
normalized total communicability of a graph G including N vertices is defined
as:

TC(G) =
1

N

N∑
i=1

N∑
j=1

C(i, j)

We compute the normalized total communicability (for β = 1) for the network
of each event and for each time snapshot within a time window of one day.
Figure 4.3 shows the evolution of the total communicability of all events.
Vertical dashed lines indicate the start and the end dates of the offline event.
The total communicability of all the events on our dataset increases over
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Fig. 4.3. The total communicability of the event graphs, FGs and RGs over
time.

time with a similar pattern of growth. The communicability increases slowly
initially, then increases exponentially, very similarly to the S-shaped growth
curve. It rapidly increases from one day before the event, reaches its maximum
in one to six days after it and then reaches a plateau. What is the reason of
this growth pattern? The reason can be found or in new people joining the
event or in old attendees creating new friendships among them. The former
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process has the effect of enlarging the event network, while the latter densifies
it.

To distinguish between the two process, we observe how the communica-
bility of a fixed group of people changes during the event. This way, we can
isolate the effect of the network densification and check if it is the cause of
the increase in the network communicability. Since the maximum increase in
the number of nodes is mostly observed from the first day of the event period
to the day before the offline event occurs, we consider as a fixed group (FG)
the set of people present in the day before the offline event occurs when the
maximum increase rate of attendees is usually registered.

Besides, we compare the communicability evolution between the network
induced by FG and its random counterpart RG which is obtained by adding
links randomly keeping fix the node set FG. Figure 4.3 shows the total com-
municability temporal behavior of the FG and RG networks in all events. For
all the events, the communicability evolution of FG and RG networks are very
similar and exhibit a small increase, if compared with the relevant growth ob-
served in the global social event networks. Results show that an offline event
advertised on Facebook enlarge attendees network and make easier the infor-
mation spreading mainly because of new nodes and also for the creation of
new links.

4.2.2 Clustering coefficient

At the mesoscopic scale, a network is described by clique and community. In
the limited networks here considered, the most relevant constituents are triads
which we measure by means of the clustering coefficient and the evolution of
the number of triangles present in the network.

The clustering coefficient is the closeness of friend cliques in social networks
[16]. The local clustering coefficient for an individual node i with Ki neighbors
and Γi edges between his neighbors is

ci =
Γi

Ki(Ki − 1)

while the total clustering coefficient is defined as:

C =
1

N
Σci

Kaiser [32] have shown that current definitions underestimate neighbor-
hood clustering in a networks with many isolated or leaf nodes for which it is
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assumed: ci = 0. Thus, instead of using N as the number of evaluated nodes
for the global C, a new number N ′ indicating all nodes with defined local
clustering should be used for a global measure C ′. The relation between the
new coefficient C ′ and the traditional measure C can be derived from the
fraction of nodes that have one or zero neighbors, θ by

C ′ =
1

1− θ
C (4.1)

Since in the networks of events there is a considerable number of isolated and
leaf nodes, we use 4.1 for calculating the clustering coefficient.

As shown in Figure 4.4, negligible variations over time are observed in the
average clustering coefficient for all the events, but the first one which exhibits
the maximum observed variation of 0.2. Figure 4.4 also shows the average
clustering coefficient of FG and RG networks for all the events. The changes
of the average clustering coefficient in the FG networks are also negligible,
while in RG networks it decreases slightly more.
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Fig. 4.4. Average clustering coefficient of the events, FGs and RGs over time

To do more investigating on effect of event on number of triangles, one
possible way is comparing number of triangles in first day of each event period
to the last day. If the number of triangles in last day is higher than the first
day it is more sensible to ascribe reason of this increase to new people joining
the event whose friends already attend the event. Table 4.2 shows the number
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of triangles in first and last day of each event. However, changes in number

Table 4.2. Number of triangles in the first day and the last day of each event.

# of triangles(the first day) # of triangles(the last day)
E1 2 216
E2 80 123
E3 163 438
E4 200 331
E5 26 51
E6 187 410

of triangles in fixed group of nodes in the network of the event, with high
probability is the effect of event. We count the number of triangles of FG
and RG in the day before starting date and the last day. Table 4.3 shows the
results. In all events number of triangles in the last day of FG is bigger than
RG. All the results in this section reveals again this fact that new friendships
are created during events and these new friendships close triangles.

Table 4.3. Number of triangles of FGs and RGs in the day before starting
date and the last day

Number of triangles
Event id The day before Starting (FG,RG) FG-The last day RG-The last day

E1 158 164 162
E2 120 120 120
E3 382 410 386
E4 261 269 263
E5 34 51 39
E6 241 265 244

4.2.3 Degree

We compute the complementary cumulative distribution function (CCDF) of
users’ degree in the first and last days of each event period. As shown in Figure
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4.5 all events in the last day include nodes with higher degree than the first
day.
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Fig. 4.5. CCDF of the degree.

But is this growth due to new users with higher degree attending the event
or to old users who are expanding their ego-networks? To answer this question,
we compute the CCDF of the users’ degree in the FG and RG networks. The
results are presented in Figure 4.6. For almost all events, the FG network in
its last day includes nodes with degree higher than the one measured at the
starting day of the observation and this effect is much more evident than in
the random network RG.

We further consider the degree difference of each user between his first
attendance and the last day of the event. The percentage of users expanding
their ego-networks during E1, E2, E3, E4, E5 and E6 are 34%, 32%, 73%, 44%,
36% and 33%, respectively. The detailed results are summarized in Table 4.4.
In this table, column one shows the event ID, while the second, third and
fourth column present the percentage of users whose degree does not increase,
increases between 1 to 10 and increases more than 10, respectively.

These results show that most of the nodes increase their degree during
an event. To investigate whether this increase is due to new links between
attendees or to new nodes who join the network, we consider the FG network
as done for the communicability measure. We consider the degree variation of
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Fig. 4.6. CCDF of the degree in FGs and RGs

Table 4.4. The percentage of users increasing their degree from their first day
of online attendance to the last day.

Event ID without increase Between 1-10 More than 10
E1 66% 32% 2%
E2 68% 31% 1%
E3 27% 73% 0%
E4 56% 42% 2%
E5 64% 36% 0%
E6 67% 33% 0%

each nodes in FG between the day before the offline event starts and the last
day. Detailed results are shown in Table 4.5 and Figure 4.7.

These results show that one of main reasons of the higher degrees observed
in the last day of the events period is the creation of new friendships between
the attending users. One remarkable result is that the degree of more than
80% of users with degree equal to 0 in FG remain zero during the event. That
shows the important role of friends in creating new friendship in the network
of events. One the other hand, as shown in figure 4.7, users with higher degree
exhibit the greatest increase in the number of their friends.
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Table 4.5. The percentage of users in FGs expanding their degree.

Event ID Without increase Between 1-10 More than 10
E1 67.11% 31.57% 1.32%
E2 94.19% 5.81% 0%
E3 50% 50% 0%
E4 72.53% 27.47% 0%
E5 68.57% 31.43% 0%
E6 72.70% 27.30% 0%

Degree of the nodes in the day before start day

10
0

10
1

10
2

D
e

g
re

e
 v

a
ri
a

ti
o

n
 i
n

 t
h

e
 l
a

s
t 

d
a

y
 

0

2

4

6

8

10

12
E1

E2

E3

E4

E5

E6

Fig. 4.7. Correlation between the degree of nodes in FGs the day before the
start date and its variation.

4.3 Conclusion

In this chapter we take first steps towards understanding effect of offline events
advertised on online social network on the graph structure of social networks.
Some temporal analyses on events advertised on Facebook has been done.
Communicability, clustering coefficient and degree variations for time windows
of more than 15 days for each event was examined. We analyze the results and
reveal the effect of events in new friendship creation between the attending
people. The most activity and link creation take place during one day before
event until one to six day after event. In future works by enlarging the dataset
we could investigate the effects of events on the online social network focusing
on specific domains such as culture and politics.





Chapter 5

Conclusion

The final Chapter concludes the dissertation by discussing and summariz-
ing the main findings and the contributions. The main motivation underlying
this dissertation conducted during this thesis is the increasing popularity of
those social phenomena such as social media and, in particular, Online So-
cial Networks (OSNs). In depth, in the present dissertation, we presented a
comprehensive analysis on social networks, that are (i) the users’ behavior
across multiple social media sites.(ii) user identification across Online Social
Networks (iii) the effect of users’ offline meetings on their online friendship
creation. In conclusion, we recall the main contributions of this dissertation:

(a) We studied in depth the human behavior across different online social
networks on the new rich dataset that captures the typical trend in today’s
users.

The results of our analysis on the usage of multiple platforms stress the
importance of a multiplex approach when conducting studies which rely on
online social networks. In fact, people are expressing their identity and their
behaviors through multiple communication media. This observation is further
strengthened by the results about active users. The fact that 73% of active
users publish on at least two social sites means that people choose the right
online channel to communicate and convey their contents.

The dataset allowed us to investigate the maintenance of users’ popular-
ity and centrality across social sites. The analysis led to not straightforward
results and indicated that a user’s popularity in a given social site barely
corresponds or does not correspond at all to his/her popularity on another
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social platform. Nevertheless, a more evident positive correlation between the
posting activities across social platforms exists. Moreover, the dynamics of
the online activity by a true multidimensional approach were evaluated. We
found that the posting activity on online social media is bursty and highly
heterogeneous.

This part of our work could be extended to analyze the reasons behind the
weak correlations that we observed. In particular, it could be verified whether
the social norms of the online platforms and the services they provide have
an impact on the centrality of the users. Moreover, the interaction sequences
through frequent pattern analysis could be investigated in order to highlight
whether users are characterized by specific usage subsequences, i.e., they have
a predefined scheduling in the usage of their preferred social media.

(b) we addressed the problem of user identification across online social net-
works by treating it as a classification task. We showed that using the standard
approach to select negative instances in the literature results in a high number
of false positives in practice. In fact, we stressed that the random construction
of negative pairs results in a classifier which, in a real application, wrongly
matches a lot of profiles to a single user. Three different ways for constructing
negative instances were proposed to evaluate the robustness of our identifica-
tion algorithm on different datasets. The results confirmed that the approach
can lead to very effective identification method and methodology to build re-
liable datasets. Experiments revealed the advantages of the proposed method
against previous methods and also indicated that constructed features contain
adequate information for connecting corresponding users. Relying on mini-
mum information available through APIs, the approach reduces the privacy
concerns and the difficulties with collecting the users’ information.

Our work could be extended by defining a framework for user identification
across multiple online social networks and analyzing the benefit of connecting
users in different domains.

(c) We took the first step towards understanding the effect of offline events
on the graph structure of the social network where they are advertised. More
precisely, we performed a temporal analysis of the event social network, con-
stituted by people declaring to attend the event on Facebook and the links
between them, and evaluated how it evolves during the event time period.
The temporal analyses, including Communicability, clustering coefficient and
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degree variations, revealed that offline events leave an impact on the online so-
cial networks and make easier the information spreading. The results showed
that new friendships are created during events and that this new friendships
creation is one of the main reasons of triangle closure and the higher degrees
observed in the last day of the events period.

Our work could be extended by enlarging the dataset and focusing on the
effects of offline events in specific domains such as culture and politics on
the online social network. Moreover, the effect of the offline meeting could be
investigated on the online relationship of different age groups.
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