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Abstract: Based on a novel extension of classical Hoe�ding-Fréchet bounds, we provide an upper VaR bound
for joint risk portfolios with �xed marginal distributions and positive dependence information. The positive
dependence information can be assumed to hold in the tails, in some central part, or on a general subset of
the domain of the distribution function of a risk portfolio. The newly provided VaR bound can be interpreted
as a comonotonic VaR computed at a distorted con�dence level and its quality is illustrated in a series of
examples of practical interest.

Keywords: Value-at-Risk; Dependence Uncertainty; Positive Dependence; Model Risk

MSC: 91B30 (primary); 60E15 (secondary)

1 Motivation and preliminaries
Establishing reliable bounds for the Value-at-Risk (VaR) of a joint portfolio is a relevant subject in connection
with the amount of risk capital in the Basel II/III regulations for the �nance sector aswell aswith the Solvency
regulations for the insurance sector. A series of results and di�erentmethods have been established in the last
decade to �nd good bounds for the VaR of a joint portfolio based on available information on its dependence
structure.

The paper [15] gives a survey of the methods available concerning the computation of VaR bounds when
only the marginal distributions of the individual risk factors of a portfolio are known.

For the casewhere extra dependence information is assumed, improved VaR bounds are also available in
the literature. For instance, in [14, Section 4] it is shown that higher order (typically bi-dimensional) marginal
information on the joint portfolio, when available, may lead to strongly improved bounds. The worst VaR
bound can be similarly reduced by estimating the values of the copula on some subset of its domain (see [2])
or putting a variance constraint on the total position (see [3]). E�ects of this dependence information on the
reduction of the VaR bounds are described in [6] and in [2]. Some higher ordermarginal information has been
investigated in [13], [23], [14], and in [26]. The reduction of VaR bounds by inclusion of additional second or
higher order moment information was described in [3] and in [4].

This paper continues the streamline of easily computable and practical bounds on VaR which has been
initiated in [6] and further extended in [26]. Based on anovel extension of classical Hoe�ding-Fréchet bounds,
we provide an upper VaR bound for a joint risk portfolio with �xed marginal distributions and positive de-
pendence information assumed on a subset of the domain of its distribution function. The newly provided
VaR bound can be interpreted as a comonotonic VaR computed at a distorted con�dence level and its quality
is illustrated in a series of examples.
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Summary of the paper
In Section 2, we set the probabilistic framework and study so-called improved standard bounds on the VaR
of a joint portfolio. These bounds are not new but we provide some insight on their computation which will
turn out to be useful in the remainder of the paper.

In Section 3 we state an extension of classical Hoe�ding-Fréchet bounds and we use this extension to
weaken the assumptions under which the improved VaR bounds given in Section 2 hold. In particular we
consider the case when positive dependence information is assumed to hold in the tails, in some central
part, or on a general subset of the domain of the distribution function of a risk portfolio. We provide sev-
eral applications and numerical results which show that the improvement given by the novel bounds can be
considerable depending on the dependence information provided.

Value-at-Risk.
Throughout the paper, the quasi-inverse f −1 of an increasing function f : A ⊂ R→ [0, 1] is de�ned as

f −1(u) := inf
{
x ∈ A : f (x) ≥ u

}
, for u ∈ (0, 1],

and f −1(0) := inf
{
x ∈ A : f (x) > 0

}
. The Value-at-Risk (VaR) of a loss random variable Y, computed at a

probability level α ∈ (0, 1), is then de�ned as

VaRα(Y) = F−1Y (α) = inf{x ∈ R : FY (x) ≥ α},

where FY (x) = P(Y ≤ x) is the distribution function of Y.

Basic notions of copula theory.
Throughout the paper we extensively use the concept of a copula to model the dependence structure within
a risk portfolio. The reader not familiar with the theory of copulas is referred to the textbook references [21],
[19] and [9].

A copula C is a n-dimensional distribution function on [0, 1]n with uniform marginals. Given a copula C
and n univariate marginals F1, . . . , Fn, one can always de�ne a distribution F on Rn having these marginals
by

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)), x1, . . . , xn ∈ R. (1.1)

Sklar’s theorem states conversely that we can always �nd a copula C coupling the marginal distributions of
a �xed joint distribution F through the above expression (1.1). For continuous marginal distributions, this
copula is unique. A basic example of a copula is the independence copula Π(u1, . . . , un) = Πni=1ui . The name
of this copula derives from the fact that the risk vector (X1, . . . , Xn) has copula Π if and only if its marginal
risks Xi are independent.

It is well known that the joint distribution FX of a randomvector Xwithmarginal distributions F1, . . . , Fn
satis�es

F(x) ≤ FX(x) ≤ F(x), x ∈ Rn , (1.2)

where

F(x) =
( n∑
i=1

Fi(x) − n + 1
)
+

and F(x) = min
1≤i≤n

Fi(xi)

are the so-called lower and, respectively, upper Hoe�ding–Fréchet bounds. Setting Fi = U(0, 1), 1 ≤ i ≤ n,
one obtains the corresponding bounds for any copula C:

W(u) ≤ C(u) ≤ M(u), u ∈ [0, 1]n ,

whereW(u) = (u1+· · ·+un−n+1)+ and M(u) = min{u1, . . . , un}. Theupper Fréchet boundM is also called the
comonotonic copula and represents perfect positive dependence among themarginal risks. The lower Fréchet
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bound W is a well-de�ned copula only in dimension n = 2. In this case, it is called the countermonotonic
copula and represents perfect negative dependence between two risks.

When the copula of a risk vector X = (X1, . . . , Xn) is equal to M, that is when the marginal risks Xi are
assumed to be comonotonic, we have that the VaR for the aggregate portfolio S =

∑n
i=1 Xi is given by

VaR(S) = VaR+α(S),

where VaR+α(S) is the so-called comonotonic VaR de�ned as the VaR of the comonotonic sum and given by

VaR+α(S) =
n∑
i=1

VaRα(Xi) =
n∑
i=1

F−1i (α). (1.3)

In order to model some dependence scenarios, in the remainder of the paper we will also use the following
copula families:

(1) The Gumbel copula with parameter θ ≥ 1,

CGuθ (u1, . . . , un) = exp
(
−
[
(− ln u1)θ + · · · + (− ln un)θ

]1/θ)
,

The Gumbel copula interpolates between independence (CGu1 = Π) and comonotonic dependence
(CGuθ→∞ = M). The parameter θ can easily be calibrated using Kendall’s tau τ = 1 − θ−1 and exhibits
upper tail dependence λu(CGuθ ) = 2 − 21/θ.

(2) The Gaussian copula with correlation parameter −1 ≤ ρ ≤ 1,

CGaρ (u1, . . . , un) = Φρ
(
Φ−1(u1), . . . ,Φ−1(un)

)
. (1.4)

HereΦρ denotes the joint distributionof a zero-meanGaussian randomvectorwith equicorrelationmatrix
Σ, with ones on the main diagonal and o�-diagonal elements equal to ρ. Φ−1 is the quantile function
of a standard normal random variable. Similarly to the Gumbel, the Gaussian copula interpolates for
0 ≤ ρ ≤ 1 between independence (CGa0 = Π) and the comonotonic limiting case (CGa1 = M), and may as
well capture negative dependencewhen ρ < 0. In contrast however to CGuθ , CGaρ for ρ < 1 is asymptotically
tail independent, λu(CGaρ ) = 0. The Kendall’s tau rank correlation parameter is equal to τ = 2

π arcsin ρ.

2 Improved VaR bounds with dependence information
For a risk vector X = (X1, . . . , Xn) with Xi ∼ Fi , 1 ≤ i ≤ n, it is a classical problem to �nd good (best possible)
bounds for the distribution function or, equivalently, for the Value-at-Risk of the joint portfolio S =

∑n
i=1 Xi.

The worst-possible VaR value for S consistent with the �xed marginals is de�ned by

VaRα(S) = sup{VaRα(X1 + · · · + Xn) : Xi ∼ Fi , 1 ≤ i ≤ n}.

To determine the exact value of VaRα(S) there exist exact primal and dual representations which are
di�cult to evaluate or not available in general, see [25] and [35]. For general risk vectors, VaRα(S) can be
numerically evaluated via the Rearrangement Algorithm (RA) as described in [14]. It is well known (see for
instance [15] and references therein) that VaRα(S) can be much larger than the comonotonic VaR de�ned
in (1.3).

In order to moderate the worst-possible VaR estimate, we assume that positive dependence information
is available. Let Cl : [0, 1]n → [0, 1] be a componentwise increasing function satisfying

W(u) ≤ Cl(u) ≤ M(u), u ∈ [0, 1]n .

Positive dependence will be introduced in the form that a copula CX of the risk vector X satis�es CX(u) ≥
Cl(u), u ∈ [0, 1]n. When the marginals of a risk vector are �xed and Cl is a copula, this corresponds to the
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assumption X ≥lo Y, namely X is larger in the lower orthant order than Y, where Y is a risk vector with the
same marginal distributions of X and copula Cl. For more details on the lower orthant order, we refer the
reader to [31]. However, we stress that, for the results stated in this paper, Cl does not need to be a copula;
see Remark 3.2(2.) in [23]. For instance, Cl can be taken as a quasi-copula.

The following bound on the distribution of a joint portfolio with given marginals and lower bound on
its copula has appeared in various forms in the literature; see for instance Theorems 3.1 and 4.1 in [10] and
Theorem 3.11 in [30].

Proposition 2.1 (Improved standard bound). Let (X1, . . . , Xn) be a risk vector having marginal distribution
functions F1, . . . , Fn and copula CX satisfying CX ≥ Cl. Then

P
(
S ≤ t

)
≥ τCl (t) := sup

x∈U(t)
Cl(F1(x1), . . . , Fn(xn)), (2.1)

where U(t) =
{
x = (x1, . . . , xn) ∈ Rn :

∑n
i=1 xi = t

}
. The previous inequality is equivalent to the following VaR

bound:

VaRα(S) ≤ τ−1Cl (α) = inf
u∈Z(α)

n∑
i=1

F−1i (ui), (2.2)

where Z(α) =
{
u = (u1, . . . , un) ∈ [0, 1]n : Cl(u1, . . . , un) = α

}
.

Remark 1.

1) When Cl = W, no dependence information is assumed on top of themarginals and (2.1) gives the so-called
standard boundwhich has been derived in several ways in the literature; a history of the problem is given
in Example 4.1 in [27]. Hence the terminology of improved standard bound is adopted in Proposition 2.1.
The standard bound τW (t) is in general sharp only when n = 2; for counterexamples when n ≥ 3 see [12].
However, under some restrictive assumptions τW (t) is sharp also in higher dimensions n ≥ 3, e.g. when
W is a distribution function (see [7]).
Note however that in higher dimensions the Rearrangement Algorithm ([14]) allows to compute the sharp
bound VaRα(S) for risk vectors with general marginal distributions.

2) When CX ≥ Cl > W, dependence information within the risk vector X is introduced and we will show that,
even if in general τCl (t) is sharp only for n = 2, the improvement given by (2.2) compared to VaRα(S) can
be considerable.

3) Similar inequalities also hold for monotone increasing aggregation functions ψ(X) replacing the sum S =∑n
i=1 Xi; see [10], [30], [23] and references therein.

2.1 Explicit computation of improved standard bounds

The improved standard bound in (2.1) is not easy to determine in general in explicit form. Proposition 3.2
in [20] gives an easily computable expression of (2.1) when one assumes that the marginal distributions are
identical with ultimately decreasing density and the copula bound Cl is symmetric and satis�es an extra
second-order condition. In the following theorem we give a set of assumptions based on the notion of Schur-
concavity which are simple to check. For a de�nition and more details about Schur-concavity we refer the
reader to Chapter 3 in [18]. The diagonal section of a copula C is the function δC : [0, 1] → [0, 1] de�ned as
δC(u) = C(u, . . . , u). The de�nition holds similarly for general increasing functions Cl.

Theorem 2.2. Let (X1, . . . , Xn) be a risk vector having identical marginal distribution functions F1 = · · · =
Fn = F and copula CX satisfying CX ≥ Cl. Further assume that:

(i) Cl is Schur-concave;
(ii) F(x) is concave for all x ≥ F−1(α) − ξ , for some ξ > 0.
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Then, we have that
τ−1Cl (α) = nF

−1(α*),

where α* = δ−1Cl (α).

Proof. From the de�nition of a quasi-inverse we have that

τ−1Cl (α) = inf{t ∈ R : τCl (t) ≥ α}

= inf
{
t ∈ R : sup∑n

i=1 xi=t
Cl(F(x1), . . . , F(xn)) ≥ α

}
. (2.3)

Note that when xi → F−1(α) − ξ we have Cl(·) < α. Thus, we can restrict to considering xi ≥ F−1(α) − ξ and
rewrite

τ−1Cl (α) = inf

t ≥ n(F−1(α) − ξ ) : sup∑n
i=1 xi=t,

xi≥F−1(α)−ξ ,1≤i≤n

Cl(F(x1), . . . , F(xn)) ≥ α

 . (2.4)

Since F(xi) is concave for xi ≥ F−1(α) − ξ and Cl is Schur-concave by assumption, from point (ii) in Table 2
(p. 91) in [18] we obtain that Cl(F(x1), . . . , F(xn)) is Schur-concave and the supremum in (2.4) is attained at
the point (t/n, . . . , t/n), i.e.

sup∑n
i=1 xi=t,

xi≥F−1(α)−ξ ,
1≤i≤n

Cl(F(x1), . . . , F(xn)) = Cl(F(t/n), . . . , F(t/n)) = δCl (F(t/n)).

Let α* = δ−1Cl (α). Since W ≤ Cl ≤ M, notice that δCl (u) ≤ u, u ∈ [0, 1], and therefore α* ≥ α. Then, we �nally
obtain that

τ−1Cl (α) = inf{t ≥ n(F−1(α) − ξ ) : δCl (F(t/n)) ≥ α}
= inf{t ≥ n(F−1(α) − ξ ) : F(t/n) ≥ α*} = nF−1(α*).

Remark 2.

1) Every Schur-concave copula is symmetric, but the converse implication is not true. The class of Schur-
concave copulas is relevant in practice as for instance it includes all Archimedean (hence also theGumbel)
copulas; see [8] for the corresponding result and more details on the notion of Schur-concavity.

2) For marginal distributions F of class C2, assumption (ii) in Theorem (2.2) holds whenever F has a decreas-
ing density for all x ≥ F−1(α) − ξ .

3) Also in several cases of non-symmetric bounding functions Cl and of inhomogeneous marginals some
results on exact solutions of (2.2) can be stated. The numerical evaluation of these solutions is typically
not easy; for some examples see [11].

We note that a very easily computable VaR bound follows from (2.2) by choosing the vector (α*, . . . , α*) ∈
Z(α). Since the diagonal section of Cl is continuous we have that δCl (α*) = Cl(α*, . . . , α*) = α. This implies
the following VaR bound which holds in full generality for any feasible Cl and any marginal distributions Fi.

Theorem 2.3. Assume that the risk vector (X1, . . . , Xn) has �xedmarginal distributions F1, . . . , Fn and copula
CX ≥ Cl. Then

VaRα(S) ≤ VaR+α* (S) =
n∑
i=1

F−1i (α*),

where α* = δ−1Cl (α).
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The general VaR bound VaR+α* (S) given in Theorem 2.3 is just the comonotonic VaR for the joint portfolio
S, computed at a distorted con�dence level α*. This bound is straightforward to implement for all marginal
distributions and copula families commonly used in quantitative risk management. For instance, when δCl
is also strictly increasing, α* can be easily computed as the unique point such that δCl (α*) = α.

Recall from the proof of Theorem 2.2 that α* ≥ α and therefore that

VaR+α* (S) ≥ VaR
+
α(S). (2.5)

When CX ≥ Cl = M, i.e. CX = M, we obviously have α* = α and VaR+α* (S) = VaR+α(S).

3 Improved Hoe�ding–Fréchet bounds under dependence
restrictions

Our �rst aim in this section is to obtain improved Hoe�ding–Fréchet bounds (see (1.2)) for the distribution of
X under an extra dependence assumption. These improved bounds will then be used to weaken the assump-
tions under which Theorem 2.3 holds. Let G : Rn → R be an increasing function such that

F(x) ≤ G(x) ≤ F(x), x ∈ Rn . (3.1)

We assume that, for a distribution F with �xedmarginals F1, . . . , Fn, it is known that F ≤ G and/or that F ≥ G
on some subset S ⊂ Rn.

Theorem 3.1 (Improved Hoe�ding–Fréchet bounds).
Let S ⊂ Rn and let G : Rn → R be an increasing function satisfying (3.1). De�ne the improved upper and
lower Hoe�ding–Fréchet bounds F* and F* as:

F*(x) = min
(
min
1≤i≤n

Fi(xi), infy∈S

{
G(y) +

n∑
i=1

(Fi(xi) − Fi(yi))+
})

,

F*(x) = max
(
0,

n∑
i=1

Fi(xi) − (n − 1), sup
y∈S

{
G(y) −

n∑
i=1

(Fi(yi) − Fi(xi))+
})

.

For a n-variate distribution function F with marginals F1, . . . , Fn, it holds that:

(i) If F(y) ≤ G(y) for all y ∈ S, then F(x) ≤ F*(x), for all x ∈ Rn.
(ii) If F(y) ≥ G(y) for all y ∈ S, then F(x) ≥ F*(x), for all x ∈ Rn.
(iii) If F(y) = G(y) for all y ∈ S, then F*(x) ≤ F(x) ≤ F*(x) for all x ∈ Rn.

Proof. (i) Let X = (X1, . . . , Xn) be a random vector with distribution F and w.l.g. let y ∈ S satisfy yi ≤ xi for
1 ≤ i ≤ n. Then using the assumption F(y) ≤ G(y) for y ∈ S we obtain

F(x) = P(X1 ≤ x1, . . . , Xn ≤ xn)
= P(X1 ≤ y1, X2 ≤ x2, . . . , Xn ≤ xn) + P(y1 < X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)
= P(X1 ≤ y1, X2 ≤ y2, X3 ≤ x3, . . . , Xn ≤ xn) + P(y1 < X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

+ P(X1 ≤ y1, y2 < X2 ≤ x2, X3 ≤ x3, . . . , Xn ≤ xn)
= P(X1 ≤ y1, . . . , Xn ≤ yn) + P(y1 < X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

+ · · · + P(X1 ≤ y1, . . . , Xn−1 ≤ yn−1, yn < Xn ≤ xn)

≤ G(y) +
n∑
i=1

(Fi(xi) − Fi(yi)).
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Considering all y ∈ S and taking the in�mum, this implies by the classical Hoe�ding–Fréchet bounds that
F ≤ F*.
(ii) Similarly to (i), for y ∈ S satisfying yi ≥ xi for 1 ≤ i ≤ n we obtain that

F(x) = P(X1 ≤ x1, . . . , Xn ≤ xn)
= P(X1 ≤ y1, . . . , Xn ≤ yn) − P(x1 < X1 ≤ y1, X2 ≤ x2, . . . , Xn ≤ xn)

− · · · − P(X1 ≤ y1, . . . , Xn−1 ≤ yn−1, xn < Xn ≤ yn).

Considering that F(y) ≥ G(y) is equivalent to 1 − F(y) ≤ 1 − G(y), it follows that

1 − F(x) = 1 − P(X1 ≤ y1, . . . , Xn ≤ yn) + P(x1 < X1 ≤ y1, X2 ≤ x2, . . . , Xn ≤ xn)
+ · · · + P(X1 ≤ y1, . . . , Xn−1 ≤ yn−1, xn < Xn ≤ yn)

≤ 1 − G(y) +
n∑
i=1

(Fi(yi) − Fi(xi)),

which implies

F(x) ≥ G(y) −
n∑
i=1

(Fi(yi) − Fi(xi)).

Considering all y ∈ S and taking the supremum, this implies by the classical Hoe�ding–Fréchet bounds that
F ≥ F*. (iii) is a consequence of (i) and (ii).

Remark 3.

1) In the case n = 2 improved Hoe�ding–Fréchet bounds have been �rst derived in [28]. These bounds were
restated in the case of uniformmarginals, i.e. for copulas, in [34] for the case of equality constraints, where
also a sharpness result for increasing sets S and an application to model free pricing bounds for multi-
asset options is given. In the case S is a singleton and n = 2 sharpness of this bound is shown in [22],
while extensions of the sharpness result are provided in [1]. The paper [2] discuss as application the case
where S is the central part of the distribution. We will deal with this case in Section 3.2.

2) During thewriting of this paperwebecameaware that the improvedHoe�ding–Fréchet bounds as in Theo-
rem3.1were given independently in the recent preprint [16] andused in applications tomodel-free �nance.
These authors also show that unlike in the two-dimensional case the improved bounds are copulas only
in rather degenerated cases. Theorem 3.1 as stated here however appeared already earlier in the thesis of
one of the authors; see [17]. In this context it is also worth mentioning that improved high-dimensional
Hoe�ding–Fréchet bounds have been also derived in [29] for S being a singleton and in [32] for copulas
with known values at several points.

3) If X is positive lower orthant dependent (PLOD), i.e.

F(x) ≥ G(x) =
n∏
i=1
Fi(xi), x ∈ S = Rn ,

then

sup
y∈Rn

{ n∏
i=1
Fi(yi) −

n∑
i=1

(Fi(yi) − Fi(xi))+
}
=

n∏
i=1
Fi(xi) = G(x)

and as consequence F*(x) =
∏n
i=1 Fi(xi) = G(x) coincides with G and is a sharp lower bound. Similarly if

G is a joint distribution function with marginals F1, . . . , Fn and S = Rn, then the improved Hoe�ding–
Fréchet bounds coincide with G and are sharp, i.e. F* = G under condition (i) and F* = G under condition
(ii).

4) In the particular case where Fi = U[0, 1], 1 ≤ i ≤ n, Theorem 3.1 implies the following improved bounds
for the copula of a risk vector.
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Corollary 3.2 (Improved copula bounds). Let S ⊂ [0, 1]n and let Q be a componentwise increasing function
on [0, 1]n such that W(u) ≤ Q(u) ≤ M(u), u ∈ [0, 1]n. De�ne the bounds AS,Q , BS,Q : [0, 1]n → [0, 1] as

AS,Q(u) = min
(
M(u), inf

a∈S

{
Q(a) +

n∑
i=1

(ui − ai)+
})

,

BS,Q(u) = max
(
W(u), sup

a∈S

{
Q(a) −

n∑
i=1

(ai − ui)+
})

.

Then for a n-dimensional copula C, it holds that

(i) If C(u) ≤ Q(u) for all u ∈ S, then C(u) ≤ AS,Q(u), for all u ∈ [0, 1]n.
(ii) If C(u) ≥ Q(u) for all y ∈ S, then C(u) ≥ BS,Q(u), for all u ∈ [0, 1]n.
(iii) If C(u) = Q(u) for all y ∈ S, then BS,Q(u) ≤ C(u) ≤ AS,Q(u), for all u ∈ [0, 1]n.

The improved Hoe�ding–Fréchet bounds given in Theorem 3.1 may be considerable improvements of the
classical Hoe�ding–Fréchet bounds in (1.2) and thus may lead to strongly improved VaR bounds for the ag-
gregated risk by themethod of improved standard bounds described in Section 2. The degree of improvement
depends on the dependence information described by S and G. We analyse some di�erent cases in the appli-
cations to follow.

3.1 Application I: positive dependence in the tails

We �rst consider the computation of an upper bound on the α-VaR for a risk vector with �xedmarginal distri-
butions and positive dependence assumed only in the upper tails of its distribution. Using Theorem 2.3 with
Corollary 3.2 we obtain the following result.

Theorem 3.3. Assume that the risk vector (X1, . . . , Xn) has �xedmarginal distributions F1, . . . , Fn and copula
CX ≥ Cl on S = [β, 1]n, with β ≤ α. Then, we have that

VaRα(S) ≤ VaR+α* (S) =
n∑
i=1

F−1i (α*), (3.2)

where α* = δ−1Cl (α).

Proof. For a �xed u ∈ [α, 1]n, we have

max
a∈[β,1]n

{
Cl(a) −

n∑
i=1

(ai − ui)+

}
= max
a∈[u,1]n

{
Cl(a) −

n∑
i=1

(ai − ui)
}
= Cl(u). (3.3)

The �rst equality in (3.3) follows by noting that, by componentwise increasingness of the function Cl, we can
always change any aj < uj to uj not decreasing the value of the max in (3.3). Since that the maximum is now
taken over [u, 1]n, the second inequality follows from the Lipschitz inequality for copulas

Cl(a) − Cl(u) ≤
n∑
i=1

(ai − ui);

see for instance Theorem 1.5.1 in [9]. The theorem then follows from Theorem 2.3 applied with Cl = BS,Cl as,
for u ≥ α, by (3.3) we have that δBS,Cl (u) = δCl (u).
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Remark 4.

1) Theorem 3.3 gives the same VaR bound of Theorem 2.3 under the weaker assumption that the positive de-
pendence assumption CX ≥ Cl only holds in upper α-tails of the distribution of X, where α is the con�dence
level at which the VaR is computed. A similar behaviour that an upper VaR bound neglects information
on the lower part of a distribution can be also found for the sharp upper VaR bounds without dependence
information as given in [24].

2) The computation of VaR+α* (S) is straightforward for any number and type of marginal distributions and for
any copula lower bound used in banking and insurance practice. This simplicity makes the VaR bound
in (3.2) particularly appealing for applications of interest in quantitative risk management.

3) There exist some statistical procedures to test the lower bound on a copula on a subset of its domain.
In [33] for instance a Kolmogorov-Smirnov test for quadrant dependence is presented. This can be easily
modi�ed to a test for positive quadrant dependence on a subset S. In [5] the authors discuss extensively the
various statistical methods available to get the ordering information on the distribution. They also discuss
methods for the choice of the subset S and also give also a list of relevant references on this subject.

As a �rst application of Theorem 3.3, we consider a risk portfolio X with identical marginal distributions F1 =
· · · = Fn = F and portfolio copula CX bounded by a Gumbel copula. Formally, we assume CX ≥ Cl = CGuθ on
S = [α, 1]n. In Table 1 we report the values of VaR+α* (S) for increasing values of θ, corresponding to increasing
dependence assumed in the tails of X. The VaR bounds are confronted with sharp upper bounds VaRα(S)
obtained without dependence information and the comonotonic value VaR+α(S). From the table it is clear that
one obtains improvements of the sharp bounds for values of θ large enough. Coherently with the theoretical
results presented so far, in the limit θ → ∞ we have that CGuθ → M and, consequently, VaR+α* (S) converges
to the comonotonic VaR value VaR+α(S). We also notice that, according to Theorem 2.2 and Remark 2, in this
homogeneous case one gets τ−1Cl (α) = VaR+α* (S) = nF

−1(α*).
Analogous conclusions can be drawn when a Gaussian copula is assumed as a lower bound on the cop-

ula of the portfolio, i.e. CX ≥ Cl = CGaρ on S = [α, 1]n. In Table 2 we collect �gures for increasing values of the
correlation parameter ρ, chosen as to match the corresponding values of the pairwise Kendall’s rank corre-
lation of the Gumbel copula in Table 1. Given the same strength of dependence, the Gaussian copula yields
a smaller relative improvement with respect to the Gumbel copula. Considering a inhomogeneous portfolio
is straightforward as the value of α* in (3.2) does not depend on the choice of the marginal distributions Fi.
Results for an inhomogeneous portfolio are reported in Table 3.

Table 1 Values for VaR+α* (S) (see (3.2)) and VaR+α(S) (see (1.3)) for a risk vector of n = 5 risks identically distributed as a
Pareto(2), i.e. Fi = F(x) = 1 − (1 + x)−2 , x > 0, 1 ≤ i ≤ n, and a Gumbel copula lower bound CX ≥ CGu

θ on S = [α, 1]n .
Estimates of VaRα(S) have been computed via Proposition 4 in [14].

VaR+α* (S)

n = 5 VaRα(S) θ = 1 θ = 3 θ = 5 θ = 10 VaR+α(S)
α = 0.990 84.44 107.38 60.27 53.68 49.17 45.00
α = 0.995 121.49 152.33 87.38 78.02 71.62 65.71
α = 0.999 277.84 348.20 201.72 180.71 166.36 153.11
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Table 2 The same as Table 1 with a Gaussian copula lower bound CX ≥ CGa
ρ on S = [α, 1]n . The four values chosen for

the correlation parameter ρ match the corresponding values of the pairwise Kendall’s rank correlation of the Gumbel
copula in Table 1.

VaR+α* (S)

n = 5 VaRα(S) ρ = 0 ρ = 0.8660 ρ = 0.9511 ρ = 0.9877 VaR+α(S)
α = 0.990 84.44 106.58 75.97 63.37 53.96 45.00
α = 0.995 121.49 152.96 112.41 93.89 79.15 65.71
α = 0.999 277.84 348.48 269.65 222.57 187.32 153.11

Table 3 The same as Table 1 for a inhomogeneous risk vector of n = 9 risks with F1 = F2 = F3 = Pareto(2), F4 =
F5 = F6 = LogN(0.2, 1) and F7 = F8 = F9 = Gamma(3, 2), and Gumbel copula lower bound CX ≥ CGu

θ on S = [α, 1]n .
Estimates of VaRα(S) have been computed via the Rearrangement Algorithm; see [14].

VaR+α* (S)

n = 9 VaRα(S) θ = 1 θ = 3 θ = 5 θ = 10 VaR+α(S)
α = 0.990 165.29 232.76 144.77 132.06 123.24 114.96
α = 0.995 206.04 289.42 180.52 164.53 153.51 143.23
α = 0.999 349.62 510.77 305.86 277.23 257.74 239.79

3.2 Application II: known central domain

Wenow consider the case inwhich a copula lower bound is assumed in the central domain of the distribution
or any subset S ⊂ Rn not intersecting the upper α-tails, i.e. S ∩ [α, 1]n = ∅. This example is motivated by the
applications treated in [2] and [5], where for a risk portfolio it is assumed that the distribution is known by
statistical analysis in the central domain of the distributionwhile generally onlymarginals are known.Within
our setting, no improvement is obtained.

Theorem 3.4. Assume that the risk vector (X1, . . . , Xn) has �xedmarginal distributions F1, . . . , Fn and copula
C ≥ Cl on S ⊂ Rn, with S ∩ [α, 1]n = ∅. Then, we have that

VaRα(S) ≤
n∑
i=1

F−1i (α*),

where α* = δ−1W (α).

Proof. We observe that for any u ∈ S we have ui < α for at least one coordinate i. From Cl(u) ≤ M(u) =
min1≤i≤n{ui} < α, we obtain

sup
a∈S

{
Cl(a) −

n∑
i=1

(ai − u)+

}
≤ sup
a∈S
{Cl(a)} < α.

As a consequence, the inequality δBS,Cl (u) ≥ α can only be satis�ed at those values of u such that

δBS,Cl (u) = (nu − n + 1)+ = δW (u).

The theorem then follows from Theorem 2.3 applied with Cl = BS,Cl .
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Remark 5.

1) Theorem 3.4 implies that under the dependence information on a central part of the distribution, one
obtains the standard bound on VaR. For n > 2, standard bounds are in general improved by sharp upper
bounds VaRα(S) obtained without dependence information.

2) From the proof of Theorem 3.4 it follows that in order to obtain the comonotonic bound VaR+α(S), it is
su�cient to assume CX ≥ Cl = M just at the single point S = {(α, . . . , α)}.

Information on a central domain of the distribution becomes relevant in our setting only if it (partially) covers
the upper tails of the joint distribution. If S = [0, β]n, with β su�ciently large (i.e. when δCl (β) ≥ α), then the
dependence information covers the relevant part of the distribution tails and the same VaR bounds as in
Theorem 3.3 holds. Otherwise, no improvement follows.

Theorem 3.5. Assume that the risk vector (X1, . . . , Xn) has �xedmarginal distributions F1, . . . , Fn and copula
C ≥ Cl on S = [0, β]n, with β ≥ α. Then:

1) If δCl (β) ≥ α, then the VaR bound in Theorem 3.3 holds.
2) If δCl (β) < α, then the VaR bound in Theorem 3.4 holds.

Proof. Assume S = [0, β]n with β ≥ α. From the proof of Theorem 3.3 it follows that for any u ∈ [0, β]n we have

max
a∈[0,β]n

{
Cl(a) −

n∑
i=1

(ai − ui)+

}
= Cl(u).

If δCl (β) ≥ α, then the same VaR bound as in Theorem 3.3 follows analogously.

If instead δCl (β) < α, then we have for all u that

max
a∈[0,β]n

{
Cl(a) −

n∑
i=1

(ai − u)+

}
≤ max
a∈[0,β]n

{Cl(a)} ≤ Cl(β, . . . , β) < α

and the inequality δBS,Cl (α
*) ≥ α can only be satis�ed for those values of u such that

δBS,Cl (u) = (nu − n + 1)+ = δW (u);

and the same conclusion as in Theorem 3.4 follows.
Tables 4-5 show the values of α*, depending on the �xed quantile level α and on the copula Cl. They

can be interpreted as the minimal value of β at which dependence information put on S = [0, β]n becomes
signi�cant.

3.3 Application III: positively dependent subgroups with an additional internal tail
dependence assumption

As a �nal application we modify the model assumption investigated in [6], where the authors consider the
case that the n risks of the risk vector X are split into k positively dependent subgroups Ii of cardinality ni =
|Ii|, with

∑k
i=1 ni = n. The authors of [6] allow any kind of dependence within these subgroups. Within our

framework, we assume that the copula CiX of the subvector (Xj , j ∈ Ii) satis�es CiX ≥ Cil on S = [α, 1]ni . This
implies the risk portfolio lower bound CX ≥ Cl on S = [α, 1]n with

Cl(u1, . . . , un) =
k∏
i=1
Cil(uj , j ∈ Ii).
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Table 4 Values for α* for a n-dimensional Gumbel copula CGuθ .

n = 5
α θ = 3 θ = 5 θ = 10

0.990 0.99413 0.99274 0.99148
0.995 0.99707 0.99637 0.99574
0.999 0.99942 0.99928 0.99915

n = 9
α θ = 3 θ = 5 θ = 10

0.990 0.99517 0.99354 0.99196
0.995 0.99759 0.99677 0.99598
0.999 0.99952 0.99936 0.99920

Table 5 Values for α* for a n-dimensional Gaussian copula CGaρ .

n = 5
α ρ = 0.8660 ρ = 0.9511 ρ = 0.9877

0.990 0.99618 0.99465 0.99282
0.995 0.99819 0.99744 0.99647
0.999 0.99966 0.99952 0.99934

n = 9
α ρ = 0.8660 ρ = .9511 ρ = 0.9877

0.990 0.99720 0.99559 0.99346
0.995 0.99869 0.99791 0.99683
0.999 0.99977 0.99963 0.99940

Table 6 Values for VaR+α* (S) (see (3.2)) for a risk vector of n = 8 risks identically distributed as a Pareto(2) under the
framework described in Section 3.3.

VaR+α* (S)

θ = 3 VaRα(S) k = 1 k = 2 k = 4 k = 8
α = 0.990 141.67 104.85 133.77 172.53 219.79
α = 0.995 203.66 151.80 193.04 244.7 309.22
α = 0.999 465.29 349.68 442.52 559.35 706.29

VaR+α* (S)

θ = 5 VaRα(S) k = 1 k = 2 k = 4 k = 8
α = 0.990 141.67 90.364 121.43 164.34 219.79
α = 0.995 203.66 131.20 175.42 233.43 309.22
α = 0.999 465.29 303.42 402.80 533.79 706.29

VaR+α* (S)

θ = 10 VaRα(S) k = 1 k = 2 k = 4 k = 8
α = 0.990 141.67 80.71 112.86 156.29 219.79
α = 0.995 203.66 117.50 163.21 225.29 309.22
α = 0.999 465.29 272.69 375.32 515.38 706.29

As a concrete examplewe consider an homogeneous portfoliowith n = 8Pareto(2) riskswith k subgroups
of equal size ni = n/k and copula lower bounds Cil = C

Gu
θ . Table 6 summarizes the �gures of the VaR bound

VaR+α* (S) given in Theorem 3.3. From Table 6 one can see a considerable reduction for k = 1, 2. The case k = n
represents the case in which the risk portfolio is assumed to be PLOD, and one cannot expect a reduction
here; see also Section 3 in [14]. In the limit as θ →∞ one gets the �gures reported in Table 4 in [6].
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4 Concluding remarks
This paper contributes to the streamline of easily computable and practical bounds on the VaR of a joint
portfolio of risks. Based on a novel extension of classical Hoe�ding-Fréchet bounds, we provide an upper
VaR bound for a joint risk portfolio with �xed marginal distributions and positive dependence information
assumed on a subset of the domain of its distribution function. The newly provided VaR bound can be inter-
preted as a comonotonic VaR computed at a distorted con�dence level and its quality is illustrated in a series
of examples.

In all the examples considered we obtain a remarkable reduction of the VaR bound when moderate or
strong positive dependence in the upper tails of the joint distribution is assumed. On the other hand, when
dependence information is known only on the central part of the distributionwe do not get any improvement.

In general the problem of how to �nd sharp (best-possible) bounds on the VaR of a joint risk portfolio
when positive dependence information of the type CX ≥ Cl is known on the portfolio copula CX remains
open.

Acknowledgement: The authors thank the guest editor Steven Vandu�el and two anonymous referees for
their careful reading of the paper and the many suggestions given on an earlier version.
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