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ABSTRACT 15 

 16 

The Cogne magnetite deposit (Western Alps, Italy) is the largest in a series of apatite and sulphide-17 

free magnetite orebodies that are hosted in serpentinites belonging to western Alpine ophiolitic 18 

units. The nearly endmember composition of magnetite, which is unusual for an ultramafic setting, 19 

and the relatively high tonnage of the deposit (18 · 106 tonnes at 45-50 wt% Fe) make Cogne an 20 

intriguing case study to explore magnetite-forming processes in ophiolites. The Cogne magnetite 21 

shows variable textures, including nodular ores, veins and fine-grained disseminations in 22 

serpentinites after tectonitic peridotites and totally serpentinized melt-impregnated peridotites 23 

(troctolites). An increase in Co/Ni ratio from magnetite-poor serpentinized peridotites (0.05) to 24 

nodular magnetite ores (>1) is observed. Trace element analyses of magnetite from different sites 25 

and lithologies by laser-ablation inductively-coupled mass spectrometry indicate that magnetites 26 



  

have typical hydrothermal compositions, characterized by high Mg and Mn (median values up to 27 

~24100 and ~5000 ppm, respectively), and low Cr, Ti and V (median values up to ~30, ~570 and 28 

~60 ppm, respectively). Moreover, the variations in trace element compositions distinguish 29 

magnetite that is hydrothermal fluid-controlled [highest (Mg, Mn, Co, Zn)/Ni ratios] from 30 

magnetite whose composition is affected by host-rock chemistry (highest Ni ± Ti ± V). U-Th-Pb 31 

dating of magnetite-associated uraninite constrains the formation of the deposit to the Late Jurassic 32 

(ca. 150 Ma), during an advanced stage of the opening of the Alpine Tethys. Thermodynamic 33 

modelling of fluid-rock interactions indicates that fluids produced by seawater–peridotite or 34 

seawater–Fe-gabbro are not sufficiently Fe-rich to account for the formation of the Cogne deposit. 35 

This suggests that fractionation processes such as phase separation were critical to generate 36 

hydrothermal fluids capable to precipitate large amounts of magnetite in various types of ultramafic 37 

host-rocks. The oceanic setting and geochemical and mineralogical similarities with some modern 38 

ultramafic-hosted volcanogenic massive sulphide deposits on mid-ocean ridges suggest that the 39 

exposed mineralized section at Cogne may represent the deep segment of a seafloor, high-40 

temperature (~300–400°C) hydrothermal system. The occurrence of similar magnetite enrichments 41 

in present-day oceanic settings could contribute to explain the presence of significant magnetic 42 

anomalies centred on active and inactive ultramafic-hosted hydrothermal fields. 43 

44 



  

1. Introduction 45 

 46 

The Cogne mining district (southern Valle d’Aosta region, Western Alps, Italy; Fig. 1) consists of a 47 

set of mines, which exploited a magnetite-rich serpentinite unit from the Middle Ages to 1979. The 48 

tonnage of the ore deposit was estimated at 18 Mt (Nazionale “Cogne” S.p.a., 1954), and the run-of-49 

mine ore produced in the 1960s had an iron grade of 45-50% (Di Colbertaldo et al., 1967). The 50 

Cogne deposit is the largest in a series of apatite and sulphide-free serpentinite-hosted magnetite 51 

orebodies that crop out in ophiolitic units along the western Alpine collisional suture in Valle 52 

d’Aosta (Castello, 1981; Diella et al., 1994; Rossetti et al., 2009; Stella, 1921) and in its southern 53 

extension in Corsica (Farinole mine; Routhier, 1963). In southern Valle d’Aosta, most of these 54 

magnetite orebodies occur in the Mt. Avic serpentinite massif (located ca. 15 km ENE of the Cogne 55 

serpentinite; Fig. 1) and have been interpreted as former metasomatized podiform chromitites, 56 

based on their high Cr concentration and the presence of chromite relicts (Diella et al., 1994; Della 57 

Giusta et al., 2011; Rossetti et al., 2009). A similar origin has been proposed for analogous 58 

Mesozoic (probably Jurassic), ophiolite-hosted magnetite deposits in Greece (Vermion, Olympus 59 

and Edessa regions and Skyros island; Paraskevopoulos and Economou, 1980). The Cogne deposit 60 

differs from the above occurrences because its magnetite has a nearly pure endmember composition 61 

and contains only trace amounts of compatible elements such as Cr, Ti and V (Carbonin et al., 62 

2014; Compagnoni et al., 1981). This geochemical fingerprint, which is unusual for an ultramafic 63 

setting, as well as the relatively high tonnage of the deposit, make Cogne an interesting and still 64 

poorly studied example of ophiolite-hosted magnetite deposit. Understanding its genesis may have 65 

implications for our interpretation of magnetic anomalies reported from modern ultramafic-hosted 66 

hydrothermal sites on slow-spreading mid-ocean ridges (Fujii et al., 2016; Szitkar et al., 2014; 67 

Tivey and Dyment, 2010). 68 

Several hypotheses have been put forward to explain the genesis of the Cogne deposit. Di 69 

Colbertaldo et al. (1967) proposed a genesis by magmatic segregation from an ultramafic melt. 70 



  

Based on the Cr and Ti-poor composition of the magnetite, Compagnoni et al. (1979, 1981) 71 

ascribed the formation of the Cogne magnetite to high-temperature serpentinization of oceanic 72 

peridotites and consequent Fe mobilization, but they did not discuss this hypothesis in detail. 73 

Recently, Carbonin et al. (2014) investigated some of the magnetite-associated lithologies and 74 

suggested their possible hydrothermal origin; however, the ore-forming processes were not 75 

explored. 76 

In this paper, we present new petrographic and geochemical data on the Cogne deposit, focusing 77 

on the textural relationships and the trace element composition of magnetite. The latter has been a 78 

valuable tool in the identification of the petrogenetic environment (e.g., Boutroy et al., 2014; Dare 79 

et al., 2014; Dupuis and Beaudoin, 2011; Nadoll et al., 2014; Nadoll et al., 2015). In addition, we 80 

determine for the first time the radiometric age of the magnetite orebody by U–Th–Pb dating of 81 

uraninite. We will show that the magnetite geochemistry and age support a seafloor oceanic 82 

hydrothermal setting for the Cogne deposit, and we will explore the possible formation 83 

mechanisms, using constraints from geochemical modelling of seawater-rock reactions.  84 

 85 

2. Geology of the Cogne mining area 86 

 87 

The Cogne serpentinite is a 2.5 km long sliver, with an average thickness of 100 m (Di Colbertaldo 88 

et al. 1967), which is exposed on the S and W slopes of Montzalet (Fig. 1 and 2). The serpentinite is 89 

tectonically sandwiched between two different metasedimentary sequences. The foot wall sequence 90 

consists of tectonically juxtaposed slivers of calcschists, marbles, dolomitic marbles and quartzites 91 

formed in a continental margin and in other paleogeographic domains (Cogne Unit; Polino et al., 92 

2014). The hanging wall sequence is represented by calcschists, marbles and minor, Fe- and Mn-93 

bearing metacherts. The basal contact of the serpentinite is a thrust fault (Elter, 1971), while the 94 

upper limit is marked by a few cm- to 3 m-thick boudinaged rodingite, which we tentatively 95 

interpret as a tectonically activated, primary serpentinite-sediment interface. According to Elter 96 



  

(1971), the Cogne serpentinite and the hanging wall metasediments form the core of a km-scale 97 

isoclinal fold that repeats the Cogne unit in its upper limb (Fig. 2b). The Cogne serpentinite and the 98 

hanging wall metasediments are considered to be part of the same greenschist- to blueschist-facies 99 

ophiolite-bearing unit (Aouilletta Unit; Polino et al., 2014), which is sandwiched together with the 100 

foot wall marbles and quartzites between two eclogite-facies ophiolitic units (Grivola-Urtier Unit 101 

and Zermatt-Saas Unit; Dal Piaz et al., 2010). These ophiolitic units are remnants of the Jurassic 102 

Piedmont-Liguria ocean (Alpine Tethys; Schmid et al., 2004; Stampfli, 2000). From Late 103 

Cretaceous to Eocene, these ophiolitic units followed different P-T paths related to their subduction 104 

beneath the Adriatic micro-plate, as a result of Africa-Europe convergence (Schmid et al., 2004). In 105 

the Zermatt-Saas Unit (in southern Valle d’Aosta), the high-pressure (eclogitic) metamorphic peak 106 

was reached in the Eocene (45-42 Ma; Dal Piaz et al., 2001), contemporaneously with the closure of 107 

the ocean (Dal Piaz et al., 2003), and was followed by a greenschist-facies overprint during Late 108 

Eocene-Early Oligocene (Dal Piaz et al., 2001, 2003). No P-T-time estimate is available for the 109 

Cogne serpentinite and its host Aouilletta Unit. 110 

The Cogne magnetite mineralization is confined to the serpentinite body (Compagnoni et al., 111 

1979; Di Cobertaldo et al., 1967) and it is exposed in three zones, henceforward referred to as Site 112 

1, Site 2 and Site 3 (Fig. 2). At Site 1 (which includes the mines of Liconi, 45.612509 N 7.395377 113 

E, Colonna, 45.609716 N 7.391322 E, and Costa del Pino, 45.610466 N 7.378247 E), the orebody 114 

is a 50-70 m-thick, 600 m-long continuous lens that dips and wedges out northward (Di Colbertaldo 115 

et al., 1967). This orebody was extensively exploited in the second half of the twentieth century by 116 

sublevel caving. At Site 2 (western slope of Montzalet, 45.618124 N 7.386316 E) and Site 3 117 

(Larsinaz mine, 45.619119 N 7.377135 E), the intensely mineralized rock volumes are much 118 

smaller, and consist of disseminations and veins at Site 2 and of a less than 10 m-thick lens at Site 3 119 

(Stella, 1916). The mineralized serpentinite was subjected to only low degrees of Alpine 120 

deformation and metamorphism (Carbonin et al., 2014), which allowed extensive preservation of 121 

the original structures (see below). 122 



  

 123 

 124 

3. Materials and methods 125 

 126 

3.1. Petrographic and mineralogical analysis 127 

 128 

Sixty-eight rock samples from the Cogne mining area were collected from mine dumps and 129 

outcrops and studied by means of optical microscopy in thin polished sections. No potential source 130 

of lead was present during any stage of the sample preparation, to avoid contamination that could 131 

invalidate the subsequent geochronological analyses. Mineral identification was aided by micro-132 

Raman spectroscopy, using a Thermo ScientificTM DXRTM confocal Raman system at the 133 

Chemistry Department of the University of Padua (Italy). We chose a 532 nm laser working at a 134 

power of 5-10 mW. All of the Raman spectra were collected with a 50x LWD objective lens, 135 

reaching a spatial resolution of ~1 µm. Raman spectroscopy was crucial for the identification of 136 

serpentine minerals, for which we followed the guidelines by Groppo et al. (2006) and Carbonin et 137 

al. (2014). Selected samples were further investigated using a scanning electron microscope (SEM). 138 

Back-scattered electron images were obtained using a CamScan MX 2500 SEM at the Department 139 

of Geosciences of the University of Padua (Italy) equipped with a LaB6 crystal, working at 20 kV 140 

accelerating voltage and 140 nA current. 141 

Mineral compositions of major minerals were determined by electron microprobe analysis 142 

(EPMA) using a CAMECA SX-50 electron microprobe, equipped with four WDS spectrometers 143 

and one EDS spectrometer, at IGG-CNR, Padua (Italy). The Kα emission lines of ten elements (Na, 144 

Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe) were measured using the following natural and synthetic 145 

minerals and oxides as standards: albite (Na), diopside (Si, Ca), orthoclase (K), MgO, Al2O3, 146 

MnTiO3, Cr2O3 and Fe2O3. Working conditions were 20 kV, 20 nA, 10 s for peak and 5 s for the 147 

background on each side of the peak. 148 



  

 149 

3.2. Bulk rock compositions 150 

 151 

Fourteen rock samples, representative of the main lithologies encountered in and around the 152 

deposit, were analysed for major, minor and selected trace elements by X-ray fluorescence (XRF). 153 

The samples were prepared as fine powder by means of a Retsch M0 agate mortar grinder and a 154 

Retsch RS100 vibratory disk mill, equipped with agate disks. The powder samples, fused into 155 

beads, were then analysed using a Philips PW2400 XRF wavelength-dispersive sequential 156 

spectrometer equipped with a Rh tube at the Department of Geosciences of the University of Padua 157 

(Italy). Reference standards were natural geological samples (Govindaraju, 1994). The relative 158 

analytical precision is estimated to within ±0.6% for major and minor elements and within ±3% for 159 

trace elements. The relative accuracy is within ±0.5% for Si, ±3% for the other major and minor 160 

elements, and ±5% for trace elements. Detection limits are better than 0.01 wt% for Al, Mg and Na, 161 

0.2 wt% for Si and 0.005 wt% for Ti, Fe, Mn, Ca, K and P. For trace elements, the detection limits 162 

are 3 ppm for Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Th, and U, 5 ppm for Sc, V, Ga, and Pb, 6 ppm for 163 

Cr, and 10 ppm for Ba, La, Ce, and Nd. 164 

The geochemistry of seven whole-rock samples was further investigated by inductively coupled 165 

plasma mass spectrometry and emission spectroscopy (ICP-MS/ES) analyses, which were 166 

performed by Bureau Veritas Mineral Laboratories (Canada). The pulverised rock samples were 167 

mixed with LiBO2/Li2B4O7 flux and fused. The cooled beads were then digested with ACS grade 168 

nitric acid. The detection limits for trace elements are: 1 ppm for Be, Sc, Sn, and Ba; 8 ppm for V; 169 

14 ppm for Cr; 0.2 ppm for Co and Th; 20 ppm for Ni; 0.5 ppm for Ga, Sr and W; 0.1 ppm for Y, 170 

Zr, Nb, Cs, Hf, Ta, U, La, Ce; 0.3 ppm for Nd. 171 

 172 

3.3. U-Th-Pb dating 173 

 174 



  

Thirteen thin sections of magnetite ore were scanned for uraninite crystals by back-scattered 175 

electron imaging with a Scanning Electron Microscope (SEM). Four of these samples showed 176 

uraninite grains of sufficient size to allow their chemical analysis by EPMA and successive dating 177 

by the U-Th-Pb method. Uraninite compositions were measured at the Department of Earth 178 

Sciences of the University of Milan (Italy), using a JEOL JXA-8200 electron microprobe equipped 179 

with five WDS and one EDS spectrometers. An accelerating voltage of 15 kV and a beam current 180 

intensity of 20 nA were used. Nine elements were measured by WDS spectrometry using the 181 

following X-ray lines: MgKα, SiKα, TiKα, CaKα, CrKα, FeKα, UMβ, ThMα and PbMα. The 182 

counting time was 60 s for the peak and 30 s for the background for all analysed elements. The 183 

standards were olivine (Mg), grossular (Si and Ca), ilmenite (Ti), fayalite (Fe), pure Cr and 184 

synthetic UO2, ThO2 and PbO. Detection limits for elements relevant to geochronology are 290 185 

ppm for U, and 170 ppm for Th and Pb. Relative errors (relative standard errors) of 0.1%, 0.5% and 186 

0.7% for U, Th and Pb concentrations, respectively, were calculated on the basis of 5 repetitions of 187 

the same measurement. However, a more realistic minimum relative error for U, Th and Pb 188 

concentrations >7500 ppm is 2% (Cocherie and Albarede, 2001). 189 

Chemical maps were preliminarily acquired on the uraninite grains to assess the presence of 190 

chemical zoning. In order to collect a significant amount of data, we performed both single spot 191 

analyses and automated traverses. The latter method allowed us to obtain a large number of data 192 

points, although the proportion of mixed or poor-quality analyses increased. Thus, prior to 193 

calculating ages, we excluded the analyses which showed obvious contaminations, low totals or 194 

anomalously low Pb contents, if compared to adjacent points in the same traverse. 195 

The possibility of dating uraninite with EPMA was discussed by Bowles (1990) and calculated 196 

ages were demonstrated to be accurate and consistent with independent isotopic measurements 197 

(Bowles, 2015; Cross et al., 2011). According to Bowles (2015), the best accuracy is obtained for 198 

ages from ~2 Ma to 700-1000 Ma: the lower limit is imposed by the EPMA detection limit of Pb 199 

and the upper limit is linked to metamictization of the uraninite crystal lattice, which may lead to Pb 200 



  

loss. Meaningful ages are obtained if the initial concentration of non-radiogenic Pb is negligible and 201 

the U-Th-Pb system remained closed after uraninite crystallization. The former assumption is 202 

considered to hold true because Pb
2+

 is incompatible in the uraninite crystal structure (Alexandre 203 

and Kyser, 2005), whereas the latter assumption needs to be assessed by careful sample 204 

examination. 205 

The formula used to calculate the age t (in years) is (Montel et al., 1996): 206 

Pb = 208(Th/232) · [exp(λ232
 · t) – 1] + 206(U/238.04) · [1 – (

235
U/

238
U)] · [exp(λ238

 · t)] + 207 

+ 207(U/238.04) · (235
U/

238
U)] · [exp(λ235

 · t)], 208 

where Th and U are the measured concentrations in ppm, λ232, λ238, λ235 are the decay constants of 209 

232
Th, 

238
U and 

235
U, respectively, and 

235
U/

238
U is the bulk Earth’s uranium isotopic ratio. The 210 

values used in the calculations are: λ232
 = 4.9475·10

-11
 a

-1
 (LeRoux and Glendenin, 1963); λ238

 211 

=1.55125·10
-10

 a
-1

 and λ235
 = 9.8485·10

-10
 a

-1
 (Jaffey et al., 1971); 

235
U/

238
U = 0.0072559 (Hiess et 212 

al., 2012). To obtain an initial guess of t we used the formula (modified from Bowles, 2015): 213 

t = (1/λ238) · ln (1 + Pb/{[1 – (235U/238U)] · 206(U/238.04)}). 214 

Then the difference between the calculated and the measured values of Pb is minimized by least-215 

squares method, varying t. Whenever possible, ages were obtained as weighted averages of several 216 

analyses, after outlier rejection based on a modified 2σ set of criteria (Ludwig, 2012). 217 

 218 

3.4. Trace elements in magnetite 219 

 220 

Trace elements in magnetite were measured by laser-ablation inductively-coupled plasma mass 221 

spectrometry (LA-ICP-MS) at the Petrology of the Ocean Crust Laboratory, University of Bremen 222 

(Germany), using a high-resolution double-focussing ThermoFinnigan Element2, equipped with a 223 

solid-state laser with a wavelength of 193 nm (New Wave UP193). Magnetite grains were analysed 224 

on standard thin polished sections using a 35 µm laser spot size, a pulse frequency of 5 Hz, an 225 



  

irradiance at the sample of ~1.3 GW/cm
2
 and an acquisition time of 60 s, comprehensive of 25 s for 226 

background measurement. To avoid any risk of contamination on the surface of the rock section, the 227 

zone to be investigated was pre-ablated using two laser pulses with 50 µm spot size. The analysed 228 

elements (25Mg, 29Si, 43Ca, 47Ti, 51V, 53Cr, 55Mn, 57Fe, 59Co, 60Ni, 66Zn, 90Zr, 98Mo) were measured 229 

in low-resolution mode in order to shorten the acquisition time, although preserving high counts per 230 

second (cps). We opted for this configuration to avoid deep ablation pits, thus reducing the 231 

probability of hitting inclusions or adjacent minerals. The Fe concentration of magnetite as 232 

determined by EPMA was used as an internal standard. External standards (reference materials 233 

NIST61, BCR-2G and BHVO) were analysed under the same conditions as the samples every 5 to 9 234 

analyses during the same session, in order to check for possible drift. Signal files, reporting 235 

intensities (cps) vs. time, were inspected for possible heterogeneities related to the presence of 236 

inclusions and chemical zoning. Integration of the signal and calculation of concentrations were 237 

performed with the GeoProTM software (CETAC Technologies). Detection limits (DL) were 238 

calculated on reference materials using the formula: 239 

DLi = [3√2sbkgd/(X̅sgl – X̅bkgd )] · Ci, 240 

where i is the i
th

 element, sbkgd is the sample standard deviation of the background (in cps), X̅sgl and 241 

X̅bkgd are the average signal and the background (in cps) respectively, and Ci is the concentration (in 242 

ppm) of the i
th

 element in the reference materials. 243 

The statistical relationships between chemical elements in magnetite were explored by robust 244 

principal component analysis (PCA), using the function “pcaCoDa” in the “robCompositions” 245 

library for R software (Templ et al., 2011). Robust PCA was preferred to “classical” PCA because it 246 

is less sensible to outliers (Filzmoser et al., 2009; Filzmoser and Hron, 2011). Four analyses (out of 247 

ninety-four) with V contents below the detection limit were excluded from calculations. 248 

 249 

3.5. Geochemical modelling 250 

 251 



  

In an attempt to simulate the genesis of the Cogne deposit in a seafloor hydrothermal model system, 252 

fluid-rock interactions were modelled with the EQ3/6 (Version 8.0a) software package (Wolery, 253 

2013), using the database compiled by Klein et al. (2009), which contains thermodynamic 254 

properties of minerals and solutes in the 0-400°C range at the fixed pressure of 500 bar. The 255 

database was modified to include revised data for HCl(aq) (Ho et al., 2001), NaCl(aq) (Ho et al., 256 

1994), KCl(aq) (Ho et al., 2000), FeCl2(aq) and FeCl
+

(aq) (Ding and Seyfried, 1992). The modelling 257 

procedure, which in the first steps follows that of Klein et al. (2009), is described below. 258 

First, 1 kg of modern seawater (Table 1; composition from Klein et al., 2009) is speciated at 259 

25°C and 1 bar. Then, seawater is heated and reacted with 1 g of fresh harzburgite (Table 2) in a 260 

closed system to the desired temperature (at P = 500 bar), to simulate a downward fluid path 261 

towards the reaction zone (Klein et al., 2009). The chosen pressure of 500 bar simulates conditions 262 

at ~2000 m below seafloor, which do not exceed the reported depth of magma chambers fuelling 263 

hydrothermal fields on slow-spreading ridges (~3 km; Singh et al., 2006), assuming a 3000-m water 264 

column, which is a typical value for modern slow-spreading ridge hydrothermal systems (Edmonds, 265 

2010). All the produced minerals are removed at the end of the run, because in a real fluid pathway 266 

they would be left behind by downwelling seawater. A positive effect of this step is to narrow down 267 

the fO2
 range in following calculations, thus improving the code stability (Wolery and Jarek, 2003). 268 

In the successive step, which simulates a reaction zone, 1 kg of the resulting hydrothermal fluid is 269 

reacted at 400°C with an increasing amount of either fresh harzburgite or Fe-gabbro (Table 2) in a 270 

closed system (Wolery and Jarek, 2003). We chose the temperature of 400°C because it maximizes 271 

Fe solubility, which is strongly temperature-dependent (Seyfried et al., 2004), and is also 272 

compatible with estimates of fluid temperatures in modern subseafloor reaction zones (T >375°C, 273 

Berndt et al., 1989; T ~ 400°C based on the maximum amount of heat that water can carry by 274 

buoyancy-driven advection, Jupp and Schultz, 2004 and references therein) and with measured 275 

temperatures of modern seafloor vent fluids (e.g., Edmonds, 2010). The reaction path is terminated 276 

after the maximum value of dissolved Fe is reached. Finally, the Fe-rich hydrothermal fluid is 277 



  

titrated in a closed system with selected lithologies (Table 2) at 300°C or 400°C, in accordance with 278 

the temperature range estimated for hydrothermal mineral assemblages by Carbonin et al. (2014). 279 

The equilibrium mineral assemblages and the relative abundances of the phases obtained for 280 

different water/rock (W/R) ratios are then compared to those observed in the natural rocks. The 281 

model does not account for solid solutions, hence, by suppressing Fe-Mg exchange in secondary 282 

phases, it maximises the extent of magnetite production. 283 

 284 

 285 

4. Results 286 

 287 

4.1. Petrographic features of the magnetite ores and mineral compositions 288 

 289 

The Cogne magnetite ore is heterogeneous in terms of texture and gangue mineral assemblage. 290 

Three main textural types of magnetite ore are distinguished, which are termed here nodular, fine-291 

grained disseminated and vein. 292 

The nodular ores (Fig. 3a, b) are characterized by mm to cm-sized magnetite crystals in a 293 

silicate matrix, giving the rock a macroscopic appearance similar to that of nodular chromitites. The 294 

nodular textures show a continuum between three major subtypes, which are termed here leopard, 295 

harrisitic and massive subtype, respectively. In the leopard subtype, the magnetite crystals, which 296 

mostly consist of aggregates of subgrains, are subrounded and constitute up to 50 vol% of the rock. 297 

In the harrisitic subtype, the magnetite crystals form up to 10 cm-long rods, mimicking the texture 298 

shown by dendritic olivine in harrisite. In the massive subtype, the magnetite content is as high as 299 

80-90 vol%, but subrounded crystals similar to those of the nodular ores are still recognizable. 300 

The fine-grained disseminated ores consist of bands in the host-rock, which contain variable 301 

proportions of sub-millimetric magnetite grains (up to ~70 vol). The vein ores (Fig. 3c) are cm-302 



  

thick, dismembered veins composed of magnetite, chalcopyrite and antigorite; the proportion of 303 

opaque minerals over the associated silicates is ~50 vol%. 304 

Since the distribution of the different ore types is not uniform across the deposit, we will treat 305 

each sampling site separately. 306 

 307 

4.1.1. Site 1 308 

The magnetite orebody lies below magnetite-poor (3-6 vol% Mag) serpentinized tectonitic 309 

harzburgites. The harzburgites show a more or less developed foliation, and are characterized by the 310 

presence of lizardite + antigorite + magnetite ± talc pseudomorphs after former olivine and 311 

orthopyroxene (distinguished based on the presence of mesh and bastite textures, respectively) and 312 

relicts of accessory Mg-Al-rich chromite (Table 3). Magnetite is fine-grained (<20 µm) and Cr-313 

bearing (Carbonin et al., 2014). A detailed description of the mineralogy and conditions of 314 

subseafloor serpentinization of these rocks was given in Carbonin et al. (2014; T = 200-300°C, log 315 

fO2
 = –36 to –30, log ΣS = –2 to –1). 316 

Only nodular ores can be found at this site (Fig. 3a, b). Independently of the ore texture, the 317 

gangue mineral assemblage is fairly uniform and comprises, in the order of decreasing abundance, 318 

antigorite, lizardite, forsterite, brucite, clinochlore, carbonates, and Ti-rich chondrodite (Table 3). 319 

Antigorite composes more than 90 vol% of the matrix between the magnetite crystals. It usually 320 

shows an interlocking texture (average grains size = 150 µm), but it can form euhedral, randomly 321 

oriented blades when in contact with lizardite or magnetite, forming indented crystal boundaries 322 

with the latter mineral (Fig. 4a). This feature was already described in rocks from the western Alps 323 

by Debret et al. (2014), who interpreted it as a prograde dissolution texture produced during Alpine 324 

subduction metamorphism; however, the antigorite studied by Debret et al. (2014) generally has 325 

higher Fe content (up to 8 wt% FeO) than antigorite at Cogne (mostly <3 wt% FeO). Lizardite 326 

forms yellowish aggregates of submicron-sized crystals, which are interstitial between euhedral 327 

antigorite and magnetite. The Al2O3 content of lizardite (~5 wt%) is systematically higher than that 328 



  

in antigorite (<1 wt%). Forsterite (Fo99) forms up to 50 µm anhedral crystals, usually arranged into 329 

elongated aggregates, which replace and seldom form pseudomorphs after antigorite. The forsterite 330 

crystals are often altered to fine-grained antigorite along the rim and the fractures. Brucite is of 331 

nearly pure Mg-endmember composition and forms subhedral, tabular crystals up to 200 µm in size. 332 

Clinochlore forms tabular crystals and intergrowths with antigorite. These intergrowths probably 333 

result from the breakdown of Al-rich lizardite. The carbonates (calcite, magnesite, dolomite) form 334 

anhedral patches which include antigorite, brucite and fine-grained (<50 µm) anhedral magnetite. 335 

Calcite is the most common carbonate and is also present as late veins. Ti-rich chondrodite forms 336 

up to 500 µm, colourless to pale yellow, anhedral crystals, which are sometimes surrounded by a 337 

corona of olivine. Rare accessory minerals are xenotime, sphalerite, Ni-bearing linnaeite, pyrrhotite 338 

and uraninite. 339 

Magnetite-rich (~25 vol%) diopsidites have also rarely been found. In these peculiar rocks, 340 

magnetite is interstitial between mm- to cm-sized diopside crystals and coexists with antigorite, 341 

andradite and clinochlore. The assemblage antigorite + andradite appears to replace diopside. 342 

Samples of this kind were thoroughly described by Carbonin et al. (2014). 343 

 344 

4.1.2. Site 2 345 

At this site, the serpentinized tectonitic peridotite can be either replaced by fine-grained 346 

disseminated magnetite or crosscut by cm-thick magnetite + chalcopyrite + antigorite veins. The 347 

disseminated and vein ores are deformed and dismembered into lenses by Alpine deformation, 348 

which at small scale results in an anastomosing pattern of mm- to cm-spaced cleavage planes. This 349 

deformation is associated with dynamic recrystallization of antigorite and magnetite, the latter 350 

forming elongated porphyroclasts. 351 

The disseminations occur as cm-sized magnetite-enriched bands in antigorite serpentinite and 352 

typically show relict features of the former serpentinized peridotite, i.e., bastites (Fig. 4b) and Mg-353 

Al-rich chromite grains (Fig. 4c, d; Table 3). The Mg-Al-rich chromite grains (Fig. 4d) are anhedral 354 



  

and fractured. They are irregularly altered along the rims and fractures into Fe-rich (~41 wt% FeO) 355 

chromite + fine-grained Cr-rich (~4–6 wt% Cr2O3, determined by SEM-EDS) chlorite and are 356 

mantled by a continuous rim of Cr-bearing magnetite intergrown with antigorite and minor 357 

secondary diopside. 358 

In the vein ores, magnetite forms elongated, millimetric patches with a chalcopyrite core in an 359 

antigorite matrix (Fig. 4e). Magnetite shows well developed crystal boundaries towards 360 

chalcopyrite, while the contacts to the surrounding antigorite are irregular. The limit between the 361 

vein and the host serpentinite is sharp. 362 

In both disseminations and veins, antigorite shows an interlocking texture. When it is in contact 363 

to magnetite or lizardite it forms up to 100 µm-long euhedral lamellar crystals, producing typical 364 

indented boundaries. A generation of nearly pure diopside (Table 3) always accompanies magnetite 365 

mineralization. In magnetite disseminations, diopside forms up to 400 µm-long isolated needles, 366 

intergrown with antigorite (Fig. 4c, d), while in the vein ore, it forms rare aggregates of 10-60 µm 367 

long crystals disseminated in the vein selvages. From textural relationships, diopside appears to 368 

postdate the formation of bastite pseudomorphs after orthopyroxene in the host serpentinite. 369 

 370 

4.1.3 Site 3 371 

At this site, the magnetite ores exhibit nodular textures, but only the leopard and massive subtypes 372 

are found. Antigorite is commonly the sole gangue mineral, but the leopard subtype can be 373 

characteristically enriched in diopside ± chlorite (Fig. 3d, 4f; Table 3). Antigorite shows an 374 

interlocking texture or forms euhedral crystals when in contact to magnetite or diopside. Antigorite 375 

veins crosscutting diopside crystals have been observed. Diopside has a nearly pure endmember 376 

composition. In the leopard ores, it forms a granofels composed of mm- to cm-sized subhedral 377 

crystals, which include subhedral millimetric magnetite. A late generation of smaller subhedral 378 

crystals (<50 µm) fills the interstices between larger grains. The diopside crystals may show patchy 379 

or concentric oscillatory zoning, determined by slight variations in Fe content. Textural 380 



  

relationships indicate that diopside formed during a late stage of magnetite growth (Fig. 4f), which 381 

was then locally overprinted by antigorite. Veins made up of euhedral diopside in a matrix of 382 

lizardite ± chlorite are commonly observed. Clinochlore is found in diopside-rich leopard ores and 383 

has variable Mg# ratios and Al contents (Table 3): the Al-rich variety is found as large (up to 1 mm) 384 

subhedral tabular crystals associated with diopside and magnetite; the Al-poor clinochlore is fine-385 

grained and fills the interstices between larger clinochlore and diopside crystals. Calcite is found as 386 

interstitial material between diopside crystals and as late veins. Rare accessory minerals are 387 

andradite, uraninite, talc and apatite. 388 

 389 

4.1.4. Inclusions in magnetite 390 

The magnetite crystals can be rich in mineral inclusions, which, in the largest poikiloblats, are 391 

typically concentrated in their cores (Fig. 4a).  392 

At Site 1, the most common inclusions are clinochlore and brucite lamellae (Table 3, often 393 

oriented along magnetite (111), anhedral calcite, anhedral sphalerite, rare anhedral pyrite, rare 394 

lizardite and forsterite, and very rare euhedral uraninite and apatite. Antigorite inclusions are often 395 

present in the outermost zones of the magnetite crystals. Composite inclusions made up of 396 

clinochlore + brucite or, rarely, clinochlore + calcite are also observed. 397 

At Site 2, the most abundant inclusions are euhedral antigorite and anhedral sulphides. The 398 

sulphides consist of fine lamellar chalcopyrite–cubanite intergrowths and unmixed “bornite solid 399 

solution” grains, composed of lamellar intergrowths of bornite and chalcocite. Also present are 400 

pyrrhotite, which shows exsolution of Co-rich pentlandite, and sphalerite. Other minor included 401 

minerals are lamellar clinochlore and anhedral andradite. 402 

At Site 3, the inclusions are mainly composed of clinochlore, which can be associated with 403 

rare andradite (Table 3) and very rare diopside and uraninite; antigorite inclusions are only present 404 

near the rims of the magnetite crystals. 405 

 406 



  

 407 

4.2. Petrography of peculiar host rocks at sites 1 and 3 408 

 409 

At sites 1 and 3, serpentinites showing a pegmatoid texture are associated with the magnetite ore 410 

and can be variably enriched in magnetite. In the barren rocks (Fig. 3e), cm-sized amoeboid 411 

domains made of dominant euhedral coarse-grained (50-300 µm) antigorite that replaces yellow, 412 

fine-grained (sub-micron sized) lizardite are interweaved with domains composed of mesh textured 413 

antigorite + lizardite and very fine-grained magnetite (magnetite I) lining the rims of the mesh. 414 

Lizardite is Al-rich in both domains (Raman peak at 382-385 cm-1, indicating Al substitution for Si 415 

in the tetrahedral sites; Groppo et al., 2006). Coronae of interlocking antigorite line the boundaries 416 

between the two domains. In magnetite-enriched rocks, the early fine-grained (<30 µm), usually 417 

euhedral magnetite (I) associated with Al-rich lizardite (Table 3) is overgrown by a new generation 418 

of coarser-grained, subhedral to anhedral disseminated magnetite (magnetite II) + euhedral 419 

antigorite + lamellar clinochlore. Clinochlore probably forms as consequence of the transformation 420 

of Al-rich lizardite to Al-poor antigorite, since its content is proportional to the amount of antigorite 421 

that replaces lizardite. The two magnetite generations have similar major element compositions 422 

(Table 3). Possible variations in trace element compositions could not be determined because of the 423 

small crystal size of magnetite I. Magnetite II can completely replace the lizardite-rich domains, but 424 

the amoeboid shape of the domains and the antigorite coronae are usually preserved (Fig. 3f, Fig. 425 

4g, h). On the contrary, the antigorite domains and coronae show only scarce anhedral magnetite 426 

(Fig. 4g, h). A magnetite-rich diopsidite, composed of dominant fine-grained diopside (<50 µm), 427 

subordinate magnetite and minor euhedral antigorite (<150 µm; Fig. 3f; Tables 3 and 4), has been 428 

observed in contact with the magnetite-rich pegmatoid serpentinite. 429 

 430 

 431 

4.3. Bulk rock geochemistry 432 



  

 433 

Bulk rock compositions are reported in Table 4. The magnetite-poor (Fe2O3 <8.5 wt%) 434 

serpentinized peridotites have major and trace element concentrations typical for refractory 435 

peridotites (cf. Andreani et al., 2014; Bodinier and Godard, 2003; Niu, 2004; Paulick et al., 2006), 436 

such as low Al2O3 (~1-3 wt%) and TiO2 (0.02-0.1 wt%), high Ni (~1400-2800 ppm) and Cr 437 

(~1900-2600 ppm) and low Co/Ni ratio (~0.05-0.07). The Cu and Zn contents (~20 and ~40-50 438 

ppm, respectively) are also typical for upper mantle peridotites (cf. O’Neill and Palme, 1998; Niu 439 

2004; Fouquet et al. 2010). The pegmatoid serpentinites have variable Al2O3 (~0.8-2.6 wt%), Fe2O3 440 

(~4.5-10 wt%), Ni (~500-2000 ppm), and Cr (~10-2700 ppm) contents and Co/Ni ratios (~0.05-441 

0.2). However, Cu and Zn show very little variation (~20 and ~30-40 ppm, respectively).  442 

The magnetite-enriched (Fe2O3 >28 wt%) serpentinites have different compositions reflecting 443 

their distinct host rocks. The magnetite-rich pegmatoid serpentinite has a high Al2O3 content (~2 444 

wt%) and a high Co/Ni ratio (~0.4), but low Ni, Cr, Cu and Zn contents (~280, ~10, ~70, ~60 ppm, 445 

respectively). The fine-grained disseminated ore has Al2O3, Cr and Ni contents (~1 wt%, ~2200, 446 

~1200 ppm, respectively) in the same range as the magnetite-poor serpentinized peridotites, but has 447 

higher Cu and Zn contents (~200 and ~120 ppm, respectively) and a higher Co/Ni ratio (~0.1). With 448 

further increase in magnetite content, the concentrations of Cr (~1300 ppm) and Ni (~240 ppm) 449 

decrease, but the Co/Ni ratio increases (~0.6). The magnetite vein ore (Fe2O3 ~44 wt%) has low Ni 450 

(~500 ppm) and Cr (~70 ppm) contents and an intermediate Co/Ni ratio (~0.3). Moreover, it 451 

exhibits moderately high Zn (130 ppm) and the highest Cu content (~14000 ppm), which reflects 452 

the presence of chalcopyrite. The magnetite-rich diopsidite (Fe2O3 ~21 wt%) has a trace element 453 

composition similar to that of the pegmatoid serpentinite it is in contact with, but it has a higher 454 

Co/Ni ratio (~0.9).  455 

In the nodular ores, the SiO2 and MgO contents are inversely proportional to the amount of 456 

magnetite present. The Al2O3 and CaO concentrations are variable and reflect the different relative 457 

abundances of clinochlore and diopside (or carbonates), respectively. The TiO2 content is generally 458 



  

low (0.02 wt%), but in the ore from Site 1 it can be slightly higher (~ 0.06 wt%), consistently with 459 

the presence of Ti-rich chondrodite. The nodular ores are virtually Cr-free (~10 ppm), have low Ni 460 

(~10-110 ppm) and relatively high Co (~320-440 ppm) contents, which translate into the highest 461 

observed Co/Ni ratios (~3-30). Moreover, compared to serpentinized peridotites and pegmatoid 462 

serpentinites, they show somewhat higher Cu and Zn (~30-50 ppm and ~80-100 ppm, respectively). 463 

The nodular ores, the magnetite-rich pegmatoid serpentinite and the magnetite-rich diopsidite share 464 

significant U and Th contents, which reach the maximum values at Site 1 (U = 2.9 ppm; Th = 0.9 465 

ppm). In both magnetite-poor and magnetite-enriched serpentinized tectonitic peridotites, U and Th 466 

contents are below the detection limits of ICP-MS analysis (<0.01 and <0.02 ppm, respectively). 467 

The relationships between magnetite enrichment, Co/Ni ratio and Cr content are shown in 468 

Figure 5. Magnetite enrichment is generally accompanied by an increase in the Co/Ni ratio, but 469 

shows no correlation with the Cr content. In particular, the Cr content is very low (<30 ppm) in the 470 

nodular ores, in the diopsidites and in most pegmatoid serpentinites (both magnetite-poor and 471 

magnetite-enriched) and is higher (Cr >1200 ppm) in both barren and magnetite-enriched 472 

serpentinites after peridotites. 473 

 474 

 475 

4.4. Age of the deposit 476 

 477 

The high U (+ Th) contents in nodular ores from Site 1 and Site 3 can be attributed to the presence 478 

of uraninite inclusions in magnetite. Uraninite forms anhedral to euhedral cuboctahedral crystals, 479 

ranging in size from ~1 to 40 µm (Fig. 6a-c, e, g). Textural evidence suggests that uraninite and 480 

magnetite (+clinochlore) were contemporaneous (Fig. 6b, g). The compositions of the uraninite 481 

crystals are reported in Table 5. The U/Th ratios are variable (3 to 21), especially at Site 1, where 482 

both the highest and the lowest Th contents were measured. The FeO and CaO concentrations are 483 

relatively high (FeO = 0.8-4.9 wt%; CaO = 0.06-1.2 wt%), but they are unrelated to PbO contents, 484 



  

which excludes late-stage alteration (Alexandre and Kyser, 2005). Excitation of the host magnetite 485 

within the microprobe interaction volume could explain the presence of Fe in the analyses. On the 486 

contrary, the Ca content is considered to be primary and ascribed to lattice-bound substitutions of 487 

Ca for U. A less than 1 µm-thick, U-rich rim is sometimes observed in uraninite crystals (Fig. 6e), 488 

and is ascribed to partial alteration. 489 

The U-Th-Pb ages calculated for a group of three small (<10 µm) uraninite grains from Site 1 490 

(Fig. 6a-c) are plotted in Fig. 6d. Due to the small grain size, only single-spot analyses were 491 

acquired. The weighted average age is 161.8 ± 3.5 Ma (MSWD = 0.51). Figure 6f shows the ages 492 

obtained for an aggregate of zoned grains from Site 1 (Fig. 6e). The crystals have a U-rich rim, 493 

which testifies for partial alteration. Therefore, we only considered sixteen analyses that form a 494 

plateau for PbO, UO2 and ThO2 concentrations (Fig. 7). The weighted average age for the plateau, 495 

after rejecting two outliers, is 150.8 ± 2.0 Ma (MSWD = 1.03). The weighted average age 496 

calculated for a big (~ 40 µm), unzoned uraninite crystal from Site 3 (Fig. 6g), which is intergrown 497 

with magnetite and contains chlorite, is 151.9 ± 1.4 Ma (MSWD = 0.91) (Fig. 6h). Also in this case 498 

only plateau PbO values were considered (Fig. 7). The two age determinations that yield the lowest 499 

uncertainties and best MSWD values (i.e., close to unity) are within errors of each other and are 500 

considered to be the most reliable. However, considering the limited age scatter, it is reasonable to 501 

combine all the data into a single age determination, which yields a value of 152.8 ± 1.3 Ma 502 

(MSWD = 1.3; Fig 6i). 503 

 504 

 505 

4.5. Geochemistry of Cogne magnetite 506 

 507 

The compositions of the Cogne magnetites are reported in Tables 3 and 6. The magnetites show 508 

significant substitutions of Fe by Mg and Mn (Fig. 8). The concentrations of these metals are the 509 

highest at Site 1 (median = ~24100 ppm and ~5000 ppm, respectively). Concentrations of Ca, Si, 510 



  

Mo, Zr and Cr are generally below or close to the ICP-MS detection limits; only magnetite forming 511 

the disseminated ore from Site 2 has significant Cr contents, which can be as high as ~150 ppm. 512 

Among the other trace elements, the concentrations of Ni, Co, Ti, and Zn are generally an order of 513 

magnitude higher than those of V (Fig. 8). The highest concentrations of Co are found at Site 1 514 

(median = ~570 ppm), whereas the lowest concentrations are in magnetite in disseminated ore from 515 

Site 2 (median = ~80 ppm). In spite of across-site variations, the Co content is fairly constant in 516 

magnetite from the same sample. The Ti content is the highest in magnetite from disseminated ore 517 

from Site 2 (median = ~570 ppm) and the lowest in magnetite from diopside-rich rocks from Site 1 518 

and Site 3 (median = ~60 ppm). The Ni and V contents are highest in magnetite from the magnetite-519 

rich pegmatoid serpentinite (median = ~670 ppm and ~60 ppm, respectively). The lowest Ni and V 520 

contents are observed in Site 1 ore (median = ~80 ppm) and in vein magnetite (median = ~6 ppm), 521 

although in the latter both elements are highly variable. The Zn contents show minor variability: the 522 

highest values are found in the vein magnetite (median: ~160 ppm) and the minimum values are 523 

found in magnetite from Site 3 (median: ~80 ppm). 524 

Robust PCA indicates that the two first principal components (PC1 and PC2) can explain 97% 525 

of the variability of the magnetite compositional data and thus can adequately be used to describe 526 

the various magnetite populations. As shown by the loading plot (Fig. 9), Mg, Mn, Co and Zn are 527 

highly correlated, while Ni is anti-correlated and V and Ti vary independently from the other 528 

elements. In the PC1 vs. PC2 plot, one cluster of samples, which encompasses the magnetites in the 529 

nodular ores from Site 1 and Site 3 and the magnetite-rich diopsidite, is characterized by the highest 530 

(Mg, Mn, Co, Zn)/Ni ratios. High Ni contents are instead distinctive of disseminated magnetite in 531 

serpentinized peridotite and in the magnetite-rich pegmatoid serpentinite from Site 3 (Fig. 8). These 532 

high-Ni magnetites form two distinct groups, in which high Ni is associated with high Ti (and Cr) 533 

and high V, respectively. Vein magnetites, having a very variable Ni and low overall V, plot in an 534 

intermediate position between high-Ni and low-Ni magnetites. When plotted on the Zn vs. Co plane 535 



  

(Fig. 10), most of the magnetites show a nearly constant Zn/Co ratio of ~0.28. Magnetites in the 536 

veins and in the fine-grained disseminated ore have higher Zn/Co ratios (~1). 537 

 538 

 539 

4.6. Thermodynamic modelling 540 

 541 

We attempted to reproduce the mineral assemblages observed at Cogne in a model seafloor 542 

hydrothermal system. The fluids produced by interaction at 400°C of modified seawater with 543 

harzburgite and Fe-gabbro (Table 2), respectively, provide two potential endmember compositions 544 

for fluids circulating in and reacting with the original oceanic substrate rocks. Harzburgite 545 

composes the uppermost part of the Cogne deposit and is the most common type of abyssal 546 

peridotite (Mével, 2003). Fe-gabbro is the most Fe-rich rock that can be found in the ophiolitic units 547 

of southern Valle d’Aosta (Benciolini et al., 1988; Bocchio et al., 2000; Dal Piaz et al., 2010; Polino 548 

et al., 2014) and it can be an efficient source of iron if altered at high temperature. Based on our 549 

calculations, dissolved Fe in the harzburgite-reacted fluid (Fig. 11a) increases from W/R ~1 to W/R 550 

~7 where it reaches a maximum value of ~11 mmol/kg (604 ppm). The increase in Fe concentration 551 

follows the pH decrease that is in turn controlled by hydrolysis of mantle orthopyroxene, which is 552 

much more reactive than olivine at 400°C (Charlou et al. 2002). In general, the Fe-gabbro-reacted 553 

fluids are more acidic and more Fe-rich. The Fe concentration is up to one order of magnitude 554 

higher (Fig. 11b), reaching a maximum value of ~26 mmol/kg (1439 ppm) at W/R ~80. Such a high 555 

dissolved Fe content again reflects a pH minimum, which immediately follows the total breakdown 556 

of plagioclase. This is consistent with experimental evidence that plagioclase alteration to Mg-557 

silicates (chlorite, epidote, talc) by seawater at 400°C and high W/R buffers pH to low values 558 

(Seyfried, 1987; Seyfried et al., 2010). Other major differences between the two fluid types at their 559 

Fe peak concern the concentrations of Mg and Si, which are about one order of magnitude lower 560 

and two order of magnitude higher, respectively, in the Fe-gabbro-reacted fluid. The high W/R 561 



  

ratios required to maximize the Fe contents could potentially be achieved in a highly fractured 562 

substrate, such as at the foot wall of a detachment fault in an oceanic core complex (e.g., McCaig et 563 

al., 2007). 564 

The harzburgite-reacted and Fe-gabbro-reacted fluids carrying the maximum dissolved Fe 565 

were further reacted at either 300°C or 400°C with the different lithologies listed in Table 2. We 566 

considered temperatures ≥300°C to account for the ubiquitous presence of antigorite (predominant 567 

at T >300°C; Evans, 2004, 2010) in all ore assemblages at Cogne and because these high 568 

temperatures disfavour substitution of Fe for Mg in minerals (especially in brucite; Klein et al., 569 

2009), thus accounting for the very high 100 · Mg/(Mg+Fe)mol ratios (Mg# >90) of gangue minerals 570 

in the Cogne deposit (Table 3). Moreover, at the high temperatures considered, and especially at 571 

high W/R ratios, the thermodynamic properties of the very Mg-rich gangue minerals are well 572 

approximated by their Mg endmembers, hence neglecting solid solutions can be considered to be a 573 

minor problem. The only mineral phase that significantly deviates from the ideal composition is 574 

lizardite, which is always Al-rich (Table 3). However, textural evidence indicates that lizardite is a 575 

minor relict phase that was formed during an early serpentinization event and rarely survived the 576 

successive higher temperature ore-forming process (cf. section 4.1). Accounting for the presence of 577 

Al-rich lizardite would not have significantly influenced the modelling of the fluid-rock system at 578 

high temperature. 579 

The mineral assemblages produced by hydrothermal fluid-rock interactions are shown in Figure 580 

12. Magnetite is stable for both fluids over the whole considered W/R range at both 300°C and 581 

400°C (with the exception of fresh troctolites reacting with harzburgite-reacted fluid at 300°C). 582 

Under rock-dominated conditions (W/R <1), the final alteration mineral assemblages are similar for 583 

both fluids: forsterite and brucite are generally formed in addition to magnetite, but their stability is 584 

dependent on temperature, with forsterite being stable at higher temperature (Fig. 12b, d) than 585 

brucite (Fig. 12a, c). Fayalite is predicted to form at both 300°C and 400°C in fresh troctolites and 586 

pegmatoid serpentinites. The presence of pure fayalite may be an artefact induced by neglecting 587 



  

solid solutions in olivine. Clinochlore is present in all mineral assemblages at 400°C (with the 588 

exception of the model of a fresh dunite reacting with harzburgite-reacted fluid), but at 300°C it 589 

forms in abundant quantities only in troctolites (both fresh and serpentinized) and pegmatoid 590 

serpentinites. Diopside is abundant only in Ca-rich rocks, i.e. harzburgites and troctolites (Table 2), 591 

and in troctolites it is associated with tremolite. In these rocks also minor anhydrite forms. At 592 

300°C in fresh harzburgites and serpentinized dunites the diopside is soon destabilized and the 593 

liberated Mg and Si combine with dissolved Al to form clinochlore. At higher temperatures this 594 

reaction is limited to higher W/R ratios. Some phlogopite is produced during alteration of fresh 595 

troctolites. At intermediate W/R ratios, diopside disappears at both 300°C and 400°C. In troctolites, 596 

diopside breakdown is accompanied by an increase in the modal amount of tremolite (and fayalite 597 

at 300°C). In serpentinized harzburgites, diopside reacts at 300°C with brucite and magnetite to 598 

form andradite and antigorite (cf. reaction n. 44 in Frost and Beard, 2007; Fig. 12a, c). Talc 599 

becomes abundant in pegmatoid serpentinites at 400°C, but at 300°C it only forms when the rocks 600 

react with Fe-gabbro derived fluid. Formation of talc is enhanced by the low pH, high Si and low 601 

Ca activities of the Fe-gabbro-reacted hydrothermal fluid. At high W/R ratios, in both fresh and 602 

serpentinized dunites and harzburgites, brucite reacts with either the harzburgite-reacted fluid or the 603 

Fe-gabbro reacted fluid to form antigorite or clinochlore, respectively. Talc is formed in Si-rich 604 

systems, i.e. those involving Si-rich lithologies (troctolites, pegmatoid serpentinite) or fluids (Fe-605 

gabbro-reacted fluids). In the systems dominated by Fe-gabbro-reacted fluids, talc replaces 606 

forsterite and antigorite, thus forming talc + magnetite + clinochlore assemblages. 607 

 608 

5. Discussion 609 

 610 

5.1. Cogne as an ultramafic-hosted subseafloor hydrothermal deposit 611 

 612 

5.1.1. Constraints from magnetite geochemistry and ocean seafloor studies  613 



  

Important clues about the origin of the Cogne magnetite can be derived from the comparison with 614 

existing published datasets for magnetite from various genetic environments. The Cogne magnetite 615 

is poor in Ti and Cr (<640 ppm and <150 ppm, respectively), which is a typical feature for 616 

hydrothermal magnetite (Fig. 13). In fact, based on the data compiled by Dare et al. (2014), 617 

hydrothermal magnetite can be distinguished from magmatic magnetite, because the former has 618 

generally low Ti contents (<10000 ppm) and high Ni/Cr ratios (≥1), in virtue of the higher mobility 619 

of Ni in aqueous fluids. Cogne magnetite is also poor in V (<140 ppm) and rich in Mn (>2500 620 

ppm), similar to hydrothermal magnetite from skarn deposits (Fig. 14). However, the Cogne 621 

magnetite ore was not emplaced in carbonate rocks but in mantle serpentinites, as testified by the 622 

geochemical and textural features of the host rocks. 623 

Serpentinization of peridotites can produce magnetite that is depleted in Cr, Ti, V and Ni 624 

compared to the primary magmatic magnetite (Boutroy et al., 2014). However, serpentinization 625 

alone cannot account for the amount of magnetite observed in most of Cogne rocks. In fact, 626 

magnetite production during serpentinization is limited by the amount of FeO available in the 627 

peridotite, which is commonly less than 10 wt% (Bodinier and Godard, 2003). Therefore, an 628 

efficient mechanism of mobilization and concentration of Fe is needed to explain the formation of 629 

the Cogne deposit. 630 

Low-T (100-300°C) hydrothermal fluids causing peridotite serpentinization at high W/R can 631 

leach Fe from the peridotite and precipitate it as magnetite in veins (up to a few cm-thick), as 632 

reported for the Bou Azzer ophiolite, Morocco (Gahlan et al., 2006). However, the compositions of 633 

Bou Azzer vein magnetites, although considerably depleted in trace elements as a consequence of 634 

their low formation temperatures (Nadoll and Koenig, 2011), are very different from those of 635 

Cogne magnetites. The latter have higher Co/Ni ratios (0.2-67 vs. 0.004-0.12) and are richer in Mn 636 

(2600-5000 vs. 400-470 ppm), Zn (80-160 vs. 3-20 ppm) and Mg (5600-24000 vs. 97-1000 ppm). 637 

These differences suggest that the formation of Cogne magnetite took place under substantially 638 

dissimilar physicochemical conditions. 639 



  

Some indications on the various factors that controlled the composition of Cogne magnetite 640 

can be derived from the PCA (Fig. 9). The PC1 clearly discriminates high-(Mg, Mn, Co, Zn) 641 

magnetites in nodular ores and diopsidites from high-(Ni, V, Ti) magnetites in fine-grained 642 

disseminated ore and in magnetite-rich pegmatoid serpentinite. The relatively low Mn, Co and Zn 643 

contents in the host rocks and the fluid-compatible nature of these metals suggests that the 644 

composition of the high-(Mg, Mn, Co, Zn) magnetites was controlled by an externally-buffered 645 

fluid (cf. Dare et al., 2014; Nadoll et al., 2014). The high Co/Ni ratios these magnetites (Table 6) 646 

also support this hypothesis, because it would suggest a mafic metal source (cf. Melekestseva et al., 647 

2013), which is in contrast with the ultramafic nature of most of the Cogne host rocks. On the 648 

contrary, the high-(Ni, V, Ti) magnetites are more enriched in elements that are weakly mobile 649 

and/or relatively abundant in the host rocks, suggesting formation under rock-buffered conditions 650 

(cf. Nadoll et al., 2014). The PC1 may thus be interpreted as reflecting magnetite formation under 651 

different W/R ratios from possibly similar parent fluids. The PC2 further discriminates between the 652 

different host rocks (i.e. high-V magnetite in pegmatoid serpentinite and high-Ti magnetite in 653 

serpentinized tectonitic peridotites). Magnetite in veins shows intermediate geochemical features 654 

between hydrothermal fluid-buffered and host rock-affected compositions. 655 

Hydrothermal fluids carrying a significant load of transition metals (high Fe, Mn, Cu, Zn ± 656 

Co ± Ni) issue from ultramafic substrates in high-T (>350°C) hydrothermal systems associated with 657 

oceanic core complexes in slow-spreading mid-oceanic ridges, such as at Rainbow and Logatchev 658 

on the Mid-Atlantic Ridge (Douville et al. 2002; Andreani et al., 2014). In particular, the 659 

hydrothermal vent fluids at Rainbow are the richest in Co (Douville et al., 2002), have the highest 660 

Co/Ni ratios (~4) and are probably saturated in magnetite + chlorite + talc (Seyfried et al., 2011). 661 

The surveyed portion of the Rainbow hydrothermal deposit is almost entirely made up of sulphides 662 

(Fouquet et al., 2010; Marques et al., 2006, 2007), as expected for the upper part of a seafloor 663 

hydrothermal system, where the hot hydrothermal fluid mixes with seawater (Janecky and Seyfried, 664 

1984). Notwithstanding this, at Rainbow, hydrothermal magnetite is locally abundant in 665 



  

serpentinites hosting sulphide stockworks and in semi-massive sulphides, where magnetite 666 

sometimes replaces pyrite (Marques, 2005). Magnetite forming coarse-grained disseminations in 667 

the serpentinites that host stockworks at Rainbow precipitated later than the sulphides during a 668 

distinct hydrothermal stage (Marques et al., 2006) and, notably, has a similar geochemical 669 

fingerprint as magnetite in fine-grained disseminations in serpentinized peridotites at Cogne (the 670 

concentrations of the trace elements, with the exception of Si, are in the same order of magnitude). 671 

Recently, Yıldırım et al. (2016) described a hydrothermal magnetite mineralization in a non-672 

metamorphic volcanogenic massive-sulphide (VMS) deposit from the Upper Triassic-Upper 673 

Cretaceous Koçali complex, a Tethyan ophiolite in Turkey. These findings and the above 674 

observations support the possibility that Cogne magnetite has directly formed in a seafloor 675 

hydrothermal system. The presence of a positive magnetic anomaly at Rainbow has been ascribed 676 

to a ~2 · 10
6
 m

3
 magnetite-rich stockwork zone (Szitkar et al., 2014). If this volume was entirely 677 

composed of magnetite, it would correspond to 10 Mt of mineral, which is on the same order of 678 

magnitude as the estimated amount of magnetite at Cogne (~12 Mt). It is worth noting that the 679 

Rainbow hydrothermal system is still highly active (Fouquet et al. 2010) and its vent fluids are 680 

magnetite-saturated (Seyfried et al., 2011). It can thus be inferred that the Rainbow hydrothermal 681 

system may eventually produce at depth a magnetite deposit of comparable size as Cogne. 682 

In such a scenario, the general scarcity of sulphides at Cogne, along with their presence in 683 

the veins above the main magnetite bodies, suggest that the exposed mineralized section represents 684 

the deep segment of a seafloor, ultramafic-hosted, high-temperature hydrothermal system, which 685 

was possibly associated with shallower, now eroded, sulphide-rich bodies. According to this 686 

interpretation, the magnetite + sulphide veins and fine-grained disseminations in the hanging wall 687 

serpentinite (Site 2) may mark the transition between the magnetite-rich and the sulphide-rich 688 

portions of the hydrothermal system (Fig. 15). 689 

 690 

5.1.2. Geological, geochronological and textural constraints 691 



  

The Cogne mantle peridotites underwent complete serpentinization at 200-300°C beneath the 692 

seafloor of the Jurassic Piedmont-Liguria ocean (Carbonin et al., 2014). Our radiometric data on 693 

magnetite-associated uraninite (152.8 ± 1.3 Ma) places the ore-forming event in proximity of the 694 

Kimmeridgian-Tithonian boundary (152.1 ± 0.9 Ma). This age overlaps with that of the spreading 695 

of the Piedmont-Liguria ocean, as inferred by biochronological dating of supra-ophiolitic deep-sea 696 

sediments (radiolarites), whose oldest ages span from Late Bajocian to Middle Bathonian (~ 168 697 

Ma; Cordey et al., 2012), and by radiometric dating of magmatic rocks, which places the latest 698 

magma pulses (mainly plagiogranites) in the Western Alps and Liguria in the Kimmeridgian-699 

Tithonian (~157.3 ± 1.0 - ~145.5 Ma; Lombardo et al., 2002; Manatschal and Müntener, 2009 and 700 

references therein). 701 

Very little information can be obtained about the original lithological and thermal structure 702 

of the oceanic lithosphere at Cogne, because of the limited exposure. Some indirect information can 703 

be obtained from the nearby Mt. Avic serpentinite massif (Fig. 1). Although located in a different 704 

structural position in the orogen (see Dal Piaz et al., 2010), the Mt. Avic massif provides the most 705 

complete section of the oceanic lithosphere of the Alpine Tethys in the southern Valle d’Aosta 706 

region. In the Mt. Avic massif, dominant serpentinized mantle peridotites, associated with gabbroic 707 

intrusions (Mg-metagabbros), rodingitic dykes, minor Fe-Ti-oxide metagabbros and other 708 

metabasites (Dal Piaz et al., 2010; Fontana et al. 2008, 2015; Panseri et., al 2008), are thought to 709 

have been exposed on the seafloor in an oceanic core complex (Tartarotti et al., 2015). This is 710 

consistent with the proposed slow- to ultra-slow nature of the Piedmont-Liguria ocean (Manatschal 711 

et al., 2011; Manatschal and Müntener, 2009; Piccardo et al., 2008). Jurassic magmatic activity in 712 

the Mt. Avic massif was sufficient to sustain high-temperature hydrothermal convection cells, as 713 

testified by widespread, small, massive sulphide (Cu-Fe-Zn) deposits, which are mostly associated 714 

with metabasites (Castello et al., 1980; Castello, 1981; Martin et al., 2008; Dal Piaz et al., 2010; 715 

Fantone et al., 2014) and are thought to have formed in the seafloor (Martin et al., 2008). The 716 

distinctive enrichment in Co and Cu observed in Cogne nodular and vein magnetite ores, 717 



  

respectively, as well as the low Ni content in all magnetite ore types, suggests a contribution from 718 

mafic sources or a combined contribution from ultramafic and mafic sources, as observed in some 719 

ultramafic-hosted, mid-ocean ridge, hydrothermal deposits (e.g. Rainbow, Fouquet el al., 2010; 720 

Marques et al., 2006; Semenov, Melekestseva et al., 2014) and in other ultramafic-hosted VMS 721 

deposits in ophiolitic belts (Melekestseva et al., 2013). In analogy with these modern and ancient 722 

examples, also at Cogne the presence of deep magmatic intrusions (gabbro) would be required to 723 

provide heat and suitable chemical conditions (low pH) to produce metal-rich fluids (e.g., Marques 724 

et al., 2006; Seyfried et al., 2011). Gabbroic intrusions, mainly represented by gabbros and Fe-Ti 725 

gabbros, are not observed in the small Cogne unit, but are common in the wider Mt. Avic area (see 726 

above) and in the other ophiolitic units in southern Valle d’Aosta (Grivola-Urtier and Zermatt-Saas 727 

units; Benciolini et al., 1988; Bocchio et al., 2000; Dal Piaz et al., 2010; Polino et al., 2014). 728 

Therefore, we infer that similar rock types could have occurred also at Cogne in the original oceanic 729 

lithosphere section. 730 

The texture, geochemistry (low Co/Ni, high Cr) and relict mineralogy (bastites, Mg-Al-rich 731 

chromite) of Site 2 magnetite-enriched serpentinites suggest that the host rock was a harzburgitic 732 

mantle tectonite, with composition comparable with that of modern abyssal peridotites. However, 733 

chemical and textural evidence from both Site 1 and Site 3 indicates that part of the hydrothermal 734 

ore was emplaced in more atypical serpentinites, which exhibit a ghost pegmatoid texture marked 735 

by interlobate domains separated by coronae structures (Fig. 3f). Similar textures have been 736 

described in some troctolites from modern oceanic and ancient ophiolitic settings (Blackman et al., 737 

2006; Renna and Tribuzio, 2011). These rocks are interpreted to have formed from melt-738 

impregnation and melt-peridotite reactions, which dissolved orthopyroxene and partially dissolved 739 

olivine producing rounded or embayed grain boundaries (Drouin et al., 2009; Renna and Tribuzio, 740 

2011; Suhr et al., 2008). In particular, olivine-rich troctolites originating from melt-peridotite 741 

reactions are usually coarse-grained and can show a harrisitic texture (Renna and Tribuzio, 2011), 742 

which is reminiscent of the “harrisitic” texture of some nodular ores at Cogne. This suggests that 743 



  

many, if not most, nodular ores at Cogne formed by hydrothermal alteration of original 744 

serpentinized troctolites, with magnetite preferentially replacing the original olivine domains. 745 

 746 

5.1.3. Insights from thermodynamic modelling 747 

From a qualitative point of view, interaction of various types of fresh or serpentinized mantle rocks 748 

with either a harzburgite-reacted fluid at intermediate to high W/R or a Fe-gabbro-reacted 749 

hydrothermal fluid at intermediate W/R (Fig. 12) can produce mineral assemblages made of 750 

magnetite + antigorite + clinochlore ± brucite (at 300°C) ± forsterite (at 400°C), which resemble the 751 

most common mineral assemblages in the Cogne magnetite ores. However, even when the natural 752 

mineral assemblage is qualitatively reproduced, the calculated modal magnetite content invariably 753 

remains too low to produce a magnetite ore. This indicates that our model fluids are not sufficiently 754 

Fe-rich to account for the formation of the Cogne deposit. Note that a Rainbow-type fluid (Table 7) 755 

would produce broadly similar mineral assemblages as our model fluids, since its Na, Mg, Si, Fe, Cl 756 

concentrations are fairly similar. We could not envisage any other reasonable substrate lithology 757 

which could have released significantly higher Fe to the hydrothermal fluids under reasonable 758 

conditions. This suggests that additional processes other than simple seawater/rock reactions have 759 

played a role in the formation of the magnetite parent fluids. 760 

One such process could be phase separation in the hydrothermal fluid, which could have 761 

produced brines enriched in weakly volatile Fe. Phase separation is commonly invoked to explain 762 

the wide chlorinity range observed in modern seafloor hydrothermal vent fluids (e.g., Bischoff and 763 

Rosenbauer, 1987; Charlou et al., 2002; Douville et al., 2002; Foustoukos and Seyfried, 2007; 764 

Pester et al., 2014; Seyfried et al., 2011). A higher chlorinity would enhance solubility of metals as 765 

chloride complexes. At the same time, H2S partitioning into the vapour phase would cause sulphide 766 

undersaturation in the brine (Bischoff and Rosenbauer, 1987; Fouquet et al., 2010; Seyfried et al., 767 

2004; Seyfried at al., 2010; Von Damm, 2004), thus delaying sulphide precipitation. This is in 768 

agreement with the general scarcity of sulphides in the Cogne magnetite ores. The presence of 769 



  

chalcophile metals in the fluid is still testified by Cu sulphides in magnetite veins from Site 2. In 770 

this case, the transition from bornite + magnetite to chalcopyrite + magnetite assemblages suggests 771 

a progressive variation in the parent fluids towards higher H2S activity or lower Cu/Fe ratios (cf. 772 

Seyfried et al., 2004, 2010). 773 

Another process which could potentially lead to enhanced Fe concentrations in the fluid is 774 

the incorporation of a magmatic gaseous component, which could promote acidification and thus 775 

increase Fe solubility (cf. Berkenbosch et al., 2012; de Ronde et al., 2011). However, assuming a 776 

gas composition similar to that of gases emitted from mafic lavas (Erta 'Ale volcano, Ethiopia; 777 

Sawyer et al., 2008), it can be calculated that a relatively high condensed gas/fluid mass ratio of 778 

1:10 would increase the Fe concentrations only by a factor of ~2.3. This increase is too small to 779 

allow a significant increase in the final amount of precipitated magnetite. Therefore, phase 780 

separation remains the most likely hypothesis. 781 

Another feature that is not explained by our models is the diopside-rich gangue observed at 782 

Site 3. Textural relationships suggest that diopside formed during a late stage of magnetite 783 

mineralization, most likely from a fluid with higher pH and/or higher Ca
2+

 activity (see Fig. 9 in 784 

Bach and Klein, 2009). This fluid could have derived from serpentinization of country peridotites 785 

and troctolites, and may thus have some affinity with rodingite-forming fluids. Alternatively, a 786 

higher Ca content could result from more extensive interaction with gabbroic rocks. The possible 787 

role of gabbroic rocks in producing Ca-Si-(Al)-rich fluids has been suggested, for instance, for 788 

fluids responsible for strong calcic metasomatism in fault zones in modern oceanic core complexes 789 

(Boschi et al., 2006).  790 

 791 

 792 

5.2. Alternative hypotheses 793 

 794 



  

As ultramafic rocks in ophiolitic massifs often contain accumulations of chromite (e.g., Bédard and 795 

Hébert, 1998), a potential origin of magnetite in Sites 1 and 3 could be by leaching of Cr from 796 

former chromitite bodies. Indeed, Cr appears to be mobile during high-temperature (>500-550°C) 797 

peridotite-water interactions, as shown by Arai and Akizawa (2014) for the Oman ophiolite. Also, 798 

in the Mt. Avic massif, some small-scale magnetite ores were apparently formed after former 799 

chromitites (Diella et al., 1994; Rossetti et al., 2009). There are two lines of evidence against this 800 

hypothesis for the Cogne magnetite. First, in the Mt. Avic ores, chromite is still preserved in the 801 

cores of the magnetite grains (Diella et al., 1994; Fontana et al., 2008; Rossetti et al., 2009), 802 

whereas neither chromite relicts nor Cr-rich magnetite cores are found in nodular and vein ores at 803 

Cogne. Second, there is no evidence for a high-temperature alteration at Cogne such as that 804 

described in the Oman ophiolite by Arai and Akizawa (2014). At the temperatures under which 805 

serpentinization and successive hydrothermal metasomatism at Cogne took place (200-300°C and 806 

300°-400°C, respectively; Carbonin et al., 2014), Cr is essentially immobile and any Cr dissolved at 807 

higher temperatures deeper in the system should be precipitated (Arai and Akizawa, 2014). The 808 

immobility of Cr during magnetite mineralization is testified by the mantle tectonites containing the 809 

fine-grained disseminated magnetite from Site 2, which have similar bulk-rock Cr content as their 810 

magnetite-poor counterparts (Fig 5). In these rocks, the original Mg-Al-rich chromite (the main Cr 811 

carrier) was replaced with no Cr loss by Fe-rich chromite + Cr-rich chlorite, according to reactions 812 

of the type 813 

24 (Mg,Fe)(Al,Cr)2O4 + 18 (Mg,Fe,Al)3Si2O5(OH)4 + 12H2O + O2 →   814 

     Mg-Al-rich chromite                    serpentine 815 

12(Mg,Fe,Al,Cr)5(Si3Al)O10(OH)8 + 14 (Mg,Fe)(Cr,Fe,Al)2O4 816 

        Cr-rich chlorite                                 Fe-rich chromite 817 

(cf. Mellini et al., 2005; Merlini et al., 2009), and then overgrown by Cr-poor magnetite (Fig. 4d). 818 

The P-T conditions for the subsequent Alpine metamorphism at Cogne are not precisely known. 819 

However, assuming a typical subduction geothermal gradient (<10°C/km), the coexistence of 820 



  

lizardite and antigorite in both serpentinized peridotites and pegmatoid serpentinites suggests 821 

temperatures not exceeding 390°C (Schwartz et al., 2013), which are too low to determine 822 

significant mobilization of Cr. 823 

Iron (Mn) oxyhydroxides and Fe sulphide deposits are the most common forms of Fe 824 

accumulation in modern seafloor hydrothermal settings (e.g., Rona, 1988). In principle, magnetite 825 

may form by reduction and dehydration of Fe-oxyhydroxides or by desulphurization of Fe-826 

sulphides during metamorphism. However, our geochronological data demonstrate that the 827 

magnetite-forming event was coeval with the spreading of the Piedmont-Liguria ocean and thus 828 

predates Alpine metamorphism. Also the geochemistry of Cogne magnetite ores and associated 829 

rocks contradicts the metamorphic hypothesis. In fact, in Fe-oxyhydroxide accumulations, an 830 

enrichment in trace elements such as P and Sr is typically observed (e.g., Hekinian et al., 1993; 831 

Puteanus et al., 1991). A similar enrichment is indeed preserved in seafloor hydrothermal Mn-(Fe) 832 

deposits in southern Valle d’Aosta ophiolites (median P2O5 = 0.06 wt%, median Sr = 1650 ppm; 833 

Tumiati et al., 2010), which were metamorphosed up to eclogite-facies conditions (T = 550 ± 60°C, 834 

P = 2.1 ± 0.3 GPa; Martin et al., 2008; Tumiati et al., 2015), but it is not observed in Cogne ores 835 

(P2O5 ≤0.01 wt%, median Sr = 1.6 ppm). In the same ophiolites, sulphide (pyrite + chalcopyrite) 836 

deposits show no evidence of S mobilization and depletion linked to subduction metamorphism 837 

(Giacometti et al., 2014). Consistently, serpentinized mantle tectonites overlying the Cogne 838 

magnetite orebody are not depleted in S (Table 4). 839 

 840 

5.3. The role of the Alpine event 841 

 842 

The present structural position of the Cogne serpentinite, the lithological associations and the shape 843 

of the orebodies are in part the result of the tectonic activity that accompanied the Alpine 844 

orogenesis. The main magnetite orebodies at Site 1 and Site 3 behaved as rigid masses during the 845 

early ductile deformation events and they were affected by only low degrees of shear deformation, 846 



  

thus preserving the original textures and the proportions between magnetite and gangue minerals. 847 

The Alpine deformation was more intense at Site 2, which was probably located in a peripheral 848 

position with respect to the main orebody, where the fine-grained disseminated ores and the 849 

associated veins were dismembered into lenses. The Alpine metamorphism did not promote 850 

significant magnetite remobilization, as testified by the lack of isotopic resetting in uraninite 851 

inclusions in magnetite. The Alpine metamorphism is possibly responsible for the transformation of 852 

lizardite into antigorite, which is observed also in rocks that do not contain hydrothermal 853 

mineralization (i.e. magnetite-poor serpentinized peridotites and pegmatoid serpentinites). In any 854 

case the metamorphic temperatures were not sufficient to cause significant serpentine dehydration, 855 

since neoblastic forsterite is not widespread and is only found within the nodular ore at Site 1. The 856 

restriction of neoblastic forsterite to this specific site suggests that its formation could be related to 857 

higher temperature conditions (~400°C) being attained locally during the magnetite hydrothermal 858 

event, rather than to the subsequent metamorphism. Based on the above considerations, we 859 

conclude that Alpine metamorphism did not play a significant role in concentrating magnetite, 860 

although Alpine deformation may have pulled away portions of the deposit (now exposed at sites 1, 861 

2 and 3) that could have been much closer to one another in their original oceanic setting. 862 

 863 

5.4 Stages of formation of the Cogne deposit 864 

 865 

Considering all available data, we propose the following sequence of events for the formation of the 866 

Cogne deposit (Fig. 15): 867 

1) Formation of an oceanic core complex made of tectonitic peridotites, containing bodies of 868 

gabbros and Cr-poor melt-impregnated peridotites (troctolites). 869 

2) Extensive low-temperature serpentinization, producing lizardite serpentinites containing a first 870 

generation of disseminated magnetite (Cr-bearing in mantle tectonites and Cr-free in melt 871 



  

impregnated peridotites). This process probably occurred at high water/rock ratios and determined 872 

the complete serpentinization of the primary silicates and an extensive loss of Ca. 873 

3) Production of a high-temperature, Fe-rich hydrothermal fluid by reaction of downwelling 874 

seawater with substrate rocks. The involvement of Fe-gabbros in the reaction zone is likely, as this 875 

would enhance the content of Fe in the fluid. 876 

4) Phase separation in the upwelling hydrothermal fluid, producing a more Fe-rich brine. 877 

5) Reaction of the upwelling hot brine (~300–400°C) with various lithologies (serpentinites after 878 

mantle tectonites and troctolites) at various fluid/rock ratios, producing the dissolution of lizardite 879 

and the precipitation of abundant magnetite along with antigorite and clinochlore (± brucite and 880 

forsterite), forming fine-grained disseminated, nodular and massive replacive ores. Further 881 

upwelling of the magnetite-buffered fluid produced magnetite + Cu-sulphide + antigorite veins and 882 

fine-grained disseminations in shallower serpentinites. 883 

6) Circulation of late fluids with higher pH and/or higher Ca
2+

 activity, producing diopside-rich, 884 

magnetite-bearing metasomatic rocks. 885 

 886 

6. Conclusions 887 

 888 

The Cogne magnetite deposit was formed at ~150 Ma by hydrothermal processes during an 889 

advanced stage of the opening of the Piedmont–Liguria ocean. Based on geological and 890 

petrographic features and on geochemical and mineralogical similarities with some modern 891 

ultramafic-hosted VMS deposits on mid-ocean ridges, the exposed mineralized section at Cogne 892 

may represent the deep segment of a seafloor, high-temperature (~300–400°C) hydrothermal 893 

system, which was possibly associated with shallower, now eroded, sulphide-rich bodies (Fig. 15). 894 

As suggested by thermodynamic modelling, simple seawater-rock interactions cannot produce the 895 

Fe endowment observed at Cogne. Fractionation processes such as phase separation were probably 896 

critical to generate sufficiently Fe-rich hydrothermal fluids capable to precipitate large amounts of 897 



  

magnetite in various types of mantle host-rocks. The possible occurrence of similar ultramafic-898 

hosted magnetite deposits in present-day oceanic settings could contribute to explain the presence 899 

of significant magnetic anomalies centred on active and inactive ultramafic-hosted hydrothermal 900 

fields (Fujii et al., 2016; Szitkar et al., 2014; Tivey and Dyment, 2010). 901 
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Figure captions 1377 

 1378 

Fig. 1. Geological map of the southern Valle d’Aosta region. Redrawn and modified after De Giusti 1379 

et al. (2003) and Dal Piaz et al. (2010). 1380 

 1381 

Fig. 2. a) Simplified geologic map of the Cogne mining district showing the structural relationships 1382 

between the Cogne serpentinite and the associated units. Numbered stars indicate the sampling sites 1383 

(see text for details). Units after Dal Piaz et al. (2010); digital terrain map (DTM) from “Agenzia 1384 

Regionale per la Protezione Ambientale” (ARPA) Piemonte. b) Geological profile through the 1385 

Cogne serpentinite. Redrawn and modified after Elter (1971). c) Pseudostratigraphic columns of the 1386 

three sampling sites. 1387 

 1388 

Fig. 3. Typical magnetite ore and rock samples from Site 1 (a, b, e), Site 2 (c) and Site 3 (d, f). a) 1389 

Nodular ore sample, showing leopard (lower left corner), harristic (cm-sized iso-oriented rods of 1390 

magnetite in the centre) and massive (upper portion) texture. The light matrix is serpentine (+ 1391 

brucite + olivine). b) Massive ore, with minor serpentine gangue. Arrows indicate rounded 1392 

magnetite crystals. c) Deformed magnetite (+ chalcopyrite + antigorite) vein (outlined by dashed 1393 

lines) in serpentinized peridotite. Chalcopyrite is completely weathered into Fe-oxyhydroxides and 1394 

secondary copper minerals. The pen is 14 cm-long. d) Fine-grained leopard ore in diopside gangue. 1395 

e) Magnetite-poor pegmatoid serpentinite. Note the presence of dark and light interlobate domains. 1396 

The former are composed of antigorite and minor magnetite, the latter are formed by antigorite 1397 

only. f) Contact between a magnetite-rich diopsidite (left) and a pegmatoid serpentinite (right) with 1398 

amoeboid magnetite-rich domains (light grey) interweaved with magnetite-free domains. Dark 1399 

antigorite coronae contour the two domains. Magnetite content increases in the right part of the 1400 

sample, but embayed boundaries are still recognizable. Cut and polished sample. 1401 

 1402 



  

Fig. 4. Microstructural features in Cogne rocks. a) Magnetite poikiloblast in leopard ore from Site 1403 

1, showing indented boundaries with antigorite. Inclusions in magnetite are clinochlore (usually 1404 

anhedral), brucite (small and euhedral) and antigorite (large euhedral crystals). Gangue is antigorite 1405 

with minor calcite, which forms late impregnations and thin veins. Back-scattered electron (BSE) 1406 

image. b) Nearly massive fine-grained disseminated ore from Site 2. Magnetite (white) is associated 1407 

with acicular diopside (grey) and forms a corona around an antigorite (dark grey) bastite. Reflected 1408 

plane-polarized light. c) Fine-grained disseminated ore from Site 2. Magnetite (white), antigorite 1409 

(black) and diopside (medium grey) replace former silicates, but bastite sites (round black areas) 1410 

and Mg-Al-rich chromites (framed; see Fig. 4d for a close-up) are still preserved. BSE image. d) 1411 

Mg-Al-rich chromite crystal (medium gray), partly altered along the rims and fractures into Fe-rich 1412 

chromite (light grey) + Cr-rich chlorite (black) and mantled by magnetite, intergrown with 1413 

antigorite (black) and diopside (dark grey). e) Magnetite + chalcopyrite patch associated with 1414 

antigorite in a dismembered vein from Site 2. Bluish inclusions in magnetite are bornite. Antigorite 1415 

occurs both within and around the magnetite, forming indented boundaries with it. Reflected plane-1416 

polarized light. f) Euhedral magnetite crystals in a diopside-rich portion of a leopard ore sample 1417 

from Site 3. Diopside forms randomly-oriented subhedral prismatic crystals (medium gray) with 1418 

interstitial antigorite (dark grey). Black mineral included in magnetite or interstitial between 1419 

diopside crystals (right) is clinochlore. BSE image. g) Serpentinized pegmatoid ultramafic rock 1420 

from Site 3 (see Fig. 3f), showing interlobate domains separated by coronae structures. Transmitted 1421 

light, crossed polars. h) Enlargement of framed area in c). Light-coloured domain (upper left) is 1422 

composed of coarse-grained interlocking antigorite; dark domain (right) is made up of isotropic 1423 

lizardite, clinochlore (anomalous brown interference colour), antigorite (white-light grey) and 1424 

magnetite (opaque). Fine-grained interlocking antigorite lines the boundary between the two 1425 

domains. Transmitted light, crossed polars (upper) and plane polarized light (lower). Mineral 1426 

abbreviations (after Whitney and Evans, 2010) -  Mag: magnetite; Atg: antigorite; Clc: clinochlore; 1427 



  

Brc: brucite; Cal: calcite; Di: diopside; Lz: lizardite; Ccp: chalcopyrite; Bn: bornite; Chr: chromite; 1428 

Chl: chlorite. 1429 

 1430 

Fig. 5. Covariation of Co/Ni ratio and Cr content vs Fe2O3 content in Cogne rocks (this work and 1431 

Carbonin et al., 2014) and ores. Data for abyssal peridotites after Niu (2004), Paulick et al. (2006), 1432 

Andreani et al. (2014) are shown for comparison. 1433 

 1434 

Fig. 6. Uraninite microstructural features and U-Th-Pb dating. a-d) Uraninite in Site 1 leopard ore 1435 

and related dating [b) and c) from the same ore sample]. e-f) Aggregate of uraninite crystals in Site 1436 

1 leopard ore and related dating. Chemical map shows a U-rich rim. g-h) Inclusion-rich (magnetite, 1437 

dark grey; clinochlore, black) uraninite crystal in Site 3 leopard ore and related dating. The 1438 

chemical map reveals a homogeneous composition. i) Combination of all single-spot ages. Images 1439 

and maps were obtained by SEM-BSE and EPMA, respectively. Geochronological data plotted 1440 

using ISOPLOT (v. 3.75) Visual Basic add-in for Excel® (Ludwig, 2012). MSWD: mean square of 1441 

weighted deviates. 1442 

 1443 

Fig. 7. Electron microprobe traverses across uraninite crystals (see Fig. 6 for their position). 1444 

Horizontal dashed lines indicate PbO plateau. 1445 

 1446 

Fig. 8. Box and whiskers plot of magnetite trace element composition. 1447 

 1448 

Fig. 9. Robust-PCA of magnetite trace element composition. Coordinates of datapoints (scores) are 1449 

on left and lower horizontal axes. Coordinates of variables (loadings) are on right and upper 1450 

horizontal axes. 1451 

 1452 



  

Fig. 10. Co vs. Ni relationships in magnetite. Regression line (dashed) for magnetite-rich samples 1453 

from Site 1 and 3 shows linear relationship between Co and Ni. 1454 

 1455 

Fig. 11. Variation in pH, fO2
 and element concentrations in modified seawater equilibrated with 1456 

harzburgite (a) or Fe-gabbro (b) at 400°C at various W/R. 1457 

 1458 

Fig. 12. Mineral assemblages and variation in fO2
 produced by reaction of model hydrothermal 1459 

fluids with selected rock types. Harzburgite-reacted fluid reacting with rocks at a) 300°C and 500 1460 

bar b) 400°C and 500 bar. Fe-gabbro-reacted fluid reacting with rocks at c) 300°C and 500 bar d) 1461 

400°C and 500 bar. 1462 

 1463 

Fig. 13. Compositions of Cogne magnetites plotted in the discrimination diagram by Dare et al. 1464 

2014. Magnetites with Cr contents above detection limit are circled. The other data points are 1465 

plotted assuming a Cr value equal to the detection limit of 8 ppm. Although this may have unduly 1466 

shifted the points to lower Ni/Cr ratios, the strong hydrothermal character of the Cogne magnetites 1467 

remains evident. 1468 

 1469 

Fig. 14. Compositions of Cogne magnetites in the discrimination diagram of Dupuis and Beaudoin 1470 

2011. LA-ICP-MS data are not available for Al (generally <<0.1 wt% based on EPMA data), 1471 

therefore the plotted (Mn+Al) contents should be considered as minimum values. 1472 

 1473 

Fig. 15. Interpreted schematic evolution of the Cogne deposit. a) Formation of an oceanic core 1474 

complex made up of mantle peridotites intruded by gabbros and Fe-gabbros, and locally 1475 

impregnated by melts. Early circulation of hydrothermal fluids produces extensive serpentinization 1476 

at relatively low-T (lizardite stability field). High water/rock ratios are possibly attained thanks to 1477 

fluid focussing along fractures and faults. b) Convective circulation of seawater produces high-T 1478 



  

hydrothermal fluids that leach metals from harzburgites and Fe-gabbros. These fluids undergo 1479 

phase separation and produce a magnetite-rich body at depth and a sulphide mound on the seafloor. 1480 

A magnetite-sulphide stockwork zone marks the transition between the magnetite orebody and the 1481 

sulphide mound. c) Close-up of the framed region in b). Phase separation produces an H2S-rich 1482 

vapour that quickly escapes from the system and a dense metal-rich brine. Then, the upwelling 1483 

brine reacts with the serpentinites at various fluid/rock ratios and precipitates magnetite, producing 1484 

fine-grained disseminated, nodular and replacive massive ores. Further upwelling of the magnetite-1485 

saturated fluids along fractures produces magnetite + chalcopyrite veins (stockwork zone) and fine-1486 

grained disseminations in shallower serpentinites. 1487 
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Table 1  

Seawater composition* 

Na
+
   464.0 

Cl
-
   546.0 

HCO3
-
     2.34 

Ca2+    10.2 

Mg
2+

    53.0 

K
+
     9.8 

SiO2(aq)     0.11 

Fe
2+

     0.0000015 

Al3+     0.000037 

SO4
2-

    28.2 

O2(aq)     0.25 

pH     7.8 

* After Klein et al. (2009). 1573 
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Table 2 

Rock compositions used in thermodynamic modelling. 

Rock 

Type 

Fe-

gabbro
1
 

Dunite
1
 

Serp. 

Dunite
2
 

Harzburgite
1
 

Serp. 

Harzburgite
2
 

Pegmatoid 

serpentinite
3
 

Troctolite
1
 

Serp. 

Troctolite
4
 

Ox. wt%                 

SiO2    47.94    40.87    39.24    44.31    39.38    40.97    42.90    37.95 

Al2O3    12.19     0.00     0.19     0.42     0.59     0.78     9.58     6.12 

FeO    18.87     9.77     7.57     8.97     6.61     9.23     9.06     8.44 

MgO     4.85    49.35    38.79    45.81    38.37    37.26    32.39    34.73 

CaO    13.17     0.00     0.08     0.48     1.69     0.04     5.39     2.87 

Na2O     2.99     0.00     0.13     0.00     0.05     0.00     0.67     0.41 

H2O     0.00     0.00    13.99     0.00    13.30    11.72     0.00     9.47 

Tot.   100.00 

  

100.00   100.00   100.00   100.00   100.00   100.00   100.00 

                  
1 
"Artificial" rock. 

2 
Andreani et al. (2014). 

3 Sample CDP15, Site 1. 

4 
Sanfilippo et al. (2014). 
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Table 3  

EPMA mineral compositions. 
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1
s: sample standard deviation.     

2
Mineral abbreviations: Mag, magnetite; Atg, antigorite; Lz, lizardite; Clc, clinochlore; Di, diopside     
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Table 4 

Bulk chemistry of representative rock types. 

Location Site 1 Site 1 Site 1 Site 1 Site 1 Site 1 Site 2 Site 2 Site 2 Site 3 Site 3 Site 3 Site 3 Site 3 

Sample LIC1B CDP15 MZ18 LIC12 
LIC1

4 

LIC1

5 
ECL1 MZL3 

CRY

1 
LAR4 LAR2-1 

LAR2-

2 

CGN

3 

CGN

8 

Rock 

type 

Serpentini

zed 

peridotite 

Pegmato

id 

serpenti

nite 

Pegmato

id 

serpenti

nite 

Serpentini

zed 

peridotite 

Nodul

ar ore 

Nodul

ar ore 

Fine-

grained 

dissemina

ted ore  

Nearly 
massive 

fine-

grained 

dissemina

ted ore 

Vein 

ore 

Serpentini

zed 

peridotite 

Mag-
rich 

pegmato

id 

serpenti

nite 

Mag-

rich 

diopsid

ite 

Di-

rich 

nodul

ar ore 

Nodul

ar ore 

Mineral 

assembl

age 

Atg, Mag, 

sulph. 

Atg, Lz, 

Mag 

Atg, Lz, 

Mag, 

sulph. 

Atg, Lz, 

Mag, Tlc, 

Mg-Al-

Chr, 

sulph. 

Mag, 
Atg, 

Fo, 

Brc, 

Clc, 

Lz,  

Ti-

Chn, 

sulph. 

Mag, 

Atg, 

Cal, 

Clc, 

Brc, 

Lz 

Mag, 

Atg, Di, 

Lz, Mg-

Al-Chr, 

Chl, 

sulph. 

Mag, Di, 

Atg, Lz, 

sulph. 

Mag, 

Atg, 

Ccp, 

sulph

. 

Atg, Mag, 

Clc, Lz, 

Cal, 

sulph. 

Atg, 

Mag, 

Lz, Clc, 

Di 

Di, 

Mag, 

Atg 

Mag, 

Di, 

Clc, 

Atg, 

Cal, 

Adr 

Mag, 

Atg, 

Clc, 

Lz, 

Adr, 

Di 

Ox. wt%                             

SiO2    41.95    40.22    40.92    39.54 
   

22.39 

   

20.51 
   32.20     9.08 

   

24.65 
   39.10    33.15    42.40 

    

6.52 

   

10.06 

TiO2     0.02     0.03     0.03     0.02 
    

0.06 

    

0.02 
    0.04     0.01 

    

0.04 
    0.10     0.03     0.02 

    

0.02 

    

0.02 

Al2O3     1.04     0.77     2.59     1.01 
    

0.62 

    

1.08 
    0.92     1.15 

    

0.43 
    2.67     2.31     0.27 

    

0.86 

    

0.31 

Fe2O3     5.46    10.07     4.47     8.32 
   

41.05 

   

47.36 
   31.10    79.89 

   

43.51 
    4.95    28.04    21.44 

   

85.73 

   

78.71 

MgO    38.31    36.58    37.91    37.61 
   

28.22 

   

21.07 
   25.72     5.03 

   

22.39 
   33.42    30.69    16.01 

    

3.90 

    

9.17 

MnO     0.11     0.16     0.18     0.10 
    

0.31 

    

0.31 
    0.17     0.30 

    

0.20 
    0.16     0.17     0.17 

    

0.35 

    

0.40 

CaO     0.26     0.04     0.04     0.02 
    

0.11 

    

2.21 
    2.63     3.01 

    

0.04 
    5.85     0.14    18.19 

    

1.50 

    

0.03 



  

Na2O     0.04     0.03     0.03     0.03 
    

0.02 

    

0.02 
    0.03     0.01 

    

0.02 
    0.03     0.04     0.02 

    

0.02 

    

0.01 

K2O     0.01     0.01     0.01     0.01 
    

0.01 

    

0.01 
    0.01     0.01 

    

0.00 
    0.01     0.01     0.01 

    

0.01 

    

0.01 

P2O5     0.01     0.01     0.01 0.01 
    

0.02 

    

0.01 
    0.01     0.01 

    

0.01 
    0.01 

    

0.01 

    

0.01 

    

0.02 

    

0.01 

LOI    12.19    11.51    12.63    12.57 
    

6.88 

    

7.09 
    7.09     0.01 

    

6.75 
   13.21     5.18     0.72 

    

0.21 

    

0.32 

Total    99.40    99.42    98.83    99.25 
   

99.68 

   

99.68 
   99.91    98.51 

   

98.02 
   99.50    99.77    99.27 

   

99.13 

   

99.04 

ppm                             

Be*  -  -  -   <1 
  

<1 

 

- 
    1  - 

- 
 -   <1   <1 

  

<1 

  

<1 

S*  -  -  -  1800  <200 
 

- 
 3500  - 

- 
 -  <200  <200  <200  <200 

S    47 <10    23  1044   228   179   881   169  3068   821   118   103    14 <10 

Sc*  -  -  -     6 
  

<1 
 

- 
    6  - 

- 
 -     2     1 

  
<1 

  
<1 

Sc    18    12    22     9     9 
  

<5 
  <5     <5    10   <5     6   <5     9    13 

V*  -  -  -    26 
  

<8 

 

- 
   31  - 

- 
 -    20    12 

  

<8 

  

<8 

V    27     5    57    26    13    12    37    32    51    41    20    14    11    11 

Cr*  -  -  -  2395 
<1

4 

 

- 
 2196  - 

- 
 - <14 <14    21 

<1

4 

Cr  2100    12  2668  2580    12    10  2199  1256    73  1850    13    10    10    13 

Co*  -  -  - 
  117.4 

  

236.8 

 

- 
   97.8  - 

- 
 -   105.8    72.3 

  

260.9 

  

295.2 

Co    76   111    88   133   330   321   129   139   124    96   145    95   407   436 

Ni*  -  -  -  2403    93 
 

- 
 1005  - 

- 
 -   275    97   110    42 

Ni  1401   531  1927  2727    97    11  1168   239   477  1338   352   105   113    45 

Cu    19    15    18    17    34    27   194   217 

 

1367

0 

   20    66    76    45    38 



  

Zn    41    34    40    47    76   103   120   115   131    38    63    38    83    84 

Ga*  -  -  -     0.8     1.3 
 

- 
  <0.5  - 

- 
 -     8.3     2.0     3.5     0.8 

Ga   <5     7     8   <5 
  

<5 
    8   <5    45 

  

<5 
    7    15   <5    13 

  

<5 

Rb*  -  -  -   <0.1 
  

<0.1 

 

- 
  <0.1  - 

- 
 -     0.1 

  

<0.1 

  

<0.1 

  

<0.1 

Rb     6     7     5     7 
  

<3 
    7    15   <3     8     6     8    17     8     8 

Sr*  -  -  -   <0.5     1.3 
 

- 
    1.0  - 

- 
 -   <0.5    12.4     1.8     0.6 

Sr     7     5     5     4     6    81     6     5     7   100     6    18     8 
  

<3 

Y*  -  -  -     0.5     0.5 
 

- 
    0.2  - 

- 
 -     1.0     3.4     0.5     0.4 

Y   <3   <3   <3   <3 
  

<3 

  

<3 
  <3   <3 

  

<3 
  <3   <3   <3    13    10 

Zr*  -  -  -     3.4     5.8 
 

- 
    0.7  - 

- 
 -     1.9     2.8     1.0     0.8 

Zr     9    15    10     9    16    13     9    13    11    14     9    12     9    10 

Nb*  -  -  -   <0.1     0.6 
 

- 
  <0.1  - 

- 
 -   <0.1     0.9     0.4 

  

<0.1 

Nb   <3   <3   <3   <3 
  

<3 

  

<3 
  <3   <3 

  

<3 
  <3   <3   <3 

  

<3 

  

<3 

Sn*  -  -  -   <1 
  

<1 

 

- 
  <1  - 

- 
 -   <1   <1 

  

<1 

  

<1 

Cs*  -  -  -   <0.1 
  

<0.1 

 

- 
  <0.1  - 

- 
 -   <0.1 

  

<0.1 

  

<0.1 

  

<0.1 

Ba*  -  -  -     1.0 
  

<1 

 

- 
  <1  - 

- 
 -     1.0     3.0 

  

<1 

  

<1 

Ba <10 <10    11 <10 
<1

0 

<1

0 
<10 <10 

<1

0 
   15 <10 <10 

<1

0 

<1

0 

Hf*  -  -  -   <0.1     0.2 
 

- 
  <0.1  - 

- 
 -   <0.1     0.1 

  

<0.1 

  

<0.1 

Ta*  -  -  -   <0.1 
  

<0.1 

 

- 
  <0.1  - 

- 
 -   <0.1 

  

<0.1 

  

<0.1 

  

<0.1 



  

W*  -  -  -     1.1     4.0 
 

- 
  <0.5  - 

- 
 -   <0.5 

  

<0.5 

  

<0.5 

  

<0.5 

Pb     8    11     9    33    15     9     9   <5    18    14    27    22    10 
  

<5 

Th*  -  -  -   <0.2     0.9 
 

- 
  <0.2  - 

- 
 -     0.3     0.5 

  

<0.2 

  

<0.2 

Th     9     9     9   <3    12    11     6    10    10     4   <3     8    14    12 

U*  -  -  -   <0.1     2.9 
 

- 
  <0.1  - 

- 
 -     1.3     2.0     0.8     2.4 

U     6     9     4   <3     4 
  

<3 
    4   <3     6   <3   <3   <3 

  

<3 

  

<3 

La*  -  -  -     0.9     0.4 
 

- 
    0.2  - 

- 
 -     0.8     3.3     0.9     0.3 

La <10 <10 <10 <10 
<1

0 

<1

0 
<10 <10 

<1

0 
<10 <10 <10 

<1

0 

<1

0 

Ce*  -  -  -     0.7     0.6 
 

- 
    0.1  - 

- 
 -     0.9     5.8     1.1     0.7 

Ce <10 <10 <10 <10 
<1

0 

<1

0 
   16 <10 

<1

0 
   10    11 <10 

<1

0 

<1

0 

Nd*  -  -  -     0.4     0.7 
 

- 
  <0.3  - 

- 
 -     0.3     3.8     0.7     0.4 

Nd    12    28    20    23    19    17    22    27    24    17    18    29    22    27 

                              

* element concentrations measured by ICP-MS.                         

- = not determined. 
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Table 5 

Uraninite compositions and calculated single-spot ages. 
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1 Ti and Cr are systematically below the detection limit, therefore they are not reported. 

 2
 5% relative error (equivalent to the accuracy on Pb analysis; Bowles 1990). 

3
 Average of 5 repetitions on the same point. 

 4 
Rejected analyses, i.e out of the plateau beacuse of Pb loss or mixed/contaminated (cont.), are in italics. 
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Table 6 

Trace element composition of magnetite (LA-ICP-MS). 

Location Site 1 
Site 

1 
    Site 2      

Site 

2  
    Site 3     Site 3 

Sample CO14 
LIC1

4 
    ECL1     

CRY

1 
    

LAR

2A 
    CGN3 

Rock Type Mag-rich diopsidite Nodular ore 
Fine-grained 

disseminated ore 
Vein ore 

Mag-rich 

pegmatoid 

serpentinite 

Di-rich nodular ore 

Element 

(ppm) 

DL 

(ppm) ± 

2s1 

n = 16 n = 16 n = 10 n = 14 n = 25 n = 13 

min Max 
Medi

an 
min Max 

Medi

an 
min Max 

Media

n 
min 

Ma

x 

Medi

an 
min 

Ma

x 

Medi

an 
min 

Ma

x 

Medi

an 

25
Mg     11 ± 7 

  

935

7 

 

113

50 

 

1021

6 

 

2102

1 

 

295

68 

 

2411

2 

  6149 

 

725

9 

  6696 
 

7773 

 

848

1 

 

8146 

  

4173 

 

815

0 

  

5629 

 

5992 

 

694

5 

 

6311 

29
Si 

1020 ± 

1895 

<10

20 

  

134

8 

 

<102

0 

BDL <1020 

 

157

2 

<1020 BDL 
<102

0 

 

230

3 

<102

0 
BDL 

43
Ca 

  325 ± 

93 
BDL BDL BDL BDL BDL BDL 

47Ti       6 ± 4 
    

42 

    

75 
    59    44 

  

214 
  182    396 

  

635 
   570    54 

  

387 
  263    227 

  

435 

   

315 
   41 

  

108 
   70 

51
V 

   0.3 ± 

0.2 

    

13 

    

43 
    23     5    81    29      7    30     17 

     

<0.3 

  

135 
    5     40 

  

118 
    64 

     

<0.3 

   

33 
    6 

53
Cr       8 ± 3 BDL BDL       <8 

  

154 
    32 

     

<8 

   

14 

     

<8 

      

<8 

   

64 
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s = sample standard deviation. 
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Table 7 

Composition of model hydrothermal fluids and 

the Rainbow vent fluid (mmol/kg solution). 

  Harzburgite-

reacted 

Fe-gabbro-

reacted 
Rainbow 

  

Na   460.2   464.4   570.0 

Ca     9.2    12.0    67.7 

Mg    15.6     3.1     1.7 

Si     0.3    17.5     7.3 

Fe    10.8    25.8    22.2 

Al     4.7    27.6     0.0029 

Cl
-
   535.4   527.3   757.0 
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