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Complete coverage of space favors modularity of the grid system in the brain
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Grid cells in the entorhinal cortex fire when animals that are exploring a certain region of space occupy the
vertices of a triangular grid that spans the environment. Different neurons feature triangular grids that differ in
their properties of periodicity, orientation, and ellipticity. Taken together, these grids allow the animal to maintain
an internal, mental representation of physical space. Experiments show that grid cells are modular, i.e., there are
groups of neurons which have grids with similar periodicity, orientation, and ellipticity. We use statistical physics
methods to derive a relation between variability of the properties of the grids within a module and the range
of space that can be covered completely (i.e., without gaps) by the grid system with high probability. Larger
variability shrinks the range of representation, providing a functional rationale for the experimentally observed
comodularity of grid cell periodicity, orientation, and ellipticity. We obtain a scaling relation between the number
of neurons and the period of a module, given the variability and coverage range. Specifically, we predict how
many more neurons are required at smaller grid scales than at larger ones.
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I. INTRODUCTION

Classical behavioral experiments show that the navigation
of mammals relies on an internal representation of space
called a “cognitive map” [1]. Research on the neural basis
of this internal representation started with the discovery of
place cells in the hippocampus of rats, neurons that have their
activity controlled by the physical position occupied by the
animal [2]. The discovery of place cells generated an extensive
investigation of the spatial representation system in the brain,
which led to the discovery of grid cells [3], as well as different
types of neurons whose activity codes for head direction [4],
speed [5], and borders of the environment [6,7] (see [8] for
a recent review). The discovery of cells that constitute a
positioning system in the brain was the motivation for the
Nobel Prize in Physiology awarded in 2014.

One of the most striking elements composing the cognitive
map is in the entorhinal cortex (EC) [3], where grid cells
respond when the animal occupies one of the vertices of a
triangular grid that tessellates space. It is widely believed that
these neurons provide a metric for the spatial representation
system, since their relation with physical position does not
reshuffle in different environments, unlike what happens for
place cells where “remapping” occurs [9].

Grid cells are organized in modules—grids in a mod-
ule are clustered around a discrete period which increases
along the dorsoventral axis of the EC [10,11]. Grids
in a module also share similar orientations and elliptic-
ities while varying in spatial phase [11]. Experimentally,
there is a power-law relation between the periodicities
of different modules—a rationale for the power law was
given in [12,13].

The term “module” for grid cells differs fundamentally
from the same term used in the context of brain (or city)
networks [14]. There, neurons correspond to the nodes of
a network whose edges correspond to axonal connections

among the neurons. Modularity refers to the formation of
clusters of nodes that are more densely connected among
themselves than to nodes in other modules. The reason for
modularity in these networks is that edges have costs that
scale with their length, so that spatial aspects are important
and commonly lead to cluster formation. By contrast, the
triangular lattices in the EC grid system describe firing patterns
of individual grid cell neurons as an animal explores the
environment. In other words, there is no physical edge between
vertices of the triangular firing lattices of grid cells, and
no cost associated to their length. Hence physical proximity
is not relevant for grid cells and has no bearing on the
problem of explaining the modular organization of grid cells in
the EC.

Why is the grid system modular? The key point underlying
our arguments in the sequel is that behavioral deficits in
orientation and navigation result if the neural representation
has gaps, i.e., complete coverage of space is a fundamental
requirement for the cognitive map to function. Specifically,
we use statistical physics methods to show that variability in
period, orientation, or ellipticity randomizes the relative phases
of firing fields, and leads to failure of spatial coverage. Larger
variability entails a smaller physical range that can be covered
without gaps (which would lead to behavioral deficits). Hence
optimizing spatial coverage gives a functional argument for
reduced variability and for the observed comodularity of grid
cells. We also predict a scaling law relating the period and
number of neurons in a module.

II. RESULTS

A. Model of grid cells’ activity

For our specific purpose of analyzing efficient coverage
of space, the firing field of grid cells can be simplified as
follows. After thresholding for noise, the smooth lumps formed
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FIG. 1. Deformations in grid parameters induce dephasing. (A)
Spatial activity of a grid cell (a) and its possible deformations: dilation
(b), rotation (c), and ellipticity transformation (d). The activity after
transformation (green) is superimposed on the reference activity
(gray). (B) Using a set of grid parameters we divide space into unit
cells represented by gray hexagons. A neuron with the same set of grid
parameters (a) has constant relative phase (black arrows) in each unit
cell. A neuron with different grid parameters (b) has variable phases
in different unit cells, e.g., the grid is rotated as in panel [A(c)] and
the center of the unit cell is covered by a firing field in U1 but not in
U2.

by firing fields are treated as being uniformly active inside
a localized region and inactive outside (Fig. 1). Noise and
firing inhomogeneity inside the active region only degrade the
uniformity of coverage relative to this model. Thus treating
firing fields as step functions allows us to derive bounds on
how well a given grid architecture can cover space.

Specifically, we represent the activity of grid cells as

a(x) =
∑

n,m∈Z
χ

( |φ + R(θ )[nv + mu)] − x|
�/2

)
, (1)

where x is the vector locating the position of the animal
in two dimensions, v = λ1(cos(β), sin(β)) and u = λ2(1,0)
are the elementary vectors that generate the grid, � is the
diameter of a firing field, and n and m are integers indexing
the vertices of the grid. R(θ ) is an overall rotation of the
grid by an angle θ , the angle β describes the relative rotation
of the grid basis vector v relative to u, and the phase φ

represents a shift with respect to a reference point. The activity
of an equilateral, unrotated triangular grid has λ1 = λ2 = λ,
β = π/3, and θ = 0. The set of the six vertices defined by the
triplet u, v, u − v and their opposite vectors forms a hexagon
that can be inscribed into an ellipse. The ratio between the
axes of the ellipse defines the ellipticity ε of the grid (ε = 1 for
equilateral grids). Hereafter, we study isosceles grids, where
the relation cos β = 1/

√
1 + 3ε2 holds, but our conclusions

hold generally (see Appendix A). Finally, for the purpose of
analyzing coverage we take χ = 1 when its argument is <1
and χ = 0 otherwise, i.e., we are interested in whether a neuron
is active or not at a given point (disregarding its strength of
activity).

In a module, grid cells with similar spacing have similar
orientation, ellipticity, and firing field size [11]. However,
parameters of the grids have an appreciable variability, which

we quantify using experimental data reported in Stensola
et al. [11] as follows. For each animal where the distribution
of grid parameters is available, we fit the data with a sum
of Gaussians. For each module, we used one Gaussian for
the period (mean λ, standard deviation σλ) and one for the
orientation (mean θ , standard deviation σθ .) The two standard
deviations are roughly constant in the various modules. Indeed,
the Pearson correlation coefficient is 0.21 between σλ and λ

and 0.28 between σθ and λ. The standard deviation of the
grid period is about 6 cm. Assuming 10 modules and that
the smallest is about 40 cm, the ratio σλ/λ goes from 0.01 to
0.15. The standard deviation of the orientation in a module
is about 0.03 rad. In the literature we were not able to find
the distribution of ellipticity in the population within a single
module. We know that ellipticity also has a modular structure
and that across a population (all modules) the mean ellipticity
is around 1.16 ± 0.003 [11]. In the following analysis we
assume a standard deviation in ellipticity in the range 0.01–
0.15, i.e., similar to variability in grid spacing. Finally, we fixed
the ratio between the firing field width and the grid spacing at
the experimental value λ/� ∼ 1.63 ± 0.04 [15].

B. Dephasing and decorrelation of neuronal activity

In order to cover an environment with grid cells, there
must be at least one active neuron at each point. The average
orientation θ , ellipticity ε, and period λ within a module define
a tessellation of the plane into periodic unit cells. Perfect
periodicity would imply that once a unit cell is covered, all
of space is covered. However, perfect periodicity is broken
by the variability discussed above, which results in deviations
from the average grid. Indeed, as shown in Fig. 1(B), the
pattern of firing fields changes across unit cells, a phenomenon
that we call “dephasing.” Here we characterize this effect by
computing the correlation coefficient between the number of
neurons that are active at the center of two unit cells.

The number of neurons active at a spatial point x is
given by n(x) = ∑N

i=1 ai(x), where ai is the spatial activity
of the ith neuron given by Eq. (1) and N is the number
of neurons in the system. Consider a set of neurons whose
grid parameters are drawn from Gaussian distributions with
standard deviations σλ, σθ , and σε . We compute numerically
the correlation (normalized to 1 for coincident points) between
the numbers of neurons n(x) and n(y) active at different points
x and y, by averaging over statistical realizations (Fig. 2). The
correlation declines systematically with the separation in the
grid lattice. The corresponding correlation length L (defined
as the distance at which the correlation drops to 1/e) decreases
with the variance in the parameters of the grid cells (Fig. 2)
and is in the meter scale for the smallest modules, which is
within the behavioral range of a few tens of meters found in
rats [16–18].

We can understand the asymptotic behavior of the cor-
relation function of the number of neurons active at two
spatial points at large separations as follows. We are assuming
that grid cells in a module fire independently. Therefore, the
correlation function of the number of neurons active at x and y,
ρ(n(x),n(y)), is equal to the correlation function of the activity
of a single generic neuron a(x), averaged over the distribution
of grid parameters, ρ(a(x),a(y)). The mean activity of a single
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FIG. 2. Variability of grid parameters induces decorrelation in
grid cells activity. The correlation coefficient of the number of neurons
active at the center of two unit cells along the line x = nλ(1,0),
n ∈ {0, 1, . . . } for different values of the standard deviations in the
parameters of the grid cells. In the plots x = |x|. Colors in the first
row represent different values of one of the variances [orientation (a),
ellipticity (b), period (c)], while the other two are fixed [σλ/λ = 0.03,
σε = 0 (a), σλ/λ = 0.02, σθ = 0.02 (b), σθ = 0.02, σε = 0 (c)]. The
case with no noise is represented in black. Larger variances lead to
a rapid decrease in the correlation as a function of separation. [See
Appendix B for details on panel (c).] The correlation length depends
on three variances which we varied in pairs obtaining contour plots
[σθ = 0.01 (d), σε = 0 (e), σλ/λ = 0.01 (f)]. The white points in
panel (e) correspond to the values of the standard deviations measured
in [11].

neuron is obtained from Eq. (1) by averaging over the grid
parameters. This quantity can be written as

〈a(x)〉 =
∫

a(x) dPθdPλdPεdPφ , (2)

where dP(∗) represents the probability distribution for the
parameter (∗). As discussed above, orientation, period, and
ellipticity of the grids follow a Gaussian distribution, while the
spatial phase is uniformly distributed in a unit cell. To compute
the integral, we divide space into unit cells and consider the
center of the cell containing x as a reference point for
the phase of the grid φ. Because φ is uniformly distributed
in the unit cell, and because χ = 1 within the firing field and
χ = 0 outside, the integral over φ is a constant equal to the
ratio between the area of a firing field and that of a unit cell,
i.e., π/2

√
3 (�/λ)2. The remaining integrals are equal to unity

and we finally obtain 〈a(x)〉 = π/2
√

3 (�/λ)2.
In order to compute the correlation function we need

to determine the quantity 〈a(y)a(x)〉. which can be written
as

〈a(y)a(x)〉 =
∫

Qφ(y,x)dPφ,

Qφ(y,x) ≡
∫

a(y)a(x) dPθdPλdPε, (3)

where Qφ(y,x) is the joint probability distribution that a
neuron is active both at y and at x. The distribution depends
parametrically on φ. The joint probability can be computed as

Qφ(y,x) = Qφ(y|x)Qφ(x), (4)

where Qφ(y|x) is the conditional probability that a neuron is
active at y if it is active at x (for a given φ). The quantity
Qφ(x) is the probability that a neuron is active at x, again for a
given φ.

In order to evaluate the conditional probability Qφ(y|x), we
divide space into unit cells using the mean grid parameters.
We consider a neuron with φ = (0,0), i.e., with a firing field
centered at the origin, and analyze the evolution of its phase
φn in the unit cells centered at y = (nλ,0), n = 0, 1, . . . . If
the grid cell has the same grid properties as the average grid,
its phase will be invariant, i.e., φn = φ; hence Qφ(y|x) = 1
and the correlation function will be a constant that does
not depend y. If there is variability, the phase of the grid
will be randomly distributed in the two-dimensional area of
the unit cell centered at (nλ,0) as n increases. It follows
that Qφ(y|x) → π/2

√
3 (�/λ)2, 〈a(y)a(x)〉 → 〈a(x)〉2, and the

correlation asymptotically goes to zero as shown in Fig. 2.
In Appendix B we discuss the behavior of the correlation

function in the absence of orientation variance. This analysis
is not relevant to describe the biological system, where
orientation variance is estimated to be about 0.03 rad, but
constrains the definition of the correlation length. In particular,
we show that the threshold used to define the correlation length
ought to be in the range [0.28,1], which includes our choice
of a threshold equal to 1/e.

C. Coverage drives modularity

In order to cover an environment with a set of grid cells,
there has to be at least one active neuron at every point. The
correlation length L characterizes the scale beyond which the
numbers of active neurons become approximately indepen-
dent. A region of size R is thereby decomposed in R2/L2

regions whose coverage probabilities are roughly independent
of each other. If each of these is covered with probability p,
the probability P of covering the whole environment is

ln(P ) = γ
R2

L2
ln(p), (5)

where γ is a constant that depends on the geometry of the
system.

The probability p of covering a correlation volume of linear
size L as a function of the probability of covering a unit cell
puc was obtained numerically as follows. We computed the
covering probability of a circular environment of radius R

using sets of grid cells characterized by different puc. Results
of the simulations are shown in Fig. 3. For every value of the
radius R the logarithm of the covering probability rescaled
over ln(puc) does not depend on puc [Fig. 3(b)]. It follows that
the probability p of covering a correlation volume of linear
size L can be expressed as

ln(p) = K ln(puc), (6)

where K is a function that depends only on L/λ for
dimensional reasons.
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FIG. 3. Covering probability of a correlation volume of linear size
L. (a) Covering probability P of a circular environment of linear size
R computed numerically for different environment size and covering
probability of the unit cell puc. The different values of puc have
been obtained using sets of grid cells made of a different number
of neurons. (b) Results of panel (a) collapse on a common curve
when their logarithm is rescaled by ln(puc), justifying the functional
form introduced in Eq. (6). (c) Numerical covering probability p of
a correlation volume of linear size L have been used to obtain an
empirical description of the function K(L/λ) described in Eq. (6)
(red dots). The best fit (black line) is given by the function K(x) =
0.73 + 13 ln(x). Simulations parameters are λ/� = 1.63, σθ = 0.04,
σε = 0. In panels (a),(b) we fixed σλ/λ = 0.08 while the number
of neurons N is 30 (magenta, squares), 40 (light blue, circles), 50
(brown, stars). In panel (c) we fixed N = 30 and σλ/λ has been
varied to span the different values of L observed in the biological
system as described in Fig. 2(e).

Over a range of grid variances that includes the experimen-
tally measured values, we found that L/λ � 20 (Fig. 2). In
this range, we found numerically that

K(x) = c1 + c2 ln(x) (7)

(c1 = 0.73, c2 = 13) gives a good description of the data [see
Fig. 3(c)].

Combining Eqs. (5), (6), and (7), we obtain

ln(P ) = γ
R2

L2
K

(
L

λ

)
ln(puc). (8)

To test this estimate, we numerically analyzed the covering
probability of a circular environment of radius R by N neurons
whose grid parameters are drawn from Gaussian distributions.
We then checked if every point in the environment is covered
by at least one grid cell and we averaged over realizations.
Figure 4 confirms the validity of Eq. (8), with a proportionality
constant γ = 0.804.

Figure 4 and Eq. (8) show that the covering probability of
a region increases with the correlation length. In this sense,
a set of grid cells with a larger correlation length is more
efficient, because with the same number of neurons, and hence
a fixed puc, it will have fewer gaps. Since the correlation length
decreases if the standard deviations increase, we conclude that
coverage drives modularity—grid cells with similar period
should have similar orientations and ellipticities as observed
experimentally [11].

D. Gaps decline exponentially with the number of neurons

We now quantify how the number of neurons N in a module
affects the probability of covering a range R. The dependence

FIG. 4. Covering probability P decreases with the variance of
grid parameters and the size of the environment. P is computed for
circular environments of radius R and for different grid variances.
Colors represent different values of one of the variances [orientation
(a), ellipticity (b), period (c)], while the other two are fixed [σλ/λ =
0.03, σε = 0 (a), σλ/λ = 0.02, σθ = 0.02 (b), σθ = 0.02, σε = 0
(c)]. The case with no noise is in black. Numerical results (colored
symbols) match theoretical predictions (continuous line) obtained by
Eq. (8). The number of neurons N = 30.

on N in Eq. (8) occurs through the factor puc. The random
distribution of phases of grid cells [3] dictates an exponential
dependence between the probability puc and the number of
neurons N . Indeed, consider N neurons that cover a unit
cell of a d-dimensional grid with a single gap. An additional
neuron added with a random phase will fail to overlap the
gap with some probability h < 1. If we add Q additional
neurons independently, the probability that they all miss the
gap is hQ, i.e., the probability of gap persistence declines
exponentially with the number of added neurons. Subleading
terms are captured by analyzing partial coverage with each
additional neuron (see Appendix C).

Thus, for a large number of neurons in a two-dimensional
grid module, we expect that puc ∼ 1 − exp (−αN ), where α

is a positive constant that depends, by dimensional analysis,
on the ratio �/λ. In the opposite limit, when N is smaller
than the area of the unit cell divided by the area of the firing
field, coverage cannot be achieved and puc = 0, as confirmed
numerically in Fig. 5.

ln

FIG. 5. Covering probability P increases with the number of
neurons N . (a) The numerical computation of P for a unit cell (black
dots) is combined with Eq. (9) to predict P for an environment of
size R/λ = 20 (black line). Results of numerical simulations are
in green. The function 1 − P asymptotically decays as exp(−αN )
with α ≈ 0.4 (red line). (b) The probability P vs the environment
size R for different N . Results of the simulations (colored symbols)
match predictions (black lines) by Eq. (9). Parameters are λ/� = 1.63,
σθ = 0.04, σλ/λ = 0.08, and σε = 0.
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FIG. 6. Number of neurons required for coverage decreases with
the spatial period. (a) We used experimental data in [11] to estimate
the number of recorded neurons vs their spatial period (circles). We
applied k-means clustering to identify four modules according to the
spatial period. For each module we computed the associated number
of neurons and plotted the mean and the standard deviation of the
number of neurons N normalized over the number N1 of neurons for
the first modulus (black squares and lines). Theoretical predictions
given by Eq. (9) obtained with different values of R and P (lines) are
compatible with experimental data. (b) We extrapolated the number
of neurons over ten modules for different values of R, P . Simulation
parameters are λ/� = 1.63, σθ = 0.04, σε = 0, and σλ = 6 cm.

In summary, the estimate for the probability P of covering
a two-dimensional circular region of radius R is

ln(P ) = γ
R2

L2
K(L/λ) ln(1 − eF(N)), (9)

where the function F(N ) behave as just discussed, which
is validated by numerical simulations (Figs. 4 and 5). On
the one hand, the probability of gaps in coverage declines
exponentially with N . On the other hand, the probability of
gaps in coverage of a range R increases exponentially as
(R/L)2K(L/λ), where L decreases as the variability in a
module increases. Hereafter, we balance these two effects to
estimate the number of neurons required to cover space in
modules of different mean periods.

E. Prediction: Smaller period modules need more neurons

Equation (9) gives the relation between the number of
neurons Ni and the parameters of the ith module. Since the
different modules vary systematically in their period, this
relation predicts an associated variation in the number of
neurons.

Assume that an animal encodes position within a region
of size R2 that is common to all the modules, and that the
probability of covering space is the same at all scales. As we
showed above, the probability of gaps in coverage declines
exponentially with the number of neurons, and the coefficient
in the exponent depends on the ratio �/λ between the grid
field width and the period. It is established experimentally
that this ratio is fixed among modules [10,11]. Thus we can
evaluate the predicted fraction of neurons in a given module,
Ni/

∑
i Ni , where the denominator is a sum over modules, and

Ni is obtained by inverting Eq. (9).
The results of this prediction and a comparison with the

extant experimental data are shown in Fig. 6. The theoretical
predictions are given for a variety of ranges and coverage

probabilities, with the grid periods and variabilities fixed
from experimental data. Qualitatively, the theory predicts for
any choice of parameters that the number of neurons should
decline with the period of the module, as also suggested by the
data.

Responses from 4–5 modules spanning up to 50% of the
dorsoventral extent of mEC feature a smallest period of about
40 cm and a ratio of 1.42 between consecutive scales [11]. This
suggests that there should be about 10 modules in total in the
rat grid system with a maximum period of about 10 m. Fitting
our theoretical predictions to experimental data [11], we found
that a range of a few tens of meters can indeed be covered with
a high coverage probability in the range 80%–90%. Within the
range of parameters that allows this coverage in our model,
we predict a decrease of about 50%–70% in the number
of neurons between the first and the tenth module (Fig. 6).
Experimental uncertainties and possible biases in recording
from harder-to-reach modules with larger periods prevent
stringent fits. Nevertheless, our theory robustly states that the
number of neurons should decline with the period of the grid
module.

III. DISCUSSION

A striking experimental observation about the grid system
in the entorhinal cortex is that it is organized in discrete
modules that share similar periods, orientations, and ellip-
ticities [11]. Given this modular structure, the geometric
progression of grid periods can be shown to minimize the
number of neurons required to provide a specified spatial res-
olution [12,13]. However, why would a modular architecture
be necessary in the first place? In this paper, we have shown
that efficient coverage of space favors modularity.

To study how variability in the grid parameters within a
module would affect the probability of holes in coverage, we
simply asked whether each neuron did or did not fire above
threshold at a given location. Alternatively, we could sum firing
profiles of grid cells to assess how grid variability affects
homogeneity of the population firing across space. Again,
the key variable would be the correlation in the expected
number of action potentials at each point in space. The overall
probability of coverage would be determined by a product
of factors over each correlation volume, leading to the same
conclusion.

We chose to analyze coverage because any grid coding
scheme, e.g., [12,13,19–23], requires neurons to be active at
each point in space. Thus we view our approach as setting
a minimal requirement for a functioning grid system for
encoding location. Our model predicted that there would be
fewer neurons in modules with larger periods. We compared
our theory with the actual numbers of neurons recorded
across modules, which should be taken with caution because
of potential biases in the recording methods, especially for
deeper structures in the brains. Some additional evidence for a
decrease of neurons with the period of modules stems from the
relatively smaller size of the ventral entorhinal cortex (which is
enriched in large periods) relative to the dorsal region. Indirect
evidence also comes from the larger drifts seen in the activity
of grid cells with larger periods [24]: attractor models indeed
predict that networks with smaller numbers of neurons will
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drift more. Further data is needed to confirm these indirect
lines of evidence. Comprehensive recordings from many grid
modules are challenging because modules of a given period
are not strictly localized anatomically, and because ventral
regions are harder to record from. But such data will greatly
illuminate models of the functional logic of the grid system,
and will further test our quantitative predictions.
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APPENDIX A: COVERING PROBABILITY
OF NONISOSCELES GRIDS

In the main text we analyzed the covering probability of
the grid system assuming isosceles grids; in this Appendix
we show that our results hold also in the case of general
grids.

The triangular lattice defining the spatial activity of a grid
cell is determined by linear combinations of two elementary
vectors v and u. The reference frame can be chosen to have the
vector u coinciding with the x axis, i.e., u = λ2(1,0) and the
vector v = λ1(cos(β), sin(β)), where β is the angle formed by
the two elementary vectors (which can be restricted to the first
quadrant). The two positive numbers λ2 and λ1 are the moduli
of the two elementary vectors. The set of the six vertices
defined by the triplet u, v, u − v and their opposite vectors
forms a hexagon that can be inscribed into an ellipse centered at
the origin, whose general equation is Ax2 + 2Bxy + Cy2 = 1
[see Fig. 7(a)]. The (inverse squared) length of the two axes of
the ellipse is determined by the eigenvalues of the quadratic
form and their orthogonal directions are determined by the
corresponding eigenvectors.

An alternative parametrization of the ellipse is given by (1)
the direction δ of the axes of the ellipse with respect to the axes
of the reference frame, (2) the ratio ε between the length of
the two axes (i.e., the ellipticity of the grid as defined in [11]),
and (3) the length λ/

√
ε of the axis parallel to the x axis when

δ = 0 (the other axis has length
√

ε λ). By requiring that the
ellipse pass through the three independent vertices u, v, u − v,
we obtain the relations

λ2 = λ√
F1

, λ1 sin β =
√

3

2
λ2F1, λ1 cos β = λ2F2

2
,

F1 ≡ ε cos2 δ + 1

ε
sin2 δ,

F2 ≡ 1 −
√

3

(
ε − 1

ε

)
sin δ cos δ, (A1)

which provide a general mapping between the free parameters
λ, ε, δ of the ellipse and the free parameters λ1, λ2, β of
the vectors u and v. Ellipses with δ = 0 have axes aligned
with the coordinate system. Elementary algebra shows that this
condition corresponds to isosceles triangles with |v| = |u − v|,
i.e., 2λ1 cos β = λ2 or cos β = 1/

√
1 + 3ε2. The special case

FIG. 7. Variability in ellipticity ε and direction δ induces decorre-
lation of activity and decreases the covering probability. We perform
the same analysis as in the main text for the more general case δ �= 0.
(a) Representation of the grid activity with δ �= 0. The six firing
fields defined by the triplet u, v, u − v and their opposite vectors
(green circles) have centers belonging to an ellipses (curved red
line); the ellipse axes (straight red lines) are rotated by an angle
δ with respect to the vector u aligned with the x axis. (b) The
Pearson correlation coefficient is computed as in Fig. 2 (σλ/λ = 0.01,
σθ = 0.01, σε = 0.06). (c) Correlation length for different values
of σε and σδ computed as in Fig. 2 (σλ/λ = 0.01, σθ = 0.01). (d)
Covering probability computed as in Fig. 4 (σλ/λ = 0.01, σθ = 0.01,
σε = 0.06). We find that increasing variability reduces the correlation
length and decreases the covering probability. Equation (8) correctly
describes the covering probability as a function of variance and
environment size.

of ε = 1 fixes λ1 = λ2 = λ and cos β = 1/2, i.e., corresponds
to equilateral triangles. Note that the direction δ is related only
to the deformation of the hexagon defined by the elementary
vectors and its variations do not affect the orientation θ of the
grid.

We generalize the analysis of the main text to cases
where the axes of the ellipse are not aligned with the
coordinate system (δ �= 0), which generally corresponds to
scalene triangles. We choose a parametrization where ε, δ, and
λ vary independently. The upshot is that the results presented
in the main text still hold. Specifically, for fixed σλ/λ and σθ

we compute the correlation coefficient between the number
of neurons that are active at the center of two unit cells, as
described in the main text. Figure 7 illustrates the results of
the simulations for different values of σε and σδ using general
grids. As for the other sources of variability, the correlation
decreases rapidly with the separation between the two centers
and the correlation length decreases as σε and σδ increase.

062409-6



COMPLETE COVERAGE OF SPACE FAVORS MODULARITY . . . PHYSICAL REVIEW E 94, 062409 (2016)

Finally, Fig. 7(d) also shows that the covering probability
conforms to the relation (5) presented in the main text.

APPENDIX B: ANALYSIS OF THE CORRELATION
FUNCTION WITH NO ORIENTATION VARIANCE

In the main text we showed that, as long as there is some
variability in the orientation, the correlation function of the
number of neurons active at two spatial points tends to zero
as the distance increases. Here we discuss the asymptotic
behavior of the correlation function in the case without
orientation variance in the grid parameters.

The derivation of the asymptotic correlation has been
outlined in Sec. II B; the absence of orientation variance affects
the computation of the conditional probability as follows. We
divide space into unit cells using the mean grid parameters
and indicate with φn the phase in the unit cells centered at
y = (nλ,0), n = 0, 1, . . . . In the case in which the grid has
the same orientation as the mean grid but different period
(λ′ �= λ), the phase φn will gradually shift along the x axis as
n increases but it will always belong to a one-dimensional
surface with fixed y component equal to φ

y

0 . For large n

the phase becomes randomly distributed along the segment
[(n − 1/2)λ,(n + 1/2)λ]. The resulting probability that the
point y is covered, given that x = (0,0) is covered, depends
on φ

y

0 . In particular, a grid that covers the point x will have an

intersection of length 2
√

�2/4 − (φy

0 )
2

between its firing field
and the segment [−1/2λ, + 1/2λ]. Because of the previous
argument, for large n this interval will be uniformly distributed
along the segment [(n − 1/2)λ,(n + 1/2)λ] so it will cover the
point y with probability

Qφ(y|x) =
2
√

�2/4 − (
φ

y

0

)2

λ
. (B1)

Furthermore, the probability to have a neuron active at x is

Qφ(x) =
⎧⎨
⎩

0 if
(
φx

0

)2 + (
φ

y

0

)2
> (�/2)2,

1
(
φx

0

)2 + (
φ

y

0

)2 � (�/2)2.
(B2)

Combining the previous results we obtain 〈a(y)a(x)〉 → 4
√

3�3

9λ3 .
Hence, if the orientation variance is zero, the correlation
coefficient between two distant points reaches the asymptotic
value

ρ(a(∞),a(0)) =
8�

3πλ
− π�2

2
√

3λ2

1 − π�2

2
√

3λ2

. (B3)

This has been confirmed numerically in Fig. 8. The same
argument holds if ellipticity variance is present.

In the main text we defined the correlation length of a grid
system as the distance at which the correlation in the number
of active cells falls below the threshold 1/e. Results of the
present Appendix qualify the range in which this threshold
could be chosen. Indeed, for a given �/λ, Eq. (B3) gives the
asymptotic value of the correlation function when no variance
in the orientation is present, e.g., in the biological system
�/λ ≈ 1/1.63 and the asymptotic value of the correlation is
about 0.28 [see Fig. 8(b)]. Because of the effect described
above, if the threshold used to define the correlation length

FIG. 8. Correlation length depends on the behavior above the
asymptotic value of the correlation. (a) When there is no variance
in grid orientations, the correlation function between the number of
active cells at two locations, ρ(n(x),n(0)), approaches a nonzero
asymptotic value that depends on �/λ. The solid lines indicate
the theoretical prediction of the asymptotic values from Eq. (B3).
Simulation parameters are σλ/λ = 0.07, σθ = 0, σε = 0. (b) The
asymptotic value of the correlation in the absence of orientation
variance is predicted by Eq. (B3) (black line). Representative values
corresponding to the three curves in panel (a) are marked by
the colored symbols. Note that there is a maximum value in the
asymptotic correlation as a function of l/λ. (c) The correlation
decreases faster when the variance in the period increases (�/λ =
0.61, σθ = 0, σε = 0). (d) Numerical simulations (colored symbols)
determine the covering probability of the environment for the different
variances in the grid parameters and environment sizes. The numerics
are accurately predicted by Eq. (9) of the main text (solid lines) in
which the correlation length for a grid system was assessed as the
distance at which ρ in panel (c) decreased to 1/e. This threshold is
always larger than the asymptotic value of the correlation (see main
text).

is chosen below this value, the correlation length will depend
only on the orientation variance. Hence, in order to assess the
length scale of correlation that is affected by the variance in all
the grid parameters, a threshold slightly above the asymptotic
value should be chosen (in the main text we used 1/e.) This
choice is relevant because it captures the dependence of the
covering probability on the variance in the grid parameters.
In fact, if our definition of the correlation length is used to
analyze the covering of a system, the analytical results obtained
from our approach are in agreement with direct numerical
analysis performed with (see Fig. 4) and without [see Fig. 8(d)]
orientation variance.

APPENDIX C: COVERING PROBABILITY
OF A UNIT CELL

We discuss the covering probability of a unit cell in one
dimension. We take each grid cell to be active in intervals
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FIG. 9. Shift of the arcs following the gap affects only the
covering of the arc that is followed by the gap. (a) Circle of unit length
with seven arcs of which only the initial position has been represented
(red lines at angle rk). Each arc has length ζ = 1/4 and the fifth arc is
followed by a gap (green region). (b) The sixth and seventh arc have
been rotated clockwise by an angle π/2 that corresponds to an arc of
length ζ . The rotation shifts the gap to the region before the first arc
and does not affect the state of the sixth and seventh arc.

of length �, regularly spaced with centers at distance λ apart.
A unit cell is given by an interval of length λ. The covering
probability of a unit cell by N grid cells is analogous of that of
covering a region of length λ by N intervals of length � with
periodic boundary conditions on the region. This probability
distribution has been computed analytically in [25] and reads

P

(
N,

�

λ

)
=

N∑
k=0

(−1)k
(

N

k

)
f (k), (C1)

where f (k) = (1 − k�/λ)N−1 if k� < λ and f (k) = 0 other-
wise. For large N this relation reduces to the result used in the
main text P = 1 − N (1 − �/λ)N−1.

The proof of (C1) is presented below for the sake of
completeness. Because we have periodic boundary conditions
on the region to be covered, we can regard it as a circle of
unit length and we can take the intervals of length ζ = �/λ

to be arcs on this circle. The arcs are labeled by their order
of occurrence in the counterclockwise direction around the
circle, starting by convention from the north pole. The arcs
are identified by their initial position; there is a gap after the
rth arc if the distance between the initial positions of the rth
and the (r + 1)th arcs is larger than the size of the arcs. For
convenience, we rigidly translate all the arcs so that the first
one is positioned at the north pole—this convention does not
affect the probability of coverage.

Consider N random arcs of length ζ on the circle. Draw k

arbitrary arcs from this set [say (r1,r2, . . . ,rk), with k � N ].
Let f (k) be the probability that each arc in this randomly
selected subset is followed by a gap, irrespective of the state
(followed by a gap or not) of all the other arcs. From the
f (k)’s, the probability (C1) of leaving no gaps is computed
as follows. First, let Q(ng,nu) be the probability that ng

prescribed arcs are each followed by a gap and nu prescribed
arcs are each not followed by a gap, with the rest of the N arcs
in unspecified states. Then, Q(ng,1) = f (ng) − f (ng + 1)
because f (ng) includes the probability that the extra arc
might be gapped or ungapped, while f (ng + 1) subtracts the
probability that the extra arc is in fact gapped. By a similar
reasoning we obtain Q(ng,2) = Q(ng,1) − Q(ng + 1,1) and
so on recursively up to ng + nu = N . Simple algebra shows
then that the probability of leaving no gaps is

P

(
N,

�

λ

)
= Q(0,N ) =

N∑
k=0

(−1)k
(

N

k

)
f (k). (C2)

The formula (C2) leaves us to determine the expression
of f (k), which is done as follows. When an arc, say r , is
followed by a gap, we rigidly shift backward (clockwise) all
the following arcs up to the last (N th) by an amount ζ . Because
the rth arc is followed by a gap, the state of all the arcs other
than r is not affected by this backward shift and we are left
with a final region of size ζ that does not contain any initial
position of the arcs (see Fig. 9). Note that whether the N th arc
is gapped or ungapped before this shift corresponds to whether
or not the last arc partially overlaps with the final region of size
ζ . The probability of distributing N − 1 initial positions of the
arcs (other than the first one fixed at the origin) in a region of
size 1 − ζ gives f (1) = (1 − ζ )N−1. The reasoning for f (2) is
similar. If the two prescribed gapped arcs are r1 and r2 > r1, we
first shift backward by ζ all the arcs following r1 and then again
by ζ those following r2. We are then left with a final unoccupied
region of size 2ζ . The crucial point is that the state of all the
arcs other than r1 and r2 is again unaffected. We can then
compute f (2) = (1 − 2ζ )N−1 as the probability of distributing
N − 1 initial positions of the arcs in the available region of
size 1 − 2ζ . Generalizing the reasoning to k arcs gives the
expression f (k) = (1 − kζ )N−1, provided the total length of
the arcs is smaller than the length of the circumference, i.e.,
kζ � 1; otherwise, f (k) = 0. That completes the proof and
yields Eq. (C1).
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