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Abstract 
Background/Aims: The diterpene alcohol Sclareol has been proposed for the treatment of 
malignancy. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, 
a suicidal cell death characterized by cell shrinkage and cell membrane scrambling with 
phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms involved in 
the triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, 
ceramide, p38 kinase and  casein kinase 1α. The present study explored, whether Sclareol induces 
eryptosis and, if so, shed light on the mechanisms involved. Methods: Phosphatidylserine 
abundance at the erythrocyte surface was estimated from annexin-V-binding, cell volume 
from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species 
(ROS) from 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA)-dependent fluorescence, and 
ceramide abundance at the erythrocyte surface utilizing specific antibodies. Hemolysis was 
estimated from haemoglobin concentration in the supernatant. Results: A 48 hours exposure 
of human erythrocytes to Sclareol (≥ 50 µM) significantly increased the percentage of annexin-
V-binding cells without significantly modifying the average forward scatter, DCF-fluorescence 
or ceramide abundance. Sclareol (≥ 50 µM) further triggered hemolysis. Sclareol (100 µM) 
significantly increased Fluo3-fluorescence, but the effect of Sclareol on annexin-V-binding 
was not significantly blunted by removal of extracellular Ca2+. Instead, the effect of Sclareol on 
annexin-V-binding was significantly blunted in the presence of p38 kinase inhibitor skepinone 
(2 µM) and in the presence of casein kinase 1α inhibitor D4476 (10 µM). Conclusions: Sclareol 
triggers phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to 
activation of p38 kinase and casein kinase 1α.
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Introduction

Plant-derived terpenoids [1] such as the diterpene alcohol Sclareol [2] are effective 
against cancer [1, 3-13], inflammation [1, 14, 15], and infection [16-18]. Sclareol further 
influences brain function [19-25]. The effect of Sclareol against cancer is partially due 
to stimulation of tumor cell apoptosis [3-5, 7, 12, 13, 26]. Sclareol  is incorporated into 
phospholipid model membranes [27] and has been shown to suppress the formation of 
nitric oxide [15] and prostaglandin E2 [15].

In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal 
erythrocyte death characterized by cell shrinkage [28] and cell membrane scrambling 
with phosphatidylserine translocation to the cell surface [29]. Cellular mechanisms 
accomplishing eryptosis include Ca2+ entry with increase of cytotosolic Ca2+ activity  
([Ca2+]i) [29], ceramide [30], caspases [29, 31, 32], as well as activation of casein kinase 1α, 
Janus-activated kinase JAK3, protein kinase C, and/or p38 kinase [29]. Eryptosis is further 
triggered by pharmacological inhibition or genetic knockout of AMP activated kinase, cGMP-
dependent protein kinase, and PAK2 kinase [29], by oxidative stress [29], energy depletion 
[29] and diverse xenobiotics [29, 33-64]. Eryptosis is enhanced in several clinical conditions, 
such as dehydration [65], hyperphosphatemia [66], chronic kidney disease (CKD) [67-70], 
hemolytic-uremic syndrome [71], diabetes [72], hepatic failure [73], malignancy  [29], sepsis 
[74], sickle-cell disease [29], beta-thalassemia [29], Hb-C and G6PD-deficiency [29], as well 
as Wilsons disease [75].

The present study analyzed Sclareol sensitivity of eryptosis. Human erythrocytes 
drawn from healthy volunteers were treated with Sclareol and phosphatidylserine surface 
abundance, cell volume, [Ca2+]i, reactive oxygen species (ROS), and ceramide abundance 
determined by flow cytometry. Moreover, the effect of Sclareol on cell membrane scrambling 
was quantified in the presence or absence of extracellular Ca2+, of p38 kinase inhibitor 
skepinone and of casein kinase 1α inhibitor D4476. 

Materials and Methods 

Erythrocytes, solutions and chemicals
Fresh Li-Heparin-anticoagulated blood samples were kindly provided by the blood bank of the University 

of Tübingen. The study is approved by the ethics committee of the University of Tübingen (184/2003 V). The 
blood was centrifuged at 120 g for 20 min at 21 °C and the platelets and leukocytes-containing supernatant was 
disposed. Erythrocytes were incubated in vitro at a hematocrit of 0.4% in Ringer solution containing (in mM) 
125 NaCl, 5 KCl, 1 MgSO4, 32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES; pH 7.4), 5 glucose, 1 
CaCl2, at 37°C for 48 hours. Where indicated, erythrocytes were exposed for 48 hours to Sclareol (Sigma Aldrich, 
Hamburg, Germany). To test for an involvement of p38 kinase or casein kinase 1α, erythrocytes were exposed 
for 48 hours to a combination of Sclareol and p38 kinase inhibitor skepinone [76] or casein kinase 1α inhibitor 
D4476 (Tocris bioscience, Bristol, UK), respectively.

Annexin-V-binding and forward scatter 
After incubation under the respective experimental condition, a 100 µl cell suspension was washed in 

Ringer solution containing 5 mM CaCl2 and then stained with Annexin-V-FITC (1:200 dilution; ImmunoTools, 
Friesoythe, Germany) in this solution at 37°C for 20 min under protection from light. The annexin-V-
abundance at the erythrocyte surface was subsequently determined on a FACS Calibur (BD, Heidelberg, 
Germany). Annexin-V-binding was measured with an excitation wavelength of 488 nm and an emission 
wavelength of 530 nm. A marker (M1) was placed to set an arbitrary threshold between annexin-V-binding 
cells and control cells. The same threshold was used for untreated and Sclareol treated erythrocytes. 

Intracellular Ca2+

After incubation, erythrocytes were washed in Ringer solution and loaded with Fluo-3/AM (Biotium, 
Hayward, USA) in Ringer solution containing 5 µM Fluo-3/AM. The cells were incubated at 37°C for 30 
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min. Ca2+-dependent fluorescence intensity was measured with an excitation wavelength of 488 nm and an 
emission wavelength of 530 nm on a FACS Calibur.

Reactive oxygen species (ROS) 
Oxidative stress was determined utilizing 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA). After 

incubation, a 100 µl suspension of erythrocytes was washed in Ringer solution and stained with DCFDA 
(Sigma, Schnelldorf, Germany) in Ringer solution containing DCFDA at a final concentration of 10 µM. 
Erythrocytes were incubated at 37°C for 30 min in the dark and washed two times in Ringer solution. The 
DCFDA-loaded erythrocytes were resuspended in 200 µl Ringer solution and ROS-dependent fluorescence 
intensity was measured at an excitation wavelength of 488 nm and an emission wavelength of 530 nm on 
a FACS Calibur (BD).

Ceramide abundance
For the determination of ceramide, a monoclonal antibody-based assay was used. To this end, cells were 

stained for 1 hour at 37°C with 1 µg/ml anti ceramide antibody (clone MID 15B4, Alexis, Grünberg, Germany) 
in PBS containing 0.1% bovine serum albumin (BSA) at a dilution of 1:10. The samples were washed twice 
with PBS-BSA. The cells were stained for 30 minutes with polyclonal fluorescein isothiocyanate (FITC) 
conjugated goat anti-mouse IgG and IgM specific antibody (Pharmingen, Hamburg, Germany) diluted 1:50 
in PBS-BSA. Unbound secondary antibody was removed by repeated washing with PBS-BSA. The samples 
were analyzed by flow cytometric analysis with an excitation wavelength of 488 nm and an emission 
wavelength of 530 nm. As a control, secondary antibody alone was used.

Hemolysis
For the determination of hemolysis, erythrocyte suspensions were centrifuged 10 min at 2000 rpm 

RT and the supernatants harvested. As a measure of hemolysis, the hemoglobin (Hb) concentration of the 
supernatants was determined photometrically at 405 nm. The absorption of the supernatant of erythrocytes 
lysed in distilled water was defined as 100% hemolysis. 

Statistics
Data are expressed as arithmetic means ± SEM. As indicated in the figure legends, statistical analysis 

was made using ANOVA with Tukey’s test as post-test and t test as appropriate. n denotes the number of 
different erythrocyte specimens studied. Since different erythrocyte specimens used in distinct experiments 
are differently susceptible to triggers of eryptosis, the same erythrocyte specimens have been used for control 
and experimental conditions.

Results

The present study explored whether Sclareol stimulates eryptosis, the suicidal 
erythrocyte death characterized by cell shrinkage and by phospholipid scrambling of the 
cell membrane with phosphatidylserine translocation to the cell surface. 

Phosphatidylserine exposing erythrocytes were identified utilizing annexin-V-binding, 
as determined by flow cytometry. Prior to measurements, the erythrocytes were incubated 
for 48 hours in Ringer solution without or with Sclareol (10 - 100 µM). As illustrated in Fig. 
1, a 48 hours exposure to Sclareol increased the percentage of phosphatidylserine exposing 
erythrocytes, an effect reaching statistical significance at 100 µM Sclareol. 

Erythrocyte volume was estimated from forward scatter which was determined utilizing 
flow cytometry. Prior to measurements, the erythrocytes were again incubated for 48 hours 
in Ringer solution without or with Sclareol (10 – 100 µM). As shown in Fig. 2, Sclareol did 
not significantly modify the average erythrocyte forward scatter, but at a concentration of 
100 µM significantly decreased the percentage of large erythrocytes (>800). 

As shown in Fig. 3, Sclareol exposure was further followed by hemolysis, an effect 
reaching statistical significance at 50 µM Sclareol. 
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Fluo3-fluorescence was determined as a measure of cytosolic Ca2+ activity ([Ca2+]i). 
As illustrated in Fig. 4, a 48 hours exposure to 100 µM Sclareol significantly increased the 
Fluo3-fluorescence, an observation pointing to increase of [Ca2+]i.

Fig. 1. Effect of Sclareol on phosphatidylserine exposure. A. Original histogram of annexin-V-binding of 
erythrocytes following exposure for 48 hours to Ringer solution without (grey area) and with (black line) 
presence of 100 µM Sclareol. B. Arithmetic means ± SEM (n = 10) of erythrocyte annexin-V-binding follow-
ing incubation for 48 hours to Ringer solution without (white bar) or with (black bars) Sclareol (10 – 100 
µM). ***(p<0.001) indicates significant difference from the absence of Sclareol (ANOVA).

Fig. 2. Effect of Sclareol on erythrocyte forward scatter. A. Original histogram of forward scatter of erythro-
cytes following exposure for 48 hours to Ringer solution without (grey area) and with (black line) presence 
of 100 µM Sclareol. B. Arithmetic means ± SEM (n = 10) of the erythrocyte forward scatter (FSC) following 
incubation for 48 hours to Ringer solution without (white bar) or with (black bars) Sclareol (10 - 100 µM). C. 
Arithmetic means ± SEM (n = 10) of the percentage erythrocytes with forward scatter (FSC) <200 following 
incubation for 48 hours to Ringer solution without (white bar) or with (black bars) Sclareol (10 – 100 µM). 
D. Arithmetic means ± SEM (n = 10) of the percentage erythrocytes with forward scatter (FSC) >800 follow-
ing incubation for 48 hours to Ringer solution without (white bar) or with (black bars) Sclareol (10 – 100 
µM). *(p<0.05) indicates significant difference from the absence of Sclareol (ANOVA).
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In order to test, whether the Sclareol-induced translocation of phosphatidylserine was 
sensitive to extracellular Ca2+, erythrocytes were incubated for 48 hours in the absence 
or presence of 50 or 100 µM Sclareol in the presence or nominal absence of extracellular 
Ca2+. As shown in Fig. 5, removal of extracellular Ca2+ did not significantly blunt the effect of 
Sclareol on the percentage of annexin-V-binding erythrocytes. Moreover, even in the absence 
of extracellular Ca2+, Sclareol significantly increased the percentage of annexin-V-binding 
erythrocytes. Thus, Sclareol-induced cell membrane scrambling was not dependent on entry 
of extracellular Ca2+.

Eryptosis is further stimulated by oxidative stress. Reactive oxygen species (ROS) were 
thus quantified utilizing 2′,7′-dichlorodihydrofluorescein (DCF) diacetate. As a result, the 
DCF-fluorescence was similar following exposure to 10 µM Sclareol (15.1 ± 0.4 a.u., n = 5), 25 
µM Sclareol (13.6 ± 0.6 a.u., n = 5) 50 µM Sclareol (12.8 ± 0.4 a.u., n = 5) and 100 µM Sclareol 
(17.4 ± 2.5 a.u., n = 5) as in the absence of Sclareol (17.3 ± 2.6 a.u., n = 5). Thus, Sclareol did 
not appreciably induce oxidative stress.

A further stimulator of eryptosis is ceramide. Ceramide abundance at the erythrocyte 
surface was thus quantified utilizing specific antibodies. As a result, the ceramide abundance 
was similar following exposure to 50 µM Sclareol (10.9 ± 0.2 a.u., n = 5) and 100 µM Sclareol 
(11.4 ± 0.2 a.u., n = 5) as in the absence of Sclareol (11.2 ± 0.3 a.u., n = 5). Thus, Sclareol did 
not appreciably induce ceramide abundance.

Fig. 3. Effect of Sclareol on hemolysis. Arithmetic 
means ± SEM (n = 10) of erythrocyte annexin-V-
binding following incubation for 48 hours to Ringer 
solution without (white bar) or with (black bars) 
Sclareol (10 - 100 µM). **(p<0.01), ***(p<0.001) 
indicates significant difference from the absence of 
Sclareol (ANOVA).

Fig. 4. Effect of Sclareol on cytosolic Ca2+ activity. A. Original histogram of Fluo3-fluorescence of erythro-
cytes following exposure for 48 hours to Ringer solution without (grey area) and with (black line) pres-
ence of 100 µM Sclareol. B. Arithmetic means ± SEM (n = 10) of erythrocyte annexin-V-binding following 
incubation for 48 hours to Ringer solution without (white bar) or with (black bars) Sclareol (10 - 100 µM). 
***(p<0.001) indicates significant difference from the absence of Sclareol (ANOVA).
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To explore, whether the effects of Sclareol involved p38 kinase activity, the influence of 
Sclareol on annexin-V-binding was tested in the absence or presence of p38 kinase inhibitor 
skepinone (2 µM). As illustrated in Fig. 6A, the effect of 100 µM Sclareol was significantly 
blunted in the presence of skepinone. However, even in the presence of skepinone, Sclareol 
significantly increased the percentage of annexin-V-binding erythrocytes. Thus, Sclareol-
induced cell membrane scrambling was apparently in part but not fully due to activation of 
p38 kinase. 

To explore, whether the effects of Sclareol required casein kinase 1α activity, the 
influence of Sclareol on annexin-V-binding was tested in the absence or presence of casein 
kinase 1α inhibitor D4476 (10 µM). As illustrated in Fig. 6B, the effect of 100 µM Sclareol 

Fig. 5. Ca2+ sensitivity of Sclareol -induced phosphatidylserine exposure. A,B. Original histogram of annexin-
V-binding of erythrocytes following exposure for 48 hours to Ringer solution without (grey area) and with 
(black line) Sclareol (100 µM) in the presence (A) and absence (B) of extracellular Ca2+. C. Arithmetic means 
± SEM (n = 10) of annexin-V-binding of erythrocytes after a 48 hours treatment with Ringer solution without 
(white bars) or with 50 µM (black bars) or 100 µM (grey bars) Sclareol in the presence (left bars, +Ca2+) and 
absence (right bars, -Ca2+) of Ca2+. ***(p<0.001) indicates significant difference from the absence of Sclareol 
(ANOVA).

Fig. 6. Effect of p38 kinase inhibitor skepinone and of casein kinase 1α inhibitor D4476 on Sclareol -induced 
phosphatidylserine exposure. A. Arithmetic means ± SEM (n = 10) of annexin-V-binding of erythrocytes 
after a 48 hours treatment with Ringer solution without (white bars) or with 50 µM (black bars) or 100 µM 
(grey bars) Sclareol in the absence (left bars, DMSO) and presence (right bars, skepinone) of p38 kinase 
inhibitor skepinone (2 µM). B. Arithmetic means ± SEM (n = 15) of annexin-V-binding of erythrocytes after 
a 48 hours treatment with Ringer solution without (white bars) or with 50 µM (black bars) or 100 µM (grey 
bars) Sclareol in the absence (left bars, DMSO) and presence (right bars, D4476) of  casein kinase 1α inhibi-
tor D4476 (10 µM). *(p<0.05), ***(p<0.001) indicates significant difference from the absence of Sclareol, 
###(p<0.001) indicates significant difference from the absence of kinase inhibitors (ANOVA).
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was significantly blunted in the presence of D4476. However, even in the presence of D4476, 
Sclareol significantly increased the percentage of annexin-V-binding erythrocytes. Thus, 
Sclareol-induced cell membrane scrambling was again in part but not fully due to activation 
of casein kinase 1α. 

Discussion

The present observations uncover a novel stimulator of erythrocyte cell membrane 
scrambling, i.e. the diterpene alcohol Sclareol. Treatment of erythrocytes from healthy 
individuals with Sclareol results in cell membrane scrambling with phosphatidylserine 
translocation to the erythrocyte surface. 

The effect of 100 µM Sclareol on cell membrane scrambling was paralleled by an increase 
of Fluo3-fluorescence, an observation pointing to increase of cytosolic Ca2+ activity ([Ca2+]i). 
However, the effect on cell membrane scrambling was not significantly modified by removal of 
Ca2+ from extracellular space, indicating that the effect did not require entry of extracellular Ca2+. 
Moreover, the effect of Sclareol on cell membrane scrambling was not paralleled by oxidative 
stress and not by increased ceramide abundance at the erythrocyte surface. Instead, the effect of 
Sclareol on cell membrane scrambling was significantly blunted by pharmacological inhibition 
of p38 kinase and of casein kinase 1α, both kinases known to be involved in the machinery 
stimulating eryptosis [29]. However, even in the presence of the respective kinase inhibitors, 
Sclareol significantly increased the percentage of annexin-V-binding erythrocytes, indicating 
that the stimulation of eryptosis by Sclareol may involve further cellular mechanisms. Those 
mechanisms could include activation of further kinases, such as protein  kinase c or Janus-
activated kinase JAK3, as well as inhibition of kinases, such as AMPK, cGMP-dependent 
protein kinase, and PAK2 kinase [29].

Despite a significant increase of [Ca2+]i following Sclareol treatment, Sclareol had no 
significant effect on the average forward scatter. An increase of [Ca2+]i were expected to activate 
Ca2+ sensitive K+ channels leading to K+ exit, cell membrane hyperpolarization, Cl- exit and thus 
cellular loss of KCl with water [28]. Possibly, the effect of K+ channel activation on cell volume 
was abrogated by impairment of Na+/K+ ATPase with respective dissipation of chemical K+, Na+ 
and Cl- grandients.

Besides its effect on cell membrane scrambling, Sclareol triggered hemolysis with release 
of hemoglobin, which may in vivo pass the renal glomerular filter, precipitate in the acidic 
lumen of renal tubules, occlude nephrons and thus cause renal failure [77]. To the extent that 
eryptosis precedes hemolysis, those consequences are prevented due to timely removal of 
the affected erythrocytes from circulating blood. 

The loss of phosphatidylserine exposing erythrocytes may, however, lead to anemia 
as long as it is not compensated by stimulation of erythropoiesis with matching formation 
of new erythrocytes [29]. Phosphatidylserine exposing erythrocytes further bind to 
the vascular wall [78], trigger blood clotting and thus predispose to thrombosis [79-81]. 
Excessive eryptosis could thus impair microcirculation [30, 79, 82-85]. 

Conclusion

In conclusion, Sclareol triggers cell membrane scrambling, an effect partially dependent 
on activities of p38 kinase and casein kinase 1α.  
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