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Abstract. Randomly evolving systems composed by elements which interact among each other
have always been of great interest in several scientific fields. This work deals with the synchroniza-
tion phenomenon, that could be roughly defined as the tendency of different components to adopt
a common behavior. We continue the study of a model of interacting stochastic processes with rein-
forcement, that recently has been introduced in [12]. Generally speaking, by reinforcement we mean
any mechanism for which the probability that a given event occurs has an increasing dependence
on the number of times that events of the same type occurred in the past. The particularity of sys-
tems of such stochastic processes is that synchronization is induced along time by the reinforcement
mechanism itself and does not require a large-scale limit. We focus on the relationship between the
topology of the network of the interactions and the long-time synchronization phenomenon. After
proving the almost sure synchronization, we provide some CLTs in the sense of stable convergence
that establish the convergence rates and the asymptotic distributions for both convergence to the
common limit and synchronization. The obtained results lead to the construction of asymptotic
confidence intervals for the limit random variable and of statistical tests to make inference on the
topology of the network given the observation of the reinforced stochastic processes positioned at
the vertices.
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1. Introduction

The stochastic evolution of systems composed by elements which interact among each other
has always been of great interest in several scientific fields: in neuroscience the brain is an active
network where billions of neurons interact in various ways in the cellular circuits; many studies in
biology focus on the interactions between different sub-systems; social sciences and economics deal
with individuals that take decisions under the influence of other individuals, and also in engineering
and computer science some research questions regard dynamic agents that form a complex pattern
of interactions (e. g. [5, 19, 28]). In all these frameworks, an usual phenomenon is the synchroniza-
tion, that could be roughly defined as the tendency of different components to adopt a common
behavior (we refer to [4] for a detailed and well structured survey on this topic, rich of examples and
references). Synchronization has been shown to be of special relevance in neural systems: the study
of synchronization in neuronal networks of various level, especially dealing with the role played by
the network topology, is crucial for the understanding of the brain functional activities. In social
life, preferences and beliefs are partly transmitted by means of various forms of social interaction
and opinions are driven by the tendency of individuals to become more similar when they interact.
Hence, a collective phenomenon reflects the result of the interactions among different individuals.
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The underlying idea is that individuals have opinions that change according to the influence of
other individuals giving rise to a sort of collective behavior, sometimes grouping together a part
of the whole population with similar social attributes. Moreover, in economics, simple rules lead
to interesting collective behaviors and synchronization is one of them, since some of the activities
done by individual agents can become correlated in time due to their interaction pattern. For ex-
ample, the analysis of the International Trade Network (ITN), also known as the World Trade Web
(WTW), which is the network related to the trade volume between countries, has revealed a tight
relationship between the topology of the ITN and the dynamics of the Gross Domestic Products
(GDPs) of the countries. Due to globalization effects, all economies are strongly correlated and
they will tend to follow a common trend (what are usually called economic cycle). We can say
that economies are synchronized in terms of the GDP. Finally, consensus problems, understood
as the ability of a set of interacting dynamic agents to reach a unique and common value in an
asymptotic stable state, play a crucial role also in engineering and computer science, particularly
in automata theory. Therefore, it is clear that the main goals of different research areas are twice:
(i) to figure out whether and when a (complete or partial) synchronization in a dynamical system
of agents can emerge out of initially different statuses and (ii) to understand the interplay between
the network topology of the interactions among the agents and the dynamics followed by the agents.

In this paper we continue the study of synchronization for a model of interacting stochastic
processes with reinforcement, that recently has been introduced in [12]. Generally speaking, by re-
inforcement in a stochastic dynamic we mean any mechanism for which the probability that a given
event occurs has an increasing dependence on the number of times that events of the same type
occurred in the past. The main reason of the attention devoted to reinforced stochastic processes is
concerned with their dynamics, which is suitable to describe random phenomena in different scien-
tific areas and can be easily implemented in several fields of application (see e.g. [30] for a general
survey). Our study is motivated by the attempt of understanding the role of the reinforcement
mechanism in synchronization phenomena.

More precisely, a Reinforced Stochastic Process (RSP) can be defined as a stochastic process in
which, along the time-steps, different events occur in such a way that, for each event, the greater
the probability of occurence at a certain time, the greater the probability of occurence at the next
time. Formally, given a finite set S, for any x in S, we have a stochastic process X(x) = (Xn(x))n≥1

with values in {0, 1} such that, for each n ≥ 0,
∑

x∈S Xn(x) = 1 and

(1) P (Xn+1(x) = 1 |Z0(x), X1(x), ....,Xn(x)) = Zn(x)

where

(2) Zn(x) = (1− rn−1)Zn−1(x) + rn−1Xn(x)

with 0 ≤ rn−1 < 1 and Z0(x) possibly random. Indeed, the process X(x) describes the sequence
of occurences of the “event” x ∈ S and, if at time n, the “event” x has taken place, then the
probability of its occurence at time (n+1) increases. Therefore, the larger Zn−1(x), the higher the
probability of having Zn(x) greater than Zn−1(x). This “self-reinforcing property”, also known as
“preferential attachment rule”, is a key feature governing the dynamics of many biological, economic
and social systems (e. g. [30]). The prototype of reinforced stochastic processes is the standard
Eggenberger-Póya urn [17, 26]: an urn contains a red and b white balls and, at each discrete time,
a ball is drawn out from the urn and then it is put again inside the urn together with one additional
ball (or, more generally, with an additional constant number of balls) of the same color. In this
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case, we have S = {0, 1} with 1 representing the color red and 0 the color white and for Zn = Zn(1)
and Xn = Xn(1), we have

(3) Zn =
a+

∑n
m=1 Xm

a+ b+ n
.

It is immediate to verify that

Z0 =
a

a+ b
and Zn+1 = (1− rn)Zn + rnXn+1

with rn = (a + b + n + 1)−1. As shown in [12] and as we will see in this paper, the asymptotic
behavior of rn is essential to determine the results presented in this paper. To this purpose, here we
highlight that for the Eggenberger-Póya urn we have limn nrn = 1. We refer to [12, Example 1.2]
for a meaningful case of reinforced stochastic process of the type (1)-(2) where limn n

γrn = c with
γ < 1 and c ∈ (0,+∞). This example concerns an opinion dynamics in an evolving population,
modeled by a graph evolving according to preferential attachment [1, 19, 28].

To avoid complications, from now on we assume S = {0, 1}, so that there is only one relevant
variable Zn, since Zn(1) = Zn and Zn(2) = (1 − Zn). This paper deals with a system of N
reinforced stochastic processes that interact according to a given set of relationships among them.
More precisely, suppose to have a directed graph G = (V,E) with V = {1, ..., N} as the set of
vertices and E⊂V × V as the set of edges. Each edge (j, k) ∈ E represents the fact that the vertex
j has a direct influence on the vertex k. We assume also to associate a weight wj,k ≥ 0 to each
edge in order to quantify how much j can influence k. A weight equal to zero means that the
edge is not present. We set W = [wj,k]j,k∈V×V (weighted adjacency matrix) and we assume the

weights to be normalized so that
∑N

j=1wj,k = 1. Hence, wk,k represents how much the vertex k is

influenced by itself and
∑N

j=1,j 6=kwj,k ∈ [0, 1] quantify how much the vertex k is influenced by the
other vertices of the graph. Finally, we suppose to have at each vertex j a reinforced stochastic
process described by Xj = (Xn,j)n≥0 and Zj = (Zn,j)n≥0 such that, for each n ≥ 0, the random
variables {Xn,j : j = 1, . . . , N} are conditional independent given Fn−1 with

(4) P (Xn+1,j = 1 | Fn) =

N∑

k=1

wk,jZn,k

where, for each k ∈ V ,

(5) Zn,k = (1− rn−1)Zn−1,k + rn−1Xn,k

with 0 ≤ rn < 1 and Fn = σ(Z0,k : k ∈ V ) ∨ σ(Xm,j : j ∈ V, m ≤ n).

As an example, we can imagine that G = (V,E) represents a network of N individuals that at
each time-step have to make a choice between two possible alternatives {0, 1}. We can formalize
this setting, assuming to have at each vertex j an urn with red and white balls. The color red
represents the choice 1, the proportion Zn,j of red balls at time n in the urn at vertex j represents
the inclination of the individual j to adopt the choice 1 at time n and the random variable Xn,j

represents the choice of j at time n. It is natural to assume a self-reinforcing property for the own
inclination of each individual as in (5) and, moreover, it is natural to assume that the probability
that the individual j will make the choice 1 at time (n+1) is given by a convex combination of j’s
own inclination and the inclination of the vertices that have an influence on j according to their
weights wk,j as in (4). Another example is given by the interacting version of [12, Example 1.2],
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which could be interpreted as a network of different interacting populations or groups within a
given population in the same spirit as in [10].

As already said at the beginning, our study deals with the synchronization phenomenon of the
stochastic processes {(Zn,j)n : 1 ≤ j ≤ N} positioned at the vertices. The particularity of systems
of interacting reinforced stochastic processes is that synchronization is induced along time by the
reinforcement mechanism itself (independently of the fixed size N of the network), and so it does
not require a large-scale limit (i.e. the limit for N → +∞), which is usual in statistical mechanics
for the study of interacting particle systems. In particular, we focus on the relationship between the
topology of the interactions and the long-time synchronization phenomenon: indeed, we show that
the eigenvalues and eigenvectors of the weighted adjacency matrix W impact on the synchroniza-
tion phenomenon. Our theoretical results provide the rates of synchronization and the second-order
asymptotic distributions, in which the asymptotic variances have been expressed as functions of the
parameters governing the reinforced dynamics and the eigen-structure of the weighted adjacency
matrix. These results lead to the construction of asymptotic confidence intervals for the common
limit random variable of the processes (Zn,j)n and to the design of statistical tests to make inference
on the topology of the interaction network given the observation of the processes (Zn,j)n.

Regarding the literature review, we recall that interacting two-colors urns have been considered
in [23, 22]. Their main results are proven when the probability of drawing a ball of a certain color
is proportional to ρk, where ρ > 1 and k is the number of balls of this color. The interaction is of
the mean-field type. More precisely, the interacting reinforcement mechanism is the following: at
each step and for each urn draw a ball from either all the urns combined with probability p, or from
the urn alone with probability 1− p, and add a new ball of the same color to the urn. The higher
the interacting parameter p, the more memory is shared between the urns. The main results can
be informally stated as follows: if p ≥ 1/2, then all the urns fixate on the same color after a finite
time, and if p < 1/2, then some urns fixate on a unique color and others keep drawing both colors.
In [13, 16, 32] the authors consider interacting urns (precisely, [13] and [16] deal with Pólya urns
and [32] regards Friedman urns) in which the interaction can be defined again as of the mean-field
type, but the reinforcement scheme is different from the previous one: indeed, the urns interact
among each other through the average composition in the entire system, tuned by the interaction
parameter α, and the probability of drawing a ball of a certain color is proportional to the number
of balls of that color, rather than to its exponential, leading to quite different results. Synchro-
nization and central limit theorems for the urn proportions have been proven for different values
of the tuning parameter α, providing different convergence rates and asymptotic variances. In [12]
the same mean-field interaction is adopted, but the analysis has been extended to the general class
of reinforced stochastic processes, providing central limit theorems also in functional form. Differ-
ently from these works, the model proposed in [2] concerns with a system of generalized Friedman
urns with irreducible mean replacement matrices based on a general interaction structure, which
includes the mean-field interaction as a special case. In particular, this interaction acts as follows:
the probability to sample a certain color in each urn is a convex combination of the urn proportions
of the entire system, and the weights of such combinations are gathered in the interacting matrix.
Combining the information provided by the mean replacement matrices and by the interacting
matrix, first and second-order asymptotic results of the urn proportions have been established,
from which synchronization phenomenon has not been observed. Moreover, the structure of the
interacting matrix allows a decomposition in sub-systems of urns evolving with different behaviors.

The present work have some issues in common with [12, 13] and [2], but at the same time some
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significant differences can be pointed out. In particular, we share with [2] a general interacting
framework driven by the interacting matrix (here called weighted adjacency matrix). However,
here we mainly consider irreducible interacting matrices and hence the decomposition of the sys-
tem in sub-groups is only sketched. Moreover, with respect to [2], we study a class of stochastic
processes for which we obtain synchronization. This class does not include the generalized Friedman
urns studied in [2]; while it includes urn models with not-irreducible mean replacement matrices,
as Pólya urns. With [12] we share the class of reinforced stochastic processes considered, which
contain Pólya urns also studied in [13]. However, with respect to [12, 13], we generalize the form
of interaction since here we deal with a general weighted adjacency matrix instead of just the
mean-field interaction. Indeed, the intent of this work is different from the one of the above papers:
after proving synchronization and central limit theorems for some interesting cases, we focus on
analyzing the interplay between the topology of the interaction network and the reinforced dynam-
ics of the stochastic processes positioned at the vertices of the network, providing some statistical
tools. On the other hand, we do not provide central limit theorems in functional form as in [12]
(although it is possible to do it combining the results given here and the methods illustrated in
[12]) and we do not cover some cases considered in [12, 13]. Also these cases are interesting for
synchronization phenomena, but we decided to not include them in this paper since, as we will
explain more deeply in the sequel, they lead to quite different asymptotic results and so we think
that it is more appropriate to possibly deal with them separately.

Finally, we mention that in literature we can find other works concerning models of interacting
urns, that consider interacting mechanisms different from ours and are generally not focused on
synchronization. For instance, the model studied in [27] describes a system of interacting units,
modeled by Pólya urns, subject to perturbations and which occasionally break down. The authors
consider a system of interacting Pólya urns arranged on a d-dimensional lattice. Each urn contains
initially b black balls and 1 white ball. At each time step an urn is selected and a ball is drawn from
it: if the ball is white, a new white ball is added to the urn; if it is black a “fatal accident” occurs
and the urn becomes unstable and it “topples” coming back to the initial configuration. The top-
pling mechanism involves also the nearby urns. In [29] a class of discrete time stochastic processes
generated by interacting systems of reinforced urns is introduced and its asymptotic properties
analyzed. Given a countable set of urns, at each time a ball is independently sampled from every
urn in the system and in each urn a random number of balls of the same color of the extracted
ball is added. The interaction arises since the number of added balls depends also on the colors
generated by the other urns as well as on a common random factor. In [9] the authors consider a
network of interacting urns displaced over a lattice. Every urn is Pólya-like and its reinforcement
matrix is not only a function of time (time contagion) but also of the behavior of the neighboring
urns (spatial contagion), and of a random component, which can represent either simple fate or
the impact of exogenous factors. In this way a non-trivial dependence structure among the urns is
built, and the given construction is used to model different phenomena characterized by cascading
failures such as power grids and financial networks. In [6, 8, 24] a graph-based model, with urns at
each vertex and pair-wise interactions, is considered. Given a finite connected graph, place a bin at
each vertex. Two bins are called a pair if they share an edge. At discrete times, a ball is added to
each pair of bins. In a pair of bins, one of the bins gets the ball with probability proportional to its
current number of balls raised by some fixed power α > 0. The authors characterize the limiting
behavior of the proportion of balls in the bins for different values of the parameter α.
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The rest of the paper is organized as follows. In Section 2 we introduce the notation, we describe
the model and the leading assumptions. Section 3 is concerned with the main results established
in the paper, while the relative proofs are gathered in Section 4. Some meaningful examples of
reinforced random processes with a network-based interaction are described in Section 5, in order
to apply the theoretical results provided in the paper to some practical cases and to establish the
corresponding asymptotic behaviors. In Section 6 we illustrate some statistical tools coming from
the obtained theoretical results. In particular, we propose an inferential procedure to test the
structure of the network which the interaction between the reinforced stochastic processes is based
on. Finally, Section 7 is concerned with some possible variants of the model here presented. For
reader’s convenience, the paper is also enriched by an exhaustive appendix containing necessary
definitions and technical results.

2. The Model

Throughout the paper, we will adopt the following notation:

a) Given a complex number z, Re(z) and Im(z) denote its real and imaginary parts, respec-
tively, z denotes its conjugate and |z| its modulus.

b) If A is a matrix with complex entries, then A denotes its conjugate, i.e. the matrix whose
entries are the conjugates of the entries of A, and A⊤ indicates its transpose. Moreover,
we denote by |A| the sum of the modulus of its entries so that, if A is equal to the row-
column product of two matrices B, C, we have |A| ≤ |B| |C|. Finally, Sp(A) indicates its
spectrum, i.e. the set of all its eigenvalues repeated with multiplicity, and λmax(A) indicates
the sub-set of Sp(A) containing the eigenvalues with maximum real part, i.e. λ∗ ∈ λmax(A)
whenever Re(λ∗) = max{Re(λ) : λ ∈ Sp(A)}. Moreover, we will denote by I the identity
matrix, whose dimension depends on the context.

c) A vector v is considered as a matrix with a single column, and hence all the notations
stated in b) apply to v. Moreover, ‖v‖ indicates the norm of the vector v, i.e. ‖v‖2 = v⊤v.
Finally, we will denote by 1 and by 0 the vectors whose entries are all ones and all zeros,
respectively.

We now present the model. Suppose to have a directed graph G = (V,E) with V = {1, ..., N} as
the set of vertices and E⊂V × V as the set of edges. Each edge (j, k) ∈ E represents the fact that
the vertex j has a direct influence on the vertex k. We assume also to associate a weight wjk ≥ 0
to each link in order to quantify how much j can influence k. A weight equal to zero means that
the edge is not present. We set W = [wj,k]j,k∈V×V (weighted adjacency matrix) and we assume the

weights to be normalized so that
∑N

j=1wj,k = 1. Finally, we suppose to have at each vertex j a

reinforced stochastic process described by Xj = (Xn,j)n≥0 such that, for each n ≥ 0, the random
variables {Xn+1,j : j ∈ V } are conditional independent given Fn with

(6) P (Xn+1,j = 1 | Fn) =

N∑

k=1

wk,jZn,k

where, for each k ∈ V ,

(7) Zn,k = (1− rn−1)Zn−1,k + rn−1Xn,k

with 0 ≤ rn−1 < 1 constants and Fn = σ(Z0,k : k ∈ V ) ∨ σ(Xm,j : j ∈ V, m ≤ n).
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To express the above dynamics in a compact form, let us define the vectors Xn = (Xn,1, ..,Xn,N )⊤

and Zn = (Zn,1, .., Zn,N )⊤. Hence, the dynamics can be expressed as follows:

(8) E[Xn+1|Fn] = W⊤Zn

where

(9) Zn = (1− rn−1)Zn−1 + rn−1Xn.

Moreover, the assumption about the normalization of the matrix W can be written as W⊤1 = 1.

Throughout all the paper, we assume that the following additional conditions hold.

Assumption 2.1. The weighted adjacency matrix W is irreducible.

This condition reflects a situation in which all the vertices are connected among each others and
hence there are no sub-systems with independent dynamics (see [2] and Subsection 7.2 for further
details).

Assumption 2.2. There exists a constant c > 0 and 1/2 < γ ≤ 1 such that

(10) lim
n→∞

nγrn = c.

When γ = 1, for a particular case covered by our analysis, we will require a slightly stricter
condition than (10), that is:

(11) nrn − c = O
(
n−1

)
.

This paper is concerned with the case 1/2 < γ ≤ 1, while the case γ ≤ 1/2 is not considered.
Indeed, in [12] it was established that, under soft assumptions on the initial distribution, if the mean-
field interaction is present and

∑
n r

2
n = +∞, then all the stochastic processes {(Zn,j)n : 1 ≤ j ≤ N}

converge almost surely to the same random variable Z∞ ∈ {0, 1} a.s. Hence, although this case is
interesting for synchronization, we decided to focus here on the case 1/2 < γ ≤ 1, for which soft as-
sumptions on the initial distribution lead to a limit random variable not concentrated only on {0, 1}.

Finally, we require the following condition:

Assumption 2.3. The weighted adjacency matrix W is diagonalizable.

This assumption implies that there exists a non-singular matrix Ũ such that Ũ⊤W (Ũ⊤)−1 is

diagonal with elements λj ∈ Sp(W ). Notice that each column uj of Ũ is a left eigenvector of W
associated to λj . Without loss of generality, we set ‖uj‖ = 1. Moreover, when the multiplicity of
some λj is bigger than one, we set the corresponding eigenvectors to be orthogonal. Then, if we

define Ṽ = (Ũ⊤)−1, we have that each column vj of Ṽ is a right eigenvector of W associated to λj

such that

(12) u⊤
j vj = 1, and u⊤

h vj = 0, ∀h 6= j.

These constraints combined with the above assumptions on W (precisely, wj,k ≥ 0, W⊤1 = 1
and Assumption 2.1) imply, by Frobenius-Perron Theorem, that λ1 := 1 is an eigenvalue of W with
multiplicity one, λmax(W ) = {1} and

(13) u1 = N−1/21, N−1/21⊤v1 = 1 and [v1]k := v1,k ∈ (0,+∞) ∀k = 1, . . . , N.

Finally, throughout all the paper, we will use U and V to indicate the sub-matrices of Ũ and Ṽ ,
respectively, whose columns are the left and the right eigenvectors of W associated to Sp(W )\{1},
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that is {u2, ..,uN} and {v2, ..,vN}, respectively, and we will denote by λ∗ an eigenvalue belonging
to Sp(W ) \ {1} such that

Re(λ∗) = max {Re(λj) : λj ∈ Sp(W ) \ {1}} .

3. Main results

In this section, we present our main results, which regard the asymptotic behavior of the process
Zn. We refer to the appendix for a brief review of the notion of stable convergence.

Let us recall the assumptions stated in Section 2. We start by providing a first-order asymptotic
result concerning the almost sure convergence of Zn.

Theorem 3.1. (Synchronization)
There exists a random variable Z∞ with values in [0, 1] such that

(14) Zn
a.s.−→ Z∞1.

This result states that the stochastic processes {(Zn,j)n : 1 ≤ j ≤ N} located at the different
vertices synchronize, i.e. all of them converge almost surely toward the same random variable
Z∞. It is interesting to note that this result holds true without any assumption on the initial con-
figuration Z0 and for any choice of the weighted adjacency matrix W with the required assumptions.

We now focus on the second-order asymptotic results concerning the process (Zn)n. First, we
present a central limit theorem in the sense of stable convergence, that establishes the rate of
convergence to the limit Z∞1 determined in Theorem 3.1 and the relative asymptotic random
variance.

Theorem 3.2. (CLT for convergence)
The following hold:

(a) For 1/2 < γ < 1, then

nγ− 1

2 (Zn − Z∞1)
d−→ N

(
0 , Z∞(1− Z∞)Σ̃γ

)
, stably

where

(15) Σ̃γ := σ̃2
γ11

⊤ and σ̃2
γ :=

c2 ‖v1‖2
N(2γ − 1)

> 0.

(b) For γ = 1, if Re(λ∗) < 1− (2c)−1, then

√
n (Zn − Z∞1)

d−→ N
(
0 , Z∞(1− Z∞)(Σ̃1 + Σ̂1)

)
, stably

where Σ̃1 is defined as in (15) with γ = 1,

(16) Σ̂1 := UŜ1U
⊤ and [Ŝ1]h,j :=

c2

2c− c(λh + λj)− 1
(v⊤

h vj), with 2 ≤ h, j ≤ N.

(c) For γ = 1, if Re(λ∗) = 1− (2c)−1 and (11) holds, then
√
n√

ln(n)
(Zn − Z∞1) −→ N

(
0 , Z∞(1− Z∞)Σ̂∗

1

)
, stably
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where
(17)

Σ̂∗
1 := UŜ∗

1U
⊤ and [Ŝ∗

1 ]h,j :=

{
c2(v⊤

h vj) if λh + λj = 2− c−1,

0 if λh + λj 6= 2− c−1,
with 2 ≤ h, j ≤ N.

Notice that the matrix Ŝ∗
1 defined in (17) can never be null, as stated more ahead in Theorem 3.4.

Remark 3.1. Notice that σ̃2
γ is decreasing with the size N of the network and so, for cases (a) and

(b), the larger the size of the network, the lower the asymptotic variance. Moreover, fixed N and
γ, since by (12) and (13) we have ‖v1‖2 = ‖u1 +(v1 −u1)‖2 = 1+ ‖v1 −u1‖2 ≥ 1 and ‖v1‖2 ≤ N ,
we can obtain the following lower and upper bounds for σ̃2

γ (not depending on W ):

c2

N(2γ − 1)
≤ σ̃2

γ ≤ c2

(2γ − 1)
,

where the lower bound is achieved when v1 = u1, i.e. when W is doubly stochastic.

Given the long-run synchronization stated in Theorem 3.1, it is interesting to establish the rate
of synchronization, that is the convergence rate of the difference (Zn,j − Zn,k)n to zero for j 6= k
and to characterize the relative asymptotic distribution. The following result achieves this goal.

Theorem 3.3. (CLT for synchronization)
For any j, k ∈ {1, .., N}, j 6= k, we have:

(a) For 1/2 < γ < 1, then

n
γ

2 (Zn,j − Zn,k) −→ N ( 0 , Z∞(1− Z∞)Σγ,j,k ) , stably

where Σγ,j,k := [Σ̂γ ]j,j + [Σ̂γ ]k,k − 2[Σ̂γ ]j,k,

(18) Σ̂γ := UŜγU
⊤ and [Ŝγ ]h,j :=

c

2− (λh + λj)
(v⊤

h vj), with 2 ≤ h, j ≤ N.

(b) For γ = 1, if Re(λ∗) < 1− (2c)−1, then
√
n (Zn,j − Zn,k) −→ N ( 0 , Z∞(1− Z∞)Σ1,j,k ) , stably

where Σ1,j,k := [Σ̂1]j,j + [Σ̂1]k,k − 2[Σ̂1]j,k and Σ̂1 is defined in (16).
(c) For γ = 1, if Re(λ∗) = 1− (2c)−1 and (11) holds, then

√
n√

ln(n)
(Zn,j − Zn,k) −→ N

(
0 , Z∞(1− Z∞)Σ∗

1,j,k

)
, stably

where Σ∗
1,j,k := [Σ̂∗

1]j,j + [Σ̂∗
1]k,k − 2[Σ̂∗

1]j,k and Σ̂∗
1 is defined in (17).

Remark 3.2. In the particular case when W is symmetric, the eigenvectors of W are real, U =

V and V ⊤V = I. As a consequence, the matrices Ŝγ , Ŝ1 and Ŝ∗
1 are diagonal, with elements

c[2(1 − λj)]
−1, c[2(1 − λj) − c−1]−1 and c21{λj=1−(2c)−1}, respectively, where λj ∈ Sp(W ) \ {1}.

Moreover, in this case, we have u1 = v1 = N−1/21 and UU⊤ = UV ⊤ = (I − N−111⊤) (see
Subsection 4.1 for details). Notice that, for instance, this is the case of undirected graphs.

In order to ensure that Theorem 3.2 and 3.3 provide the right convergence rates of (Zn,j)n to

Z∞ and of (Zn,j − Zn,k)n to zero, respectively, we need to have [Σ̂1]j,j ≥ 0, [Σ̂∗
1]j,j > 0, Σγ,j,k > 0,

Σ1,j,k > 0, Σ∗
1,j,k > 0 and

(19) P (Z∞ = 0) + P (Z∞ = 1) < 1.
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The result below deals with the first set of conditions.

Theorem 3.4. We have:

(a) For 1/2 < γ < 1, Σ̂γ is a positive semi-definite real matrix of rank (N−1) and v⊤
1 Σ̂γv1 = 0;

in addition, Σγ,j,k > 0 for any 1 ≤ j 6= k ≤ N .

(b) For γ = 1, if Re(λ∗) < 1 − (2c)−1, then Σ̂1 is a positive semi-definite real matrix of rank

(N − 1) and v⊤
1 Σ̂1v1 = 0; in addition, Σ1,j,k > 0 for any 1 ≤ j 6= k ≤ N .

(c) For γ = 1, if Re(λ∗) = 1− (2c)−1, define

(20) A∗ :=
{
λj ∈ Sp(W ), Re(λj) = 1− (2c)−1

}

and let m∗ be the cardinality of A∗; then Σ̂∗
1 is a positive semi-definite real matrix of rank

m∗ and v⊤
j Σ̂

∗
1vj = 0 for any j such that λj /∈ A∗; moreover, [Σ̂∗

1]jj > 0 when uh,j 6= 0 for
some h such that λh ∈ A∗ and Σ1,j,k > 0 when uh,j 6= uh,k for some h such that λh ∈ A∗.

Finally, we give two results concerning the distribution of Z∞, of which the last one deals with
condition (19).

Theorem 3.5. We have P (Z∞ = z) = 0 for any z ∈ (0, 1).

Theorem 3.6. If we have

(21) P

(
N⋂

k=1

{Z0,k = 0}
)

+ P

(
N⋂

k=1

{Z0,k = 1}
)

< 1,

then condition (19) is verified.

Remark 3.3. In case (a), i.e. 1/2 < γ < 1, since γ/2 > γ−1/2 we have that the rate at which two
stochastic processes (Zn,j)n, (Zn,k)n positioned in any pair of different vertices (j, k) of the network
synchronize is greater than the rate at which they converge to Z∞, i.e. synchronization of the
stochastic processes at the vertices is faster then their convergence to the limit random variable.

4. Proofs

This section contains all the proofs of the results presented in the previous Section 3.

4.1. Preliminary relations and basic idea. We start by recalling that, given the eigen-structure
of W described in Section 2, the matrix u1v

⊤
1 has real entries and the following relations hold:

(22) V ⊤ u1 = U⊤ v1 = 0, V ⊤ U = U⊤ V = I and I = u1v
⊤
1 + UV ⊤,

which implies that the matrix UV ⊤ has real entries (Notice that in (22) the identity matrices
have different dimensions). Moreover, denoting by D the diagonal matrix whose elements are
λj ∈ Sp(W ) \ {1}, we can decompose the matrix W⊤ as follows:

(23) W⊤ = u1v
⊤
1 + UDV ⊤.

Now, in order to understand the asymptotic behavior of the stochastic process (Zn)n, let us
express the dynamics (9) as follows:

(24) Zn+1 − Zn = −rn

(
I −W⊤

)
Zn + rn∆Mn+1.

where ∆Mn+1 = (Xn+1 −W⊤Zn) is a martingale increment with respect to (Fn)n. It follows:

(a) since v⊤
1 W

⊤ = (Wv1)
⊤ = v⊤

1 , we have v⊤
1 (I −W⊤) = 0 and so, from (24), we deduce that

the stochastic process (v⊤
1 Zn)n is a bounded real martingale;
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(b) by (22), we have Zn − u1(v
⊤
1 Zn) = UV ⊤Zn and so the dynamics of this multi-dimensional

real stochastic process can be easily obtained from (24).

Hence, the basic idea is to decompose Zn into two terms, establish the corresponding asymptotic
results for each term separately and then combine them together to characterize the asymptotic
behavior of Zn. More precisely, the process Zn can be decomposed as follows:

(25) Zn = Z̃n1+ Ẑn = u1

√
NZ̃n + Ẑn, where

{
Z̃n = N−1/2 v⊤

1 Zn,

Ẑn = Zn − 1Z̃n = (I − u1v
⊤
1 )Zn = U V ⊤Zn.

Then, the asymptotic behavior of the stochastic process (Zn)n is obtained by establishing the

asymptotic behavior of (Z̃n)n and (Ẑn)n.

Remark 4.1. In the particular case of W doubly stochastic, we have v1 = u1 = N−1/21. As a
consequence, we have

(26) Z̃n = N−11⊤Zn = N−1
N∑

j=1

Zn,j,

which represents the average of the stochastic processes in the network, and Ẑn =
(
I −N−111⊤

)
Zn.

Notice that the assumed normalization W⊤1 = 1 implies that symmetric matrices W are also dou-
bly stochastic. Therefore, the above equalities hold for any undirected graph for which W is
obviously symmetric by definition.

4.2. Proof of Theorem 3.1 (Synchronization). By decomposition (25), i.e.

Zn = Z̃n1+ Ẑn,

the proof of Theorem 3.1 follows by establishing the following two results:

(i) Z̃n
a.s.−→ Z∞,

(ii) Ẑn
a.s.−→ 0.

Concerning part (i), let us consider the real-valued stochastic process (Z̃n)n defined for any n ≥ 0

as Z̃n = N−1/2v⊤
1 Zn. Since all the elements of v1 are positive and since (13) holds, the elements

of N−1/2v1 can be seen as the weights of a convex combination and hence minj{Zn,j} ≤ Z̃n ≤
maxj{Zn,j} for any n, which implies 0 ≤ Z̃n ≤ 1. Moreover, it is easy to see that (Z̃n)n is an
F-martingale, since from (24) its dynamics can be expressed as follows:

(27) Z̃n+1 − Z̃n = N−1/2rn

(
v⊤
1 ∆Mn+1

)
.

Hence, we immediately get

(28) Z̃n
a.s.−→ Z∞,

where Z∞ is a random variable with values in [0, 1]. This concludes the proof of part (i).

Concerning part (ii), let us consider the multi-dimensional stochastic process (Ẑn)n, with real
entries, defined in (25). In order to find the dynamics of this process, we firstly observe that, by
decomposition (25) and the fact that W⊤u1 = (u⊤

1 W )⊤ = u1, we have
(
I −W⊤

)
Zn =

(
I −W⊤

)(
u1

√
NZ̃n + Ẑn

)
=
(
I −W⊤

)
Ẑn
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and so the dynamics (24) of Zn can be rewritten as

(29) Zn+1 − Zn = −rn

(
I −W⊤

)
Ẑn + rn∆Mn+1.

Then, if we multiply the dynamics (29) by UV ⊤ and use decomposition (23) and the relations (22),
we obtain

Ẑn+1 − Ẑn = −rn

[
UV ⊤ − UV ⊤(u1v

⊤
1 + UDV ⊤)

]
Ẑn + rnUV ⊤∆Mn+1

= −rn(UV ⊤ − UDV ⊤)Ẑn + rnUV ⊤ ∆Mn+1

= −rnU(I −D)V ⊤Ẑn + rnUV ⊤ ∆Mn+1,

(30)

where I in (30) is a (N − 1) × (N − 1)-identity matrix. We are now ready for proving that this
multi-dimensional stochastic process converges a.s. to 0.

Theorem 4.1. We have

(31) Ẑn
a.s.−→ 0.

Proof. Let us consider the (N − 1)-dimensional complex random vector defined as ZV,n = V ⊤Ẑn.

Since we have Ẑn = UZV,n by (22), it is enough to prove that ZV,n converges almost surely to 0.
To this purpose, we observe that the dynamics of ZV,n can be obtained from (30) multiplying by

V ⊤:

ZV,n+1 = (I − rn(I −D))ZV,n + rnV
⊤∆Mn+1,

where I here indicates a (N−1)×(N−1)-identity matrix. Hence, recalling that E[∆Mn+1 | Fn] = 0,
we obtain

E
[
‖ZV,n+1‖2|Fn

]
= E

[
Z
⊤
V,n+1ZV,n+1 | Fn

]

= Z
⊤
V,n(I − rn(I −D))(I − rn(I −D))ZV,n + r2nE

[
∆M⊤

n+1V V ⊤∆Mn+1 | Fn

]

= Z
⊤
V,n ZV,n − rnZ

⊤
V,n

(
2I −D −D

)
ZV,n + r2nξn,

where (ξn)n is a suitable bounded sequence of Fn-measurable random variables. Since Re(λj) < 1

for any λj ∈ Sp(W ) \ {1}, the matrix 2I − (D +D) is positive definite and hence we can write

E
[
‖ZV,n+1‖2 | Fn

]
≤ ‖ZV,n‖2 + O(r2n).

Since
∑

n r
2
n < +∞ for 1/2 < γ ≤ 1, we can conclude that the real stochastic process (‖ZV,n‖2)n is

a positive almost supermartingale and so (see [31]) it converges almost surely (and in mean since
it is also bounded). In order to prove that the limit is zero, it is enough to prove that E[‖ZV,n‖2]
converges to zero. To this end, we observe that, from the above computations, we obtain

E[‖ZV,n+1‖2] = E[Z
⊤
V,n(I − rn(I −D))(I − rn(I −D))ZV,n] + r2nE[∆M⊤

n+1V V ⊤∆Mn+1]

≤ E[Z
⊤
V,n(I − rn(I −D))(I − rn(I −D))ZV,n] + C1r

2
n

for a suitable constant C1 ≥ 0. Then, we note that the elements of the diagonal matrix above can
be written as follows

[(I − rn(I −D))(I − rn(I −D))]jj = 1− 2rn(1−Re(λj)) + r2n |1− λj|2.
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Hence, setting aj = 1 − Re(λj) and a∗ = minj{aj} = 1 − Re(λ∗) (we recall that λ∗ indicates an
eigenvalue belonging to λmax(D)), we have that

E[Z
⊤
V,n(I − rn(I −D))(I − rn(I −D))ZV,n] ≤

N∑

j=2

(1− 2ajrn)E[Z
j
V,nZ

j
V,n] + C2r

2
n

≤ (1− 2a∗rn)E[‖ZV,n‖2] + C2r
2
n

for a suitable constant C2 ≥ 0. Then, setting xn := E[‖ZV,n‖2], we can write

xn+1 ≤ (1− 2a∗rn)xn + (C1 + C2)r
2
n.

Since Re(λ∗) < 1, we have a∗ > 0, which implies limn xn = 0 (see [12]). The proof is thus
concluded. �

Note that, by the synchronization result given in Theorem 3.1, we can state that

(32) E[(∆Mn+1)(∆Mn+1)
⊤ | Fn]

a.s.−→ Z∞(1− Z∞)I.

Indeed, since {Xn+1,k : j = 1, . . . , N} are conditionally independent given Fn, we have

(33) E[∆Mn+1,h∆Mn+1,k | Fn] = 0 for h 6= k;

while, for each k, we have

(34) E[(∆Mn+1,k)
2 | Fn] =




N∑

j=1

wj,kZn,j




1−

N∑

j=1

wj,kZn,j


 .

From this last equality, using synchronization and the normalization W⊤1 = 1, we immediately
obtain

(35) E[(∆Mn+1,k)
2 | Fn]

a.s.−→ Z∞(1− Z∞).

4.3. A CLT for Z̃n. The following result gives a central limit theorem for the real-valued stochastic

process (Z̃n)n.

Theorem 4.2. For 1/2 < γ ≤ 1, we have

(36) nγ− 1

2

(
Z̃n − Z∞

)
−→ N

(
0 , σ̃2

γ Z∞(1− Z∞)
)

stably,

where σ̃2
γ is defined in (15). The above convergence is also in the sense of the almost sure conditional

convergence w.r.t. F = (Fn)n.

Proof. We want to apply Theorem B.3. Let us consider, for each n ≥ 1 the filtration (Fn,h)h and
the process (Ln,h)h defined by

Fn,0 = Fn,1 = Fn, Ln,0 = Ln,1 = 0

and, for h ≥ 2,

Fn,h = Fn+h−1, Ln,h = nγ− 1

2 (Z̃n − Z̃n+h−1).

By (27) and (28), the process (Ln,h)h is a martingale w.r.t. (Fn,h)h which converges (for h → +∞)

a.s. and in L1 to the random variable Ln,∞ = nγ− 1

2 (Zn − Z∞). In addition, the increment
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Yn,j = Ln,j − Ln,j−1 is equal to zero for j = 1 and, for j ≥ 2, it coincides with a random variable

of the form nγ− 1

2 (Z̃k − Z̃k+1) with k ≥ n. Therefore, again by (27), we have
∑

j≥1

Y 2
n,j = n2γ−1

∑

k≥n

(Z̃k − Z̃k+1)
2 = N−1n2γ−1

∑

k≥n

r2k(v
⊤
1 ∆Mn+1)

2

a.s.∼ N−1c2n2γ−1
∑

k≥n

k−2γ(v⊤
1 ∆Mn)

2

a.s.−→ c2

N

‖v1‖2
(2γ − 1)

Z∞(1− Z∞),

where the last part follows by applying [13, Lemma 4.1] and by noticing that (35) implies

E[(v⊤
1 ∆Mn+1)

2|Fn] =
N∑

k=1

v21,k E[(∆Mn+1,k)
2|Fn]

a.s.−→
N∑

j=1

v21,kZ∞(1−Z∞) = ‖v1‖2Z∞(1−Z∞).

Finally, again by (27), we have

Y ∗
n = sup

j≥1
|Yn,j| = nγ− 1

2 sup
k≥n

|Z̃k − Z̃k+1| ≤ sup
k≥n

kγ−
1

2 rk −→ 0.

Hence, if in Theorem B.3, we take kn = 1 for each n and U =
∨

nFn, then the proof is concluded. �

4.4. Proofs of Theorem 3.5 and Theorem 3.6 (Results on the distribution of Z∞). The
proof of Theorem 3.5 is a consequence of the almost sure conditional convergence in Theorem 4.2,
exactly as shown in [12].

To the proof of Theorem 3.6 we premise the following lemma.

Lemma 4.1. If condition (21) holds, then we have

(37) E
[
Z̃n(1− Z̃n)

]
> 0 ∀n ≥ 0.

Proof. For convenience, set xn := E
[
Z̃n(1− Z̃n)

]
. We recall that Z̃n = N−1/2v⊤

1 Zn, where v1 is

such that

(38) v1,k > 0 ∀k and N−1/2
N∑

k=1

v1,k = 1.

Hence, under assumption (21), we immediately get x0 > 0.

Now, we recall that (Z̃n)n is a bounded martingale which satisfies (27), that is

Z̃n = (1− rn−1)Z̃n−1 + rn−1N
−1/2v⊤

1 Xn

with E[N−1/2v⊤
1 Xn | Fn−1] = Z̃n−1. Therefore we have xn = (E[Z̃0]− E[Z̃2

n]) for each n and

Z̃2
n = (1− rn−1)

2Z̃2
n−1 + 2(1 − rn−1)rn−1Z̃n−1N

−1/2v⊤
1 Xn + r2n−1(N

−1/2v⊤
1 Xn)

2

≤ (1− rn−1)
2Z̃2

n−1 + 2(1 − rn−1)rn−1Z̃n−1N
−1/2v⊤

1 Xn + r2n−1(N
−1/2v⊤

1 Xn)

Taking the conditional expectation given Fn−1, we get

E
[
Z̃2
n | Fn−1

]
≤ (1− r2n−1)Z̃

2
n−1 + r2n−1Z̃n−1,
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which implies

E[Z̃2
n] ≤ (1− r2n−1)E[Z̃2

n−1] + r2n−1E[Z̃n−1] = (1− r2n−1)E[Z̃2
n−1] + r2n−1E[Z̃0].

Therefore, we can conclude by an induction argument on n. Indeed, if xn−1 > 0, i.e. E[Z̃2
n−1] <

E[Z̃0], then from the above inequality, since (1−r2n−1) > 0 by assumption, we obtain E[Z̃2
n] < E[Z̃0],

i.e. xn > 0. �

We are now ready to prove Theorem 3.6.

Proof of Theorem 3.6. We recall that Z∞ takes values in [0, 1] and (Z̃n)n is a bounded martingale

which converges a.s. (and in Lp) to Z∞. Therefore, in particular, setting z̃0 := E[Z̃0], we have

E[Z∞] = E[Z̃n] = z̃0 ∀n and V ar[Z∞] = lim
n→∞

V ar[Z̃n].

Now, as in the proof of the previous Lemma, we set

(39) xn := E
[
Z̃n(1− Z̃n)

]
= z̃0 − z̃20 − V ar[Z̃n]

and we can state that

P (Z∞ ∈ {0, 1}) = 1 if and only if E [Z∞(1− Z∞)] = lim
n

xn = 0.

Thus, it is enough to prove that assumption (21) implies limn xn > 0. To this purpose, we observe
that, by (27), we have

xn+1 = z̃0 − z̃20 − V ar[Z̃n+1] = z̃0 − z̃20 − E
[
V ar[Z̃n+1 | Fn]

]
− V ar

[
E[Z̃n+1 | Fn]

]

= z̃0 − z̃20 −
r2n
N

E
[
E
[
(v⊤

1 ∆Mn+1)
2 | Fn

] ]
− V ar[Z̃n]

= xn − r2n
N

E
[
E
[
(v⊤

1 ∆Mn+1)
2 | Fn

] ]
.

(40)

Setting Yn = E[Xn|Fn−1] = W⊤Zn (whose components obviously belong to [0, 1]) and recalling
(33) and (34), we obtain

(41) E
[
(v⊤

1 ∆Mn+1)
2 | Fn

]
=

N∑

k=1

v21,kYn,k(1− Yn,k).

Now, notice that

N−1/2v⊤
1 Yn = N−1/2v⊤

1 W
⊤Zn = N−1/2(Wv1)

⊤Zn = N−1/2v⊤
1 Zn = Z̃n,

and so, for any k = 1, .., N ,

(42) N−1/2v1,kYn,k = Z̃n −N−1/2
∑

j 6=k

v1,jYn,j ≤ Z̃n.

Analogously, notice that

N−1/2v⊤
1 (1−Yn) =

(
N−1/2v⊤

1 1
)

−
(
N−1/2v⊤

1 Yn

)
= 1− Z̃n

and so, for any k = 1, .., N ,

(43) N−1/2v1,k(1− Yn,k) = (1− Z̃n)−N−1/2
∑

j 6=k

v1,j(1− Yn,j) ≤ 1− Z̃n.
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Then, combining (42) and (43), we get for any k = 1, .., N

v21,kYn,k(1− Yn,k) ≤ NZ̃n(1− Z̃n),

and hence, recalling (39), (40) and (41), we obtain

xn+1 ≥ xn −Nr2nE[Z̃n(1− Z̃n)] = (1−Nr2n)xn.

Finally, taking n̄ such that Nr2n < 1 for any n ≥ n̄, we find

xn+1 ≥ xn̄

n∏

m=n̄

(
1−Nr2m

)
.

Hence, since xn̄ > 0 by the previous Lemma and
∑

n r
2
n < +∞ for 1/2 < γ ≤ 1, we can conclude

that limn xn > 0. �

4.5. A CLT for Ẑn. The following result provides a central limit theorem for the multi-dimensional

real stochastic process (Ẑn)n.

Theorem 4.3. We have:

(a) If 1/2 < γ < 1, then

(44) n
γ
2 Ẑn −→ N

(
0 , Z∞(1− Z∞)Σ̂γ

)
, stably

where Σ̂γ is defined in (18).
(b) If γ = 1 and Re(λ∗) < 1− (2c)−1, then

(45)
√
n Ẑn −→ N

(
0 , Z∞(1− Z∞)Σ̂1

)
, stably

where Σ̂1 is defined in (16).
(c) If γ = 1, Re(λ∗) = 1− (2c)−1 and (11) holds, then

(46)

√
n

ln(n)
Ẑn −→ N

(
0 , Z∞(1− Z∞)Σ̂∗

1

)
, stably

where Σ̂∗
1 is defined in (17).

Proof. Set αj = 1− λj = aj + i bj with λj ∈ Sp(W ) \ {1}. Remember that aj > 0 for each j since
Re(λj) < 1 for each j. Moreover recall the definition of the matrices U, V and D given in Section
2 and in Subsection 4.1.

From dynamics (30), we get

Ẑn+1 =
[
I − rnU(I −D)V ⊤

]
Ẑn + rn UV ⊤∆Mn+1 = U [I − rn(I −D)]V ⊤Ẑn + rn UV ⊤ ∆Mn+1,

where the identity matrices adopted above have different dimensions. where the last equality holds

because relations (22) imply UV ⊤ Ẑn = UV ⊤Zn = Ẑn. Therefore, if we take m0 large enough such
that ajrn < 1 for n ≥ m0 and all j, we can write

(47) Ẑn+1 = Cm0,nẐm0
+

n∑

k=m0

Ck+1,n rkUV ⊤∆Mk+1,

with

Ck+1,n =
n∏

m=k+1

{U [I − rm(I −D)]V ⊤}.
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For the sequel, it is important to note that Ck+1,n is a real matrix since, by (22) and (23) it is

equivalent to a product of real matrices, i.e. (UV ⊤)− rm(UV ⊤ +u1v
⊤
1 −W⊤) = (UV ⊤)− rm(I −

W⊤). Moreover, using relations (22) again, we get

(48) Ck+1,n = UAk+1,nV
⊤,

where Ak+1,n is the diagonal matrix given by

[Ak+1,n]j,j =

{∏n
m=k+1 (1− αjrm) for m0 − 1 ≤ k ≤ n− 1

1 for k = n.

Observe that we have

[Ak+1,n]j,j =
pn,j
pk,j

=
ℓk,j
ℓn,j

for m0 − 1 ≤ k ≤ n,

with

pm0−1,n = ℓm0−1,n = 1, pk,j =

k∏

m=m0

(1− αjrm) , ℓk,j = p−1
k,j for m0 ≤ k ≤ n.

Finally, notice that, since Ck+1,nUV ⊤ = Ck+1,n by relations (22) and (48), we can rewrite (47) as

Ẑn+1 = Cm0,nẐm0
+

n∑

k=m0

Tn,k, where Tn,k = rkCk+1,n∆Mk+1.

We will establish the asymptotic behavior of Ẑn by studying separately the terms Cm0,nẐm0
and∑n

k=m0
Tn,k.

Concerning the first term, note that by (66) in Lemma A.4, we have that, for any ǫ ∈ (0, 1),

(49) |Cm0,nẐm0
| = O (|p∗n|) =

{
O
(
exp

[
−(1− ǫ) ca∗

1−γn
1−γ
])

if 1/2 < γ < 1

O
(
n−(1−ǫ)ca∗

)
if γ = 1,

where the symbol ∗ refers to quantities aj and pn,j corresponding to λj = λ∗ ∈ λmax(D). Therefore,
for the case (a) (i.e. 1/2 < γ < 1) and (b) (i.e. γ = 1 and Re(λ∗) < 1− (2c)−1), we have

(50) |Cm0,nẐm0
| = o(n−γ/2).

Indeed, this fact follows immediately for 1/2 < γ < 1 and, for γ = 1 one has to note that,
since we assume Re(λ∗) < 1 − (2c)−1, that is ca∗ > 1/2, we can choose ǫ small enough so that
(1 − ǫ)ca∗ > 1/2. Moreover, for the case (c) (i.e. γ = 1 and Re(λ∗) = 1 − (2c)−1, i.e. ca∗ = 1/2),
since we assume condition (11), by (69) in Lemma A.4, we have

(51) |Cm0,nẐm0
| = O (|p∗n|) = O

(
n−ca∗

)
= O

(
n− 1

2

)
.

Therefore, if we set

(52) tn =





n
γ
2 for case (a)

n
1

2 for case (b)

(n/ ln(n))
1

2 for case (c),

then we obtain tn|Cm0,nẐm0
| → 0 almost surely.
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We now focus on the asymptotic behavior of the second term. Specifically, we aim at pro-
ving that tn

∑n
k=m0

Tn,k converges stably to a suitable Gaussian kernel. For this purpose, we
set Gn,k = Fk+1, and consider Theorem B.1 (recall that Tn,k are real random vectors). Given the
fact that condition (c1) of Theorem B.1 is obviously satisfied, we will check conditions (c2) and (c3).

Regarding condition (c2), we observe that
n∑

k=1

(tnTn,k)(tnTn,k)
⊤ = t2n

n∑

k=1

r2kCk+1,n(∆Mk+1)(∆Mk+1)
⊤C⊤

k+1,n

= U

(
t2n

n∑

k=1

r2kAk+1,n V
⊤ (∆Mk+1)(∆Mk+1)

⊤ V Ak+1,n

)
U⊤.

Therefore, it is enough to study the convergence of

t2n

n∑

k=1

r2kAk+1,n V
⊤ (∆Mk+1)(∆Mk+1)

⊤ V Ak+1,n.

To this purpose, we set Bk+1,h,j = [V ⊤ (∆Mk+1)(∆Mk+1)
⊤ V ]h,j and observe that an element of

the above matrix is of the form

t2n

n∑

k=1

r2k[Ak+1,n]h,hBk+1,h,j[Ak+1,n]j,j = t2npn,hpn,j

n−1∑

k=1

r2kℓk,hℓk,jBk+1,h,j + t2nr
2
nBn+1,h,j,

where t2nr
2
nBn+1,h,j = O(t2nr

2
n) → 0. We now fix j and h and apply Lemma A.3 to the first addend

in the above equality. Indeed, this quantity can be written as vn
∑n−1

k=m0
Yk/ckvk, where

Yn = Bn+1,h,j, cn =
1

t2nr
2
n

> 0 and vn = t2npn,hpn,j ∈ C \ {0}

satisfy the assumptions of Lemma A.3. More precisely, setting Hn = Fn+1, by (35), we have

E[Yn |Hn−1] = E[Bn+1,h,j | Fn] =
[
V ⊤E[(∆Mn+1)(∆Mn+1)

⊤ | Fn]V
]
h,j

a.s−→ (v⊤
h vj)Z∞(1− Z∞)

and, moreover, we have

∑

n

E[ |Yn|2]
c2n

=
∑

n

E[ |Yn|2]r4nt4n =
∑

n

r4nO(n2γ) =
∑

n

O(1/n2γ) < +∞.

In addition, as we have observed above, |vn| = t2n|pn,hpn,j| = t2nO(|p∗n|2) → 0 and, by (72) in Lemma
A.5 and (82) in Lemma A.6, we have

lim
n

vn

n∑

k=m0

1

ckvk
=





c
αh+αj

if 1/2 < γ < 1

c2

c(αh+αj)−1 if γ = 1, c(ah + aj) > 1

0 if γ = 1, c(ah + aj) = 1, c(αh + αj) 6= 1 and (11) holds

c2 if γ = 1, c(αh + αj) = 1 and (11) holds.

Finally, we have |vn|
∑n

k=m0

1
ck|vk| = O(1) by (73) in Lemma A.5 and (83) in Lemma A.6 (with

u = 1), and, using (77) and (86) in Appendix, we get

cn|vn|
∣∣∣∣
1

vn
− 1

vn−1

∣∣∣∣ =
1

r2n |ℓn,hℓn,j|

∣∣∣∣
ℓn,hℓn,j

t2n
− ℓn−1,hℓn−1,j

t2n−1

∣∣∣∣ = O(1).
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Hence, recalling Remark A.2, also the last condition required in Lemma A.3 is verified.

Regarding condition (c3), we observe that, using the inequalities

|Tn,k| = rk|Ck+1,n∆Mk+1| ≤ rk|U | |Ak+1,n| |V ⊤| |∆Mk+1| ≤ Krk|Ak+1,n|,
with a suitable constant K, we find for any u > 1
(

sup
m0≤k≤n

|tnTn,k|
)2u

≤ t2un

n−1∑

k=m0

|Tn,k|2u + t2un |Tn,n|2u = t2un O


|p∗n|2u

n−1∑

k=m0

r2uk |ℓ∗k|2u

+ t2un O(r2un ),

where, for the last equality, we have used (69) and (70) in Lemma A.4. Now, by (73) in Lemma
A.5 and (83) in Lemma A.6 (with α1 = α2 = α∗ = 1− λ∗ and u > 1), we have

O


|p∗n|2u

n−1∑

k=m0

r2uk |ℓ∗k|2u

 =





O(n−γ(2u−1) ) if 1/2 < γ < 1

O(n−(2u−1) ) if γ = 1, 2uca∗ > 2u− 1

O(n−u ) if γ = 1, 2ca∗ = 1 and (11) holds.

Therefore, for cases (a) and (c), it is immediate to obtain

t2un O


|p∗n|2u

n−1∑

k=m0

r2uk |ℓ∗k|2u

+ t2un O(r2un ) −→ 0

for any u > 1; while in case (b) in order to have the above convergence to zero, we have to choose
u > 1 such that 2uca∗ > 2u− 1, i.e. 2u(ca∗ − 1) + 1 > 0. This choice is always possible: indeed, or
ca∗ − 1 ≥ 0 and so we can take any u > 1, or ca∗ − 1 < 0 and we have to take u ∈ (1, (2− 2ca∗)−1)
(note that (2− 2ca∗)−1 > 1 since 2ca∗ > 1 by assumption). As a consequence of the above conver-
gence to zero, we obtain condition (c3) of Theorem B.1.

Summing up, all the conditions required by Theorem B.1 are satisfied and so we can apply this
theorem and obtain the stable convergence of tn

∑n
k=m0

Tn,k to the Gaussian kernel with random
variance defined in Theorem 4.3 for each of the three cases. �

Proof of Theorem 3.4. First, consider case (a), i.e. 1/2 < γ < 1, and recall the definition of Ŝγ

in (18). Then, since lj := (1−λj), for λj ∈ Sp(W )\{1}, have positive real parts by the assumptions
on W , we have

[Ŝγ ]h,j = (v⊤
h vj)

c

lh + lj
= (v⊤

h vj)c

∫ ∞

0
exp[−u(lh + lj)]du.

Then, setting L := (I −D) and M(u) := U exp(−uL)V ⊤ for u ∈ (0,+∞), we can write

Σ̂γ = UŜγU
⊤ = c

∫ ∞

0
M(u)M⊤(u)du.

Notice that, for any u ∈ (0,+∞), the matrix M(u) has real entries since, by (22) and (23), we have

M(u) = U

+∞∑

k=0

(−uL)k

k!
V ⊤ = UV ⊤ +

+∞∑

k=1

(−uULV ⊤)k

k!
= exp[−u(I −W⊤)]− u1v

⊤
1 .

Moreover, for any u ∈ (0,+∞), the matrix M(u) has rank (N − 1) and M⊤(u)v1 = 0 by (22).
Therefore, for any u ∈ (0,+∞), the matrix M(u)M⊤(u) is a positive semi-definite real matrix with
rank (N − 1) and M(u)M⊤(u)v1 = 0 (see [20, Observation 7.1.8]). These facts imply the first part
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of statement (a). For the second part, denoting by ej the vector such that ej,j = 1 and ej,h = 0 for
all h 6= j, we have for j 6= k

Σγ,j,k = (ej − ek)
⊤Σ̂γ(ej − ek)

and so Σγ,j,k = 0 if and only if M(u)⊤(ej − ek) = 0 for almost every u ∈ (0,+∞). But this is not

possible since Ker(M(u)⊤) is generated by v1, which has all the entries strictly greater than zero
as pointed out in Section 2. This concludes the proof of case (a).

The proof of case (b) is analogous, by setting lj := (1−λj − (2c)−1) for λj ∈ Sp(W ) \{1}, which
have positive real parts by condition Re(λ∗) < 1− (2c)−1, and L := (I −D − I(2c)−1).

For the proof of case (c), i.e. γ = 1 and Re(λ∗) = 1− (2c)−1, let 1 ≤ q ≤ (N − 1) be the number
of distinct eigenvalues λj = aj + ibj ∈ Sp(W ) \ {1} and, for any 1 ≤ h ≤ q, let Uh and Vh be
the sub-matrices of U and V whose columns are, respectively, the left and the right eigenvectors

associated to λh. Then, by the definition of Ŝ∗
1 in (17), we have

Σ̂∗
1 = UŜ∗

1U
⊤ =

∑

1≤h,j≤q

UhV
⊤
h VjU

⊤
j 1{λh+λj=2−c−1}.

Then, since

{λh + λj = 2− c−1} =
(
{ah = 1− (2c)−1} ∩ {aj = 1− (2c)−1} ∩ {bh = −bj}

)
,

setting the N ×N -matrix Mh := UhV
⊤
h for any 1 ≤ h ≤ q and denoting by 1 ≤ p ≤ q the number

of distinct eigenvalues λj ∈ A∗, we can write
∑

1≤h,j≤q

MhM
⊤
j 1{λh+λj=2−c−1} =

∑

1≤h,j≤p

MhM
⊤
j 1{bh=−bj} =

∑

1≤h≤p

MhM
⊤
j(h) ,

where j(h) indicates the index 1 ≤ j ≤ p such that bj = −bh. Notice that, since W has real entries,

for any non-real λh ∈ Sp(W ), there exists λj ∈ Sp(W ) such that λj = λh; moreover, uh and vh

are respectively left and right eigenvectors associated to λj . Hence, denoting by T the non-singular

matrix such that Uj = UhT and Vj = V h(T
⊤)−1, we have that

Mj = UjV
⊤
j = UhTT

−1V
⊤
h = UhV

⊤
h = Mh.

Thus, we have ∑

1≤h≤p

MhM
⊤
j(h) =

∑

1≤h≤p

MhM
⊤
h ,

which is a positive semi-definite matrix of rank m∗ (see [20, Observation 7.1.8]).
Concerning the second part of case (c), since

Σ∗
1,j,k = (ej − ek)

⊤Σ̂∗
1(ej − ek),

we have that Σ∗
1,j,k = 0 if and only if (ej − ek) ∈ Ker(Σ̂∗

1). Now, notice that Ker(Σ̂∗
1) =

⋂
1≤h≤pKer(U⊤

h ), and hence Ker(Σ̂∗
1) is generated by {vj , j : λj /∈ A∗}. Finally, since the fol-

lowing decomposition holds

(ej − ek) =
N∑

h=1

(u⊤
h (ej − ek))vh =

N∑

h=1

(uh,j − uh,k)vh,
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it is enough to have uh,j 6= uh,k for some h such that λh ∈ A∗ to prove that Σ∗
1,j,k > 0. Analogously,

we can prove that [Σ̂∗
1]jj > 0 when uh,j 6= 0 for some h such that λh ∈ A∗. This concludes the proof

of case (c). �

4.6. Proofs of Theorem 3.2 and Theorem 3.3 (CLTs for Zn). Let us remind the decompo-
sition (25), i.e.

Zn = Z̃n1+ Ẑn.

Hence, the asymptotic behavior of the process (Zn)n can be obtained by combining the asymptotic

results concerning (Z̃n)n and (Ẑn)n established in the previous subsections. As we have already
seen, we have the almost sure synchronization, i.e.

Zn
a.s.−→ Z∞1.

Moreover, from Theorem 4.2, we easily obtain for 1/2 < γ ≤ 1

nγ− 1

2

(
Z̃n − Z∞

)
1 −→ N

(
0 , σ̃2

γ Z∞(1− Z∞)11⊤
)
, stably in the strong sense,

and we recall the central limit theorem for the multi-dimensional process Ẑn presented in Theo-
rem 4.3.

Hence, for Theorem 3.2(a), we observe that

nγ−1/2(Zn − Z∞1) = nγ−1/2(Z̃n − Z∞)1 +
1

n(1−γ)/2
(nγ/2 Ẑn ),

where the first term converges stably to a Gaussian kernel and the second one converges in proba-
bility to zero.

For Theorem 3.2(b), we observe that
√
n(Zn − Z∞1) =

√
n(Z̃n − Z∞)1 +

√
n Ẑn ,

where the first term converges to a Gaussian kernel stable in the strong sense and the second one

converges stably to a Gaussian kernel. Since Ẑn is Fn-measurable, by applying Theorem B.2, we
can conclude.

For Theorem 3.2(c), we observe that
√
n√

ln(n)
(Zn − Z∞1) =

(
1√
ln(n)

)
√
n(Z̃n − Z∞)1 +

√
n√

ln(n)
Ẑn ,

where the first term converges in probability to zero and the second one converges stably to a
Gaussian kernel. Thus Theorem 3.2 is proven.

Finally, we observe that

Zn,j − Zn,k = Ẑn,j − Ẑn,k.

Therefore, Theorem 3.3 immediately follows from the central limit theorem for the N -dimensional

process (Ẑn)n.

5. Examples of Weighted Adjacency Matrices

In this section, we analyze in detail the results presented in Section 3 for some interesting
examples of weighted adjacency matrices.
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5.1. “Mean-field” interaction. This kind of interaction can be expressed in terms of a particular
weighted adjacency matrix W as follows: for any 1 ≤ j, k ≤ N

(53) wj,k =
α

N
+ δj,k(1− α) with α ∈ [0, 1],

where δj,k is equal to 1 when j = k and to 0 otherwise. Note that W in (53) is irreducible

for α > 0. Since W is doubly stochastic, we have (see Remark 4.1) v1 = u1 = N−1/21 and

so (i) the random variable Z̃n coincides with the average of the processes Zn,k, i.e. N−11⊤Zn,

(ii) Ẑn =
(
I −N−111⊤

)
Zn and (iii) σ̃2

γ = c2

N(2γ−1) for 1/2 < γ ≤ 1. Furthermore, we have

λj = 1 − α for all λj ∈ Sp(W ) \ {1} and, consequently, the conditions Re(λ∗) < 1 − (2c)−1 or
Re(λ∗) = 1 − (2c)−1 required in the previous results when γ = 1 correspond to the conditions
2cα > 1 or 2cα = 1. Finally, since W is also symmetric, we have U = V and so U⊤U = V ⊤V = I
and UU⊤ = V V ⊤ = I −N−111⊤. We thus obtain:

(a) for 1/2 < γ < 1, Ŝγ = c
2αI and Σ̂γ = c

2α (I −N−111⊤);

(b) for γ = 1 and 2cα > 1, Ŝ1 =
c2

2cα−1I and Σ̂1 =
c2

2cα−1 (I −N−111⊤);

(c) for γ = 1 and 2cα = 1, Ŝ∗
1 = c2I and Σ̂∗

1 = c2(I −N−111⊤).

Therefore, our theorems contain as particular cases part of the results proven in [12, 13, 16].
However, differently from these papers, we do not deal with the cases 2cα < 1 or γ ≤ 1/2, which
are still interesting for synchronization phenomena but lead to quite different asymptotic results.
We have already discussed the case γ ≤ 1/2 in Section 2 and, regarding the case γ = 1 and
0 < 2cα < 1, we recall that in [13] it has been determined the rate of synchronization, but not the
asymptotic distribution.

5.2. “Cycle” interaction. Another possible scenario consists in a graph in which the vertices
forms a circle and each one influences only the vertex at his right side. This interaction can be
modeled by using the adjacency matrix W defined as follows: for any 1 ≤ j ≤ (N − 1) and
1 ≤ k ≤ N we have

(54) wj,k =

{
1 if k = j + 1,

0 otherwise,

while, for j = N , we have wN,1 = 1 and wN,k = 0 for any 2 ≤ k ≤ N . Since W is again

doubly stochastic, we have u1 = v1 = N−1/21, which implies (i) Z̃n = N−11⊤Zn, (ii) Ẑn =(
I −N−111⊤

)
Zn and (iii) σ̃2

γ = c2

N(2γ−1) for 1/2 < γ ≤ 1 as in Subsection 5.1. Moreover, it is

easy to verify that in this case the eigenvalues of W are λ1 = 1 and λj = exp[i(j − 1)2π/N ], for
j = 2, .., N . Hence, since in this case Re(λ∗) = cos(2π/N), conditions Re(λ∗) < 1 − (2c)−1 or
Re(λ∗) = 1 − (2c)−1 required in the previous results when γ = 1 correspond to the conditions
2c(1 − cos(2π/N)) > 1 or 2c(1 − cos(2π/N)) = 1. Moreover, for each λj ∈ Sp(W ) \ {1}, the kth

element of the corresponding left and right eigenvectors are, respectively, uj,k = N−1/2 exp[−i(j −
1)k2π/N ] and vj,k = N−1/2 exp[i(j − 1)k2π/N ]. Therefore, since we have the analytic expressions
of U and V , it is possible to compute the asymptotic variance-covariance matrices according to the
size N of the network and their eigenvalues and eigenvectors. For instance, for N = 4 we have:

(a) for 1/2 < γ < 1, the non-zero eigenvalues of Σ̂γ are c/2, c/2, c/4, with the corresponding
eigenvectors (−1, 0, 1, 0), (0,−1, 0, 1), (−1, 1,−1, 1);

(b) for γ = 1 and c > 1/2, the non-zero eigenvalues of Σ̂1 are c2(2c − 1)−1, c2(2c − 1)−1,
c2(4c− 1)−1, with the corresponding eigenvectors (−1, 0, 1, 0), (0,−1, 0, 1), (−1, 1,−1, 1);
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(c) for γ = 1 and c = 1/2, the non-zero eigenvalue of Σ̂∗
1 is 1/4 with multiplicity two and the

corresponding eigenvectors are (−1, 0, 1, 0), (0,−1, 0, 1).

5.3. “Special vertex” case. In the previous two examples, the matrix W is doubly stochastic
(also symmetric in the first example). As a different situation, we may consider the case in which
there exists a “special vertex” whose influence on the graph is different with respect to the one
of all the other elements in the system. This interactive structure can be expressed in terms of a
particular adjacency matrix defined as follows:

(55) W = ap1
⊤, with ap :=

(
p ,

1− p

N − 1
, ... ,

1− p

N − 1

)⊤
,

where 0 < p < 1 is a weight that represents how much any vertex of the system is influenced by

the “special vertex”. Notice that
∑N

i=1 ap,i = 1 for any 0 < p < 1. Moreover, we have v1 = apN
1/2

and hence UV ⊤ = I − u1v
⊤
1 = I − 1a⊤p and

σ̃2
γ =

c2

N

‖v1‖2
(2γ − 1)

=
c2

(2γ − 1)
‖ap‖2 =

c2

(2γ − 1)

(
p2 +

(1− p)2

N − 1

)
for 1/2 < γ ≤ 1.

Furthermore, since Sp(W ) \ {1} = 0 with multiplicity (N − 1), conditions λ∗ < 1 − (2c)−1 or
λ∗ = 1− (2c)−1 required in the previous results when γ = 1 correspond to the conditions c > 1/2
or c = 1/2 and, setting

Ap := UV ⊤(UV ⊤)⊤ = (I − 1a⊤p )(I − ap1
⊤) = I + ‖ap‖211⊤ − (1a⊤p + ap1

⊤),

we have

(a) Σ̂γ = c
2Ap for 1/2 < γ < 1;

(b) Σ̂1 =
c2

2c−1Ap, for γ = 1 and c > 1/2;

(c) Σ̂∗
1 =

1
4Ap, for γ = 1 and c = 1/2.

In order to highlight the role of the “special vertex” in the synchronization of the system, let us
set the initial state of the stochastic processes at the vertices as follows: Z1

0 = z1 for the “special
vertex” and Z2

0 = · · · = ZN
0 = z2 for the other vertices of the graph, with z1 6= z2. This may

represent a situation in which initially a “special subject” has an inclination z1 that is different

from the rest of the population which is setted on another inclination z2. Since (Z̃n)n is a martingale,

we have that E[Z∞] = E[Z̃0] = N−1/2v⊤
1 Z0, which in this case reduces to

E[Z∞] = z1p+ z2(1− p).

Then, the expected limiting inclination, i.e. E[Z∞], is strongly related to the influence that the
“special vertex” exercises on the rest of the vertices (which is ruled by the parameter p). For
instance, consider the following cases:

(i) If p ≃ 1, then we have E[Z∞] ≃ z1 regardless the value of z2; this reflects a situation in
which the “special vertex” is very charismatic in the system and he leads the other elements
to synchronize on average towards his initial inclination.

(ii) If p = 1/N with N large , then we have E[Z∞] ≃ z2 regardless the value of z1; this reflects
a situation in which the “diversity” of the “special vertex” is dispersed because of the large
number of individuals in the population, and so the expected limiting inclination is close
to the initial inclination of the majority of the system.
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6. Statistical Inference

First of all, we observe that by means of the central limit theorem for Z̃n = N−1/2 v⊤
1 Zn

presented in Theorem 4.2, it is possible to construct asymptotic confidence intervals for Z∞, i.e.
the limit random variable at which all the stochastic processes {(Zn,j)n : 1 ≤ j ≤ N} converge.
Specifically, an asymptotic confidence interval for Z∞ with approximate level (1−θ) is the following:

(56) CI1−θ(Z∞) :=

(
Z̃n − σ̃γ

√
Z̃n(1− Z̃n)n

−(γ−1/2)zθ ; Z̃n + σ̃γ

√
Z̃n(1− Z̃n)n

−(γ−1/2)zθ

)

where zθ is such that N (0, 1)(zθ ,+∞) = θ/2.
Note that, in order to compute the above confidence interval, we need to know v1 (as well as N ,
c and γ). Nevertheless, it is not required to know the whole weighted adjacency matrix W . For
example, for doubly stochastic matrices, the vector v1 is known (see Remark 4.1).

We now focus on the inferential problem of testing the hypothesis that the network is charac-
terized by a given weighted adjacency matrix W0, i.e. H0 : W = W0, using the multi-dimensional
stochastic process (Zn)n observed at the vertices. Since the distribution of Z∞ is unknown, we
propose a test statistics whose limit does not involve Z∞. The parameters N , c and γ are again
considered known.

First, we need to introduce some notation. Given a N×N positive semi-definite matrix Σ of rank
1 ≤ r ≤ (N − 1) and having spectral decomposition Σ = OΛO⊤ (more precisely, Λ is the diagonal
matrix containing the eigenvalues of Σ and the columns of O form a corresponding orthonormal
basis of right eigenvectors), we denote by L the diagonal matrix such that

[L]ij =

{
λ
−1/2
j if i = j and λj > 0,

0 otherwise,

and by H the r ×N -matrix such that

[H]ij =

{
1 if i = j and 1 ≤ i ≤ r,

0 otherwise.

Then:

(a) when 1/2 < γ < 1, take Σ = Σ̂γ with rank r = (N − 1) and set Oγ = O, Lγ = L, Hγ = H

and Mγ = HγLγO
⊤
γ ;

(b) when γ = 1 and λ∗ < 1 − (2c)−1, take Σ = Σ̂1 with rank r = (N − 1) and set O1 = O,
L1 = L, H1 = H and M1 = H1L1O

⊤
1 ;

(c) when γ = 1 and λ∗ = 1 − (2c)−1, take Σ = Σ̂∗
1 with rank r equal to the cardinality m∗ of

the set

A∗ =
{
λj ∈ Sp(W ) : Re(λj) = 1− (2c)−1

}
,

defined in (20) and set O∗
1 = O, L∗

1 = L, H∗
1 = H and M∗

1 = H∗
1L

∗
1(O

∗
1)

⊤.

Fixed the weighted adjacency matrix assumed under H0, i.e. W0, we can compute v1, V and U

as defined in Section 2. Hence, we can obtain under H0 the real process Z̃n = N−1/2 (v⊤
1 Zn) and

the multi-dimensional process Ẑn = (I − N−1/21v⊤
1 )Zn = U V ⊤Zn. Then, using (28), (44), (45)

and applying Lemma A.7, we have under H0 that
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(a) for 1/2 < γ < 1,

(57) Tγ,n := nγ/2
[
Z̃n(1− Z̃n)

]−1/2
Mγ Ẑn,

(b) for γ = 1 and λ∗ < 1− (2c)−1,

(58) T1,n := n1/2
[
Z̃n(1− Z̃n)

]−1/2
M1 Ẑn,

are asymptotically normal whose covariance matrix is the (N−1)×(N −1) identity matrix. Hence,
both the test statistics ‖Tγ,n‖2 and ‖T1,n‖2 are asymptotically chi-squared distributed with (N−1)
degrees of freedom. In the case (c), i.e. γ = 1 and λ∗ = 1 − (2c)−1, using (28), (46) and applying
Lemma A.7, we have under H0 that

(59) T∗
1,n :=

√
n

ln(n)

[
Z̃n(1− Z̃n)

]−1/2
M∗

1 Ẑn

is asymptotically normal whose covariance matrix is the m∗ × m∗ identity matrix and hence the
test statistics ‖T∗

1,n‖2 is asymptotically chi-squared distributed with m∗ degrees of freedom. These
results let us construct asymptotic critical regions for testing any W0. We now apply these testing
procedures to the meaningful examples of weighted adjacency matrices considered in Section 5.

6.1. “Mean-field” interaction. Consider the family of weighted adjacency matrices {Wα;α ∈
(0, 1]} defined in (53). It may be of interest to test whether the unknown parameter α can be
assumed to be equal to a specific value α0 ∈ (0, 1], i.e.

H0 : W = Wα0
vs H1 : W = Wα for some α ∈ (0, 1] \ {α0}.

In this case, assuming 2cα0 ≥ 1 when γ = 1, by the results presented in Subsection 5.1, using v1

and U = V computed for Wα0
, we have:

(a) for 1/2 < γ < 1, Tγ,n = nγ/2
[
Z̃n(1− Z̃n)

]−1/2√
2α0

c U⊤ Ẑn;

(b) for γ = 1 and 2cα0 > 1, T1,n = n1/2
[
Z̃n(1− Z̃n)

]−1/2 √
2cα0−1

c U⊤ Ẑn;

(c) for γ = 1 and 2cα0 = 1, T∗
1,n =

√
n

ln(n)

[
Z̃n(1− Z̃n)

]−1/2
1
c U

⊤ Ẑn,

where Z̃n = N−11⊤Zn and Ẑn =
(
I −N−111⊤

)
Zn. UnderH0 we have ‖Tγ,n‖2, ‖T1,n‖2, ‖T∗

1,n‖2
d∼

χ2
N−1. Concerning the distribution of the test statistics for α 6= α0, notice that the eigenvectors of

W do not depend on α and so U is the same for any α. Therefore, for any fixed α ∈ (0, 1] \ {α0},
under the hypothesis {W = Wα} ⊂ H1 we have

(a) for 1/2 < γ < 1, ‖Tγ,n‖2 d∼ (α0

α )χ2
N−1;

(b) for γ = 1 and 2cα0 > 1, ‖T1,n‖2 d∼ (2cα0−1
2cα−1 )χ

2
N−1 if 2cα > 1, and ‖T1,n‖2 P→ +∞ if 2cα = 1;

(c) for γ = 1 and 2cα0 = 1, ‖T∗
1,n‖2

P→ 0 for 2cα > 1.

6.2. “Cycle” interaction. We could test whether the weighted adjacency matrix is the one, say
W0, defined in (54). Then, we consider the following hypothesis test:

H0 : W = W0 vs H1 : W 6= W0.

Once obtained the eigen-structure of Σ̂γ , Σ̂1 and Σ̂∗
1, we can define Tγ,n, T1,n and T∗

1,n as

in (57), (58) and (59), respectively, and under H0 we have that

(a) for 1/2 < γ < 1, ‖Tγ,n‖2 d∼ χ2
N−1;
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(b) for γ = 1 and 2c(1 − cos(2π/N)) > 1, ‖T1,n‖2 d∼ χ2
N−1;

(c) for γ = 1 and 2c(1 − cos(2π/N)) = 1, ‖T∗
1,n‖2

d∼ χ2
2.

6.3. “Special vertex” case. We could test whether there is a “special vertex” in the network,
that is the weighted adjacency matrix is the one, say Wp, defined in (55), and so in this case the
considered hypothesis test is the following:

H0 : W = Wp vs H1 : W 6= Wp.

Note by Subsection 5.3 that Σ̂γ = c
2Ap, Σ̂1 = c2

2c−1Ap and Σ̂∗
1 = 1

4Ap, where Ap = (I − 1a⊤p )(I −
ap1

⊤). Hence, since Ap has rank (N − 1), we have under H0 that ‖Tγ,n‖2, ‖T1,n‖2 and ‖T∗
1,n‖2

defined as in (57), (58) and (59) are all asymptotically chi-squared distributed with (N−1) degrees
of freedom.

7. Variants

We can consider the following two variants.

7.1. The case of a “forcing input”. As in [12], we can consider the following variant:

(60) Zn+1 = (1− rn)Zn + rn [ρXn+1 + (1− ρ)q1] ,

where E[Xn|Fn−1] = W⊤Zn−1, ρ ∈ [0, 1[ and q ∈ [0, 1]. The assumptions on W and (rn) are the
same as in the previous sections. (Here we exclude the case ρ = 1 since it corresponds to the model
studied in the previous sections.)

With the same notation as before, we consider the decomposition (25). In particular, setting

Z̃n = N−1/2v⊤
1 Zn, we obtain the dynamics

Z̃n+1 − Z̃n = −(1− ρ)rn(Z̃n − q) + ρrnN
−1/2

(
v⊤
1 ∆Mn+1

)
,

where ∆Mn+1 = Xn+1 −W⊤Zn. Therefore we have

Z̃n+1 − q = (1− (1− ρ)rn) (Z̃n − q) + ρrnN
−1/2

(
v⊤
1 ∆Mn+1

)

and so

(Z̃n+1 − q)2 = (1− 2rn(1− ρ)) (Z̃n − q)2 + r2n

[
(1− ρ)2(Z̃n − q)2 + ρ2N−1

(
v⊤
1 ∆Mn+1

)2]
.

It follows

E
[
(Z̃n+1 − q)2|Fn

]
=(1− 2rn(1− ρ)) (Z̃n − q)2+r2n

{
(1− ρ)2(Z̃n − q)2+

ρ2

N
E

[(
v⊤
1 ∆Mn+1

)2
|Fn

]}

≤ (Z̃n − q)2 + r2nξn.

Since (ξn)n is a bounded sequence of Fn-measurable random variables and
∑

n r
2
n < +∞ for 1/2 <

γ ≤ 1, we have that
(
(Z̃n − q)2

)
n
is a positive almost supermartingale and so it converges almost

surely (and also in mean since it is bounded). On the other hand, from the above computations,
we also get

E
[
(Z̃n+1 − q)2

]
= (1− 2rn(1− ρ))E

[
(Z̃n − q)2

]
+ r2nE[ξn]
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and so, since ρ < 1, by [12, Lemma A.1], we can conclude that limnE
[
(Z̃n − q)2

]
= 0. Therefore,

we obtain

Z̃n
a.s.−→ q.

Regarding Ẑn = Zn − 1Z̃n = U V ⊤Zn, we can prove again that it converges almost surely to 0.

Indeed, if we set ZV,n = V ⊤Ẑn = V ⊤Zn, that is Ẑn = UZV,n by (22), we get from (60)

ZV,n+1 = (1− rn)ZV,n + rn

[
ρV ⊤∆Mn+1 + ρV ⊤W⊤Zn + (1− ρ)qV ⊤1

]

= (1− rn)ZV,n + rn

[
ρV ⊤∆Mn+1 + ρV ⊤(u1v

⊤
1 + UDV ⊤)Zn + (1− ρ)qN1/2V ⊤u1

]

= (1− rn)ZV,n + rnρDZV,n + rnρV
⊤∆Mn+1

= [I − rn(I − ρD)]ZV,n + rnρV
⊤∆Mn+1,

where I here denotes the (N − 1) × (N − 1) identity matrix. Arguing as in the proof of Theorem
4.1, we can obtain that

(
‖ZV,n‖2

)
n
is a positive almost supermartingale which satisfies

xn+1 ≤ (1− 2a∗rn)xn + Cr2n

with xn = E[‖ZV,n‖2], a∗ = 1 − ρRe(λ∗) and C a suitable constant. Since ρRe(λ∗) < 1, we have
a∗ > 0, which implies limn xn = 0 and so ‖ZV,n‖2 → 0 almost surely, that is ZV,n → 0 almost surely.

Summing up, also for the considered variant, we have an almost sure synchronization, that is all
the random variables Zn,k converge almost surely to the same limit, but in this case the limit is the
constant “forcing input” q. It is interesting to observe that this occurs for any weighted adjacency
matrix W satisfying the required assumptions. It is also worthwhile to note that, in this case,
for the above computations, we do not need the condition Re(λ∗) < 1 since ρ < 1 automatically
implies ρRe(λ∗) < 1 when Re(λ∗) ≤ 1.

We refer to [12] for some functional central limit theorems in the case of ρ < 1 and the mean-field
interaction.

7.2. The case of a reducible weighted adjacency matrix. We now consider an extension of
the theory presented in this paper to the case of reducible weighted adjacency matrix (see [2] for
a similar approach to systems of interacting generalized Friedman urns). Denoting by m, with
1 ≤ m ≤ N , the multiplicity of the eigenvalue 1 of W , i.e. λ1 = ... = λm = 1, the reducible matrix
W can in general be expressed as follows:

(61) W =




W1 0 ... 0 W1f

0 W2 ... 0 W2f

: ... ... ... ...

0 0 ... Wm Wmf

0 0 ... 0 Wf



,

where

(i) {Wj ; 1 ≤ j ≤ m} are irreducible nj × nj-matrices with λmax(Wj) = 1;
(ii) (if exists) Wf is a nf × nf -matrix with λmax(Wf ) < 1;
(iii) (if exists) {Wj,f ; 1 ≤ j ≤ m} are nj × nf -matrices.
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Naturally, nf +
∑m

j=1 nj = N . The structure of W given in (61) leads to a natural decomposition of

the graph in different sub-graphs {Gj ; 1 ≤ j ≤ m} associated to the sub-matrices {Wj ; 1 ≤ j ≤ m}
and Gf associated to Wf .

Notice in (61) that the vertices in Gj are not influenced by the vertices of the rest of the network,
and hence the dynamics of the corresponding processes can be fully established by considering only
the irreducible sub-matrix Wj (see [2] for further details). Then, applying the results presented
in this paper to each sub-graph Gj , it is possible to show that all the processes positioned at the
vertices in the same Gj synchronize, that is they all converge almost surely to the same limit.

Concerning Gf , the weighted adjacency matrix in (61) shows that their vertices are influenced
by the vertices in {Gj ; 1 ≤ j ≤ m}. Specifically, applying similar arguments to the one adopted
in this paper, it is possible to establish that the processes in Gf converge almost surely to con-
vex combinations of the limits of the processes in {Gj ; 1 ≤ j ≤ m}, where the weights of such
combinations are related to the matrices {Wjf ; 1 ≤ j ≤ m}.
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Appendix
Appendix A. Some technical results

In all the sequel, given (an), (bn) two sequences of real numbers with bn ≥ 0, the notation
an = O(bn) means |an| ≤ Cbn for a suitable constant C > 0 and n large enough. Therefore, if
we also have a−1

n = O(b−1
n ), then C⊤bn ≤ |an| ≤ Cbn for suitable constants C,C ′ > 0 and n large

enough. Given (zn), (z
′
n) two sequences of complex numbers, with z′n 6= 0, the notation zn ∼ zz′n,

with z 6= 0, means limn zn/z
′
n = z and the notation zn = o(z′n) means limn zn/z

′
n = 0.

A.1. Asymptotic results for sums of complex numbers. We start recalling Toeplitz lemma
(see [25]), from which we get useful corollaries employed in our proofs.

Lemma A.1. (Toeplitz lemma)
Let {xn,k : 1 ≤ k ≤ kn} be a triangular array of real numbers with kn ↑ +∞ and such that

i) limn xn,k = 0 for each fixed k;

ii) limn
∑kn

k=1 xn,k = 1;

iii)
∑kn

k=1 |xn,k| = O(1).

Let (yn)n be a sequence of real numbers with limn yn = y ∈ R. Then, we have limn
∑kn

k=1 xn,kyk = y.

Remark A.1. If in the above lemma we replace condition ii) by limn
∑kn

k=1 xn,k = 0, we get

limn
∑kn

k=1 xn,kyk = 0. Indeed, applying Lemma A.1 to x̃n,k = xn,k − (kn)
−1, we find

lim
n

kn∑

k=1

(
xn,k −

1

kn

)
yk = lim

n

kn∑

k=1

x̃n,kyk = y

Hence, since limn
∑kn

k=1 yk/kn = y (again by Lemma A.1), we finally get limn
∑kn

k=1 xn,kyk = 0.
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From Lemma A.1, we can easily get the following corollary:

Corollary A.1. Let (xn)n, (x
′
n)n and (cn)n be three sequences of real numbers such that x′n >

0, cn ≥ 0, xn ∼ xx′n with x ∈ (0,+∞) and limn cn = 0. Suppose to have limn cn
∑n

k=1 xk = s ∈
{0, 1}, then limn cn

∑n
k=1 x

′
k = s/x.

Proof. By assumption, taking ǫ ∈ (0, x), we have xn > (x − ǫ)x′n > 0 for n ≥ n̄ with a suitable n̄.
Moreover, since cn → 0, we have limn cn

∑n
k=1 x

′
k = limn cn

∑n
k=n̄ x

′
k. Therefore, without loss of

generality, we can suppose xn > 0 for each n. Hence, if s = 1, it is enough to apply Lemma A.1 with
xn,k = cnxk, yn = x′n/xn, y = x−1; if s = 0, it is enough to apply Remark A.1 to xn,k = cnxk. �

The following lemma extends Toeplitz Lemma and Remark A.1 to complex numbers:

Lemma A.2. (Generalized Toeplitz lemma)
Let {zn,k : 1 ≤ k ≤ kn} be a triangular array of complex numbers such that

i) limn zn,k = 0 for each fixed k;

ii) limn
∑kn

k=1 zn,k = s ∈ {0, 1};
iii)

∑kn
k=1 |zn,k| = O(1).

Let (wn)n be a sequence of complex numbers with limnwn = w ∈ C. Then, we have limn
∑kn

k=1 zn,kwk =
sw.

Proof. Set zn,k = an,k+ibn,k, wn = cn+idn and w = c+id. By assumption i), we have limn an,k = 0

and limn bn,k = 0, for each fixed k, and, by assumption ii), we have limn
∑kn

k=1 an,k = s and

limn
∑kn

k=1 bn,k = 0. Applying Lemma A.1 to an,k, we easily get limn
∑kn

k=1 an,kck = sc and

limn
∑kn

k=1 an,kdk = sd. Then, applying Remark A.1 to bn,k, we find limn
∑kn

k=1 bn,kck = 0 and

limn
∑kn

k=1 bn,kdk = 0. Therefore, we have

kn∑

k=1

zn,kwk =

kn∑

k=1

an,kck −
kn∑

k=1

bn,kdk + i

kn∑

k=1

an,kdk +

kn∑

k=1

bn,kck −→ s(c+ id) = sw.

�

As before, from this lemma, we can easily get the following corollaries:

Corollary A.2. Let (zn)n, (vn)n and (wn)n be three sequences of complex numbers such that
limn vn = 0 and limnwn = w 6= 0. Set z′n = znwn and suppose to have limn vn

∑n
k=1 zk = s ∈ {0, 1}

and |vn|
∑n

k=1 |zk| = O(1) or, equivalently, |vn|
∑n

k=1 |z′k| = O(1). Then limn vn
∑n

k=1 z
′
k = sw.

Proof. It is enough to apply Lemma A.2 to zn,k = vnzk and wn. To this purpose, note that, by
assumption, taking ǫ ∈ (0, |w|) (note that |w| > 0 by assumption), we have 0 < |w| − ǫ ≤ |wn| ≤
|w|+ ǫ for n ≥ n̄ with n̄ large enough. Therefore, by the relation z′k = zkwk, we can affirm that

|vn|
n∑

k=n̄

|z′k|
|w|+ ǫ

≤ |vn|
n∑

k=n̄

|zk| ≤ |vn|
n∑

k=n̄

|z′k|
|w| − ǫ

and so the two conditions |vn|
∑n

k=1 |zk| = O(1) and |vn|
∑n

k=1 |z′k| = O(1) are equivalent since
|vn| → 0. �

Corollary A.3. (Generalized Kronecker lemma)
Let (vn) and (zk) be two sequences of complex numbers such that

vn 6= 0, lim
n

vn = 0, |vn|
n∑

k=1

∣∣∣∣
1

vk
− 1

vk−1

∣∣∣∣ = O(1)
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and
∑

n zn is convergent. Then

lim
n

vn

n∑

k=1

zk
vk

= 0.

Proof. Set wn =
∑+∞

k=n zk and observe that, since
∑

n zn is convergent, we have limnwn = w = 0
and, moreover, we can write

vn

n∑

k=1

zk
vk

= vn

n∑

k=1

wk − wk+1

vk

= vn

[
n∑

k=2

(
1

vk
− 1

vk−1

)
wk +

w1

v1
− wn+1

vn

]

= vn

n∑

k=2

(
1

vk
− 1

vk−1

)
wk + vn

w1

v1
−wn+1.

The second and the third term obviously converge to zero. In order to prove that the first term

converges to zero, it is enough to apply Lemma A.2 to wn and zn,k = vn

(
1
vk

− 1
vk−1

)
. �

The above corollary is useful to get the following result for complex random variables:

Lemma A.3. Let H = (Hn)n be an increasing filtration and (Yn) a H-adapted sequence of complex
random variables such that E[Yn|Hn−1] → Y almost surely. Moreover, let (cn) be a sequence of
strictly positive real numbers such that

∑
nE

[
|Yn|2

]
/c2n < +∞ and let (vn) be a sequence of complex

numbers such that vn 6= 0 and

(62) lim
n

vn = 0, lim
n

vn

n∑

k=1

1

ckvk
= η ∈ C,

(63) |vn|
n∑

k=1

1

ck|vk|
= O(1), |vn|

n∑

k=1

∣∣∣∣
1

vk
− 1

vk−1

∣∣∣∣ = O(1).

Then limn vn
∑n

k=1 Yk/(ckvk) = ηY .

Proof. Let A be an event such that P (A) = 1 and limn E[Yn|Hn−1](ω) = Y (ω) for each ω ∈ A.
Fix ω ∈ A and set wn = E[Yn|Hn−1](ω) and w = Y (ω). If η 6= 0, applying Lemma A.2 to
zn,k = vn/(ckvkη), s = 1 and wn, we obtain

lim
n

vn

n∑

k=1

E[Yk|Hk−1](ω)

ckvkη
= Y (ω).

If η = 0, applying Lemma A.2 to zn,k = vn/(ckvk), s = 0 and wn, we obtain

lim
n

vn

n∑

k=1

E[Yk|Hk−1](ω)

ckvk
= 0.

Therefore, for both cases, we have

vn

n∑

k=1

E[Yk|Hk−1]

ckvk

a.s.−→ ηY.
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Now, consider the martingale (Mn) defined by

Mn =

n∑

k=1

Yk −E[Yk|Hk−1]

ck
.

It is bounded in L2 since
∑n

k=1
E[|Yk|2]

c2
k

< +∞ by assumption and so it is almost surely convergent,

that means ∑

k

Yk(ω)−E[Yk|Hk−1](ω)

ck
< +∞

for ω ∈ B with P (B) = 1. Therefore, fixing ω ∈ B and setting zk =
Yk(ω)−E[Yk |Hk−1](ω)

ck
, by Corollay

A.3, we get

vn

n∑

k=1

Yk(ω)− E[Yk|Hk−1](ω)

ckvk
−→ 0.

In order to conclude, it is enough to observe that

vn

n∑

k=1

Yk

ckvk
= vn

n∑

k=1

Yk − E[Yk|Hk−1]

ckvk
+ vn

n∑

k=1

E[Yk|Hk−1]

ckvk
.

�

Remark A.2. It is useful to note that, whenever (vn) is a decreasing sequence of positive real
numbers (the case of the classical Kronecker lemma), conditions (62) obviously entail conditions
(63). Moreover,

|vn|
n∑

k=1

1

ck|vk|
= O(1) and cn|vn|

∣∣∣∣
1

vn
− 1

vn−1

∣∣∣∣ = O(1)

imply conditions (63). Indeed, we have

|vn|
n∑

k=1

∣∣∣∣
1

vk
− 1

vk−1

∣∣∣∣ = |vn|
n∑

k=1

1

ck|vk|
ck|vk|

∣∣∣∣
1

vk
− 1

vk−1

∣∣∣∣ .

We conclude this subsection recalling the following well-known relations for a ∈ R:

(64)

n∑

k=1

1

k1−a
=





O(1) for a < 0,

log(n) + dn for a = 0,

a−1 na + dn for 0 < a < 1,

where (dn) denotes a bounded sequence.

A.2. Asymptotic results for products of complex numbers. We now present the framework
for the results of this subsection. Fix 1/2 < γ ≤ 1 and c > 0, and consider a sequence (rn)n of real
numbers such that 0 < rn < 1 and

(65) rn ∼ c

nγ
.

Let α1 = a1+ i b1 ∈ C and α2 = a2+ i b2 ∈ C with a1, a2 > 0. Denote by m0 ≥ 2 an integer such
that max(a1, a2) < r−1

m for all m ≥ m0 and define for n ≥ m0 and j = 1, 2,

pn,j =
n∏

m=m0

(1− αjrm) and ℓn,j = p−1
n,j.

Then, inspired by the computation done in [12], we can prove the following technical results.
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Lemma A.4. For j = 1, 2 and for any ǫ ∈ (0, 1), we have that

(66) |pn,j| =

{
O
(
exp

[
−(1− ǫ)

caj
1−γn

1−γ
])

for 1/2 < γ < 1

O
(
n−(1−ǫ)caj

)
for γ = 1

and

(67) |ℓn,j| =

{
O
(
exp

[
(1 + ǫ)

caj
1−γn

1−γ
])

for 1/2 < γ < 1

O
(
n(1+ǫ)caj

)
for γ = 1.

Moreover, if we replace (65) with the following

(68) nγrn − c = O
(
n−γ

)
,

we have that

(69) |pn,j| =

{
O
(
exp

[
− caj

1−γn
1−γ
])

for 1/2 < γ < 1

O (n−caj) for γ = 1

and

(70) |ℓn,j| =

{
O
(
exp

[
caj
1−γn

1−γ
])

for 1/2 < γ < 1

O (ncaj) for γ = 1.

Proof. Consider j = 1, 2. We can easily write pn,j = p∗n,jqn,j, where

p∗n,j =
n∏

m=m0

(1− ajrm) and qn,j =

n∏

m=m0

(
1− i

bjrm
1− ajrm

)
.

We now observe that

|qn,j|2 =

n∏

m=m0

(
1 +

b2jr
2
m

(1− ajrm)2

)
= exp

[
n∑

m=m0

ln

(
1 +

b2jr
2
m

(1− ajrm)2

)]
,

and using the inequalities −x ≤ ln(1 + x) ≤ x for x ≥ 0, we have that

exp

[
−b2j

n∑

m=m0

r2m
(1− ajrm)2

]
≤ |qn,j|2 ≤ exp

[
b2j

n∑

m=m0

r2m
(1− ajrm)2

]
.

Hence, since the series
∑

m
r2m

(1−ajrm)2 is convergent for 1/2 < γ ≤ 1, we have pn,j = O(|p∗n,j|) and

ℓn,j = O(|ℓ∗n,j|) with ℓ∗n,j = 1/p∗n,j . Therefore, it is enough to study

p∗n,j = exp




n∑

k=m0

ln(1− ajrk)


 and ℓ∗n,j = exp


−

n∑

k=m0

ln(1− ajrk)


 .
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Recalling the inequalities ln(1 − x) ≤ −x and − ln(1 − x) ≤ x + x2 for 0 ≤ x ≤ 1/2 and the fact
that the series

∑
k r

2
k is convergent for 1/2 < γ ≤ 1, we get

p∗n,j = O


exp


−aj

n∑

k=m0

rk






ℓ∗n,j = O


exp


aj

n∑

k=m0

rk




 .

We now take into account the decomposition exp(aj
∑n

k=m0
rk) = s∗n,jt

∗
n,j, where

s∗n,j = exp


ajc

n∑

k=m0

k−γ


 and t∗n,j = exp


aj

n∑

k=m0

(rk − ck−γ)


 .

Now, since by condition (65), for any ǫ ∈ (0, 1) we have |rk − ck−γ | ≤ ǫck−γ for k large enough
(depending on ǫ), we obtain

p∗n,j = O((s∗n,j)
−(1−ǫ)) and ℓ∗n,j = O((s∗n,j)

1+ǫ).

Then, (66) and (67) follow by noticing that, by means of (64), we have
(71)

s∗n,j =

{
O
(
exp

(
ajc
1−γn

1−γ
))

if 1/2<γ<1

O (najc) if γ = 1
and (s∗n,j)

−1 =

{
O
(
exp

(
−ajc
1−γ n

1−γ
))

if 1/2<γ< 1

O (n−ajc) if γ = 1.

Finally, by condition (68) and since the series
∑

k O(k−2γ) is convergent, we have t∗n,j = O(1)

and (t∗n,j)
−1 = O(1), which imply p∗n,j = O((s∗n,j)

−1) and ℓ∗n,j = O(s∗n,j). Then, result (69) follows

by applying (71). �

Lemma A.5. We have that

(72) lim
n

nγpn,1pn,2

n∑

k=m0

r2k ℓk,1ℓk,2 =

{
c

α1+α2
if 1/2 < γ < 1

c2

c(α1+α2)−1 if γ = 1, c(a1 + a2) > 1

and, for any u ≥ 1, when 1/2 < γ < 1 or when γ = 1 and uc(a1 + a2) > (2u− 1), we have

(73) |pn,1|u |pn,2|u
n∑

k=m0

r2uk |ℓk,1|u |ℓk,2|u = O
(
n−γ(2u−1)

)
.

Proof. Let us start with observing that relations (66) imply in particular

(74) lim
n

nγ|pn,1| |pn,2| = 0.

Indeed, this fact follows immediately for 1/2 < γ < 1 and, for γ = 1 one has to note that, since we
assume c(a1 + a2) > 1, we can choose ǫ small enough so that c(1− ǫ)(a1 + a2) > 1. Now, fix k ≥ 2
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and let us define the following quantity

Dγ,k =
1

kγ
ℓk,1ℓk,2 −

1

(k − 1)γ
ℓk−1,1ℓk−1,2

=

(
1

kγ
− 1

(k − 1)γ

)
ℓk−1,1ℓk−1,2 +

1

kγ
(ℓk,1ℓk,2 − ℓk−1,1ℓk−1,2)

= ℓk,1ℓk,2

[(
1

kγ
− 1

(k − 1)γ

)
ℓk−1,1ℓk−1,2

ℓk,1ℓk,2
+

1

kγ

(
1− ℓk−1,1ℓk−1,2

ℓk,1ℓk,2

)]
.

Then, we observe the following:

(75)

(
1

kγ
− 1

(k − 1)γ

)
= − γ

k1+γ
+O

(
1

k2+γ

)
= − γ

k1+γ
+ o

(
1

k1+γ

)
for k → +∞

and

(76)
ℓk−1,1ℓk−1,2

ℓk,1ℓk,2
= (1− α1rk)(1− α2rk) = 1 + α1α2r

2
k − (α1 + α2)rk.

Now, by using (75) and (76) in the above expression ofDγ,k, and recalling (65), we have for k → +∞

Dγ,k = ℓk,1ℓk,2

[
− γ

kγ+1
(1− α1rk)(1− α2rk) +

1

kγ
(
−α1α2r

2
k + (α1 + α2)rk

)]
+ o

(
ℓk,1ℓk,2
k1+γ

)

= ℓk,1ℓk,2

[ rk
kγ

(α1 + α2)−
γ

kγ+1

]
+ o

(
ℓk,1ℓk,2
k1+γ

)

=





(α1+α2)rk
kγ ℓk,1ℓk,2 + o(r2k ℓk,1 ℓk,2) if 1/2 < γ < 1(

(α1+α2)rk
k − 1

k2

)
ℓk,1ℓk,2 + o(r2k ℓk,1 ℓk,2) if γ = 1, c(α1 + α2) 6= 1

that is

(77) Dγ,k ∼
{

(α1+α2)
c r2k ℓk,1ℓk,2 if 1/2 < γ < 1

c(α1+α2)−1
c2

r2k ℓk,1ℓk,2 if γ = 1, c(α1 + α2) 6= 1.

Note that, when γ = 1, the condition c(a1 + a2) > 1 implies that c(α1 + α2) 6= 1, that ensures
D1,k ∼ r2kℓk,1ℓk,2. Now, we want to apply Corollary A.2 with

zn = Dγ,n, vn = nγ pn,1pn,2, wn =
r2nℓn,1ℓn,2

Dγ,n
, w =

{
c

(α1+α2)
if 1/2 < γ < 1

c2

c(α1+α2)−1 if γ = 1, c(a1 + a2) > 1.

Indeed, limn vn = 0 by (74), limnwn = w 6= 0 by (77),

vn

n∑

k=m0

zk = nγpn,1pn,2

n∑

k=m0

Dγ,k = nγpn,1pn,2

(
ℓn,1ℓn,2
nγ

− ℓm0−1,1ℓm0−1,2

(m0 − 1)γ

)
−→ 1

by (74) and z′n = znwn = r2nℓn,1ℓn,2. Finally, in order to apply Corollary A.2, it remains to prove
that |vn|

∑n
k=1 |z′k| = O(1). In order to do this, we apply Corollary A.1 to

xn =
1

nγ
|ℓn,1| |ℓn,2| −

1

(n− 1)γ
|ℓn−1,1| |ℓn−1,2|, x′n = r2n|ℓn,1| |ℓn,2| > 0, cn = nγ |pn,1| |pn,2|.

Indeed, we have limn cn
∑n

k=1 xk = 1 and, since

(78)
|ℓk−1,1| |ℓk−1,2|
|ℓk,1| |ℓk,2|

= |1 + α1α2r
2
k − (α1 + α2)rk| = 1− (a1 + a2)rk +O(r2k),
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by computations similar to the ones done above, we can obtain

(79) xn ∼
{

(a1+a2)
c x′n if 1/2 < γ < 1

c(a1+a2)−1
c2

x′n if γ = 1, c(a1 + a2) > 1

where both constants belong to (0,+∞). Therefore cn
∑n

k=1 x
′
k converges and so it is bounded.

Hence, we have verified all the conditions required by Corollary A.2 and so we can conclude that
we have limn vn

∑n
k=1 z

′
k = w, i.e. (72).

Regarding (73), we have already considered the case u = 1, which is related to cn
∑n

k=1 x
′
k.

Similarly, in order to prove (73) for u > 1, we use

(80)
|ℓk−1,1|u |ℓk−1,2|u
|ℓk,1|u |ℓk,2|u

= |1 + α1α2r
2
k − (α1 + α2)rk|u = 1− u(a1 + a2)rk +O(r2k)

and apply Corollary A.1 again. Indeed, with computations similar to the one done before, we
obtain

|ℓk,1|u |ℓk,2|u
kγ(2u−1)

−|ℓk−1,1|u|ℓk−1,2|u
(k − 1)γ(2u−1)

∼
{

u(a1+a2)
c2u−1 r2uk |ℓk,1|u |ℓk,2|u if 1/2 < γ < 1

uc(a1+a2)−(2u−1)
c2u r2uk |ℓk,1|u |ℓk,2|u if γ = 1, uc(a1 + a2) > 2u− 1,

where both constants belong to (0,+∞), and so we have

lim
n

nγ(2u−1) |pn,1|u |pn,2|u
n∑

k=m0

r2uk |ℓk,1|u |ℓk,2|u =

C(γ, u) lim
n

nγ(2u−1) |pn,1|u |pn,2|u
n∑

k=m0

|ℓk,1|u |ℓk,2|u
kγ(2u−1)

− |ℓk−1,j|u |ℓk−1,2|u
(k − 1)γ(2u−1)

= C(γ, u)

for a suitable constant C(γ, u) ∈ (0,+∞). �

Remark A.3. We note that, if γ = 1 and (68) holds, then we can add to (73) the following:

(81) |pn,1|u |pn,2|u
n∑

k=m0

r2uk |ℓk,1|u |ℓk,2|u =

{
O
(
ln(n)/nuc(a1+a2)

)
if uc(a1 + a2) = (2u− 1)

O
(
n−uc(a1+a2)

)
if uc(a1 + a2) < (2u− 1).

Indeed, by means of (69) and (70) in Lemma A.4, we have

|pn,1|u |pn,2|u
n∑

k=1

r2uk |ℓk,1|u |ℓk,2|u = O
(
n−uc(a1+a2)

) n∑

k=1

O
(
kuc(a1+a2)−2u

)

= O
(
n−uc(a1+a2)

) n∑

k=1

O

(
1

k1−(uc(a1+a2)−2u+1)

)
.

Lemma A.6. Let γ = 1, c(a1 + a2) = 1 and replace condition (65) by (68). Then, we have

(82) lim
n

n

ln(n)
pn,1pn,2

n∑

k=m0

r2k ℓk,1ℓk,2 =

{
0 if b1 + b2 6= 0

c2 if b1 + b2 = 0

and

(83) |pn,1|u |pn,2|u
n∑

k=m0

r2uk |ℓk,1|u |ℓk,2|u =

{
O(ln(n)/n) for u = 1

O (n−u) for u > 1.
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Proof. First, note that (82) for the case b1+b2 6= 0 can be established using the computations done
for the proof of Lemma A.5 with γ = 1. Indeed, we can apply Corollary A.2 with

zn = D1,n, vn =
n

ln(n)
pn,1pn,2, wn =

r2nℓn,1ℓn,2
D1,n

, z′n = znwn = r2nℓn,1ℓn,2, w =
c2

c(α1 + α2)− 1

In fact, by assumptions (68) and c(a1 + a2) = 1, we have

(84) lim
n

n

ln(n)
|pn,1| |pn,2| = 0

since (69) in Lemma A.4 and, moreover, we have limnwn = w 6= 0 by (77) since c(α1 + α2) 6= 1,
and |vn|

∑n
k=1 |z′k| = O(1) by (81) with u = 1 and, finally, we have limn vn

∑n
k=1 zk = 0.

We now focus on the case b1 + b2 = 0. Fix k ≥ 2 and let us define the following quantity

Dln,k =
ln(k)

k
ℓk,1ℓk,2 −

ln(k − 1)

k − 1
ℓk−1,1ℓk−1,2

=

(
ln(k)

k
− ln(k − 1)

k − 1

)
ℓk−1,1ℓk−1,2 +

ln(k)

k
(ℓk,1ℓk,2 − ℓk−1,1ℓk−1,2)

= ℓk,1ℓk,2

[(
ln(k)

k
− ln(k − 1)

k − 1

)
ℓk−1,1ℓk−1,2

ℓk,1ℓk,2
+

ln(k)

k

(
1− ℓk−1,1ℓk−1,2

ℓk,1ℓk,2

)]

We observe that for k → +∞

(85)

(
ln(k)

k
− ln(k − 1)

k − 1

)
= − ln(k)

k(k − 1)
− ln(1− k−1)

k − 1

= − ln(k)

k2
+

1

k2
+O

(
ln(k)

k3

)

= − ln(k)

k2
+

1

k2
+ o

(
1

k2

)
.

Now, by using (76) and (85) in the expression of Dln,k, and recalling (68), we have that

Dln,k = ℓk,1ℓk,2

[(
− ln(k)

k2
+

1

k2

)
(1− α1rk)(1− α2rk) +

ln(k)

k

(
−α1α2r

2
k + (α1 + α2)rk

)]

+ o

(
ℓk,1ℓk,2

k2

)

= ℓk,1ℓk,2

[
rk ln(k)

k
(α1 + α2)−

ln(k)

k2
+

1

k2

]
+ o

(
ℓk,1ℓk,2

k2

)

=

[
ln(k)

(
(α1 + α2)rk

k
− 1

k2

)
+

1

k2

]
ℓk,1ℓk,2 + o

(
ℓk,1ℓk,2
k2

)
.

Then, since the equalities c(a1 + a2) = 1 and b1 + b2 = 0 imply c(α1 + α2) = 1, and recalling (68),
we obtain

(86) Dln,k =
1

k2
ℓk,1ℓk,2 + o

(
ℓk,1ℓk,2
k2

)
=

1

k2
ℓk,1ℓk,2 + o(r2kℓk,1ℓk,2) ∼

1

c2
r2kℓk,1ℓk,2.

Now, we want to apply Corollary A.2 with

zn = Dln,n, vn =
n

ln(n)
pn,1pn,2, wn =

r2nℓn,1ℓn,2
Dln,n

, z′n = znwn = r2nℓn,1ℓn,2, w = c2.
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Indeed, limn vn = 0 by (84), limn wn = w 6= 0 by (86), |vn|
∑n

k=1 |z′k| = O(1) by (81) (with u = 1)
since c(a1 + a2) = 1 by assumption,

lim
n

vn

n∑

k=m0

zk = lim
n

n

ln(n)
pn,1pn,2

n∑

k=m0

Dln,k

=
n

ln(n)
pn,1pn,2

(
ln(n) ℓn,1ℓn,2

n
− ln(m0 − 1)ℓm0−1,1ℓm0−1,2

(m0 − 1)

)
−→ 1

by (84). Hence, all the conditions required by Corollary A.2 hold and so we can conclude that we
have limn vn

∑n
k=1 z

′
k = w, i.e. (82) for b1 + b2 = 0.

Finally, relations (83) follows from (81) using the assumption that c(a1 + a2) = 1. �

A.3. A result for Gaussian random vectors. The following result is about the standardization
of Gaussian random vectors with singular covariance matrix.

Lemma A.7. Let X be a random vector with distribution NN(0,Σ) and consider the spectral
decomposition Σ = OΛO⊤ (more precisely, Λ is the diagonal matrix containing the eigenvalues
of Σ and the columns of O form a corresponding orthonormal basis of right eigenvectors). Let
1 ≤ r < N be the rank of Σ, define the matrix L as follows

[L]ij =

{
λ
−1/2
i if i = j and λi > 0,

0 otherwise,

and denote by H the r ×N -matrix such that

[H]ij =

{
1 if i = j and 1 ≤ i ≤ r,

0 otherwise.

Then, setting M = HLO⊤ and Y = MX, the distribution of Y is Nr(0, I).

Proof. It is immediate to see that Y is a Gaussian vector since it is a linear transformation of the
Gaussian vector X. Then, the result follows by noticing that

Cov(Y ) = MΣM⊤ = HL(O⊤ΣO)LH⊤ = H(LΛL)H⊤ = I.

�

Appendix B. Stable convergence and its variants

We recall here some basic definitions and results. For more details, we refer the reader to [14, 18]
and the references therein.

Let (Ω,A, P ) be a probability space, and let S be a Polish space, endowed with its Borel σ-field.
A kernel on S, or a random probability measure on S, is a collection K = {K(ω) : ω ∈ Ω} of
probability measures on the Borel σ-field of S such that, for each bounded Borel real function f
on S, the map

ω 7→ Kf(ω) =

∫
f(x)K(ω)(dx)

is A-measurable. Given a sub-σ-field H of A, a kernel K is said H-measurable if all the above
random variables Kf are H-measurable.
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On (Ω,A, P ), let (Yn) be a sequence of S-valued random variables, let H be a sub-σ-field of A,
and let K be a H-measurable kernel on S. Then we say that Yn converges H-stably to K, and we

write Yn
H−stably−→ K, if

P (Yn ∈ · |H)
weakly−→ E [K(·) |H] for all H ∈ H with P (H) > 0.

In the case when H = A, we simply say that Yn converges stably to K and we write Yn
stably−→ K.

Clearly, if Yn
H−stably−→ K, then Yn converges in distribution to the probability distribution E[K(·)].

Moreover, the H-stable convergence of Yn to K can be stated in terms of the following convergence
of conditional expectations:

(87) E[f(Yn) |H]
σ(L1, L∞)−→ Kf

for each bounded continuous real function f on S.

In [14] the notion of H-stable convergence is firstly generalized in a natural way replacing in (87)
the single sub-σ-field H by a collection G = (Gn) (called conditioning system) of sub-σ-fields of A
and then it is strengthened by substituting the convergence in σ(L1, L∞) by the one in probability
(i.e. in L1, since f is bounded). Hence, according to [14], we say that Yn converges to K stably in
the strong sense, with respect to G = (Gn), if

(88) E [f(Yn) | Gn]
P−→ Kf

for each bounded continuous real function f on S.

Finally, a strengthening of the stable convergence in the strong sense can be naturally obtained
if in (88) we replace the convergence in probability by the almost sure convergence: given a condi-
tioning system G = (Gn), we say that Yn converges to K in the sense of the almost sure conditional
convergence, with respect to G, if
(89) E [f(Yn) | Gn]

a.s.−→ Kf

for each bounded continuous real function f on S. Evidently, this last type of convergence can
be reformulated using the conditional distributions. Indeed, if Kn denotes a version of the con-
ditional distribution of Yn given Gn, then the random variable Knf is a version of the conditional
expectation E [f(Yn)|Gn] and so we can say that Yn converges to K in the sense of the almost sure
conditional convergence, with respect to F , if, for almost every ω in Ω, the probability measure
Kn(ω) converges weakly to K(ω). The almost sure conditional convergence has been introduced in
[11] and, subsequently, employed by others in the urn model literature (e.g. [3, 33]).

We now conclude this section with some convergence results that we need in our proofs.

From [15, Proposition 3.1]), we can get the following result.

Theorem B.1. Let (Tn,k)n≥1,1≤k≤kn be a triangular array of d-dimensional real random vectors,
such that, for each fixed n, the finite sequence (Tn,k)1≤k≤kn is a martingale difference array with
respect to a given filtration (Gn,k)k≥0. Moreover, let (tn)n be a sequence of real numbers and assume
that the following conditions hold:

(c1) Gn,k⊂Gn+1,k for each n and 1 ≤ k ≤ kn;
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(c2)
∑kn

k=1(tnTn,k)(tnTn,k)
⊤ = t2n

∑kn
k=1Tn,kT

⊤
n,k

P−→ Σ, where Σ is a random positive semidef-
inite matrix;

(c3) sup1≤k≤kn |tnTn,k| L1

−→ 0.

Then tn
∑kn

k=1Tn,k converges stably to the Gaussian kernel N (0,Σ).

The following result combines together a stable convergence and a stable convergence in the
strong sense.

Theorem B.2 ([7, Lemma 1]). Suppose that Cn and Dn are S-valued random variables, that M
and N are kernels on S, and that G = (Gn)n is an (increasing) filtration satisfying for all n

σ(Cn)⊂Gn and σ(Dn)⊂σ (
⋃

nGn)

If Cn stably converges to M and Dn converges to N stably in the strong sense, with respect to G,
then

[Cn,Dn]
stably−→ M ⊗N.

(Here, M ⊗N is the kernel on S × S such that (M ⊗N)(ω) = M(ω)⊗N(ω) for all ω.)

Given a conditioning system G = (Gn)n, if U is a sub-σ-field of A such that, for each real
integrable random variable Y , the conditional expectation E[Y | Gn] converges almost surely to the
conditional expectation E[Y | U ], then we shall briefly say that U is an asymptotic σ-field for G. In
order that there exists an asymptotic σ-field U for a given conditioning system G, it is obviously
sufficient that the sequence (Gn)n is increasing or decreasing. (Indeed we can take U =

∨
n Gn in

the first case and U =
⋂

n Gn in the second one.)

Theorem B.3 ([11, Theorem A.1]). On (Ω,A, P ), for each n ≥ 1, let (Fn,h)h∈N be a filtration and
(Mn,h)h∈N a real martingale with respect to (Fn,h)h∈N, with Mn,0 = 0, which converges in L1 to a
random variable Mn,∞. Set

Xn,j := Mn,j −Mn,j−1 for j ≥ 1, Un :=
∑

j≥1X
2
n,j, X∗

n := supj≥1 |Xn,j |.
Further, let (kn)n≥1 be a sequence of strictly positive integers such that knX

∗
n

a.s.→ 0 and let U be a
sub-σ-field which is asymptotic for the conditioning system G defined by Gn = Fn,kn. Assume that
the sequence (X∗

n)n is dominated in L1 and that the sequence (Un)n converges almost surely to a
positive real random variable U which is measurable with respect to U .

Then, with respect to the conditioning system G, the sequence (Mn,∞)n converges to the Gaussian
kernel N (0, U) in the sense of the almost sure conditional convergence.
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