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The development of mitochondria-targeting cell permeable vectors represents a promising therapeutic approach for several
diseases, such as cancer and oxidative pathologies. Nevertheless, access to mitochondria can be difficult. A new hybrid material
composed by poly(lactide-co-glycolide) (PLGA) functionalized with a 6-mer mitochondria penetrating peptide (MPP), consisting
in alternating arginine and unnatural cyclohexylalanine, was developed. Circular dichroism, FT-IR and DSC studies indicated that
the conjugation of the peptide with the polymer led to the obtainment of a more rigid material with respect to both PLGA and
MPP as such. In particular, a conformational rearrangement to a helical structure was observed for MPP. MPP–PLGA conjugates
were used for the preparation of nanoparticles that showed no cytotoxicity in MTT assay, suggesting their putative use for future
studies on mitochondria targeting. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
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Introduction

In the last years, nanomaterials have gained an increasing interest
in a wide range of applications, from biomedicine to catalysis and
electrochemistry.[1–8] Hybrid biomaterials, that is, systems created
from components of at least two distinct classes of molecules, lead
to new materials that possess unprecedented levels of structural
organization and novel properties at molecular level.[9–12] In the
pharmaceutical field, polymer-derived nano-sized drug delivery
systems have been developed to enhance pharmacokinetics and
metabolic stability.[13–15] In particular, the decoration of polymers
with functional peptides is a powerful approach to design nanosys-
tems able to deliver payloads directly to the cell of interest.[16,17]
The copolymers of lactic and glycolic acids (PLGA) are among the

few polymers approved by the Food and Drug Administration for
human clinical applications such as surgical sutures, implantable
devices and drug delivery systems because of their excellent
biocompatibility and biodegradability.[18] Recently, it has been
reported the PLGA functionalization with different functional
peptides, such as cell penetrating octa-arginine (R8) and carrier
peptides.[19,20] It has been shown that polymer characteristics, as
well as nanoparticle size and surface modifications, play an impor-
tant role in determining the efficacy and the biodistribution of
these nanocarriers. Furthermore, the nanoparticle fabrication
process could also affect their efficiency and the toxicity.
In this work, we aimed to develop a new hybrid material com-

posed by PLGA functionalized with a mitochondria-penetrating
peptide, a peptide composed of alternating cationic (arginine)
and apolar (cyclohexylalanine) residues (MPP).[21,22] Engineering
an efficient mitochondria-targeting cell permeable vector is chal-
lenging, because of the inner membrane structure that results

impermeable against a wide range of molecules.[23] Being cationic
and lipophilic at the same time, MPP is able to enter the mitochon-
dria and, covalently linked to bioactive compounds, has been used
as cellular cargo.[22] To the best of our knowledge, it has not been
used for the functionalization of polymeric nanoparticles. Here, we
studied the conjugation of MPP to PLGA, the effect of the polymer
on peptide conformation, and we set up suitable protocols for the
obtainment of nanoparticles. Finally, the cytotoxicity of the new hy-
brid nano-material was evaluated.

Materials and Methods

Materials

Fmoc Rinkamide resin, Fmoc-protected (L)-amino acids, HBTU (N,N,
N0,N0-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluoropho-
sphate), HOBt (1-Hydroxybenzotriazole hydrate) and DIPEA (N,N-
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Diisopropylethylamine) were purchased from Iris Biotech Gmbh
(Marktredwitz, Germany). Solvents, piperidine and other reagents
were purchased from Sigma-Aldrich (Darmstadt, Germany).
Uncapped poly(D,L-lactide-co-glicolide) (PLGA) [batch characteris-
tics: lactide/glycolide mole ratio: 50:50; Mw=11� 0.1 kDa;
DI = 1.5� 0.1; Tg = 37.9� 0.5 °C] was purchased from Lakeshore
Biomaterials (Birmingham, USA).

MPP was synthesized using a CEM Liberty peptide synthesizer
(Matthews, NC, USA) and purified using RP-HPLC with a Jasco
(Easton, MD, USA) BS-997-01 instrument and a DENALI C-18 column
from GRACE VYDAC (10μm, 250×22mm; Columbia, Maryland,
USA). ESI mass spectra were recorded on a LCQ Advantage spec-
trometer from Thermo Finnigan (Waltham, MA USA). 1H-NMR
spectra were acquired on a Bruker (Millerica, MA, USA) Advance
300 Spectrometer. Circular dichroism (CD) spectra were recorded
on a Jasco (Easton, MD, USA) J-810 spectropolarimeter. Infrared
spectra were recorded on a FT-IR spectrometer Perkin-Elmer
(Waltham, MA USA) 16 PC. The gel permeation chromatography
(GPC) system consisted of two μStyragelTM columns connected in
series (7.8× 300mm each, one with 104Å pores and one with
103 Å pores), delivery device (HP 1100 Series, ChemStations Hewlett
Packard, Agilent Technologies, Santa Clara, USA), refractive index
detector, UV/visible detector set at λ =210nm and software to
compute molecular weight distribution (Agilent, USA). The thermal
properties of PLGA and its conjugates were characterized by a DSC
1 (Mettler Toledo, Greifensee, CH) equipped with a refrigerated
cooling system. Nanoparticles were characterized by photon corre-
lation spectroscopy (PCS) and by Phase Analysis Light Scattering
(M3-PALS), using a dynamic light scatter Zetasizer Nano ZS
(Malvern Instrument, Worcestershire, UK), equipped with a
backscattered light detector.

Synthesis of the Mitochondria-Penetrating Peptide (MPP)

MPP (H-Cha-Arg-Cha-Arg-Cha-Arg-NH2) was prepared by
microwave-assisted solid phase synthesis[24] on Rinkamide resin
(0.57meq/g) as solid support. A fivefold molar excess of Fmoc-
protected amino acids (0.2M in N-methyl pyrrolidinone) and
HOBt/HBTU/DIEA (5 : 5 : 10 eq) as activators were used. Coupling
reactions were performed for 5min at 40W with a maximum tem-
perature of 75 °C. Deprotection was performed twice using 20%
piperidine in dimethylformamide (5 and 10min each). Cleavage
from the resin was performed using 10ml of Reagent K
(trifluoroacetic acid/phenol/water/thioanisole/1,2-ethanedithiol;
82.5 : 5 : 5 : 5 : 2.5) for 180min. Following cleavage, the labelled
peptide was precipitated and washed using ice-cold anhydrous
ethyl ether. The peptide was purified by RP-HPLC using a gradient
elution of 5–70% solvent B (solvent A: water/acetonitrile/
trifluoroacetic acid 95 : 5 : 0.1; solvent B: water/acetonitrile/
trifluoroacetic acid 5 : 95 : 0.1) over 20min at a flow rate of
20ml/min. The purified peptide was freeze-dried and stored at
0 °C. MPP was then analysed by ESI(+)-MS confirming the Mw.:
Mw calcd. 943.09; Mw found 473.81 [(Mw+2)/2] + 1, 316.27 [(Mw

+3)/3] + 1. 1H-NMR (300MHz, DMSO, T= 323K) δ ppm: 0.86–0.88
(m, 6H), 1.14–1.33 (m, 13H), 1.50–1.91 (m, 32H), 3.12–3.23 (m, 8H
overlapped), 3.81–3.84 (m, 1H), 4.18–4.39 (m, 5H), 7.12–7.25 (m,
13H), 7.79–7.81 (m, 3H), 8.05–8.18 (m, 3H) (FigureF1 1Q2 ).

Preparation of MPP–PLGA Conjugates

PLGA (50mg, 5μmol) was dissolved in dichloromethane (1ml)
for 1 h. HOBt and EDC HCl (TableT1 1) were then added, and the

suspension was stirred for 0.5 h at rt. MPP (Table 1) previously
dissolved in DMF (0.5ml) and DIPEA (Table 1) were added, and
the mixture was left under stirring for 12 h at rt. Water (2ml)
was added to reaction mixture. The aqueous layer was extracted
with dichloromethane (3× 2ml). The collected organic layers
were dried on Na2SO4, and the solvent was removed under vac-
uum affording a white solid (50mg). MPP–PLGA conjugation was
confirmed by FT-IR (KBr pellet) and 1H-NMR (DMSO-d6 at 50 °C
and 300MHZ). The percentage of peptide conjugation (PC) on
PLGA was calculated by 1H NMR comparing the integration area
of the peptide peak at about 0.9 ppm and PLGA multiplet at
5.3 ppm.

Characterization of MPP–PLGA conjugates

Gel Permeation Chromatography (GPC)

The molecular weight of PLGA before and after conjugation
reactions was measured by GPC. The chromatographic condi-
tions were set as follow: tetrahydrofuran (THF) filtered with
0.45μm pores PTFE filter (Pall Gelman Sciences TF 450, Port
Washington, USA) as mobile phase at a flow rate of 1ml/min,
injection volume of 20μl and temperature analysis of
25.0� 0.1 °C. Polymer samples were dissolved in THF at a
concentration of 2mg/ml. The molecular weight weight-average
(Mw) and the molecular weight number-average (Mn) of each
sample were calculated using monodisperse polystyrene
standards with Mw ranging from 947 to 42300Da.

Differential Scanning Calorimetry (DSC)

Exactly weighted polymers samples were placed into 40μl alumin-
ium pans and subjected to two cooling and heating cycles from
0 °C to 80 °C at heating and cooling rates of 20 °C/min. DSC cell
was purged with a dry nitrogen flow of 80ml/min. The system
was calibrated using an indium standard. Data were treated with
Stare System software (Mettler Toledo, Greifensee, CH). The glass
transition temperatures were measured on the second heat scan.

Circular Dichroism (CD)

Stock solution was prepared in acetonitrile (500μmol for PLGA and
MPP–PLGA conjugates, 28μmol for MPP). Spectra were obtained
from 195 to 250nm with a 0.1 nm step and 1 s collection time per
step, taking three averages. The spectrum of the solvent was
subtracted to eliminate interference from cell, solvent and optical
equipment. The CD spectra were plotted as mean residue ellipticity
θ (degree× cm2×dmol�1) versus wave length λ (nm). Noise reduc-
tion was obtained using a Fourier-transform filter program from
Jasco (Easton, MD, USA).

Preparation of Nanoparticles

Two different strategies were pursued to prepare MPP–PLGA
nanoparticles (NPs), namely solvent displacement and
emulsification-solvent evaporation. The former consisted on the
polymer dissolution in 1ml of acetonitrile at the concentration
of 10mg/ml and the addition dropwise at a constant rate to
10ml of MilliQ® water filtered with a nylon syringe filter of
0.2μm nominal porosity. The system was maintained at
4� 1 °C and stirred at 500 rpm for 15min and, then, heated until
20� 1 °C for 3 h.
The latter method involved the MPP–PLGA dissolution in 1ml

of dichloromethane at the concentration of 4mg/ml. The
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solution was emulsified with 2ml of 5% PVA 10-98 aqueous so-
lution using an ultrasound probe set at an amplitude of 40%
for 1min in ice bath. The emulsion was finally poured into
6ml of 0.1% PVA aqueous solution stirred at 500 rpm. The
evaporation of the organic solvent was carried out over 3h at
about 25 °C.

Characterization of NPs

The mean hydrodynamic diameter (DH) and the size distribution of
the nanoparticles were evaluated by PSC operating at 173°. All the
analyses were carried out in disposable polystyrene cuvettes at a
constant temperature of 25 °C, using the polystyrene latex
(RI = 1590) as reference material. The results were calculated using
the Dispersion Technology Software (DTS, Malvern Instruments
Ltd., Worcestershire, UK), and they are reported as intensity
distribution.

The zeta potential of the nanoparticles was assessed by M3-PALS
technique. The analyses were carried out into a capillary cuvette at
25 °C, with polystyrene latex as reference material.

MTT Cytotoxicity Assay

HCT-116 cells were seeded at a density of 4 × 104/well in a 48 well
tray and incubated with DMEM supplemented with 10% FCS; 24h
later, the medium was replaced with one containing MPP–PLGA 3
nanoparticles at increasing concentrations, and the cultureswere in-
cubated for 48 h. At the end of the incubation, the cell viability was
determined by MTT assay. To this purpose, MTT (Sigma-Aldrich,
Darmstadt, Germany) solution was prepared at 1.5mg/ml in RPMI
without phenol red and was filtered through a 0.2μm filter. Then,
the culture medium was removed from the plate, and 300μl of
MTT solution was added into each well. Cells were incubated for
2 h at 37 °C with 5% CO2, 95% air and complete humidity. After
2 h, 200μl of 2-propanol/0.04N HCl was added into each well, and

Table 1. Relative amounts of PLGA, peptide, coupling reagents and base used in conjugation reaction. Percentage of peptide conjugation on PLGA (PC)

PLGA MPP HOBt EDC DIPEA % PC

MPP–PLGA 1 5 μmol 5mg (5μmol) 4mg (25μmol) 5mg (25μmol) 9 μl (50μmol) 30

MPP–PLGA 2 5 μmol 15mg (15μmol) 3mg (15μmol) 3mg (15μmol) 6 μl (30μmol) 50

MPP–PLGA 3 5 μmol 15mg (15μmol) 4mg (25μmol) 5mg (25μmol) 9 μl (50μmol) 95

Figure 1.Q3 Analytical RP-HPLC spectrum of purified MPP (gradient elution of 5–70% solvent B in 30min).
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the solution was resuspended. The optical density (OD) of the wells
was determined using a plate reader at a wavelength of 550nm.

Results and Discussion

Mitochondria-penetrating peptides are synthetic cell permeable
peptides that are able to enter mitochondria and are characterized
by delocalized positive charge and lipophilicity. Normally, they con-
sist in an alternating sequence of positive charged (Arg or Lys) and
hydrophobic amino acids (Phe or the unnatural cyclohexylalanine,
Cha). The cationic character is needed for driving the uptake of
the delivery vectors through the cellular and mitochondrial
membranes, both of which have a negative membrane potential.
On the other hand, the passage of cations across the hydrophobic
inner mitochondrial membrane is facilitated by the presence of
lipophilic groups, such as benzene or cyclohexyl ring.[21,22]

In this work, we selected the 6-mer sequence H-Cha-Arg-Cha-
Arg-Cha-Arg-NH2 (MPP) for the functionalization of a well-known
biodegradable polymer as poly(lactide-co-glycolide) (PLGA). In
particular, we decided to first conjugate MPP to PLGA and to
characterize the main physico-chemical properties of the novel

material and then to study the feasibility of the preparation of
nanoparticles (Scheme S11).
MPP was prepared by MW-assisted solid phase peptide synthesis

following standard procedure. MPP conjugation with PLGA was
carried out in dichloromethane, using HOBt and EDC HCl as cou-
pling reagents and DIPEA as base. Different molar ratios (Table 1)
were evaluated. In particular, the coupling was scarcely efficient
using an equimolar ratio between PLGA and MPP and a five-fold
excess of coupling reagents (MPP–PLGA 1). We then increased
the amount of MPP (3 eq), and in the same time we reduced the
amount of coupling reagents, yielding to MPP–PLGA 2 character-
ized by a 50% of PC. The best coupling conditions were obtained
using a MPP/PLGA molar ratio of 3:1, a five-fold excess of coupling
reagents and 10 equivalents of the base (MPP–PLGA 3, 95% of PC).
The of MPP–PLGA conjugates was assessed by using 1H NMR spec-
troscopy and by setting as diagnostic for conjugation the peptide
peak at 0.9ppm (Figure F22). In particular, we compared its area value
peak with that of the peak at 5.3 ppm assignable to the polymer, as
already reported in the literature for other peptide–PLGA
functionalization.[20]
The conjugates were also analysed by GPC to evaluate the

average molecular weight of the new hybrid polymers because
PLGA is a very sensitive material and several factors can modify its

Scheme 1. Functionalization of poly(lactide-co-glycolide) (PLGA) with MPP peptide and subsequently nanoparticles preparation.

Figure 2. 1H-NMR spectrum of MPP, PLGA and MPP–PLGA conjugates.
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main physico-chemical features.[25] Moving from PLGA to its con-
jugates, the Mw increased from about 11.0 kDa to 13.6 kDa,
confirming the 1H-NMR data and thus the conjugation of MPP to
the polymer. Likewise, Mn and dispersity index of the raw PLGA
and MPP–PLGA conjugates overlapped at about 7.8 kDa and 1.5,
respectively, suggesting that the conjugation conditions did not
have a detrimental effect on polymer main features.
For MPP–PLGA 2 and MPP–PLGA 3, the conjugation was also

investigated by FT-IR analysis (FigureF3 3).
In both cases, the polymers were characterized by a band at

1760 cm�1 (PLGA ester stretching), a band at around 1656 cm�1

and a shoulder at 1673 cm�1 (both because of MPP amide I
stretching). By comparing the FT-IR spectra of MPP alone (red
curve) with MPP–PLGA conjugates (black and blue curves), a shift
of amide I band frequency at 1635 cm�1 was observed, together
with a decrease in intensity of the band at 1673 cm�1. Of relevance,
a new band at 1656 cm�1 is observed. These data suggested that a
stabilization of peptide helix structure was effective upon
conjugation.[26] CD analysis was thus performed. FigureF4 4 reports
the spectra of MPP and of MPP–PLGA 3 conjugate in acetonitrile.
In solution, MPP alone did not assume a preferred conformation
as underlined by a negative ellipticity value at 190 nm and the
low intensity of the n–π bands. For MPP–PLGA conjugate, a positive
value at 190 nm together with negative Cotton effects at 205nm
and 220nm of similar intensity were observed. This finding con-
firmed an increase of peptide helical content when MPP is bound
to PLGA, and thus, an increase in the overall rigidity of the hybrid
polymeric system.
Moreover, a reduction of the specific heat ( CP) associated to the

glass transitionwas also noticed in MPP–PLGA 3 (TableT2 2). Generally
speaking, the decrease of CP is related to the increase of hydrogen
bonds or the weaker Van der Waals forces, limiting the molecular
mobility of the polymer chains.[27] Hence, the stiffening of the
polymer structure can be because of the induction of the preferred
conformation of MPP which forced PLGA to a rearrangement.
Based on the results obtained, MPP–PLGA 2 and 3 were consid-

ered as suitable candidates to prepare nanoparticles. Several
methods are reported in literature for the preparation of nano-sized

systems.[28] As a rule, an optimal method should be as simple as
possible, limiting the use of excipients such as stabilizing agents
that could cause toxic effects depending on their nature and
amount. The solvent displacement method (also known as
‘nanoprecipitation’) is the most common technique reported for
PLGA-based systems.[29] In a preliminary step of this work, different
water-miscible organic solvents were considered for the prepara-
tion of the MPP–PLGA solution, such as acetone,
acetone/absolute ethanol mixture in two volume ratios (i.e. 85/15
and 70/30) and acetonitrile. The concentration of the polymer solu-
tion was fixed at 10mg/ml. The raw PLGA was freely soluble in all
solvents reported above. The acetone only or the mixture with ab-
solute ethanol in the ratio of 85/15 allowed solubilizing MPP–PLGA
2 at amaximumconcentration of 5mg/ml, causing the formation of
NPs with a size of about 100nm (Table T33). The conjugate did not
dissolve in acetone/absolute ethanol 70/30. MPP–PLGA 2 resulted
soluble at the prefixed concentration only in acetonitrile and the
corresponding NPs presented a DH of 171� 5nm (Table 3).

On the other hand, MPP–PLGA 3 did not dissolve in the water-
miscible solvents considered. This was probably because MPP
deeply modified the physico-chemical features of the polymer.
Hence, MPP–PLGA 3 was dissolved in dichloromethane in order
to prepare NPs by emulsification-solvent evaporation. This method
permitted the formation of NPs with a DH of 454� 12nm and a
polydispersity index of 0.451� 0.082. More importantly, the conju-
gation with MPP resulted in a significant increase in the zeta poten-
tial of NPs from about �35mV to about 1.3� 0.2mV. No signs of
aggregation were noticed after the preparation of MPP–PLGA 3
NPs, probably because of the presence of residual PVA on the sur-
face of the NPs, which permitted a particle–particle repulsion.[30]
The negative zeta potential of PLGA is because of the presence of
negatively charged carboxylic acid end groups. Only in NPs made

Figure 4. CD spectra of MPP alone and MPP–PLGA 3 (100 μmol in ACN at
rt).

Figure 3. FT-IR spectra on KBr pellets.

Table 2. Main differences in terms of glass transition temperature (Tg)
and specific heat ( CP) resulted by the thermal analysis of the raw PLGA
and PLGA conjugates

Polymer ID Tg (°C) CP (mW/g °C)

PLGA 37.9� 0.5 29.1� 0.8

MPP–PLGA 2 38.9� 1.0 28.2� 1.9

MPP–PLGA 3 45.8� 0.2 22.1� 2.1
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of MPP–PLGA 3, the conjugation with MPP increased the superficial
charge to values near neutral. This is a further confirmation that a
highest amount of positively charged MPP was linked to PLGA
and was thus able to neutralize the charged carboxylic acid end
groups of PLGA.

The most promising NPs obtained by MPP–PLGA 3 hybrid poly-
mer were thus submitted to preliminary cytotoxicity studies. Cell
viability was investigated in colon carcinoma cell line HCT116. As
shown in FigureF5 5, MPP–PLGA 3 did not significantly alter the cell
viability after 48 h incubation at concentrations up to 5μg/ml.

In conclusion, PLGA was successfully functionalized with 6-mer
MPP peptide containing Arg and the unnatural amino acid Cha.
By tuning MPP/PLGA molecular ratio and the coupling reagentsˈ
equivalent, it has been possible to obtain a hybrid polymer charac-
terized by a higher conformational rigidity with respect to PLGA
and MPP alone. Indeed, when linked to PLGA, MPP peptide
underwent a conformational switch toward helical conformation
that induced the stiffening of the overall polymeric structure. The
new hybrid polymer was used to realize MPP functionalized PLGA
NPs using both the solvent displacement and the emulsification-
solvent evaporationmethods. The obtainedNPs showed no toxicity
in MTT cell viability test, suggesting their potential use in pharma-
cological application. Future investigations will be aimed to study
NP mitochondria internalization and loading ability of this new
hybrid material.
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Special Issue Article

Development of poly(lactide-co-glycolide) nanoparticles functionalized with a mitochondria
penetrating peptide

Francesca Selmin, Giulia Magri, Chiara G.M. Gennari, Silvia Marchianò, Nicola Ferri and Sara Pellegrino

A new hybridmaterial composed by poly(lactide-co-glycolide) (PLGA) functionalized with a 6-mermithochondria penetrating
peptide (MPP) was developed. A conformational to a helical structure was observed for MPP upon conjugationwith the poly-
mer. This new rigid material was used for the preparation of cell compatible nanoparticles.
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