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Abstract—Touchless fingerprint recognition systems are being

increasingly used for a fast, hygienic, and distortion-free recog-

nition. However, due to the greater complexity of the algorithms

required for processing touchless fingerprint samples, currently

only Level 1 and Level 2 features are being used for recognition,

and Level 3 features are used only in touch-based optical devices

with about 1000 ppi resolution. In this paper, we propose the

first innovative method in the literature able to extract Level 3

features, in particular sweat pores, from fingerprint images

captured with a touchless acquisition using a commercial off-

the-shelf camera. The method uses image processing algorithms

to extract a set of candidate sweat pores. Then, computational

intelligence techniques based on neural networks are used to

learn the local features of the real pores, and select only the actual

sweat pores from the set of candidate points. The results show the

validity of the proposed methodology, with the majority of the

pores correctly extracted, indicating that a touchless fingerprint

recognition using Level 3 features is feasible.

I. INTRODUCTION

Fingerprint recognition systems are based on features ex-

tracted with three possible levels of detail, with increasing

spatial resolution required for their capture, commonly referred

as Level 1, Level 2, or Level 3 features. In particular, Level 1

features are related to the general ridge flow and to the position

and type of singular points [1]. Level 2 features are based

on the position and orientation of local ridge characteristics,

called minutiae points, and require at least a 500 ppi resolution

[2]. Level 3 features describe intra-ridge characteristics, such

as incipient ridges or sweat pores, and require about 700-1000

ppi resolution [3]. Currently, Level 2 features are the most

used for recognition, and optical touch-based devices with the

required 500 ppi resolution can be found in many scenarios,

from government applications (e.g., border control [4]–[6]) to

personal devices (e.g., laptops, smartphones [7]).

However, in the last years, touchless fingerprint recognition

approaches have been increasingly proposed in the literature

and in industrial applications since they do not require the

contact of the finger with a surface, thus preventing distortions,

hygiene problems, and therefore increasing the social accep-

tance of biometric technologies. Moreover, they allow a fast

recognition, because it is not necessary to wait for the finger
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to be placed on the sensor with the correct amount of pressure,

as happens in the case of touch-based devices. In particular,

both two-dimensional [8]–[12] and three-dimensional [13]–

[20] acquisition systems have been described, with results in

some cases comparable to optical touch-based systems [20].

Recently, due to the increasing quality of CMOS sensors

in portable mobile devices, numerous approaches have also

been designed for a touchless fingerprint recognition using

smartphones [21]–[23].

In this context, touchless fingerprint recognition approaches

require more complex processing algorithms in order to com-

pensate for the non-idealities introduced by a less-constrained

acquisition procedure, such as out-of-focus, motion blur, or

a complex background. For these reasons, currently only

Level 1 or Level 2 features have been used for recognition

[16], and no approach has been yet proposed for a touch-

less fingerprint recognition using Level 3 features. The use

of such features could help in implementing liveness-based

antispoofing methods [24] and in improving the recognition

accuracy in touchless fingerprint recognition systems. In some

cases, a reduction in the EER up to 20% has been obtained

by combining Level 1, Level 2, and Level 3 features [25].

In this paper, we propose a novel method for the extraction

of the positions of sweat pores (Figure 1), which are the most

distinctive Level 3 features [2], from touchless fingerprint

images captured with a commercial camera. The proposed

approach is a feasibility study towards the use of Level 3

features in touchless fingerprint recognition systems, and the

description of algorithms for biometric recognition is out

of the scope of the paper. The approach is based on an

innovative algorithm for the extraction of Level 3 features in

touchless fingerprint images, composed of a novel sequence

of steps using standard image processing and computational

intelligence techniques. In particular, since the characteristics

of the pores may change in different fingerprints, or in different

positions of the fingerprint itself according to illumination and

wear, computational intelligence methods are used to learn the

local features of the real pores, adapt to the operational and

environmental conditions, and perform an accurate extraction.

To the best of our knowledge, this is the first method in the

literature able to extract the position of pores in touchless

fingerprint images. We evaluated the proposed approach on a

database composed by 66 images captured from 12 persons.

In order to establish the ground truth, the pores in each image

were manually labeled by three supervisors, for a total of

9, 143 pores. The results showed that a touchless fingerprint
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Fig. 1. Particulars of a touchless fingerprint image captured using the
proposed method and a touch-based image captured using an optical device:
(a) touchless image; (b) touch-based image. It is possible to observe the sweat
pores, which are the most significant Level 3 features, present on the ridges.
However, the touchless image exhibits a minor contrast between the pores
and ridges, resulting in the necessity of more complex processing algorithms.

recognition system using Level 3 feature is feasible.

The paper is structured as follows: Section II presents a

literature review, while Section III describes the proposed

methodology. Section IV and Section V contain the experi-

mental results and the conclusions, respectively.

II. RELATED WORKS

Currently, no approach in literature has been proposed for

the extraction of Level 3 features from touchless fingerprint

images. However, several approaches describe the use in

touch-based images of Level 3 features, in particular sweat

pores, for the purposes of recognition, antispoofing, quality

estimation, and image preprocessing.

For the purpose of recognition, methods for extracting the

positions of the pores use Gabor Filters [25], wavelet trans-

forms [25], [26], watershed segmentation [27], or morpholog-

ical operators [28]. Matching methods specifically designed

for pores use ICP [25], RANSAC [29], local binary patterns

[30], Delaunay triangulation [26], or local features [29], [31].

Level 3 features can also increase the accuracy of fingerprint

recognition in the case of partial images [32]–[34] or rolled

ink images [35].

Furthermore, antispoofing methods based on Level 3 fea-

tures have been recently gaining popularity, since the position

and size of the pores is more difficult to counterfeit, with

respect to the ridge structure and the minutiae [36]. In this

context, several methods use statistical features [37]–[39],

NIST NFIQ quality indexes [37], [40], Euclidean distance

between pores [40], or the number of pores [37], [40], [41].

Lastly, some methods propose Level 3 features for the

quality estimation of fingerprint images [42], [43], along

with methods that use the position of the pores for image

preprocessing [44].

Fig. 2. Schema of the used acquisition setup.

III. PROPOSED APPROACH

The proposed approach has the purpose of extracting

Level 3 features, in particular the position of the sweat pores,

from touchless fingerprint images captured using a commercial

camera. Such features could be used for multiple purposes

in the field of touchless fingerprint recognition systems,

such as increasing the recognition accuracy and implement-

ing antispoofing methods. Our method is based on a single

touchless acquisition, and we use an innovative algorithm

for the extraction of Level 3 features in touchless fingerprint

images, composed of a novel sequence of steps using standard

image processing and computational intelligence techniques.

In particular, image processing algorithms are used to extract

a set of candidate sweat pores, then computational intelligence

techniques are used to learn the local features of the real pores,

adapt to differences in the illumination and wear of the finger,

and select only the actual sweat pores from the set of candidate

points.

In particular, the method is composed by the following

steps: i) acquisition; ii) extraction of candidate points; iii)

neural post-processing.

A. Acquisition

The acquisition is performed by placing the fingertip on a

flat surface and in the field of view of the camera (Figure 2).

No support for the finger is used, and the only requirement is

that the finger is focused and placed inside the field of view of

the camera. A single touchless acquisition is then performed,

and the image I is captured. We used a LED illumination

to enhance the details of the fingerprint, so that the sweat

pores are visible in the captured image. A green LED was

used since shorter wavelengths are less absorbed by the skin

and result in more contrasted images [45]. However, while a

blue wavelength is shorter and would be even less absorbed

with respect to the green one, blue LEDs have a smaller light

intensity and would require too high shutter times in order to

avoid motion blur.



B. Extraction of candidate points

The design of the algorithm for the extraction of the

candidate pore points is based on two main observations:

i) the finger is not uniformly illuminated in the picture; ii)

reflections are present on the boundaries of several pores.

Then, in order to detect the pores, we exploited the presence of

reflections in correspondence of the pores. Moreover, to tackle

the non-uniformity of the light, we used the gamma transform

for analyzing the image at various contrast conditions, and

investigate different details of the image each time.

To identify possible candidates, our algorithm performs the

following steps:

1) selection of the green channel G from the input RGB

image I;

2) gamma transform of the image G at powers γ =
{0.67, 1.0, 1.5, 2.5, 5.0}, obtaining Gγ ;

3) for each gamma image Gγ :

a) min-max normalization, specifying the bottom 1% and

the top 1% of all pixel values as the min and max,

respectively;

b) median filtering with radius rm = 3 pixels, to reduce

noise while preserving edges, obtaining the image

Gγ,f ;

c) Sobel edge detection and binarization, obtaining the

image Gγ,b;

d) close operation applied on Gγ,b with a circular struc-

turing element of radius rc = 2 pixels;

e) extraction of the connected components cγ,n with area

100 ≤ A ≤ 900 and eccentricity E ≤ 0.9 from Gγ,b,

obtaining the binary image Bγ ;

f) computation of the coordinates of the centroid

(Cx, Cy)γ,n for every selected component cγ,n;

4) OR composition of every mask Bγ , produced in the step

3 from the corresponding gamma image Gγ , into a single

mask B.

We quantified empirically the optimal values of the pa-

rameters γ, A, and E based on the physical properties of

the images. The result is a binary image that includes the

connected components cn, with 1 ≤ n ≤ N , where N is the

number of candidate pores. The centroids of the connected

components (Cx, Cy)n are then used to construct the set of N
candidate pore points PC = {(Cx, Cy)n}. Figure 3 presents

the output of the candidate extraction algorithm on a sample

image.

C. Neural post processing

To determine if a candidate point is a real pore or not,

we use neural network classifiers. In fact, neural techniques

are used to learn the local features of the real pores, adapt

to differences in the illumination and wear of the finger, and

select only the actual sweat pores from the set of candidate

points. In particular, the proposed approach extracts differ-

ent sets of features that represent different characteristics of

the candidate point PCn, and uses them to train a neural

network classifier. In particular, we distinguish two types of

characteristics: the first describes features of the estimated

Fig. 3. Output of the candidate extraction step: blue circles mark the manually
found pores, while red crosses mark the candidates found by the algorithm.
Candidate points are then used in the neural post-processing step in order to
select the actual pores.

segmentation region cn (intended as the binary mask that

represents it), the second describes characteristics of a portion

of the image In that surrounds the candidate point. This

separation is necessary because some features obtain better

results with a gray-scale image to discriminate between the

candidate points that represent a pore and those that do not

represent it.

The first type of features, related to the estimated segmen-

tation, include:

• Area (FA): the number of pixels included in the seg-

mented region;

• Convex area (FCA): the area, in pixels, of the smallest

convex polygon, cp, that can contain the segmented

region;

• Coordinates (FCo): the coordinates of the centroid of the

estimated segmentation;

• Equivalent diameter (FED): the diameter of the circle

that has the same area as the region;

• Euler number (FEN ): the inverse of the number of holes

in the segmented region;

• Extent (FEx): the ratio of the area of the segmented

region and the area of the smallest rectangle containing

it;

• Filled area (FFA): the area, in pixels, of the segmented

region when all the holes in it have been filled;

• Major and minor axis length: the length, measured in

pixels, of the major and minor axis of the ellipse, e, whose



normalized second central moments correspond to those

of the segmented region;

• Eccentricity (FEc): the eccentricity of e;

• Orientation (FOr): the angle between the x-axis and the

major axis of e;

• Perimeter (FP ): the number of pixels round the boundary

of the segmented region;

• Solidity (FS): the proportion of the pixels in cp that are

also in the region;

The second type of features is related to the portion of the

image In, with size 30×30 pixels, that surrounds the candidate

pore PCn, and comprise:

• Hog Features (FH ): this set includes cw×ch×cb features.

Their values represent the information contained in a

set of Histogram of Oriented Gradients (HOG) applied

to the area surrounding the pore. We compute these

features using the algorithm described in [46]. First we

calculate the gradient module image GM (x, y) and the

gradient phase image GP (x, y) of In. Then, we divide

In into cw × ch blocks. For each block, we quantize the

orientation G̃P (x, y) into cb orientation bins. These bins

are weighted by its magnitude GM (x, y). For each block,

we calculate a histogram with cb orientations.

• Local Mean: (FM ): this feature indicates the mean gray

level value of In.

• Local Variance (FV ): this feature indicates the standard

deviation of the gray level value of In.

• Smoothness (FS): this feature measures the relative

smoothness of the intensity in In as: FS = 1− 1
(1+FV )2 .

• Third moment (FT ): this feature measures the skewness of

the histogram of In. It is calculated as: FT =
∑L−1

i=0 (zi−
FM )3p(zi), where L indicates the number of intensity

values, zi the intensity of pixel i and p(z) is the histogram

of the intensity levels in In.

• Uniformity (FU ): this feature indicates the uniformity in

In. It is computed as: FU =
∑L−1

i=0 p2(zi), where L
indicates the number of intensity values, zi the intensity

of pixel i and p(z) is the histogram of the intensity levels

in In.

• Entropy (FEn): a measure of the randomness in In.

Estimated as Fe = −
∑L−1

i=0 p(zi) log2 p(zi).
• Gray-level co-occurrence matrix features: this set con-

tains 4 features that summarize the information contained

in the Gray-level co-occurrence matrix, including homo-

geneity, energy correlation, and contrast.

• LBP features (FL): this set includes 255 features related

to the Regular Local Binary Patterns (LBP) [47].

We consider the problem of determining if a candidate point

is a pore as a classification problem. This task is performed by

assigning two different classes to the points extracted during

the extraction of candidate points phase: {“pore”; “spurious”}.

In this work, we use classifiers based on feedforward neural

networks.

During training, we determine the class of a candidate point

PCn by considering its Euclidean distance dn to the closest

real pore:

dn = min (d(PCn, PRj)) ;

PRj ∈ PR , (1)

where d(·) indicates the Euclidean distance and PR is the

set of real pores manually estimated by a group of expert

supervisors. Then, if dn is smaller than a maximum acceptable

distance Md, the candidate point PCn is considered a “pore”,

otherwise, it is considered “spurious”. The sets containing

the pores and spurious points, based on the distance Md, are

defined as follows:

PORESMd
= {PCn ∈ PC : dn ≤ Md} ;

SPURIOUSMd
= PC − PORESMd

, (2)

where Md represents the maximum acceptable distance.

By adjusting Md we can adapt the behavior of the system.

For instance, the choice of a very small distance Md can

make the system more precise, although reducing the number

of found pores. On the other hand, the increase of Md can

increase the number of found pores, although reducing the

precision of their estimated position.

IV. EXPERIMENTAL RESULTS

A. Setup and parameters

The used setup is shown in Figure 2 and is composed by

a commercial off-the-shelf color CCD camera and a green

LED illumination. The distance from the camera to the LED

is ∆L = 80 mm, while the distance from the camera lens to

the surface where the finger is placed is 165 mm. The LED

was placed at a distance ∆M = 100 mm to the surface where

the finger is placed and inclined with an angle θ = 75◦ with

respect to the camera, in order to provide an incident light

enhancing the details of the sweat pores. The parameters of

the camera used to capture the images are a shutter time

ts = 4 ms, ISO 1600 and F16 aperture, chosen in order to

acquire images without noise or motion blur. A macro lens

with 100 mm focal length was used in order to capture the

small details of the pores. The size of the captured images

is W × H = 5472 × 3648 pixels and describe an area with

size W × H ≈ 35 × 25 mm, resulting in images featuring a

≈ 3800 ppi resolution.

B. Database collection

In order to test the validity of the proposed approach,

we collected a database of 4 different fingerprints from 12
different people, for a total of 48 different fingerprints. Each

fingerprint was captured separately 2 times, for a total of 96
images. The fingers were removed from the field of view of

the camera after each acquisition, and then placed again.

After the acquisition, only the central region with size

W ×H = 1500× 1000 pixels, centered in the fingerprint

core, was considered for the extraction of pores. Then, a

group of three supervisors manually labeled the pores in each

extracted region in order to establish the ground truth PR
for the experimental evaluations, for a total of 9, 143 labeled

pores. An example of the extracted ground truth in touchless



(a) (b) (c)

Fig. 4. Particulars of the central region, centered in the core, of the touchless fingerprint images captured from different individuals using the proposed
approach. It is possible to observe the sweat pores present on the ridges.

(a) (b)

Fig. 5. Example of the ground truth extracted from a touchless sample
captured using the proposed approach, and the corresponding touch-based
image: (a) touchless sample; (b) touch-based image. It is possible to observe
that approximately the same pores can be visible in both cases.

samples is shown in Figure 5 and compared with the ground

truth extracted from the corresponding touch-based image. It

is possible to observe that approximately the same pores can

be visible in both cases.

Due to differences in the size and visibility of the pores, it

was not possible to consider the fingerprints of every person:

in some cases, the pores are not clearly visible in the captured

images, and it is not possible to establish the ground truth

for such images with sufficient confidence. A similar situation

can happen also when extracting Level 2 details, since the

fingerprint ridges are not always clearly visible [2]. For this

reason, we treated the images in which the pores are not clearly

visible as Failure To Enroll (FTE) situations. In particular, we

discarded a total of 30 images for this reason. The results

introduced in the following subsections consider the remaining

66 images, which contained a total of 26, 977 candidate points.

C. Experimental procedure

For each image in the used database, we applied the

proposed method for the estimation of the position of the

candidate sweat pores PC, then we used computational intelli-

gence techniques in order to compute a neural post-processing

of the pores position, by assigning each candidate point in

either the set PORES or SPURIOUS, according to Eq. 2.

In particular, we used a Feed Forward Neural Network with

one input layer, one hidden layer and one output layer. The

input layer is composed by 61 nodes, equal to the number

of used features, and the output layer is composed by 1
node, with a linear transfer function. We tested different

number of nodes, with tan-sigmoidal transfer functions, in the

hidden layer: 20, 30, 50, 70, 100. A resilient back-propagation

algorithm, using at most 400 epochs, was used to train the

neural networks. We considered only neural networks with a

single hidden layer, since they can be considered as universal

approximators.

As a figure of merit, we considered the pore estimation

accuracy as the proportion PTP of pores that lie at a

distance ≤ d pixels of a real pore estimated manually, where

d is the maximum distance allowed in order to consider a pore

as correctly estimated:

PTP (d) =
|TP (d)|

|PC|
, (3)

where PC is the set of candidate pores, |·| indicates the car-

dinality of the set, and TP (d) = PORESd, defined according

to Eq. 2.



Fig. 6. Algorithm’s error rates: the red line indicates the proportion of
candidate points PTP (rw/4) found within the range of rw/4 pixels from
a real pore, where rw = 40 pixels is the ridge width in the used images,
while the dashed blue line indicates the amount of real pores retrieved by
the algorithm within the range of rw/4 pixels. The X axis represents the
number of images ordered by the amount of pores found by the supervisor. It
is possible to observe that a neural post-processing step is necessary in order
to increase the estimation accuracy.

D. Results before applying computational intelligence

In this section we study the results of the algorithm designed

for the extraction of the candidate points, without applying the

neural post-processing step described in Section III-C. Figure 7

presents the results of the algorithm, indicating the obtained

average PTP (d) for different values of d, for all the images

in the dataset. Furthermore, Figure 6 illustrates the error rates

of the algorithm for PTP (rw/4), where rw = 40 pixels is the

average ridge width in the images of the used dataset. From the

figures, it is possible to observe that a neural post-processing

step is necessary in order to increase the estimation accuracy.

E. Study of the performance of the neural post-processing step

This section analyzes the performance of the neural net-

work, used in the post-processing step, that classifies the

candidate pore points in “pore” and “spurious” points. We

compared the results obtained by the proposed neural classifier

and other well-known techniques in the literature. In particular,

we compared the performance of the proposed classification

method with classifiers based on different learning techniques,

such as k-Nearest Neighbor and Naive Bayes classifiers.

Table I presents the obtained results calculated using a k-fold

cross validation, with k = 10 [48]. Moreover, Figure 7 shows

the obtained average PTP (d) for different values of d.

The obtained results show that the neural classifier out-

performed the other methods on the considered dataset. In

fact, simple classifiers did not obtain satisfactory accuracy on

the considered problem, and classifiers able to approximate

more complex functions, like a neural network with a large

number of hidden units, obtained a significant reduction of

the classification error. Furthermore, comparing the results

obtained both with and without the refinement step using the

TABLE I
RESULTS OF THE NEURAL POST-PROCESSING STEP USING DIFFERENT

LEARNING TECHNIQUES.

Model
Accuracy

Mean Std

kNN-1 76.0% 1.6%
kNN-3 79.2% 1.5%
Naive Bayes 71.9% 2.1%
FFNN-30 83.4% 2.5%

Note: FFNN-30 = Feed Forward Neural Network with 30 neurons in the hidden layer.

Fig. 7. Proportions of pores PTP (d) that lie at a distance < d of a real
pore estimated manually, where d is the maximum distance allowed in order
to consider a pore as correctly estimated. The displayed curves present the
results obtained before any learning technique is applied (magenta solid line),
and after applying Naive Bayes (blue dashed line), kNN-1 (green dotted line),
kNN-3 (cyan dash-dot line) and FFNN-30 (red solid line). It is possible to
observe that the use of neural networks allowed the greatest pore estimation
accuracy.

neural network, it is possible to observe that the use of neural

networks allows to increase the accuracy in the estimation of

the position of the pores.

However, the analysis of which computational intelligence

technique obtains the best results is out of the scope of

this paper, since it is also dependent on the specific data

of the studied application. Other computational intelligence

techniques, like Support Vector Machines, could be analyzed

in future research studies.

Moreover, Figure 8 shows for each image the number of ex-

tracted pores and |TP (rw/4)|. Such numbers are sufficiently

high to allow a recognition using the position of the pores for

most images, since about 20− 40 pores can be used to assess

the identity of an individual, as demonstrated by Jain et al.

[25], thus the proposed approach shows the feasibility of a

Level 3-based recognition using touchless fingerprint images.

F. Computational speed

We implemented the proposed method using Matlab, and

run on an Intel Xeon 3.30 Ghz CPU with 8 GB RAM. The

used OS was Windows 7 Professional 64 bit. The average



Fig. 8. Number of extracted pores and |TP (rw/4)| for each test image.
Images are sorted in ascending order of number of extracted points. These
numbers are sufficiently high to allow a recognition for most images, as
demonstrated by Jain et al. [25].

time needed for extracting the candidate points was 6.43 s

per image, while in average 0.01 s per image were needed

to perform the neural post processing. However, the Matlab

programming language is a prototypal non-optimized environ-

ment, and real-time processing speeds could be obtained if

using, for example, a C/C++ implementation.

V. CONCLUSIONS AND FUTURE WORK

In this work we proposed a novel method for the extraction

of Level 3 features, in particular sweat pores, from fingerprint

images captured using a touchless acquisition. The method

is based on image processing algorithms and computational

intelligence techniques. We applied the method on a database

composed by 66 images captured from 12 different individu-

als. In order to establish the ground truth, 9, 143 pores were

manually labeled by three supervisors. The results showed

the validity of the proposed approach, with the majority of

pores correctly extracted, indicating that a touchless fingerprint

recognition using Level 3 features is feasible.

Since the pores visible in touchless fingerprint images can

have different characteristics according to the individual, the

used illumination, and the position of the finger at the moment

of the acquisition, it was not possible to design a single method

able to extract the pores in every situation. For this reason, we

studied a method based on image processing algorithms in or-

der to extract a set of candidate points, and then we considered

a set of features that could allow a computational intelligence

classifier, using a set of examples, to learn and generalize

the relation between the considered features and the presence

of a real pore. Moreover, the use of neural techniques could

allow the method to adapt to different cameras, resolutions,

acquisition distances, and illumination conditions.

The proposed method could prove useful in future works for

the design and implementation of biometric recognition algo-

rithms able to work on Level 3 details in touchless images, in

order to increase the accuracy of current touchless fingerprint

recognition systems, or for the creation of innovative and more

accurate antispoofing algorithms able to work on touchless

fingerprint samples.
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