
A Consensus-based Approach
for Selecting Cloud Plans

Ala Arman, Sara Foresti, Giovanni Livraga, Pierangela Samarati
DI - Università degli Studi di Milano, 26013 Crema - Italy

Email: firstname.lastname@unimi.it

Abstract—An important problem when moving an application
to the cloud consists in selecting the most suitable cloud plan
(among those available from cloud providers) for the application
deployment, with the goal of finding the best match between
application requirements and plan characteristics. If a user
wishes to move multiple applications at the same time, this task
can be complicated by the fact that different applications might
have different (and possibly contrasting) requirements. In this
paper, we propose an approach enabling users to select a cloud
plan that best balances the satisfaction of the requirements of
multiple applications. Our solution operates by first ranking
the available plans for each application (matching plan char-
acteristics and application requirements) and then by selecting,
through a consensus-based process, the one that is considered
more acceptable by all applications.

Index Terms—Users preferences, Cloud plan selection, Multi-
criteria decision making, Consensus voting

I. INTRODUCTION

Cloud computing represents today the reference paradigm
for deploying applications and for storing, managing, and
processing large amounts of data. Thanks to the advantages in
service availability and economical savings, more and more
private and public organizations, as well as individuals, are
moving their data and applications to the cloud [1]. The
cloud market is growing at a quick pace, offering a variety
of opportunities to its users. Indeed, cloud providers available
on the market sell plans that differ in the services they offer,
the quality of services they guarantee, and the price lists
they apply. This variety provides great advantages for users,
enabling them to choose the provider (and the plan) that better
suits their needs and economical availability.

Choosing one cloud plan over another to deploy an ap-
plication is a critical task, as it has clear consequences on
the quality of the provided service (e.g., a plan/provider with
frequent downtimes would cause considerable inconveniences
to users trying to interact with the applications deployed
over it). The problem of cloud plan selection is even more
complicated when a user needs to deploy, on a given cloud
plan, multiple applications. In fact, each application can have
specific requirements on the characteristics that its “ideal”
plan should guarantee. For instance, applications operating
with sensitive data will mostly care about security (e.g.,
encryption algorithms, security auditing) while applications
running data-intensive computations on publicly available or
non-confidential data will be more interested in performance
(e.g., CPU and disk speed, network latency, price lists). Since

the requirements of user applications may be contrasting, a sin-
gle cloud plan satisfying all of them might not exist. The user
then needs to properly combine applications’ requirements and
choose a plan that satisfies them in the best possible way.

A naive approach to choose the most suitable plan would
consist in identifying the best plan for each application,
and then selecting the one chosen by the majority of the
applications. However, such an approach would risk to leave
the requirements of some applications completely unsatisfied.
In this paper, we propose an approach aimed at balancing
requirements satisfaction for multiple applications. To this
purpose, our solution first produces, for each application, a
ranking of the available plans according to its requirements;
it then selects the plan that is globally considered the most
acceptable by all applications. To implement these two steps,
we put forward the idea of jointly adopting a multi-criteria

decision making technique (TOPSIS [2]) to rank applications,
and a consensus-based voting technique (Borda count [3]) to
choose a plan that is ranked high by all the applications. The
combined adoption of these techniques enables the user to
choose the cloud provider (and the plan among the ones it
offers) that better balances the requirements of all the applica-
tions, reaching a trade-off among their (possibly contrasting)
needs. This guarantees that no application is left completely
unsatisfied.

The remainder of this paper is organized as follows. Sec-
tion II presents our problem. Section III illustrates our solu-
tion. Section IV discusses related works. Finally, Section V
concludes the paper.

II. PROBLEM DEFINITION

We consider a scenario characterized by a user wishing to
outsource to the cloud a set A = {a1, . . . ,an} of applications.
To this aim, she needs to find the most suitable among a set
P= {p1, . . . , pm} of plans offered by a set of cloud providers.
Each plan p ∈ P might have different characteristics with
respect to a set C = {c1, . . . ,cl} of criteria that the user
considers of interest for the set A of applications. For instance,
C can include criteria such as the guaranteed availability, the
charged costs, or the security guaranteed by the providers. In
the definition of C, the user can refer to existing guidelines and
classifications (e.g., [4]), combined with her personal needs.

Since plans in P differ in the characteristics of the offered
services, we assume the user to rate the degree to which a
criterion ci ∈ C is “satisfied” by a plan p j ∈ P. Intuitively,

© 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

R1 R2 R3 R4 R5

Availability 0.40 0.50 0.90 0.40 0.20
Performance 0.50 0.60 0.97 0.30 0.30
Security 0.60 0.70 0.80 0.20 0.40
Costs 0.50 0.40 0.10 0.60 0.70
· · · · · · · · · · · · · · · · · ·
Backup 0.40 0.60 0.30 0.30 0.20
StorageSpace 0.50 0.30 0.40 0.30 0.20
MobileSupport 0.60 0.80 0.30 0.40 0.50

Fig. 1. Sample rating vectors R1, . . . ,R5

this degree expresses how much the services offered by p j

are close to an ideal scenario that maximizes the satisfaction
of ci (e.g., a cloud provider offering its services for free
would have the maximum rating for the Cost criterion). Each
plan p j is then associated with a rating vector R j[1, . . . , l],
where 0 ≤ R j[i]≤ 1 represents the rating of p j with respect to
criterion ci, where higher ratings represent better satisfaction
of the criterion. For instance, a plan p j providing more
than 10 synchronized replicas, sophisticated authentication
mechanisms and encryption algorithms, high CPU rates and
network bandwidth, but applying expensive price lists, will
have a high rating w.r.t. security, availability, and performance,
and a low rating w.r.t. cost. Figure 1 illustrates sample rating
vectors R1, . . . ,R5 for plans p1, . . . , p5 respectively, over dif-
ferent criteria. For instance, p5 is rated lower for criterion
Availability (R5[Availability] = 0.20) than for criterion Costs

(R5[Costs] = 0.70).

The set C of criteria is defined by the user considering
all the requirements of all her applications in A. Indeed, as
mentioned in Section I, not all criteria in C may be relevant to
all applications in A. We denote with Ck ⊆C the set of criteria
relevant to application ak ∈ A. For instance, with reference
to our running example, the set C1 of criteria relevant to
a1 is C1 = {Availability, Performance, Security, Cost}, and
the set C2 relevant to a2 is C2 = {Backup, StorageSpace,
MobileSupport}. Also, given an application ak with its set Ck

of relevant criteria, not all criteria ci ∈ Ck can be assumed
to be equally important to ak. For instance, with reference
to the example above, a1 might value Security more than
Availability. A natural way to express the requirements of an
application ak ∈ A consists in associating a weight to each
criterion in Ck. In fact, this permits to model applications
having different (and possibly disjoint) relevant criteria, with
different relevance for different applications. Considering an
application ak, the importance of each criterion ci ∈ Ck is
modeled by associating ci with a weight, where higher weights
model higher importance of the criterion for ak. Formally, the
requirement for an application ak is expressed as a weight vec-

tor Wk[1, . . . , |Ck|], where Wk[i] represents the weight (i.e., the
relative importance) of criterion ci for application ak. To enable
comparison among the weights, we assume the weight vectors

to be normalized (i.e., ∑
|Ck |
i=1 Wk[i]=1, k = 1, . . . ,n). Figure 2

illustrates two sample weight vectors for two applications,
a1 and a2, where C1 = {Availability, Performance, Security,
Costs} and C2 = {Backup, StorageSpace, MobileSupport}.
For instance, the weight vector W2 = [0.30,0.40,0.30] of

W1

Availability 0.04
Performance 0.02

Security 0.04
Costs 0.90

W2

Backup 0.30
StorageSpace 0.40

MobileSupport 0.30

Fig. 2. Sample weight vectors for applications a1 and a2 over different criteria

application a2 states that criteria Backup and MobileSupport

have the same relative importance (0.30 each), while criterion
StorageSpace is more relevant (0.40).

Given an application ak ∈A and a set P of plans, the user can
identify the plan p ∈P that best matches the requirements of ak

by using classical multi-criteria decision making approaches
(e.g., [5]). Because of the heterogeneity of the requirements of
the applications, however, the plan maximizing the satisfaction
of the requirements of an application ak may not be the
plan maximizing satisfaction of the requirements of another
application ax ̸= ak. It would instead be desirable to combine
the requirements of all the applications, to select a plan that
satisfies all of them in the best possible way. A simple solution
would choose the plan that better satisfies the majority of
the application requirements. However, such a trivial approach
may select a solution that fully satisfies the requirements of
applications A\{ak} while not satisfying the requirements of
ak at all. This solution might then be considered not desirable
as it would strongly penalize application ak. To prevent such
a situation, we propose to adopt a consensus-based approach
aimed at choosing the plan that balances the preferences of
all the applications, hence enabling the user to determine a
solution that provides a good trade-off in the satisfaction of
the requirements of all her applications.

III. CONSENSUS FOR CLOUD PLAN SELECTION

Our approach to choose the plan that best fits the user
requirements operates in two steps (see Figure 3): 1) rank, for
each application, the providers on the basis of their compliance
with the application requirements; 2) reach a consensus in
the choice of the provider that better suits the application
requirements, based on the rankings obtained in the first
step. In the following, we present our approach, based on
TOPSIS for computing rankings, and Borda count for reaching
a consensus.

A. Ranking Cloud Plans for an Application

The first step of our solution aims at producing a ranking
of the plans in P for each application ak ∈ A. Such a ranking
reflects the satisfaction of the requirements of ak by the
different plans, being the first plan in the ranking the one
better satisfying all the requirements of ak.

To rank the plans for an application, we propose to adopt tra-
ditional multi-criteria decision making (MCDM) techniques.
In fact, MCDM approaches effectively identify, in a pool of
alternative solutions, the one that optimizes a set of objective
functions (i.e., application requirements in our terminology).
Among several MCDM techniques, a possible approach relies
on adopting TOPSIS [2] as it showed to provide good results

2

Fig. 3. Working of the approach

when applied to cloud scenarios, traditionally characterized by
many alternatives compared to the number of criteria [6].

Given an application ak ∈ A, a set P of alternative solutions
(plans, in our scenario), a set Ck of criteria relevant to ak,
the weights Wk assigned by ak to the criteria in Ck, and the
ratings R j[i], i = 1, . . . , |Ck|, j = 1, . . . , |P| assigned to plan p j

for criterion ci, TOPSIS produces a ranking of the alternatives
in P, ordering them according to how well they satisfy the
criteria (from the best to the worst). To produce such a ranking,
TOPSIS evaluates the distance of each plan in P from the
ideal and anti-ideal solutions, ranking higher those plans that
are closer to the ideal solution and farthest from the anti-
ideal solution. Intuitively, the ideal solution p+k for ak is a
plan (which may not belong to P) that satisfies in the best
possible way all the criteria relevant to ak. On the contrary,
the anti-ideal solution p−k for ak is a plan (which may not
belong to P) that satisfies in the worst possible way the criteria
relevant to ak. For each application in A, TOPSIS works in
three steps: i) it first computes a weighted decision matrix,
based on weights and ratings; ii) it then identifies the ideal and
anti-ideal solutions; and iii) finally, it ranks the plans based on
their distance from the ideal and anti-ideal solutions.

In the remainder of this section, we illustrate more in details
the working of TOPSIS in our scenario. For simplicity, in the
following, we refer our discussion to one application only (ak),
with the note that the process described is executed for all
applications in A (as clearly illustrated in the pseudo-code in
Figure 4).

Weighted decision matrix. To determine the weighted deci-
sion matrix for each application ak, TOPSIS uses a decision

matrix Rk, with a row for each criteria c∈Ck and a column for
each plan p ∈ P. Basically, the decision matrix for application
ak is composed of the rating vectors R j (restricted to the

INPUT
A = {a1, . . . ,an} /* set of applications */
P= {p1, . . . , pm} /* set of plans */
C = {c1, . . . ,cl} /* set of criteria */
W1, . . . ,Wn /* weight vectors */
R1, . . . ,Rm /* rating vectors */

OUTPUT
p ∈ P /* optimal plan */

MAIN

/* Step 1: rank plans for each application in A */

1: for each ak ∈ A do
2: let Rk be the decision matrix of size |Ck |× |P|
3: for each i = 1, . . . , |Ck | do
4: for each j = 1, . . . , |P| do
5: Rk[i][j] := R j[i] /* fill Rk with values in the rating vectors */
6: let Dk be the weighted decision matrix of size |Ck |× |P| for ak

7: for each i = 1, . . . , |Ck | do
8: for each j = 1, . . . , |P| do
9: Dk[i][j] := R[i][j] ·Wk [i] /* fill Dk with weighted ratings */

10: let D+
k be the weighted rating vector of size |Ck | for p+k

11: let D−
k be the weighted rating vector of size |Ck | for p−k

12: for each i = 1, . . . , |Ck | do
13: D+

k [i] := max{Dk [i][j] | j = 1, . . . , |P|} /* p+k rating for ci */
14: D−

k [i] := min{Dk [i][j] | j = 1, . . . , |P|} /* p−k rating for ci */
15: let Sk be a vector of size |P| for ak /* to store closeness values */
16: for each j = 1, . . . , |P| do
17: let dist+j be the distance between pj and p+k
18: let dist−j be the distance between pj and p−k

19: Sk[j] :=
dist−j

dist+j +dist−j
/* closeness between pj and ideal solutions */

20: let Ok be a list of size |P| to contain plans in ranked order for ak

21: for each j = 1, . . . , |P| do
22: insert pj in Ok in decreasing order of Sk [j]

/* Step 2: reach consensus */

23: for each ak ∈ A do
24: let Bk be the Borda vector of size |P| for ak

25: for each j = 1, . . . , |P| do
26: let x be the position of pj in Ok /* TOPSIS ranking of pj */
27: Bk[j] := |P|+1− x /* Borda score for plan pj and application ak */
28: for each j = 1, . . . , |P| do
29: Borda(pj) := ∑n

k=1 Bk[j] /* Borda score for plan pj*/
30: return p ∈ P s.t. !p′ ∈ P, p′ ̸= p : Borda(p′)> Borda(p)

Fig. 4. Algorithm for selecting the consensus-based optimal plan

p1 p2 p3 p4 p5

Availability 0.40 0.50 0.90 0.40 0.20
Performance 0.50 0.60 0.97 0.30 0.30
Security 0.60 0.70 0.80 0.20 0.40
Costs 0.50 0.40 0.10 0.60 0.70

Fig. 5. Decision matrix R1 for application a1

criteria Ck relevant to ak): each cell Rk[i][j] in the decision
matrix represents the rating R j[i] assigned to plan p j ∈ P, for
criteria ci ∈ Ck (lines 2–5). Figure 5 illustrates the decision
matrix for a1, obtained from the rating vectors in Figure 1
restricted to the first four criteria (i.e., those relevant for a1).
The original TOPSIS proposal normalizes the decision matrix,
to guarantee that values in different cells can be properly
compared. Since the rating values assigned to plans are already
a-dimensional values between 0 and 1, in our scenario, it is
not necessary to normalize the decision matrix Rk.
To properly take into consideration the importance of the

3

p1 p2 p3 p4 p5 p+1 p−1
Availability 0.016 0.020 0.036 0.016 0.008 0.036 0.008
Performance 0.010 0.012 0.019 0.006 0.006 0.019 0.006
Security 0.024 0.028 0.032 0.008 0.016 0.032 0.008
Costs 0.450 0.360 0.090 0.540 0.630 0.630 0.090

dist+j 0.182 0.271 0.540 0.096 0.035

dist−j 0.360 0.271 0.039 0.450 0.540

S1 0.665 0.500 0.068 0.824 0.939

Fig. 6. Weighted decision matrix D1, ideal solution p+1 , anti-ideal solution
p−1 , distances dist+j and dist−j of each plan pj from p+1 and p−1 , and relative
closeness S1 of each plan to the ideal solutions for application a1

different criteria in Ck for the considered application ak, the
decision matrix Rk is composed with vector Wk (i.e., with
the weights assigned to each criteria to reflect the application
needs). Each cell in the weighted decision matrix Dk for appli-
cation ak is computed as the product Dk[i][j] =Rk[i][j] ·Wk[i] of
the rating obtained by plan p j for criterion ci, and the weight of
criterion ci for application ak (lines 6–9). Figure 6 illustrates
the weighted decision matrix for application a1 of our run-
ning example. For instance, D1[Availability][p1] is obtained
as R1[Availability][p1]·W1[Availability]=0.4 ·0.04=0.016. Note
that the weighted decision matrix permits to identify, for each
criterion ci singularly taken, the best and the worst plan,
which correspond to the highest and lowest values in the row
representing ci. As an example, the best plan w.r.t. the Security

criterion for application a1 is p3, while the worst is p4.

Ideal and anti-ideal solutions. Based on the weighted de-
cision matrix Dk, TOPSIS is able to identify both the ideal
and the anti-ideal solutions p+k and p−k for application ak.
For the ideal solution p+k , the weighted rating for criterion
ci (denoted D+

k [i]) is the maximum weighted rating obtained
by a plan in P for ci (i.e., D+

k [i]=max{Dk[i][j] : p j ∈ P},
line 13). For instance, the ideal solution for application a1,
considering the weighted decision matrix in Figure 6, has
weighed ratings D+

1 =[0.036,0.019,0.032,0.630]. Similarly, for
the anti-ideal solution p−k , the weighted rating for criterion ci

(denoted D−
k [i]) is the minimum weighted rating obtained by a

plan in P for ci (i.e., D+
k [i]=min{Dk[i][j] : p j ∈P}, line 14). For

instance, the anti-ideal solution for application a1, considering
the weighted decision matrix in Figure 6, has weighted ratings
D+

1 =[0.008,0.006,0.008,0.090].

Ranking. To produce a ranking, TOPSIS then computes the
Euclidean distance of each plan p j ∈ P from the ideal p+k
and anti-ideal p−k solution in an l-dimensional space (with l

the number of criteria in Ck). Then, it computes the relative

closeness of each plan p j to the ideal solutions as
dist−j

dist+j +dist−j
,

where dist+j and dist−j the distance of p j from p+k and p−k ,
respectively (lines 15–19, where such closeness values are
maintained in a score vector Sk). For instance, the relative
closeness values of the plans in P to p+1 for application
a1 considering the weighted decision matrix in Figure 6, is
S1=[0.665,0.500,0.068,0.824,0.939]. The higher the value Sk,
the better the plan satisfies the requirements of application ak.
Then, TOPSIS produces a ranking of the plans for application

a1 a2 a3 a4 a5 a6 a7

1◦ p5 p3 p5 p1 p3 p4 p3

2◦ p4 p2 p4 p2 p2 p5 p2

3◦ p1 p1 p1 p5 p1 p1 p1

4◦ p2 p4 p2 p3 p5 p2 p5

5◦ p3 p5 p3 p4 p4 p3 p4

Fig. 7. Sample rankings of the plans for each application

ak by ordering them in decreasing order of Sk. For instance,
with reference to our running example, the ratings in Figure 1,
and the weights in Figure 2, the ranking of plans produced by
TOPSIS for application a1 is ⟨p5, p4, p1, p2, p3⟩ (see column
a1 in Figure 7).

B. Reaching Consensus

The second step of our solution aims at choosing a cloud
plan that balances the preferences of all user applications. A
straightforward approach to maximize requirements satisfac-
tion would adopt a majority voting, that is, it would choose
the cloud plan ranked first by most applications. For instance,
consider a scenario characterized by a set A = {a1, . . . ,a7}
of applications and a set P = {p1, . . . , p5} of plans, where
the rankings computed by TOPSIS for each application are
illustrated in Figure 7. The plan that would win with the
majority voting approach would be p3. However, as already
noted, this solution might be not desirable as p3 is ranked
last by three applications a1, a3, and a6, which would then be
strongly penalized.

We then propose to adopt a consensus-based voting tech-
nique, that permits to choose an alternative that is acceptable
for a broad set of voters (applications, in our scenario), rather
than simply counting majority. While noting that there are
different approaches that can be applied (e.g., [7], [8]), we
consider - as an example - the Borda count method [3]. In
our cloud scenario, alternatives correspond to plans and the
applications play the role of voters. To express its vote, each
application ak ∈ A associates a Borda score Bk[j] with each
plan p j ∈ P. Such a score reflects the rankings computed by
TOPSIS (or, more in general, by the chosen MCDM technique)
by assigning m= |P| points to the first ranked plan, 1 to the last
ranked plan, and m+1−x to the x-th ranked plan. The overall
Borda score Borda(p j) of a plan p j ∈ P is then obtained by
summing the scores assigned to the plan by each application,
that is, ∑n

k=1 Bk[j]. The plan with the highest Borda score is
the one that is chosen by the user, since it has the consensus
of all the applications. As an example, Figure 8 illustrates the
Borda scores assigned by each application to each plan, and
the overall score of each plan. It is interesting to see that the
chosen plan is p1, which is ranked first by one application only,
while p3 is only the third choice, even though it is ranked first
by three applications.

IV. RELATED WORK

Different issues have to be considered when moving appli-
cations and/or data to the cloud, and the scientific community
has recently addressed different problems (e.g., [1], [9]).
The line of work closest to ours deals with the problem

4

a1 a2 a3 a4 a5 a6 a7 Tot
p1 3 3 3 5 3 3 3 23
p2 2 4 2 4 4 2 4 22
p3 1 5 1 2 5 1 5 20
p4 4 2 4 1 1 5 1 18
p5 5 1 5 3 2 4 2 22

Fig. 8. Borda scores assigned to each plan by each application

of selecting the most suitable (set of) cloud provider(s) for
data and application outsourcing (e.g., [10], [11], [12]). The
work in [10] proposes a solution allowing a set of cloud
providers to publish the characteristics of their services, and
a user to select the one that better satisfies her requirements
for an application (differently from our scenario where we
must accommodate contrasting requirements of a set of ap-
plications). The proposal in [11], while sharing with our
work the assumption that users might have contrasting needs
when moving to the cloud, significantly differs from ours
since it solves conflicts among requirements by composing
multiple cloud services. The proposal in [12] focuses instead
on selecting a single cloud plan specifically focusing on cloud
data storage, while we aim at selecting the best plan on
which deploying a set of applications. The approach in [13]
pursues the goal of selecting the most suitable providers to
store data replicas, considering performances and providers
load. MCDM techniques have been also proposed to solve the
problem of cloud services/plans selection. For instance, the
work in [6] compares different MCDM techniques to select
the best cloud service based on performance measurements.
Our scenario is instead more general and supports generic
requirements on arbitrary criteria, with the specific support for
contrasting requirements to be jointly satisfied. The proposal
in [14] adopts an Analytical Hierarchical Process (AHP) based
ranking mechanism to properly weight the requirements of
an application to be outsourced to the cloud. While having
the same goal of selecting the most suitable cloud plan, this
proposal focuses on the requirements of a single application.

Other related works include proposals aimed at enabling
cloud providers to choose the best suite of services to offer to
their customers, considering the users requests and the need of
the providers to save on allocated resources (e.g., [15], [16],
[17]). This problem is orthogonal to the one addressed here,
since we consider the user (in contrast to the provider) point
of view.

Another major line of work focuses on security issues in
multi-cloud scenarios, proposing solutions to protect integrity
(e.g., [18], [19], [20], [21]) and confidentiality of accesses
(e.g., [22], [23]) to data outsourced to multiple providers.
While sharing with us a scenario characterized by multiple
cloud providers, these proposals are complementary to ours
as they specifically focus on the enforcement of protection
mechanisms.

V. CONCLUSIONS

We presented a solution enabling cloud users to choose
the plan, among the ones available in the cloud, that aims

at reaching consensus among plans preferred by different
applications. In our approach, each application individually
ranks the available cloud plans depending on how well they
satisfy the application requirements. The choice on the final
plan is then taken adopting a consensus-based approach on
the different rankings. Our work leaves space for further
extensions and improvements. In particular, in our work we
consider all applications, and rankings produced by them, to
be equally important when computing a solution to reach
consensus. This implies that the relative distance among plans
is not considered, only their position in the rankings is.
This observation is consistent with our assumptions, as we
are operating with multiple applications with independent
requirements, and independent desire for a most suitable plan,
and what is assumed to be important for finding consensus
is what is the best choice for each individual applications.
An interesting alternative to be investigated can consider the
application requirements by different applications as a single
ecosystem to be globally optimized, considering then not only
the rankings but the distance among plans, possibly evaluating
also preferences among applications.

ACKNOWLEDGEMENTS

This work was supported in part by the EC within the
7FP under grant agreement 312797 (ABC4EU) and within the
H2020 under grant agreement 644579 (ESCUDO-CLOUD).

REFERENCES

[1] P. Samarati and S. De Capitani di Vimercati, “Cloud security: Issues
and concerns,” in Encyclopedia on Cloud Computing, S. Murugesan
and I. Bojanova, Eds. Wiley, 2016, to appear.

[2] H. Ching-Lai and K. Yoon, Multiple attribute decision making: methods
and applications. Springer-Verlag, 1981.

[3] J. C. de Borda, Memoire sur les Elections au Scrutin. Histoire de
l’Academie Royale des Sciences de Paris, 1781.

[4] M. Galster and E. Bucherer, “A taxonomy for identifying and specifying
non-functional requirements in service-oriented development,” in Proc.
of IEEE SERVICES 2008, Honolulu, HI, USA, July 2008.

[5] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering,” Structural and multidisciplinary optimization,
vol. 26, no. 6, pp. 369–395, 2004.

[6] Z. Rehman, O. Hussain, and F. Hussain, “IaaS cloud selection using
MCDM methods,” in Proc. of IEEE ICEBE 2012, Hangzhou, China,
September 2012.

[7] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank aggregation
methods for the web,” in Proc. of ACM WWW 2001, Hong Kong, China,
May 2001.

[8] W. D. Cook and L. M. Seiford, “On the Borda-Kendall consensus
method for priority ranking problems,” Management Science, vol. 28,
no. 6, pp. 621–637, 1982.

[9] S. De Capitani di Vimercati, S. Foresti, and P. Samarati, “Managing and
accessing data in the cloud: Privacy risks and approaches,” in Proc. of
CRiSIS 2012, Cork, Ireland, October 2012.

[10] A. Goscinski and M. Brock, “Toward dynamic and attribute based publi-
cation, discovery and selection for cloud computing,” Future Generation
Computer Systems, vol. 26, no. 7, pp. 947–970, 2010.

[11] A. V. Dastjerdi and R. Buyya, “Compatibility-aware cloud service
composition under fuzzy preferences of users,” IEEE TCC, vol. 2, no. 1,
pp. 1–13, 2014.

[12] A. Ruiz-Alvarez and M. Humphrey, “An automated approach to cloud
storage service selection,” in Proc. of ACM ScienceCloud 2011, San
Jose, CA, USA, June 2011.

[13] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford, “DONAR:
Decentralized server selection for cloud services,” in Proc. of ACM
SIGCOMM 2010, New Delhi, India, August/September 2010.

5

[14] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking
of cloud computing services,” Future Generation Computer Systems,
vol. 29, no. 4, pp. 1012–1023, 2013.

[15] M. Anisetti, C. Ardagna, P. Bonatti, E. Damiani, M. Faella, C. Galdi,
and L. Sauro, “e-Auctions for multi-cloud service provisioning,” in Proc.
of IEEE SCC 2014, Anchorage, AL, USA, June–July 2014.

[16] M. Anisetti, C. Ardagna, F. Gaudenzi, and E. Damiani, “A cost-effective
certification-based service composition for the cloud,” in Proc. of IEEE
SCC 2016, San Francisco, CA, USA, June–July 2016.

[17] R. Jhawar, V. Piuri, and P. Samarati, “Supporting security requirements
for resource management in cloud computing,” in Proc. of IEEE CSE
2012, Paphos, Cyprus, December 2012.

[18] Y. Zhu, H. Hu, G. J. Ahn, and M. Yu, “Cooperative provable data
possession for integrity verification in multicloud storage,” IEEE TPDS,
vol. 23, no. 12, pp. 2231–2244, 2012.

[19] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A high-availability and
integrity layer for cloud storage,” in Proc. of ACM CCS 2009, Chicago,
IL, USA, November 2009.

[20] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Para-
boschi, and P. Samarati, “Integrity for distributed queries,” in Proc. of
IEEE CNS 2014, San Francisco, CA, USA, October 2014.

[21] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Efficient integrity checks for join queries in the cloud,”
JCS, vol. 24, no. 3, pp. 347–378, 2016.

[22] E. Stefanov and E. Shi, “Multi-cloud oblivious storage,” in Proc. of
ACM CCS 2013, Berlin, Germany, November 2013.

[23] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and
P. Samarati, “Three-server swapping for access confidentiality,” IEEE
TCC, 2015, pre-print.

6

