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Abstract 26 

Primary biological organic aerosols (PBOA) represent a major component of the coarse 27 

organic matter (OMCOARSE, aerodynamic diameter >2.5µm). Although this fraction affects human 28 

health and climate, its quantification and chemical characterization currently remain elusive. We 29 

present the first quantification of the entire PBOACOARSE mass and its main sources by analyzing 30 

size-segregated filter samples collected during summer and winter at the rural site of Payerne 31 

(Switzerland), representing a continental Europe background environment. The size-segregated 32 

water soluble OM was analyzed by a newly developed offline aerosol mass spectrometric 33 

technique (AMS). Collected spectra were analyzed by 3-dimensional positive matrix 34 

factorization (3D-PMF), showing that PBOA represented the main OMCOARSE source during 35 

summer and its contribution to PM10 was comparable to that of secondary organic aerosol. We 36 

found substantial cellulose contributions to OMCOARSE, which in combination with gas 37 

chromatography mass spectrometry molecular markers quantification, underlined the 38 

predominance of plant debris. Quantitative polymerase chain reaction (qPCR) analysis instead 39 
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revealed that the sum of bacterial and fungal spores mass represented only a minor OMCOARSE 40 

fraction (<0.1%). X-ray photoelectron spectroscopic (XPS) analysis of C and N binding energies 41 

throughout the size fractions revealed an organic N increase in the PM10 compared to PM1 42 

consistent with AMS observations. 43 

Introduction	  44 

Primary biological organic aerosol (PBOA) is a major source of coarse aerosol organic matter 45 

(OM). The detection of these particles has been the subject of studies for one and a half 46 

centuries.1-3 Studies4 have related single PBOA components to adverse health effects,5 and 47 

revealed their important role as ice and cloud condensation nuclei.6-10 Emissions of primary 48 

biological particles (PBAP) are estimated to be among the largest contributors of pre-industrial 49 

organic aerosols,11 therefore a precise estimate of their sources is also important for the 50 

development of accurate climate models.4 Nevertheless, PBOA characterization and 51 

quantification has received less attention than other types of aerosol sources and processes (e.g. 52 

traffic, mineral dust, sulfate, wood combustion and secondary organic aerosol), possibly because 53 

of technical limitations hindering the understanding of the sources and composition of this 54 

fraction.  55 

Traditional analytical techniques for the PBOA characterization include optical microscopy, 56 

cultivation of specific viable bacteria, fungi and algae and fluorescence microscopy for the 57 

quantification of functionalized or autoflorescent specific components.4 More recent approaches 58 

are classified into molecular techniques (e.g. chemical tracers determination, nucleic acids 59 

extraction and amplification), optical techniques (fluorescent and Raman spectroscopy), and non-60 

optical techniques. Fluorescence techniques are of particular relevance because biological 61 
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materials contain fluorophores.12,13 Non-optical approaches include different types of mass 62 

spectrometers; among these, we note the recent use of online-aerosol mass spectrometry (AMS) 63 

for the study of the submicron fraction.14-16 64 

Despite the vast literature focusing on the quantification of individual PBOA components, the 65 

quantification of the total PBOA mass and the main processes by which this fraction enters the 66 

atmosphere remains elusive. As a consequence, the International Panel on Climate Change 67 

201317 reported the global terrestrial PBOA emission to range between 50 and 1000 Tg/yr, 68 

highlighting the large gap in our knowledge about this fraction. Within this fraction, 28 Tg/yr 69 

were estimated to comprise fungal spore emissions using arabitol and mannitol as tracers.18 The 70 

use of these compounds as specific fungal spores tracers is still subject of discussion in the 71 

scientific community19,20 and there is a general indispensable need for the determination of 72 

PBOA concentrations and major emission processes through size-resolved field observations 73 

against which the global models can be evaluated. 74 

In this study, we present the first quantification of the total water-soluble PBOA (WSPBOA) 75 

mass using an offline Aerodyne Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS). The 76 

analysis was performed on PM1, PM2.5 and PM10 (particulate matter with an aerodynamic 77 

diameter < 1, 2.5 and 10 µm) filter samples collected concomitantly at the rural site of Payerne, 78 

Switzerland. WSPBOA quantification was achieved by 3-dimensional positive matrix 79 

factorization analysis (3D-PMF) of water soluble OA mass spectra, following the recently 80 

developed methodology described by Daellenbach.21 In comparison with previous PBOA online 81 

AMS observations,14-16 the filter samples water extraction step enabled accessing the 82 

WSOMCOARSE fraction. For the characterization of the main PBOA sources, the dataset was 83 

complemented with an unprecedented combination of measurements, including enzymatic 84 
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cellulose determination, quantification of bacterial and fungal spore DNA via quantitative 85 

polymerase chain reaction (qPCR), and gas chromatography mass spectrometry analysis (GC-86 

MS) of organic molecular markers. In this study, we discuss the quantification of the total PBOA 87 

mass via 3D-PMF, the quantification of its major components and their possible usage as PBOA 88 

tracers including bacteria and fungal spores measured via qPCR, plant debris estimate from n-89 

alkanes measurements, and carbohydrates. 90 

 91 

Material	  and	  Methods	  92 

Sample collection.  We collected in total 87 24h-integrated aerosol samples (Batch A) on 93 

quartz fiber filters at the rural background site of Payerne during June-July 2012 and January-94 

February 2013. Batch A included PM1, PM2.5, and PM10 samples collected in parallel using three 95 

High-Volume samplers (Digitel DA-80H equipped with PM1, PM2.5 and PM10 size-selective 96 

inlets) operating at 500 L min-1. In total 45 samples were collected during summer (15 samples 97 

per size fraction), and 42 during winter (14 samples per size fraction). Additionally, PM10 filters 98 

were collected every fourth day throughout 2013 following the same procedure (Batch B). In the 99 

following, the subscript coarse will denote for a generic aerosol component, the fraction 100 

contained between 2.5 and 10 µm. 101 

Aerosol characterization. An overview of the auxiliary analytical measurements can be 102 

found in Table 1, Table S2, and in the Supplementary Information (SI). In this section only 103 

offline-AMS, qPCR, and x-ray photoelectron spectroscopy (XPS) will be discussed in details. 104 

Table 1. Supporting measurements 105 

Measured variable  Batch A Batch B 
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PM Gravimetry All filters - 

WSOM mass spectral 
fingerprint Offline-AMS21 All filters All filters 

EC/OC 

Thermal Optical 
Transmittance using a 
Sunset Lab Analyzer22 

(EUSAAR2)23 

All filters - 

ions Ion Chromatography24 All filters - 

WSOC 

Water extraction Thermal 
Decomposition ND-IR 

determination using TOC 
analyzer (SI) 

All filters - 

Cellulose 

Cellulose enzymatic 
conversion to D-glucose 

and photometric 
determination25 

32 filters (9 summer 
PM10 filters, 4 winter 
PM10, 5 summer 

PM2.5, 9 summer PM1, 
and 5 summer PM1) 

- 

molecular markers 
(Table S2) 

In-Situ Derivatization 
Thermal Desorption Gas 

Chromatography Time-of-
Flight Mass Spectrometry 

(IDTD-GC-MS)26 

40 samples (15 
summer PM1, 15 
summer PM10, 5 

winter PM1, 5 winter 
PM10) 

- 

C1s, N1s Binding 
energies 

X-Ray Photoelectron 
Spectroscopy 

6 samples (3 summer 
PM10, 3 summer PM1) 

- 

bacterial and fungal 
spore DNA 

Quantitative Polymerase 
Chain Reaction genetic 

analysis27,28 

58 samples (all 
summer PM1, PM2.5, 
and PM10, all winter 

PM1 and PM10) 

- 

Carbohydrates (Table 
S2) 

IC coupled to a Pulsed 
Amperometric Detector 

(IC-PAD)29 
All samples - 

 106 

Offline-AMS. The Offline-AMS analysis entails an extraction of two 16 mm diameter punches 107 

per sample in 10 mL of ultrapure water (18.2 MΩcm, Total Organic Carbon < 5 ppb) via ultra-108 

sonication for 20 min at 30°C. Liquid extracts were subsequently homogenized for 40 s using a 109 
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vortex mixer and then filtered through 0.45 µm nylon membrane syringe filters. Filtered extracts 110 

were aerosolized and the generated particles were dried using a silica gel diffusion drier before 111 

measurement by HR-ToF-AMS.30 On average 10 mass spectra (60 s each) of the bulk WSOM 112 

were collected per extract. Before each sample measurement, 5 blank mass spectra were 113 

collected by nebulizing ultrapure water, and their average was subtracted from the corresponding 114 

individual sample mass spectra. The signal of field blank samples measured following the same 115 

procedure was statistically not different from the ultrapure water mass spectra. 116 

XPS. XPS analysis enabled monitoring the binding energies (BE) of C, S and N, providing 117 

insight into their oxidation state (typically higher BE are related to higher oxidation numbers), 118 

and thereby quantifying the organic N (Norg) mass through the size fractions. The same analysis 119 

was conducted on 3 field blanks and on N-containing surrogate standards deposited on blank 120 

quartz fiber filters. Tested standards included NaNO3 and (NH4)2SO4 for the characterization of 121 

the most abundant forms of inorganic N, while horseradish peroxidase and chloroperoxidase 122 

from caldariomyces fumago were used as surrogates for amine and amide containing proteins in 123 

PBOA. Signal identification and integration proceeded as follows. The obtained spectra were 124 

first aligned with a two-point BE calibration using the Si2p and the O1s peaks deriving from the 125 

quartz fiber filters as reference points. We estimated an energy accuracy of 0.3 eV, and an 126 

average fitting error of 1.4% by fitting the signals of replicate measurements of standard 127 

compounds and blanks and assuming a single Gaussian peak for each atom,. These parameters 128 

were then used for the fitting of the blank-subtracted C1s, and N1s signals in environmental 129 

samples, which consisted of several peaks from different chemical components.  The number of 130 

these peaks was determined such that fitting residuals (fraction of signal) equaled the fitting 131 

errors determined from the fitting of single compounds. The N1s peak widths were constrained to 132 
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be equal to the one derived from (NH4)2SO4 standard, while the C1s peak width was determined 133 

from blank filters. From the analysis of standard (NH4)2SO4 we derived an average N1s/S2p ratio 134 

of 0.80±0.02, which was used to estimate the N1s contribution from (NH4)2SO4 (N!"(!"!)!!!!). 135 

This contribution was fixed in proportion of that of S2p using the aforementioned N1s/S2p ratio 136 

and N1s peak width. This estimate neglected the contribution from organic or non-(NH4)2SO4 137 

sulfate. The uncertainty on the N!"(!"!)!!!! area was estimated based on the integration of the 138 

S2p peak. N1s fitting sensitivity analysis was performed by varying the N!"(!"!)!!!! peak position 139 

and area within our uncertainties. Only fittings of N!"(!"!)!!!!with residuals lower than our 140 

errors were retained. 141 

qPCR. We performed a qPCR analysis in order to quantify total bacterial and fungal spore DNA. 142 

DNA extraction was conducted following the procedure presented in the SI and specific 143 

universal primers (Table S3) were selected for total DNA quantification of bacterial and fungal 144 

spores. The extracted DNA was amplified using the qPCR technique described in Lang-145 

Yona.27,28 The total number of bacterial cells and fungal spores was estimated assuming a DNA 146 

content of 4.74·10-3 pg per bacterial cell and 3·10-2 pg per fungal spore respectively, based on the 147 

Escherichia coli and Aspergillus fumigatus genome lengths (4,639,221 bp and 29,384,958 bp, 148 

respectively).31 Total bacterial mass was estimated for PM1 and PM10 samples assuming as a 149 

reference the dry and wet E. coli cell weights (3·10-13 and 1·10-12 g, respectively),32 while total 150 

fungal spores mass was based on the A. fumigatus spore weight of 2.9·10-12 g.33 151 

 152 

3D-‐PMF	  153 

OA mass spectra collected by offline-AMS were analyzed using 3D-PMF to apportion the time-154 

dependent size-segregated (PM1, PM2.5, PM10) contributions of the water soluble organic 155 
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sources.34 We adopted a vector-matrix approach,35 also known as “Tucker1” approach36 in which 156 

we assumed constant mass spectra throughout the size fractions. The 3D-PMF algorithm 157 

describes the variability of the multivariate data-matrix (x) as the linear combination of static 158 

factor profiles (f) and their corresponding time and size-dependent contributions (g), such that 159 

    𝑥!,!,! =    𝑔!,!,!    ∙   𝑓!,!   +   𝑒!,!,!
!
!!!            (1)  160 

Here, 𝑥!,!,! denotes an element of the data matrix, while subscripts i, j and k represent time, 161 

size and organic ions (250 fitted organic ions in the range m/z 12 to 115) respectively. The 162 

subscripts p and z indicate the total number of factors selected by the user, and a discrete factor 163 

number (1 ≤ z ≤ p) respectively, while ei,j,k represents an element of the residual matrix.  164 

PMF was solved using the multi-linear engine algorithm (ME-2)37,38 (using the source finder, 165 

SoFi38) which enabled an efficient exploration of the rotational ambiguity by directing the 166 

solution toward environmentally relevant rotations. This was achieved by a-priori constraining 167 

𝑓!,!   and/or 𝑔!,!,! elements, and allowing the constrained elements to vary within a predetermined 168 

range defined by a scalar a, such that the returned 𝑓!,!′ or 𝑔!,!,!′ values satisfy eq 2.  169 

     fz,k’= fz,k ± a� fz,k                       (2) 170 

Here we constrained the f matrix elements for only one factor, related to hydrocarbon-like 171 

organic aerosol (HOA) from traffic39 (SI). 172 

PMF data and error input matrices (x and s) were constructed including ten mass spectral 173 

repetitions per filter sample. Data and error matrices were rescaled to WSOMi in order to 174 

compare source apportionment results with external tracers. WSOMi concentrations were 175 

estimated from the WSOCi measurements multiplied by the OM/OCi ratios determined from 176 

offline-AMS HR analysis (measured OM/OCi distribution 1st quartile 1.89, 3rd quartile 2.01).40 In 177 
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total, the 3D-PMF input matrices comprised 87 samples corresponding to 29 filters per size 178 

fractions.  179 

The error matrix elements si,j,k were determined according to eq 3 by propagating the blank 180 

standard deviation σi,j,k and the signal error �i,j,k accounting for electronic noise, ion-to-ion 181 

variability at the detector, and ion counting statistics.41,42 182 

     𝑠!,!,! =    �!,!,!
! + �!,!,!

!                    (3) 183 

The optimization of the 3D-PMF results is thoroughly presented in the SI. Briefly, to improve 184 

the factor separation we up-weighted selected variables dividing their corresponding 185 

uncertainties by a scalar c (>1).43 The sensitivity of model outputs to c and a-values was assessed 186 

and only solutions matching selected criteria were retained (SI). The variability of the results 187 

amongst the selected solutions was considered our best estimate of model errors. 188 

PMF factor contributions to total OM were estimated after PMF analysis as: 189 

     ZOAi = !"#$%!
!!

             (4) 190 

Here, [WSZOA] and [ZOA] denote for a generic Z source the concentration of the ambient water 191 

soluble organic aerosol and the total organic aerosol respectively, while Rz indicates the recovery 192 

efficiency for that source. In total, 5 OA factors were separated including HOA, summer 193 

oxygenated OA (S-OOA), winter oxygenated OA (W-OOA), biomass burning OA (BBOA), and 194 

primary biological OA (PBOA). The Rz,med determined by Daellenbach21 were applied to all 195 

factors except for PBOA, whose recovery was not previously estimated. Accordingly, we shall 196 

report hereafter the concentration of WSPBOA and estimate the PBOA water solubility.  197 

Source apportionment errors (σS.A.,Z,i) were estimated according to eq 5, which accounts for RZ 198 

and rotational uncertainty (σPMF,RZ,i), measurement repeatability (σREP,i), and WSOM uncertainty 199 

(σWSOC,i). 200 
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   𝜎!.!.,!,! =    𝜎!"#,!",!! + 𝜎!"#,!,!! + 𝑓!,!! ∙ 𝜎!"#$,!
!           (5) 201 

Here fZ denotes the relative contribution of the generic factor Z to WSOM. σWSOM,i includes 202 

WSOC blank variability and measurement repeatability. The σPMF,RZ,i term includes the 203 

variability of the rescaled PMF solutions and represents our best estimate of recovery errors and 204 

rotational ambiguity. The σREP,Z,i term was considered as our best estimate of experimental 205 

repeatability/errors and represents the variability of PMF results for the measurements 206 

repetitions. 207 

 208 

Results	  and	  Discussion	  209 

PM	  major	  components	  210 

A complete overview of the size-segregated chemical composition of winter and summer PM 211 

components is presented in Figure 1a. In the following, average and median values are indicated 212 

with the subscripts avg and med, respectively. 213 

 214 
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Figure 1. 1a) Seasonal PM chemical composition of the different size fractions. The OMi 215 
estimate was calculated from OCi measurements multiplied by the corresponding OM/OCi

 216 
retrieved from offline-AMS HR analysis. 1b) Average seasonal aerosol sources contributions to 217 
OM in the different size fractions. White are consistent with our estimate of the water insoluble 218 
PBOA fractions (Figure S8). Cellulose in particular represents the 82%avg of water insoluble 219 
OMCOARSE.	  220 
1c) Summer OMCOARSE major components. 1d) WSPBOA high resolution AMS mass spectrum. 221 

 222 

OM represented a major component of PM during summer and winter. While during winter 223 

large part of the OM10 (87%) was comprised in the PM2.5 fraction, during summer this fraction 224 

represented only 58%. In contrast, during summer secondary inorganic species (SO4
2-, NH4

+, and 225 

NO3
-) did not manifest a comparable increase in PMCOARSE (85% of the mass comprised in the 226 

PM2.5 fraction) suggesting a small contribution of additional secondary aerosols in the coarse 227 

fraction. Overall OMCOARSE accounted for 3 µg m-3
avg during summer, and as will be shown in 228 

the following, large part of this fraction constituted of PBOA (Figure S13).  229 

Similarly to OM, dust likely from resuspension44 was enhanced in the coarse fraction 230 

especially during summer. The upper limit for the inorganic dustCOARSE concentration was 231 

estimated as the difference between inorganic PM10 and inorganic PM2.5 (PMCOARSE,inorg), and 232 

accounted for 31%avg during summer and 5%avg during winter, although this estimate can include 233 

small sea salt contributions (SI). The obtained (Ca2+/PM)COARSE,inorg value of 4.2%med (1st quartile 234 

3.2%, 3rd quartile 7.7%) was consistent with the ratios reported by Chow45 for 20 different dust 235 

profiles (3.5±0.5%), and with values reported by Amato in Zürich.46 As a comparison, the total 236 

OMCOARSE concentration represented 36%avg of PMCOARSE (8.4 µg m-3), compared to the 62%avg 237 

for dustCOARSE,inorg. 238 

 239 

Size	  resolved	  OA	  source	  apportionment	  240 
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In this section we present the validation of the 3D-PMF factors (HOA, BBOA, W-OOA, S-OOA, 241 

and WSPBOA) which enabled the quantification of WSPBOA. Average source apportionment 242 

results are presented in Figure 1b and Figure 2.  243 

 244 
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Figure 2. 3D-PMF source apportionment results. 2a) Size fractional time series of PMF factors, 245 
corresponding tracers, and temperature. Error bars represent source apportionment uncertainty. 246 
2b) Size fractional increase (PM10/PM1) time series of PMF factors, and corresponding tracers. 247 
 248 

3D-PMF factors were associated to aerosol sources or processes according to mass spectral 249 

features, seasonal contributions, size fractional contributions, and correlation with tracers (Figure 250 

2). Given the lack of widely accepted methodologies to estimate the uncertainty of PMF results, 251 

in this work we considered σS.A.,k,i (Methodology section) as our source apportionment 252 

uncertainty, while the statistical significance of the factor contributions for each size fraction was 253 

based on our best error estimation (σS.A.,k,i, Table S4). 254 

HOA and BBOA contributions represented the only anthropogenic primary sources resolved in 255 

Payerne. In particular, HOA correlated with hopanes present in lubricant oils with a R=0.54 (SI). 256 

This correlation is also supported by the summer (HOA/EC)med ratio (0.63med) being consistent 257 

with other European studies reported by El Haddad and references therein.47 BBOA instead 258 

correlated with levoglucosan produced by cellulose pyrolysis (R=0.94). A levoglucosan/BBOC 259 

ratio of 0.18med was found, consistent with values reported (Huang and references therein48) for 260 

ambient BBOA observations. Both HOA and BBOA showed statistically significant 261 

contributions (>3σ) only in the submicron fractions. The seasonal trend of these anthropogenic 262 

factors was also significantly different: while the HOA (traffic) contribution was relatively stable 263 

and small across the year, BBOA showed a strong seasonality, rising from 6%avg of OM1 during 264 

summer to 73%avg during winter. 265 

Two OOA factors characterized by high CO2
+ contributions were separated according to their 266 

different seasonal trends. While W-OOA showed a strong correlation with NO3
- (R=0.94), S-267 

OOA showed a positive non-linear correlation with temperature, following the behavior of 268 

biogenic volatile organic compounds emissions.49 The relative contribution of W-OOA to OM1 269 
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rose from 5%avg during summer to 22%avg during winter, while the S-OOA contribution to OM1 270 

decreased from 59%avg during summer to 4%avg during winter. W-OOA was the only factor 271 

significantly contributing (within 3σ) to OM in the size range 1-2.5 µm (48%avg of the W-OOA 272 

mass in winter), while the W-OOACOARSE contribution was never statistically significant. 273 

NH4NO3 behaved similarly with 31%avg of the mass in winter comprised in PM2.5-PM1.  During 274 

summer instead S-OOA showed a different behavior in the three size fractions: its contribution 275 

was significant for PM1, but not in the size range 1-2.5 µm. The overall S-OOA2.5 fraction 276 

accounted for 82±2%avg of the mass, while the remaining 18±2%avg was included in OMCOARSE. 277 

Considering the sum of both OOA factors, the OOA/NH4
+

med ratio for PM1 was 2.1, consistent 278 

with values reported by Crippa50 for 25 different European rural stations, suggesting that Payerne 279 

can be representative of typical European rural environments. 280 

The last PMF factor showed an unusual size fractionation with 96%avg of its mass comprised in 281 

the PMCOARSE during summer (0.54±0.02 µg m-3), corresponding to 49% of the WSOMCOARSE 282 

(or 19%avg of the OMCOARSE). This factor was ascribed to water soluble primary biological 283 

organic aerosol, given its striking mass spectral resemblance to biological carbohydrates and 284 

plant debris extracts with high contribution from C2H4O2
+, C2H5O2

+ and C3H5O2
+ (Figure 1d, S3, 285 

S10), its enhancement in OMCOARSE especially during summer, and its correlations with 286 

biological aerosol components such as arabitol, mannitol, glucose,19,20,51,52 cellulose, total 287 

bacteria, and fungal spores. The detection of such factor was unprecedented in the AMS 288 

literature given the limited transmission efficiency of the AMS aerodynamic lens for the coarse 289 

fraction53, although Schneider15 proposed the use of some of the PBOA fragments detected here 290 

to assess the contribution of PBOA to PM1 from online AMS measurements in the Amazon. 291 
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Also during winter WSPBOA showed a smaller but still significant contribution to the 292 

OMCOARSE (30% of WSOMCOARSE or 8% of OMCOARSE) with 68%avg of the mass comprised in the 293 

coarse fraction. This result was corroborated by a minor but statistically significant enhancement 294 

in the coarse fraction (in comparison with PM2.5) of biological carbohydrates 295 

(monosaccharidesBIO: Ʃ(glucose, mannose, arabitol and mannitol)), cellulose, and fungal spores. 296 

The chemical characteristics and origin of this fraction will be thoroughly discussed in the 297 

following sections. 298 

Composition	  of	  OMCOARSE.	  299 

This section presents a detailed characterization of OMCOARSE, of which 91%avg of the mass was 300 

ascribed to PBOA. 301 

Water soluble and insoluble OMCOARSE. Figure 1c displays the relative chemical composition of 302 

OMCOARSE during summer. The major part of OMCOARSE could be ascribed to cellulose 303 

(50±20%avg) and WSOMCOARSE (38%avg). Given the low cellulose water solubility, and 304 

consequently its negligible contribution to WSOM, the two fractions together accounted for 305 

88%avg of the OMCOARSE. Regarding the origin of the WSOMCOARSE fraction, 3D-PMF results 306 

revealed that only WSPBOA and WSS-OOA contributed significantly to WSOMCOARSE during 307 

summer, explaining respectively 51%avg and 49%avg of the WSOMCOARSE mass. Assuming the 308 

water insoluble OMCOARSE fraction not ascribed to S-OOA to be entirely related to PBOA, we 309 

calculated a RPBOA lowest estimate of 0.18med (1st quartile 0.15, 3rd quartile 0.25) according to eq 310 

S2, S3 and S4. This assumption was corroborated by the high cellulose contributions to the water 311 

insoluble OMCOARSE fraction (82%) and by the good correlation of WSPBOA with OMCOARSE-S-312 

OOACOARSE (R=0.54), especially considering that the water insoluble OMCOARSE fraction 313 

represented 62%avg of the total OMCOARSE. 314 
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Contribution of carbohydrates to PBOA and OMCOARSE. Measured carbohydrates 315 

(carbohydratesmeas: Ʃ   (monosaccharidesBIO,   mannosan,   levoglucosan,   and   galactosan)) 316 

represented 3% of OMCOARSE (8% of WSOMCOARSE), of which 93%avg was related to 317 

monosaccharidesBIO. This fraction, albeit minor, was highly correlated with PBOA (R=0.73) and 318 

cellulose (R=0.85), showing a size fractionation similar to WSPBOA especially during summer 319 

with 96%avg of the mass included in the OMCOARSE. A similar behavior was noted in winter, with 320 

29%avg of the carbohydratesmeas,COARSE consisting of monosaccharidesBIO, suggesting a minor, but 321 

statistically significant contribution of primary biological emissions, consistent with WSPBOA  322 

from 3D-PMF results (figure 2). Also other biological components, such as cellulose and fungal 323 

spores showed a small but significant contribution in winter (respectively 0.06 µg m-3 and 2�101 324 

spores�m-3 detected on the 31st of January 2013 PM10 filter sample). However, the overall 325 

correlation of single monosaccharidesBIO with each other and with other PBOA components was 326 

relatively poor, indicating a high variability in the molecular composition of the carbohydrates. 327 

Such variability highlighted the diversity of biological processes producing these sugars, clearly 328 

hindering their use as single tracers for reliably estimating PBOA concentrations in our 329 

conditions. 330 

By ascribing all the monosaccharidesBIO,COARSE to WSPBOA we estimated a contribution of 331 

monosaccharidesBIO to WSPBOA of 15%avg. Consistently, the WSPBOA average mass spectrum 332 

(Figure 1d), similarly to BBOA, showed a typical fingerprint deriving from carbohydrate 333 

fragmentation15 as evidenced by strong contributions from C2H4O2
+, C2H5O2

+ and	   C3H5O2
+ 334 

fragments (Figure 1b, S3, S4, S10). We estimated that >89% of the remaining WSPBOA fraction 335 

could be related to water soluble polysaccharides (after the subtraction of the 336 

monosaccharidesBIO mass spectrum using D-mannitol and D-glucose as surrogates). This 337 
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estimate was based on the non-monosaccharidesBIO-WSPBOA mass spectrum, assuming 338 

C2H4O2
+, C2H5O2

+ and C3H5O2
+ as specific carbohydrates fragmentation tracers15 (Figure S4), 339 

and using amylopectin and starch (Figure S10) as surrogates for polysaccharides. This result, 340 

together with the high cellulose contribution to OMCOARSE, indicated that the majority of PBOA 341 

consisted of carbohydrates. 342 

Part of the remaining WSPBOA fraction instead was attributed to Norg. 3D-PMF results 343 

showed that WSPBOA explained great part of the variability of minor N-containing fragments 344 

(C3H9N+, C3H8N+, C5H12N+), consistent with XPS observations of an increased Norg signal in 345 

PMCOARSE. The WSPBOA spectrum as expected showed a higher N/C ratio (0.061) than other 346 

factors.  Overall both the carbohydrate signature and the increased N/C content were consistent 347 

with the interpretation of our factor as WSPBOA. 348 

Quantification of OM related to particulate abrasion products from leaf surfaces (OMPAPLS) 349 

using n-alkanes. n-alkanes (C18-C39) measured via gas chromatography mass spectrometry 350 

(IDTD-GC-MS) showed distinct signatures during the different seasons and particle sizes. While 351 

during winter most of the alkane mass was contained within PM1 (90% for alkanes with an odd 352 

number of C; 97% for alkanes with an even number of C), during summer only 50%avg and  353 

70%avg of the odd and even alkanes were contained within PM1. The summer-time signatures 354 

were consistent with Rogge’s54 observations of alkane emissions from OMPAPLS dominated by 355 

odd alkanes with the highest contributions from hentriacontane (C31) followed by nonacosane 356 

(C29) and tritriacontane (C33) (Figure S9). By contrast, in winter we observed a higher 357 

contribution of smaller alkanes (C19-C24), without a clear odd/even predominance pattern, 358 

which was consistent with winter urban observations55 possibly related to temperature-driven 359 

partitioning of combustion emissions, and consistent with vehicular fuel combustion profiles.47,56 360 
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This was corroborated by a slight increase in the average HOA concentration during winter 361 

compared to summer (Figure 2). We estimated the contribution of OMPAPLS by applying a 362 

chemical mass balance approach (SI) using the n-alkanes/OMPAPLS ratios reported by Rogge.56,57 363 

Assuming either green or dead leaves, and a possible (OM/OC)green,dead leaves range between 1.2 364 

and 2.2, the total estimated range for OMPAPLS,COARSE spanned from 0.5 to 1 µg m-3
avg, 365 

corresponding to 16-32%avg of the OMCOARSE. This result, together with high cellulose 366 

contributions, indicated that plant debris was the dominating source of OMCOARSE.  367 

Fungal spores. Fungal spores measured by qPCR represented a minor component of OM. During 368 

summer, their contribution was above the detection limit only in the coarse fraction, representing 369 

just 0.01%avg of the OMCOARSE mass (corresponding to 0.4 ng m-3, or 2·102 spores·m-3). 370 

Nevertheless, the measured fungal spore/m3 concentration during summer was consistent with 371 

ranges reported in other studies.58 During winter, only one PM10 sample showed concentrations 372 

above the detection limits. The summer arabitol/fungal spore (5·102 pg/sporeavg) and 373 

mannitol/fungal spore (8·102 pg/sporeavg) ratios were noticeably variable and higher than those 374 

reported by Bauer19 (1.2 pg arabitol/fungal spore, 1.7 pg mannitol/fungal spore), suggesting that 375 

these compounds are not unique fungal spore tracers, but given the high levels of cellulose and 376 

OMPAPLS could be related to plant debris, as already proposed by other studies.20 377 

Bacteria. Likewise, total bacterial mass estimated by qPCR represented a minor contributor to 378 

OMCOARSE. Assuming dry or wet E. coli cellular weights (SI), the total PM10 bacterial mass 379 

during summer was estimated as 1.3±0.7 ng m-3
avg or 4±0.2 ng m-3

avg, corresponding to 2·103 380 

cells m-3
avg. This is consistent with the ranges reported in other studies,58-60 especially 381 

considering that low concentrations are commonly observed at remote and rural locations.61 The 382 

bacterial size fractionation seasonality was similar to the other biological components: while 383 
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69%avg of the bacterial mass was comprised between the PM10 and PM1 fraction during summer, 384 

all bacterial mass (2·103 cells m-3
avg) was detected in the submicron fraction during winter. 385 

Surface chemical composition from XPS analysis. Another approach to look at the entire 386 

aerosol is to study the chemical composition of its surface. This was performed by XPS 387 

measurements, which enabled monitoring the evolution of the C1s and N1s BE throughout the 388 

different size fractions and thus providing chemical information also about the water insoluble 389 

fraction. Although XPS sensitivity was limited to the particle surface (7 nm thickness) and low 390 

volatility compounds (XPS technique operates under high vacuum at 10-10 torr), results showed a 391 

significant increase of Norg in the PMCOARSE. We resolved both an inorganic and organic N1s 392 

peak, with N1s,org occurring at a lower BE (397.7±0.3 eV, Figure 3a) than that of N!"(!"!)!!!! 393 

and NaNO3 (400.0±0.8 eV and 407.7±0.4 eV respectively). Likewise, tested Norg surrogates 394 

(horseradish peroxidase and chloroperoxidase from caldariomyces fumago) showed the N1s peak 395 

occurring at similar BE (398.7±0.3 eV) corroborating our interpretation of the Norg peak position. 396 

Overall we observed a substantial increase of the Norg signal in PM10 in comparison to PM1 397 

(Figure 3a) reflected by an Norg/C1s ratio increase from 0.022±0.001 in PM1 to 0.027±0.005 in 398 

PM10. From the Norg/C1s ratio and from the bulk total C measurements (TC=EC+OC)Sunset, we 399 

estimated the Norg,1 and Norg,10 concentrations to be 0.05±0.03 µg m-3
avg and 0.13±0.01 µg m-3

avg 400 

respectively. This estimate assumed Norg to follow the TC intra-particle concentration gradient. 401 

While a crude assumption, this is the best and only methodology providing an estimate of the 402 

Norg total mass.  403 

Figure 3b displays the C1s peak fitting for a PM1 and a PM10 filter sample. We report an 404 

increase of the less oxidized C1s fraction (C1s peak at lower BE) in PM10, which was qualitatively 405 

consistent with the odd-alkanes size fractionation. Overall, in all size fractions, the dominant C1s 406 
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contribution did not derive from the most oxidized C1s peak (Figure 3b), but from the 407 

intermediate oxidized C peak, which could be related to alcohols, ketones, and aldehydes. This 408 

result, although relative only to the surface and to the less volatile fractions, seemed in 409 

agreement with other studies.62 410 

 411 

Figure 3. 3a) XPS measurements: N1s peak fitting (PM1 and PM10 sample from 04/07/2012). 3b) 412 
XPS measurements: C1s peak fitting (PM1 and PM10 sample from 04/07/2012).  413 

 414 

Yearly	  estimate	  of	  PBOA	  relative	  contribution	  to	  OM10	  415 

From 3D-PMF analysis we identified a set of AMS fragments as potential PBOA tracers (figure 416 

S4). Among these fragments we selected C2H4O2
+ and C2H5O2

+ to estimate the PBOA 417 

contribution for the entire year 2013 (batch B) given their relatively high signal to noise, and 418 

because they are commonly fitted in HR analysis. Both fragments showed a contribution 419 

statistically higher than 0 within 1σ only to the BBOA, PBOA, and HOA factors. However, 420 

given the low HOA concentration at the rural site (Figure 2a), and given the low contribution of 421 
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the two fragments to the HOA profile (0.02 and 0.03% respectively) we neglected the HOA 422 

contribution to C2H4O2
+ and C2H5O2

+. Therefore the water soluble C2H5O2
+ and C2H4O2

+ 423 

fractional contribution to WSOM (𝑊𝑆𝑓C2H5O2
+

i and 𝑊𝑆𝑓C2H4O2
+

i) could be expressed as: 424 

𝑊𝑆𝑓C2H5O2
+

i = 𝑓C2H5O2
+

WSPBOA ·  
!"#$%&
!"#$ i + 𝑓C2H5O2

+
WSBBOA ·  

!"##$%
!"#$ i  (6) 425 

𝑊𝑆𝑓C2H4O2
+

i = 𝑓C2H4O2
+

WSPBOA ·  
!"#$%&
!"#$ i + 𝑓C2H4O2

+
WSBBOA ·  

!"##$%
!"#$ i  (7) 426 

Where 𝑓C2H5O2
+

PBOA, 𝑓C2H4O2
+

PBOA, 𝑓C2H5O2
+

BBOA, 𝑓C2H4O2
+

BBOA denote the C2H5O2
+, and 427 

C2H4O2
+ fractional contributions to the WSPBOA and WSBBOA mass spectra. 428 

(WSPBOA/WSOM)i values could be derived by solving the two linear equation system. This 429 

approach will be referred to as “60/61 methodology” in the following. We assessed the accuracy 430 

of the 60/61 methodology by comparing the (WSPBOA/WSOM)i values obtained from 3D-PMF 431 

with the values predicted from the 60/61 methodology for the Batch A PM10 filter samples. 432 

During summer the (WSPBOA/WSOM)med,3D-PMF/(WSPBOA/WSOM)med,60/61 methodology ratio was 433 

0.98, while during winter 0.85. The winter discrepancy was likely due to non-negligible 434 

contributions of W-OOA or other sources to fC2H4O2
+ and fC2H5O2

+. However the two 435 

methodologies yielded highly correlated time series (R2=0.81) and agreed within 15%, with 436 

much better agreement during summer. 437 

From the 60/61 methodology we estimated a WSPBOA/WSOMavg of 20% in summer, and 6% in 438 

winter. Assuming a RPBOA of 0.18med (SI), the average PBOA contribution to OM10 was estimated 439 

as 37%avg, with higher values during summer (60%avg vs. 19%avg in winter). 440 

Overall, these results revealed that the contribution of PBOA to OM10, mainly from plant debris, 441 

may be as high as SOA contribution during summer in Payerne. While Payerne can be 442 

considered as representative of typical European rural environments50 and therefore results here 443 

may be extended to other sites, other field observations are indeed required. This work represents 444 
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a benchmark for future field studies providing a methodology for the thorough determination of 445 

PBOA mass and origin, and one of the first size-segregated datasets necessary to constrain 446 

PBOA in global models. 447 

448 
  449 
Figure 4. 2013 yearly WSPBOA10 relative contribution to WSOM10 estimated from the 60/61 450 
methodology (Batch B). Red boxes denote WSPBOA relative contribution (median, 1st and 3rd 451 
quartiles) to WSOM10 during June-July 2012 and January-February 2013 determined by 3D-PMF 452 
analysis (Batch A). The uncertainty relative to measurements repetitions and to the 453 
apportionment of fC2H4O2

+ and fC2H5O2
+ can be interpreted as a precision estimate, while the 454 

sensitivity analysis comparing 3D-PMF and 60/61 methodology results, shows an underestimate 455 
of the WSPBOA/WSOM ratio calculated with the 60/61 methodology of 2%med during summer 456 
and 15%med during winter. 457 
 458 
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