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Abstract 

An innovative flame pyrolysis method has been employed for the preparation of Ni-based 

catalysts for the steam reforming of ethanol. Titania and lanthana supports, characterized 

by variable acidity and Ni loading have been compared, as well as different procedures to 

add the Ni active phase to the support, affecting metal dispersion. Samples characterization 

evidenced that the one pot preparation of the catalyst by flame pyrolysis resulted in the 

formation of a mixed oxide phase and, thus, in higher Ni dispersion even at the highest 

loading. The metal-support interaction was also strengthened when preparing the samples 

by FP than by conventional impregnation.  

Steam reforming at 750°C resulted in full ethanol conversion without byproducts, so that a 

fuel processor able to feed a 5 kWe + 5 kWt fuel cell may operate with ca. 1.35 kg of catalyst. 

Tests at lower temperature were also carried out, focusing on the optimization of the 

resistance to coking. 

The best results at 500°C were achieved for the FP-prepared sample supported over La2O3 

and containing 15 wt% Ni as active phase. 
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1. Introduction 

A general look to the energetic world situation could suggest the importance to foster 

the production of energy from non-traditional sources. The increasing demand of energy due 

to the impressive industrialization in many countries, the evident reduction of fossil fuel 

reserves, the influence of anthropogenic emissions contributing to the climate change, led 

to a growing international pressure to the conservation of the environment.  

The production of energy through sustainable processes has been often focused on 

H2 as energy vector 1–4. Among the methods to produce H2, Steam Reforming (SR) is one 

of the most common and feasible 5–12. The use of raw materials from biomass may be 

considered for H2 production with neutral carbon balance, even though detailed life-cycle 

assessment is compulsory 13. In this order, bioethanol is nowadays very attractive, given the 

fact that it is the most available biofuel worldwide and, as second generation biofuel, it does 

not affect the production of food and feed. Low concentration solutions are acceptable for 

steam reforming, given the need of steam cofeeding, whereas they are not suitable for 

different applications, such as combustion. This is even more important because the 

anhydrification of bioethanol represents one of its major production costs. Therefore, diluted 

bioethanol may be attractive from an economical point of view 14,15, provided that it does not 

contain poisons depressing catalytic activity.     

Many examples of catalytic materials for this application can be found in the literature. 

Verykios et al. studied H2 production by SR of bioethanol at first focusing on Ni as active 

phase loaded on different supports  16,17 and on supported noble metals 18. Different Co-

based catalysts have been proposed as active and stable for H2 production 19–22. 

Nonetheless, Ni commonly showed higher catalytic activity in activating the C-C bond 23–26, 



in addition to a better control of the active phase dispersion. Other papers on Ethanol SR 

(ESR) report that it is possible to limit coke formation and to lower the reaction temperature, 

especially by finely tuning catalyst formulation and the metal-support interaction 24,27,28. 

One challenge for SR at high temperature is catalyst deactivation by sintering, so 

that high thermal resistance of the catalytically active material is a pressing need. On the 

other hand, it is envisaged to operate SR at lower temperature, to decrease the heat input 

to the reactor with the aim of process intensification. Nevertheless, at low temperature 

catalyst deactivation may be impressive by coking, due to the formation of carbon filaments, 

and occurs mainly over big Ni and Co particles 11. The evolution of filamentous C and its 

correlation with ethanol conversion and byproducts at 500°C has been recently addressed  

29 and the mechanism of formation, mainly from CO and CH4 has been detailed 21,30. 

Additional coking may occur over acidic sites of the support. Acidity can be limited 

by using intrinsically basic oxides or by titrating surface acidity by using a basic promoter  

29,31–35. For instance, CaO was used to tune ZrO2 acidity 36. In such case, Ca2+ substituting 

for Zr4+ in the framework additionally induced the formation of oxygen vacancies, which 

helped oxydrils activation, with further improvement of the resistance to coking. Lanthana 

was very often used as a mean to limit support acidity for this application 29,32,34,35,37–41. 

Therefore, an appropriate catalyst formulation should be found, which allows to reach the 

highest catalytic performance together with proper resistance to deactivation. To date, it is 

suggested to operate with very well dispersed active metals, properly stabilized at high 

temperature through strong interactions with the support (having limited or nil acidity). 

 The Flame Spray Pyrolysis (FP) technique 42–47 proved able to prepare catalysts with 

high surface area, usually connected with high catalytic activity, and good thermal stability. 

High dispersion of the active phase can be achieved in principle, which may improve catalyst 

resistance to coking. Thus this preparation technique may help solving both stability 

problems related to sintering and coking. 



Therefore, the aim of this work was the demonstration of the features of FP prepared 

catalysts for the SR of ethanol, in order to address the key stability issues for this application 

at both high and low temperature. This is an innovative synthesis procedure for this specific 

application, and already proved interesting to prepare catalysts for the steam reforming of 

methanol 48,49 and glycerol 50. A set of catalysts was synthesized one-pot by flame pyrolysis 

and compared with another set prepared by impregnation of the active phase on the FP-

prepared support. This high temperature synthesis was adopted to impart suitable thermal 

resistance to the samples and to provide a good metal dispersion and a high metal support 

interaction, which indeed showed a pivotal importance to improve resistance towards 

coking. Two supports were also compared, i.e. TiO2 and La2O3, characterized by different 

surface acidity and redox properties, as well as different Ni loading. All the catalysts were 

characterized by various techniques, X ray powder diffraction (XRPD), N2 physisorption, 

scanning electron or transmission microscopy (SEM-TEM-EDX), temperature programmed 

reduction (TPR). The activity testing was done in a home-made micro-pilot plant for ethanol 

steam reforming under different process conditions. 

 

2. EXPERIMENTAL 

2.1. Catalysts preparation 

TiO2 was prepared from titanium isopropoxide (Aldrich, purity 97%) dissolved in o-

xylene (Aldrich, purity 97%) with a 0.1 mol/L final concentration referred to TiO2.  

La2O3 was produced from lanthanum acetate (Aldrich, purity 99,9%), dissolved in 

propionic acid (Aldrich, purity 97%) and diluted with o-xylene (1:1 vol/vol) achieving a final 

concentration of 0.1 mol/L referred to La2O3.  

The solutions were fed to the home-designed FP burner 45 with 2.2 ml/min flow rate 

and 1.5 bar pressure drop across the nozzle. The latter was co-feed with 5 L/min of O2. 



In case of catalysts prepared in one-step by FP the active metal has been directly 

incorporated during the support synthesis. Ni was added to the above mentioned mother 

solutions by dissolving Ni acetate (Aldrich, purity 98%) in propionic acid.  Nominal Ni loading 

was 5, 10 and 15 wt% on both supports. A perovskitic catalyst precursor (LaNiO3) was also 

prepared, for which the mother solution was prepared with a La/Ni ratio = 1 (mol/mol), 

labelled in the following as LaNi-F. The same catalyst formulations were prepared by using 

the FP-synthesised bare TiO2 and La2O3 and by adding Ni through wet impregnation with 

and aqueous solution of Ni(NO3)2.                                                                                                                                                                                                       

The catalysts were reduced post synthesis for 1h at 800°C in a 20 vol% H2 / N2 gas mixture. 

Sample codes in Table 1 are denoted as x-Ni/y-z, where x represents Ni wt%, y is T for TiO2 

and La for La2O3 supports respectively, z = F or I for samples prepared in one step by FP or 

with Ni added by impregnation on the FP-prepared support. 

 

2.2 Catalysts characterization 

           X-rays diffraction (XRD) analysis was performed on a Phillips PW3020 instrument.  

Specific surface area and pore size distribution were evaluated through the collection of N2 

adsorption-desorption isotherms at 77K on a Micromeritics ASAP 2010 instrument. Surface 

area was calculated on the basis of the Brunauer, Emmet and Teller equation (BET). Prior 

to the analysis the samples were outgassed at 300°C overnight. 

Scanning electron microscopy (SEM) has been carried out using a Philips XL-30CP 

instrument and the surface and elemental composition of the catalysts was determined using 

energy dispersive X-ray analysis (EDX). The scanning electron microscope was equipped 

with a LaB6 source and an EDAX/DX4 detector. The acceleration potential voltage was 

maintained between 15 keV and 20 keV and samples were metallized with gold.  

Transmission electron microscopy (TEM) was performed with a Philips XL-30CP 

electron microscope. 



Temperature programmed reduction (TPR) was performed by placing the catalyst in 

a quartz reactor and heating by 10°C/min from 25 to 800°C in a 5 vol% H2/Ar stream flowing 

at 40 mL/min. H2 consumption was monitored continuously by means of a mass 

spectrometer (MS). 

 

2.3 Ethanol steam reforming (ESR) 

Activity tests were performed by means of a micro pilot plant constituted by an 

Incoloy 800 continuous downflow reactor heated by an electric oven. The reactor 

temperature was controlled by an Eurotherm 3204 TIC. The reactor may be fed both with 

liquid and gaseous reactants and at the reactor outlet there is trap for the collection of 

possible liquid products and a gas sampling point. 

The catalysts were pressed, ground and sieved into 0.15-0.25 mm particles. Ca. 0.5 

g were loaded into the reactor after dilution 1:3 (vol/vol) with SiC of the same particle size. 

Catalyst activation was accomplished by feeding 50 cm3/min of a 20 vol% H2/N2 gas mixture, 

while heating by 10 °C/min up to 800 °C, then kept for 1 hour. During activity testing 0.017 

cm3/min of a 3:1 (mol/mol) H2O:CH3CH2OH liquid mixture were feed to the reactor by means 

of a HPLC pump (Waters, mod. 501). The mixture was vaporized at the reactor inlet and 

added with 56 cm3/min of N2, used as internal standard for GC analysis, and 174 cm3/min 

of He. Such dilution of the feed stream was calibrated so to keep the reactants mixture in 

the vapor phase even at zero conversion at the reactor outlet. The activity tests were carried 

out at atmospheric pressure, GHSV=2500 h-1 (referred to the ethanol + water gaseous 

mixture) at 500, 625 and 750 °C. The analysis of the out-flowing gas was carried out by a 

gas  chromatograph (Agilent, mod. 7980) equipped with two columns connected in series 

(MS and Poraplot Q) with a thermal conductivity detector (TCD), properly calibrated for the 

detection of ethanol, acetaldehyde, acetic acid, water, ethylene, CO, CO2, H2. Material 

balance on C-containing products was checked to account for coke deposition. Repeated 



analyses of the effluent gas were carried out every hour and the whole duration of every test 

at each temperature was ca. 8h. The data reported in the Tables are averaged between 4 

and 8 h-on-stream, if not else specified. 

            The raw data, expressed as mol/min of each species outflowing from the reactor,  

have been elaborated to give the following parameters: 

 

Products distribution: Yi= mol i/∑ (mol i) (E1) 

C balance: 100- (((molCH3CH2OH*2)in-∑(mol Ci*αi)out)/(molCH3CH2OH*2)in)*100 (E2) 

Conversion: Xi= (mol iin-mol iout)/mol iin , with i=H2O, CH3CH2OH            (E3) 

Selectivity: Si= (mol i/i)(mol ethanolin - mol ethanolout) (E4) 

H2 productivity: mol H2 out/min kgcat (E5) 

 

Where i = products detected, dry basis; αi= number of C atoms in the i-th molecule; i= 

stoichiometric coefficient of species i in the ESR reaction. 

 

3. Results and discussion 

 

We selected flame pyrolysis as a new mean for the preparation of SRE catalysts due to the 

possibility to impart high thermal resistance to the prepared samples during the high 

temperature synthesis. This is important during testing at high temperature (>600°C) in order 

to achieve suitable resistance to sintering. It is also important at lower temperature thanks 

to the intimate contact between Ni and the active phase and strong metal-support interaction 

possibly achievable through this synthesis procedure. This may be important to improve 

resistance to coking by keeping Ni well dispersed. In order to check these features we 

focused on two different supports. TiO2 proved interesting during previous investigations 

28,50, so here we tuned Ni loading and addition method. La2O3 was used mainly as basic 



additive to control surface acidity of alumina 29,32,34,35,39,41, and was here proposed as bulk 

support. The recipe for FP synthesis was optimized on the basis of previous investigations 

for the preparation of mixed oxides 43–46. We have chosen propionic acid as main solvent for 

the dissolution of the precursor salts in the case of lanthana supported samples, whereas 

we used xylene for the dissolution of the Ti precursor. Xylene was in any case added 1:1 

also to the mother solution based on propionic acid to increase flame temperature, and the 

concentration of the solution was optimized with liquid flowrate to get a suitable compromise 

between productivity and surface area 45.  

An estimate of flame temperature based on IR thermograms when using propionic 

acid/xylene mixtures under the present synthesis conditions has been reported elsewhere 

46. Here we can roughly estimate a flame temperature ca. 1000 °C in the core of the main 

flame.  

 

3.1. Textural, structural and morphological characterization  

The composition and synthesis method for all the samples are summarised in Table 

1. 

The samples were characterized by different specific surface area (SSA), depending 

on the support. SSA was 84 and 41 m2/g for TiO2 and La2O3, respectively.  After deposition 

of the active phase by impregnation the SSA dramatically decreased. By contrast, samples 

made directly by FP showed SSA comparable with the respective support in the case of 

La2O3-based samples. This is not surprising since impregnation may occlude part of the 

porosity of the sample, whereas the one-pot introduction of Ni during the synthesis in 

principle should not affect the textural properties of the sample. By contrast, SSA decreased 

by ca. 20-30% with respect to the bare support in the case of the TiO2-supported catalysts 

prepared one pot by FP because a macroscopic structural modification occurred passing 

from anatase (Ti-F) to rutile (X-Ni/Ti-F), as described below. 



EDX analysis allowed to check catalysts composition. The results show a higher 

atomic ratio of Ni/La with respect to Ni/Ti for both the FP-made and impregnated samples, 

as expected from nominal composition. However, the samples prepared in one step by FP 

were characterized by lower Ni/(La,Ti) ratios than those prepared by impregnation. EDS 

analysis is not properly a surface-sensitive tool, but it does not have high in-depth sensitivity. 

In this light, we can conclude higher surface exposure obtained by impregnation of the active 

phase than by one step synthesis. This in turns means a higher Ni dispersion into the support 

matrix for the FP-prepared samples. Furthermore, due to high stability of the LaNiO3 mixed 

oxide, it is hard to keep NiO segregated on the surface when supported over La2O3. 

The TiO2 sample showed a highly crystalline structure composed of rutile and 

anatase, the latter being the main component (Fig.1), whereas La2O3 was constituted by the 

highly hydrated form La(OH)3, only. Ni addition during the FP synthesis modified the crystal 

structure of the support and rutile became the predominant phase (Fig.1), the only one after 

sample activation by reduction at 800°C. Similar results were achieved for the impregnated 

samples and at different Ni loading (Fig. 2). We did not get significant evidence of reflections 

attributed to Ni oxides or metallic Ni in the fresh samples (Fig. 2a), whereas Ni reflections 

appeared in the activated samples (Fig. 2b) and their intensity increased as expected with 

loading. Furthermore, metal dispersion was higher in the case of the samples prepared one-

pot by FP than for the impregnated ones. This feature can be important to improve 

resistance to coking. Indeed, the modification of the structure around the Ni species plays a 

key role for the development of durable and stable Ni catalysts with lower C deposition and 

Christensen et al. 51 demonstrated the importance of the crystallite size of Ni for the steam 

reforming of methane. 

After the addition of the active phase to the FP made lanthana, a lot of new reflections 

appeared that could be attributed to NiO, mainly as mixed oxide with the support: La2NiO4, 

NiO/La2O3 or LaNiO3 (Fig. 2). After reduction, La(OH)3 became the main phase, even with 



LaNiO3, while La2NiO4 almost disappeared and reflections of metallic Ni became more 

intense. The formation of a mixed oxide may be helpful to keep the metal well dispersed on 

the support, thus limiting the coking activity. 

              SEM micrographs (Fig. 3) of all the samples show that they were composed of 

uniformly sized agglomerates (ca. 50 nm). The primary particles were much smaller as 

observed by TEM analysis (Fig. 4), but different depending on the support and preparation 

method. The lanthana support was constituted by uniform nanoparticles, ca. 20-40 nm in 

size, but the high hydration degree (see XRD) induced agglomeration during impregnation, 

as testified by the TEM picture of sample 5-Ni/La-I. Similar images were obtained at higher 

Ni loading. This phenomenon was not observed for the sample synthesized in one step (e.g. 

5-Ni/Ti-F in Fig. 4). On the contrary, a bit smaller (15-30 nm) and uniform particle size was 

observed for all the TiO2 supported samples, irrespectively of the Ni loading and preparation 

method. 

TPR analysis was made to determine the reduction temperature of Ni ions for each 

sample. As reported in previous investigations, this parameter was an important indication 

of the metal-support interaction strength. In particular, for a given metal and support couple, 

the highest the reduction temperature, the strongest the metal support interaction and/or the 

metal dispersion. Smallest particle size was also previously correlated to a lowest coking 

rate  25–28,36. 

TPR patterns of significant samples are reported in Fig. 5-7. The H2 consumption 

pattern of 15 wt%Ni supported over TiO2 and La2O3 is reported in Fig. 5 for differently 

prepared catalysts. Lower reducibility, i.e. higher reduction temperature, was observed for 

the FP prepared samples with respect to the impregnated ones. This is commonly ascribed 

to higher dispersion, which is indeed imparted by the one pot synthesis with respect to 

impregnation. Higher reducibility characterized the TiO2 supported samples, with respect to 

the lanthana-based ones, especially when prepared by impregnation. This denotes a 



stronger metal-support interaction between NiO and La2O3, in case also leading to a mixed 

oxide formation (harsher reducibility), as observed indeed by XRD.  

Increasing metal loading determines increasing H2 consumption, but substantially 

similar reduction temperature in the case of the impregnated samples (Fig. 6 and 7). This 

denotes a quite similar NiO dispersion, which is expected to be reasonably low due to 

relatively high loading on supports with moderate surface area. 

By contrast, the one pot synthesis led to slightly higher reduction temperature with 

increasing Ni loading. This was ascribed to the formation of an increasing amount of mixed 

oxide, as detected also by XRD.  

 

3.2. Catalytic activity for the ESR – High temperature testing 

           All the catalysts tested at 750 °C showed full ethanol conversion and negligible 

formation of carbon deposits, as testified by the C balance ca. 100% (Table 2). The blank 

test evidenced marked thermal conversion of ethanol at this temperature, but it 

predominantly induced ethanol dehydrogenation to acetaldehyde. 

The FP-prepared samples were usually characterized by higher H2 productivity due to 

slightly higher water conversion. The reason can be searched in the intimate contact 

between the metal particles and the support, which is responsible of water activation. Thus, 

a more dispersed active phase can enhance the utilization of activated oxydrils and 

hydrogen species to complete ethanol conversion into reformate gas. The superior catalytic 

activity of the FP samples is also evident for the steam reforming of methane. In this context, 

methane is formed by ethanol decomposition and its reforming is favored by the good Ni 

dispersion here achieved, as evidenced by XRD and TPR. High metal loading is needed 

with the impregnated samples to achieve complete methane conversion, whereas no 

methane outflow was observed with the FP prepared samples even at low metal loading, 



except for sample 15-Ni/La-F. The higher Ni dispersion and metal support interaction may 

account also for this point.  

           Overall, the H2 productivity ranged between 1.7 and 2.3 mol/min gcat. This can be 

further improved by adding water gas shift reactors to convert CO. Assuming the use of the 

reformate to feed a fuel cell with ca. 40% efficiency towards electrical energy, the catalyst 

amount needed to feed a 5 kWel fuel cell would be 1.35-1.8 kg. This is a conservative 

estimation without taking into account the additional H2 production through water gas shift 

reactors, usually connected in series to the reformer for H2 purification before feeding the 

fuel cell. This amount of catalyst is competitive with literature reports for demonstrative units 

of such size 52–56; catalyst volume is e.g. reported as 1.8 L for a methanol reformer 54.  

 

3.3. Catalytic activity for the ESR – Low temperature testing 

 

           With the aim of process intensification, it is desirable to lower the steam reforming 

temperature to limit the heat load to the reactor 14,57,58, but at such low temperature coke 

accumulation is not effectively counter balanced by its removal by steam gasification 59,60. 

This may induce rapid catalyst deactivation by formation of encapsulating coke or carbon 

nanofilaments 61. The C balance is an effective parameter to monitor possible coke 

accumulation under these reaction conditions, as extensively described elsewhere 62.  

           The results of activity testing at 500 °C are summarised in Table 3. The blank test 

revealed limited ethanol conversion at this temperature in the absence of any catalyst. The 

major product also in the present case was acetaldehyde. 

Both the FP and impregnated catalysts prepared over lanthana with the lowest Ni loading 

(5-10 wt%) do not reach a satisfactory ethanol conversion. Non negligible selectivity to 

acetaldehyde was also observed, together with incomplete methane reforming, overall 

depressing H2 productivity.  



C balance (blank test at 500°C returned 91  4 %) was generally higher for the FP prepared 

samples, coupled with a good durability with time-on-stream. As above mentioned this is 

ascribed to the higher dispersion of Ni and its strong metal-support interaction. High Ni 

loading is needed to attain full ethanol conversion and no C2 byproducts in the outlet gas at 

such a low reaction temperature. 

By comparing the two supports, contrasting effects were evident. On one hand, TiO2 

usually led to higher activity (i.e. superior ethanol conversion, lower selectivity to 

acetaldehyde and methane) 63. On the other hand, the different acid-base character of the 

support and different ability to disperse and stabilize the active phase induced a remarkable 

difference in the resistance towards coking, La2O3 being much more preferable from this 

point of view since it exhibits excellent stability with time-on-stream. The motivation of the 

higher C balance in the case of lanthana supports is primarily due to its basic character. The 

addition of lanthanum to modify a CoOx catalyst under SRE have exhibited a significant 

reduction of deposited coke over the active phase to prolong the lifetime of the catalyst. We 

also observed higher Ni dispersion when supported over La2O3, especially when prepared 

by FP. This is another reason for higher resistance to coking, inhibiting in this case the 

formation of C nanofilaments due to the smaller Ni particle size. In this sense, the excessive 

Ni loading achieved with LaNiO3 was detrimental for coking activity. Indeed, in spite of the 

1:1 ionic dispersion in the precursor, after activation the high Ni concentration led to 

unavoidable decrease of dispersion. This in turn determined an unsatisfactory C balance.   

           It can be overall concluded that, based on the highest C balance and H2 productivity, 

the best performing sample at 500°C was 15-Ni/La-F. Stable activity was confirmed for at 

least 8 h-on-stream (Fig. 8). Non negligible selectivity to methane was a drawback, which 

may be limited by energetically valorising this byproduct. Indeed, if the produced reformate 

is used in a fuel cell with typical 75% fuel utilisation (usually reported for PEM fuel cells 6452), 

the byproduct methane, together with the spent reformate exiting the fuel cell, can be used 



to heat up the steam reformer through a post-combustor. This would enable to improve the 

overall system efficiency and cost sustainability of the system. It should be also remarked 

that significant CO is outflowing in the reformate, imposing proper purification of H2 

according to FC purity needs. If e.g. a PEM FC is used, as reported elsewhere 52, max 20 

ppmv CO concentration is allowed. This requires the addition of a post reforming water gas 

shift unit and further purification by methanation or preferential oxidation. Methanation would 

be preferable in this case since no additional dilution of the stream would be needed and 

the produced methane may be additionally valorised in the post-combustor. 

Finally, the equilibrium composition (dry basis) was calculated as a function of temperature 

by means of the Aspen Plus software. The results are reported in Fig. 9, where the best 

results at 500°C and 750°C obtained with the present 15-Ni/La-F sample are superimposed. 

This comparison allows to conclude that the equilibrium H2 productivity has been reached 

under the selected operating conditions with the best catalyst. 

Finally, the present results have been compared with recent reports on SRE over Ni-based 

catalysts. Lanthanum oxide was used to limit alumina acidity, leading to stable Ni catalysts. 

However, ethanol conversion at 500°C was not complete in reports by Ma et al. 65, who used 

ca. 1 order of magnitude lower time factor than in the present case. Complete conversion 

was instead attained by Osorio-Vargas et al. 41 under conditions much similar to the present 

ones, although showing some byproducts. Rapid decrease of conversion (after ca. 4 h-on-

stream) were reported elsewhere 29. In conclusion, the present FP-prepared catalysts seem 

competitive with the most recent literature examples and La2O3 proved an interesting bulk 

support, not only a basic promoter for acidic oxides. 

            

4. Conclusions  

Ni-based catalysts with different metal loading and supported over lanthana or titania 

were synthesized and tested for the steam reforming of ethanol at different temperature. A 



straightforward preparation procedure was proposed, i.e. flame pyrolysis, leading to high 

metal dispersion. This allowed to improve catalytic activity and most of all the resistance 

towards coking and sintering. Suitable thermal resistance was also achieved during high 

temperature operation. These are fundamental parameters for the practical exploitation of 

the process. 

Satisfactory H2 productivity was achieved at 750°C, allowing to obtain a reformate 

flowrate sufficient to feed a 5 kWe fuel cell by using 1.35 kg of the best performing catalyst, 

as determined following a conservative estimation without taking into account further H2 

production by WGS, usually couples downstream for H2 purification before feeding fuel cells.  

Attempts of process intensification were also done by decreasing the operating 

temperature to 500°C. Such a temperature is very critical as for coking. The FP technique 

proved very effective to impart good Ni dispersion and strong metal-support interaction, thus 

limiting the formation of C nanotubes. The intrinsic acidity of the support has also an 

important role to avoid ethanol dehydration to ethylene and its consequent polymerization 

to form additional coke. In this respect, lanthana was much more effective than titania. 

However, the support played also a key role on metal dispersion. The highest dispersion 

was achieved over lanthana, also thanks to the formation of mixed Ni-La oxides during the 

one pot FP synthesis.               
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Table 1: Composition and main physical properties of the samples. SSA = specific surface 

area from BET regression of N2 adsorption/desorption data. Actual Ni/Ti or La molar ratio 

from EDX analysis. Particle size as detected by TEM analysis. 

 

 

 

 

 

 

 

 

 

 

Sample Composition SSA 

(m2/g) 

Ni/(Ti or La) 

(mol/mol) 

Ni / NiO 
particle size 

(Nm) 

Ti-F TiO2 84 - - 

La-F La2O3 41 - - 

5-Ni/Ti-I 5wt% Ni /TiO2 - 0.09 5 – 20 

10-Ni/Ti-I 10wt% Ni /TiO2 6.4 0.12 10 - 20 

15-Ni/Ti-I 15wt% Ni /TiO2 - 0.30 15 - 25  

5-Ni/Ti-F 5wt% Ni /TiO2 55 0.05 5 - 15 

10-Ni/TI-F 10wt% Ni /TiO2 62 0.13 5 – 15 

15-Ni/Ti-F 15wt% Ni /TiO2 53 0.16 10 - 15 

5-Ni/La-I 5wt% Ni /La2O3 - 0.29 10 - 20 

10-Ni/La-I 10wt% Ni /La2O3 11 0.58 25 - 35 

15-Ni/La-I 15wt% Ni /La2O3 - 0.62 80 - 100 

5-Ni/La-F 5wt% Ni /La2O3 48 0.12 - 

10-NiI/La-

F 

10wt% Ni /La2O3 42 0.32 5 - 10 

15-Ni/La-F 15wt% Ni /La2O3 40 0.52 5 - 15 

LaNi-F LaNiO3 (Ni = 24 wt%) 11 1.09 5 - 10 



Table 2:  Activity testing at 750 oC, water/ethanol= 3 (mol/mol), GHSV= 2500 h-1. S = 

selectivity. Averaged data between 4 and 8 h-on-stream. 

 

 

 

 

 

 

 

 

 

 

 

 

Catalyst 

 

C balance 

(%) 

H2 productivity 

  (mol/min)/ kgcat 

Ethanol 

Conversion 

(-) 

S CH3CHO    

(%) 

S CH4 

(%) 

Blank 103 ± 3 0.061±0.006 0.54±0.04 62 ± 4 0 

5-Ni/La-F 103 ± 4 1.93 ± 0.10 1.0 0 0 

5-Ni/La-I 103 ± 3 1.8 ± 0.2 1.0 0 0.7 ± 0.2 

5-Ni/Ti-F 105 ± 6 2.07 ± 0.14 1.0 0 0.9  ± 0.2 

5-Ni/Ti-I 99 ± 3 1.7 ± 0.2 1.0 0 1.2 ± 0.3 

10-Ni/La-F 100.0 ± 1.4 2.05 ± 0.03 1.0 0 0 

10-Ni/La-I 102 ± 2 1.85 ± 0.02 1.0 0 1.05 ± 0.12 

10-Ni/Ti-F 100 ± 3 1.40 ± 0.03 1.0 0 0 

10-Ni/Ti-I 95.4 ± 1.7 1.77 ± 0.10 1.0 0 0 

15-Ni/La-F 98 ± 4 1.85 ± 0.13 1.0 0 1.2 ± 0.3 

15-Ni/La-I 99 ± 7 2.3 ± 0.5 1.0 0 0 

15-Ni/Ti- F 100.4 ± 1.8 2.12 ± 0.14 1.0 0 0 

15-Ni/Ti-I 101 ± 2 1.96 ± 0.06 1.0 0 0 

LaNi-F 101 ± 7 1.9 ± 0.2 1.0 0 0 



 

Table 3:  Activity testing at 500 °C, water/ethanol= 3 (mol/mol), GHSV= 2500 h-1. S = 

Selectivity. Averaged data between 4 and 8 h-on-stream. 

 

 

* Datum based on one value only, the remaining values of selectivity being nil. 

 

 

 

 

 

 

 

 

Catalyst 

 

C balance 

        (%) 

H2 productivity 

(mol/min)/ kgcat 

Ethanol 

Conversion 

(-) 

S CH3CHO 

    (%) 

S CH4 

    (%) 

Max coking 
rate  

(gC/min kgcat) 

Blank 98 ± 4 n.d. 0.09 ± 0.03 82 ± 2 0 0 

5-Ni/La-F 95 ± 8 0.88 ± 0.09 0.6 ± 0.2 12 ± 5 8.5* 0.52 

5-Ni/La-I 67 ± 8 0.6 ± 0.2 0.66 ± 0.06 9.1 ± 0.5 1.3 ± 0.3 1.60 

5-/Ni/Ti-F 75 ± 4 1.6 ± 0.2 1.0 0 4.8 ± 0.2 1.10 

5-Ni/Ti-I 58 ± 5 1.07 ± 0.07 1.0 3.7 ± 1.4 2.3 ± 0.4 1.70 

10-Ni/La-F 89 ± 2 1.18 ± 0.05 0.72 ± 0.05 7.4 ± 0.2 6.7 ± 0.3 0.49 

10-Ni/La-I 93 ± 4 1.42 ± 0.07 0.97 ± 0.04 3.7 ± 0.4 9.7 ± 0.7 0.51 

10-Ni/Ti-F 82 ± 8 0.90 ± 0.06 1.0 2.5 ± 0.9 3.5 ± 0.3 0.45 

10-Ni/Ti-I 75 ± 8 1.4 ± 0.2 1.0 0 12.5 ± 1.6 0.41 

15-Ni/La-F 95 ± 2 1.75 ± 0.02 1.0 0 9.8 ± 0.3 0.52 

15-Ni/La-I 78 ± 5 1.8 ± 0.4 1.0 0 4.9 ± 1.9 0.43 

15-Ni/Ti-F 61 ± 2 1.44 ± 0.05 1.0 0 3.5 ± 1.0 0.33 

15-Ni/Ti-I 69 ± 3 1.67 ± 0.02 1.0 0 5.0 ± 0.6 0.38 

LaNi-F 83.3 ± 0.8 1.69 ± 0.08 1.0 0 7.3 ± 0.2 0.46 



 

FIGURES 

Fig. 1: XRD patterns of TiO2 based samples. From bottom up: Ti, 15-Ni/Ti-F and 15-Ni/Ti-

F after activation. 

 

 

 

 

 

 



Fig. 2: XRD patterns of a) as prepared and b) activated samples. From bottom up: 10-

Ni/Ti-I, 10-Ni/Ti-F, 10-Ni/La-I, 10-Ni/La-F. 

a) 

 

b) 

 

 

 



Fig. 3: Typical SEM micrographs of the FP-made samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 4: TEM micrographs of selected samples. Marker size: 100 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 5: TPR patterns of differently supported and prepared samples. MS signal intensity 

referred to H2 consumption. 
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Fig. 6: TPR patterns of lanthana-supported samples prepared by FP (a) and impregnation 

(b). MS signal intensity referred to H2 consumption. 
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Fig. 7: TPR patterns of titania-supported samples prepared by FP (a) and impregnation 

(b). MS signal intensity referred to H2 consumption. 
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Fig.8: Sample 15-Ni/La-F tested at 500°C, performance vs. time-on-stream. a) Reactants 

conversion and C balance; b) products distribution (H2 balance). 
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Fig.9: Equilibrium molar fractions vs. temperature (continuous lines). Markers represent 

experimental data obtained with sample 15-Ni/La-F. Caption of symbols: H2 squares, CO 

diamonds, CO2 x. 

 

 

  



TOC 

 

New catalysts have been prepared by flame pyrolysis for ethanol steam reforming 
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