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Abstract

Bin Packing Problems with Item Fragmentation (BPPIF) are variants of classical
Bin Packing in which items can be split at a price. We extend BPPIF models
from the literature by allowing a set of heterogeneous bins, each potentially having
a different cost and capacity. We introduce extended formulations and column
generation algorithms to obtain good bounds with reasonable computing effort. We
test our algorithms on instances from the literature. Our experiments prove our
approach to be more effective than state-of-the-art general purpose solvers.
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1 Introduction

Bin Packing Problems with Item Fragmentation (BPPIF) haves been intro-
duced to model problems in diverse domains, like routing of consolidated traf-
fic in optical networks and VLSI circuit design [1]. In their bin-minimization
variant a set I of items, each having a size di, and a set of bins J , each having
a capacity C, are given, together with a fragmentation budget F . The aim
is to assign items to the minimum number of bins; up to F item splits are
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allowed: whenever an item is split, it is replaced by two fragments; the split
point is arbitrary, but the sum of fragment sizes must equal the size of the
original item. Recursive fragmentations are allowed, but each split counts in
the budget. The final set of fragments need then to be assigned to the bins, in
such a way that the sum of item (fragment) sizes assigned to the same bin do
not exceed C. Recent contributions to the field include both approximation
algorithms [3] and exact methods [2], both approaches proving to be effec-
tive. As stressed in [3], major interest is currently in making BPPIF models
more flexible. In this paper we tackle the generalization of BPPIF, in its bin-
minimization variant, in which each bin j ∈ J has a potentially different cost
vj and capacity cj, and the overall cost of the used bins needs to be minimized.
We refer to our generalization as the Variable Cost and Size BPPIF (VCSB).

2 Model

We first observe the following.

Proposition 2.1 An optimal VCSB solution always exists, in which (a) each
item is split in at most two fragments (b) each bin contains at most two frag-
mented items (c) each set of k bins contains at most k − 1 fragmented items.

Any solution satisfying (a)–(c) is called primitive [1]. A formal proof is
omitted, but intuitively given a set of k bins and a solution assigning a subset
of items Ī ⊆ I to them, a Next Fit with Fragmentations procedure produces a
fragmentation pattern that comply with (a)–(c). Fragmented items link one
bin another in a chain structure, that includes a subset Ī ⊆ I of items and a
subset J̄ ⊆ J of bins. On feasible chains it always holds

∑
i∈Ī di ≤

∑
j∈J̄ cj.

Let Ω be the set of all feasible chains. Following the framework of [2] we model
the VSCB with the following chain-based extended formulation:

min
∑

p∈Ω
(
∑

j∈J
vj ȳ

p
j )z

p (1)

s.t.
∑

p∈Ω
x̄p
i z

p = 1 ∀i ∈ I (2)

∑

p∈Ω
ȳpj z

p ≤ 1 ∀j ∈ J (3)

∑

p∈Ω
f̄ pzp ≤ F (4)

zp ∈ {0, 1} ∀p ∈ Ω. (5)
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Coefficient x̄p
i (resp. ȳpj ) is 1 if item i (resp. bin j) is included in chain p, 0

otherwise. Coefficient f̄p is the number of fragmentations performed in chain p.
Binary variables zp are 1 if chain p is selected, 0 otherwise. Since (

∑
j∈J vj ȳ

p
j )

represents the cost of using the set of bins in chain p, the objective function (1)
aims at minimizing the overall cost of selected chains. Constraints (2) ensure
that each item is included in a selected chain. Constraints (3) ensure that
each bin is included in at most one selected chain. Constraints (4) enforce the
fragmentations budget to be respected.

3 Algorithms

Formulation (1)–(5) includes an exponential number of variables. In order to
obtain dual bounds on the value of the optimal solution we relax integrality
conditions and exploit column generation techniques. Without loss of quality
in the bound, we also relax constraints (2) in ≥ form. Let λi ≥ 0, μj ≤ 0 and
η ≤ 0 be the dual variables associated to constraints (2), (3) and (4), resp..
The associated pricing problem is the following.

min
∑

j∈J
(vj − μj)−

∑

i∈I
λixi − ηf

s.t.
∑

i∈I
dixi ≤

∑

j∈J
cjyj

∑

j∈J
yj ≤ f + 1

xi ∈ {0, 1} ∀i ∈ I, yj ∈ {0, 1} ∀j ∈ J, f ≥ 0

Since if
∑

j∈J yj = 0 also
∑

i∈I xi = 0, such a setting is never profitable.
Therefore we set f = (

∑
j∈J yj) − 1, obtaining a variant of a 0–1 Knapsack

Problem (KP) in which capacity consumption has a (possibly non monotone)
cost. We solve it with an ad-hoc pseudo-polynomial time algorithm, whose
main idea is to find, for each value of capacity c = 0 . . .

∑
j∈j cj (a) the com-

bination of bins of minimum reduced cost giving at least overall capacity c
(b) the combination of items of minimum reduced cost using at most capacity
c (c) sum up these two contributions to obtain an optimal pricing solution
using capacity c (d) return the best pricing solution over all values of c. The
key observation is that both steps (a) and (b) can be performed by solving a
single KP each, that in turn can be done in pseudo-linear time. Therefore, our
pricing algorithm has pseudo-linear time as well. When column generation is
over we also perform rounding to search for good primal solutions.
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Instances CPLEX CG

Cap. Weight S G(%) T(s) S G(%) T(s)

T L 0 8.57 0.11 9 0.49 0.64

T M 0 10.00 0.04 0 9.15 1.06

T S 0 16.67 0.03 0 16.53 0.99

L L 0 25.00 0.10 10 0.00 0.44

L M 0 12.12 0.10 4 2.24 0.60

L S 1 10.00 0.06 0 10.43 0.90

Overall 1 13.73 0.073 23 6.47 0.771

Table 1
Results on instances adapted from [1].

We implemented our algorithms in C++, using SCIP 3.1 as framework
and CPLEX 12.6.2 to solve LP subproblems. Our tests ran on a PC with a
2.1GHz CPU and 8GB of RAM.We compared to the branch-and-cut algorithm
of CPLEX, with default parameter settings, exploiting a compact formulation
of the VSCBPP adapted from [2], and stopping the computation at the root
node. We considered a dataset adapted from the literature [1]. The dataset
includes instances with either Tight (T) or Loose (L) capacities, and items
whose size is either Small (S), Medium (M) or Large (L). Preliminary results
on 6 classes of 10 instances each with |I| = 20 are reported in Table 1. Capacity
and size distribution are indicated in the first two colums. The Table includes
two blocks, one for CPLEX and one for our Column Generation algorithm
(CG). Each block reports the number of instances whose optimality was proved
(S) the average optimality gap obtained (G) and the time required to complete
the computation (T). CPLEX turned out to be faster, but CG results were
more accurate, requiring reasonable additional CPU time. In particular, CG
was able to directly solve many more instances to proven optimality.
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