
ar
X

iv
:1

60
2.

00
45

8v
1

 [
cs

.L
O

]
 1

 F
eb

 2
01

6

Counting Constraints in Flat Array Fragments

Francesco Alberti1, Silvio Ghilardi2, and Elena Pagani2

1 Fondazione S. Raffaele, Milano, Italy
2Università degli Studi di Milano, Milano, Italy

February 2, 2016

Abstract

We identify a fragment of Presburger arithmetic enriched with free
function symbols and cardinality constraints for interpreted sets, which
is amenable to automated analysis. We establish decidability and com-
plexity results for such a fragment and we implement our algorithms.
The experiments run in discharging proof obligations coming from in-
variant checking and bounded model-checking benchmarks show the
practical feasibility of our decision procedure.

1 Introduction

Enriching logic formalisms with counting capabilities is an important task
in view of the needs of many application areas, ranging from database the-
ory to formal verification. Such enrichments have been designed both in
the description logics area and in the area of Satisfiability Modulo Theories
(SMT), where some of the most important recent achievements were decid-
ability and complexity bounds for BAPA [13] - the enrichment of Presburger
arithmetic with the ability of talking about finite sets and their cardinal-
ities. As pointed out in [14], BAPA constraints can be used for program
analysis and verification by expressing data structure invariants, simula-
tions between program fragments or termination conditions. The analysis
of BAPA constraints was successfully extended also to formalisms encom-
passing multisets [17] as well as direct/inverse images along relations and
functions [22].

A limitation of BAPA and its extensions lies in the fact that only unin-
terpreted symbols (for sets, relations, functions, etc.) are allowed. On the
other hand, it is well-known that a different logical formalism, namely unary
counting quantifiers, can be used in order to reason about the cardinality
of definable (i.e. of interpreted) sets. Unary counting quantifiers can be
added to Presburger arithmetic without compromising decidability, see [18],

1

http://arxiv.org/abs/1602.00458v1

however they might be quite problematic if combined in an unlimited way
with free function symbols. In this paper, we investigate the extension of
Presburger arithmetic including both counting quantifiers and uninterpreted
function symbols, and we isolate fragments where we can achieve decidabil-
ity and in some cases also relatively good complexity bounds. The key
ingredient to isolate such fragments is the notion of flatness: roughly, in a
flat formula, subterms of the kind a(t) (where a is a free function symbol)
can occur only if t is a variable. By itself, this naif flatness requirement is
useless (any formula can match it to the price of introducing extra quantified
variables); in order to make it effective, further syntactic restrictions should
be incorporated in it, as witnessed in [1]. This is what we are going to do
in this paper, where suitable notions of ‘flat’ and ‘simple flat’ formulæ are
introduced in the rich context of Presburger arithmetic enriched with free
function symbols and with unary counting quantifiers (we use free function
symbols to model arrays, see below).

The fragments we design are all obviously more expressive than BAPA,
but they do not come from pure logic motivations, on the contrary they are
suggested by an emerging application area, namely the area of verification of
fault-tolerant distributed systems. Such systems (see [7] for a good account)
are modeled as partially synchronous systems, where a finite number of
identical processes operate in lock-step (in each round they send messages,
receive messages, and update their local state depending on the local state
at the beginning of the round and the received messages). Messages can be
lost, processes may omit to perform some tasks or also behave in a malicious
way; for these reasons, the fact that some actions are enabled or not, and the
correctness of the algorithms themselves, are subject to threshold conditions
saying for instance that some qualified majority of processes are in a certain
status or behave in a non-faulty way. Verifications tasks thus have to handle
cardinality constraints of the kind studied in this paper (the reader interested
in full formalization examples can directly go to Section 5).

The paper is organized as follows: we first present basic syntax (Sec-
tion 2), then decidability (Section 3) and complexity (Section 4) results; ex-
periments with our prototypical implementation are supplied in Section 5,
and Section 6 concludes the work.

2 Preliminaries

We work within Presburger arithmetic enriched with free function symbols
and cardinality constraints. This is a rather expressive logic, whose syntax is
summarized in Figure 1. Terms and formulæ are interpreted in the natural
way over the domain of integers Z; as a consequence, satisfiability of a
formula φ means that it is possible to assign values to parameters, free
variables and array-ids so as to make φ true in Z (validity of φ means that

2

0, 1, . . . ∈ Z numerals (numeric constants)
x, y, z, . . . ∈ V ar individual variables
M,N, . . . ∈ Par parameters (free constants)
a, b, . . . ∈ Arr array ids (free unary

function symbols)
t, u, . . . ::= n |M | x | t + t | −t | a(t) | ♯{x | φ} terms
A,B, . . . ::= t < t | t = t | t ≡n t atoms
φ, ψ, . . . ::= A | φ ∧ φ | ¬φ | ∃x φ formulae

Figure 1: Syntax

¬φ is not satisfiable, equivalence of φ and ψ means that φ ↔ ψ is valid,
etc.). We nevertheless implicitly assume few constraints (to be explained
below) about our intended semantics.

To denote integer numbers, we have (besides variables and numerals)
also parameters: the latter denote unspecified integers. Among parameters,
we always include a specific parameter (named N) identifying the dimension
of the system - alias the length of our arrays: in other words, it is assumed
that for all array identifiers a ∈ Arr, the value a(x) is conventional (say,
zero) outside the interval [0, N) = {n ∈ Z | 0 ≤ n < N}. Although binary
free function symbols are quite useful in some applications, in this paper we
prefer not to deal with them. The operator ♯ {x | φ} indicates the cardinality
of the finite set formed by the x ∈ [0, N) such that φ(x) holds.

Notice that the cardinality constraint operator ♯ {x | −}, as well the
quantifier ∃x, binds the variable x; below, we indicate with ψ(x) (resp. t(x))
the fact that the formula ψ (the term t) has free individual variables included
in the list x. When we speak of a substitution, we always mean ‘substitution
without capture’, meaning that, when we replace the free occurrences of a
variable x with a term u in a formula φ or in a term t, the term u should
not contain free variables that might be located inside the scope of a binder
for them once the substitution is performed; the result of the substitution
is denoted with φ(u/x) and t(u/x).

The logic of Figure 1 is far from being tractable, because even the combi-
nation of free function symbols and Presburger arithmetic lands in a highly
undecidable class [9]. We are looking for a mild fragment, nevertheless suffi-
ciently expressive for our intended applications. These applications mostly
come from verification tasks, like bounded model checking or invariant check-
ing. Our aim is to design a decidable fragment (so as to be able not only
to produce certifications, but also to find bugs) with some minimal closure
properties; from this point of view, notice that for bounded model checking
closure under conjunctions is sufficient, but for invariant checking we need
also closure under negations in order to discharge entailments.

3

2.1 Flat formulæ

We now introduce some useful subclasses of the formulæ built up according
to the grammar of Figure 1.

- Arithmetic formulæ: these are built up from the grammar of Figure 1
without using neither array-ids nor cardinality constraint operators;
we use letter α, β, . . . for arithmetic formulæ. Recall that, according
to the well-known quantifier elimination result, arithmetic formulæ are
equivalent to quantifier-free arithmetic formulæ.

- Constraint formulæ: these are built up from the grammar of Figure 1
without using array-ids.

- Basic formulæ: these are obtained from an arithmetic formula by simul-
taneously replacing some free variables by terms of the kind a(y),
where y is a variable and a an array-id. When we need to display
full information, we may use the notation α(y,a(y)) to indicate basic
formulæ. By this notation, we mean that y = y1, . . . , yn are variables,
a = a1, . . . , as are array-ids and that α(y,a(y)) is obtained from an
arithmetic formula α(x, z) (where z = z11, . . . , zsn) by replacing zij
with ai(yj) (i = 1, . . . , s and j = 1, . . . , n).

- Flat formulæ: these are recursively defined as follows (i) basic formulæ
are flat formulæ; (ii) if φ is a flat formula, β is a basic formula, z and
x are variables, then φ(♯ {x |β} / z) is a flat formula.1

Notice that all the above classes are closed under Boolean operations (in
particular, under negations). The following result is proved in [18] (see also
Appendix A):

Theorem 1 For every constraint formula one can compute an arithmetic
formula equivalent to it.

3 Satisfiability for flat formulæ

We shall show that flat formulæ are decidable for satisfiability. In fact, we
shall show decidability of the slightly larger class covered by the following

Definition 1 Extended flat formulæ (briefly, E-flat formulæ) are formulæ
of the kind

∃z. α ∧ ♯{x | β1} = z1 ∧ · · · ∧ ♯{x | βK} = zK (1)

1 If we want to emphasize the way the basic formula β is built up, following the above
conventions, we may write it as β(x, y,a(x),a(y)); here, supposing that a is a1, . . . , as,
since x is a singleton, the tuple a(x) is a1(x), . . . , as(x).

4

where z = z1, . . . , zK and α, β1, . . . , βK are basic formulæ and x does not
occur in α.

Notice that α and the βj in (1) above may contain further free variables y
(besides z) as well as the terms a(y) and a(z); the βj may contain occurrences
of x and of a(x).

That flat formulæ are also E-flat can be seen as follows: due to the fact
that our substitutions avoid captures, we can use equivalences like φ(t/z) ↔
∃z (t = z ∧ φ) in order to abstract out the terms t := ♯ {x | α} occurring
in the recursive construction of a flat formula φ. By repeating this linear
time transformation, we end up in a formula of the kind (1). However, not
all E-flat formulæ are flat because the dependency graph associated to (1)
might not be acyclic (the graph we are talking about has the zj as nodes
and has an arc zj → zi when zi occurs in βj). The above conversion of a
flat formula into a formula of the form (1) on the other hand produces an
E-flat formula whose associated graph is acyclic.

We prove a technical lemma showing how we can manipulate E-flat for-
mulæ without loss of generality. Formulae ϕ1, . . . , ϕK are said to be a par-
tition iff the formulæ

∨K
l=1 ϕl and ¬(ϕl ∧ ϕh) (for h 6= l) are valid. Recall

that the existential closure of a formula is the sentence obtained by prefixing
it with a string of existential quantifiers binding all variables having a free
occurrence in it.

Lemma 1 The existential closure of an E-flat formula is equivalent to a
sentence of the kind

∃z ∃y. α(y, z) ∧ ♯{x | β1(x,a(x), y, z)} = z1 ∧· · ·∧ ♯{x | βK(x,a(x), y, z)} = zK
(2)

where y and z := z1, . . . , zK are variables, α is arithmetical, and the formulæ
β1, . . . , βK are basic and form a partition.

Proof. The differences between (the matrices of) (2) and (1) are twofold:
first in (2), the βl form a partition and, second, in (1) the terms as(yi) and
as(zh) (for as ∈ a and yi ∈ y, zh ∈ z) may occur in α and in the βl.

We may disregard the as(zh) without loss of generality, because we can
include them in the as(yi): to this aim, it is sufficient to take a fresh y, to
add the conjunct y = zh to α and to replace everywhere as(zh) by as(y). In
order to eliminate also a term like as(yi), we make a guess and distinguish
the case where yi ≥ N and the case where yi < N (formally, ‘making a
guess’ means to replace (1) with a disjunction - the two disjuncts being
obtained by adding to α the case description). According to the semantics
conventions we made in Section 2, the first case is trivial because we can just
replace as(yi) by 0. In the other case, we first take a fresh variable u and
apply the equivalence γ(. . . as(yj) . . .) ↔ ∃u (as(yj) = u ∧ γ(. . . u . . .)) (here
γ is the whole (1)); then we replace as(yj) = u by the equivalent formula

5

♯{x | x = yj ∧ as[x] = u} = 1 and finally the latter by ∃u′ (u′ = 1 ∧ ♯ {x |
x = yj ∧ as[x] = u} = u′) (the result has the desired shape once we move
the new existential quantifiers in front).

After this, we still need to modify the βl so that they form a partition
(this further step produces an exponential blow-up). Let ψ(y) be the matrix
of a formula of the kind (2), where the βl are not a partition. Let us put
K := {1, . . . ,K} and let us consider further variables u = 〈uσ〉σ, for σ ∈ 2K .
Then it is clear that the existential closure of ψ is equivalent to the formula
obtained by prefixing the existential quantifiers ∃u∃z to the formula

α ∧

K
∧

l=1

zl =
∑

σ∈2K , σ(l)=1

uσ

 ∧
∧

σ∈2K

♯{x | βσ} = uσ (3)

where βσ; =
∧K
l=1 ǫσ(l)βl (here ǫσ(l) is ‘¬’ if σ(l) = 0, it is a blank space

otherwise). ⊣

Theorem 2 Satisfiability of E-flat formulæ is decidable.

Proof. We reduce satisfiability of (2) to satisfiability of constraint formulæ
which is decidable by Theorem 1; in detail, we show that (2) is equisatisfiable
with the constraint formula below (containing extra free variables zS , zl,S):

α ∧
∧

S∈℘(K)

zS = ♯{x |
∧

l∈S

∃uβl(x, u, y, z) ∧
∧

l 6∈S

∀u¬βl(x, u, y, z)}

∧

∧
∧

S∈℘(K)

(

zS =
∑

l∈S

zl,S

)

∧

K
∧

l=1

zl =
∑

S∈℘(K),l∈S

zl,S

 ∧
∧

l∈S∈℘(K)

zl,S ≥ 0

(4)
(according to our notations, the basic formulæ βl(x,a(x), y, z) from (2) were
supposed to be built up from the arithmetic formulæ βl(x, u, y, z) by replac-
ing the variables u = u1, . . . , us with the terms a(x) = a1x), . . . , as(x)).

Suppose that (4) is satisfiable. Then there is an assignment V to the free
variables occurring in it so that (4) is true in the standard structure of the
integers (for simplicity, we use the same name for a free variable and for the
integer assigned to it by V). If a = a1, . . . , as, we need to define as(i) for
all s and for all i ∈ [0, N). For every l = 1, . . . ,K this must be done in such
a way that there are exactly zl integer numbers taken from [0, N) satisfying
βl(x,a(x), y, z). The interval [0, N) can be partioned by associating with
each i ∈ [0, N) the set iS = {l ∈ K | ∃u βl(i, u, y, z) holds under V }. For
every S ∈ ℘(K) the number of the i such that iS = S is zS ; for every l ∈ S,
pick zl,S among them and, for these selected i, let the s-tuple a(i) be equal
to an s-tuple y such that βl(i, u, y, z) holds (for this tuple y, since the βl are
a partition, βh(i, u, y, z) does not hold, if h 6= l). Since zS =

∑

l∈S zl,S and

6

since
∑

S zS is equal to the length of the interval [0, N), the definition of the
a is complete. The formula (2) is true by construction.

On the other hand suppose that (2) is satisfiable under an assignment V ;
we need to find V (zS), V (zl,S) (we again indicate them simply as zS , zl,S) so
that (4) is true. For zS there is no choice, since zS = ♯{i |

∧

l∈S ∃uβl(i, u, y, z)∧
∧

l 6∈S ∀u¬βl(i, u, y, z)} must be true; for zl,S, we take it to be the car-
dinality of the set of the i such that βl(i,a(i), y, z) holds under V and
S = {h ∈ K | ∃u βh(i, u, y, z) holds under V }. In this way, for ev-
ery S, the equality zS =

∑

l∈S zl,S holds and for every l, the equality
zl =

∑

S∈℘(K),l∈S zl,S holds too. Thus the formula (2) becomes true un-
der our extended V . ⊣

4 A more tractable subcase

Thus satisfiability of flat formulæ is decidable; since flat formulæ are closed
under Boolean combinations, validity of implications of flat sentences is
decidable too. This makes our result a complete algorithm for checking
invariants in verification applications. However, the complexity of the de-
cision procedure is very high: Lemma 1 introduces an exponential blow-up
and other exponential blow-ups are introduced by Theorem 2 and by the
decision procedure (via quantifier elimination) from [18]. Of course, all this
might be subject to dramatic optimizations (to be investigated by future
reseach); in this paper we show that there is a much milder (and still prac-
tically useful) fragment.

Definition 2 Simple flat formulæ are recursively defined as follows: (i)
basic formulæ are simple flat formulæ; (ii) if φ is a simple flat formula,
β(a(x),a(y), y) is a basic formula and x, z are variables, then φ(♯{x |β} / z)
is a simple flat formula.

As an example of a simple flat formula consider the following one

a′(y) = z ∧ ♯ {x | a′(x) = a(x)} ≥ N−1 ∧ (♯ {x | a′(x) = a(x)} < N → a(y) 6= z)

expressing that a′ = write(a, y, z) (i.e. that the array a′ is obtained from a
by over-writing z in the entry y).

Definition 3 Simple E-flat formulæ are formulæ of the kind

∃z. α(a(y),a(z), y, z) ∧ ♯{x | β1(a(x),a(y),a(z), y, z)} = z1 ∧ · · ·

· · · ∧ ♯{x | βK(a(x),a(y),a(z), y, z))} = zK
(5)

where α and the βi are basic.

7

It is easily seen that (once again) simple flat formulæ are closed under
Boolean combinations and that simple flat formulæ are simple E-flat formulæ
(the converse is not true, for ciclicity of the dependence graph of the zi’s
in (5)).

The difference between simple and non simple flat/E-flat formulæ is that
in simple formulæ the abstraction variable cannot occur outside the read of
an array symbol (in other words, the β, βi from the above definition are of the
kind βi(a(x),a(y),a(z), y, z) and not of the kind βi(a(x),a(y),a(z), x, y, z)).
This restriction has an important semantic effect, namely that formulæ (5)
are equi-satisfiable to formulæ which are permutation-invariant, in the fol-
lowing sense. The truth value of an arithmetical formula or of a formula
like z = ♯{x | α(a(x), y)} is not affected by a permutation of the values of
the a(x) for x ∈ [0, N), because x does not occur free in α (permuting the
values of the a(x) may on the contrary change the value of a flat non simple
sentence like z = ♯{x | a(x) ≤ x}). This ‘permutation invariance’ will be
exploited in the argument proving the correctness of decision procedure of
Theorem 3 below. Formulae (5) themselves are not permutation-invariant
because of subterms a(z),a(y), so we first show how to eliminate them up
to satisfiability:

Lemma 2 Simple E-flat formulæ are equi-satisfiable to disjunctions of per-
mutation-invariant formulæ of the kind

∃z. α(y, z) ∧ ♯{x | β1(a(x), y, z)} = z1∧· · ·∧♯{x | βK(a(x), y, z))} = zK
(6)

Proof. Let us take a formula like (5): we convert it to an equi-satisfiabe
disjunction of formulæ of the kind (6). The task is to eliminate terms a(z),
a(y) by a series of guessings (each guessing will form the content of a dis-
junct). Notice that we can apply the procedure of Lemma 1 to eliminate
the a(z), but for the a(y) we must operate differently (the method used in
Lemma 1 introduced non simple abstraction terms).

Let us suppose that y := y1, . . . , ym and that, after a first guess, α
contains the conjunct yj < N for each j = 1, . . . ,m (if it contains yj ≥ N ,
we replace as(yj) by 0); after a second series of guesses, we can suppose also
that α contains the conjuncts yj1 6= yj2 for j1 6= j2 (if it contains yj1 = yj2,
we replace yj1 by yj2 everywhere, making yj1 to disappear from the whole
formula). In the next step, (i) we introduce for every a ∈ a and for every
j = 1, . . . ,m a fresh variable uaj , (ii) we replace everywhere a(yj) by uaj
and (iii) we conjoin to α the equalities a(yj) = uaj . In this way we get a
formula of the following kind

∃z.
∧

a∈a,yj∈y

a(yj) = uaj ∧ α(y, u, z) ∧

K
∧

l=1

♯{x | βl(a(x), y, u, z)} = zl (7)

8

where u is the tuple formed by the uaj (varying a and j). We now make
another series of guesses and conjoin to α either uaj = ua′j′ or uaj 6= ua′j′

for (a, j) 6= (a′, j′). Whenever uaj = ua′j′ is conjoined, uaj is replaced by
ua′j′ everywhere, so that uaj disappears completely. The resulting formula
still has the form (7), but now the map (a, j) 7→ uaj is not injective anymore
(otherwise said, uaj now indicates the element from the tuple u associated
with the pair (a, j) and we might have that the same uaj is associated with
different pairs (a, j)).

Starting from (7) so modified, let us define now the equivalence relation
among the yj that holds between yj and yj′ whenever for all a ∈ a there is
ua ∈ u such that α contains the equalities a(yj) = ua and a(y′j) = ua. Each
equivalence class E is uniquely identified by the corresponding function fE
from a into u (it is the function that for each yj ∈ E maps a ∈ a to the
ua ∈ u such that α contains as a conjunct the equality a(yj) = ua). Let
E1, . . . , Er be the equivalence classes and let n1, . . . , nr be their cardinalities.
We claim that (7) is equisatisfiable to

∃z. α(y, u, z) ∧

r
∧

q=1

♯{x |
∧

a∈a

a(x) = fEq(a)} ≥ nq ∧

∧
K
∧

l=1

♯{x | βl(a(x), y, u, z)} = zl

(8)

In fact, satisfiability of (7) trivially implies the satisfiability of the for-
mula (8); vice versa, since (8) is permutation-invariant, if it is satisfiable
we can modify any assignment satisfying it via a simultaneous permutation
of the values of the a ∈ a so as to produce an assignment satisfying (7).

We now need just the trivial observation that the inequalities ♯{x |
∧

a∈a a(x) = fEq(a)} ≥ nq can be replaced by the formulæ ♯{x |
∧

a∈a a(x) =
fEq(a)} = z′q ∧ z′q ≥ nq (for fresh z

′
q) in order to match the syntactic shape

of (6). ⊣
We can freely assume that quantifiers do not occur in simple flat formulæ:

this is without loss of generality because such formulæ are built up from
arithmetic and basic formulæ.2

Theorem 3 Satisfiability of simple flat formulæ can be decided in NP (and
thus it is an NP-complete problem).

Proof. First, by applying the procedure of the previous Lemma we can
reduce to the problem of checking the satisfiability of formulæ of the kind

α(y, z) ∧ ♯{x | β1(a(x), y, z)} = z1 ∧ · · · ∧ ♯{x | βK(a(x), y, z)} = zK (9)

2 By the quantifier-elimination result for Presburger arithmetic, it is well-known that
arithmetic formulæ are equivalent to quantifier-free ones. The same is true for basic
formulæ because they are obtained from arithmetic formulae by substitutions without
capture.

9

where α, β1, . . . , βK are basic (notice also that each formula in the output
of the procedure of the previous Lemma comes from a polynomial guess).

Suppose that A1(a(x), y, z), . . . , AL(a(x), y, z) are the atoms occurring
in β1, . . . , βK . For a Boolean assignment σ to these atoms, we indicate with
[[βj]]

σ the Boolean value (0 or 1) the formula βl has under such assignment.
We first claim that (9) is satisfiable iff there exists a set of assignments Σ
such that the formula

α(y, z) ∧
∧

σ∈Σ

∃u

L
∧

j=1

ǫσ(Aj)Aj(u, y, z)

 ∧

z1
z2
...
zK

=
∑

σ∈Σ

vσ

[[β1]]
σ

[[β2]]
σ

...
[[βK]]σ

∧

∧
∑

σ∈Σ

vσ = N ∧
∧

σ∈Σ

vσ > 0

(10)
is satisfiable (we introduced extra fresh variables vσ, for σ ∈ Σ; notation
ǫσ(Aj) is the same as in the proof of Lemma 1). In fact, on one side, if (9)
is satisfiable under V , we can take as Σ the set of assigments for which
∧L
j=1 ǫσ(Aj)Aj(a(i), y, z) is true under V for some i ∈ [0, N) and for vσ the

cardinality of the set of the i ∈ [0, N) for which
∧L
j=1 ǫσ(Aj)Aj(a(i), y, z)

holds. This choice makes (10) true. Vice versa, if (10) is true under V , in
order to define the value of the tuple a(i) (for i ∈ [0, N)), pick for every
σ ∈ Σ some uσ such that

∧L
j=1 ǫσ(Aj)Aj(uσ, y, z) holds; then, supposing Σ =

{σ1, . . . , σh}, let a(i) be equal to uσ1 for i ∈ [0, vσ1), to uσ2 for i ∈ [vσ1 , vσ2),
etc. Since we have that

∑

σ∈Σ vσ = N , the definition of the interpretation
of the a is complete (any other permutation of the values a(x) inside [0, N)
would fit as well). In this way, formula (9) turns out to be true.

We so established that our original formula is satisfiable iff there is some
Σ such that (10) is satisfiable; the only problem we still have to face is
that Σ might be exponentially large. To reduce to a polynomial Σ, we
use the same technique as in [15]. In fact, if (10) is satisfiable, then the
column vector (z1, . . . , zK)T is a linear combination with positive integer
coefficients of the 0/1-vectors ([[β1]]

σ, · · · , [[βK]]σ)T and it is known from [8]
that, if this is the case, the same result can be achieved by assuming that
at most 2K log2(4K) of the vσ are nonzero. Thus polynomially many Σ
are sufficient and for such Σ, a satisfying polynomial assignment for the
existential Presburger formula (10) is a polynomial certificate. ⊣

4.1 Some heuristics

We discuss here some useful heuristics for the satisfiability algorithm for
simple flat formulæ (these heuristics have been implemented in our proto-
type).

10

1.- The satisfiability test involves all formulæ (10) for each set of as-
signments Σ having cardinality at most M = ⌈2K log2(4K)⌉ (actually, one
can improve this bound, see [15]). If we replace in (10), for every σ, the
conjunct vσ > 0 by vσ ≥ 0 and the conjunct ∃u (

∧L
j=1 ǫσ(Aj)Aj(u, y, z)) by

vσ > 0 → ∃u (
∧L
j=1 ǫσ(Aj)Aj(u, y, z)), we can limit ourselves to the Σ having

cardinality equal to M . This trick is useful if, for some reason, we prefer to
go through any sufficient set of assignments (like the set of all assignments
supplied by some Boolean propagation, see below).

2.- There is no need to consider assignments σ over the set of the atoms
Aj occurring in the β1, . . . , βK ; any set of formulæ generating the β1, . . . , βK
by Boolean combinations fits our purposes. As a consequence, the choice of
these ‘atoms’ is subject to case-by-case evaluations.

3.- Universally quantified formulæ of the kind ∀x (0 ≤ x ∧ x < N → β)
can be turned into flat formulæ by rewriting them as N = ♯ {x | β} (and
in fact such universally quantified formulæ often occur in our benchmarks
suite). These formulæ contribute to (9) via the conjuncts of the kind zi =
N ∧ ♯{x | βi(a(x), y, z)} = zi. It is quite useful to consider the {βi1 , . . . , βiL}
arising in this way as atoms (in the sense of point 2 above) and restrict to
the assignments σ such that σ(βi1) = · · · = σ(βiL) = 1.

4.- Boolean propagation is a quite effective strategy to prune useless as-
signments; in our context, as soon as a partial assignment σ is produced
inside the assignments enumeration subroutine, an SMT solver is invoked
to test the satisfiability of α(y, z) ∧

∧

j∈dom(σ) ǫσ(Aj)Aj(u, y, z); since this is
a (skolemized) conjunct of (10), if the test is negative the current partial
assignment is discarded and next partial assignment (obtained by comple-
menting the value of the last assigned literal) is taken instead.

5 Examples and experiments

We implemented a prototype ArCa-Sat3 producing out of simple E-flat
formulæ (9) the proof obbligations (10) (written in SMT-LIB2 format), ex-
ploiting the heuristics explained in Section 4.1. To experiment the feasibility
of our approach for concrete verification problems, we also implemented a
(beta) version of a tool called ArCa producing out of the specification
of a parametric distributed system and of a safety-like problem, some E-
flat simple formulæ whose unsatisfiability formalizes invariant-checking and
bounded-model checking problems. A script executing in sequence ArCa,
ArCa-Sat and z3 can then solve such problems by reporting a ‘sat/unsat’
answer.

A system is specified via a pair of flat (simple) formulæ ι(p) and τ(p, p′)
and a safety problem via a further formula υ(p) (here the p are parameters

3
ArCa stands for Array with Cardinalities.

11

Algorithm 1 Pseudo-code for the send-receive broadcast primitive.

Initialization:

To broadcast a (session s) message, a correct process sends (init, session s) to all.
End Initialization

for each correct process:
1. if received (init, session s) from at least f + 1 distinct processes or

2. received (echo, session s) from any process then

3. accept (session s);
4. send (echo, session s) to all;
5. endif

end for

and array-ids, the p′ are renamed copies of the p). A bounded model checking
problem is the problem of checking whether the formula

ι(p
0
) ∧ τ(p

0
, p

1
) ∧ · · · ∧ τ(p

n
, p
n+1

) ∧ υ(p
n+1

)

is satisfiable for a fixed n. An invariant-cheking problem, given also a for-
mula φ(p), is the problem of checking whether the three formulæ

ι(p) ∧ ¬φ(p), φ(p) ∧ τ(p, p′) ∧ ¬φ(p′), φ(p) ∧ υ(p)

are unsatisfiable. Notice that since all our algorthms terminate and are
sound and complete, the above problems are always solved by the above
tool combination (if enough computation resources are available). Thus,
our technique is able both to make safety certifications and to find bugs.

To validate our technique, in the following we describe in detail the
formalization of the send-receive broadcast primitive (SRBP) in [20]. SRBP
is used as a basis to synchronize clocks in systems where processes may fail
in sending and/or receiving messages. Periodically, processes broadcast the
virtual time to be adopted by all, as a (session s) message. Processes that
accept this message set s as their current time. SRBP aims at guaranteeing
the following properties:

Correctness: if at least f + 1 correct processes broadcast the message
(session s), all correct processes accept the message.

Unforgeability: if no correct process broadcasts (session s), no correct
process accepts the message.

Relay: if a correct process accepts (session s), all correct processes accept
it.

where f < N/2 is the number of processes failing during an algorithm run,
with N the number of processes in the system. Algorithm 1 shows the
pseudo-code.

12

We model SRBP as follows: IT (x) is the initial state of a process x; it is
s when x broadcasts a (init, session s) message, and 0 otherwise. SE(x) = s
indicates that x has broadcast its own echo. AC(x) = s indicates that x has
accepted (session s). Let pc be the program counter, r the round number,
and G a flag indicating whether one round has been executed. We indicate
with F (x) = 1 the fact that x is faulty, and F (x) = 0 otherwise. Finally,
CI(x) and CE(x) are the number of respectively inits and echoes received.
In the following, ∀x means ∀x ∈ [0, N). Some sentences are conjoined to
all our proof obligations, namely: #{x|F (x) = 0} + #{x|F (x) = 1} =
N ∧ #{x|F (x) = 1} < N/2. For the Correctness property, we write ιc as
follows:

ιc := pc = 1 ∧ r = 0 ∧G = 0 ∧ s 6= 0 ∧ (11)

#{x|IT (x) = 0}+#{x|IT (x) = s} = N ∧ (12)

#{x|F (x) = 0 ∧ IT (x) = s} ≥ (#{x|F (x) = 1}+ 1) ∧ (13)

∀x.SE(x) = 0 ∧AC(x) = 0 ∧ CI(x) = 0 ∧ CE(x) = 0 (14)

where we impose that the number of correct processes broadcasting the init
message is at least the number of faulty processes, f , plus 1. It is worth to
notice that – from the above definition – our tool produces a specification
that is checked for any N ∈ N number of processes. The constraints on IT
allow to verify all admissible assignments of 0 or s to the variables. Similarly
for F (x).

The algorithm safety is verified by checking that the bad properties can-
not be reached from the initial state. For Correctness, we set υc := pc =
1 ∧ G = 1 ∧ #{x|F (x) = 0 ∧ AC(x) = 0} > 0, that is, Correctness is not
satisfied if – after one round – some correct process exists that has yet to
accept. The algorithm evolution is described by two transitions: τ1 and τ2.
The former allows to choose the number of both inits and echoes received
by each process. The latter describes the actions in Algorithm 1.

τ1 := pc = 1 ∧ pc
′ = 2 ∧ r

′ = r ∧G
′ = G ∧ s

′ = s ∧ ∃K1, K2, K3, K4.

K1 = #{x|F (x) = 0 ∧ IT (x) = s} ∧K2 = #{x|F (x) = 0 ∧ SE(x) = s} ∧

K3 = #{x|F (x) = 1 ∧ IT (x) = s} ∧K4 = #{x|F (x) = 1 ∧ SE(x) = s} ∧

∀x.F (x) = 0 ⇒ (CI
′(x) ≥ K1 ∧ CI

′(x) ≤ (K1 +K3) ∧ CE
′(x) ≥ K2 ∧

CE
′(x) ≤ (K2 +K4)) ∧

∀x.F (x) = 1 ⇒ (CI
′(x) ≥ 0 ∧ CI

′(x) ≤ (K1 +K3) ∧ CE
′(x) ≥ 0 ∧

CE
′(x) ≤ (K2 +K4)) ∧

∀x.IT ′(x) = IT (x)∧ SE
′(x) = SE(x) ∧AC

′(x) = AC(x)

τ2 := pc = 2 ∧ pc
′ = 1 ∧ r

′ = (r + 1) ∧ s
′ = s ∧G

′ = 1 ∧

∀x.(CI(x) ≥ #{x|F (x) = 1}+ 1 ⇒ SE
′(x) = s ∧AC

′(x) = s) ∧

∀x.(CI(x) < #{x|F (x) = 1}+ 1 ∧ CE(x) ≥ 1 ⇒ SE
′(x) = s ∧ AC

′(x) = s) ∧

∀x.(CI(x) < #{x|F (x) = 1}+ 1 ∧ CE(x) < 1 ⇒ SE
′(x) = 0 ∧AC

′(x) = 0) ∧

∀x.IT ′(x) = IT (x)∧ CI
′(x) = CI(x) ∧ CE

′(x) = CE(x)

The same two transitions are used to verify both the Unforgeability and
the Relay properties, for which however we have to change the initial and

13

Algorithm Property Condition Problem Outcome Time (s.)
SRBP [20] Correctness ≥ (f + 1) init’s bmc safe 0.82
SRBP [20] Correctness ≤ f init’s bmc unsafe 2.21
SRBP [20] Unforgeability ≥ (f + 1) init’s bmc safe 0.85
SRBP [20] Relay ≥ (f + 1) init’s bmc safe 1.93
BBP [21] Correctness N > 3f bmc safe 6.17
BBP [21] Unforgeability N > 3f bmc safe 0.25
BBP [21] Unforgeability N ≥ 3f bmc unsafe 0.25
BBP [21] Relay N > 3f bmc safe 1.01
OT [3] Agreement threshold > 2N/3 ic safe 4.20
OT [3] Agreement threshold > 2N/3 bmc safe 278.95
OT [3] Agreement threshold ≤ 2N/3 bmc unsafe 17.75
OT [3] Irrevocability threshold > 2N/3 bmc safe 8.72
OT [3] Irrevocability threshold ≤ 2N/3 bmc unsafe 9.51
OT [3] Weak Validity threshold > 2N/3 bmc safe 0.45
OT [3] Weak Validity threshold ≤ 2N/3 bmc unsafe 0.59
UV [4] Agreement Pnosplit violated bmc unsafe 4.18
UV [4] Irrevocability Pnosplit violated bmc unsafe 2.04
UV [4] Integrity - bmc safe 1.02
UT,E,α [2] Integrity α = 0 ∧ Psafe bmc safe 1.16
UT,E,α [2] Integrity α = 0 ∧ ¬Psafe bmc unsafe 0.83
UT,E,α [2] Integrity α = 1 ∧ Psafe bmc safe 5.20
UT,E,α [2] Integrity α = 1 ∧ ¬Psafe bmc unsafe 4.93
UT,E,α [2] Agreement α = 0 ∧ Psafe bmc safe 59.80
UT,E,α [2] Agreement α = 0 ∧ ¬Psafe bmc unsafe 7.78
UT,E,α [2] Agreement α = 1 ∧ Psafe bmc safe 179.67
UT,E,α [2] Agreement α = 1 ∧ ¬Psafe bmc unsafe 31.94
MESI [16] cache coherence - ic safe 0.11
MOESI [19] cache coherence - ic safe 0.08
Dekker [5] mutual exclusion - ic safe 2.05

Table 1: Evaluated algorithms and experimental results.

final formula. For Unforgeability, (13) in ι changes as ... ∧ #{x|F (x) =
0 ∧ IT (x) = 0} = #{x|F (x) = 0} ∧ ...; while υu := pc = 1 ∧ G = 1 ∧
#{x|F (x) = 0 ∧AC(x) = s} > 0. In ιu we say that all non-faulty processes
have IT (x) = 0. Unforgeability is not satisfied if some correct process
accepts. For Relay, we use:

ιr := pc = 1 ∧ r = 0 ∧ s 6= 0 ∧G = 0 ∧

#{x|F (x) = 0 ∧AC(x) = s ∧ SE(x) = s} = 1 ∧

#{x|AC(x) = 0 ∧ SE(x) = 0} = (N − 1) ∧#{x|AC(x) = s ∧ SE(x) = s} = 1 ∧

∀x.IT (x) = 0 ∧ CI(x) = 0 ∧ CE(x) = 0

while υr = υc. In this case, we start the system in the worst condition: by
the hypothesis, we just know that one correct process has accepted. Upon
acceptance, by the pseudo-code, it must have sent an echo. All the other
processes are initialized in an idle state. We also produce an unsafe model
of Correctness: we modify ιc by imposing that just f correct processes
broadcast the init message.

In Table 1, we report the results of validating these and other models
with our tool. In the first column, the considered algorithm is indicated. The
second column indicates the property to be verified; the third column reports
the conditions of verification. In the fourth column, we indicate whether we

14

consider either a bounded model checking (bmc) or an invariant-checking
(ic) problem. The fifth column supplies the obtained results. The sixth
column shows the time jointly spent by ArCa, ArCa-Sat and z3 for the
verification, considering for bmc the sum of the times spent for every traces
of length up to 10. We used a PC equipped with Intel Core i7 processor and
operating system Linux Ubuntu 14.04 64 bits. We focused on bmc problems
as they produce longer formulas thus stressing more the tools. Specifically,
following the example above, we modeled:

• the byzantine broadcast primitive (BBP) [21] used to simulate authen-
ticated broadcast in the presence of malicious failures of the processes,

• the one-third algorithm (OT) [3] for consensus in the presence of be-
nign transmission failures,

• the Uniform Voting (UV) algorithm [4] for consensus in the presence
of benign transmission failures,

• the UT,E,α algorithm [2] for consensus in the presence of malicious
transmission failures,

• the MESI [16] and MOESI [19] algorithms for cache coherence,

• the Dekker’s algorithm [5] for mutual exclusion.

All the models, together with our tools to verify them, are available at
http://users.mat.unimi.it/users/ghilardi/arca .

As far as the processing times are concerned, we observed that on av-
erage z3 accounts for around 68% of the processing time, while ArCa and
ArCa-Sat together account for the remaining 32%. Indeed, the SMT tests
performed by ArCa-Sat are lightweight – as they only prune assignments
– yet effective, as they succeed in reducing the number of assignments of at
least one order of magnitude.

6 Conclusions, related and further work

We identified two fragments of the rich syntax of Figure 1 and we showed
their decidability (for the second fragment we showed also a tight complexity
bound). Since our fragments are closed under Boolean connectives, it is
possible to use them not only in bounded model checking (where they can
both give certifications and find bugs), but also in order to decide whether
an invariant holds or not. We implemented our algorithm for the weaker
fragment and used it in some experiments. As far as we know, this is the
first implementation of a complete algorithm for a fragment of arithmetic
with arrays and counting capabilities for interpreted sets.

15

http://users.mat.unimi.it/users/ghilardi/arca

Since one of the major intended applications concerns fault-tolerant dis-
tributed systems, we briefly review and compare here some recent work in
the area. Papers [12], [11], [10] represent a very interesting and effective
research line, where cardinality constraints are not directly handled but ab-
stracted away using interval abstract domains and counters. As a result, a
remarkable amount of algorithms are certified, although the method might
suffer of some lack of expressiveness for more complex examples.

On the contrary, paper [3] directly handles cardinality constraints for in-
terpreted sets; nontrivial invariant properties are synthesized and checked,
based on Horn constraint solving technology. At the level of decision pro-
cedures, some incomplete inference schemata are employed (completeness is
nevertheless showed for array updates against difference bounds constraints).

Paper [6] introduces a very expressive logic, specifically tailored to handle
consensus problems (whence the name ‘consensus logic’ CL). Such logic
employs arrays with values into power set types, hence it is situated in
a higher order logic context. Despite this, our flat fragment is not fully
included into CL, because we allow arithmetic constraints on the sort of
indexes and also mixed constraints between indexes and data: in fact, we
have a unique sort for indexes and data, leading to the possibility of writing
typically non permutation-invariant formulæ like ♯ {x | a(x) + x = N} = z.
As pointed out in [1], this mono-sorted approach is useful in the analysis of
programs, when pointers to the memory (modeled as an array) are stored
into array variables. From the point of view of deduction, the paper [6] uses
an incomplete algorithm in order to certify invariants. A smaller decidable
fragment (identified via several syntactic restrictions) is introduced in the
final part of the paper; the sketch of the decidability proof supplied for this
smaller fragment uses bounds for minimal solutions of Presburger formulæ as
well as Venn regions decompositions in order to build models where all nodes
in the same Venn region share the same value for their function symbols.

In future, we plan to extend both our tool ArCa and our results in order
to deal with more complex verification problems. Although it won’t be easy
to find richer fragments inheriting all the nice properties we discovered in
this paper, we are confident that concrete applications will suggest viable
effective extensions.

References

[1] F. Alberti, S. Ghilardi, and N. Sharygina. Decision procedures for flat
array properties. In TACAS, pages 15–30, 2014.

[2] M. Biely, B. Charron-Bost, A. Gaillard, M. Hutle, A. Schiper, and
J. Widder. Tolerating corrupted communication. In Proc. PODC, pages
244–253, 2007.

16

[3] N. Bjørner, K. von Gleissenthall, and A. Rybalchenko. Synthesiz-
ing cardinality invariants for parameterized systems. Available at
https://www7.in.tum.de/ ˜ gleissen/papers/sharpie.pdf ,
2015.

[4] B. Charron-Bost and A. Schiper. The heard-of model: computing in
distributed systems with benign faults. Distributed Computing, pages
49–71, 2009.

[5] E.W. Dijkstra. Cooperating Sequential Processes. In Programming
Languages, Academic Press, 1968.

[6] C. Dragoi, T. Henzinger, H. Veith, J. Widder, and D. Zufferey. A
logic-based framework for verifying consensus algorithms. In Proc. of
VMCAI, 2014.

[7] C. Dragoi, T.A. Henzinger, and D. Zufferey. The need for language
support for fault-tolerant distributed systems. In Proc. of SNAPL,
2015.

[8] F. Eisenbrand and G. Shmonin. Carathéodory bounds for integer cones.
Oper. Res. Lett., 34(5):564–568, 2006.

[9] J.Y. Halpern. Presburger arithmetic with unary predicates is Π1
1 com-

plete. J. Symbolic Logic, 56(2):637–642, 1991.

[10] A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder. Parameterized
model checking of fault-tolerant distributed algorithms by abstraction.
In Proc. of FMCAD, pages 201–209, Aug. 2013.

[11] I. Konnov, H. Veith, and J. Widder. On the completeness of bounded
model checking for threshold-based distributed algorithms: Reachabil-
ity. In Proc. of CONCUR, LNCS, page 125140, 2014.

[12] I. Konnov, H. Veith, and J. Widder. SMT and POR beat Counter
Abstraction: Parameterized Model Checking of Threshold-Based Dis-
tributed Algorithms. In Proc. of CAV, LNCS, 2015.

[13] V. Kuncak, H.H. Nguyen, and M. Rinard. An algorithm for decid-
ing BAPA: Boolean Algebra with Presburger Arithmetic. In Proc. of
CADE-20, volume 3632 of LNCS, July 2005.

[14] Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. Deciding Boolean
Algebra with Presburger Arithmetic. Journal of Automated Reasoning,
36(3), 2006.

[15] V. Kunkak and M. Rinard. Towards efficient satisfiability checking
for Boolean Algebras with Presburger arithmetic. In CADE 21, pages
215–230, 2007.

17

https://www7.in.tum.de/~gleissen/papers/sharpie.pdf

[16] M.S. Papamarcos and J.H. Patel. A low-overhead coherence solution
for multiprocessors with private cache memories. In Proc. ISCA, page
348, 1984.

[17] R. Piskac and V. Kuncak. Decision procedures for multisets with car-
dinality constraints. In Proc. of VMCAI, LNCS, 2008.

[18] N. Schweikhart. Arithmetic, first-order logic, and counting quantifiers.
ACM TOCL, pages 1–35, 2004.

[19] Y. Solihin. Fundamentals of Parallel Computer Architecture Multichip
and Multicore Systems. Solihin Publishing & Consulting LLC, 2008.

[20] T.K. Srikanth and S. Toueg. Optimal clock synchronization. Journal
of the ACM, 34(3):626–645, 1987.

[21] T.K. Srikanth and S. Toueg. Simulating authenticated broadcasts to de-
rive simple fault-tolerant algorithms. Distributed Computing, 2(2):80–
94, 1987.

[22] K. Yessenov, R. Piskac, and V. Kuncak. Collections, cardinalities, and
relations. In Proc. of VMCAI, 2010.

18

A Counting constraints in Presburger arithmetic

We report here a proof of Theorem 1. This is not an original result and we
will not try to optimize it, rather we just rewrite proofs inside our notations,
trying at the same time to supply the reader some intuitive evidence about
the reasons why the theorem holds.

Take a constraint formula φ (this is a formula built up from the grammar
of Figure 1 without using array-ids). For every atom A occurring in it (i.e.
for every subformula of the kind t1 < t2, t1 = t2 ot t1 ≡n t2) and for every
outermost occurrence of a subterm of the kind ♯ {x | ψ} in A, pick a fresh
variable z and replace A in φ with ∃z (z = ♯ {x | ψ} ∧ A′), where A′ is
obtained from A replacing the occurrence of the subterm ♯ {x | ψ} by z. If
we call φ′ the resulting formula, it is clear that φ and φ′ are equivalent.

By repeating this procedure, we can transform any constraint formula
(up to equivalence) into a constraint formula built up according to the fol-
lowing more restricted instructions:

(i) arithmetic terms are built up from numerals 0, 1, . . . , individual variables
x, y, z, . . . and parameters M,N, . . . using + and −;

(ii) arithmetic atoms are expressions of the kind t1 < t2, t1 = t2, t1 ≡n t2,
where t1, t2 are arithmetic terms;

(iii) arithmetic formulæ are built up from arithmetic atoms using ∧,¬,∃
(actually, ∃ is redundant, given that quantifier-elimination holds);

(iv) constraint atoms are either arithmetic atoms or expressions of the form
y = ♯{x | α}, where α is an arithmetic formula;

(v) constraint formulæ are built up from constraint atoms using ∧,¬,∃.

Recall that we interpret ♯{x | α} as the cardinality of the set formed by
the x such that 0 ≤ x < N and α(x) is true. Thus, if we want to translate our
constraint atoms into the terminology of [18], we must translate y = ♯{x | α}
as ∃=yx (0 ≤ x ∧ x < N ∧ α) (in this sense, our formalism apparently looks
slightly less expressive and the procedure below has few less cases than [18]).

It is then evident that Theorem 1 is proved once we show the following

Theorem 4 Every constraint atom is equivalent to an arithmetic formula.

Proof. The following special case of Theorem 4 is easy: if x does not occur
in the arithmetic terms t1, t2, t3, then the constraint atom

y = ♯ {x | t1 ≤ x ∧ x < t2 ∧ x ≡n t3} (15)

19

is equivalent to the formula

∃z

t1 ≤ z ∧ z < t2 ∧ z ≡n t3 ∧

∀z′(t1 ≤ z ∧ z < t2 ∧ z ≡n t3 → z ≤ z′) ∧

y = ⌈
t2 − z

n
⌉

∨

∨

(

¬∃z (t1 ≤ z ∧ z < t2 ∧ z ≡n t3) ∧

y = 0

)

(16)

What formula (16) says is that either there is no z ∈ [t1, t2) such that z ≡n t3
(and then y = 0) or there is such a z (and then, taking the minimum such
z, we have that y = ⌈ t2−zn ⌉). Notice that the condition y = ⌈ t2−zn ⌉ can be

expressed in Presburger arithmetic via
∨n−1
l=0 (ny = l + t2 − z).4

We now show how to reduce to the above special case, using the series
of Lemmas of Subsection A.1 below.

Consider in fact a constraint atom y = ♯{x | α}; we can suppose that α is
quantifier-free because Presburger arithmetic enjoys quantifier elimination.
We can also eliminate negations using the equivalences t 6= u↔ (t < u∨u <
t), and t 6< u ↔ u ≤ t,5 and t 6≡n u ↔

∨n−1
l=1 (t ≡n u + l). Using Lemma 3

and disjunctive normal forms arising from Venn’s regions analysis, we can
freely assume that α is a conjunction of arithmetic atoms; atoms in which
x does not occur can be eliminated using Lemma 4. By normalizing terms
as linear polynomials, we can further limit to atoms of the kinds

kx = t, t < kx, kx < t, kx ≡n t,

where k, n ≥ 1 and where t is an arithmetic term in which y does not occur.
By Lemma 5, we can solve the case where there are atoms of the kind kx = t.
If there are no atoms like that, using Lemmas 11,10,6,7, we can freely assume
that k = 1.6

To sum up, we are left with a constraint atom y = ♯{x | α} where α is
of the kind

q
∧

i=1

ti ≤ x ∧

r
∧

j=1

x < uj ∧

s
∧

h=1

x ≡ns vh .

(we used obvious equivalences like t < x ↔ t+ 1 ≤ x). We can now reduce
to q = 1 and r = 1 by making a disjunctive guess for determining the biggest
ti and the lowest uj (Lemma 4 is then used to eliminate atoms where x does
not occur).7 By Lemma 8 and Lemmas 3,4, we can also freely assume that
s = 1. Thus we finally end up in the special case above. ⊣

4 We use obvious abbreviations like ny = y + · · ·+ y (n-times).
5 Here u ≤ t stands for u = t ∨ u < t.
6 In case an inconsistent condition arises according to Lemma 7(i), the constraint atom

is replaced by z = 0.
7We assume that r, q ≥ 1 because 0 ≤ x and x < N must be included among the

conjuncts of α.

20

A.1 Ingredient Lemmas

We collect here the facts we used in the above proof (they are all almost
obvious).

Lemma 3 If the formulae αi are pairwise inconsistent, then y = ♯{x |
∨n
i=1 αi} is equivalent to

∃z1 · · · ∃zn (
n
∧

i=1

zi = ♯{x | αi} ∧ y =
n
∑

i=1

zi) .

Lemma 4 If x does not occur in β, then y = ♯{x | α ∧ β} is equivalent to

(¬β ∧ y = 0) ∨ (β ∧ y = ♯{x | α}) .

Lemma 5 If x does not occur in t, then y = ♯{x | α ∧ kx = t} is equivalent
to

(y = 1 ∧ ∃x (α ∧ kx = t)) ∨ (y = 0 ∧ ¬∃x (α ∧ kx = t)) .

Lemma 6 Let t be an arithmetic term where x does not occur; then the
constraint atom y = ♯{x | α ∧ t ≡n kx} is equivalent to

n−1
∨

l=0

(t ≡n l ∧ y = ♯{x | α ∧ l ≡n kx})

Next two lemmas just report basic arithmetic facts:

Lemma 7 For n, l ≥ 1 and k ≥ 0, let g := gcd(l, n); consider the linear
congruence lx ≡n k; we have that

(i) if g | k does not hold, then lx ≡n k is inconsistent (i.e. it does not have
a solution);

(ii) if g | k holds, then one can compute n′, k′ such that lx ≡n k is equivalent
to x ≡n′ k′.

Proof. Item (i) is obvious, because, if lx ≡n k has a solution, then we have
lx − qn = k for some q. Suppose now that g | k holds and let l′ := l/g,
n′ := n/g, k̃ := k/g. Since gcd(n′, l′) = 1 and since gcd’s can be expressed
as linear combinations, there exists l′′ such that l′l′′ ≡n′ 1. But then lx ≡n k
is the same as l′gx ≡gn′ k̃g which is equivalent to l′x ≡n′ k̃, i.e. to x ≡n′ k′,
for k′ := l′′k̃. ⊣

Lemma 8 Let k1, . . . , km ∈ Z, n1, . . . , nm ≥ 1 and l := lcm(k1, . . . , km);
then x ≡n1

k1 ∧ · · · ∧ x ≡nm km is equivalent to

l−1
∨

r=0

(x ≡l r ∧ r ≡n1
k1 ∧ · · · ∧ r ≡nm km) .

21

Lemma 9 Let t be an arithmetic term, n ≥ 1, q ∈ Z and l ∈ {0, . . . , n− 1};
the following implications are valid

t− 1 = nq + l → ∀z (nz < t↔ z < q+1)

t+ 1 = nq + l → ∀z (t < nz ↔ q−1 < z)

Proof. We prove the validity of the first implication (the second is shown
in an analogous way). Assume t− 1 = nq + l; then nz < t is equivalent to
n(z − q) ≤ l. This is the same as z − q ≤ 0 (i.e. to z < q + 1, as wanted),
because otherwise we have z− q ≥ 1 which implies l ≥ n(z− q) ≥ n, absurd.
⊣

Lemma 10 Let t be an arithmetic term where x does not occur; then the
constraint atom y = ♯{x | α ∧ nx < t} is equivalent to

n−1
∨

l=0

∃q (t− 1 = nq + l ∧ y = ♯{x | α ∧ x < q + 1}) .

Proof. By the existence of quotients and remainders, y = ♯{x | α ∧ nx ≤ t}
is equivalent to

∨n−1
l=0 ∃q (t− 1 = nq + l) ∧ y = ♯{x | α ∧ nx < t}, i.e. to

n−1
∨

l=0

∃q (t− 1 = nq + l ∧ y = ♯{x | α ∧ nx < t}) .

Now it is sufficient to apply the previous lemma. ⊣

Lemma 11 Let t be an arithmetic term where x does not occur; then the
constraint atom y = ♯{x | α ∧ t < nx} is equivalent to

n−1
∨

l=0

∃q (t+ 1 = nq + l ∧ y = ♯{x | α ∧ q − 1 < x}) .

Proof. The same as for the previous lemma. ⊣

22

	1 Introduction
	2 Preliminaries
	2.1 Flat formulæ

	3 Satisfiability for flat formulæ
	4 A more tractable subcase
	4.1 Some heuristics

	5 Examples and experiments
	6 Conclusions, related and further work
	A Counting constraints in Presburger arithmetic
	A.1 Ingredient Lemmas

