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Abstract. The complexity measure under consideration is SPACE⇥REVERSALS for Turing
machines that are able to branch both existentially and universally. We show that, for any function
h(n) between log log n and logn, ⇧

1

SPACE⇥REVERSALS(h(n)) is separated from ⌃
1

SPACE⇥
REVERSALS(h(n)) as well as from co⌃

1

SPACE⇥REVERSALS(h(n)), for middle, accept, and weak
modes of this complexity measure. This also separates determinism from the higher levels of the
alternating hierarchy. For “well-behaved” functions h(n) between log log n and logn, almost all of
the above separations can be obtained by using unary witness languages.

In addition, the construction of separating languages contributes to the research on minimal
resource requirements for computational devices capable of recognizing nonregular languages. For
any (arbitrarily slow growing) unbounded monotone recursive function f(n), a nonregular unary
language is presented that can be accepted by a middle ⇧

1

alternating Turing machine in s(n) space
and i(n) input head reversals, with s(n) · i(n) 2 O(log logn · f(n)). Thus, there is no exponential
gap for the optimal lower bound on the product s(n) · i(n) between unary and general nonregular
language acceptance—in sharp contrast with the one-way case.

Key words. alternation, computational complexity, computational lower bounds, formal lan-
guages
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1. Introduction. In the last few years, some exciting results have been obtained
in the field of space bounded computations. First of all, we have a surprisingly short
proof that nondeterministic space is closed under complementation [12, 21]. Among
others, this result has a fundamental consequence on alternation, namely, the collapse
of the alternating space hierarchy to the ⌃

1

level.
It is worth noticing that these results were obtained for strong space complexity

classes with s(n) 2 ≠(log n). (A Turing machine M works in strong space s(n) if
no reachable configuration, on any input of length n, uses space above s(n).) The
closure under complementation does not hold for weak space complexity classes above
log n [23]. (weak space s(n): for any accepted input of length n, there exists at least
one accepting computation not using more space than s(n).) Below log n, moreover,
the above alternating hierarchy is infinite [2, 6, 15]. For the sublogarithmic world,
many other results, almost self-evident in the superlogarithmic case, either do not
hold or the proofs are quite di↵erent and are often highly involved.

In this paper, we continue in this line of research toward the simplest possible
nonregular complexity classes by investigating Turing machines having sublogarithmic
bounds on the product of space—in its di↵erent definitions—by the number of input
head reversals. Turing machines working even within such limited resources can still
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326 V. GEFFERT, C. MEREGHETTI, AND G. PIGHIZZINI

recognize nonregular languages [3, 4], while the corresponding bound on the product
of space by work head reversals must be at least linear [9].

Besides strong and weak space, mentioned above, some intermediate measures
have also been proposed. (accept space s(n): all accepting computations obey the
space bound, middle space s(n): all computations obey the space bound for each ac-
cepted input of length n. For more precise definitions, see section 2.) Such di↵erences
are irrelevant for fully space constructible bounds above logn, but several results (see,
e.g., [23, 4, 7]) witness that one must pay special attention to the actual definition
when dealing with such limited resources as is sublogarithmic space.

For the product of space by input head reversals, we are able to show several
separation results that are still unknown if sublogarithmic bounds on space only are
considered. Namely, for each of the modes c 2 {middle, accept ,weak} and any func-
tion h(n) between log log n and logn, c-⇧

1

SPACE⇥REVERSALS(h(n)) is separated
from c-⌃

1

SPACE⇥REVERSALS(h(n)) and, somewhat more surprisingly, also from
co-c-⌃

1

SPACE⇥REVERSALS(h(n)). (Here c-XSPACE⇥REVERSALS(h(n)) denotes
the class of languages accepted by X 2 {⌃

k

,⇧
k

} machines of type c 2 {strong ,middle,
accept ,weak} in s(n) space and i(n) input head reversals, satisfying s(n) · i(n) 2
O(h(n)). We add prefix “co-” for complements of such languages, and we use X = D
for deterministic Turing machines, i.e., for ⌃

0

= ⇧
0

.)
In other words, for middle, accept, or weak space⇥input head reversals bounded

Turing machines, the class of languages accepted by machines making only universal
decisions does not coincide with the class of complements of languages recognizable
by machines making only existential decisions. Further, we get that weak -DSPACE⇥
REVERSALS(h(n)) is properly included in weak -⇧

1

-, co-weak -⇧
1

-, weak -⌃
1

-, and
in co-weak -⌃

1

SPACE⇥REVERSALS(h(n)), for each h(n) between log log n and logn.
The input head motion for machines accepting nonregular languages has been

studied in [3, 4]. It turns out that the minimal resource requirements for machines
accepting unary1 languages become important: a recognizer, already having too little
space to remember an input head position, must also cope with the lack of any struc-
ture on the input tape. So the problem arises of whether these results hold even if the
corresponding language classes are restricted to unary languages. Using an additional
assumption that the function h(n) is “well behaved,” we are able to show that the
above separations hold even in the case of unary languages, except for the separation of
weak -⇧

1

SPACE⇥REVERSALS(h(n)) from co-weak -⌃
1

SPACE⇥REVERSALS(h(n)),
which we leave as an open problem.

Here “well behaved” means h(n) 2 o(log n) with h(n)

log log n

unbounded and mono-

tone increasing. We only require h(n) to be recursive but do not claim any kind of
space constructibility.

The above separations are obtained by exhibiting, for any (arbitrarily slow grow-
ing) unbounded monotone recursive function f(n), a nonregular unary language L

f

that can be accepted by a middle s(n) space and i(n) input head reversals bounded
⇧

1

machine with s(n) · i(n) 2 O(log log n · f(n)). On the other hand, using mainly
number theoretical and pumping arguments, we show that, for every h(n) 2 o(log n),
L
f

does not belong to weak -⌃
1

SPACE⇥REVERSALS(h(n)).
The complexity of recognizing L

f

also gives meaningful insights into the study
of minimal resource requirements for computational devices recognizing nonregular
languages, an important research area dating back to works by J. Hartmanis, P. Lewis,

1That is, built over a single letter alphabet.
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SUBLOGARITHMIC BOUNDS ON SPACE AND REVERSALS 327

and R. Stearns in 1965. In [14, 19, 10], the authors settled the problem of determining
the minimal strong space requirement for one–way and two–way, deterministic and
nondeterministic Turing machines that accept nonregular languages. Subsequently,
the same problem has been widely studied for other and more general paradigms of
computation and space notions (for strong alternation in [20], for middle machines
in [22], for accept machines in [4], and for weak machines in [1, 13]). The analysis of
computational lower bounds for nonregular languages is tightly related to the world
of sublogarithmic space (see, e.g., [23, 7]) and, more particularly, plays an important
role in revealing sharp di↵erences among various space definitions [4].

In this regard, we shall concentrate on the problem of determining the optimal
lower bound on the product space⇥input head reversals for middle alternating Turing
machines that accept unary nonregular languages. The reason why we focus on the
middle mode of acceptance is that one-way middle alternating Turing machines exhibit
a very interesting behavior having no analogue in any of the other space bounded
computational models considered, e.g., in [23, 4]. On the one hand, we have an
optimal log logn space lower bound for nonregular languages built on binary alphabets
(hence, on general alphabets as well) [22]. On the other hand, a tight logn space lower
bound is proved in [16] whenever we restrict our machines to accept unary nonregular
languages (see also Table 1.1).

A problem left open in [4] asks whether the same gap situation holds for the
lower bound on s(n) · i(n) for middle space⇥input head reversals bounded alternating
machines accepting nonregular languages. For such machines, a tight log logn lower
bound on s(n) · i(n) for general nonregular languages is observed in [4]. Should we
expect a corresponding exponential gap when accepting unary nonregular languages,
as in the one-way case?

Here we provide a negative answer to this open question since, as stated before,
for any unbounded monotone recursive function f(n), we have a unary nonregular lan-
guage L

f

, recognizable by a middle space⇥input head reversals bounded alternating
Turing machine satisfying s(n) · i(n) 2 O(log log n ·f(n)). With f(n) being arbitrarily
slow growing, we can approach the optimal log logn lower bound for binary languages
as much as we like.

Though this does not completely prove the optimality of the lower bound s(n) ·
i(n) 62 o(log log n) for middle alternating Turing machines recognizing unary nonregu-
lar languages, it shows that such a lower bound cannot be raised to any “well-behaved”
function g(n) above log logn, i.e., to any g(n) that is recursive with g(n)

log log n

unbounded
and monotone increasing. This definitively rules out the possibility of an exponen-
tial gap observed on the corresponding one-way devices between the general and the
unary cases.

Table 1.1 briefly summarizes the lower bounds for middle space⇥input head re-
versals bounded Turing machines recognizing nonregular languages (see Theorem 3.1
and [4, 16]).

This paper is organized as follows: section 2 contains basic definitions, in partic-
ular, the basic notions of space complexity and the SPACE⇥REVERSALS resource
measure. In section 3, we state our main result: we exhibit, for any (arbitrarily
slow growing) unbounded monotone recursive function f(n), a unary nonregular lan-
guage L

f

, mentioned above, and analyze the complexity of recognizing L
f

. As a
consequence, section 4 proves the above-claimed separation results for the unary case.
Finally, in section 5, we improve these separations for the case of general alphabets.
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328 V. GEFFERT, C. MEREGHETTI, AND G. PIGHIZZINI

Table 1.1
Best lower bounds obtained for s(n) · i(n) on middle alternating and nondeterministic (⌃

1

)
Turing machines accepting nonregular languages (i(n) = 1 for one-way machines). These bounds
are known to be optimal [4, 16] except the bound for two-way alternating Turing machines on unary
inputs which is “quasi” optimal (see Theorem 3.1).

One-way alternating
One-way nondeterministic (⌃

1

)
Two-way alternating

Two-way nondeterministic (⌃
1

)

Unary languages General languages

logn log logn

logn logn

lower: log logn log logn

upper: log logn · f(n)
logn logn

2. Preliminaries. In this section, we briefly recall some very basic definitions
concerning space bounded models of computation. For more details, we refer to [4, 23].
Furthermore, we consider machines having simultaneous bounds on both working
space and number of input head reversals, and we introduce SPACE⇥REVERSALS
complexity classes.

Let ⌃⇤ be the set of all strings over an alphabet ⌃. Given any language L ✓ ⌃⇤,
L

c = ⌃⇤ \ L denotes the complement of L. L is said to be unary (or tally) whenever
it is built on an alphabet consisting of exactly one symbol (usually “1”).

The Turing machine model we shall deal with has been presented in [14, 19] to
study sublinear space bounded computations. It consists of a finite state control, a
two-way read-only input tape (with input enclosed between two end markers), and a
separate semi-infinite two-way read-write work tape (initially empty, containing only
blank symbols). A memory state of a Turing machine is an ordered triple m = (q, u, j),
where q is a control state, u is a string of work tape symbols (the nonblank content
of the work tape), and j is an integer satisfying 1  j  |u| + 1 (the position of the
work tape head). A configuration is an ordered pair c = (m, i), where m is a memory
state and i is an integer denoting the position of the input head.

The reader is assumed to be familiar with the notion of alternating Turing ma-
chine, introduced in [5], which is, at the same time, a generalization of nondetermin-
ism and parallelism. A ⌃

k

(⇧
k

) machine is an alternating Turing machine beginning
its computation in an existential (universal, respectively) state, and making at most
k ° 1 switches between existential and universal states along each computation path
on any input. It can be easily seen that ⌃

1

machines are actually nondeterministic
machines. It is stipulated that ⌃

0

and ⇧
0

machines are deterministic machines.
Let us now review notions of space complexity in the literature. In what fol-

lows, the space used by a computation of an alternating machine is, by definition,
the maximal number of work tape cells used by any configuration in the tree cor-
responding to that computation. (For deterministic and nondeterministic machines,
the computation reduces to a single computation path.) Let M be a deterministic,
nondeterministic, or alternating Turing machine. Then the following hold.

• M works in strong s(n) space if and only if, for each input of length n, no
reachable configuration uses more space than s(n) [14, 19, 10].

• M works in middle s(n) space if and only if, for each accepted input of
length n, no reachable configuration uses more space than s(n) [22].

• M works in accept2 s(n) space if and only if, for each accepted input of
length n, each accepting computation uses at most space s(n) [11, 4, 18].

2The designation “accept” has been adopted first in [4].
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SUBLOGARITHMIC BOUNDS ON SPACE AND REVERSALS 329

• M works in weak s(n) space if and only if, for each accepted input of length
n, there exists an accepting computation using at most space s(n) [17, 1, 13].

The above definitions are given in increasing order of generality, as one may
easily verify. We remark that, although several di↵erences have been emphasized
in the literature [23, 4, 7], the above space notions turn out to be equivalent when
considering fully space constructible3 bounds, e.g., “normal” functions above logn:
once the space limit s(n) can be computed in advance, each computation consuming
too much space may be aborted. Also notice that, for ⇧

1

machines, middle, accept,
and weak notions coincide for arbitrary space complexities.

With a slight abuse of terminology, we will often say, for instance, “a middle
alternating Turing machine” instead of “an alternating Turing machine working in
middle space.”

The other computational resource we are interested in is the number of input head
reversals. In general, we say that a Turing machine M is one-way if it can never move
its input head toward the left; otherwise M is a two-way device. To emphasize the
role of input head motion, we introduce a bound i(n) on the number of input head
reversals. We always compute i(n) by considering those computations by which the
space is defined. Thus, for instance, we say that a middle alternating Turing machine
works simultaneously in s(n) space and i(n) input head reversals if, for each accepted
input of length n, no reachable configuration uses more than s(n) work tape cells, nor
can it be accessed by a path that reverses the input head direction more than i(n)
times. For technical reasons, we stipulate i(n) = 1 for one-way machines.

Throughout the rest of the paper, we use the following notation for complexity
classes. Let c 2 {strong ,middle, accept ,weak} and X 2 {⌃

k

,⇧
k

}. Then, we define

c-XSPACE⇥REVERSALS(h(n))

to be the class of the languages accepted by X machines of type c in s(n) space
and i(n) input head reversals satisfying s(n) · i(n) 2 O(h(n)). In particular, we let
X = D for ⌃

0

= ⇧
0

, i.e., for deterministic Turing machines. By co-c-XSPACE⇥
REVERSALS(h(n)), we denote the class of the languages L

c such that L 2 c-
XSPACE⇥REVERSALS(h(n)). Finally, the restriction of these classes to unary
languages will be denoted by c-XSPACE ⇥ REVERSALS1

⇤
(h(n)) or by co-c-

XSPACE⇥REVERSALS1

⇤
(h(n)).

3. A family of nonregular unary languages. In this section, we introduce,
for each unbounded (arbitrarily slow growing) monotone increasing recursive function
f(n), a nonregular unary language L

f

that can be accepted by an alternating Turing
machine in middle s(n) space with i(n) input head reversals satisfying s(n) · i(n) 2
O(log log n · f(n)). Hence, the optimal log logn lower bound on s(n) · i(n) for general
nonregular languages acceptance can be arbitrarily approached by unary languages.
Subsequently, we prove that L

f

cannot be accepted by any nondeterministic Turing
machine working in weak s(n) space and i(n) input head reversals such that s(n)·i(n) 2
o(log n). This implies the nonregularity of L

f

and will later be used to separate several
SPACE⇥REVERSALS complexity classes.

In what follows, p
i

denotes the ith prime. Furthermore, f : N ! N is assumed to
be any (e↵ectively given) unbounded monotone increasing recursive function. That
is, we have a deterministic Turing machine A which, for any binary input x, prints

3A function s(n) is said to be fully space constructible whenever there exists a deterministic
Turing machine which, on any input of length n, uses exactly space s(n).
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330 V. GEFFERT, C. MEREGHETTI, AND G. PIGHIZZINI

out a binary representation of f(x). (Alternatively, we can avoid any ambiguity by
using, in any standard enumeration A

1

, A

2

, . . . of Turing machines, the first machine
computing f . It will be seen later that the upper and lower bounds proved in this
section hold for any choice of A.)

We are now ready for the definition of L
f

. For each n 2 N, we first define the
following statements.

(i) Let p
i

be the first prime not dividing n.
(ii) Let x be the smallest integer satisfying x � 2pi and f(x) � p

i

.
(iii) Let y = max{x, 2s1 , 2s2 , . . . , 2sx}, where s

i

denotes the amount of work tape
space used by machine A when computing the value of f(i).

Then 1n 2 L
f

if and only if the following holds:
(iv) for all prime powers p

j

k  y, with p

j

 p
y, j 6= i, and k � 1, we have that

p

j

k divides n.
In other words, item (iv) states that 1n 2 L

f

if and only if all the prime powers
p

j

k  y, with p

j

 p
y, j 6= i, and k � 1, divide n, log y denoting the amount of space

claimed by A to compute any of the values f(1), f(2), . . . , f(x) or to represent the
integer x (see item (iii)), and x � 2pi being the smallest integer satisfying f(x) � p

i

as required in (ii). Note that such x must exist: take the first x such that f(x) >

max{p
i

°1, f(1), f(2), . . . , f(2pi°1)}, using the fact that f(x) is unbounded.
The proof of nonregularity of L

f

will be given later as a consequence of Theo-
rem 3.2. Now we shall study the complexity of L

f

on alternating machines.
Theorem 3.1. Let L

f

be a unary language defined as above. Then L
f

can be
accepted by a middle alternating Turing machine within s(n) space and i(n) input
head reversals satisfying

s(n) · i(n) 2 O (log log n · f(n)) .

Proof. First, we shall determine possible values of n so that the string 1n belongs
to L

f

. Let p
i

, x, and y be defined as stated in items (i) – (iii). Item (iv) in the definition
of L

f

requires that possible factorizations of n must be of the following form:

n = p

1

↵1+�1 · p
2

↵2+�2 · . . . · p
i°1

↵

i°1+�i°1 · p
i+1

↵

i+1+�i+1 · . . . · p
s

↵

s

+�

s · ⌫ ,(3.1)

where p
s

represents the largest prime less than or equal to
p
y. The prime p

i

does not
appear in (3.1) since it does not divide n. Numbers ↵

j

, with j 2 {1, 2, . . . , s} \ {i},
are the maximal exponents which the corresponding primes p

j

can be raised to in
order to have p

j

↵

j  y. It is easy to see that ↵

j

= blog
p

j

yc and �

j

� 0, where, for
any given number z, bzc denotes the greatest integer less than or equal to z. Finally,
⌫ contains the (possibly empty) part of the factorization consisting of powers of those
primes greater than

p
y.

By (3.1), we are able to obtain a relation between n and y. In fact, we observe
that

n �
Y

ppy, p 6=p

i

p

blog
p

yc
,(3.2)

where the product is taken over all primes not exceeding
p
y and di↵erent from p

i

.
By noticing that log

p

y � 2 for p  p
y, we get the following limitation:

p
y = p

1
2 ·log

p

y

< p

blog
p

yc
,
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SUBLOGARITHMIC BOUNDS ON SPACE AND REVERSALS 331

which, together with (3.2), yields

n >

Y

ppy, p 6=p

i

p
y = y

1
2 ·(⇡(

p
y)°1)

.(3.3)

Here ⇡(z) denotes the number of primes not exceeding bzc. A well-known theorem
due to P. Čebyšev (see [8, Thm. 7]) states that

c

1

· z

log z
 ⇡(z)  c

2

· z

log z

for some positive constants c
1

and c

2

. We can use this in (3.3) and obtain

n > y

1
2 ·
°

c1·
p
y

log
p
y

°1

�

= 2
log y

2 ·
°

2c1
p
y

log y °1

�

> d

p
y(3.4)

for a suitable constant d > 1.
With these results in our hands, we are now ready to estimate the amount of

space and input head reversals su�cient for a middle alternating Turing machine M

to accept L
f

. On input 1n, M runs a two-phase algorithm. First, it computes the
smallest prime p

i

not dividing n. Then, it checks the truth of predicate in item (iv).
Phase 1. M deterministically computes p

i

by means of the following routine:
/⇤ input is 1n ⇤/
p := 2
while n mod p = 0 do

begin
p := p + 1
while p not a prime do p := p + 1

end
/⇤ now p contains p

i

⇤/
The amount s

1

(n) of space used in this phase equals the number of bits needed
to represent p

i

in binary notation, i.e., s
1

(n) 2 O(log p
i

). Furthermore, it is easy to
see that, for each value of p, the test “n mod p = 0” can be accomplished by scanning
the input only once. Therefore, the number i

1

(n) of input head reversals equals the
number of primes not exceeding p

i

. By Čebyšev’s theorem, we obtain i

1

(n) 2 O( p

i

log p

i

).
Phase 2. M deterministically computes the smallest integer x � 2pi such that

f(x) � p

i

(p
i

being already stored on the work tape during the former phase). To
this purpose, M simply loops as follows:
x := 1
while x < 2pi or f(x) < p

i

do
x := x + 1
Note that M computes each of the values f(1), f(2), . . . , f(x) by simulating A;

therefore, it marks o↵ exactly max{log x, s
1

, s

2

, . . . , s

x

} = log y space on the work
tape. Recall that s

i

denotes the amount of space used by A when computing f(i).
Subsequently, M universally generates all the prime powers whose binary repre-

sentation takes at most log y bits and checks whether each p

j

k  y, with p

j

 p
y,

j 6= i, and k � 1, divides n. Clearly, the space requirement in this phase is bounded
by s

2

(n) 2 O(log y).
For input head reversals, we observe that the computations of f(1), f(2), . . . , f(x)

are performed deterministically with the input head parked at one end marker, and
that the divisibility of n by each p

j

k is tested universally in parallel by one input scan,
whence i

2

(n) = 1.
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332 V. GEFFERT, C. MEREGHETTI, AND G. PIGHIZZINI

Let us now evaluate s(n) · i(n) in case 1n belongs to L
f

. The algorithm uses a
total amount of space and input head reversals along each computation path of M to
be estimated as

s(n) = s

1

(n) + s

2

(n) 2 O(log p
i

+ log y) = O(log y) ,

i(n) = i

1

(n) + i

2

(n) 2 O
✓

p

i

log p
i

◆

,

using p

i

 log x  log y by (ii) and (iii) in the definition of L
f

. This gives

s(n) · i(n) 2 O
✓

log y · p

i

log p
i

◆

.

Items (ii) and (iii) in the definition of L
f

require that p
i

 f(x) and x  y. Further,
t

log t

is monotone increasing. Hence, f(x)

log f(x)

is also monotone increasing whenever

f(x) is monotone increasing. Therefore, in case of 1n 2 L
f

, we are able to obtain the
following bounds:

log y · p

i

log p
i

 log y · f(x)

log f(x)
 log y · f(y)

log f(y)
.

Moreover, inequality (3.4) states that n > d

p
y, i.e., y  k ·log2

n for a suitable positive
constant k. Hence, for su�ciently large n, we get

log y · f(y)

log f(y)
 log(k · log2

n) · f(k · log2

n)

log f(k · log2

n)

 log(k · log2

n) · f(n)

log f(n)
2 O (log logn · f(n)) ,

which completes the proof.
As a consequence of Theorem 3.1, it turns out that, using unary languages, we

can arbitrarily approach the optimal log logn lower bound on s(n) · i(n) holding
for general nonregular language acceptance by middle space⇥input head reversals
bounded alternating Turing machines (see Table 1.1). Take, for instance, f(x) =
log⇤ x = min{k 2 N | log(k)

x  1}, with log(0)

x = x and, for each k � 1, log(k)

x =
log(k°1) log x.

We now show that the language L
f

is nonregular. Actually, we prove a stronger
result that, together with Theorem 3.1, will also allow us to obtain some separations
in the case of weakly bounded computations.

Theorem 3.2. Let L
f

be a unary language defined as above. Then for any

h(n) 2 o(log n), L
f

is not in weak-⌃
1

SPACE⇥REVERSALS1

⇤
(h(n)).

Proof. Suppose, by contradiction, that L
f

can be accepted by a weak nondeter-
ministic machine M in s(n) space and i(n) input head reversals, with s(n) · i(n) =
h(n) 2 o(log n). The number of di↵erent memory states of M not using more space
than s(n) on the work tape can be bounded by c

s(n), where c is a constant de-
pendent on the number of work tape symbols and finite-control states of M . Since
lim

n!1
s(n)·i(n)

logn

= 0, there exists n
0

2 N such that

c

s(n)·i(n)

<

p
n for each n � n

0

.(3.5)

Now, consider the string 1n
0
, where n

0 is defined in the following way:
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SUBLOGARITHMIC BOUNDS ON SPACE AND REVERSALS 333

(i) First, let p
i

� 5 be a su�ciently large prime such that there is another prime
p̃ between n

0

and p

i

, i.e., p
i

> p̃ > n

0

.
(ii) Let x be the smallest integer satisfying x � 2pi and f(x) � p

i

.
(iii) Now, let y = max{x, 2s1 , 2s2 , . . . , 2sx}, where s

i

denotes the space used by
the machine A to compute f(i).

(iv) Finally, define

n

0 =
Y

ppy, p 6=p

i

p

blog
p

yc
,

where the product is taken over all primes not exceeding
p
y and di↵erent

from p

i

.
We want to show that 1n

0 2 L
f

. First, we prove that p

i

is the first prime that
does not divide n

0. Clearly, p
i

does not divide n

0. For primes p < p

i

, we obtain

p

blog
p

yc+1

> y � p
y � log y � log x � p

i

> p = p

1

,

using (iii) and (ii) in the definition of n0. (The inequality
p
y � log y follows from

log y � p

i

� 5 by (i).) Thus, blog
p

yc > 0 and p <

p
y; i.e., n0 is divisible by p for

each prime p < p

i

.
At this point, to conclude that 1n

0 2 L
f

, it is enough to prove that each prime
power p

j

k  y, with p

j

 p
y, j 6= i, and k � 1, divides n0. This can be immediately

shown by observing that k  log
p

j

y and k 2 N; hence,

k = bkc  blog
p

j

yc .

This gives that 1n
0 2 L

f

.
As a consequence, there must exist an accepting computation path C of M on

the input 1n
0
, using at most s(n0) space and i(n0) input head reversals. By (i) in the

definition of n0, we have a prime p̃ satisfying p

i

> p̃ > n

0

. Since p

i

is the first prime
not dividing n

0, p̃ divides n0, and hence n

0 � p̃ > n

0

. Therefore, by (3.5), the bounds
s(n0) and i(n0) must satisfy

c

s(n

0
)  c

s(n

0
)·i(n0)

<

p
n

0  n

0
.(3.6)

Along the path C, we can consider r
1

, r

2

, . . . , r

A

, the sequence of all configurations in
which the input head scans either of the end markers. Let b

1

, e

1

, b

2

, e

2

, . . . , b

B

, e

B

be
the subsequence of r

1

, r

2

, . . . , r

A

such that, for each j = 1, 2, . . . , B, machine M begins
with the input head positioned at the left or right end marker in b

j

, traverses across

the entire input 1n
0
, and ends in e

j

positioned at the opposite end marker, without
visiting either of the end markers in the meantime. The segments of computation
between e

j

and b

j+1

always return the input head back to the same end marker (or,
possibly, e

j

= b

j+1

).

Since, by (3.6), the number of di↵erent memory states is bounded by c

s(n

0
)

< n

0,
the machine must enter a loop when traversing the entire input 1n

0
from b

j

to e

j

; i.e.,
it enters some memory state twice in some configurations (q

j

, d

j

) and (q
j

, d

j

+`

j

) for
`

j

6= 0. To avoid any ambiguity, we take the first loop the machine gets into, i.e., the
first pair of configurations having the same memory state, along each input traversal.
Observe that

`

j

 c

s(n

0
) for each j = 1, 2, . . . , B ,

B  i(n0) ,
(3.7)
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334 V. GEFFERT, C. MEREGHETTI, AND G. PIGHIZZINI

since M is simultaneously s(n) space and i(n) input head reversals bounded.
Now, define

` =
B

Y

j=1

`

j

.(3.8)

It is not too hard to see that the machine M must also accept the inputs 1n
0
+µ·` for

each µ 2 N. In fact, we can replace the accepting computation path C for the input
1n

0
by a new computation path C

µ

that visits the end markers in the same sequence
of configurations r

1

, r

2

, . . . , r

A

. The path C
µ

is obtained from C by iterating, µ·`
`

j

more

times, the loop of length `

j

in the segment of computation connecting b

j

and e

j

, for
each j = 1, 2, . . . , B. Note that ` is a common multiple of `

1

, `

2

, . . . , `

B

and hence
µ·`
`

j

2 N; i.e., the new segments of computation traverse exactly n0 + µ·`
`

j

· `
j

= n

0 + µ·`
positions, beginning and ending in the same configurations b

j

and e

j

, respectively, for
each j = 1, 2, . . . , B. The segments between e

j

and b

j+1

(always returning back to the
same end marker) are left unchanged. Hence, for each µ 2 N, C

µ

is a valid accepting

computation path on the input 1n
0
+µ·`.

To complete the proof, we are now going to show that 1n
0
+µ

0·` 62 L
f

, where µ

0 is
defined by

µ

0 =
Y

pp
i

p ,(3.9)

which is a contradiction. The product is taken over all primes not exceeding p
i

; hence,
(n0 + µ

0 ·`) mod p = n

0 mod p for each prime p  p

i

. This gives that n0 and n

0 + µ

0 ·`
share the same “least prime nondivisor” p

i

. Therefore, to show that 1n
0
+µ

0·` 62 L
f

,
there only remains to exhibit a prime power p

j

k  y, with p

j

 p
y, j 6= i, and k � 1,

such that p
j

k does not divide n

0 + µ

0 ·`.
Since we have shown that 1n

0 2 L
f

, each such prime power divides n0, and hence

(n0 + µ

0 ·`) mod p

j

k = (µ0 · `) mod p

j

k

.(3.10)

Therefore, the problem reduces to exhibit p
j

k not dividing µ

0 · `.
To this aim, observe that `, as defined by (3.8), is bounded by

` =
B

Y

j=1

`

j


B

Y

j=1

c

s(n

0
) =

⇣

c

s(n

0
)

⌘

B

 c

s(n

0
)·i(n0)

<

p
n

0
,(3.11)

using (3.7) and (3.6). On the other hand, the factorization of ` must be of the form

` = ⌫ ·
Y

ppy, p 6=p

i

p

↵

p

,(3.12)

where the product is taken over all primes not exceeding
p
y and di↵erent from p

i

,
while ⌫ contains the (possibly empty) part of the factorization consisting of powers
of those primes p greater than

p
y or p = p

i

.
Let us now show that there exists a prime p

0  p
y, p0 6= p

i

, such that ↵

p

0
<

blog
p

0 yc°1. Suppose, by contradiction, that ↵
p

� blog
p

yc°1 for each prime p  p
y,

p 6= p

i

. Then log
p

y � 2 and hence

blog
p

yc ° 1 � 1

2
· blog

p

yc .
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This gives

` = ⌫ ·
Y

ppy, p 6=p

i

p

↵

p �
Y

ppy, p 6=p

i

p

blog
p

yc°1 �
Y

ppy, p 6=p

i

p

1
2 ·blog

p

yc =
p
n

0
,

i.e., ` � p
n

0, which contradicts (3.11). Hence, there exists a prime p

0  p
y, p0 6= p

i

such that ↵
p

0
< blog

p

0 yc ° 1.

By (3.12), this implies that ` is not an integer multiple of p0blogp0 yc°1 and there-

fore, by (3.9), µ0 · ` is not an integer multiple of p0blogp0 yc. But then, we have a prime

power p

0blog
p

0 yc  y, with p

0  p
y and p

0 6= p

i

, that does not divide n

0 + µ

0 ·`, us-

ing (3.10). Therefore, 1n
0
+µ

0·` 62 L
f

, which is a contradiction and completes the proof
of the theorem.

4. Separation results in the unary case. We now draw some important
structural consequences from the previous results. Note that the alternating algorithm
provided for L

f

in Theorem 3.1 consists of a deterministic phase followed by a single
universal branching. Hence, it can be run on a ⇧

1

machine. Moreover, a middle
space⇥input head reversals bounded machine can be viewed as an accept device, which
in turn is a special case of a weak machine. Thus we have the following corollary.

Corollary 4.1. Let L
f

be a unary language defined as above for any un-
bounded monotone increasing recursive function f(n). Then L

f

2 middle-⇧
1

SPACE⇥
REVERSALS1

⇤
(log log n · f(n)). Hence, for c 2 {middle, accept ,weak}, L

f

2 c-

⇧
1

SPACE⇥REVERSALS1

⇤
(log log n · f(n)).

On the other hand, from Theorem 3.2 we get Corollary 4.2.
Corollary 4.2. Let L

f

be a unary language defined as above. Then L
f

62
weak-⌃

1

SPACE⇥REVERSALS(h(n)) for any h(n) 2 o(log n). Hence, for c 2
{middle, accept , weak} and any h(n) 2 o(log n), L

f

62 c-⌃
1

SPACE⇥REVERSALS
(h(n)).

Combining the above two corollaries, we have the first separation for “well-
behaved” functions h(n) between log log n and logn in Theorem 4.3.

Theorem 4.3. Let h(n) 2 o(log n) be any recursive function such that h(n)

log log n

is

unbounded and monotone increasing. Then, for c 2 {middle, accept ,weak},
c-⇧

1

SPACE⇥REVERSALS1

⇤
(h(n)) 6= c-⌃

1

SPACE⇥REVERSALS1

⇤
(h(n)) .

Proof. Clearly, if h(n) is recursive, then so is f(n) = h(n)

log log n

. Then, by Corol-

lary 4.1, L
f

belongs to c-⇧
1

SPACE⇥REVERSALS1

⇤
(h(n)) for each c 2 {middle,

accept ,weak}. On the other hand, by Corollary 4.2, L
f

is not in c-⌃
1

SPACE⇥
REVERSALS1

⇤
(h(n)), since h(n) 2 o(log n).

For further separations we need the fact that the class of regular languages is
closed under complementation and that regular languages are accepted by one-way
Turing machines working in constant space. Hence, from Theorem 3.2, we get Corol-
lary 4.4.

Corollary 4.4. Let L
f

be a unary language defined as above. Then neither L
f

nor L
f

c are regular.
As recalled in the Introduction, apart from middle alternation, for any other

combination of determinism, nondeterminism, or alternation with the space notions
defined in section 2, computational lower bounds for nonregular unary and general
languages coincide and are optimal [4]. Thus, for accept alternating machines, Ta-
ble 1.1 can be shrunk as shown in Table 4.1.
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336 V. GEFFERT, C. MEREGHETTI, AND G. PIGHIZZINI

Table 4.1
Optimal lower bounds on s(n) · i(n) for accept alternating and nondeterministic (⌃

1

) Turing
machines recognizing nonregular languages [4].

One-way alternating
One-way nondeterministic (⌃

1

)
Two-way alternating
Two-way nondeterministic (⌃

1

)

Unary and general languages

log logn

logn

log logn

logn

Now, from Table 4.1 (for proof, see [4, Thm. 6]), we get the following corollary.
Corollary 4.5. Let L be a nonregular language. Then L 62 accept-⌃

1

SPACE⇥
REVERSALS(h(n)) for any h(n) 2 o(log n). Hence, for c 2 {middle, accept} and
any h(n) 2 o(log n), L 62 c-⌃

1

SPACE⇥REVERSALS(h(n)).
This allows us to present some further separations for middle and accept complex-

ity classes.
Theorem 4.6. Let h(n) 2 o(log n) be any recursive function such that h(n)

log log n

is

unbounded and monotone increasing. Then, for c 2 {middle, accept},

c-⇧
1

SPACE⇥REVERSALS1

⇤
(h(n)) 6= co-c-⌃

1

SPACE⇥REVERSALS1

⇤
(h(n)) ,

co-c-⇧
1

SPACE⇥REVERSALS1

⇤
(h(n)) 6= c-⌃

1

SPACE⇥REVERSALS1

⇤
(h(n)) .

Proof. Note that, by Corollary 4.5, the classes c-⌃
1

SPACE⇥REVERSALS1

⇤
(h(n))

and co-c-⌃
1

SPACE⇥REVERSALS1

⇤
(h(n)) coincide with the class of regular lan-

guages. On the other hand, for f(n) = h(n)

log log n

, neither L
f

nor L
f

c are regular, by

Corollary 4.4, and they belong, respectively, to c-⇧
1

SPACE⇥REVERSALS1

⇤
(h(n))

and to co-c-⇧
1

SPACE⇥REVERSALS1

⇤
(h(n)), by Corollary 4.1.

Theorem 4.6 shows, for middle or accept SPACE⇥REVERSALS complexity mea-
sure, that the class of the languages accepted by machines making only universal
decisions does not coincide with the class of the complements of languages recogniz-
able by machines making only existential decisions.

At this point, it is quite natural to investigate whether or not this separation can
be extended even to the weak case. The argument of Theorem 4.6 cannot be applied
here, since weak -⌃

1

SPACE⇥REVERSALS(log logn) does contain unary nonregular
languages [4]. We conjecture that even L

f

c does not belong to weak -⌃
1

SPACE⇥
REVERSALS1

⇤
(h(n)) for a suitable function h(n) 2 o(log n). Nevertheless, the

“pumping” argument used to prove Theorem 3.2 does not work in the case of L
f

c.

So, we leave the separation of weak -⇧
1

SPACE⇥REVERSALS1

⇤
(h(n)) from co-weak -

⌃
1

SPACE⇥REVERSALS1

⇤
(h(n)) as an open problem. However, in the next section,

we will show how to solve this problem by using witness languages defined over a
binary alphabet.

Finally, the separation of the higher levels of the alternating hierarchy from de-
terminism can be obtained by recalling the following result in [4, Thm. 6].

Theorem 4.7. Let M be a weak deterministic (or nondeterministic) Turing
machine recognizing a nonregular language within s(n) space and i(n) input head
reversals. Then s(n) · i(n) 62 o(log n) (or s(n) · i(n) 62 o(log log n), respectively). These
bounds are optimal for both the unary and general cases.

Using this result, we can easily get Theorem 4.8.
Theorem 4.8. Let h(n) be a function satisfying h(n) 2 o(log n) \ ≠(log log n).
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Then
weak-DSPACE⇥REVERSALS1

⇤
(h(n)) is properly included in

weak-⌃
1

SPACE⇥REVERSALS1

⇤
(h(n)) and in

co-weak-⌃
1

SPACE⇥REVERSALS1

⇤
(h(n)).

If, moreover, h(n) is recursive, with h(n)

log log n

unbounded and monotone increasing, then

weak-DSPACE⇥REVERSALS1

⇤
(h(n)) is properly included even in

weak-⇧
1

SPACE⇥REVERSALS1

⇤
(h(n)) and in

co-weak-⇧
1

SPACE⇥REVERSALS1

⇤
(h(n)).

Proof. Just note that, by Theorem 4.7, weak -DSPACE⇥REVERSALS(h(n))
coincides with the class of regular languages for each h(n) 2 o(log n). On the other
hand, again by Theorem 4.7, weak -⌃

1

SPACE⇥REVERSALS1

⇤
(log log n) contains

a nonregular unary language. Moreover, by Corollary 4.1, even weak -⇧
1

SPACE⇥
REVERSALS1

⇤
(h(n)) contains unary nonregular languages whenever h(n) satisfies

the conditions of the theorem.
The remaining proper inclusions follow by observing that the class of nonregular

languages is closed under complement.

5. Separation results for general languages. In this section, we study sep-
arations in the case of languages defined over alphabets of at least two symbols. In
particular, we show that all separations in section 4, proved in the unary case for
“well-behaved” h(n) between log log n and logn, hold in the general case for any
function h(n) 2 o(log n) \ ≠(log log n) and in particular for log logn.

Further, we get that, for general languages, weak -⇧
1

SPACE⇥REVERSALS(h(n))
is separated from co-weak -⌃

1

SPACE⇥REVERSALS(h(n)). Symmetrically, we have
weak -⌃

1

SPACE⇥REVERSALS(h(n)) 6= co-weak -⇧
1

SPACE⇥REVERSALS(h(n)) for
any function h(n) 2 o(log n) \ ≠(log log n).

In order to state these results, we consider the language L
1

defined by

L
1

= {akbk+m : m > 0 is a common multiple of all r  k} .

Theorem 5.1. Let L
1

be the language defined as above. Then L
1

can be accepted
by a one-way ⇧

1

machine in middle O(log log n) space.
Proof. The proof is similar to that of Theorem 3.2 in [22]. On input x = a

k

b

t

of length n = t + k, the ⇧
1

machine M accepting L
1

first counts, on the work tape,
the number k of a’s at the beginning of the input. Next, it moves the input head k

positions to the right, rejecting if the right end marker is reached, i.e., if t  k. Finally,
M universally generates all integers r less than or equal to k, and, by counting the
length of the remaining part of the input modulo r, it checks whether each r divides
t° k.

Clearly, M is a one-way machine. The space used by M on the input x = a

k

b

t

is proportional to the space needed to represent k in binary notation, i.e., O(log k).
Moreover, if x 2 L

1

, then t ° k is a common multiple of all r  k. Since the least
common multiple of {1, 2, . . . , k} is bounded from below by d

k, for some constant
d > 1 (for proof, see [23, Lem. 4.1.2]), we get k  log

d

(t° k)  log
d

(t + k) = log
d

n.
Hence, s(n) 2 O(log log n).

Corollary 5.2. L
1

2 c-⇧
1

SPACE⇥REVERSALS(log logn) for c 2 {middle,
accept ,weak}.

We now state a lower bound on the product space⇥input head reversals for weak
nondeterministic Turing machines accepting L

1

.
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Theorem 5.3. Let L
1

be the language defined as above. Then, for any h(n) 2
o(log n), L

1

is not in weak-⌃
1

SPACE⇥REVERSALS(h(n)).
Proof. Suppose, by contradiction, that L

1

can be accepted by some nondetermin-
istic machine in weak s(n) space and i(n) reversals, with s(n) · i(n) = h(n) 2 o(log n).
Then L

1

can even be accepted by a one-way nondeterministic machine M in weak
h(n) space. (The simulating machine nondeterministically guesses, at each input
tape position, the crossing sequence of memory states that corresponds to an ac-
cepting computation path and checks the compatibility of the neighboring crossing
sequences. Since the original weak machine is simultaneously s(n) space and i(n)
input head reversals bounded, then weak O(s(n) · i(n)) space su�ces for processing
the input from left to right. For details, see [4, Lem. 5].)

The number of di↵erent memory states of M using no more than h(n) work tape
cells can be bounded by c

h(n) for a suitable constant c > 1. Since h(n) 2 o(log n),
there exists n

0

2 N (cf. (3.5) in Theorem 3.2), such that

c

h(n)

<

p
n for each n � n

0

.(5.1)

Now, consider an input x = a

k

b

k+m of length n = 2k + m � n

0

, such that m is
the least common multiple of all r  k. Clearly, the string x = a

k

b

k+m belongs to L
1

.
In addition, we choose k > 0 su�ciently large, so that 2k  d

k  m. Here d > 1 is the
constant used in the proof of Theorem 5.1; i.e., dk is a lower bound for m, the least
common multiple of {1, 2, . . . , k}. Hence, bm is a “dominant” portion of the input;
i.e., we have

m � n

2
>

p
n .

On input x = a

k

b

k+m, M must have an accepting computation path C that uses
at most h(n) space. Since m >

p
n and, by (5.1), the number of di↵erent memory

states is bounded by
p
n, M must enter some memory state twice while traversing the

segment bm on the input. That is, C enters some configurations (q, d) and (q, d+`),
with 2k  d < d+`  n.

But then M must also accept the input a

k

b

k+m°` by means of the accepting
computation path C0 obtained from C by “skipping” the segment between the con-
figurations (q, d) and (q, d+`). Since m is the least common multiple of all r  k

and ` > 0, it turns out that m ° ` is not a multiple of all r  k. Hence, M accepts
a

k

b

k+m°` 62 L
1

, which is a contradiction.
Note that, as a consequence of Theorem 5.3, the language L

1

is not regular. Using
Corollary 5.2 and Theorem 5.3, we are now able to rewrite Theorem 4.3 for languages
defined over general alphabets.

Corollary 5.4. For each h(n) 2 o(log n)\≠(log log n) and c 2 {middle, accept ,
weak},

c-⇧
1

SPACE⇥REVERSALS(h(n)) 6= c-⌃
1

SPACE⇥REVERSALS(h(n)) .

Even Theorem 4.8 can easily be rewritten in the case of general alphabets as
follows.

Corollary 5.5. Let h(n) be a function satisfying h(n) 2 o(log n)\≠(log log n).
Then weak-DSPACE⇥REVERSALS(h(n)) is properly included in the following classes:

weak-⌃
1

SPACE⇥REVERSALS(h(n)),
co-weak-⌃

1

SPACE⇥REVERSALS(h(n)),
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weak-⇧
1

SPACE⇥REVERSALS(h(n)),
co-weak-⇧

1

SPACE⇥REVERSALS(h(n)).
Let us now compare the classes defined by machines making universal decisions

with the classes of complements of languages accepted by machines making existential
decisions. For sublogarithmic bounds in the unary case, these classes have been
separated for the middle and accept modes (Theorem 4.6), while the separation is an
open problem for the weak mode.

Here we prove this separation using witness languages defined over alphabets
containing at least two symbols. To this purpose, we extend the lower bound of
Theorem 5.3 to the language L

1

c. First, consider the following language:

L
2

= {akbt : t  k or 9r  k which does not divide t° k} .
Note that L

2

= L
1

c \ {a}⇤{b}⇤.
Theorem 5.6. Let L

2

be the language defined as above. Then, for any h(n) 2
o(log n), L

2

is not in weak-⌃
1

SPACE⇥REVERSALS(h(n)).
Proof. As in Theorem 5.3, suppose, by contradiction, that L

2

can be accepted
by some nondeterministic machine in weak s(n) space and i(n) input head reversals,
with s(n) · i(n) = h(n) 2 o(log n). Then L

2

can even be accepted by a one-way
nondeterministic machine M in weak h(n) space [4, Lem. 5]. The number of di↵erent
memory states of M using at most h(n) work tape cells is bounded by c

h(n) for a
suitable constant c > 1. Since h(n) 2 o(log n), there exists n

0

2 N, such that

c

h(n)

<

n

2
for each n � n

0

.(5.2)

Now, for some even n � n

0

, consider the string x = a

n

2
b

n

2 , easily seen to be in L
2

.
Hence, M must have an accepting computation path on the input x, consisting of
memory states that use at most space h(n). Since, by (5.2), the number of di↵erent
memory states is bounded by n

2

, this computation path enters a loop while traversing
the su�x b

n

2 . More precisely, M enters some memory state twice, in some configura-
tions (q, d) and (q, d+`), with d >

n

2

and ` > 0. Thus, it is not hard to see that M
must also accept the strings of the form

a

n

2
b

n

2 +µ·` 2 L
2

for each µ 2 N .(5.3)

Now, let µ

0 =
°

n

2

�

!. It is easy to see that µ

0 · ` > 0 and that each integer

r  n

2

divides µ

0 · `. That is, the string a

n

2
b

n

2 +µ

0·` does not belong to L
2

, which
contradicts (5.3).

Using Theorem 5.6, we are now able to show Corollary 5.7.
Corollary 5.7. Let L

1

be the language defined as above. Then the complement
of L

1

is not in weak-⌃
1

SPACE⇥REVERSALS(h(n)) for any h(n) 2 o(log n).
Proof. Should L

1

c be in weak -⌃
1

SPACE⇥REVERSALS(h(n)), for some h(n) 2
o(log n), then so would L

2

= L
1

c \ {a}⇤{b}⇤, which contradicts Theorem 5.6.
Finally, by combining Corollaries 5.2 and 5.7, we get Theorem 5.8.
Theorem 5.8. Let h(n) be a function satisfying h(n) 2 o(log n) \ ≠(log log n).

Then, for c 2 {middle, accept ,weak},
c-⇧

1

SPACE⇥REVERSALS(h(n)) 6= co-c-⌃
1

SPACE⇥REVERSALS(h(n)) ,

c-⌃
1

SPACE⇥REVERSALS(h(n)) 6= co-c-⇧
1

SPACE⇥REVERSALS(h(n)) .D
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[21] R. Szelepcsényi, The method of forced enumeration for nondeterministic automata, Acta
Inform., 26 (1988), pp. 279–284.

[22] A. Szepietowski, Remarks on languages acceptable in log logn space, Inform. Process. Lett.,
27 (1988), pp. 201–203.

[23] A. Szepietowski, Turing Machines with Sublogarithmic Space, Lecture Notes in Computer
Science 843, Springer-Verlag, Berlin, New York, 1994.

D
ow

nl
oa

de
d 

12
/2

6/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


