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ABSTRACT

The quantitative assessment of COH fluids is crucial in modeling geological processes. The composition of fluids,

and in particular their H2O/CO2 ratio, can influence the melting temperatures, the location of hydration or carbon-

ation reactions, and the solute transport capability in several rock systems. In the scientific literature, COH fluids

speciation has been generally assumed on the basis of thermodynamic calculations using equations of state of sim-

ple H2O–nonpolar gas systems (e.g., H2O–CO2–CH4). Only few authors dealt with the experimental determination

of high-pressure COH fluid species at different conditions, using diverse experimental and analytical approaches

(e.g., piston cylinder + capsule piercing + gas chromatography/mass spectrometry; cold seal + silica glass cap-

sules + Raman). In this contribution, we present a new methodology for the synthesis and the analysis of COH flu-

ids in experimental capsules, which allows the quantitative determination of volatiles in the fluid by means of a

capsule-piercing device connected to a quadrupole mass spectrometer. COH fluids are synthesized starting from

oxalic acid dihydrate at P = amb and T = 250°C in single capsules heated in a furnace, and at P = 1 GPa and

T = 800°C using a piston-cylinder apparatus and the double-capsule technique to control the redox conditions

employing the rhenium–rhenium oxide oxygen buffer. A quantitative analysis of H2O, CO2, CH4, CO, H2, O2, and

N2 along with associated statistical errors is obtained by linear regression of the m/z data of the sample and of

standard gas mixtures of known composition. The estimated uncertainties are typically <1% for H2O and CO2,

and <5% for CO. Our results suggest that the COH fluid speciation is preserved during and after quench, as the

experimental data closely mimic the thermodynamic model both in terms of bulk composition and fluid speciation.
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INTRODUCTION

COH fluids play a fundamental role in many geological

processes, influencing the location of devolatilization and

melting reactions (e.g., Wyllie 1978; Olafsson & Eggler

1983; Taylor & Green 1988; Wallace & Green 1988; Thi-

bault et al. 1992; Jakobsson & Holloway 2008; Thomsen

& Schmidt 2008; Foley et al. 2009; Grassi & Schmidt

2011; Tumiati et al. 2013) and dissolution processes in

rock systems (e.g., Walther & Orville 1983; Newton &

Manning 2000, 2009; Caciagli & Manning 2003;

Shmulovich et al. 2006). Most of these processes are

dependent on the composition of the COH fluid itself, for

instance its XCO2 [=CO2/(CO2+H2O)] ratio. In fact, the

bulk composition of COH fluids can be expressed using

the basis vector {C, O, H}, but in this case, information

regarding the fluid speciation is not directly achievable.

Therefore, in most cases, the composition of COH fluids

is expressed as a combination of components that represent

the actual species forming the fluid itself. The basis vector

{H2O, CO2, CH4, CO, H2, O2} has been used since

many decades to generate the compositional vector space
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of COH fluids in thermodynamic calculations (e.g., Con-

nolly & Cesare 1993; Connolly 1995; Huizenga 2001,

2011; Zhang & Duan 2009). However, other neutral

(e.g., C2H6 and C3H8) or charged species (e.g., CO3
2�,

HCO3
�, and CH3COO�) (Mysen & Yamashita 2010; Pan

et al. 2013; Facq et al. 2014; Sverjensky et al. 2014) have

been recently reported in high-pressure COH fluids on the

basis of experimental measurements and thermodynamic

calculations.

Although several techniques are established for the

quantitative analysis of fluids in natural inclusions (e.g.,

Roedder 1965; Pasteris 1987; Frezzotti et al. 1994, 2011;

Lamadrid et al. 2014), only few works dealt with the ana-

lytical determination of the volatile phases in experimental

capsules (e.g., Eggler et al. 1979; Holloway & Jakobsson

1986; Jakobsson & Holloway 1986; Taylor & Foley 1989;

Morgan et al. 1992; Jakobsson & Oskarsson 1994; Rosen-

baum & Slagel 1995; Matveev et al. 1997; Truckenbrodt

et al. 1997; Truckenbrodt & Johannes 1999; Akaishi et al.

2000; Chepurov et al. 2012; Dvir et al. 2013). In most

cases, the speciation of COH fluids in experiments has

been estimated on the basis of thermodynamic models that

rely on equations of state of simple H2O–nonpolar gas sys-
tems (e.g., equations of state of Connolly & Cesare 1993

and Zhang & Duan 2009). These models have been lar-

gely employed to constrain the composition of COH fluids

in equilibrium with solid phases, and these latter being

routinely analyzed by means of electron microprobe (e.g.,

Poli et al. 2009; Malaspina et al. 2010; Goncharov et al.

2012; Malaspina & Tumiati 2012; Tumiati et al. 2013;

Stagno et al. 2015). Recently, pioneering more complex

models including dissolved species have been developed

(Pan et al. 2013; Facq et al. 2014; Sverjensky et al. 2014;

Galvez et al. 2015), to account for the interaction between

fluid and coexisting solid phases, but these models still rely

on a very limited experimental dataset.

In this study, we: (i) present a piercing device which

allowed to extract quenched COH fluids synthesized in

experimental capsules at both ambient and high-pressure

conditions; (ii) provide for the first time quantitative analy-

sis of H2O, CO2, CH4, CO, H2, and O2 along with ana-

lytical uncertainties using quadrupole mass spectrometry;

and (iii) compare our experimental result with previous

experimental data and thermodynamic models performed

in the pure COH system.

Experimental background

Ex situ versus in situ experiments in COH-bearing systems

Several analytical techniques have been previously proposed

to analyze synthetic high-pressure COH fluids either

in situ or ex situ. In situ analyses of COH fluids are gener-

ally carried out in hydrothermal diamond anvil cells

(HDAC; Bassett et al. 1993) coupled with Raman or FTIR

spectroscopy (e.g., Sanchez-Valle et al. 2003; Mysen &

Yamashita 2010; Facq et al. 2014; McCubbin et al. 2014;

Schmidt 2014). These experiments are to date limited to

relatively low temperatures and simple chemical systems.

Ex situ analyses are performed on COH fluids equili-

brated in experimental capsules and quenched at room

temperature and pressure. This method has some advan-

tages compared to in situ experiments. First, it is possible

to synthesize fluids in a wide range of P–T–X conditions,

employing inert noble metal capsules and devices used

extensively in experimental petrology for determining

phase equilibria (e.g., cold-seal externally heated pressure

vessels; piston-cylinder and multi-anvil apparatuses). Sec-

ond, it is possible to constrain the redox state of the exper-

iment, for instance, using the double-capsule technique

(e.g., Eugster & Skippen 1967). Third, fluids can be

extracted from the capsule where they have been synthe-

sized and can be analyzed by mass spectrometry, a method

that provides great sensitivities for COH species. On the

other hand, it is of primary importance to maintain the

COH fluid composition during and after the quench pro-

cess, when the fluid is released from the capsule. Quench

and postquench modifications were addressed by some

authors (Taylor & Foley 1989; Jakobsson & Oskarsson

1990; Morgan et al. 1992; Matveev et al. 1997), suggest-

ing that for rapid quench rates (>20°C min�1), the specia-

tion of fluids synthesized at HP–HT conditions is

preserved. In any case, quench is not expected to modify

the bulk composition of the fluid, expressed in terms of

{C, O, H} components, as long as the capsule behaves as a

closed system.

The first ex situ analysis of COH fluids synthesized in

piston-cylinder experiments was performed by Eggler et al.

(1979) by means of a modified gas chromatograph, using

a thermal conductivity detector and an electronic peak

integrator. The authors investigated the solubility of CO2–
CO in different silicate melts at P = 3 GPa and

T = 1700°C. To extract the fluid, the capsule was placed

at the bottom of a vacuum valve connected to the gas

chromatograph. By rapidly closing the valve, the capsule

was punctured and the gases were swept to the chromato-

graphic column for the analysis of CO2 and CO.

Morgan et al. (1992) employed silica glass capsules, to

analyze the COH fluid generated by thermal dissociation

of oxalic acid dihydrate (OAD) by means of Raman spec-

troscopy. However, due to the brittleness of the capsule

material, the investigated conditions of pressure and tem-

peratures were limited to P < 0.13 GPa and T < 750°C.
Moreover, the authors only measured CO2, CH4, CO and

H2 while the amount of H2O was estimated by mass bal-

ance calculation, as water presents a weak Raman activity.

Matveev et al. (1997) analyzed redox-buffered, graphite-

saturated COH fluids at P = 2.4 GPa and T = 1000°C
employing different starting materials (graphite, silver
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oxalate, phthalic acid, water, benzoic acid, stearic acid, and

anthracene). The capsule was placed in a helium-flushed

piercing device connected to a gas chromatograph. Lines

were heated to 150°C to prevent water condensation on

the tubes without reaching the chromatographic column.

The system was calibrated to analyze H2O, CO2, C2H6,

CH4, CO, and H2.

Truckenbrodt et al. (1997) and Truckenbrodt & Johan-

nes (1999) investigated the COH volatile speciation pro-

duced from different organic compounds (C4H4O4,

C9H10O2, and C14H22O) at P = 1 GPa and T = 900°C
using a gas chromatograph connected to a heated capsule-

puncturing system, which allowed to obtain quantitative

analyses of H2, CO, C2H6, CO2, CH4, and H2O.

Chepurov et al. (2012) investigated serpentine decom-

position at high-pressure conditions (P = 4.5 GPa,

T = 300–1000°C). Their chromatographic analysis com-

prises CO2, CO, H2, H2O, O2, CH4, and other hydrocar-

bons. Also in this case, the gas line was heated to enable

the quantitative analysis of H2O.

Dvir et al. (2013) employ diamond traps (Kushiro &

Hirose 1992; Baker & Stolper 1994) to collect COH flu-

ids in rocking multi-anvil experiments at P = 6 GPa and

T = 1000°C. The capsules are frozen at T = �90°C in liq-

uid nitrogen and open to expose the diamond trap. Fluids

are conducted to an infrared gas analyzer by heating the

diamond trap at T = 900°C for at least 60 sec in a quartz

tube. This technique allows determining the H2O and

CO2 content, at oxidizing conditions, where H2O and

CO2 are the only COH species stable. In fact, the presence

of CO, CH4, and H2 could lead to postquench reactions

and eventually to a different volatile composition. Quanti-

tative analyses of H2O and CO2 were provided with an

accuracy and precision of 2–3% and 3–4%, respectively.

Quadrupole mass-spectrometry analyses of COH fluids

The speciation of COH fluids can also be retrieved through

quadrupole mass spectrometry (QMS). This method was

considered by Jakobsson & Holloway (1986) and Holloway

& Jakobsson (1986), which employed a QMS to measure

the solubility of a COH fluid in silicate melts at P =
0.5–2.5 GPa and temperatures from 1000 to 1200°C at

iron–wustite (IW) oxygen fugacity conditions. The specia-

tion of the fluid (H2O, CO2, CO, CH4, and H2) was

retrieved by heating the melt samples (quenched to a glass)

to 1200°C for 5 min under vacuum conditions. The path

from the extracting vessel to the QMS was kept short to

minimize gas phase reactions, although the authors could

not completely exclude postquench reactions.

Taylor & Foley (1989) proposed a capsule-piercing

device composed of a modified Whitey regulating valve

connected to a mass spectrometer. The technique allowed

the analysis of H2O, CH4, C2H6, and CO2 generated from

stearic acid (C18H36O2) in equilibrium with graphite at

pressures from 0.9 to 3.5 GPa and temperatures from

1000 to 1260°C.
Jakobsson & Oskarsson (1994) modified the vacuum

valve proposed by Eggler et al. (1979) by connecting it to

a QMS. The capsule-piercing device was modified to allow

the analysis of H2O by heating the inlet system to 80°C.
The authors retrieved the speciation of a COH fluid at

iron–wustite oxygen buffer conditions in equilibrium with

graphite at pressures from 0.5 to 1 GPa and temperatures

from 900 to 1200°C analyzing H2, CH4, H2O, C2H6,

CO, and CO2 through a Faraday cup detector.

Rosenbaum & Slagel (1995) investigated the effect of

different packing materials on the speciation of COH fluids

in piston-cylinder experiments at 0.8 GPa and 800°C, con-
sidering single and double-capsule arrangements. Condens-

able volatile (CO2 and H2O) were frozen in liquid N2 and

measured using a manometer (for CO2) and a pressure

gauge (for H2O). The noncondensable gases were frozen

into a sample tube using He and were analyzed through

mass spectrometry.

Akaishi et al. (2000) synthesized diamonds from gra-

phite and OAD at P = 7.7 GPa and T = 1600°C. The

COH volatile speciation of the fluid (H2O and CO2) was

analyzed through QMS by piercing the platinum capsule.

However, H2O could not be determined quantitatively,

because the inlet system was not heated, and thus, the

removal of the adsorbed water in the vacuum chamber was

reported to be particularly difficult.

EXPERIMENTAL METHODS: SYNTHESIS OF
COH FLUIDS

In this study, COH fluids were generated starting from oxa-

lic acid dihydrate (OAD; H2C2O4�2H2O), a solid com-

pound commonly used in high-pressure COH-bearing

experiments (e.g., Holloway et al. 1968; Holloway & Reese

1974; Kesson & Holloway 1974; Morgan et al. 1992;

Rosenbaum & Slagel 1995; Draper & Green 1997; Ara-

novich & Newton 1999; Litvinosky et al. 2000; Cherniak &

Watson 2007, 2010; McCubbin et al. 2014). Two different

experimental strategies were considered: (i) single Au cap-

sule loaded with OAD (Fig. 1A), for the synthesis of unbuf-

fered COH fluids at room pressure and T = 250°C; (ii)

double capsule consisting in an inner Au60Pd40 capsule

loaded with OAD + glassy carbon spheres, and an outer Au

capsule loaded with the redox buffering assemblage

Re + ReO2 + H2O (RRO) (Fig. 1B), for the synthesis of

buffered COH fluids at P = 1 GPa and T = 800°C.

Synthesis of unbuffered COH fluids P = amb and

T = 250°C

Low P and T syntheses were performed heating single gold

capsules (OD = 5 mm), filled with approximately 1.5 mg

© 2016 John Wiley & Sons Ltd
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of OAD and seal welded, in a laboratory oven at

T = 250°C for 2, 5, and 24 h (Fig. 1A). At low tempera-

tures (T = 230–350°C), the thermal dissociation of OAD

produces H2O, CO2, and CO via the reaction:

H2C2O4 � 2H2O ) 3H2Oþ 1CO2 þ 1CO ðR1Þ
Because the capsule behaves as a closed system, the

expected composition of the resulting evolved COH fluid

should be identical to OAD in terms of {C, O, H} compo-

nents, while evolved gas species should be H2O, CO2, and

CO according to reaction R1 (Pernert 1952). However,

problems of OAD storage, dehydration, and H2O absorp-

tion could result in fluids that shift to different composi-

tion compared to stoichiometric OAD (Boettcher et al.

1973; Holloway & Reese 1974; Rosenbaum & Slagel

1995; Truckenbrodt & Johannes 1999; McCubbin et al.

2014).

Synthesis of redox-buffered, graphite-saturated COH

fluids at P = 1 GPa and T = 800°C

In carbon-saturated COH system, the composition of the

fluid can be constrained through the use of oxygen buffers,

which allow calculating the fluid composition through

thermodynamic modeling (see Section Thermodynamic

modeling of RRO-buffered, graphite-saturated COH flu-

ids). Redox-buffered fluids present therefore a composition

constrained by the fO2 conditions of the system (Eugster

& Skippen 1967; Connolly & Cesare 1993), which is

different compared to the composition generated by ther-

mal decomposition of OAD. To constrain the redox condi-

tion of the graphite-saturated COH fluid, we employ the

double-capsule technique (Eugster & Skippen 1967) and

the oxygen buffer rhenium–rhenium oxide. The choice of

this buffer has been made because of the very low H2O

content in the COH fluid volatile composition predicted

by thermodynamic modeling at the investigated condi-

tions, which represents a challenging test for the analytical

sensitivity of the proposed procedure.

A seal-welded Au60Pd40 inner capsule (OD = 2.3 mm),

containing 1.67 mg OAD and 5.5 mg glassy carbon

spheres, is placed inside an outer-welded gold capsule

(OD = 5 mm) containing the buffering assemblage

Re + ReO2 + H2O (RRO buffer). As long as Re, ReO2,

and H2O are present, this buffer fixes the fugacity of O2

(fO2
RRO) and H2 (fH2

RRO) through the reactions:

ReþO2 () ReO2 ðR2Þ
and

H2O ¼ H2 þ 1

2
O2 ðR3Þ

which can be condensed to:

Reþ 2H2O () ReO2 þ 2H2 ðR4Þ
In the inner capsule, the dissociation of OAD will pro-

duce initially H2O, CO2, and H2 according to the

reaction:

H2C2O4 � 2H2O ¼ 2H2Oþ 2CO2 þH2 ðR5Þ
which is different compared to reaction R1 because the

water–gas shift reaction:

H2Oþ CO ) CO2 þH2 ðR6Þ
becomes kinetically favored at high temperature (Holloway

et al. 1968; Morgan et al. 1992).

As the Au60Pd40 alloy of the inner capsule is permeable

to hydrogen, the fugacity of H2 is expected to be the same

as fH2
RRO in the outer capsule. Indirectly, also all the

other species in the COH fluid, including O2, will be fixed

by the RRO buffer. However, as the inner capsule contains

a mixed COH fluid and not pure water, the oxygen fugac-

ity in the inner capsule will be lower compared to fO2
RRO

(Luth 1989; fO2
RRO � fO2

COH = �2.48 log units esti-

mated by thermodynamic calculations, see below). After

the quench, the high-pressure COH fluid will exsolve into

two fluid phases: (i) a liquid phase consisting mainly of

H2O and (ii) a gaseous phase consisting of noncondens-

able volatiles (mainly CO2 at the conditions investigated,

see Section Thermodynamic modeling of RRO-buffered,

graphite-saturated COH fluids).

Fig. 1. Capsule arrangements in low-P, low-T (LP–LT) and high-P, high-T

(HP–HT) experiments. (A) LP–LT: single Au capsule loaded with oxalic acid

dihydrate (OAD). Outer diameter 5 mm, wall thickness 0.6 mm. n is a

parameter, retrieved from direct volatile analysis, that is sensitive to the

progress of the water–gas shift reaction (see text); (B) HP–HT: double cap-

sule with the outer Au capsule loaded with rhenium–rhenium oxide and

water. Outer diameter 5 mm, wall thickness 0.6 mm. Inner Au60Pd40 cap-

sule loaded with OAD and graphite (glassy carbon spheres). Outer diame-

ter 2.3 mm, wall thickness 0.3 mm.

© 2016 John Wiley & Sons Ltd
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Two syntheses characterized by runtimes of 24 and

92 h were carried out at 1 GPa and 800°C in a rocking

piston-cylinder apparatus, which allows forward and back-

ward rotations of 180° during the run, thus inverting the

position of the loaded capsule in the gravity field. Chemi-

cal inhomogeneity within the capsule is in fact common

in fluid-bearing experiments (Stalder & Ulmer 2001;

Melekhova et al. 2007). The rocking piston-cylinder over-

comes this problem (Schmidt & Ulmer 2004) as the rota-

tion of the sample induces Rayleigh–Taylor instabilities,

forcing the fluid to migrate and favoring chemical re-

homogenization. Pressure calibration of the rocking appa-

ratus is based on the quartz to coesite transition (Bose &

Ganguly 1995) at P = 3.12 GPa and T = 1000°C. Cap-

sules were embedded in MgO rods. A corundum disk was

placed at the top of the capsule to avoid the direct con-

tact with the thermocouple. The furnace consisted in a

graphite heater, surrounded by Pyrex and salt. At the top

of the assembly, a pyrophyllite plug was placed to ensure

electrical contact. Samples were first pressurized to

P = 0.25 GPa, heated to T = 400°C, and then pressurized

and heated simultaneously to the final experimental P–T
value. Temperature rate was 50°C min�1 until 400 and

100°C min�1 to the final value. Temperature was mea-

sured with K-type thermocouple and is considered accu-

rate to �5°C. Experiments were quenched by turning off

the power supply with a quench rate of approximately

40°C sec�1. After quenching, the capsules were recovered

and cleaned in HCl. The outer capsule was peeled off,

and the inner capsule was left in a vacuum oven at 110°C
for 2 h to remove any residual water trapped in the RRO

buffer stuck on the capsule wall. After the QMS analysis,

the pierced capsule is embedded in epoxy and polished,

and the persistence of the buffering assemblage RRO is

verified by means of scanning electron microscopy

(Fig. 2).

Thermodynamic modeling of RRO-buffered, graphite-

saturated COH fluids

The speciation of the graphite-saturated COH fluid in the

inner capsule at fH2
RRO conditions was first calculated

through thermodynamic modeling (Table 1) using the

software package Perplex (Connolly 1990; http://

www.perplex.ethz.ch/) and the worksheet Gfluid (Zhang

& Duan 2010; http://gcmodel.kl-edi.ac.cn/archives/pro-

grams.htm). From a thermodynamic point of view, the

speciation of a graphite-saturated fluid is constrained once

P, T, and fO2 are fixed (other details as Supplementary

Material). We considered the experimental values of

fO2
RRO at P = 1 GPa and T = 800°C given in Pownceby

& O’Neill (1994). The Perplex routine ‘fluids’ were used

to retrieve first fH2
RRO fixed in the outer capsule by RRO

buffer (Perplex fluid equation of state no. 16; HSMRK/

MRK hybrid; Kerrick & Jacobs 1981; Connolly & Cesare

1993). As the fH2 of the COH fluid in the inner capsule is

equal to fH2
RRO, we calculated the speciation of the COH

fluid at 1 GPa, 800°C, and fH2
RRO using a MRK equa-

tion of state of graphite-saturated COH fluids (Perplex

equation of state no. 11; Connolly & Cesare 1993),

retrieving also the fO2 expected in the inner capsule

(Table 1). At these conditions, predicted fluids are mainly

composed of CO2 (92.3 mol%) and H2O (6.9 mol%), with

minor CO, H2, and CH4. The volatile composition was

also calculated for the same fO2 conditions, employing the

worksheet Gfluid (Zhang & Duan 2010), which provided

a similar CO2-rich composition of the COH fluid, slightly

enriched in H2O (12.9 mol%) (Table 1).

In the double-capsule setting, the composition of the

COH fluid becomes enriched in CO2 compared to the ini-

tial fluid composition given by thermal dissociation of

OAD. The increase of CO2 in the fluid is accomplished by

R3 and:

(A)

(B)

Fig. 2. Backscattered electron (BSE) image of experimental run COH48.

(A) Overview of the double capsule; (B) detail of the rhenium–rhenium

oxide buffer.
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CþO2 ¼ CO2 ðR7Þ
which can be condensed into this water- (and graphite-)

consuming reaction:

Cþ 2H2O ¼ CO2 þ 2H2 ðR8Þ
Water dissociation, H2 migration in the outer capsule,

and graphite oxidation continue until the fH2 in the inner

capsule equals fH2
RRO in the outer capsule.

ANALYTICAL METHODS: THE CAPSULE-
PIERCING QMS TECHNIQUE

The volatile content of the synthesized COH fluids has

been measured using a capsule-piercing device (Fig. 3)

connected to a quadrupole mass spectrometer (QMS). A

schematic overview of the capsule-piercing device is pro-

vided in Fig. 3E. The device consists of three parts: (i) a

Teflon–steel extraction vessel (reactor), inspired by that

proposed by Manning & Boettcher (1994) (Fig. 3B); (ii)

an electric furnace, where the vessel is heated (Fig. 3A),

and (iii) a heated gas manifold system, connected to the

QMS, the standard and carrier gas tanks, and the vacuum

pump.

The reactor is composed of a base part (Fig. 3D),

where the capsule is placed, and a top part (Fig. 3C),

where a steel mill is mounted. Both the base and the top

of the reactor are threaded so that the base can be driven

upward with a screwing action. The external part of the

base is mantled by a steel liner to reduce volume varia-

tions due to the high thermal expansion of Teflon

(Fig. 3B). Openings on the top allow the inert gas carrier

(ultrapure Ar) to flow inside the reactor. The presence of

an O-ring ensures a tight seal. The capsule, placed

horizontally and partially embedded in epoxy, is allocated

on a cross steel support, designed to oppose the rotation

given by the steel pointer during the piercing (Fig. 3D).

To puncture the capsule, the base is screwed upward with

a hex key until the steel mill pierces the capsule. Before

the piercing occurs, the reactor needs to be evacuated

from all the residual contaminants (e.g., air and con-

densed water) using a vacuum pump. Then, the reactor is

conditioned with Ar through a five-way valve (V1 in

Fig. 3E), useful to select also the calibrating gas mixtures,

employed as standards for the QMS analysis. The flow

rate is selected through a mass flow controller (El-Flow

Bronkhorst� High-Tech). Lines are heated to 80°C in

order to avoid water condensation. Also the reactor,

enclosed in a furnace (Fig. 3B), is heated at 80°C, so that

all volatiles released from the capsule after the piercing,

including H2O, can be transported to the QMS by the

gas carrier.

The pressure conditions of both the line and the reac-

tor are monitored through high-resolution sensor gauges

(�1 mbar error). The temperatures of the line, reactor,

and furnace are monitored with K-type thermocouples,

controlled through a Eurotherm nanodacTM PID data con-

troller and recorder. The quadrupole mass spectrometer is

an EXXTORR 0–200 amu, Mod. XT 200. It is equipped

with two detectors: (i) a Faraday cup and (ii) a secondary

electron multiplier (SEM), which is more sensitive to low

concentrations of gases compared to the Faraday cup.

Due to the very small amount of volatiles contained in

the experimental capsule, analyses have been always per-

formed with SEM. For every m/z channel, 310 points are

registered, one point every 5 sec, for a total time of

1550 sec.

Determination of the reactor volume

We retrieved the amount of gases evolved from the capsule

after the piercing using the ideal gas law:

n ¼ DP � Vr=ðR � T Þ; ðR9Þ
where n are the moles of the evolved gases, DP [mbar] is

the pressure increase in the reactor after the piercing, Vr

[L] is the volume of the reactor, R is the universal gas

constant [83.145 L mbar K�1 mol�1], and T [K] is the

temperature of the reactor when the capsule is pierced.

While DP and T are monitored, the volume of the reactor

needs to be constrained. The reactor chamber volume is

variable as it depends on the number of rounds performed

when the base part is screwed to the top. Consequently,

the reactor chamber volume Vr is a function of the dis-

tance between the base and the top part (h in Fig. 3E).

Vr was retrieved for three different values of h: 6, 8, and

10 mm.

Table 1 Volatile speciation of a graphite-saturated COH fluid buffered at
rhenium–rhenium oxide hydrogen fugacity conditions (fH2

RRO), calculated

assuming lO2
RRO after Pownceby & O’Neill (1994) and thermodynamic

modeling (CC93: EoS from Connolly & Cesare 1993; ZD09: EoS from
Zhang & Duan 2009). fO2 out: oxygen fugacity conditions in the outer
capsule, where a H2O-only fluid is present; fH2 out=in: hydrogen fugacity
conditions, fixed at the same value in the inner and in the outer capsule;
fO2 in: oxygen fugacity conditions in the inner capsule, where a COH fluid

is present.

P 1 GPa
T 800°C
fO2 out �11.71
fH2 out=in 8.40
fO2 in �14.19
Thermodynamic model (mol%)

CC93 ZD09
H2O 6.886 12.88
CO2 92.31 86.35

CH4 0.002 0.010
CO 0.792 0.730
H2 0.013 0.003
O2 0 0

© 2016 John Wiley & Sons Ltd
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The volume of the reactor for a fixed h is determined by

filling it with a constant flux of Ar (Φ = 3 Nml min�1)

until the pressure reaches 500 mbar. The volume is

retrieved through the equation:

Vr ¼ ½ðU=273:15Þ � T � trÞ�=DP ; ðR10Þ

where tr is the time employed to reach the value of

500 bar, Φ [L/s] is the flux of Ar that is corrected for the

calibration temperature of the mass flow controller (MFC)

(273.15 K), and T is the temperature of the reactor,

expressed in [K].

Volumes at h = 6, 8, and 10 mm were fitted through

linear regression analysis (LRA) (Fig. 4). The coefficients

retrieved from LRA (a = y-intercept and b = slope) were

substituted to express the volume of the reactor depending

on the h value:

Vr ¼ h � bþ a ðR11Þ

By substituting Eq. R11 in R9, the number of moles

released from the capsule is derived using the following

equation:

n ¼ DP � ðh � bþ aÞ=ðR � T Þ ðR12Þ

Calibration of the QMS analysis

During the QMS analysis, mass/charge (m/z) channels are

monitored to measure the volatile species H2O, CO2,

CH4, CO, H2, O2, and air/N2 (Table 2). Due to chemical

fragmentation, a species can contribute on more than one

channel. For instance, CO2 is fragmented to C+ and CO+,

so it contributes to channels 12 and 28 in addition to 44.

Moreover, as CO and CH4 fragment C+ as well, the mass/

charge channel relative to carbon (m/z = 12) will also reg-

ister the contributes from the two carbon-bearing species.

To perform quantitative analyses of COH fluids, we

employed as standards double-distilled water and three gas

mixtures with known composition: (i) Ar + CO2 (10

vol.%) + O2 (9.85 vol.%); (ii) Ar + H2 (10 vol.%); and (iii)

Ar + CH4 (10 vol.%) + CO (10 vol.%). For each standard,

the contribution of the species on the m/z channels,

derived by integration of the QMS signal over time and

normalized to 1 micromole, is gathered into a calibration

matrix (Table S1).

(A)

(C)

(D)

(E)

(B)

Fig. 3. The capsule-piercing device. (A)

Overview of the device and the control

panel; (B) the Teflon/steel reactor placed in

the furnace; (C) top part of the reactor; (D)

lower part of the reactor with the capsule

mounted in epoxy, placed on the cross steel

support; (E) schematic drawing of the

capsule-piercing QMS device. MFC, Mass

Flow Controller; SG1, high-resolution sensor

gauge to measure the reactor pressure; SG2,

high-resolution sensor gauge to measure the

line pressure; V1, five-way valve used to

select standard gas mixtures or the gas

carrier; V3 and V4, valves to insulate the

reactor during the piercing; V5, valve to

convoy the gas to the QMS; SP, silicon

septum employed for H2O calibration; h,

know distance between the top and the base

of the reactor; QMS, quadrupole mass

spectrometer. Both the reactor and the lines

connecting the reactor to the QMS are

heated at 80°C.

© 2016 John Wiley & Sons Ltd
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Water calibration is achieved by charging in the reactor a

known amount of water (1 ll) with a Hamilton microsy-

ringe (head space type) through a silicon septum placed at

the top of the reactor (SP in Fig. 3E). Calibration with gas

mixtures is performed by filling the reactor until the pres-

sure in the reactor reaches a defined value of 500 mbar.

The number of gas moles is then determined through

Eq. R12.

The QMS analysis provides also the amount of atmo-

spheric air (and/or N2) present either in the reactor or in

the capsule. In this case, air is used as standard. The m/z

channels monitored are 14 and 28 for N2 and 32 for O2.

Capsule-piercing QMS analysis of COH fluids

After the run has been completed, the experimental cap-

sules are mounted on a cross steel support placed at the

bottom of the reactor. The reactor is then screwed upward

to a certain height (h in Fig. 3E), to retrieve the reactor

chamber volume from Eq. R11. The furnace is closed and

heated to T = 80°C. The line and reactor preconditioning

are accomplished by performing pressurization/venting

cycles with Ar. Before the piercing occurs, the reactor is

bypassed from the line (V3 and V4 in bypass position). This

allows monitoring the pressure variation (DP) inside the

reactor once that the gases are released during the piercing.

By rotating the hex key connected to the reactor, the base

part of the reactor moves upward toward the steel mill. As

the volume decreases, the pressure registered by the sensor

gauges increases. Once that the steel mill pierces the cap-

sule, a sudden increase in the reactor pressure reveals the

release of the capsule volatiles in the reactor chamber. Then,

the reactor is screwed downward to the initial h value.

The pressure (DP) generated by the release of COH flu-

ids during the piercing and the reactor temperature are

employed to retrieve the total moles of the COH volatile

species through Eq. R12.

Before valves V3 and V4 are opened for the QMS analy-

sis, the inner pressure is decreased to zero so that the

released gases are conveyed to the QMS at a controlled

carrier gas flow (10 Nml min�1).

Once the areas for each m/z channels are obtained, least

square regression is employed to transform the m/z data

into H2O, CO2, CH4, CO, H2, O2, and air/N2 compo-

nents expressed as micromoles of volatiles, using the cali-

bration matrix (see Section Calibration of the QMS

analysis). In practice, linear regression is used to solve a

linear overdetermined system composed of eight equations:

A0
i ¼

X7

j¼1

nj �Aij ; ðR13Þ

where Aij is the m/z signal areas determined by the cali-

bration of each volatile species j, A0
i is the m/z signal area

of the sample, and nj is the unknown number of moles of

the j species in the sample (Fig. 5B).

The integration of the QMS m/z signals and the regres-

sion is performed using a customized routine developed as

a Mathematica� notebook. For every species, the Mathe-

matica� notebook provides the standard error of the

model, the t-statistic and the P-value, in addition to the

parameter R2, adjusted R2, the Akaike’s information crite-

rion (AIC), and the Bayesian information criterion (BIC)

(Fig. 4C). AIC is useful to evaluate how many information

is lost between a proposed model and the real dataset. BIC

allows selecting the best model between a set of possible

models with different number of parameters. Increasing

the number of parameters in a model leads to an increase

of the likelihood function but at the same time can leads

to an over-fitting of the data. BIC mitigates the risk of

over-fitting using a penalization term, which is function of

the number of parameters used in the model. Because of

the numerical definition of both terms, an increase of the

likelihood function leads to a decrease of the AIC and BIC

value. A large negative value for the two terms means that

the likelihood function is high and real data are well

represented by the chosen model.

Table 2 Mass/charge (m/z) channels monitored during QMS analysis and
relative contribution of the chemical species of interest.

m/z H2O CO2 CH4 CO H2 O2 N2 Ar

2 X X X
12 X X X
14 X X

15 X
18 X
20 X
28 X X X
32 X
44 X

Fig. 4. Calibration curve of the reactor chamber volume (Vr) plotted as a

function of h (see Fig. 3).
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8 C. TIRABOSCHI et al.



The bulk composition of the COH fluid is then plotted

on a ternary C–O–H diagram (Fig. 5D) and can be com-

pared with the starting composition of OAD and, when

possible, the thermodynamic model of the fluid. The propa-

gation of the standard errors for each volatile species, corre-

sponding to the analytical uncertainty, is calculated through

Monte Carlo simulations, and it is shown in the C–O–H
diagram as a cloud of uncertainty. At the investigated con-

centrations, the relative standard errors are typically <1% for

H2O, CO2, CH4, H2, and O2, and <5% for CO.

RESULTS

Synthesis of unbuffered COH fluids at P = amb and

T = 250°C

Four syntheses were performed at T = 250°C, ambient

pressure, and run times of 2, 5, and 24 h, to analyze the

volatile species generated by thermal decomposition of

OAD. Experimental results are provided in Table 3.

Gas evolved from experiment FM1 (2 h) generates a DP
of 48 mbar corresponding to 41.13 lmol of volatiles. The

retrieved volatile phase composition consists mainly of

H2O (56.37 � 0.22 mol%), CO2 (21.94 � 0.12 mol%),

and CO (19.01 � 2.30 mol%) (Table 3). Minor quantities

of O2 (1.91 � 0.48 mol%), H2 (0.67 � 0.04 mol%), and

CH4 (0.09 � 0.20 mol%) were also detected.

Experiment COH41 (2 h) is characterized by

DP = 57 mbar corresponding to 48.84 lmol of volatiles.

Compared to experiment FM1, similar water contents were

detected (57.11 � 0.38 mol%) accompanied by higher

content of CO2 (32.78 � 0.21 mol%) and lower CO

(7.26 � 4.08 mol%) (Table 3). H2 (2.79 � 0.08 mol%)

and CH4 (0.07 � 0.35 mol%) were also identified.

Experiment COH73 was performed for a run time of

5 h. The piercing generates a DP of 38 mbar from the

release of 31.84 lmol of H2O (53.92 � 0.58 mol%), CO2

(33.51 � 0.32 mol%), CO (8.96 � 6.12 mol%), and

minor H2 quantities (3.51 � 0.12 mol%) (Table 3).

Gas evolved from the piercing of experiment COH74

(runtime = 24 h) provides a DP of 40 mbar corresponding

to 34.05 lmol of volatiles. Compared to experiment

COH73, the COH fluid presents extremely similar

amounts of H2O (53.23 � 0.60 mol%), CO2

(32.65 � 0.33 mol%), CO (10.01 � 6.26 mol%), and H2

(3.27 � 0.21 mol%) (Table 3).

Fig. 5. Output results from data reduction performed through the Mathematica� routine. (A) m/z signal integration (peak area). An example for channel 12

is shown here. On the y-axis (partial pressures*) values represent partial pressures (torr) multiplied by an unconstrained SEM (Secondary Electron Multiplier)

enhancing factor; (B) least square model, performed using the calibration matrix and the integrated m/z signals of the sample. Data are given in micromoles,

mol%, and mol% on a air-free basis; (C) model check and errors. In this section are given the number of moles estimated by the least square model and the

associated standard error, t-statistic, and P-value. On the x-axis, the experimental results are plotted against the calculated model. The parameter R2,

adjusted R2, the Akaike’s information criterion and the Bayesian information criterion are also provided; (D) sample data plot on the COH ternary diagram

(red dot). The analytical uncertainty, simulated by means of Monte Carlo on the basis of the standard error of the least square model (light red), and the ref-

erence point (stoichiometric oxalic acid dihydrate; blue dot) are also shown in the COH diagram.
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Synthesis of redox-buffered, graphite-saturated COH

fluids at P = 1 GPa and T = 800°C

Two syntheses of redox-buffered, graphite-saturated COH

fluids, performed at 1 GPa and 800°C employing a rock-

ing piston-cylinder apparatus and the double-capsule tech-

nique, were carried out at different run times of 24 h and

92 h. The experimental conditions and results are reported

in Table 3.

The fluid released form experiment COH48 (24 h) gen-

erated a DP of 28 mbar, corresponding to 23.75 lmol of

volatiles. The analyzed fluid is CO2 rich

(96.77 � 0.21 mol%) with minor quantities of H2O

(3.23 � 0.37 mol%) (Table 3).

Fluid in experiment COH49 (92 h) presents a similar

composition compared to the experiment COH48:

92.28 � 0.17 mol% of CO2 and 5.78 � 0.31 mol% of

H2O. Minor quantities of CO (1.84 � 3.29 mol%), CH4

(0.05 � 0.29 mol%), and O2 (0.04 � 0.69 mol%) were

also detected. In this case, the registered DP was 32 mbar

corresponding to 27.38 lmol of volatiles.

DISCUSSION

Unbuffered COH fluids at P = amb and T = 250°C

In Fig. 6, the compositions of fluids generated by thermal

decomposition of OAD at P = amb and T = 250°C are

plotted in a C–O–H ternary diagram (colored dots)

together with their cloud of uncertainty (gray dots) and

compared to the stoichiometric composition of OAD

(black dots) (Fig. 6A). For all the experiments, fluid com-

positions in terms of {C, O, H} components plot very

close to OAD composition within analytical uncertainty, as

expected in single capsules, where no mass transfers with

the external environment are expected (Fig. 6B). However,

we observed a minor shift of all the experimental results

compared to the stoichiometric OAD composition, most

probably due to H2 loss, as reported in Morgan et al.

(1992). Moreover, the speciation of COH fluids in terms

of components {H2O, CO2, CH4, CO, H2, O2} shows

some differences (Table 3).

Experimental two-hour runs, FM1 and COH41, pre-

sent nearly identical percentages of H2O (56.37 mol% and

57.11 mol%, respectively). However, experiment COH41

shows higher quantity of CO2 (32.78 mol%) compared to

FM1 (21.94 mol%). The two experiments with longer run

times (5 and 24 h) present similar volatiles composition

similar to COH41, for what concerns H2O (53.92 mol%

and 53.23 mol%), CO2 (33.51 mol% and 32.65 mol%),

and H2 (3.51 mol% and 3.27 mol%). We observe an

increase in CO content from 8.96 mol% to 10.01 mol%

from the 5- to 24-h experimental run. These differences

in the COH fluid speciation suggest the presence of

kinetic effects at the investigated low-T conditions and a

consequent different progress of the water–gas shift reac-

tion R6. Morgan et al. (1992), investigating the dissocia-

tion of OAD, proposed the following reaction to account

for the formation of different volatiles in the experimental

charge:

Table 3 Volatile speciation of the LP–LT syntheses and HP–HT syntheses of graphite-saturated COH fluids buffered at fH2
RRO measured by quadrupole mass

spectrometry. The total amount of fluid evolved from the capsule is expressed in lmol and is retrieved from the ideal gas law PV = nRT. The amount of the

monitored species (lmol) derived from linear regression analysis performed through Mathematica notebook. Negative values should be considered zero val-
ues as correspond to fictitious values given by the least-squares model. The volatile speciation of the COH fluid is expressed as moles percentage on an air-
and N2-free basis (mol%*).

FM1 COH41 COH73 COH74 COH48 COH49

P amb amb amb amb 1 GPa 1 GPa
T 250°C 250°C 250°C 250°C 800°C 800°C
Runtime (h) 2 2 5 24 24 92
lmol tot 41.13 48.84 31.84 34.05 23.75 27.38
lmol
H2O 25.94 (0.10) 15.60 (0.11) 5.114 (0.06) 3.466 (0.04) 0.264 (0.03) 0.643 (0.03)

CO2 10.10 (0.06) 8.953 (0.06) 3.178 (0.03) 2.126 (0.02) 7.887 (0.02) 10.26 (0.02)
CO 8.750 (1.06) 1.981 (1.11) 0.850 (0.58) 0.652 (0.41) �0.326 (0.32) 0.205 (0.37)
CH4 0.043 (0.09) 0.018 (0.10) �0.005 (0.05) 0.014 (0.04) �0.003 (0.03) 0.006 (0.03)
H2 0.310 (0.02) 0.762 (0.02) 0.344 (0.01) 0.213 (0.01) �0.007 (0.01) �0.018 (0.01)
O2 0.880 (0.22) – �0.005 (0.12) – – 0.004 (0.08)
N2 – 0.316 (1.22) – 0.040 (0.45) 0.555 (0.35) –
air 7.066 (1.38) 3.188 (0.55) 1.478 (0.76) 1.091 (0.20) 1.124 (0.16) 2.343 (0.48)

mol%*
H2O 56.37 (0.22) 57.11 (0.38) 53.92 (0.58) 53.23 (0.60) 3.233 (0.37) 5.781 (0.31)
CO2 21.94 (0.12) 32.78 (0.21) 33.51 (0.32) 32.65 (0.33) 96.77 (0.21) 92.28 (0.17)
CO 19.01 (2.30) 7.256 (4.08) 8.956 (6.12) 10.01 (6.26) 0 1.846 (3.29)
CH4 0.094 (0.20) 0.068 (0.35) 0 0.218 (0.54) 0 0.054 (0.29)
H2 0.671 (0.04) 2.790 (0.08) 3.506 (0.12) 3.272 (0.12) 0 0

O2 1.912 (0.48) 0 0 0 0 0.035 (0.69)
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H2C2O4 � 2H2O ¼ð3� nÞH2Oþ ð1þ nÞCO2

þ ð1� nÞCOþ nH2 ðR14Þ
where n is a parameter, retrieved from direct volatile analy-

sis, that is sensitive to the progress of the water–gas shift

reaction (R6), being zero when R6 does not occur and

one when R6 is completed. On the basis of our measure-

ments, at the investigated conditions, the parameter n

spans from 0.08 (FM1) to 0.39 (COH41), 0.41

(COH74), and 0.43 (COH73). At T = 230°C (runtime =
1.1 h), Morgan et al. (1992) found a n parameter of 0.1,

which is comparable to the two-hour experiment FM1,

but substantially lower compared to long-duration experi-

ments COH73 and COH74, suggesting that the achieve-

ment of equilibrium in these fluids is nonstraightforward

for run times <5 h. In addition, it is worth noting that

Morgan et al. (1992) did not directly measure H2O, which

was estimated through mass balance calculations, which

could have introduced high uncertainties in the estimate of

the n parameter.

Redox-buffered, graphite-saturated COH fluids at

P = 1 GPa and T = 800°C

Syntheses of a graphite-saturated COH fluid at 1 GPa and

800°C were performed at controlled redox conditions buf-

fered by RRO in double capsules. Therefore, their composi-

tion can be compared with model compositions retrieved

from thermodynamic calculations performed in the C-O-H

system (Table 1) for the same P, T, and fH2
RRO conditions.

As reported in Fig. 7A, the COH composition of the two

fluids run for 24 h (COH 48) and 92 h (COH 49) plot

both on the model graphite saturation surface, suggesting

the achievement of equilibrium with graphite (cf. Matveev

et al. 1997). Compared to the initial bulk composition of

OAD (black dots in Fig. 7A), the measured volatile compo-

sition of the double-capsule synthesis is shifted toward

CO2, as predicted by thermodynamic models (squares in

Fig. 7A). The equilibration of the COH fluid is accom-

plished through reaction R8, which produces CO2 and H2

at the expenses of H2O and graphite. After 24 h, the

Fig. 6. COH ternary diagram for unbuffered

COH fluids synthesized at room pressure and

T = 250°C. Black dots: stoichiometric oxalic

acid dihydrate composition; colored dots:

COH fluid composition retrieved by the

capsule-piercing QMS technique. (A) Ternary

diagrams for experiments performed at 2 h,

5 h, and 24 h. Grey dots: uncertainty cloud

retrieved through Monte Carlo simulation.

The number of moles of volatile species is

also provided. (B) Summary plot of the

samples shown in A.
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volatile speciation of the COH fluid (Table 3) is comparable

to the thermodynamic models (Fig. 7A; Table 1), being

only slightly enriched in CO2 (96.77 mol% CO2) compared

to the thermodynamic model based on the EoS of Connolly

& Cesare (1993) (92.3 mol% CO2; approximately +5 mol

%; Fig. 7A). Compared to the thermodynamic model based

on the EoS of Zhang & Duan (2009), the experimental

results are more CO2 enriched (86.35 mol% CO2; approxi-

mately +10 mol%; Fig. 7A). However, we must note that

the modeled volatile composition is extremely sensitive to

small variations in the oxygen fugacity. In fact, the same

fluid composition retrieved from the EoS of Connolly &

Cesare (1993) (see Table 1) can be obtained by slightly

varying the logfO2 in the Zhang & Duan (2010) model

from �14.19 to �14.16.

This minor difference between experimental data and

thermodynamic models tends to zero in the 92-h synthesis,

where the volatiles speciation is almost identical to the

Connolly & Cesare (1993) thermodynamic model

(92.28 mol% CO2; Fig. 7A). However, it is worth to note

that the volatile composition of experiment COH49

(92 h) lies within the error given by the volatile composi-

tion from experiment COH48 (24 h) (Fig. 7B); conse-

quently, we suggest that equilibrium conditions can be

accomplished already with a run time of 24 h.

Our results indicate that the COH fluid speciation is

preserved during and after quench, as the experimental

data closely mimic the thermodynamic model both in

terms of bulk composition and fluid speciation. Moreover,

heating the reactor and the transfer line at T = 80°C does

not affect the volatile speciation of the COH fluid during

the path from the reactor to the QMS.

Differently to other COH fluid syntheses performed

with single capsules (Eggler et al. 1979; Holloway &

Jakobsson 1986; Taylor & Foley 1989; Jakobsson &

Oskarsson 1990; Matveev et al. 1997), we employed the

double-capsule technique, which allows buffering the fluids

at controlled redox and fH2 conditions. The volatile speci-

ation is in fact highly dependent on the H2-absorbing

capacity of the material that surrounds the capsule during

the experimental run (Rosenbaum & Slagel 1995). By

employing the double-capsule technique, the COH fluid is

synthesized in a capsule not in direct contact with the

packing material. The outer Au capsule provides a signifi-

cant amount of H2O to account for the H2 loss, and it

contains the buffering assemblage Re + ReO2 + H2O that

fix the hydrogen (and oxygen) fugacity conditions during

the run. Our measurement of the volatile speciation of

buffered COH fluid confirms that the double-capsule tech-

nique is a reliable technique to synthesize compositionally

constrained COH fluids (Rosenbaum & Slagel 1995). The

capsule-piercing QMS technique has been proved to be a

valuable choice even for the analysis of fluids containing

low amount of water, which is the most challenging COH

species to analyze ex situ, mainly due to the difficulties in

transporting it to the quadrupole mass spectrometer. We

were able to detect extremely low amounts of water (e.g.,

0.26 lmol from experiment COH48) with an analytical

error <0.6%.

CONCLUSIONS

The capsule-piercing QMS technique allows retrieving ex

situ the volatile composition and speciation of COH fluids

Fig. 7. COH ternary diagram for graphite-

saturated COH fluids, buffered at fH2
RRO,

synthesized at 1 GPa and 800°C. Black dot:

stoichiometric oxalic acid dihydrate com-

position; colored dots: COH fluid composition

retrieved by the capsule-piercing QMS

technique. Black solid line: graphite saturation

surface (Connolly 1995) calculated by

thermodynamic modeling (EoS Connolly &

Cesare 1993), representing the boundary

between the fluid- and the fluid + graphite

fields. (A) Ternary diagrams for experiments

performed at 24 h and 92 h. Small colored

dots: uncertainty cloud retrieved through

Monte Carlo simulation. Colored squares:

graphite-saturated COH fluid composition

calculated through thermodynamic models.

The number of moles of volatile species is

also provided. (B) Summary plot of the

samples shown in A.
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in experimental capsules. Our technique provides quantita-

tive analysis of the main volatile species in the COH sys-

tem: H2O, CO2, CH4, CO, H2, and O2. Moreover, the

technique allows measuring air and/or N2 contained in

the capsule or leaking into the line. We provide for the first

time a measure of volatiles, in terms of micromoles,

obtained using standard gas mixtures. Our approach is an

effective way to synthesize and analyze COH fluids at vari-

ous P and T conditions, suitable also for volatile contents

<1 micromole. Quadrupole mass spectrometry ensures

superior performances in terms of selectivity of molecules

to be detected, high acquisition rates, and extended lin-

ear response range. Heated lines and reactor allow the

analysis of H2O with relatively low uncertainties. The cap-

sule-piercing QMS technique could represent a routine

approach for the analyses of volatiles in fluid-saturated

experiments. The fluid composition and speciation are in

fact preserved after the piercing. The experimental capsule

is not destroyed during the piercing operation, so it is pos-

sible to prepare the sample for further characterization

(e.g., electron microprobe analysis). This would allow to

directly measuring the volatile speciation to evaluate

whether an experimental strategy provides the same species

predicted by thermodynamic calculations or whether dis-

solved species influence the volatile speciation of the fluid.
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