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1 Introduction

1.1 The Trudinger-Moser inequality

Let Ω ⊂RN be a domain of finite measure. The classical Sobolev space embeddings say that
W 1,p

0 (Ω)⊂ Lq(Ω) for 1≤ q≤ N p
N−p . In the limiting case p = N we formally get q = +∞, but

easy examples show that W 1,N
0 6⊂ L∞(Ω). Replacing the target Lq-space by an Orlicz space

Lϕ , it was shown by Yudovich [43], Pohozaev [37] and Trudinger [42] that W 1
0 (Ω)⊂ Lϕ(Ω),

with the N-function ϕ(s) = es2 − 1. This result was improved and made sharp by J. Moser
[36], obtaining what is now called the Trudinger-Moser inequality:

sup
{u∈W 1,N

0 :‖∇u‖N≤1}

∫

Ω
eα|u|

N
N−1 dx

{
< +∞ , if α ≤ αN
= +∞ , if α > αN

; (1)

here ‖ · ‖N denotes the norm in LN(Ω), and αN = Nω1/(N−1)
N−1 , where ωN−1 denotes the

(N−1)-dimensional surface of the unit ball in RN.
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Numerous generalizations, extensions and applications of the Trudinger-Moser (TM)
inequality have been given in recent years:
TM-type inequalities involving higher order derivatives were given by D.R. Adams [1]. The
existence of extremals in the TM-inequality was obtained by L. Carleson and A. Chang [10]
for Ω = B1(0)⊂ R2, by M. Flucher [19] for arbitrary bounded domains in R2, and by K.C.
Lin [33] for bounded domains in RN ; D.G. de Figueiredo - J.M. do Ó - B. Ruf [21] gave
an alternative proof and some generalization, using an optimal normalized concentrating se-
quence. For extensions of the TM-inequality to manifolds, see P. Cherrier [12], L. Fontana
[25], Y. Li [31,32], Y. Yang [44]. Related elliptic equations with ”critical” TM growth were
considered by Adimurthi [3] and de Figueiredo - O. Miyagaki - B. Ruf [20], giving sufficient
conditions on the lower order terms for the existence of solutions; in D.G. de Figueiredo -
B. Ruf [23] the non-existence of radial solutions was proved for equations with critical TM-
growth whose lower order term does not satisfy the above existence conditions. Related
existence results for elliptic systems with subcritical and critical TM-growth can be found
in D.G. de Figueiredo - J.M. do Ó - B. Ruf [22] and B. Ruf [39]. For phenomena of con-
centration and blow-up methods in the TM-situation, see M. Struwe [41], Adimurthi - M.
Struwe [5], O. Druet [17]. The usual TM-inequalities are for bounded domains; extensions
to unbounded domains have been considered by D.M. Cao [9], S. Adachi - K. Tanaka [2],
B. Ruf [38], Y. Li - B. Ruf [30]. For recent results on TM-inequalities with remainder terms,
we refer to Adimurthi - O. Druet [4]. TM-inequalities with other boundary data and trace
inequalities have been recently obtained by A. Cianchi [15], [16].

Finally, and this is closely related to the subject of the present paper, we mention TM-
type inequalities in other function spaces, in particular in Orlicz spaces, Zygmund spaces,
Lorentz spaces, Besov spaces etc., see e.g. A. Cianchi [14], N. Fusco - P.L. Lions - C.
Sbordone [24], A. Alvino - V. Ferone - G. Trombetti [6], D.E. Edmunds - P. Gurka - B. Opic
[18], S. Hencl [28], H. Brezis - S. Wainger [8].

In particular, we recall here some recent results for embeddings of Lorentz-Sobolev
spaces into Orlicz spaces and the related TM-inequalities:

1.2 Sobolev-Lorentz spaces

Lorentz spaces Lp,q are scales of interpolation spaces between the Lebesgues spaces Lp, and
are obtained via spherically decreasing rearrangement; we refer to Section 2 for the precise
definitions. We recall here only that, for Ω ⊂ RN of finite measure,

Lp,p = Lp , Lp,q1 ⊂ Lp,q2 , if q1 < q2 ,

Lr ⊂ Lp,q ⊂ Ls , if 1 < s < p < r , for all 1≤ q≤ ∞

We denote the norm in Lp,q by ‖u‖p,q.
First, we recall that the standard Sobolev embeddings can be sharpened by the use of

Lorentz spaces, see e.g. [7]; denoting by W 1Lp,q(Ω) the space of functions whose weak
derivatives belong to Lp,q, one has

W 1Lp,q ⊂ Lp∗,q

and hence in particular, since p < p∗

W 1,p = W 1Lp,p ⊂ Lp∗,p⊂
6= Lp∗,p∗ = Lp∗ .
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For the limiting case p = N, the following generalization of the Trudinger-Moser in-
equality was obtained by H. Brezis and S. Wainger [8] and A. Alvino, V. Ferone and G.
Trombetti [6]: there exist numbers βq > 0 such that

sup
{‖∇u‖N,q≤1}

∫

Ω
eβ |u(x)|

q
q−1

dx
{≤C(N,q)|Ω | , for β ≤ βq

= +∞ , for β > βq
(2)

The Trudinger-Moser inequality corresponds to the case W 1,N
0 (Ω) = W 1

0 LN,N(Ω). It is re-
markable that in (2) the exponent depends only on the second index q of the Lorentz space.

Note that the inequalities (1) and (2) are sharp not only with respect to the coefficients
α resp. β in the exponents. In fact, considering for simplicity the inequality (1) in the case
N = 2, one notes that if α = α2 = 4π , then any unbounded lower order perturbation f (s) in
the exponent (i.e. f (s) with lim|s|→∞ f (s) = +∞ and lims→∞

f (s)
s2 = 0) will yield

sup
‖∇u‖2≤1

∫

Ω
e4π|u(x)|2+ f (u(x))dx = +∞ .

In this paper we aim at extending the TM-inequality (1) and the more general Brezis-
Wainger inequality (2) with regard to such lower order perturbations. More precisely, con-
cerning inequality (1) (with N = 2) we ask: in the limiting case α = α2 = 4π , and given an
unbounded lower order perturbation function f (s), can we characterize a largest space Λ(g)
of Lorentz type such that

sup
‖∇u‖Λ( f )≤1

∫

Ω
e4π|u(x)|2+ f (u(x))dx < +∞ . (3)

This is a subtle question: note that if we replace in (1) the condition ‖∇u‖2 ≤ 1 by ‖∇u‖2 ≤
1−δ , for an arbitrary δ > 0, then sup{‖∇u‖2≤1−δ}

∫
Ω e4π( 1

1−δ |u(x)|)2
dx≤ c, and hence for any

subquadratic perturbation f (u) we get sup{‖∇u‖2≤1−δ}
∫

Ω e4π|u(x)|2+ f (u(x))dx≤ c.

We will see that the adequate class of Lorentz spaces for this problem are weighted
Lorentz spaces, which were proposed by G.G. Lorentz [35] already in his original paper
”On the Theory of Spaces”. Weighted Lorentz spaces are defined as follows (for details, see
Section 2 below): Let φ : Ω → R+ be a measurable function, and let φ ∗(s) denote its de-
creasing rearrangement. Furthermore, let w(t) : R→ R+ a nonnegative integrable function,
such that

∫ t
0 w(s)ds < +∞ for all t > 0. The weighted Lorentz space Λp(w) is defined as

follows: φ ∈Λ p(w), 1≤ p < +∞, if

‖φ‖Λp(w) =
(∫ +∞

0
(φ ∗(t))p w(t)dt

)1/p

< +∞. (4)

Quite surprisingly, we are able to establish a precise relation between a weight w(s) and
the corresponding lower order perturbation function f (u) to obtain sharp TM-type inequal-
ities.
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1.3 The main results

Let ϕ : R+ → R+ be a continuous function (the ”weight function”) such that

(H1) lim
t→+∞

ϕ(t) = 0

(H2)
∫ +∞

0
ϕ(t) = +∞

(H3) ϕ(t) is non increasing as t →+∞

We prove the following optimal Moser type inequality:

Theorem 1 Let Ω be an open subset of RN , of finite measure, and let ϕ : R+ → R+ be a
continuous function satisfying (H1) and (H2). Let f (t) ∈ C 1(R+) be defined by

f (t) =
∫ αN t

N
N−1

0

ϕ(s)
1+ϕ(s)

ds (5)

where αN = Nω1/(N−1)
N−1 and ωN−1 denotes the (N−1)-dimensional surface of the unit ball

in RN , N ≥ 2. Then

sup
{u∈C1

0 (Ω),‖∇u‖ΛN ,ϕ≤1}

∫

Ω
eαN |u|

N
N−1 + f (u) ≤C |Ω | , (6)

where

‖v‖N
ΛN,ϕ

=
∫ +∞

0

(
v∗(s)

)N
{

1+ϕ
(∣∣ log

( s
|Ω |

)∣∣
)}N−1

ds.

and C = C(‖ϕ‖∞) is a positive constant that depends only on ‖ϕ‖∞.

Remark 1 Formula (5) yields f (t) if the weight ϕ(s) is given. In principle, formula (5) can
be easily inverted, giving an ”inverse formula” which allows to determine ϕ(s) for given
f (t). However, in order to obtain a well defined ϕ(s) on R+, some suitable initial value has
to be chosen, and the resulting function ϕ will depend on this initial value. In Theorem 10
we state a related theorem which shows that inequality (6) does not depend on this initial
value (except maybe through the constant C).

Examples

1) Let ϕ1(s) = 1
2
√

4π (s+1)−1
, then f (s) = s , i.e.

sup
‖∇u‖Λ2,ϕ1

≤1

∫

Ω
e4πu2+u ≤C |Ω |

2) Let ϕ2(s) =
√

π p
s+4π

√
s+p , then f (s) = p log(1+ |u|) , i.e.

sup
‖∇u‖Λ2,ϕ2

≤1

∫

Ω
(1+ |u|)p e4πu2 ≤C |Ω |

Inequality (6) is sharp in the following sense:
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Theorem 2 Suppose that ϕ satisfies (H1) and (H2). Then

(i) for any α > 1
sup

‖∇u‖ΛN,ϕ≤1

∫

Ω
eαN uN/(N−1)+α f (u)dx = +∞ (7)

(ii) if ϕ satisfies also (H3), for any g : R→ R continuous such that

(g1) limt→+∞
g(t)
f (t) = 0

(g2) lim
t→+∞

g
(
( t

αN
)(N−1)/N

)
∫ t

0 ϕ2(s)ds
= +∞

one has
sup

‖∇u‖ΛN,ϕ≤1

∫

Ω
eαN |u|N/(N−1)+ f (u)+g(u)dx = +∞ (8)

Finally, we show that inequality (7) has all properties of a true maximal growth: for a given
weight function ϕ , we say that we are at critical growth in W 1

0 ΛN,ϕ if in (7) α = 1 and at
subcritical growth if α < 1. Then we have

Theorem 3
1) For critical growth in W 1

0 ΛN,ϕ one has non-compactness: there exist sequences (un) ⊂
W 1,N

0 (Ω) with ‖∇un‖ΛN,ϕ = 1 converging weakly to zero in W 1,N
0 (Ω) for which∫

Ω

(
eαN |un|N/(N−1)+ f (un)−1

)
dx 9 0

2) For subcritical growth in W 1
0 ΛN,ϕ , there is compactness: for any sequence (un)⊂W 1,N

0 (Ω)
with ‖∇un‖ΛN,ϕ ≤ 1 and such that un ⇀ u in W 1,N

0 (Ω) we have
∫

Ω
eαN |un|N/(N−1)+α f (un)dx→

∫

Ω
eαN |u|N/(N−1)+α f (u)dx , for α < 1 .

In Section 2 we will give the precise definition and some preliminary results on weighted
Lorentz spaces. In Section 3 we give the TM-inequalities for these weighted Sobolev-
Lorentz spaces, i.e. we prove Theorem 1. In Section 4 we prove the sharpness of these
inequalities, i.e. Theorem 2. In Section 5 we give a compactness and non compactness re-
sult for subcritical and critical growth, respectively, that is we prove Theorem 3. Finally, in
Section 6 we give the generalizations of Theorem 1 to the Brezis-Wainger case of Lorentz
spaces of type LN,p with weights, and Section 7 contains an inverse formula to determine
the weight ϕ(s) from f (t).

2 The framework

2.1 Weighted Lorentz spaces

Let φ : Ω → R+ be a measurable function; we denote by

µφ (t) = |{x ∈Ω : φ(x) > t}|, t ≥ 0
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its distribution function. The decreasing rearrangement φ ∗(s) of φ is defined by

φ ∗(s) = sup{t > 0 : µφ (t) > s}, s ∈ [0, |Ω |],

and the spherically decreasing rearrangement φ #(x) of φ is defined by

φ #(x) = φ ∗(ωN−1|x|N/N), x ∈Ω #,

where Ω # is the sphere in RN such that |Ω #|= |Ω |.

Definition 1 Let w(t) : R+ → R+ be a nonnegative integrable function, such that
∫ t

0 w(s)ds
< +∞ for all t > 0. The weighted Lorentz space Λp(w) is given as follows: φ ∈ Λp(w),
1≤ p < +∞, if

‖φ‖Λp(w) =
(∫ +∞

0
(φ ∗(t))p w(t)dt

)1/p
< +∞. (9)

The spaces Λp(w) were introduced by Lorentz in [35] for X = (0, l)⊂ R, and they gen-
eralize the Lebesgue spaces Lp and the classical Lorentz spaces Lp,q. We recall the following
properties of weighted Lorentz spaces (see [29] or [11] for a survey on the argument):

1) Λp(w) is a Banach space and ‖ · ‖Λp(w) is a norm if and only if w is non-increasing;
‖ · ‖Λp(w) is merely equivalent to a Banach norm (see [40]) if for some C > 0

t p
∫ +∞

t
s−pw(s)ds≤C

∫ t

0
w(s)ds, for all t > 0 ; p > 1 .

2) Λp(w) is a Banach space and ‖ · ‖Λp(w) is a quasi-norm if the function W (t) =
∫ t

0 w(s)ds
satisfies the ∆2-condition, i.e.,

W (2t)≤CW (t) for some C > 1 and all t ∈ (0,+∞).

We will consider, in particular, the following weighted Lorentz norms (or quasi-norms):

‖v‖N
ΛN,ϕ

=
∫ +∞

0
|v∗(s)|N

{
1+ϕ

(∣∣ log
( s
|Ω |

)∣∣
)}N−1

ds, (10)

and the associated Sobolev-Lorentz spaces W 1
0 ΛN,ϕ , defined as the closure of C 1

0 (Ω) with
respect to the corresponding norm. Thanks to the continuity of ϕ and hypothesis (H1), ΛN,ϕ

is a Banach space and ‖ · ‖ΛN,ϕ is a quasi norm. Note that for any u ∈W 1,N
0 (Ω),

‖∇u‖N
N ≤ ‖∇u‖N

ΛN,ϕ
≤ (1+‖ϕ‖∞)N−1 ‖∇u‖N

N .

Therefore, the setting of these function spaces is nothing but W 1,N
0 (Ω), equipped with the

norms (or quasi norms) defined above, which are all equivalent to the Dirichlet norm.
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2.2 Functions built from level sets

Let us introduce the following relation between nonnegative functions in L1(Ω): we say that
φ is dominated by ψ , and we write φ ≺ ψ , if

∫ s

0
φ ∗(t)dt ≤

∫ s

0
ψ∗(t)dt for all s ∈ [0, |Ω |)

∫ |Ω |

0
φ ∗(t)dt =

∫ |Ω |

0
ψ∗(t)dt

This relation was first introduced by Hardy, Littlewood and Pólya in [27] for n-vectors in Rn

and later for Lebesgue integrable functions on a finite interval. We refer to [7] and to [13]
for a survey on properties and characterizations of this relation. We recall only the following
theorem (see [7]):

Theorem 4 (Alvino, Lions, Trombetti) Let φ ,ψ two nonnegative functions in L1(Ω).
Then, the following assertions are equivalent:

(i) φ ≺ ψ
(ii) for all nonnegative η ∈ L∞(Ω)

∫

Ω
φ(x)η(x)dx≤

∫ |Ω |

0
ψ∗(t)η∗(t)dt;

∫

Ω
φ(x)dx =

∫

Ω
ψ(x)dx

(iii) for all nonnegative η ∈ L∞(Ω)

∫ |Ω |

0
φ ∗(t)η∗(t)dt ≤

∫ |Ω |

0
ψ∗(t)η∗(t)dt;

∫

Ω
φ(x)dx =

∫

Ω
ψ(x)dx.

Following [7], we now describe a method to construct a function Φ dominated by a function
φ .
Let u(x) be a measurable function in Ω ; then (see [7]) there exists a family {D(s)}, s ∈
[0, |Ω |] of subsets of Ω satisfying the following properties:

(i) |D(s)|= s
(ii) s1 < s2 ⇒ D(s1)⊂ D(s2)

(iii) D(s) = {x ∈Ω : |u(x)|> t} , if s = µu(t)

For a fixed nonnegative function φ ∈ L1(Ω), let Φ(t) be the function defined by

∫

D(s)
φ(x)dx =

∫ s

0
Φ(t)dt, s ∈ [0, |Ω |]. (11)

We will say that Φ is built from φ on the level sets of |u|. One shows that

Φ ≺ φ (12)
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3 Proof of Theorem 1

3.1 Some known results

The aim of this section is to prove Theorem 1. To begin with, we construct a function v(x)
such that u∗(s)≤ v∗(s), and such that |∇v| is dominated by |∇u|.

Let u ∈ C 1
0 (Ω), and let U(x) be the function built from |∇u| on the level sets of u, that

is as in (11) ∫

|u|>t
|∇u|dx =

∫ |{|u|>t}|

0
U(s)ds. (13)

Then we have

Theorem 5

u∗(s)≤ 1

N(N−1)/Nω1/N
N−1

∫ |Ω |

s

U(t)
t1−1/N dt =: v∗(s) (14)

Proof The proof of this theorem can be found in [26]. We briefly sketch it.

Using (13) we obtain

− d
dt

∫

|u|>t
|∇u|dx =−µ ′u(t) ·U(µu(t)).

Applying the Fleming-Rishel formula and the isoperimetric inequality yields

NC1/N
N µu(t)1−1/N ≤

∫

∂{|u|>t}
dH1(t) =− d

dt

∫

|u|>t
|∇u|dx =−µ ′u(t) ·U(µu(t)),

where CN denotes the measure of the unit ball in RN , so that

−(u∗)′(s)≤ 1

NC1/N
N

U(s)
s1−1/N

.

(14) follows immediately, recalling that NCN = ωN−1.

By Theorem 5, in order to estimate u(x) we can estimate the radial decreasing function

v(x) =
1

N
N−1

N ω1/N
N−1

∫ |Ω |
ωN−1

N |x|N
U(t)

t1−1/N
dt. (15)

Note that, in general, |∇v|∗ 6= |∇u|∗, but |∇v| is dominated by |∇u|. This fact, thanks to the
following lemma, allows us to estimate u(x) with a function involving |∇u|∗.

Lemma 1 Let
v∗∗(s) =

1
s

∫ s

0
v∗(t)dt.

Then

v∗∗(s)≤ 1

N
N−1

N ω1/N
N−1

{∫ |Ω |

s
|∇u|∗(t) dt

t(N−1)/N
+

1
s(N−1)/N

∫ s

0
|∇u|∗(t)dt

}
. (16)
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Proof The proof of this lemma can be found in [6]. We briefly sketch it.

By the definition of v(x),

v∗∗(s) =
1

N
N−1

N ω1/N
N−1

{∫ |Ω |

s
U(t)

dt
t(N−1)/N

+
1
s

∫ s

0
U(t)t1/Ndt

}

≤ 1

N
N−1

N ω1/N
N−1

∫ |Ω |

0
U(t)g(t,s)dt

where

g(t,s) =

{
s−

N−1
N 0≤ t ≤ s

t−
N−1

N s < t ≤ |Ω |
Since U ≺ |∇u|, Theorem 4 implies (16) directly.

3.2 A Lemma by D.R. Adams

We recall that J. Moser used symmetrization for proving his result (1), thereby reducing the
problem to the following one-dimensional calculus inequality: for any measurable function
φ : R+ → R+ satisfying ∫ ∞

0
(φ(t))Ndt ≤ 1

holds ∫ ∞

0
e−F(t)dt ≤ c0 , where F(t) = t−

(∫ t

0
φ(s)ds

)N/(N−1)

For the extension to higher order derivatives, the method of symmetrization is not available.
But working with Riesz potentials, D.R. Adams [1] was again able to reduce the problem
to a one-dimensional calculus inequality, namely: let a : R×R+ → R+ be a measurable
function such that

a(s, t)≤ 1, if 0 < s < t, and sup
t>0

(∫ 0

−∞
+

∫ ∞

t
a(s, t)p′ds

)1/p′
= b < ∞

Then there exists a constant c0(p,b) such that for φ : R→ R+ satisfying

∫ ∞

−∞
φ(s)pds≤ 1

holds ∫ ∞

0
e−F(t)dt ≤ c0 , where F(t) = t−

(∫ ∞

−∞
a(s, t)φ(s)ds

)p′

Notice that the above one-dimensional inequality of J. Moser corresponds to the case
a(s, t) = 1, if 0 < s < t, and zero otherwise in Adams’ inequality.

The proof of our Theorem 1 relies on a generalization of Adams’ inequality.
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Lemma 2 Let ϕ : R+ → R+ be a continuous function satisfying hypotheses (H1),(H2),
and let f (t) be defined by (5).
Let a(s, t) be a non-negative measurable function on R× [0,+∞) such that

a(s, t)≤ 1, for a.e. 0 < s < t (17)

sup
t>0

(∫ 0

−∞
+

∫ +∞

t

a
N

N−1 (s, t)
1+ϕ(s)

ds
) N−1

N

= γ < ∞ (18)

Then there exists a constant c0 = c0(‖ϕ‖∞,γ) such that for φ ≥ 0 with

∫ +∞

−∞
φ N(s)(1+ϕ(s))N−1 ds≤ 1 (19)

one has ∫ +∞

0
e−Ψ(t)dt ≤ c0 , (20)

where

Ψ(t) = t−
{(∫ +∞

−∞
a(s, t)φ(s)ds

) N
N−1 + f

(
1

α
N−1

N
N

∫ +∞

−∞
a(s, t)φ(s)ds

)}
(21)

Note that for ϕ(s)≡ 0 we have f (t)≡ 0, and hence Ψ(t) = F(t) in Adams’ inequality.

Proof The integral in (20) can be written as

∫ +∞

−∞
|Eλ |e−λ dλ , (22)

where Eλ = {t ≥ 0 : Ψ(t)≤ λ}. The proof is divided into three steps:

(i) there is a constant c = c(γ ,‖ϕ‖∞) such that Ψ(t)≥−c for all t > 0
(ii) if t ∈ Eλ then

∫ +∞

t
φ N(s)(1+ϕ(s))N−1 ds≤ C1 +C2|λ |

γ
N

N−1 + t− ∫ t
0

ϕ
1+ϕ ds

where C1,C2 are positive constants depending only on ‖ϕ‖∞ and γ .
(iii) |Eλ | ≤ A+B|λ |+C|λ | 2N−1

N where A, B, C are constants depending only on ‖ϕ‖∞, γ and
N.

Proof of (i):

By (17), (18), (19) and Hölder’s inequality,

∫ +∞

−∞
a(s, t)φ(s)ds ≤

{∫ 0

−∞
+

∫ +∞

t
+

∫ t

0

aN/(N−1)(s, t)
1+ϕ(s)

} N−1
N ·

·
{∫ +∞

−∞
φ N(s)

(
1+ϕ(s)

)N−1ds
}1/N

≤
{

γ
N

N−1 + t−
∫ t

0

ϕ(s)
1+ϕ(s)

ds
} N−1

N
,
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so that {∫ +∞

−∞
a(s, t)φ(s)ds

} N
N−1 ≤ γ

N
N−1 + t−

∫ t

0

ϕ(s)
1+ϕ(s)

ds (23)

Since x+ f ((x/αN)
N−1

N ) is an increasing function on [0,+∞), (23) implies

Ψ(t)≥−γ
N

N−1 +
∫ t

0

ϕ(s)
1+ϕ(s)

ds− f
(( t + γ

N
N−1 − ∫ t

0
ϕ

1+ϕ ds

αN

) N−1
N

)
. (24)

By (H1), t + γ
N

N−1 − ∫ t
0

ϕ
1+ϕ ds < t if t > tγ large enough, and since f (t) is increasing for

t > tγ we get

Ψ(t)≥−γ
N

N−1 +
∫ t

0

ϕ(s)
1+ϕ(s)

ds− f
(
(t/αN)

N−1
N

)
=−γ

N
N−1 ;

on the other hand, if t ≤ tγ , (24) implies directly that Ψ is bounded from below, and so (i)
follows.

Proof of (ii):

If t ∈ Eλ , then

t−λ ≤
(∫ +∞

−∞
a(s, t)φ(s)ds

) N
N−1 + f

(∫ +∞
−∞ a(s, t)φ(s)ds

α(N−1)/N
N

)
. (25)

Let us define

L(t) =
∫ +∞

t
φ N(s)(1+ϕ(s))N−1 ds ; (26)

note that L(t)≤ 1, by (19).
If t ∈ Eλ , by (17), (18), (19) and Hölder’s inequality,

∫ +∞

−∞
a(s, t)φ(s)ds =

∫ t

−∞
+

∫ +∞

t
a(s, t)φ(s)ds

≤
{∫ 0

−∞
+

∫ t

0

a
N

N−1 (s, t)
1+ϕ(s)

} N−1
N

{∫ t

−∞
φ N(s)

(
1+ϕ(s)

)N−1ds
}1/N

+
{∫ +∞

t

a
N

N−1 (s, t)
1+ϕ(s)

} N−1
N

{∫ +∞

t
φ N(s)

(
1+ϕ(s)

)N−1ds
}1/N

≤
{

γ
N

N−1 + t−
∫ t

0

ϕ(s)
1+ϕ(s)

ds
} N−1

N
{

1−L(t)
}1/N

+ γL(t)1/N .

Let us now observe that for all 1 < β ≤ 2 there exists cβ > 0 such that

(a+b)β ≤ aβ +bβ + cβ aβ−1b ∀a,b≥ 0. (27)

Indeed, by scaling it suffices to show that

(1+ t)β ≤ 1+ tβ + c1,β t ∀0 < t ≤ 1 and

(1+ t)β ≤ 1+ tβ + c2,β t ∀t ≥ 1;
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this follows from the fact that

lim
t→0

(1+ t)β −1− tβ

t
= β > 0 and

lim
t→+∞

(1+ t)β −1− tβ

t
=

{
2, β = 2
0, 1 < β < 2

Thus
{∫ +∞

−∞
a(s, t)φ(s)ds

} N
N−1 ≤ α(t)

(
1−L(t)

) 1
N−1 + cNγL(t)1/Nα(t)1/N + γ

N
N−1 (28)

where

α(t) = γ
N

N−1 + t−
∫ t

0

ϕ(s)
1+ϕ(s)

ds. (29)

Note that α(t) = γ
N

N−1 +
∫ t

0
1

1+ϕ ds, so that

α(t)≥ γ
N

N−1 for all t ∈ (0,+∞). (30)

Inserting (28) into (25), and recalling that x+ f ((x/αN)
N−1

N ) is increasing, we have

t−λ ≤ α(t)
(
1−L(t)

) 1
N−1 + cNγL(t)1/Nα(t)1/N + γ

N
N−1

+ f
(

α(t)
N−1

N (1−L(t))1/N+γL(t)1/N

α(N−1)N
N

)
.

It is easy to verify that for 0 < p≤ 1,

(1− ε)p ≤ 1− p
2

ε 0≤ ε ≤ 1, (31)

so that (
1−L(t)

) 1
N−1 < 1− L(t)

2(N−1)
.

Hence, recalling the definition of α(t), (29), we have

L(t)α(t)−2(N−1)cNγ
(

L(t)α(t)
) 1

N ≤ 4(N−1)γ
N

N−1 −2(N−1)
∫ t

0

ϕ(s)
1+ϕ(s)

ds

+2(N−1)λ +2(N−1) f
(

α(t)
N−1

N (1−L(t))1/N+γL(t)1/N

α(N−1)/N
N

)
. (32)

Observe now that by definition and (27),

f
(

α(t)
N−1

N (1−L(t))1/N+γL(t)1/N

α(N−1)/N
N

)
=

∫ (
α(t)

N−1
N (1−L(t))1/N+γL(t)1/N

)N/(N−1)

0

ϕ(s)
1+ϕ(s)

ds

≤
∫ α(t)+cN γL(t)1/N α(t)1/N+γ

N
N−1

0

ϕ(s)
1+ϕ(s)

ds

=
∫ α(t)

0
+

∫ α(t)+cN γL(t)1/N α(t)1/N+γ
N

N−1

α(t)

ϕ
1+ϕ

ds.
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On one hand,

∫ α(t)

0

ϕ(s)
1+ϕ(s)

ds =
∫ γ

N
N−1 +t−∫ t

0
ϕ

1+ϕ

0

ϕ(s)
1+ϕ(s)

ds

≤
∫ t

0

ϕ(s)
1+ϕ(s)

ds

when t > tγ large enough; on the other,

∫ α(t)+cN γL(t)1/N α(t)1/N+γ
N

N−1

α(t)

ϕ(s)
1+ϕ(s)

ds ≤ cNγL(t)1/Nα(t)1/N + γ
N

N−1 .

Combining these inequalities with (32) we obtain

L(t)α(t)−4(N−1)cNγ
(

L(t)α(t)
) 1

N ≤ 6(N−1)γ
N

N−1 + c(γ ,‖ϕ‖∞)+2(N−1)λ

Let us now observe that there exists c(N,γ) such that 1
2 x + c(N,γ) ≥ 4(N− 1)cNγ N

√
x for

any x ∈ [0,+∞), that is, x−4(N−1)cNγ N
√

x≥ 1
2 x− c(N,γ). Thus

1
2 α(t)L(t) ≤ c(N,γ ,‖ϕ‖∞)+2(N−1)|λ | ,

which yields (ii) directly.

Proof of (iii):

It suffices to prove that there exist C3,C4,C5,C6 > 0, depending only on γ and ‖ϕ‖∞, such
that {

t1, t2 ∈ Eλ ,
t2 > t1 > C3|λ | ⇒ t2− t1 ≤C4 +C5|λ |+C6|λ |

2N−1
N . (33)

Since t2 ∈ Eλ , by (17), (18), (19) and Hölder’s inequality,

∫ +∞

−∞
a(s, t2)φ(s)ds =

∫ t1

−∞
+

∫ t2

t1
+

∫ +∞

t2
a(s, t2)φ(s)ds

≤
{∫ 0

−∞
+

∫ t1

0

a
N

N−1 (s, t2)
1+ϕ(s)

} N−1
N +

{∫ t2

t1

a
N

N−1 (s, t2)
1+ϕ(s)

} N−1
N

L(t1)
1
N + γL(t1)

1
N

≤ α(t1)
N−1

N +
(

t2− t1−
∫ t2

t1

ϕ(s)
1+ϕ(s)

ds
) N−1

N
L(t1)

1
N + γL(t1)

1
N

≤ α(t1)
N−1

N +
(
(t2− t1)

N−1
N + γ

)
L(t1)

1
N .

Therefore, by (27) and (ii)

{∫ +∞

−∞
a(s, t2)φ(s)ds

} N
N−1 ≤ α(t1)+

(
(t2− t1)

N−1
N + γ

) N
N−1

L(t1)
1

N−1

+ cN

(
(t2− t1)

N−1
N + γ

)
L(t1)

1
N α(t1)

1
N

≤α(t1)+
(
(t2−t1)

N−1
N +γ

) N
N−1

(C1 +C2|λ |
α(t1)

) 1
N−1 +cN

(
(t2−t1)

N−1
N +γ

)
(C1 +C2|λ |)

1
N .
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Since α(t) = t +o(t) as t →+∞, there exists for any ε > 0 a constant Cε > 0 such that for
any t > Cε |λ |,

C1 +C2|λ |
α(t)

< ε ; (34)

then we have
{∫ +∞

−∞
a(s, t2)φ(s)ds

} N
N−1 ≤ α(t1)+ ε

(
(t2− t1)

N−1
N + γ

) N
N−1

+ cN

(
(t2− t1)

N−1
N + γ

)
(C1 +C2|λ |)

1
N . (35)

Since t2 ∈ Eλ , −λ ≤−Ψ(t2); applying (35), we have for any t1 > 0

t2− t1 ≤ γ
N

N−1 −
∫ t1

0

ϕ(s)
1+ϕ(s)

ds+ ε((t2− t1)
N−1

N + γ)
N

N−1

+ cN((t2− t1)
N−1

N + γ)(C1 +C2|λ |)
1
N +λ

+ f
( {α(t1)+ε((t2−t1)

N−1
N +γ)

N
N−1 +cN ((t2−t1)

N−1
N +γ)(C1+C2|λ |)

1
N }(N−1)/N

α(N−1)/N
N

)

As in the proof of (ii), the last term can be estimated as follows

f
({α(t)+ ...}(N−1)/N

α(N−1)/N
N

)
=

∫ α(t1)+ε((t2−t1)
N−1

N +γ)
N

N−1 +cN ((t2−t1)
N−1

N +γ)(C1+C2|λ |)
1
N

0

ϕ
1+ϕ

ds

≤
∫ α(t1)

0

ϕ(s)
1+ϕ(s)

ds

+ ε((t2− t1)
N−1

N + γ)
N

N−1 + cN((t2− t1)
N−1

N + γ)(C1 +C2|λ |)
1
N

≤
∫ t1

0

ϕ(s)
1+ϕ(s)

ds+ c(N,γ ,‖ϕ‖∞)

+ ε((t2− t1)
N−1

N + γ)
N

N−1 + cN((t2− t1)
N−1

N + γ)(C1 +C2|λ |)
1
N

so that

t2− t1 ≤ c(N,γ,‖ϕ‖∞)+ γ
N

N−1 +2ε((t2− t1)
N−1

N + γ)
N

N−1

+ 2cN((t2− t1)
N−1

N + γ)(C1 +C2|λ |)
1
N +λ .

Observe now that, by the Young inequality, for any η > 0

2cN((t2− t1)
N−1

N + γ)(C1 +C2|λ |)
1
N ≤ η

2N−1
2N−2 2N−2

2N−1 ((t2− t1)
N−1

N + γ)
2N−1
2N−2

+
(2cN

η

)2N−1 (C1 +C2|λ |) 2N−1
N

2N−1

≤ (2η)
2N−1
2N−2 2N−2

2N−1 ((t2− t1)
2N−1

2N + γ
2N−1
2N−2 )+

(
2cN
η

) 2N−1
N (C1+C2|λ |)

2N−1
N

2N−1

≤ (2η)
2N−1
2N−2 2N−2

2N−1 ((t2− t1)+1+ γ
2N−1
2N−2 )+

(
2cN
η

) 2N−1
N (C1+C2|λ |)

2N−1
N

2N−1

since (a+b)p ≤ 2p(ap +bp) for any a,b > 0 and p > 0. On the other hand,

2ε((t2− t1)
N−1

N + γ)
N

N−1 ≤ 2
2N−1
N−1 ε((t2− t1)+ γ

N
N−1 )
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Therefore,
(

1− (2η)
2N−1
2N−2 2N−2

2N−1 −2
2N−1
N−1 ε

)
(t2− t1)≤ c(N,γ,‖ϕ‖∞,η ,ε)

+
(2cN

η

) 2N−1
N (C1 +C2|λ |) 2N−1

N

2N−1
+ |λ |

(33) follows directly, choosing ε,η such that 1− (2η)
2N−1
2N−2 2N−2

2N−1 −2
2N−1
N−1 ε > 0.

Combining (22) with (i) and (iii) we have
∫ +∞

0
e−Ψ(t)dt =

∫ +∞

−∞
|Eλ |e−λ dλ

=
∫ +∞

−c
|Eλ |e−λ dλ ≤ c0,

that is our thesis.

3.3 Proof of Theorem 1

Without loss of generality, we may suppose that u≥ 0. By (14), and recalling the definition
of v∗∗ given in Lemma 1,

u∗(s)≤ v∗(s)≤ v∗∗(s) .

Therefore (recall that αNx
N

N−1 + f (x) is increasing in [0,+∞))
∫

Ω
eαN |u|

N
N−1 + f (u)dx =

∫ |Ω |

0
eαN (u∗)

N
N−1 + f (u∗)ds≤

∫ |Ω |

0
eαN (v∗∗)

N
N−1 + f (v∗∗)ds

= |Ω |
∫ +∞

0
eαN (v∗∗(|Ω |e−t ))

N
N−1 + f (v∗∗(|Ω |e−t ))−tdt

= |Ω |
∫ +∞

0
ew

N
N−1 + f (w/N

N−1
N ω1/N

N )−tdt ,

where
w(t) = α

N−1
N

N v∗∗(|Ω |e−t) = N
N−1

N ω1/N
N−1v∗∗(|Ω |e−t) .

Lemma 1 implies

w(t) ≤ |Ω |1/N
{∫ t

0
|∇u|∗(|Ω |e−s)e−s/Nds+ et(1−1/N)

∫ +∞

t
|∇u|∗(|Ω |e−s)e−sds

}

=
∫ +∞

−∞
Φ(s)a(s, t)ds ,

where

a(s, t) =





0 if s≤ 0
e(t−s) N−1

N if t < s < +∞
1 if 0 < s < t

and

Φ(s) =
{ |Ω |1/N |∇u|∗(|Ω |e−s)e−s/N if s≥ 0

0 if s < 0
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Hence, the proof of (6) will be concluded if we check that the hypotheses of Lemma 2 are
satisfied.

Hypothesis (17) is clearly verified. As regards (18),

∫ 0

−∞
+

∫ +∞

t

a
N

N−1 (s, t)
1+ϕ(s)

ds =
∫ +∞

t

et−s

1+ϕ(s)
ds

≤
∫ +∞

t
et−sds = 1.

Finally,
∫ +∞

−∞
ΦN(s)(1+ϕ(s))N−1 ds = |Ω |

∫ +∞

0

(|∇u|∗(|Ω |e−s)
)N(

1+ϕ(s)
)N−1e−sds

=
∫ |Ω |

0

(|∇u|∗(t))N
(

1+ϕ
(∣∣ log

( t
|Ω |

)∣∣)
)N−1

dt

= ‖∇u‖N
ΛN,ϕ

≤ 1.

Therefore, (17), (18) and (19) are satisfied; Lemma 2 yields (6). ¤

4 Sharpness: proof of Theorem 2

Let us suppose now that ϕ satisfies (H1) and (H2) ; we will prove that inequality (6) is sharp,
that is there exists a sequence of functions (un)⊂W 1,N

0 (Ω) such that ‖∇un‖ΛN,ϕ ≤ 1 and

(i) for any α > 1

lim
n→+∞

∫

Ω
eαN uN/(N−1)

n +α f (un)dx = +∞ (36)

(ii) if ϕ satisfies (H3), for any continuous function g : R→ R satisfying (g1),(g2)

lim
n→+∞

∫

Ω
eαN uN/(N−1)

n + f (un)+g(un)dx = +∞ (37)

The sequence of functions we exhibit is obtained normalizing in W 1
0 ΛN,ϕ the sequence used

by J. Moser in [36]. Consider for example the ball B centered at the origin and such that
|B|= 1. Let us define

vn(x) =





(1−δn)
N−1

N

N
N−1

N ω1/N
N−1

n
N−1

N ,
ωN−1

N |x|N < e−n

(1−δn)
N−1

N

N
N−1

N ω1/N
N−1n1/N

log
( N

ωN−1|x|N
)

, e−n ≤ ωN−1
N |x|N ≤ 1 ,

(38)

where δn ∈ (0,1) will be fixed later. We have

v∗n(s) =





(1−δn)
N−1

N

N
N−1

N ω1/N
N−1

n
N−1

N , 0 < s < e−n

(1−δn)
N−1

N

N
N−1

N ω1/N
N−1n1/N

log
(1

s

)
, e−n ≤ s≤ 1 ;
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furthermore

|∇vn|(x) =





0 ,
ωN−1

N |x|N < e−n

N1/N(1−δn)
N−1

N

ω1/N
N−1n1/N |x|

, e−n <
ωN−1

N |x|N < 1

and

|∇vn|∗(s) =





0 , 1− e−n ≤ s≤ 1

(1−δn)
N−1

N

(s+ e−n)1/Nn1/N
, 0≤ s < 1− e−n .

Therefore

‖vn‖N
ΛN,ϕ

=
∫ 1

0

(|∇vn|∗
)N(

1+ϕ(| logs|))N−1ds

= (1−δn)N−1 + (39)

+
(1−δn)N−1

n

∫ 1−e−n

0

1
(s+ e−n)

N−1

∑
k=1

(
N−1

k

)
ϕk(− logs)ds.

We claim that

IN(n) :=
∫ 1−e−n

0

1
(s+ e−n)

N−1

∑
k=1

(
N−1

k

)
ϕk(− logs)ds

∼ (N−1)
∫ n

0
ϕ(s)ds , as n→+∞ .

(40)

Indeed, on one hand we have

IN(n) ≥ (N−1)
∫ 1−e−n

0

ϕ(− logs)
s+ e−n ds = (N−1)

∫ +∞

− log(1−e−n)

ϕ(t)
1+ et−n dt

≥ (N−1)
∫ n

− log(1−e−n)

ϕ(t)
1+ et−n dt

= (N−1)
∫ n

− log(1−e−n)
ϕ(t)dt− (N−1)

∫ n

− log(1−e−n)
ϕ(t)

et−n

1+ et−n dt

= (N−1)
(∫ n

0
ϕ(t)dt−

∫ − log(1−e−n)

0
ϕ(t)dt−‖ϕ‖∞

∫ n

− log(1−e−n)

et−n

1+ et−n dt
)

= (N−1)
(∫ n

0
ϕ(t)dt− log2‖ϕ‖∞ + o(1)

)

∼ (N−1)
∫ n

0
ϕ(t)dt as n→+∞
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On the other hand,

IN(n) = (N−1)
∫ +∞

− log(1−e−n)

ϕ(t)
1+ et−n dt

+
∫ +∞

− log(1−e−n)

N−1

∑
k=2

(
N−1

k

)
ϕk(t)

1+ et−n dt

≤ (N−1)
(∫ n

0
ϕ(t)dt +‖ϕ‖∞

∫ +∞

n

dt
1+ et−n

)

+
N−1

∑
k=2

(
N−1

k

)∫ n

0
ϕk(t)dt +

N−1

∑
k=2

(
N−1

k

)
‖ϕ‖k

∞

∫ +∞

n

1
1+ et−n dt

= (N−1)
∫ n

0
ϕ(t)dt + o

(∫ n

0
ϕ

)
+ O(1)

∼ (N−1)
∫ n

0
ϕ(t)dt as n→+∞ (41)

by (H2), so that (40) is proved.
Let us now choose

δn =
1

n(N−1)
IN(n) ; (42)

then by (40)

δn ∼ 1
n

∫ n

0
ϕ(s)ds→ 0 as n→+∞ ; (43)

furthermore, recalling (39)

‖vn‖N
ΛN,ϕ

= 1− N(N−1)
2

δ 2
n +o

(
δ 2

n
)

< 1 . (44)

Consider now

un(x) =
vn(x)
‖vn‖ΛN,ϕ

;

then clearly

‖un‖ΛN,ϕ = 1

and, by (43), for any α > 1

∫

B
eαN u

N
N−1
n +α f (un)dx =

∫ 1

0
eαN (u∗n)

N
N−1 +α f (u∗n)ds

≥ exp
(

1−δn

‖vn‖N/(N−1)
ΛN,ϕ

n+α f
( (1−δn)

N−1
N n

N−1
N

‖vn‖ΛN,ϕ (αN)
N−1

N

)
−n

)
.

(45)
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By definition (42), (43) and (44),

f
(

(1−δn)
N−1

N n
N−1

N

‖vn‖ΛN,ϕ (αN)
N−1

N

)
=

∫ 1−δn

‖vn‖N/(N−1)
ΛN,ϕ

n

0

ϕ(s)
1+ϕ(s)

ds

=
∫ 1−δn

‖vn‖N/(N−1)
ΛN,ϕ

n

0

{
ϕ(s)− ϕ2(s)

1+ϕ(s)

}
ds

≥
∫ 1−δn

‖vn‖N/(N−1)
ΛN,ϕ

n

0

{
ϕ(s)−ϕ2(s)

}
ds

=
∫ n

0

{
ϕ(s)−ϕ2(s)

}
ds−

∫ n

1−δn

‖vn‖N/(N−1)
ΛN,ϕ

n

{
ϕ(s)−ϕ2(s)

}
ds

=
∫ n

0

{
ϕ(s)−ϕ2(s)

}
ds− nδn

‖vn‖N/(N−1)
ΛN,ϕ

{
ϕ(tn)−ϕ2(tn)

}
where tn ∈ [ 1−δn

‖vn‖N/(N−1)
ΛN,ϕ

n,n]

=
∫ n

0
ϕ(s)ds+o

(∫ n

0
ϕ

)
. (46)

Combining (45) with (46) and (42) yields
∫

B
eαN u

N
N−1
n +α f (un)dx ≥ exp

( 1−δn

1+o(δn)
n+α

(
nδn +o(nδn)

)−n
)

= exp
(
(α−1)nδn +o(nδn)

)−→+∞

for any α > 1.

If α = 1, let ϕ satisfies (H3) and let g : R→ R be a continuous function satisfying
(g1),(g2). By (42) and observing that

IN(n)≤ (N−1)
∫ n

0
ϕ(s)ds+

(N−1)(N−2)
2

∫ n

0
ϕ2(s)ds+o

(∫ n

0
ϕ2

)

we have ∫ n

0
ϕ(s)ds≥ nδn− N−2

2

∫ n

0
ϕ2(s)ds+o

(∫ n

0
ϕ2

)
. (47)

On the other hand, as in (46) we have

f

(
(1−δn)

N−1
N n

N−1
N

‖vn‖ΛN,ϕ (αN)
N−1

N

)
≥

∫ 1−δn

‖vn‖N/(N−1)
ΛN,ϕ

n

0
ϕ(s)ds−

∫ 1−δn

‖vn‖N/(N−1)
ΛN,ϕ

n

0
ϕ2(s)ds;

by (H3), for any λ ∈ (0,1)
∫ λn

0
ϕ(s)ds ≥

∫ λn

λ t0
ϕ(s)ds = λ

∫ n

t0
ϕ(λ r)dr

≥ λ
∫ n

t0
ϕ(r)dr

= λ
∫ n

0
ϕ(r)dr−λ

∫ t0

0
ϕ(r)dr

≥ λ
∫ n

0
ϕ(r)dr−λ t0‖ϕ‖∞ (48)



20

so that, by (44) and (47),

f

(
(1−δn)

N−1
N n

N−1
N

‖vn‖ΛN,ϕ (αN)
N−1

N

)
≥ 1−δn

‖vn‖N/(N−1)
ΛN,ϕ

∫ n

0
ϕ(s)ds−

∫ 1−δn

‖vn‖N/(N−1)
ΛN,ϕ

n

0
ϕ2(s)ds−C

≥ 1−δn

‖vn‖N/(N−1)
ΛN,ϕ

∫ n

0
ϕ(s)ds−

∫ n

0
ϕ2(s)ds−C

≥ (
1−δn +O(δ 2

n )
)(

nδn− N−2
2

∫ n

0
ϕ2(s)ds+o(

∫ n
0 ϕ2)

)

−
∫ n

0
ϕ2(s)ds−C (49)

Hence, by (49),
∫

B
eαN u

N
N−1
n + f (un)+g(un)dx ≥ exp

(
1−δn

1+O(δ 2
n )

n+ f
( (n(1−δn))(N−1)/N

‖vn‖ΛN,ϕ α(N−1)/N
N

)

+ g
( (n(1−δn))(N−1)/N

(1+O(δ 2
n ))α(N−1)/N

N

)
−n

)

≥ exp
(
−nδ 2

n −
N
2

∫ n

0
ϕ2(s)ds+O(nδ 2

n )−C

+ o
(∫ n

0
ϕ2

)
+g

( (n(1−δn))(N−1)/N

(1+O(δ 2
n ))α(N−1)/N

N

))

≥ exp
(
− c

∫ n

0
ϕ2 +g

( (n(1−δn))(N−1)/N

(1+O(δ 2
n ))α(N−1)/N

N

))
,

since
nδ 2

n ∼
1
n

(∫ n

0
ϕ(s)ds

)2
≤

∫ n

0
ϕ2(s)ds .

Finally, using (g2) we get

lim
n→+∞

∫

B
eαN u

N
N−1
n + f (un)+g(un)dx = +∞.

¤

5 Proof of Theorem 3

5.1 Concentration-compactness

Let us first recall the following concentration-compactness result due to P.L. Lions [34]:

Theorem 6 (P.L.Lions) Let Ω be a bounded domain in RN , and let {un} be a sequence in
W 1,N

0 (Ω) such that ‖un‖N ≤ 1 for all n. We may suppose that un ⇀ u weakly in W 1,N
0 (Ω),

|∇un|N → µ weakly in measure. Then either
(i) µ = δx0 , the Dirac measure of mass 1 concentrated at some x0 ∈Ω , and u≡ 0, or

(ii) there exists β > αN such that the family vn = e|un|N/(N−1)
is uniformly bounded in Lβ (Ω),

and thus
∫

Ω eαN |un|N/(N−1) → ∫
Ω eαN |u|N/(N−1)

as n→+∞. In particular, this is the case if u is
different from 0.
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5.2 Compactness

A consequence of the concentration-compactness principle is the following compactness
result.

Theorem 7 Let Ω be a bounded domain inRN , and let (un) be a sequence in W 1,N
0 (Ω) such

that ‖∇un‖ΛN,ϕ ≤ 1 for all n. We may suppose that un ⇀ u weakly in W 1,N
0 (Ω), |∇un|N → µ

weakly in measure. Then for any 0 < α < 1

∫

Ω
eαN |un|N/(N−1)+α f (un)dx−→

∫

Ω
eαN |u|N/(N−1)+α f (u)dx (50)

as n→+∞.

Proof As observed in Section 2

‖∇un‖N
N ≤ ‖un‖N

ΛN,ϕ
,

so that we can apply the concentration-compactness principle. If e|un|N/(N−1)
is uniformly

bounded in Lβ , with β > αN , the claim is an obvious consequence of Theorem 6,(ii). Oth-
erwise, by (i), |∇un| → δx0 weakly in measure and un → 0 in Lr, for any r ≥ 1, and a.e. (up
to a subsequence).
Since α < 1 and f (t)→+∞ as t →+∞ by (H2), for any ε > 0 there is a constant K = K(ε)
such that

eαN tN/(N−1)+α f (t) < ε · eαN tN/(N−1)+ f (t) , if t > K .

Therefore

∫

Ω
eαN |un|N/(N−1)+α f (un)dx =

∫

|un|≤K
+

∫

|un|>K
eαN |un|N/(N−1)+α f (un)dx

≤
∫

|un|≤K
eαN |un|N/(N−1)+α f (un)dx+ ε

∫

Ω
eαN |un|N/(N−1)+ f (un)dx

≤
∫

|un|≤K
eαN |un|N/(N−1)+α f (un)dx+ εC.

But ∫

|un|≤K

(
eαN |un|N/(N−1)+α f (un)−1

)
dx =

∫

Ω

(
eαN |vn|N/(N−1)+α f (vn)−1

)
dx

where

vn =
{

un , if |un| ≤ K
0 , if |un|> K ,

so that, by Lebesgue’s dominated convergence theorem

∫

|un|≤K

(
eαN |un|N/(N−1)+α f (un)−1

)
dx→ 0 as n→+∞ .
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5.3 Concentration and non-compactness

We now show that in the critical case, i.e. α = 1 in (7), there is a loss of compactness:

Theorem 8 Assume that ϕ satisfies (H1), (H2), (H3) and ϕ ∈ L2(R+). Then there exists a
sequence (un)⊂W 1,N

0 (Ω) with ‖un‖ΛN,ϕ ≤ 1, un ⇀ u weakly in W 1,N
0 , and such that

∫

Ω
eαN |un|N/(N−1)+ f (un) 6→

∫

Ω
eαN |u|N/(N−1)+ f (u) .

Proof The modified Moser sequence (un) defined in the proof of Theorem 1 furnishes a
counterexample. Thus, assume B⊂Ω (B as in (38)), and let

un =
vn

‖vn‖ΛN,ϕ
=

vn

(1− N(N−1)
2 δ 2

n +o(δ 2
n ))1/N

with vn,δn given by (38) and (42). Obviously ‖un‖ΛN,ϕ = 1, and

un ⇀ 0 in W 1,N
0 (B).

On the other hand, by (49)

∫

B
eαN |un|N/(N−1)+ f (un)dx =

∫ 1

0
eαN |u∗n|N/(N−1)+ f (u∗n)ds

=
∫ 1

e−n
exp

{ 1−δn

n1/(N−1)(1− N
2 δ 2

n +o(δ 2
n ))

| logs|N/(N−1)

+ f
( − logs(1−δn)(N−1)/N

α(N−1)/N
N n1/N(1− N−1

2 δ 2
n +o(δ 2

n ))

)}
ds

+exp
{( (1−δn)

1− N
2 δ 2

n +o(δ 2
n )
−1

)
n+ f

(
((1−δn)n)(N−1)/N

α(N−1)/N
N (1− N−1

2 δ 2
n +o(δ 2

n ))

)}

≥
∫ n

0
exp

{ 1−δn

n1/(N−1)(1− N
2 δ 2

n +o(δ 2
n ))

tN/(N−1)

+ f
( t(1−δn)(N−1)/N

α(N−1)/N
N n1/N(1− N−1

2 δ 2
n +o(δ 2

n ))

)
− t

}
ds+ exp

{
−nδn +

N
2

nδ 2
n +o(nδ 2

n )

+
(

1−δn +
N
2

δ 2
n +o(δ 2

n )
)(

nδn− N−2
2

∫ n

0
ϕ2 +o(

∫ n

0
ϕ2)

)
−

∫ n

0
ϕ2 +o(

∫ n

0
ϕ2)

}

≥
∫ n

0
e−t dt + exp

{N−2
2

nδ 2
n +o(nδ 2

n )− N
2

∫ n

0
ϕ2 +o(

∫ n

0
ϕ2)

}

≥
∫ n

0
e−t dt + exp

{
− N

2

∫ n

0
ϕ2 +o(

∫ n

0
ϕ2)

}
(since nδ 2

n ≤
∫ n

0
ϕ2 +o(

∫ n
0 ϕ2))

≥
∫ n

0
e−t dt + e−C1 (since ϕ ∈ L2(R+))

= 1− e−n + e−C1 → 1+ e−C1 > 1 =
∫

B
eαN |u|N/(N−1)+ f (u)dx .
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6 Generalizations: the Brezis-Wainger case

Theorem 1 can be generalized to the setting of L(N,q) spaces as follows:

Theorem 9 Let Ω ⊂ RN be a domain of finite measure, and let ϕ : R+ → R+ be a con-
tinuous function satisfying (H1) and (H2). Let q > 1, and let f (t) ∈ C 1(R+) be defined
by

f (t) =
∫ αN,qt

q
q−1

0

ϕ(s)
1+ϕ(s)

ds (51)

where αN,q = (N
N−1

N ω1/N
N−1)

q
q−1 and ωN−1 denotes the (N − 1)-dimensional surface of the

unit ball in RN. Then

sup
{u∈C1

0 (Ω),‖∇u‖ΛN ,q,ϕ≤1}

∫

Ω
eαN,q|u|

q
q−1 + f (u) ≤C|Ω | (52)

where

‖v‖q
ΛN,q,ϕ

=
∫ +∞

0
(v∗(s)s1/N)q

{
1+ϕ

(∣∣ log
( s
|Ω |

)∣∣
)}q−1 ds

s
.

and C = C(‖ϕ‖∞) is a positive constant that depends only on ‖ϕ‖∞ .

Furthermore, the inequality is sharp in the following sense:

(i) for any α > 1

sup
‖∇u‖ΛN,q,ϕ≤1

∫

Ω
eαN,q|u|q/(q−1)+α f (u)dx = +∞

(ii) for α = 1: assume that ϕ satisfies (H3) and that g : R→ R is continuous such that

(g1,q) limt→+∞
g(t)
f (t) = 0

(g2,q) lim
t→+∞

g
(
( t

αN,q
)(q−1)/q

)
∫ t

0 ϕ2(s)ds
= +∞ ;

then
sup

‖∇u‖ΛN,q,ϕ≤1

∫

Ω
eαN,q|u|q/(q−1)+ f (u)+g(u)dx = +∞.

Proof (Proof of Theorem 9) The proof follows the lines of Theorem 1 (with slight modifi-
cations), replacing Lemma 2 with the following (N,q)−version:

Lemma 3 Let a(s, t) be a non-negative measurable function on R× [0,+∞) such that

a(s, t)≤ 1, for a.e. 0 < s < t (53)

sup
t>0

(∫ 0

−∞
+

∫ +∞

t

a
q

q−1 (s, t)
1+ϕ(s)

ds
) q−1

q

= γ < ∞ (54)

Then there exists a constant c0 = c0(‖ϕ‖∞,γ) such that for φ ≥ 0 with
∫ +∞

−∞
φ q(s)(1+ϕ(s))q−1 ds≤ 1 (55)
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one has ∫ +∞

0
e−Ψ(t)dt ≤ c0 , (56)

where

Ψ(t) = t−
{(∫ +∞

−∞
a(s, t)φ(s)ds

) q
q−1 + f

(
1

α
q−1

q
N,q

∫ +∞

−∞
a(s, t)φ(s)ds

)}
(57)

6.1 Sharpness

Following the proof of Theorem 2 , combined with the estimates obtained in [6], it is not
hard to prove that the sequence of functions

un =
vn

‖vn‖ΛN,q,ϕ

furnishes a counterexample for Theorem 9, where

vn(x) =





(1−δn)
q−1

q

N
N−1

N ω1/N
N−1

n
q−1

q ,
ωN−1

N |x|N < e−n

(1−δn)
q−1

q

N
N−1

N ω1/N
N−1n1/q

log
( N

ωN−1|x|N
)

, e−n ≤ ωN−1
N |x|N ≤ 1

(58)

and

δn =
1

q−1
Iq(n)

n
(59)

with

Iq(n) =
∫ 1−e−n

0

sq/N−1

(s+ e−n)q/N

[(
1+ϕ(− logs)

)q−1−1
]

ds

=
∫ n

0

(
1− et−n)q/N−1

[(
1+ϕ

(
t− log(1− et−n)

))q−1
−1

]
dt.

7 The inverse case: determining ϕ from f

Relation (5) in Theorem 1 gives a formula for the perturbation f (t) when the weight-function
ϕ(s) in the Lorentz space is given. We now give a formula for the inverse situation, i.e. on
how to determine ϕ(s) when f (t) is given (cf. Remark (1)). Indeed, with slight modifications
in the proof of Theorem 1, we have the following result

Theorem 10 Let Ω be an open subset of RN , of finite measure, and let f ∈ C 1(R+) such
that

(F1) f (t)≥ 0

(F2) lim
t→+∞

f ′(t)
t1/(N−1) = 0 .
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Let ϕ(t) ∈ C 1(R+) be defined by

ϕ(t) =
f ′

((
t+t0
αN

) N−1
N

)

N
N−1 α

N
N−1

N (t + t0)1/N − f ′
((

t+t0
αN

) N−1
N

) , (60)

where t0 is such that

inf
t≥0

{
N

N−1
α

N
N−1

N (t + t0)1/N − f ′
(( t + t0

αN

) N−1
N

)}
> 0 .

Then

sup
‖∇u‖ΛN,ϕ≤1

∫

Ω
eαN |u|

N
N−1 + f (u) ≤C( f , t0) |Ω | (61)

where

‖v‖N
ΛN,ϕ

=
∫ +∞

0
(v∗(s))N

{
1+ϕ

(∣∣ log
( s
|Ω |

)∣∣
)}N−1

ds .

The inequality is sharp: for any α > 1

sup
‖∇u‖ΛN,ϕ≤1

∫

Ω
eαN |u|

N
N−1 +α f (u)dx = +∞ . (62)
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