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ABSTRACT 
 

The atypical protein kinase haspin is conserved in all eukaryotes and promotes 

the correct alignment of chromosomes on the metaphase plate by recruitment of 

the CPC. Here, using budding yeast as a model organism, we identified new 

functions for haspin paralogues (Alk1 and Alk2) in regulating actin and nuclear 

dynamics. Indeed, we show that haspin mutants experiencing mitotic delays 

accumulate actin and elongate their spindles entirely in daughter cells, with the 

consequence of generating anucleated mothers and binucleated daughters that 

are not vital. These defects are due to a hyperaccumulation of polarity proteins 

at the bud tip and indeed dispersion of these polarity factors or restoration of 

their physiological localization reduces the severity of the defects of haspin 

lacking cells. We also demonstrate that haspin regulates polarisome dispersion 

by affecting the distribution of Cdc42 activity in cells, particularly regulating 

the localization of Cdc24, the Cdc42 GEF. We report that localization of this 

GEF is regulated by Ras in mitosis and that haspin regulates the localization of 

Ras. We also noticed that loss of haspin causes a polarized delivery of exocytic 

vesicles towards the bud tip that could explain the defective localization of Ras 

in alk1∆alk2∆ cells. 

Moreover, we identified Fab1 kinase as a putative interactor of Alk2 and 

provide evidences for a interplay between haspin and Fab1 complex.  
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STATE OF THE ART 
 

All cells derive from pre-existing ones through a precise series of event that 

allows cell growth and reproduction overall known as the cell cycle. The 

ultimate aim of this mechanism is a faithful duplication and even segregation of 

the genetic material and of the organelles between the cells. To achieve this, all 

the steps of the cell cycle must follow one another in an exquisitely precise way 

that grants for example that chromosomes are replicated only once per cell 

cycle and that the replication of the DNA is completed before the onset of 

nuclear segregation.  

 

Saccharomyces cerevisiae cell cycle 

  
Figure I1. Haploid cell cycle of the budding yeast Saccharomyces cerevisiae1 

 



4 

The unicellular fungus Saccharomyces cerevisiae has proven to be an 

invaluable model organism thanks to a fast duplication time, a well-known 

genetics and to conservation of biological features with higher eukaryotes. This 

organism can be found in two states: an haploid one, which is characterized by 

two sexes, MATa and MATα, and a diploid one, MATa/α. Budding yeast cells 

can shift from one of these states to the other: when two cells of opposite 

mating type meet, they can mate and generate a diploid strain that in turn, upon 

lack of nutrients, can undergo meiosis and form four haploid spores held in a 

ascus, which protects them from heat and desiccation. A typical haploid cell 

cycle (fig.I1) begins in G1 with a single unbudded cell which contains a 

complete set of chromosomes and a single Spindle Pole Body (SPB, the 

microtubule organizing center of budding yeast). If the environment satisfies 

the requirements for cell duplication, cells are prevented from entering the G0 

and instead commit the cell cycle. This process begins when cells proceed 

through the START, a point after which the cell cycle can not be interrupted, 

and trigger three fundamental events for the S phase: SPB duplication, 

replication of the genetic material and bud emergence. The main focus of the S 

phase is the complete and faithful duplication of the genome, which occurs 

along with bud growth. During G2 the SPBs split and the nucleus is pulled 

towards the interface between the mother and daughter cells, namely the bud 

neck. Finally, in M phase, the cohesin complexes that hold sister chromatids 

together are cleaved, chromosome segregation is triggered and two separate 

cells are generated through cytokinesis. 
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Figure I2. Cyclins in mitotic budding yeast cell cycle2 

CELL	CYCLE	REGULATION	

The success of the cell cycle and hence of cellular reproduction is strictly 

dependent on the fact that all its key features occur in a strictly precise order 

and timing. This is ensured by a family of proteins named Cyclin Dependent 

Kinases (CDKs) that, interacting with different classes of regulatory proteins 

called cyclins, earn specificity for different substrates promoting distinct events 

of the cell cycle. Budding yeast genome codes for six CDKs: Cdc28, Pho85, 

Kin28, Srb10, Bur1 and Ctk1. The only essential CDK of this organism, also 

known as CDK1, is Cdc28, while other CDKs regulate secondary processes3–5. 

To ensure a rapid response to external stimuli and grant that cell cycle 

progression occurs in a fast and robust way, the concentration of CDKs is not 

heavily modulated along the cell cycle, and exceeds that of cyclins6. This 

means that the interaction between a CDK and a cyclin and the series of events 

caused by this interaction can only happen depending on the availability of that 

cyclin in a particular moment of the cell cycle6. Levels of cyclins strongly 

oscillate during the cell cycle, particularly thanks to extremely regulated 

expression and degradation patterns6. Different classes of cyclins are present in 

budding yeast (fig.I2):  G1 cyclins (Cln1, Cln2 and Cln3, necessary for the 
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beginning of the cell cycle), and type B cyclins, divided in S phase cyclins 

(Clb5 and Clb6, involved in DNA replication) and M phase cyclins (Clb1-4, 

required for the assembly and function of the mitotic apparatus)7.  

REGULATION	OF	CELLULAR	PROLIFERATION		

Passing through START, cells enter a cell cycle that cannot be interrupted, and 

hence commitment of the cell cycle is a tightly regulated decision. Two 

mechanisms prevent unscheduled cell cycle commitment: on one hand two 

Cyclin dependend Kinase Inhibitors (CKIs, namely Sic1 and Far1) physically 

interact with Cdc28 and keep it in an inactive state prior to the START, and on 

the other hand inhibition of a protein complex made up of Swi4/6 and known as 

the SBF by Whi5 prevents CLN1 and CLN2 transcription7–9.  

The sequence of events leading to START in budding yeast was first assessed 

by Hubler and colleagues in 199310. They exploited cells of a particular 

background that allowed an easy modulation of cellular cyclic-AMP (cAMP) 

levels, starving cells and adding then either nutrients or cAMP to induce cell 

proliferation. With this experimental setup the authors observed that there was 

first an increase in the levels of Cln3, dependent on protein synthesis and for 

which the cAMP pathway was dispensable. This first stage was followed by 

another one that was instead sensitive to cAMP levels and promoted further 

Cln3 accumulation and sustained CLN1 and CLN2 expression10. The enzyme 

responsible for cAMP production is adenylate cyclase (AC), Cyr1 in budding 

yeast, whose activity is tightly regulated by the small GTPase Ras11. Ras-

GTPases are ubiquitous essential proteins in eukaryotic cells, where they play a 

fundamental role in cell cycle regulation and, noteworthy, Ras signalling is 

altered with a significant incidence in several types of human cancers12. The 

main role of Ras proteins, Ras1 and Ras2 in budding yeast, is to couple cell 

cycle commitment to nutrients availability by promoting Cyr1 activity13,14. In 
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this scenario, Ras is part of an intricate network ascribed to translate signalling 

from two glucose-sensing modules in AC activation and hence cell cycle 

progression. Activity of Ras in this pathway seems to be mediated by some 

intermediates in glucose processing and is modulated by two GAPs (Ira1 and 

Ira2) and two GEFs, the essential Cdc25, and the dispensable Sdc25, which 

only takes part in Ras activation upon growth on poor media (fig.I3)15–21. Ras 

regulation likely occurs before plasma membrane (PM) delivery, as Cdc25, Ira1 

and Ira2 are mainly localized to ER and mitochondria, respectively, and another 

level of modulation of this pathway is hence provided by spatial regulation of 

its players22.  However, it has been demonstrated that Cyr1 could act as a 

scaffold protein for Ras and its GAPs on the cell membrane to dampen Ras 

signalling in a AC activity independent manner23,24. Accumulation of Ras on 

the PM occurs thanks to irreversible farnesylation of its terminal CAAX motif, 

followed by reversible palmitoylation by the Erf2/Erf4 complex25,26. The actual 

mechanism leading to PM binding has not been completely understood: a dual 

model in which both secretory pathways as well as a direct role for Erf2/Erf4 

has been proposed, but unveiling the exact contribution of the two branches is 

made challenging by the requirement of Erf2/Erf4 activity for stable membrane 

interaction25,27–29. Moreover, depalmitoylation and recycling of Ras through the 

cytoplasm has been observed and a role for vacuolar proteins and mitochondria 

has also been reported30,31. 

GTP-bound Ras triggers Cyr1 to synthesize cAMP and in turn this metabolite 

relieves a protein complex, the Protein Kinase A (PKA), from its inhibitory 

subunit Bcy1, promoting cell cycle progression32. Due to the delicate feature it 

promotes, this mechanism of cAMP production has to be tightly regulated, to 

avoid deleterious cell cycle commitment in lack of nutrients and indeed loss of 

genes that prevents cell cycle exit in poor media is reported to cause a Ras-

dependent cell death33. For this reason cells have evolved a feedback 
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mechanism to dampen cAMP levels based on active-PKA itself that triggers the 

low- and high-affinity phosphodiesterases Pde1 and Pde2 at the level of 

posttranslational modifications, protein abundance and localization to degrade 

cAMP34–37. As mentioned, the ultimate goal of the cAMP is activation of the 

PKA, a heterotetrameric complex made up of Tpk1-3 and two subunits of 

Bcy138,39. Active PKA deeply manipulates cellular behaviour, promoting 

features associated to rapid growth and inhibiting others linked to stationary 

phase. The protein complex acts at the level of posttranslational modifications 

of its targets and altering gene expression. Passing through the START is 

inhibited by Whi3, a RNA-binding protein that acts as a negative regulator of 

cell cycle progression by sequestering Cln3 mRNA in cytoplasmic foci and 

preventing nuclear accumulation of Cdc28-Cln complexes40,41. Active-PKA 

phosphorylates Whi3 on Ser-568 inhibiting it and thus promotes an increase in 

Cln3 levels which triggers degradation of the CKIs42.  

 
Figure I3. PKA activation pathways43 
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Moreover, Cln3-Cdc28 complexes phosphorylate Whi5 and trigger the activity 

of the SBF. Though the regulation of this mechanism is not completely clear, it 

has recently been demonstrated to couple cell cycle progression with the 

presence of a functional vacuole, as cells lacking or deficient in this organelle 

accumulate Whi544. Vacuoles are budding yeast equivalent of lysosomes, 

double-membrane enclosed organelles with a plethora of functions ranging 

from degradation of macromolecules to autophagy, aminoacid storage and 

traffic45. In budding yeast their size and shape are highly regulated according to 

the growth medium and the cell cycle stage. The main regulator of vacuole size 

and shape is a protein complex located on the vacuolar membrane composed of 

Fab1, Fig4, Vac7 and Vac1446–48. Fab1 is a phosphatidylinositol (PtdIns) 3-

phosphate 5 kinase that converts PtdIns(3)p to PtdIns(3,5)p2 in a reaction 

reversed by the phosphatase Fig4. Vac7 and Vac14 have structural roles and are 

required, along with Fig4, for Fab1 activity47–49. Loss of Fab1 activity has been 

related to vacuole enlargement, defective post-engulfment nutrient recovery, 

decreased migration and invasion and nuclear missegregation (Fab1 stands for 

Forms Aploid and Binucleated)46,50–52. As mentioned, vacuole size and shape 

are coupled to different cell cycle stages and a single, round vacuole of the right 

size must be present to allow Whi5 inhibition and hence promote Cln3-CDK-

mediated CLN1 and CLN2 expression44,49.  

The newly assembled Cln1-Cdc28 and Cln2-Cdc28 complexes further 

phosphorylate Whi5, resulting in a strong positive feedback that causes a burst 

in Cln levels53,54. Accumulation of Clns promotes three pivotal events in 

budding yeast cell cycle, SPB duplication, DNA replication and bud 

emergence.  

Increase in Cln-CDK levels is required for SPB replication, however an 

unrestricted Cln accumulation, as obtained by overexpression of Cln2 in a clb1-

5∆ strain, results in an unscheduled and detrimental re-replication of the SPBs 
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that are however not separated55. Progression of the cell cycle and the 

inhibitory effect of Clb5-6 on Cln levels ensure that the SPB is duplicated only 

once per cell cycle and promote SPBs separation55. Accumulation of Clb5 and 

Clb6 is also required to start the replication of the genetic information7,9. Due to 

the extremely delicate features they promote, Clb5 and Clb6 are tightly 

regulated and prevented from interacting with CDKs during other phases of the 

cell cycle thanks to CKIs (Cyclin-Kinase Inhibitors)7,8. These inhibitors are 

primed for ubiquitylation and subsequent degradation by a Cln-Cdc28-mediated 

phosphorylation56–58. Promotion of S phase is synonym with inhibition of G1 

cyclins: Clb-Cdc28 activity promotes transcription of CLB1 and CLB2 and 

triggers a Whi5-mediated repression on Cln genes59. 

POLARIZED	GROWTH	IN	BUDDING	YEAST	

Budding yeast enters the cell cycle as a single, round cell that develops in a so-

called polarized growth to emit a bud in late G1 that will increase in size and 

then pinch-off the mother through cytokinesis (fig.I4). This polarized pattern in 

which material deposition and cell growth are directed towards specific 

compartments of the cell periphery is however common to all cells and research 

in this field is of pivotal importance as polarity de-regulation may lead to 

severe diseases and is one of the first steps of carcinogenesis60.  

 

 
Figure I4. Morphological changes in budding yeast cell cycle61 

 



11 

Polarized growth is controlled in all eukaryotes by the small, essential GTPase 

Cdc42 and its regulators62,63. In budding yeast, Cdc42 oversees cellular growth 

and shape by modulating polarization, actin cytoskeleton, assembly of the 

septin-ring, vesicle dynamics and mating by interacting and triggering a 

plethora of different effectors62,64–66. To orchestrate all its functions, the 

activity of Cdc42 has to be tightly modulated during the cell cycle, and this task 

is achieved thanks to four GAPs (Rga1, Rga2, Bem2 and Bem3), a GDI (Rdi1) 

and a single, essential GEF (Cdc24)(fig.I5)67–72. Noteworthy, both GAPs and 

the GDI play a positive role in establishing clusters of active-GTPase73,74. 

 

 
Figure I5. Cdc42 regulation and functions (modified from)75 

 
Cdc42 is first required in early G1 to drive bud emergence. An absolute 

requisite for this event is the formation of a localized accumulation of the 

GTPase that is promoted either through a actin-dependent delivery of Cdc42 at 
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the presumptive bud site (thought this hypothesis is currently challenged by 

another model based on Cdc42 recycling) or in an actin-independent 

mechanism which requires the scaffold protein Bem1 to assemble a Cdc42-

signaling complex73,74,76,77. A key event in this mechanism is the accumulation 

of Cdc24 at the presumptive bud site and to sites of polarized growth in G1 and 

S/M phases respectively to be then sequestered into the nucleus by its interactor 

Far1 in late mitosis and until entry in the next cell cycle73,78,79. To successfully 

localize at polarity sites in G1, Cdc24 requires Cln1,2-Cdc28 activity, likely 

because it is necessary for Far1 degradation and hence for a strong release of 

Cdc24 from the nucleus80. Clns also play a role in Rga2 inhibitory 

phosphorylation by CDK and mutation of Rga2 phosphosites as well as 

defective CDK mutants cause lowered Cdc42-GTP levels81. Proper distribution 

of the GEF in G1 is ensured by its physical interaction with the Ras-family 

GTPase Rsr1 and the scaffold protein Bem1. Rsr1 recruits Cdc24 in early G1 

concomitantly with Whi5 being still present in the cell82. This pathway of 

Cdc24 clustered activation requires Bud5, the Rsr1 GEF, to produce GTP-Rsr1, 

which is in turn able to physically interact with Cdc24 and recruit it83. Then, the 

Rsr1 GAP Bud2 hydrolyzes GTP-Rsr1 and triggers the activation of Cdc2484. 

On the other hand, Bem1 is a scaffold protein that physically interacts with a 

Cdc42-GTP effector (PAK) and Cdc24 and so promotes a positive feedback 

loop in which clustered active-Cdc42 recruits Bem1/Cdc24 complex and favors 

GTP loading of surrounding Cdc42-GDP (fig.I6)85–87.  
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Figure I6. Mechanisms of Cdc24 spatial control75 

 

An additional contribution in building a cluster of active-Cdc42 is provided by 

the GDI Rdi1 that traps Cdc42-GDP and transfers it from the PM into the 

cytoplasm88–90. Deletion of both RSR1 and BEM1 is reported to be lethal, 

however some viable rsr1∆bem1∆ strains have been obtained, suggesting the 

existence of yet other mechanisms that may partially take part in Cdc24 

polarization77,86,91. Evidence in other organisms indicate that Ras may be 

involved in Cdc42 regulation and that it physically interacts with Cdc24, 

though the relevance of this interaction has not been unveiled92,93. These 

observations however rise the possibility that what allows some rsr1∆bem1∆ 

cells to polarize Cdc24 and proliferate could be Ras.  

A big challenge in cellular duplication is a peculiar distribution and 

maintenance of cell determinants that allow a different behaviour in mothers 

and daughters. This is possible thanks to physical diffusion barriers assembled 

at the mother/daughter interface that prevent material exchange between the 

two compartments. In budding yeast this barrier is provided by a ring-like 

structure composed of the so-called septins, a class of GTPases that is able to 

assemble heterocomplexes in rod- or ring-like structures94,95. Four essential 

(Cdc3, Cdc10, Cdc11 and Cdc12) and one dispensable (Shs1) septins are 

present in budding yeast, where they are assembled in a ring structure at the 

presumptive bud-site96. The process of ring formation and maturation into a 
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collar and then double ring has not been unveiled in detail, but it is known to 

have strong interplays with Cdc42. A tripartite mechanism where Cdc42-GTP 

directs vesicle delivery, promotes septin assembly and is in turn inhibited by 

septins accounts for bud emergence has been described. First, a stable cluster of 

Cdc42-GTP is built and directs septin recruitment thanks to a direct physical 

interaction between its effectors Gic1 and Gic2 and septins97. Being Cdc42-

GTP accumulated in a cap, septins would likely assemble in a similar structure. 

This is prevented by two other mechanisms. On one hand, septins trigger 

Cdc42-GAP Rga2, resulting in a local inhibition of the GTPase98. On the other 

hand, actin cytoskeleton (whose orientation relies on Cdc42 activity as 

described below) points towards the centre of the Cdc42-GTP cluster and 

deposition of new material is directed to the same compartment. Overall this 

promotes the generation of a hollow septin cap, restricting septin deposition 

only at cluster borders and generating a ring. Once the ring is formed, septin 

restricts Cdc42-GTP in the bud and ensure its proper growth (fig.I7)98.  

 

 
Figure I7. Schematic representation of Cdc42, exocytosis and septins interplay (A) 

and septin cap to ring transition (B)98 
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Once SPBs are duplicated, DNA is replicated and the bud is emitted, cells enter 

a phase during which the daughter apically grows to approach the dimension of 

a mature cell. Cdc42 promotes the morphological changes required for cellular 

growth through a constant reorganization of the actin cytoskeleton, a network 

made up of actin cables that is widely exploited by cells to carry out several key 

functions, such as the delivery of different organelles and is therefore essential 

for viability (fig.I8)99–101.  

 
Figure I8. Actin cables organization and cell growth through the cell cycle102 

 

Actin cables are F-actin polymers organized in linear bundles nucleated and 

elongated by so-called formins. Budding yeast genome codes for two formins, 

Bnr1 and Bni1, that act downstream of Rho GTPases and are responsible for 

the synthesis of different cable populations in the cell103–105. Bni1 is responsible 

for the random orientation of cables in unbudded cells, while after budding it is 

accumulated at the bud tip, from where it organizes the cytoskeleton of the 

daughter cell; Bnr1 is on the other hand present only at the bud neck and 
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elongates cables in the mother cell106. Overall, this organization of the 

cytoskeleton accounts for material transport towards the daughter cell107. Late 

in mitosis Bnr1 is displaced from the bud neck and replaced by Bni1, thanks to 

the Cdc42 effector Spa2 which mediates Bni1 recruitment108–110. Bnr1 and Bni1 

differ in their motility as determined by their exchange ratio from the bud neck 

and bud tip respectively, measured by FRAP studies that demonstrated how 

Bnr1 is stably attached to the septin ring, while Bni1 dynamically exchange 

between the bud cortex, actin cables and the cytoplasm106,111,112. Both Bnr1 and 

Bni1 structures comprise a RBD (Rho Binding Domain) supposed to 

autoinhibit formin activity, a FH1 domain that, interacting with profilin, 

facilitates actin delivery to formins and a FH2 domain responsible for actin 

nucleation activity103,105,113–115. Formin autoinhibition can be relieved by 

binding of Rho3 or Rho4 to the RBD, and loss of both these GTPases causes 

cell death as the outcome of a failure in building a functional 

cytoskeleton116,117. In this scenario, Cdc42 is dispensable for actin cable 

assembly, but pioneering experiments performed on conditional mutants 

showed how its activity is essential to regulate the proper spatial organization 

during budding and growth, allegedly regulating formin distribution117. To 

promote efficient cable synthesis, the activity of formins can be enhanced by 

the actin nucleation promoting factor Bud6, which interacts with and enhances 

the activity of Bnr1 and Bni1 and deletion of BUD6 results in an altered 

budding pattern118–121. The localization of Bud6 varies during the cell cycle: it 

is first enriched at the presumptive bud site and then at the bud tip until 

metaphase, when it starts to accumulate also at the bud neck. During 

cytokinesis it is only detectable at the mother-daughter interface120,122. This 

peculiar localization pattern relies on formins, with Bud6 interacting with both 

Bnr1 and Bni1 and being hence recruited at the bud neck and bud tip (fig.I9)123.  
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Figure I9. Bni1, Bnr1 and Bud6 spatial organization (modified from)124  

VESICLE	TRAFFICKING	

One of the main functions of the actin network is the delivery of proteins, lipids 

and other molecules to the PM, which together promote cell growth. This 

delivery is performed by vesicles that can generate from any membrane-

enclosed organelle and travel along actin cables to unload their cargo to 

different cellular compartments.  

Two main protein complexes take part in vesicle delivery and fusion with target 

membranes, the exocyst and the SNARE complexes. The exocyst is made up of 

Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84, and its function is to 

determine the sites of vesicle docking and fusion125. The differential 

distribution of the bricks of this complex allows the preferential delivery of 

vesicles to particular membrane departments. Six members (Sec5,6,8,10,15 and 

Exo84) accumulate on vesicle membrane, while Sec3 and Exo70 are located on 

target membranes and mark them as acceptor domains (fig.I10)126. The 
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distribution of Sec3 and Exo70 hence accounts for preferential delivery of 

vesicle to particular clusters on target membranes. In this scenario, besides 

directing actin cable organization, Cdc42 also plays a direct role in traffic 

regulation by directly interacting with the N-term of the exocyst member Sec3 

and disruption of Cdc42-Sec3 interaction blocks exocytosis127,128. Sec3/Exo70 

recruitment on membranes also relies on the presence of Pleckstrin Homology 

(PH) domains in their sequence that enable them to interact with PtdIns(4,5)p2, 

which thus acts as a marker for vesicle delivery sites125. Once a vesicle 

approaches a Sec3-Exo70 decorated membrane, a complete exocyst complex is 

assembled and primes the vesicle for the fusion event which requires the 

formation of a functional SNARE complex129.  

 

 
Figure I10. Exocyst complex130 

 

Thanks to the morphological changes promoted by Cdc42 and its effectors, the 

bud enlarges and organizes its actin cytoskeleton to fulfil all the requirements 

for a correct nuclear segregation and cell division that will take place in mitosis.  
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	 SACCHAROMYCES	CEREVISIAE	MITOSIS	

During mitosis cells have to undergo a faithful and even segregation of their 

genetic material and organelles into daughter cells before the onset of 

cytokinesis, making this cell cycle phase critical. Entry in M phase is promoted 

by specific B-type cyclins (Clb1-4). These proteins are prevented from reaching 

deleterious levels during interphase thanks to a very low transcription rate and 

efficient degradation and drive the cell through mitosis and cytokinesis before 

being rapidly degraded to allow entry in a new G1 phase131–135. 

Several substages (prophase, prometaphase, metaphase, anaphase and 

telophase) follow one another during mitosis to achieve the different 

requirements needed for a proper cellular division. The first step in mitosis is 

chromatin condensation in pairs of sister chromatids with a rod-like structure, 

which are held together by the cohesin complex, whose subunits are Smc1, 

Smc3, Scc1 and Scc3. Once DNA condensation is completed, the nuclear 

envelope breaks down during prometaphase to allow the establishment of 

microtubule-chromatid interactions. In S.cerevisiae, however, nuclear envelope 

breakdown is not required thanks to its peculiar SPBs, which are embedded in 

the nuclear membrane136. Each sister chromatid has a large protein complex, 

named kinetochore, attached to its centromeric region, whose essential role is 

the binding of microtubules emanating from the MTOCs137 . When the sisters 

of a pair are attached by microtubules emanating from two different MTOCs, a 

configuration suitable for successive segregation is achieved138. The interaction 

between microtubules and kinetochores is mediated by the KMN network, a 

complex with structural functions made up by Spc105 and two other 

subcomplexes named Mis12 and Ndc80, which are all essential for a functional 

microtubule attachment139,140. The microtubule/kinetochore interaction is 

initially highly dynamic, and it often occurs between the side of a microtubule 

and the kinetochore so that the microtubule has to slide along the chromosome 
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until it finally interacts with the kinetochore with its plus end141. At this point, 

the resulting pulling force on the attached kinetochore promotes the orientation 

of the unattached one towards the opposite MTOC, facilitating the achievement 

of a correct amphitelic configuration141.  

The functional amphitelic attachment is not always immediately reached, as the 

search and capture mechanism for attachment is stochastic. A successful 

segregation of the genetic material hence requires a proper coupling of the 

nuclear dynamics with cohesin degradation, so that correct 

microtubule/kinetochore interactions are established before cleavage of Scc1 to 

prevent unscheduled cohesin degradation in presence of misattachments that 

would result in chromosome missegregation and aneuploidy. Cells have thus 

evolved a surveillance mechanism to avoid deleterious anaphase onsets until all 

chromosomes-kinetochores interaction are amphitelic. The SAC (Spindle 

Assembly Checkpoint), perceives the presence of misattached kinetochores and 

prevents cohesin degradation until a functional mitotic spindle is assembled142.  

The SAC network in S.cerevisiae is made up of six proteins that accumulate on 

the outer side of unattached kinetochores: Mad1-3, Mps1, Bub1 and 

Bub3143,144. The actual signal that primes SAC activation has still to be 

unveiled, but two hypotheses have been raised and, allegedly, coexist. A first 

model proposes that the SAC may perceive unattached microtubules detecting 

the occupancy of kinetochores, while another model claims rather that the SAC 

is able to detect lack of tension on kinetochores when they are not bound to 

microtubules145–147. Whatever the signal that primes for SAC activation, a 

prominent role in triggering the checkpoint effectors is performed by Ipl1, the 

Aurora B kinase of budding yeast148. This protein is part of a larger complex 

known as the Chromosomal Passenger Complex (CPC), along with INCENP, 

Survivin (which recognizes H3-Thr3 phosphorylation) and Borealin (which is 

recruited by P-H2AS121-bound Shugoshin) and has the role to oversee a 



21 

correct microtubule attachment, triggering the SAC and thus preventing 

anaphase onset in case of misattachments149–151. Upon its recruitment to 

centromeric regions, the CPC promotes phosphorylation of CENP-A and key 

subunits of the kinetochore promoting two key events for faithful chromosome 

segregation. First, in a still unveiled way Aurora B mediates the recruitment of 

SAC protein Mps1, which in turn stimulates recruitment of other subunits of 

the checkpoint152. Second, Aurora B mediated phosphorylation of kinetochore 

components renders the microtubule-kinetochore interaction less stable thus 

facilitating detachment and new microtubule capture providing a chance to 

achieve a correct configuration148. Once the SAC has been triggered, it inhibits 

anaphase onset sequestering and stimulating the degradation of Cdc20, a 

fundamental protein for Scc1 degradation (fig.I11)153–156. 

 

   
Figure I11. SAC activation by misattached kinetochores142 
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When all chromosomes have been successfully aligned, the SAC is turned off 

and metaphase to anaphase transition is triggered157. At this stage, progression 

of the cell cycle is regulated by the activation of a large protein complex with 

E3 ubiquitin ligase activity, the Anaphase Promoting Complex (APC/C). 

APC/C is not able to act as an E3 per se, rather it requires interaction with one 

of two other proteins, Cdc20 and Cdh1, that act as specificity factors to allow it 

to physically interact with its targets158–161. The essential feature of Cdc20 is to 

promote the APC/C-dependent cleavage of the cohesin complex (although it is 

also involved in degradation of other proteins such as M-phase cyclins) and due 

to the extreme delicate function it promotes, its levels oscillate during the cell 

cycle with a prominent accumulation in mitosis and subsequent rapid 

degradation in G1158,161–167. Besides Cdc20 levels, formation of the APC/CCdc20 

complex is further regulated by a Clb-Cdc28-mediated phosphorylation of the 

APC/C core subunits that renders the complex able to bind Cdc20168. Once the 

APC/CCdc20 complex is assembled, it primes for degradation the protein Pds1, 

known as securin, which acts as a physical inhibitory of Esp1, the protein 

responsible for Scc1 cleavage promoting anaphase onset169–171. When sisters 

have been separated, another APC/C complex (APC/CCdh1) primes Cdc20 for 

degradation (fig.I12)167. 
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Figure I12. Mechanisms of SAC-mediated anaphase prevention and coupling to 

cohesin degradation172 
 

Once cohesins have been degraded, nuclei can be pulled apart and segregation 

follows the orientation of mitotic apparatus.  

Orientation of the spindle depends on microtubule organizing centers (MTOCs) 

of the cell, whose positioning is regulated through interactions by astral 

microtubules173–177. Two pathways named the early and the late pathway 

regulate nuclear localization during mitosis, with the overall aim to position the 

nuclei in an optimal site for their subsequent segregation (fig.I13).  

 

 
Figure I13. Different mechanisms of nuclear positioning regulation in budding yeast 

(modified from: 178) 
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The early pathway is active prior to anaphase and in early stages of this phase 

and most of the actors involved in this branch are localized to the bud cortex178. 

In this mechanism, the alignment of the mitotic spindle along the mother bud 

axis is promoted through two different branches. In the first branch, the myosin 

Myo2 exploits actin cables as tracks along which it sweeps microtubules plus 

end towards the bud tip. Myo2/microtubule tip interaction is bridged by Kar9 

and the motor protein Bim1, which travels along microtubules towards their 

plus end carrying Kar9 and, once at the tip of the microtubule, Kar9 binds 

Myo2179–182. Myo2 then, traveling along actin cables, pulls the microtubule, 

along with the SPB and the nucleus, towards the daughter cell178. The other 

branch of the early pathway exploits coupled microtubule capture on the cell 

cortex and shrinkage. In this case, Bud6 acts as a cortical receptor for 

microtubules, and the mechanism underlying microtubule capture/shrinkage are 

still unknown, thought it has been shown that this pathway is active only 

towards the bud neck and the bud tip176,183.  

The late nuclear positioning pathway relies on the motor protein dynein to 

promote proper spindle orientation and cells deficient for dynein activity 

experience a delay in cell cycle progression due to a temporarily failure to pull 

a nucleus in the daughter cell184–186. Again, in this mechanism the plus end of a 

microtubule primes the cell cortex searching cortical capture sites which are 

here represented by Dynein interactor Num1. Dynein is transported to 

microtubule plus ends by Bik1 and upon interacting with Num1 on the cell 

cortex, it is transferred to the cortex along with the dynactin complex. At this 

point, the motor activity of dynein is triggered, promoting microtubule sliding 

and generating pulling forces on the nucleus that segregate chromosomes187–191. 

APC/CCdc20 mediates the degradation of a fraction of securin, which is still 

present through anaphase and inhibits further cell cycle progression192. The 

complete degradation of Pds1 requires the formation of another protein 
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complex, APC/CCdh1193,194. Cdh1, is regulated mainly at its protein levels, 

which rise from late mitosis to G1, when it exerts two main roles promoting 

degradation of Cdc20 and B-type cyclins167,195,196. Degradation of Cdh1 during 

interphase is dependent on APC/CCdh1 itself and CSF, another ubiquitin ligase 

complex197,198. The activity of the APC/CCdh1 complex is also regulated by 

posttranslational modifications, as Cdh1 is target of an inhibitory 

phosphorylation that prevents it to interact with APC/C and occurs during S 

and M phases and is removed in late mitosis and G1163,199,200.  The shift from 

APC/CCdc20 to APC/CCdh1 is regulated by the essential phosphatase Cdc14, 

which on one hand directly dephosphorylates Cdh1 rendering it able to bind the 

APC/C and on the other hand inactivates Clb/CDK complexes responsible for 

Cdc20 loading on the APC/C168,201–203. Newly assembled APC/CCdh1 completes 

securin degradation and targets several other proteins among which is Clb2, 

thus inhibiting Clb/CDK complexes (fig.I14)192. 

 
Figure I14. Securin function at the anaphase/telophase transition192 
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Prior to mitotic exit, Cdc14 activity is prevented by its sequestration in the 

nucleolus thanks to its physical interactor Cfi1/Net1204,205. Relieving of the 

phosphatase from its inhibitor and its following release in the cytoplasm are 

promoted by the Cdc14 Early Anaphase Release (FEAR) and the Mitotic Exit 

Network (MEN) (fig.I15). The former has the function to release Cdc14 in the 

nucleus in early anaphase and is dispensable for cell cycle progression, while 

the MEN promotes the release of Cdc14 in the cytoplasm and is essential. Apart 

from APC/CCdh1 complex formation, Cdc14 facilitates mitotic exit acting on 

several other targets. Cdc14-mediated Sic1 accumulation promotes Clb/CDK 

inactivation206. Other targets of the phosphatase are Bnr1 and Bni1, eventually 

affecting formin localization110. Finally, Cdc14 directly promotes cytokinesis 

dephosphorylating Inn1 and the essential protein Iqg1, which acts as a scaffold 

protein to promote actomyosin ring contraction at the bud neck207–209 

 

 
Figure I15. Cdc14 activation and function2 

 

If Cdc14 activity is triggered in presence of a non-properly aligned spindle, 

cells may experience unbalanced chromosome segregation and aneuploidy 

following cytokinesis. This is prevented by the SPOC, a surveillance 
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mechanism that inhibits Cdc14 and hence mitotic exit in case of spindle 

misorientations (fig.I16)183,210. Proper orientation of the mitotic apparatus is 

granted by the fact that the two SPBs are not completely equal. Several proteins 

that play key roles in nuclear segregation indeed differently decorate the two 

SPBs, ensuring that the two structures do not behave in the same way and 

follow different segregation fates. These differential segregation routes are 

granted mainly through an initial inhibition of the microtubule nucleation from 

the newly synthetized SPB, which is retained by the mother, and through 

accumulation on the old SPB of dynein and the spindle positioning factor 

Kar9211–213. Inhibition of the cell cycle by the SPOC is achieved though 

inactivation of the mitotic exit network (MEN), an essential pathway that drives 

cell from mitosis through cytokinesis. In response to spindle misorientation, the 

SPOC inhibits MEN apical GTPase Tem1 by stabilizing Bub2/Bfa1 complex, 

which acts as a GAP towards Tem1214,215. In particular, the SPOC acts through 

two cortical proteins, Kin4 and Lte1, which are mainly restricted to the mother 

and daughter cortexes respectively216–218. Noteworthy, Lte1 recruitment to 

daughter cortex during mitosis relies on binding to active-Ras2219–221. As long 

as the spindle is not properly oriented, both SPBs are within the mother cell and 

subjected to Kin4 kinase activity that phosphorylates and prevents the Cdc5-

mediated inactivation of the Bub2/Bfa1 GAP complex, thus preventing Tem1 

triggering222. Once a SPB passes through the bud neck, Lte1 interferes with 

Kin4 loading on it, allowing polo like kinase (PLK) Cdc5 to phosphorylate 

Bub2/Bfa1 and promote cell cycle progression triggering Tem1 activity223,224. 

This in turn promotes a cascade of phosphorylation that ultimately results in 

unchaining of Cdc14 activity and completion of the cell cycle.  
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Figure I16. Schematic representation of the SPOC in presence of correct (figure A) 

and wrong spindle orientation (figure B)225 

 

 Non-canonical DNA Damage Response (DDR) 

activation  
Preservation of the genetic material is fundamental for all living cells. Apart 

from threats deriving from missegregation, the fidelity of DNA transmission to 

daughter cells is jeopardized also by several other factors that can directly alter 

its sequence, leading to mutations. A plethora of factors ranging from physical 

agents to chemicals or to biological processes themselves can indeed impact on 

the DNA molecule and produce alterations. For this reason, complex 

mechanisms have evolved to preserve the integrity of the genetic information, 

collectively known as DNA Damage Response (DDR hereby) with the role to 



29 

trigger a transient cell cycle arrest and promote DNA repair, eventually driving 

cells through apoptosis in case of non-reparable damages.  

The ample variety of chemically and structurally different DNA lesions are 

processed by different repair pathways. Whatever damage and repair pathway 

takes place, they all converge on a common mechanism to delay cell cycle 

progression, known as the DNA damage checkpoint, considerable as a 

phosphorylation-based signal transduction cascade that conveys the damage 

signal from the nucleus to several effectors involved in lesion processing and 

cell cycle control. The first event common to all injures in checkpoint 

activation is the coverage of a stretch of ssDNA (generated by processing either 

ssDNA or dsDNA damage through the different repair mechanism) by the RPA 

complex226. After decoration of this ssDNA stretch by RPA, two protein 

complexes comprising DDR apical kinases are recruited to lesion sites with 

different mechanism. On one hand, ATR (Mec1 in budding yeast) is recruited 

along with the protein ATRIP mainly to ssDNA lesions, while ATM (Tel1 in 

S.cerevisiae) is recruited to processed double strand breaks. Once the apical 

kinases have been triggered, they transmit the signal through a phosphorylation 

cascade to their effectors, the first of which are Chk1 (ATR) and Chk2 (ATM). 

Due to its high relevance for carcinogenesis and pathogenicity, the DDR has 

been extensively studied to define the mechanism that drive pathology onsets 

and prevent them. DNA lesions are not the only stimulus that promotes DDR 

activation as a plethora of other conditions ranging from virus infection to 

chromatin structure alterations have been reported to trigger the DDR even in 

the absence of DNA lesions227. In a recent work, Kumar et al. showed that cells 

subjected to different kind of mechanical stress trigger an ATR-mediated 

activation of checkpoint factors on the nuclear lamina and reported evidences 

for this being a mechanism to protect perinuclear chromatin from potentially 

threatening torsional forces (fig.I17)228. This pathway may be highly relevant 
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for migrating or invading cells, where the cellular morphology is constantly 

manipulated and nuclear lamina has to disassemble to allow nucleus 

movement229. Consistent with this hypothesis, lamin A disruption has been 

reported to trigger DNA damage checkpoint and induce cell death in 

constricted cell migration230. 

 

 
Figure I17. Mechanical stress on the nuclear envelope triggers ATR relocalization231 

 

 Haspin 
The atypical serine/threonine kinase haspin (HAploid germ cell-Specific 

nuclear ProteIN kinase) was first identified in mouse testis cells in 1999 and 

later has been found in the genomes of all eukaryotes looked so far, including 

the minimal genome of the microsporidia Encephalitozoon cuniculi, suggesting 

an essential role in eukaryotic cells232–234. The structure of haspin paralogues is 

variable from one organism to the other, but it has common features 

encompassing a kinase domain, several phosphorylation sites and a leucine 

zipper232. In higher eukaryotes the haspin gene has some peculiar 

characteristics as it lacks introns, has some transposon-like features and it is 

located inside the intron of integrin alphaE235.  

The best-known substrate of haspin is threonine 3 of the histone H3, which gets 

phosphorylated during mitosis and, together with phosphorylated histone H2A-
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S121, recruits the Chromosome Passenger Complex (CPC)150,151,236. Consistent 

with its role in CPC recruitment, impairment in haspin activity results in 

loosened chromatids, premature segregation, failure to align chromosomes on 

the metaphase plate and spindle-pole fragility234,237–239. 

Regulation of haspin involves both its localization and ponsttranslational 

modifications. On one hand, an autohinibitory domain that in interphase folds 

onto the catalytic domain prevents unscheduled haspin activity240. This 

autohinibition is relieved in a multi-step mechanism, the first of which is a 

Cdk1-mediated phosphorylation on residue T206 during mitosis and this 

modification primes haspin for Plk1 recognition and subsequent 

multiphosphorylation234,241,242. Once phosphorylated, the autoinhibitory domain 

of haspin is displaced from the catalytic site, triggering haspin activity 

(fig.I18)241. A second level of regulation exploits different localizations of 

haspin in the cell cycle: during interphase this protein is localized in the nucleus 

but not associated with chromosomes so it does not have access to its 

chromatinic substrates234,237. Recruitment of haspin to chromatin is mediated by 

SUMOylated Topoisomerase IIα and requires preliminary phosphorylation of 

haspin T206 phosphorylation by Cdk1243,244. 

 

 
Figure I18. Regulation haspin activity in the cell cycle241 
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Two haspin paralogues are coded by the budding yeast genome, Alk1 and 

Alk2245. Both proteins oscillate during the cell cycle, peaking at the first stages 

of mitosis246. Alk1 was first identified in our lab as an interactor of the DNA 

damage protein Ddc1 in a two-hybrid screening but no sensitivity of alk1∆, 

alk2∆, or alk1∆alk2∆ cells to genotoxic agents has been observed246.  

Here, I show that haspin strongly impacts mitosis regulating actin and nuclear 

dynamics by modulating polarisome dispersion. In this scenario haspin exerts 

its role by affecting the distribution of Ras along the PM, which I show to 

modulate Cdc42 activation and polarity regulation. Moreover, preliminary 

results report an undisclosed role for haspin in regulation of a crosstalk between 

mechanosensing and DNA damage response. 
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AIM OF THE PROJECT 
 

The main focus of this work is a deep comprehension on how haspin impinges 

on several aspects of the cell cycle.  

Healthy cells in multicellular organisms are subjected to tight regulation 

mechanisms to prevent unscheduled growth and to sacrifice themselves when 

required for the wealth of the whole organism. Malignant transformation is a 

complex multistep process by which cells acquire characteristic traits that make 

them behave independently on extracellular signalling and non-responsive to 

apoptotic induction, conferring them growth advantages and the capability to 

spread in the organism outnumbering other tissues. This change in behaviour 

requires several alterations in cellular processes. One of the first steps often 

observed in carcinogenesis is the alteration of cellular polarity and of internal 

vesicle trafficking to favour cellular motility and proliferation. In this work I 

investigated the role of haspin in regulation of polarization and vesicle traffic 

using budding yeast as model. 

Migrating and invading cells are subjected to strong mechanical stresses as they 

pass through a crowded environment and have to heavily manipulate their 

shape during this process. A limiting step in invasion is the passage of the 

nucleus, which has to be helped by Arp2/3-mediated rearrangements of F-actin 

and ruptures of the nuclear lamin229,230. Treating cells with different mechanical 

stresses has been reported to trigger a non-canonical, ATR-mediated DDR228. 

How events acting on the cellular membrane are translated in DDR activation 

and what happens to migrating cells if this mechanism is perturbed is yet 

unknown. Given that our data in budding yeast and human cells indicate haspin 

to be a regulator of actin dynamics and haspin is known to be active in the 

nucleus, we hypothesized that it may couple sensing of mechanical stress to 

DDR activation237.  
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MAIN RESULTS 
 

A first analysis performed in our lab reported budding yeast haspin paralogues 

Alk1 and Alk2 as mitotic proteins phosphorylated after DNA damage and 

undergoing cell cycle regulation but their role was not identified246. 

 

 Loss of haspin confers sensitivity to M-phase delays 
Starting from Alk1 and Alk2 identification as mitotic proteins we tested haspin 

mutants sensitivity to microtubule-depolymerizing drugs as benomyl or 

nocodazole to assess the impact of M-phase arrests on such cells. Loss of 

haspin kinase activity results in a greatly reduced cell viability benomyl-

containing plates, and direct analysis of the SAC (the surveillance mechanism 

which is triggered by microtubule depolimerization) demonstrated that this 

mechanism is proficient in haspin mutants, excluding a role in perceiving 

correct microtubule attachments. A more detailed analysis of the phenotypes of 

alk1∆alk2∆ cells monitoring spindle and nuclear dynamics after transient 

nocodazole treatment highlighted nuclear missegregation as the probable cause 

for alk1∆alk2∆ lethality following an M-phase delay, as this mutant undergoes 

cytokinesis with two separated nuclei in a single cell compartment following 

M-phase delays, resulting in binucleated daughters and anucleated mothers. A 

correct spindle elongation relies on a functional actin cytoskeleton and this 

prompted us to monitor the distribution of actin in haspin-lacking cells. 

Staining actin with fluorophore-conjugated phalloidin demonstrated that, 

indeed, loss of Alk1 and Alk2 causes, after an M-phase delay, a defect in actin 

distribution; while F-actin being is evenly distributed between mother and 

daughter cells in wild-type strains, it is strongly accumulated in the daughter in 

haspin mutants. Actin cable synthesis is regulated by formins and actin-

nucleation promoting factors. Consistent with the observed defect in actin 
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cytoskeleton we found that Bnr1 (a formin) and Bud6 (an actin nucleation 

promoting factor) where mislocalized by loss of haspin and deletion of the 

corresponding genes could alleviate the phenotypes of haspin-lacking cells. 

 

 Dispersion of polarity clusters relies on a haspin-

mediated active-Ras redistribution 
These results prompted us to investigate the cause for the hyperpolarization 

observed in alk1∆alk2∆ cells. We then demonstrated that the lack of Bud6 from 

the bud neck and its concomitant accumulation at the bud tip were the actual 

cause for actin and nuclear misdistribution upon haspin loss. We found Bud6 

misdistribution to be a consequence of defects in the master regulator of 

polarization in eukaryotes, the small GTPase Cdc42, and particularly of GTP-

loaded Cdc42, which we report to be accumulated at the bud tip rather than 

being evenly diffused on the PM following haspin loss. The most obvious fact 

that would cause clustered accumulation of GTP-loaded GTPase is a similar 

distribution of its GEFs. Given that Cdc24 is the only GEF for Cdc42 in 

budding yeast, we then assessed its localization during M-phase in wild-type or 

alk1∆alk2∆ cells and found it being accumulated at the bud tip, consistent with 

Cdc42-GTP being polarized in this mutant. In contrast with literature evidences 

that ascribe Rsr1 the role to recruit Cdc24 to the PM, we found that in mitosis 

its loss had no impact on Cdc24 localization. On the other hand, we identified 

Ras as responsible for Cdc24 accumulation on the PM in this phase, confining 

Rsr1 role to G1. Finally, we demonstrated that active Ras and Ras are both 

polarized in haspin-lacking cells and that this is the cause for the M-phase 

sensitivity of this mutant. 
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 Haspin impingement on vesicle and vacuolar 

dynamics 
Delivery of Ras presumably relies on two distinct mechanisms based on 

secretory traffic and the palmitoyltransferase module Erf2/Erf4. However, the 

latter complex is also required for efficient membrane-binding of Ras, making 

it challenging to dissect its actual role in Ras accumulation on the PM. Our 

results show that Ras2 is hyperaccumulated at the bud tip upon haspin loss, so 

we reasoned that this may be due to defects in vesicle delivery. Indeed, we 

found that the v-SNARE Snc1 was accumulated at the bud tip rather than being 

uniformly distributed along the bud membrane in haspin mutants 

(supplementary informations, pag.142). Noteworthy, this phenotype was 

detectable also in conditions in which the actin cytoskeleton was unaffected by 

haspin loss, suggesting it was not just a consequences of published defects of 

alk1∆alk2∆ cells (supplementary informations, pag.143). The fact that Snc1 

accumulation is not prevented by loss of haspin indicates that the secretory 

machinery per se is functional in such mutants, but rather vesicle are not evenly 

distributed to the cell periphery. 

The PtdIns(3)p kinase Fab1 has been detected in our lab as a putative Alk2 

interactor in a two-hybrid screening. We found several genetic interactions 

between haspin and Fab1 network overall suggesting that Alk1 and Alk2 could 

play a role in a correct assembly of Fab1 complex. Haspin is indeed involved in 

PtdIns balance, vacuole fragmentation and function and, though the exact 

mechanism of Fab1 regulation by haspin is still missing, it is likely that a strong 

interplay between the two proteins exists (supplementary informations, 

pag.144-145). 
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CONCLUSIONS AND FUTURE PROSPECTS 
 
Carcinogenesis is driven by several alterations in cellular behavior that overall 

promote malignant phenotype and confers transformed cells the capability to 

spread in the whole organism. Among the processes more often altered in 

cancer cell is polarization, and hence understanding how polarity is established 

and maintained is of pivotal relevance in cancer research. This thesis deepens 

our comprehension on polarization as follows: it demonstrates that haspin 

oversees proper nuclear segregation along with polarity factors; it shows the 

outcome of failure in timely dispersion of polarisome; it describes a new role 

for Ras in Cdc42 regulation during mitosis and it characterizes haspin as a new 

regulator of vesicle delivery and PtdIns balance. Overall, the impact of our 

results on this research field can delineate new paths to elucidate the regulation 

of key proteins in carcinogenesis and cellular proliferation. 

This work raises several new questions that will be assessed in the next future. 

The main challenge we will be facing is try to translate the results achieved in 

budding yeast to human cell lines. A success in this would define haspin as a 

new regulator of Ras, eventually defining new approaches in therapeutic Ras 

regulation and cancer treatment. 

The way haspin acts on Fab1 complex is still unclear, and we will try to unveil 

the mechanistic details of this regulation. Our data raise the possibility that 

Alk1 and Alk2 may be act on Fab1, eventually to mediate complex assembly. 

Due to its high molecular weight, haspin-dependent protein modifications in 

Fab1 may remain elusive. To circumvent this, we will exploit the following 

experimental setups: on one hand, we know by personal communication that a 

TEV-cleavable Fab1 has been obtained and that this allele can be used to easily 

detect protein modifications; on the other hand, we could analyze Fab1 from wt 

and haspin-lacking cells by mass-spectrometry to identify differentially 
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modified residues that will be putative target for haspin kinase activity. The 

impact on haspin on Fab1 complex will be determined by Co-

immunoprecipitating Fab1-Vac14-Fig4 in wt or alk1∆alk2∆.  
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Abstract 
 

Cell polarization is of paramount importance for proliferation, 
differentiation and development. Its alterations are characteristics of 
carcinogenesis. How polarized factors are redistributed is not known. 
Here we identify haspin kinase as a factor critical in budding yeast for 
dispersion of the polarisome and link failure to disperse to nuclear 
segregation defects and cell lethality. This undescribed function of 
haspin relies on modulating the localization Ras. We describe a mitotic 
role for Ras and show that, physically interacting with Cdc24, it 
promotes activation of the Cdc42 GTPase on the bud plasma 
membrane. In Saccharomyces cerevisiae haspin is important for the 
regulation of mitotic spindle positioning and in the tolerance of mitotic 
delays, and our results explain the mechanism involved. These new 
findings shed light on critical factors that, controlling cell polarization and 
mitotic processes, may counteract tumorigenesis. 
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Introduction 
 

Cells of almost all living organisms undergo a phase of polarization, in 
which material deposition and cell growth are directed towards specific 
areas of the cell periphery. Understanding the mechanisms overseeing 
this process is of pivotal importance since its deregulation can lead to 
severe diseases and is one of the first steps of malignant transformation 
in carcinogenesis1.  
A family of small proteins, Rho GTPases, oversees cellular polarity, with 
the protein Cdc42 playing a major role from budding yeast to human 
cells2. In S.cerevisiae, this GTPase manipulates the cell shape by 
regulating processes ranging from vesicular trafficking to actin 
cytoskeleton dynamics, septin deposition and mating2–5. Cdc42 
promotes budding during G1 from an otherwise round cell through its 
accumulation and activation at a polar cap and, after bud emergence, 
Cdc42 clustered activity at the bud tip directs growth of the daughter cell 
through manipulating of the actin cytoskeleton. At the end of mitosis, 
Cdc42 activity drops to allow cytokinesis6.  
In budding yeast, the actin network is assembled thanks to two formins, 
Bnr1, which firmly associates to the bud neck, and Bni1, which 
accumulates at the bud tip7–11. Bnr1 and Bni1 recruit Bud6, an actin 
nucleation promoting factor, at sites of actin cables synthesis12,13. Bud6 
enhances the actin nucleation activity of formins and regulates the early 
pathway of nuclear segregation12–14. In this scenario, Cdc42 is not 
required for actin cable assembly, but rather regulates their spatial 
organization during polarized growth, ensuring that a functional 
cytoskeleton is built, likely regulating formin distribution15. While the 
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establishment of polarization has been widely studied, the mechanisms 
underlying its dispersion and the consequences of its failure have not 
been investigated in detail. 
The activity of Cdc42 is regulated by GTPase-Activating Proteins 
(GAPs), Guanin nucleotide Exchange Factors (GEFs) and Guanosine 
nucleotide Dissociation Inhibitors (GDIs). Budding yeast genome codes 
for a single GDI, Rdi1, while four GAPs (Rga1, Rga2, Bem2 and Bem3) 
are present in this organism16–19. The only known GEF for Cdc42 in 
S.cerevisiae is the essential protein Cdc24, which orchestrates the 
accumulation of GTP-Cdc42 to differentially localized clusters during the 
cell cycle20,21. In late G1, Cdc24 localizes at the presumptive bud-site 
and then, from S to M-phase it accumulates at sites of polarized growth; 
it is then sequestered into the nucleus during late M-phase until the next 
budding22,23. Recruitment of Cdc24 at the PM in early stages of the cell 
cycle relies on its physical interaction with a Ras-family GTPase, Rsr1, 
and with the Bem1 scaffold protein. Clustered Cdc24 is responsible for 
the local activation of Cdc42 and is an absolute prerequisite for 
S.cerevisiae cells to bud24. Deletion of both RSR1 and BEM1 is reported 
to be lethal25. Interestingly, a small portion of rsr1∆bem1∆ cells is, to 
some extent, able to polarize and proliferate, indicating the existence of 
yet another player26–28.  
Work in different organisms suggested a physical interaction between 
Cdc24 and Ras, though the mechanistic details of this regulation and 
the impact of Ras on Cdc24 are lacking29,30. Ras GTPases are 
ubiquitous in eukaryotic cells, where they play a fundamental role in cell 
cycle regulation and, noteworthy, Ras signalling is altered with a 
significant incidence in several types of human cancers31. In budding 
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yeast the main role of Ras paralogues, Ras1 and Ras2, is to regulate 
cell cycle commitment in G1 in response to external factors by activating 
PKA32,33. Ras exerts this essential role upon accumulation on the 
plasma membrane (PM), achieved through a non-canonical vesicle 
delivery pathway dependent on mitochondria and class C VPS 
proteins34,35. Activity of Ras in this organism is modulated by two GAPs 
(Ira1 and Ira2) and two GEFs, the essential Cdc25, and the dispensable 
Sdc25, which only takes part in Ras activation upon growth on poor 
media36–42. Ras regulation likely occurs before PM delivery, as Cdc25, 
Ira1 and Ira2 are mainly localized to ER and mitochondria respectively35. 
Beside its essential role in G1, some observations for Ras activity in 
mitosis have been reported in budding yeast and other organisms43–46.  
The atypical protein-kinase haspin is conserved in all eukaryotes, 
suggesting that it may play an important function in the cell cycle. 
Previous reports indicate that haspin is recruited at centromeric regions 
in a topoisomerase II dependent manner47,48. Once there, haspin 
phosphorylates threonine 3 of histone H3 (H3-Thr3) and promotes 
efficient chromosome segregation through the recruitment of the 
Chromosome Passenger Complex (CPC), playing a critical role in 
ensuring a correct amphytelic attachment of microtubules to 
chromatids49–56. Recently H3-Thr3 phosphorylation has also been found 
to regulate asymmetrical histone inheritance in Drosophila male 
germline57. In budding yeast, two haspin paralogues, Alk1 and Alk2, 
have been identified58. We have recently shown that Alk1 and Alk2 play 
an essential role for tolerating a prolonged M-phase delay. Indeed, in 
cells where mitosis is delayed chemically or genetically, lack of haspin 
causes cell death due to the missegregation of both nuclei to the 
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daughter cell. This phenotype is accompanied by a strong hyper-
accumulation of actin in the enlarged bud59. We hypothesized that an 
altered regulation of polarization may be responsible for these 
phanotypes59. 
In this work, we analysed the involvement of S.cerevisiae haspin in 
polarization dispersion. Our findings confirm that mislocalization of 
Bud6, which in alk1∆alk2∆ cells is hyperpolarized to the bud tip and is 
missing from the bud neck, is the critical defect causing actin 
asymmetric distribution and uneven nuclear segregation. We show that 
yeast haspin ultimately regulates Cdc42, the master player of 
polarization. This function is exerted modulating the recruitment of 
Cdc24, the Cdc42 GEF, whose localization we demonstrate to be 
modulated by Ras.  The possible evolutionary conservation of this new 
regulatory axis may help understand the unexplained effects on zygotic 
asymmetric cell division and embryonic patterning reported for 
A.thaliana haspin mutants. 
 

Results 
 
 Haspin modulates Cdc42 activity in mitosis  

 
The uneven distribution of actin and nuclei in haspin mutant yeast cells 
experiencing a mitotic delay may be a consequence of defective 
localization of polarity factors. In particular, Bud6 is hyperaccumulated at 
the bud tip and lost from the bud neck59. 
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To verify whether the unbalanced distribution of Bud6 is responsible for 
the phenotypes observed in alk1∆alk2∆ cells, we retargeted Bud6 to the 
bud neck. A Bud6-Bni4 fusion protein forces localization of Bud6 at the 
bud neck also in the absence of haspin (Supplementary Figure 1). 
Figure 1 shows that Reinstating Bud6 at the bud neck is sufficient to 
recover a functional distribution of actin and a correct nuclear 
segregation in haspin mutant cells. 
Failure to localize Bud6 at the bud neck may be due to failure in the 
local activation of Cdc4260,61. To test whether loss of haspin causes 
defects in Cdc42 activity, we tried to rescue alk1∆alk2∆ cells by 
overexpressing CDC42. As shown in Figure 2a, induction of GAL-
CDC42 fails to restore a proper nuclear segregation in haspin mutants, 
raising the possibility that haspin may be required for a balanced 
distribution of active Cdc42. Consistently, overexpression of a 
constitutively active Cdc42-G12V suppresses the nuclear segregation 
defect of haspin-lacking cells, reducing it to the background level and 

restores the proper localization of Bud6 (Figure 2b)62. These results 
indicate that haspin activity is crucial to promote the correct distribution 
of active Cdc42. 
A CRIB-TdTomato chimera that binds to GTP-loaded Cdc42 allows to 
specifically visualize the active form of Cdc426,63,64. Wt and alk1∆alk2∆ 
cells expressing this probe were subjected to an M-phase delay and 
analysed by fluorescence microscopy. GTP-loaded Cdc42 is 
homogenously distributed along the PM in the majority of control cells, 
with less than 40% cells exhibiting an increased signal of active Cdc42 
at the bud tip (Figure 2c-e). In the absence of haspin, on the other hand, 
Cdc42-GTP is mostly detectable at the bud tips (85% cells; Figure 2c-e). 
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Importantly, no significant active Cdc42 is detected along the rest of the 
PM. We also measured the distance between the geometric centre of 
the cell (centroid) and the fluorescence centre of mass, a parameter that 
accounts for discrepancies from a uniform distribution of fluorescence. 
Consistently with the previous experiment, this value is significantly 
higher in alk1∆alk2∆ cells compared to wt controls (Supplementary 
Figure 2a).  
Localization of polarity factors is a dynamic process and is followed by 
dispersion of the polarized proteins. Indeed, Cdc42 activity is known to 
be hyperpolarized at the bud tip in G1 and in mitosis is redistributed 
throughout the cell. Altogether, these results suggest that loss of haspin 
prevents redistribution of active Cdc42, which remains confined to the 
bud tip, leading to mislocalization of key polarity factors. The phenotype 
described above may thus result from a failure to disperse the polarity 
cap.  
  

Haspin and Ras control Cdc24 recruitment to the PM in 

mitosis 
 
Haspin may control proper localization of Cdc42 at activation sites, as 
suggested by Figure 2, or it may modulate Cdc42 activation at specific 
locations. In budding yeast, Cdc42 activity is regulated positively by a 
single, essential, GEF, Cdc2416–21; in particular, precise localization of 
Cdc24 is crucial to locally activate Cdc42. We thus investigated whether 
haspin may affect the localization of Cdc24. 
We monitored GFP-Cdc24 in wt and alk1Δalk2Δ cells that were pre-
synchronized in G1 and released in nocodazole-containing medium. In 
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wt cells, Cdc24 is distributed all over the PM, similarly to active Cdc42. 
In contrast, in absence of haspin, Cdc24 is undetectable except at the 
bud tip, explaining the elevated levels of active Cdc42 at the same 
location (Figure 3a-c and Supplementary Figure 3a). This suggests that 
in the absence of haspin, a massive accumulation of Cdc24 at the bud 
tip is responsible for altered distribution of Cdc42-GTP. 
We then investigated what regulates Cdc24 distribution at the cell 
membrane. In G1, initial accumulation of Cdc24 at the presumptive bud 
site is promoted by Rsr126. RSR1 deletion does not rescue Cdc24 
mislocalization in haspin mutants (Supplementary Figure 3b), 
suggesting that an Rsr1-indepentent pathway controls Cdc24 
localization in mitosis. Another factor that regulates Cdc24 recruitment 
at the beginning of the cell cycle is Bem1. To test whether the defective 
localization of Cdc24 upon haspin loss was due to alterations in Bem1 
distribution, we monitored Bem1-GFP localization in wt or haspin-lacking 
cells subjected to a M-phase delay. As shown in Supplementary Figure 
3c, loss of Alk1 and Alk2 caused a slight increase in the percentage of 
cells with Bem1 accumulation at the bud tip, yet the protein was still 
polarized also in control cells and the observed distribution pattern was 
not similar to that of Cdc24, suggesting other factors could be 
responsible for localization of the GEF during mitosis. 
In the fungus C.neoformans and in S.pombe, Cdc24 was reported to 
physically interact with Ras, although the functional significance has not 
been determined29,30. Budding yeast genome encodes two Ras 
paralogues, Ras1 and Ras2.  Viable double mutant cells can be 
obtained by removing Bcy1, the inhibitory subunit of PKA.  
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We investigated the possible involvement of Ras in modulating Cdc24 
localization in mitotic cells by deleting RAS1 and RAS2 in wt and 
alk1∆alk2∆ cells carrying a bcy1∆ allele, and analysing Cdc24 in 
nocodazole-arrested cultures.  
In wt cells, removal of Ras1 and Ras2 significantly decreases the 
normalized Cdc24 fluorescence intensity ratio between PM and 
cytoplasm (Figure 3e, 1=homogeneous distribution between membrane 
and cytoplasm), while the fraction of cells showing Cdc24 at the bud tip 
slightly increased, suggesting that Ras may be required for Cdc24 
recruitment to the PM during mitosis. In haspin lacking cells, loss of Ras 
greatly reduced the recruitment of Cdc24 to the bud tip (Figure 3d and 
Supplementary Figure 3d). 
Moreover, we found that Ras was responsible for the defective 
localization of Cdc24 in haspin-lacking cells as its loss lowered GEF 
accumulation at the bud tip (Figure 3d and Supplementary Figure 3c). 
Finally, we noticed a slight yet significant increase in the percentage of 
cells showing polarized Cdc24 in Ras mutants compared to wt cells. We 
propose that this is caused by removal of mitotic-specific Cdc24 
recruitment mechanism that leaves the GEF able to partially interact 
with players that regulate its distribution in earlier phases of the cell 
cycle (e.g.: Rsr1) and that are eventually still confined to the bud tip in 
M-phase. 
To determine whether a physical interaction with Ras may mediate 
Cdc24 relocalization, we adopted a BiFC (Bimolecular Fluorescence 
Complementation) approach: the association of two proteins, fused to 
VenusN and VenusC respectively, is revealed by a fluorescent signal that 
is produced only if the chimeric proteins interact65. We measured by flow 
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cytometry the fluorescent signal in logarithmically growing cells 
expressing endogenous Cdc24 tagged with VenusN and Ras2 tagged 
with VenusC. The presence of both chimeras reconstitutes a functional 
Venus, causing a shift in the fluorescence intensity profile, with respect 
to the non-tagged control. Importantly, the signal is reduced by 
competing with overproduced untagged Ras2, proving the specificity of 
the assay (Figure 4a). The interaction is also detectable as a fluorescent 
signal by microscopy and even in this case overproduction of untagged 
Ras2 suppresses the fluorescent signal (data not shown). To 
characterize the Cdc24-Ras2 interaction we performed a spatio-
temporal analysis by fluorescence microscopy. Cells were classified, 
according to their bud size, in unbudded (G1), small budded (bud size 
less than 1/3 of the mother size; S phase) and large budded (bud size 
greater than 1/3 of the mother size; G2-M). Cdc24-Ras2 interaction is 
detectable in all cell cycle stages, but its cellular distribution varies 
greatly (Figure 4c). In most unbudded cells (87%), the signal is 
distributed all over the PM, and a small fraction (6%) of cells exhibit a 
preferential accumulation in discrete clusters. Small budded cells 
accumulate Cdc24-Ras2 complex on the PM of the mother cell (80%), 
while the complex is almost always absent from daughter membranes 
and few buds exhibit accumulation of the complex at their tips (13%). 
Large-budded cells show a preferential accumulation of Cdc24-Ras2 
complex either at the bud tip (34%) or throughout the PM in both mother 
and daughter cells (60%). Intriguingly, when we analysed the impact of 
haspin on modulating the Cdc24-Ras2 complex during a mitotic arrest 
(Figure 4b), we observed that while the complex is evenly distributed on 
the PM in wt cells, in alk1∆alk2∆ cells Cdc24-Ras2 interaction is limited 
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to the bud tip, suggesting that haspin regulates Ras-dependent Cdc24 
localization.  
Recruitment of Cdc24 at the incipient bud site (G1) and later at the tip of 
the developing bud (early S phase) has been shown to rely on Rsr166. 
The mechanism responsible for the clustering of active Cdc42 at later 
cell cycle stages were not described. Our results identify Ras as a 
critical factor, which directly recruits Cdc24 to the PM. Cdc24-Ras2 
interaction is particularly relevant to promote a correct redistribution of 
active Cdc42 in mitosis, where other factors known to regulate Cdc24 
localization in earlier cell-cycle stages are not active. 
 
 Haspin regulates GTP-Ras dynamics 

 
Previous data from other organisms suggest that the GTP-bound form of 
Ras is involved in the interaction with Cdc24.  We have shown above 
that haspin is required to delocalize Cdc24-Ras2 from the bud tip in 
mitosis. These observations may be explained if haspin regulated the 
distribution of active Ras. To check this hypothesis, we exploited a GFP 
RBD (Ras Binding Domain from human Raf1) fusion, which specifically 
binds active Ras and  has been used to monitor localization of GTP-Ras 
in the cell67. After a mitotic delay, in cells lacking haspin active Ras is 
strongly hyperpolarized towards the bud tip, while in control cells GTP-
Ras is distributed throughout the plasma membrane of both mother and 
daughter cells (Figure 5a-c). This finding is confirmed by measuring the 
centre of mass-centroid distance, which is higher in haspin-lacking cells 
(Supplementary Figure 5a). Noteworthy, overexpression of either wt or 
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hyperactive Cdc42 does not rescue this altered localization, indicating 
that Ras acts upstream of Cdc42 (Supplementary Figure 5b).  
 
We previously reported that in alk1∆alk2∆ cells some polarity factors are 
mislocalized also in unperturbed cycling cells59. To assess whether 
active Ras localization is altered even in these conditions, we 
synchronized wt and alk1∆alk2∆ cells in G1 and followed throughout the 
cell cycle, scoring the percentage of cells with polarized GFP-RBD 
signal. We found that cells enter the cell cycle with no evident clusters of 
Ras-GTP. Subsequently, 60-70 minutes after the release (approximately 
10’ after completing S-phase), a high percentage of cells polarizes 
active-Ras both in wt and haspin-lacking strains. However, this 
accumulation is transient in control cells, almost completely 
disappearing at 90’ after the G1 release, when Ras-GTP acquires a 
more uniform cortical distribution. On the other hand, loss of haspin 
results in more pronounced and persistent polarized Ras-GTP clusters, 
which are redistributed only 110’ after release from G1, at cytokinesis 
(Figure 5a-d and Supplementary Figure 5c). This result demonstrates 
that haspin is a critical factor that ensures a proper distribution of Ras 
activity in the cell. Failure to redistribute Ras-GTP, Cdc24, Cdc42-GTP, 
Bud6 before metaphase completion leads to nuclear missegregation 
and cell lethality when anaphase onset is delayed. 
 
Ras activity is modulated by two GAPs, Ira1 and Ira2, and two GEFs, 
Cdc25 and Sdc2536–42. Since Sdc25 is active only in particular nutrient 
conditions, we investigated the possibility that mislocalization of Cdc25 
may be responsible for the altered distribution of active-Ras in haspin-
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defective cells42. As shown in Supplementary Figure 6a, we found no 
differences in Cdc25 distribution in wt or alk1∆alk2∆ cells during an M-
phase delay. If loss of haspin led to impairments in the GAPs, then 
deletion of IRA1 and IRA2 may restore wt phenotypes. Supplementary 
Figure 6b shows that removal of Ras GAPs has only a minor attenuating 
effect on the nuclear and actin defects of haspin-lacking cells, 
suggesting that these proteins do not play a significant role in 
establishment of such phenotype. Since haspin does not modulate the 
positive and negative regulators of Ras, it may control the proper 
localization of the global pool of Ras protein. Analysis of localization of 
GFP-Ras2 during a nocodazole treatment confirmed that deletion of 
ALK1 and ALK2 caused the accumulation of Ras2 protein at the bud tip, 
while this protein is distributed homogeneously on the PM in wt cells 
(Figure 6a-b and Supplementary Figure 6d). Together, these results 
indicate that in budding yeast haspin redistributes Ras rather than 
controlling its activation. 
 
 Ras oversees polarisome dispersion to ensure correct 
nuclear segregation in budding yeast 
 
So far, our results are consistent with Ras playing a major role in 
response to mitotic delays in budding yeast. We then wondered how 
Ras-lacking cells could cope with such stresses. To test this, cells were 
treated with nocodazole for 3 hours and released in fresh medium taking 
samples to monitor actin (0’ after the release) or nuclei (60’ after the 
release). As expected from previous experiments, we observed that 
deletion of RAS1 and RAS2 in alk1∆alk2∆ strains was sufficient to 
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restore nuclear missegregation and actin misdistribution to that of a 
ras1∆ras2∆ background (Figure 7a-b). Moreover, consistently with the 
partial Cdc24 accumulation at the bud tip in ras1∆ras2∆bcy1∆ cells, loss 
of Ras caused a significant increase in the percentage of actin 
misdistribution and binucleated cells (Figure 7a-b), definitely ascribing 
Ras proteins an undescribed role in polarity and nuclear segregation 
monitoring. Noteworthy, both actin accumulation and nuclear 
missegregation occurred preferentially in daughter ras1∆ras2∆bcy1∆ 
cells (Figure 7c-d).  

 

Discussion 
 
Alterations in cellular polarity lead to various diseases and 
carcinogenesis, making understanding the basis for polarity regulation a 
key challenge in research. Budding yeast Saccharomyces cerevisiae 
has proven to be an invaluable tool to dissect the way polarity onset 
occurs at the level of the small GTPase Cdc42 and its positive (GEF, 
namely Cdc24) or negative (GAPs and GDIs) regulators. Studies in this 
organism, indeed, provided a wealth of information on how polarization 
is established and maintained to allow proper cell growth. On the other 
hand, however, we still lack a complete picture of how cells cope with 
polarity dispersion and what are the outcomes of a failure in such 
process. Previously, we provided a first insight on the consequences of 
a prolonged polarization on budding yeast cells. Indeed, we observed 
that alk1∆alk2∆ cells, in which haspin-paralogues are lacking, are 
unable to redistribute polarity factors from the bud tip after an M-phase 
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delay, and this causes actin accumulation, nuclear missegregation and 
ultimately cell death59. Here we have shed further light on the 
mechanisms underlying polarisome dispersion, and results presented 
clearly prove that timely relocalization of polarity proteins is a 
fundamental event in the cell cycle. 
One of the observations from our previous work was that the actin 
nucleation-promoting factor Bud6, which is also involved in nuclear 
segregation mechanisms, was mislocalized in lack of haspin, and 
ascribed this as the leading cause for actin and nuclear defects in such 
cells. In this work, we demonstrate that these phenotypes are actually 
due to the failure to recruit Bud6 to the bud neck and its unbalanced 
accumulation at the bud tip. Indeed, we managed to restore a mostly wt 
phenotype in haspin mutants forcing Bud6 to localize at the bud neck 
through a Bud6-Bni4 fusion (Figure 1 and Supplementary Figure 1). 
Though not surprising, this observation provides a first mechanistic 
insights on how faithful nuclear segregation and symmetric redistribution 
of actin are achieved. 
One of the peculiar outcomes of haspin loss is the build up of a 
misorganized actin cytoskeleton, that we demonstrated to be caused by 
unbalanced Bud6 distribution. Bud6 is an effector of the small GTPase 
Cdc42, the master regulator of polarization in budding yeast and 
impairments in Cdc42 result in the building of non-properly organised 
actin networks15. Cdc42 has also been shown to regulate both actin and 
nuclear segregation in human cells, making it an appealing candidate for 
a haspin-dependent regulation68. We reasoned that if haspin-lacking 
cells were defective in Cdc42, overexpression of the GTPase could 
rescue their phenotypes. This approach did not work (Figure 2a-b). 
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However, overexpression of a constitutively active Cdc42 led to a 
complete rescue of nuclear segregation and actin distribution defects in 
haspin-lacking cells. Consistent with the fact that restoring Bud6 at the 
bud neck is sufficient to relieve defects of alk1∆alk2∆ cells hyperactive 
Cdc42 also restored Bud6 at the mother/daughter interface. This 
strongly suggested that alk1∆alk2∆ cells could be defective in activation 
of the GTPase rather than on its localization and hence prompted us to 
evaluate it in budding yeast cells. We proposed then that Alk1 and Alk2 
are important in mitosis for the proper localization and activation of 
Cdc42. Indeed, in the absence of haspin GTP-Cdc42 was accumulated 
at the bud tip compared to wt control cells (Figure 2c-e and 
Supplementary Figure 2).  
We hence hypothesized that haspin may be relevant to modulate local 
Cdc42 activation in mitotic cells reasoning that this would be consistent 
with the fact that constitutively active Cdc42 suppressed the alk1∆alk2∆ 
phenotypes but its wt counterpart did not. We then analysed the 
distribution of Cdc24, the GEF responsible for activating Cdc42, as its 
mislocalization could result in the hyperaccumulation of active Cdc42 
only at the bud tip, preventing polarisome dispersion. In mitotic wt cells, 
Cdc24 is dispersed all over the cell membrane, reflecting the 
homogenous distribution of GTP-Cdc42 and presumably promoting 
polarisome dispersion. Conversely, in the absence of haspin Cdc24 is 
mostly found at the bud tip, explaining why GTP-Cdc42 accumulates in 
the same region (Figure 3a-c and Supplementary Figure 3a). 
At the beginning of the cell cycle Cdc24 localization at the incipient bud 
site is established through the interaction with the Ras-family protein 
Rsr1 and the scaffold protein Bem1, however RSR1 deletion had no 
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impact on Cdc24 localization in mitotic cells, while localization of Bem1 
was different from the distribution of Cdc24 (Supplementary Figure 3b-
c). Budding yeast contains two Ras paralogues, and in other fungi a 
functional and physical interaction between Ras and Cdc24 has been 
proposed, although the relevance of such interplay has not been 
assessed29,30. When we deleted Ras-coding genes in alk1∆ alk2∆ cells, 
we found that Cdc24 accumulation at the bud tip was reversed and the 
defect due to loss of haspin were rescued (Figure 3d and 
Supplementary Figure 3d). Moreover, the overall abundance of Cdc24 at 
the plasma membrane was noticeably reduced by removal of Ras 
proteins, also in ALK1 ALK2 M-phase arrested cells (Figure 3e), 
demonstrating that Ras recruits Cdc24 at the plasma membrane in M-
phase to promote Cdc42 activity.  
This last finding together with the notion in literature that Cdc24 binds 
Ras in other organisms, suggested that Cdc24 localization could rely on 
a direct physical interaction with Ras. We demonstrated this hypothesis 
with a BiFC approach, first in diploid strains and then monitoring the 
distribution of Cdc24-Ras2 complex in aploid cells. Our results show that 
the two proteins interact along all the cell-cycle but the localization of the 
complex varies during cell growth (Figure 4 and Supplementary Figure 
4). We found the Cdc24/Ras complex to be constantly bound to the PM 
of virtually all budded and unbudded cells analysed. Only a small 
fraction of small-budded cells shows accumulation of Cdc24-Ras2 at the 
bud tip; suggesting that Ras2 is not physiologically required for initial 
recruitment of the GEF early in the cell-cycle. The presence of small-
budded cells that however showed a daughterly accumulation of the 
complex however suggests that Ras may account for the reported 
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capability of some rsr1∆bem1∆ strains to successfully polarize Cdc2426–

28. Later in the cell-cycle, when daughter approaches mother size, the 
incidence of polarized interaction increases, with the complex being then 
likely displaced from the polarity cap to favour its uniform distribution 
along both mother and daughter PM, as also suggested by our result in 
nocodazole.  
This pattern of interaction together with established notions on how 
Cdc24 gets accumulated at the bud tip supports a bipartite model for 
Cdc24 recruitment during the cell cycle. In early stages, Rsr1 and Bem1 
cooperatively promote accumulation of the GEF at the bud tip while Ras 
is mostly dispensable for this process. As cell-cycle proceeds, there 
likely is a change in Cdc24 binding partners, and the protein is likely 
detached from Rsr1 to promote its binding to GTP-Ras2. The ultimate 
outcome of this process is the redistribution of Cdc24, followed hence by 
GTP-Cdc42, from the bud tip to the whole PM. This is not the first report 
of proteins relocalizing from the bud tip to the PM by physical interaction 
with active Ras. Works by Yoshida et al. and Geymonat et al. indeed 
showed that Lte1, which initially accumulates at the bud tip, is recruited 
during mitosis to the PM following a series of phosphorylation events 
that promote its binding to GTP-Ras and we propose that a similar 
mechanism may exist also for Cdc24 and eventually, given the interplay 
between Ras and Cdc24 paralogues, being conserved in higher 
eukaryotes44,69.  
We demonstrated that Haspin loss causes Cdc24 accumulation at the 
bud tip; this, together with the notion that Cdc24/Ras complex is 
hyperpolarized in these cells, the fact that loss of Ras prevents Cdc24 
recruitment at the PM and that Cdc24-Ras interaction is specific towards 
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GTP-Ras suggested that active Ras could be hyperpolarized too in 
alk1∆alk2∆ cells. We assessed this possibility monitoring the localization 
of GTP-Ras using a GFP-RBD probe, by which we determined that lack 
of haspin had a profound impact on the distribution of active-Ras in M-
phase arrested cells (Figure 5a-c and Supplementary Figure 5a), which 
could not be suppressed by hyperactive Cdc42, supporting the notion 
that Ras acts upstream of Cdc42 in this haspin-regulated pathway 
(Supplementary Figure 5b). Interestingly, during an unperturbed cell-
cycle, recruitment of GTP-Ras at the bud tip was detected both in wt 
and in alk1∆alk2∆, making it a physiological event in the cell cycle. 
However, only in haspin mutants a prolonged maintenance of the bud-
tip cluster of GTP-Ras was observed (Figure 5a,d and Supplementary 
Figure 5c). This result is particularly interesting as it provides a timing 
mechanism for polarisome dispersion during M-phase: if cells progress 
efficiently through mitosis, the temporary GTP-Ras accumulation at the 
bud tip does not lead to any negative effect. On the other hand, if cells 
experience a mitotic delay, the cluster of active Ras at the bud tip has to 
be dispersed through the action of haspin. Failure to remove this cluster 
triggers a cascade of perturbations in protein localization that ultimately 
results in nuclear missegregation and cell death.  
These results collectively demonstrated that GTP-Ras dynamics 
manipulate the localization of Cdc24 and hence, by modulating active 
Cdc42 distribution, impact on key processes of budding yeast mitosis 
ranging from polarization to nuclear segregation. One unsolved question 
was then how haspin manipulates distribution of GTP-Ras. An obvious 
mechanism may involve its GEF and GAPs. Results reported in 
Supplementary Figure 6a-b demonstrate that this is not how haspin 
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controls active Ras. Instead, Alk1 and Alk2 regulate the localization of 
the general pool of Ras, as in the absence of haspin, we found a strong 
accumulation of Ras2 at the bud tip (Figure 6a-b and Supplementary 
Figure 6d).  
This newly unveiled function of active-Ras raised the question of what 
happens to cells lacking Ras when they experience mitotic delays. 
Interestingly, though it causes a slight yet reproducible increase in actin 
and nuclear segregation defects, loss of Ras is sufficient to alleviate the 
phenotypes of haspin-lacking cells to a ras1∆ras2∆bcy1∆ background 
(Figure 7a-d). 
Our results demonstrate that haspin is responsible for the dispersion of 
polarity factors from the bud tip, and this process is required to tolerate 
M-phase delays. In particular, haspin controls localization of GTP-
loaded Ras that in turn is responsible for directly recruiting Cdc24 along 
the PM to allow redistribution of GTP-Cdc42, demonstrating that Ras 
proteins play a critical role during mitosis, as schematically represented 
in Figure 8. This work provides, to the best of our knowledge, the first 
mechanistic insights on how depolarization process is promoted. How 
haspin regulates Ras localization is still unknown. However, we can 
speculate that the most likely events leading to the observed 
hyperpolarization could an augmented delivery of Ras-containing vesicle 
to the bud tip, an excessive recycling of Ras from the PM or either an 
altered diffusion rate of Ras along the membrane. This aspect of haspin 
function will need further experimental analysis.  
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Methods 
 

Yeast Strains and Plasmids  

All strains used in this study are isogenic to W303, and are listed in 
Table1. Standard conditions for yeast cell cultures have been previously 
described70. Standard molecular genetics techniques were used to 
construct plasmids and strains. The centromeric plasmids containing, 
GFP-3RBD and CDC25-eGFP were kind gifts of Dr. E.Martegani67. 
GFP-BUD6 and CDC24-eGFP bearing strains were obtained 
transforming cells with pRB2190 and pYS37 respectively71,72. Bem1-
GFP and CRIB-TdTomato were kindly provided by Dr. D.Lew64. PCR-
based genotyping was used to confirm gene disruption and tagging. 
Gene overexpression or repression with the inducible GAL1 promoter 
was achieved by adding 2% galactose or 2% glucose respectively to 
raffinose-containing medium.  

Strains used in this work 

All the strains used are isogenic to W303. 
 

NAME	 RELEVANT	GENOTYPE	 SOURCE	

W303	 ade2-1 trp1-1 can1-100 leu2-3,112 his3-

11,15 ura3 MATa/α 

R.Rothstein	

k699	 ade2-1 trp1-1 can1-100 leu2-3,112 his3-

11,15 ura3 MATa  

K.Nasmyth	
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yAN33	 alk1::NATr	alk2::HIS3	MATa	 This	work	

yRQ301	 CRIB-TdTomato-KANr	MATa	 This	work	

yRQ302	 alk1::NATr	alk2::HIS3	CRIB-TdTomato-KANr	

MATa	

This	work	

yRQ315	 [GFP-BUD6][GAL-CDC42]	MATa	 This	work	

yRQ316	 alk1::NATr	alk2::HIS3[GFP-BUD6][GAL-CDC42]	

MATa	

This	work	

yRQ317	 [GFP-BUD6][GAL-CDC42-G12V]	MATa	 This	work	

yRQ318	 alk1::NATr	alk2::HIS3	[GFP-BUD6][GAL-CDC42-

G12V]	MATa	

This	work	

yRQ255	 [GFP-BUD6-Bni4ter]	MATa	 This	work	

yRQ256	 alk1::NATr	alk2::HIS3	[GFP-BUD6-Bni4ter]	

MATa	

This	work	

yRQ214	 [GFP-BUD6-BNI4-BNI4ter]	MATa	 This	work	

yRQ215	 alk1::NATr	alk2::HIS3	[GFP-BUD6-BNI4-BNI4-

ter]	MATa	

This	work	

yRQ100	 [CDC24-GFP]	MATa	 This	work	

yRQ101	 alk1::NATr	alk2::HIS3	[CDC24-GFP]	MATa	 This	work	

yRQ342	 rsr1::KANr	[CDC24-GFP]	MATa	 This	work	

yRQ343	 alk1::NATr	alk2::HIS3	rsr1::KANr	[CDC24-GFP]	

MATa	

This	work	

yRQ299	 BEM1-GFP-LEU2	MATa	 This	work	

yRQ300	 alk1::NATr	alk2::HIS3	BEM1-GFP-LEU2	MATa	 This	work	

yRQ366	 bcy1::KANr	[CDC24-GFP]	MATa	 This	work	

yRQ367	 alk1::NATr	alk2::HIS3	bcy1::KANr	[CDC24-GFP]	

MATa	

This	work	
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yRQ368	 ras1::TRP1	ras2::HPHr	bcy1::KANr	[CDC24-GFP]	

MATa	

This	work	

yRQ369	 alk1::NATr	alk2::HIS3	ras1::TRP1	ras2::HPHr	

bcy1::KANr		[CDC24-GFP]	MATa	

This	work	

YRQ411	 RAS2|RAS2-VenusC-TRP1	CDC24|CDC24-

VenusN-HIS3	MATa/α	[pGAL-GST]	

This	work	

YRQ410	 RAS2|RAS2-VenusC-TRP1	CDC24|CDC24-

VenusN-HIS3	MATa|α	[pGAL-GST-RAS2]	

This	work	

YRQ400	 RAS2-VenusC-TRP1	CDC24-VenusN-HIS3	MATa	 This	work	

YRQ401	 alk1::NATr	alk2::KANr	RAS2-VenusC-TRP1	

CDC24-VenusN-HIS3		MATa	

This	work	

YRQ397	 CDC24-VenusN-HIS3	MATa	 This	work	

YRQ420	 RAS2-VenusC-TRP1	MATa	 This	work	

yRQ73	 [GFP-RBD3]	MATa	 This	work	

yRQ74	 alk1::NATr	alk2::HIS3	[GFP-RBD3]	MATa	 This	work	

yRQ262	 [GFP-RBD3][GAL-CDC42]	MATa	 This	work	

yRQ263	 alk1::NATr	alk2::HIS3	[GFP-RBD3][GAL-CDC42]	

MATa	

This	work	

yRQ264	 [GFP-RBD3][GAL-CDC42-G12V]	MATa	 This	work	

yRQ265	 alk1::NATr	alk2::HIS3	[GFP-RBD3][GAL-CDC42-

G12V]	MATa	

This	work	

yRQ84	 [CDC25-GFP]	MATa	 This	work	

yRQ85	 alk1::NATr	alk2::HIS3	[CDC25-GFP]	MATa	 This	work	

yRQ93	 ira1::LEU2	ira2::URA3	MATa	 This	work	

yRQ95	 alk1::NATr	alk2::HIS3	ira1::LEU2	ira2::URA3	

MATa	

This	work	
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yRQ29	 ras2∆	MATa	 This	work	

yRQ358	 ras1::TRP1	ras2::HPHr	bcy1::KANr	MATa	 This	work	

Plasmids used in this work 

NAME	 RELEVANT	GENOTYPE	 SOURCE	

pRQ23	 pRS314-pACT1-GFP-BUD6-BNI4ter	 This	work	

pPD7	 pRS314-pACT1-GFP-BUD6-BNI4-BNI4ter	 This	work	

pRQ24	 pRS314-pGAL1-CDC42	 This	work	

pRQ25	 pRS314-pGAL1-CDC42-G12V	 This	work	

pRB2190	 pACT1-GFP-BUD6	 D.Botstein71	

pYS37	 pRS315-CDC24-GFP	 M.Peter72	

pEG(KT)	 pGAL1-GST	 R.J.Deschenes	

pRQ1	 pEG(KT)-RAS2	 This	work	

pYX242-

GFP-RBD	 pYX242-eGFP-3RBD	 E.Martegani67	

yEPCDC25e

GFP	 CDC25-GFP	 E.Martegani73	

 

Western blot 

To analyze proteins during nocodazole treatment, cells were grown in 
YPD medium, synchronized in G1 with α-factor (2 μg/ml), and released 
in the presence of nocodazole (10 μg/ml). At given time points, samples 
were collected to obtain total protein extracts that were resolved by 
SDS-PAGE and analyzed by western blotting using proper antibodies 
(A-6455 for GFP, Ab6160 for tubulin), as previously described74. Images 
were taken with a ChemidocTouch Imaging System (Bio-Rad) and 
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processed with ImageLab and ImageJ.  

Protein localization assessment 

Cells were synchronized as previously described, fixed with 
formaldehyde (3.7%) and washed 3 times in PBS59. Localization was 
determined with a Leica DMRA2 widefield fluorescence microscope; 
images were processed with ImageJ. The centroid to centre of mass 
distance was calculated on sixty cells per strain using ImageJ and 
normalized on the daughter area, statistical significance was determined 
with a T-test (see fig.S8A). Signal intensity on the cell membrane was 
quantified as follows. Fluorescence intensity on the cortex of 60 
daughter cells from 3 independent experiments was measured. Each 
cell was divided in 100 parts of the same length, and their intensity was 
normalized to the total fluorescence of the cell. The average intensity of 
each fraction was calculated as the mean of normalized fractions from 
all cells using the following equation, where I, i, j, n and m represent the 
intensity, the fraction, the cell, the number of analysed daughters and 
the number of fractions respectively (for further details see fig.S8B and 
C).  
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To determine the membrane/cytoplasm ratio of Cdc24 ROI were traced 
around 60 cell membranes per strain and the area and intensity of the 
ROIs were measured with ImageJ. The cytoplasm intensity was 
determined eroding the ROIs by 5 pixels and normalizing the raw 
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intensity on the area. To measure the intensity of the membrane, the 
same ratio was calculated by subtracting to intensity and area of the 
outer ROIs to that of their inner counterparts. 
 

Actin Staining  

Cells were grown as described, fixed with formaldehyde (3.7%), and 
washed three times with PBS. After incubation for 45 min with Alexa 
Fluor 594-conjugated phalloidin, actin was visualized by fluorescence 
microscopy. 

Determination of Incorrect Anaphase  

Cells were synchronized in G1 and released in nocodazole as described 
above. After 150 min. in nocodazole, cells were washed and released in 
fresh medium without the drug. At the indicated times after removal of 
nocodazole, cells were fixed with ethanol 100%, washed three times 
with PBS and stained with DAPI. 

Bimolecular Fluorescence Complementation (BiFC) 

Interaction between Cdc24 and Ras2 was determined by reconstitution 
of a functional YFP variant (Venus) by tagging genomic Cdc24 with 
VenusN and Ras2 with VenusC. Interaction was assessed by FACS 
analysis with a FACScan cytofluorimeter, measuring the fluorescence of 
a total 60000 cells from 3 independent experiments. The specificity of 
the approach was assessed by overexpression of GST-Ras2 under the 
control of a Gal promoter after 1.5 hours of Galactose addition. 
Evaluation by eye of the incidence and distribution of the arising signal 
using bud size as a marker for cell cycle progression was performed on 
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100 cells per categories per experiment.  

Concanavalin A Staining  

Cells grown in YPD were washed with PBS and resuspended in 125 μl 
of AlexaFluor 488-conjugated concanavalin A (ThermoFisher C11252) 
at a concentration of 40 μg/ml in the dark at room temperature. After 10 
min, cells were washed and resuspended in appropriate medium for 1 
hour, prior to nocodazole treatment.  

Cell cycle analysis with FACScan  

Samples were taken at given time points, fixed with ethanol and 
processed with RNase A and Proteinase K. Cells were then stained with 
1µM SytoxGreen and DNA content was determined using a FACScan 
cytofluorimeter.  
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