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Abstract. We consider the problem of computing the costs—in terms of states—of optimal sim-
ulations between different kinds of finite automata recognizing unary languages. Our main result is

a tight simulation of unary n-state two-way nondeterministic automata by O(e
√

n lnn)-state one-way
deterministic automata. In addition, we show that, given a unary n-state two-way nondeterministic
automaton, one can construct an equivalent O(n2)-state two-way nondeterministic automaton per-
forming both input head reversals and nondeterministic choices only at the ends of the input tape.
Further results on simulating unary one-way alternating finite automata are also discussed.
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1. Introduction. Finite automata are probably one of the simplest and most
extensively studied models of computation. First of all, their computational power is
well established: they exactly define the class of regular languages. Furthermore, it is
also well known that several added features, such as nondeterminism, alternation, and
two-way motion of the input head, do not increase their computing ability. Equiva-
lences are clearly obtained by simulating different kinds of automata by the original
device, the one-way deterministic finite automaton (1dfa) [22]. Here, we are particu-
larly interested in the cost—in terms of states—of simulations between automata.

The following are the well-known costs of simulating different automata by 1dfa’s
(number of states of the best 1dfa simulating any n-state automaton in the class): one-
way nondeterministic finite automata (1nfa): O(2n) [22], one-way alternating finite
automata (1afa): O(22n

) [7], two-way deterministic finite automata (2dfa): O(nn) [22,

24], two-way nondeterministic finite automata (2nfa): O(2n
2

) [22, 24]. All these
bounds are tight. We refer the reader to [3] which is a valuable source for results and
references.

There are several open questions concerning automata simulation, the most im-
portant being probably the one posed by Sakoda and Sipser in [23]: how many
states are necessary and sufficient to simulate 2nfa’s (or 1nfa’s) by 2dfa’s? They
conjecture such a cost to be exponential, and Sipser [25] proves that this is ex-
actly the case when 2dfa’s are required to be sweeping, i.e., to have head reversals
only at the ends of the input tape. Berman and Lingas [2] state a lower bound of
Ω(n2/log n) for the general problem and provide an interesting connection with the

celebrated open problem Dlogspace
?
= Nlogspace. More precisely, they show that
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if Dlogspace = Nlogspace then for some polynomial p and for all integers m and
k-state 2nfa A, there is a p(mk)-state 2dfa accepting a subset of L(A), the language ac-
cepted by A. The subset consists of all strings of length no more than m in L(A). As a

consequence of this result, Sipser [25] relates the Dlogspace
?
= Nlogspace question

also to the existence of sweeping automata with a polynomial number of states for a
certain family of regular languages. This might give added evidence that the problem
of evaluating how the number of states changes when turning one automaton into
another is not only motivated by the investigation on the succinctness of representing
regular languages but is also related to fundamental questions in complexity.

It is important to stress that the optimality of such simulations has been estab-
lished by witness languages built over alphabets of two or more symbols. As a matter
of fact, the situation turns out to be quite different whenever we restrict the problems
to unary automata, i.e., automata with a single letter input alphabet. The problem of
evaluating the costs of unary automata simulations was raised in [25] and has led to
emphasize some relevant differences with the general case. For instance, we know that
O(e

√
n lnn) states suffice in order to simulate a unary n-state 1nfa or 2dfa by a 1dfa.

Furthermore, a unary n-state 1nfa can be simulated by a 2dfa having O(n2) many
states. All these results and their optimality have been proved in 1986 by Chrobak
[8].

In this paper, we further deepen the study of optimal simulations between unary
automata. To this aim, we find it useful to consider some techniques from the sublog-
arithmic space world (see, e.g., [11, 12, 27]).

The first part of the paper is devoted to study unary 2nfa’s. We closely analyze
the structure of their computation paths. In particular, using graph theoretical and
number theoretical arguments, we show that, for sufficiently large inputs, it is possible
to consider only computation paths in which states are repeated in a very regular way.
This allows us to state our main result concerning the optimal simulation of unary
2nfa’s by 1dfa’s: each unary n-state 2nfa can be optimally simulated by a 1dfa with
O(e

√
n lnn) states. Note that such a complexity is the same as the above mentioned

optimal simulations of unary 1nfa’s and 2dfa’s by 1dfa’s. Thus, we can conclude that
the simultaneous elimination of both two-way motion and nondeterminism on unary
automata has the same cost as the elimination of either of them.

As another consequence of our analysis of unary 2nfa’s, we are able to prove that
each unary n-state 2nfa can be simulated by a 2nfa with O(n2) states which reverses
the input head direction and makes nondeterministic decisions only when the input
head visits the left or the right end of the input. This result can be regarded as a
further step toward the solution of the Sakoda–Sipser open problem recalled above,
at least for unary inputs.

In the second part of the paper, we study the relationships between unary 1afa’s,
dfa’s and nfa’s. This problem was proposed in [8] and partly solved in [3], where it is
proved that 2n states are necessary for 2nfa’s to simulate unary n-state 1afa’s. Here,
we point out an optimal simulation of unary n-state 2nfa’s by O(

√
n lnn)-state 1afa’s.

By combining our results with those in the literature, we are able to draw an
almost complete description of the costs of optimal simulations between the different
types of unary automata here considered. We do not explicitly list all the resulting
optimal bounds, which can be better understood by observing Figure 1.1.

2. Preliminary notions and results. In this section, we begin by recalling
basic notions on finite state automata (subsection 2.1). Then, for the reader’s ease of
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Fig. 1.1. Costs of the optimal simulations between different kinds of unary automata. An arc
labeled f(n) from a vertex x to a vertex y means that a unary n-state automaton of type x can be
simulated by a O(f(n))-state automaton of type y. Costs marked by “•” are proved in [8], by “♦”
in [7], by “△” in [17], by “▽” in this paper. The unmarked costs can be trivially obtained. The arc
labeled “?” represents the open question of Sakoda and Sipser [23].

mind, a brief outline of the main result of this paper—the O(e
√
n lnn) simulation of

2nfa’s by 1dfa’s—is provided (subsection 2.2). In the following two subsections, we set
up some mathematical tools to study the costs of our simulations. More precisely, we
prove some new facts concerning linear Diophantine equations (subsection 2.3) and
directed graphs (subsection 2.4).

2.1. Finite state automata. Given a set S, ♯S denotes its cardinality, and 2S

the family of all its subsets. Given an alphabet Σ, Σ∗ denotes the set of strings on
Σ, with the empty string ϵ. Given a string x ∈ Σ∗, |x| denotes its length. A language
L is said to be unary (or tally) whenever it can be built over a single letter alphabet.
In this case, we let L ⊆ 1∗.

Let us take a brief look on the computational model of finite automata. For a
detailed exposition, we refer the reader to [14]. A one-way nondeterministic finite
automaton is a 5-tuple A = (Q,Σ, δ, q0, F ), where Q is the finite set of states, Σ
is the finite input alphabet, δ : Q × Σ → 2Q is the transition function, q0 ∈ Q is
the initial state, F ⊆ Q is the set of final states. The transition function δ can
be extended to strings in a standard way. The language accepted by A is the set
L(A) = {x ∈ Σ∗ | δ(q0, x) ∩ F ̸= ∅}. The one-way automaton A is deterministic if
and only if ♯δ(q,σ) = 1, for any q ∈ Q, and σ ∈ Σ. (This implies that deterministic
automata are assumed to be complete.)

It is well known that a one-way automaton can be viewed as a control unit that
reads, by an input head, a tape containing input strings stored one symbol per square.
At each move, the input head is shifted one square right. This model can be extended
to encompass stationary and left moves of the input head. More precisely, we can
define a 2nfa as a 5-tuple A = (Q,Σ, δ, q0, F ) in which Q, Σ, q0, and F are defined as

for 1nfa’s, while δ : Q×(Σ∪{⊢,⊣}) → 2Q×{−1, 0,+1} is the transition function, where



OPTIMAL SIMULATIONS BETWEEN UNARY AUTOMATA 1979

⊢,⊣ are two special symbols—the left and the right endmarker, respectively—not in
Σ. Input strings are stored onto the input tape surrounded by the two endmarkers,
the left endmarker being at the 0th square. The computation begins with the input
head scanning the 0th square. In a move, A reads an input symbol, changes its state,
and moves the input head one position forward or backward or keeps it stationary,
depending on whether δ returns +1, −1, or 0, respectively. Left and right moves on
the left and right endmarker, respectively, are forbidden. A is deterministic if and
only if ♯δ(q,σ) = 1, for any q ∈ Q, and σ ∈ Σ ∪ {⊢,⊣}.

Alternating finite automata1 provide a natural generalization of nondetermin-
istic automata. We now briefly recall their formal definition and refer the reader
to [7, 10] for more details. A one-way alternating finite automaton is a 5-tuple
A = (Q,Σ, g, q1, F ), where Q = {q1, . . . , qk} is the set of states, Σ is the input alpha-
bet, F ⊆ Q is the set of final states, q1 is the initial state, and g : Q → (Σ×Bk → B)
is a mapping of Q into the set of all mappings of Σ×Bk into B = {0, 1}. To explain
the behavior of A, consider, for i = 1, . . . , k, the function gi : Σ×Bk → B represent-
ing the image by g of the state qi, i.e., gi = g(qi). Such functions can be inductively
extended to strings to obtain Gi : Σ∗ × Bk → B as: Gi(ϵ,u) = ui, and Gi(σx,u) =
gi(σ, G1(x,u), . . . , Gk(x,u)), for σ ∈ Σ, x ∈ Σ∗, and u = (u1, . . . , uk) ∈ Bk. The
language accepted by A is the set L(A) = {x ∈ Σ∗ | G1(x, f) = 1}, where f ∈ Bk de-
notes the characteristic vector of the set of final states. Notice that Gi(ϵ, f) = 1 if and
only if qi is a final state. Moreover, Gi(σx, f) can be computed as follows: a process
in the state qi reads σ from the input tape, and splits into k independent processes
computing Gj(x, f), for j = 1, . . . , k. Then, by applying gi(σ, ) to all these results,
we get Gi(σx, f).

It is easy to see that 1nfa’s are just special cases of 1afa’s up to setting

gi(σ,u) =
∨

qj∈δ(qi,σ)

uj ,

for i = 1, . . . , k, σ ∈ Σ, and u ∈ Bk.
We call unary any automaton that works with a single letter input alphabet.

2.2. Outline of the main result. The proof of the optimal O(e
√
n lnn) simu-

lation of 2nfs’s by 1dfa’s, which is the main result of this paper, is rather long and
complex. To help the reader, we emphasize the main ideas here.

Let C be an accepting computation path of an n-state 2nfa A on input 1m. Along
C, consider the sequence r0, r1, . . . , rp of states in which the input head scans either
of the endmarkers. For j = 1, . . . , p, the following two possibilities arise:

(i) U-Turn: in both rj−1 and rj , the input head scans the same endmarker.
(ii) Left-to-right (right-to-left) traversal: in rj−1 the input head scans the left

(right) endmarker, while in rj it scans the other one.
For sufficiently large inputs, U-Turns can be nondeterministically guessed without

moving the input head (by Lemma 3.1). As a consequence, the computation C can
be reduced to a sequence of left-to-right and right-to-left traversals.

Now, the key point is that in each traversal the automaton A can only measure
the length of the input 1m modulo some integer ℓi ≤ n. Hence, it can be argued that
if there exists a traversal from rj−1 to rj on 1m, then there also exists a traversal
with the same endpoints on 1m+µℓi , for every (possibly negative) integer µ exceeding

1Automata hereafter defined are sometimes, and perhaps more appropriately, called boolean
automata (see, e.g., [6, 17]).
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a certain value. This enables us to prove that the language accepted by A forms an
ultimately periodic set of period ℓ = lcm(ℓ1, . . . , ℓr), where the ℓi’s depend on the cycle
structure of the transition graph of A and their sum does not exceed n (Theorem 3.5).

By using a number theoretical result that will be recalled in Lemma 2.1, we get
that ℓ = O(e

√
n lnn). So, the number of states in the cycle of a 1dfa A′ simulating A

is O(e
√
n lnn), and this actually turns out to be an upper bound on the number of all

states of A′.
As the reader will notice when we get into proof details, the study of path struc-

ture in certain weighted digraphs representing automata transitions will be crucial.
Such graph theoretical problems are tackled in subsection 2.4 by using some number
theoretical tools presented in the next subsection.

2.3. Number theory and Diophantine equations. As usual, we let Z+ (Z−)
be the set of positive (negative) integers, and Z be the set of whole integers. Natural
numbers are the elements of the set N = Z+ ∪ {0}. The absolute value of z is
denoted by |z|. For any z > 0, ln z denotes the natural logarithm of z, while log z
is the logarithm of z taken to the base 2. The greatest common divisor of integers
a1, . . . , as is denoted by gcd(a1, . . . , as). Their least common multiple is denoted by
lcm(a1, . . . , as). Both gcd and lcm are, actually, meant to be taken on |a1|, . . . , |as|.
We sometimes write gcd(A) to denote the greatest common divisor of the integers in
the set A.

In estimating the simulation costs of unary automata, a crucial role is played by
the function

F (n) = max {lcm(x1, . . . , xs) | x1, . . . , xs ∈ Z+ and x1 + · · · + xs = n}.

Evaluating the growth rate of F (n) is known as Landau’s problem [15, 16]. Such
a problem is related to the study of the maximal order in the symmetric group Sn

[26, 28]. Several approximations for F (n) are given in the literature. The best one
is contained in [26, Theorem I] from which we can derive the following upper bound
that suffices to our purposes.

Lemma 2.1. F (n) = O(e
√
n lnn).

The other arithmetical tool we shall make use of is the theory of linear Diophantine
equations, whose principles can be found, for instance, in [21]. We consider equations
in the form

a1x1 + · · · + asxs = z,(2.1)

where a1, . . . , as, z are given integers, and x1, . . . , xs are integer variables. It is a very
well-known fact that (2.1) has (infinitely many) solutions in integers if and only if
gcd(a1, . . . , as) divides z.

Theorem 2.2. For any given integers a1, . . . , as, the set of integers

{a1x1 + · · · + asxs | x1, . . . , xs ∈ Z}

is exactly the set of all integral multiples of gcd(a1, . . . , as).
We are sometimes interested in solving Diophantine equations in natural numbers.

To this regard, an interesting question, first raised by Frobenius (see [4, 5]), can be
stated as follows: given positive integers a1, . . . , as satisfying gcd(a1, . . . , as) = 1, what
is the greatest number b such that the Diophantine equation a1x1 + · · ·+asxs = b has
no solution in natural numbers? For s = 2, such b is known to be (a1 − 1)(a2 − 1)− 1



OPTIMAL SIMULATIONS BETWEEN UNARY AUTOMATA 1981

[4, 5]. For s ≥ 3, the problem is still open, even though several upper bounds are
proved. We will refer to the following one.

Theorem 2.3 (see [4, 5, 19]). Let a1 < a2 < · · · < as be positive integers with
gcd(a1, . . . , as) = 1. Then, the greatest number b such that the Diophantine equation
a1x1 + · · ·+asxs = b has no solution in natural numbers does not exceed (a1−1)(as−
1).

More accurate estimations can be found in [9]. However, the bound in Theo-
rem 2.3 will suffice for our purposes. By combining Theorem 2.2 and Theorem 2.3,
one easily obtains the following corollary.

Corollary 2.4. Let a1, . . . , as be positive integers less than or equal to n, and
let

X = {a1x1 + · · · + asxs | x1, . . . , xs ∈ N}.

Then, the set X ∩ {z ∈ Z+ | z > n2} is exactly the set of all integral multiples of
gcd(a1, . . . , as) greater than n2.

In order to consider sets defined not only by positive coefficients, but even by both
positive and negative coefficients, we generalize Corollary 2.4 as follows.

Lemma 2.5. Let A = {a1, . . . , ap} and B = {b1, . . . , bq} be sets of positive integers
less than or equal to n, with gcd(A) = α and gcd(B) = β. Moreover, let

X = {a1x1 + · · · + apxp − (b1y1 + · · · + bqyq) | x1, . . . , xp , y1, . . . , yq ∈ N},

with gcd(A ∪B) = gcd(α,β) = γ.
(a) If A = ∅ (B = ∅), then X ∩ {z ∈ Z− | z < −n2} (X ∩ {z ∈ Z+ | z > n2}) is

exactly the set of negative (positive) integral multiples of β (α) smaller than
−n2 (greater than n2).

(b) If A ̸= ∅ and B ̸= ∅, then X is exactly the set of integral multiples of γ.
Proof. (a) follows trivially from Corollary 2.4. For (b) let us denote by T the set

of integral multiple of γ. It is easy to see that X ⊆ T . In fact, each number in X
is obtained from the Diophantine equation defining X itself, and hence it must be a
multiple of γ.

Conversely, to show T ⊆ X , let us first define the sets

A = {a1x1 + · · · + apxp | x1, . . . , xp ∈ N},
B = {b1y1 + · · · + bqyq | y1, . . . , yq ∈ N}.

Corollary 2.4 says that A ∩ {z ∈ Z+ | z > n2} (B ∩ {z ∈ Z+ | z > n2}) is exactly
the set of positive integral multiples of α (β) greater than n2. Moreover, it is easy to
see that

X = {h− k | h ∈ A and k ∈ B}.(2.2)

So, consider ξ ∈ T . Since ξ is an integral multiple of γ = gcd(α,β), there exist
two integers x and y such that ξ = αx−βy. Moreover, it is well known that there are
infinitely many solutions of the equation ξ = αx− βy that can be obtained from the
particular solution (x, y) as follows:

x = x− β
γ t,

y = y − α
γ t, t ∈ Z.
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At this point, it is easy to find t̂ ∈ Z, giving the solution (x̂, ŷ), such that both
αx̂ and βŷ are greater than n2, and hence belong to A and B, respectively. In other
words, we have found two integers h = αx̂ ∈ A and k = βŷ ∈ B such that ξ = h− k.
This together with (2.2) shows that ξ ∈ X and completes the proof.

We end this subsection by showing a further property of solutions of Diophantine
equations in natural numbers.

Lemma 2.6. Let a1, . . . , as be positive integers less than or equal to n, and let the
integer z ≥ 0. If the equation a1x1 + a2x2 + · · · + asxs = z has a solution in natural
numbers, then it also has a solution in natural numbers satisfying

a2x2 + · · · + asxs ≤ n2.

Proof. We prove a stronger result, namely, that there exists a solution x1, . . . , xs

satisfying x2 + · · · + xs ≤ a1. Suppose that (x1, x2, . . . , xs) is a solution in natural
numbers, with µ = x2 + · · · + xs > a1. Let us form the sequence

a2, a2, . . . , a2︸ ︷︷ ︸
x2−times

, a3, a3, . . . , a3︸ ︷︷ ︸
x3−times

, . . . , as, as, . . . , as︸ ︷︷ ︸
xs−times

.(2.3)

Now, for i = 1, . . . , µ, let Si be the sum of the first i members in (2.3). Since
the length of the sequence S1, . . . , Sµ exceeds a1, there must exists a pair of indices
1 ≤ i < j ≤ µ satisfying Si ≡ Sj (mod a1), or equivalently, such that Sj − Si is a
multiple of a1. This enables us to remove from (2.3) the elements forming Sj − Si,
consequently augmenting the value of x1 by (Sj − Si)/a1. By iterating this process,
we get the claimed result.

2.4. Paths in directed graphs. Here, we recall some basic notions and prove—
by the mathematics above developed—some results on directed graphs. Our interest
in this topic is due to the fact that, as we will see in the next section, computation
paths of unary automata can be represented as paths in suitable directed graphs. Few
elementary notions of graph theory are required and summarized below. For more
details, we refer the reader to any of the standard text on graph theory such as, e.g.,
[1].

Let G = (V,E) be a directed graph or digraph, with V the set of vertices, and
E ⊆ V × V the set of arcs. An oriented path P in G is a sequence of vertices
P = v0, v1, . . . , vn where, for i = 1, . . . , n, (vi−1, vi) ∈ E. Since we will be dealing
with digraphs only, the attribute “oriented” will always be intended. The length of
P is the number of arcs P consists of, and is denoted by |P|. The path P is a cycle
(or closed path) if v0 = vn. We call elementary (or, sometimes, simple) any cycle in
which no vertex is encountered more than once (except, of course, the initial vertex
which is also the terminal vertex).

A subgraph of G is any digraph G′ = (V ′, E′) satisfying V ′ ⊆ V and E′ ⊆
E∩(V ′×V ′). The subgraph G′ is said to be induced by V ′, whenever E′ = E∩(V ′×V ′).
The digraph G is strongly connected if there exists a path between any two vertices.
A strongly connected component of G is a subgraph which is strongly connected and
not contained in any other strongly connected subgraph.

The following two results concern length and structure of paths in digraphs.
Lemma 2.7. Let G be a digraph with n vertices, and let P be a path of length x

which
(a) starts from vertex v1 and ends in vertex v2,
(b) visits all vertices in G.
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Then, there also exists a path P0 of length x0 which satisfies (a) and (b) and such
that

(c) x0 ≤ n2,
(d) there exist integers x1, x2, . . . , xs ≥ 0 such that x = x0+a1x1+a2x2+· · ·+asxs,

where a1, a2, . . . , as are the lengths of the elementary cycles in G.
Proof. We can factorize the sequence of the x + 1 vertices visited along P as a

concatenation of n subsequences of vertices σ1,σ2, . . . ,σn, each one starting from a
different vertex of G. This can be done since P visits all vertices, as required in (b).

Suppose that x > n2. Then, there exists 1 ≤ j ≤ n such that σj contains more
than n vertices, i.e., σj = vj1vj2 . . . vjm with m > n. A simple pigeonhole argument
shows that there must exist 1 ≤ h < k ≤ m such that vjh = vjk . This clearly means
that, when passing through σj , our path P presents a cycle beginning and ending in
vjh = vjk . Call σ′

j the sequence obtained from σj after the elimination of the part
corresponding to such a cycle, namely, σ′

j = vj1vj2 . . . vjhvjk+1 . . . vjm . The sequence
σ1 · · ·σj−1 σ′

j σj+1 · · ·σn defines a new path which satisfies (a) and (b) and whose
length is strictly less than the length of P. By iterating such a path-compression, we
eventually obtain a path P0 of length x0 satisfying (a), (b), and (c).

In conclusion, it is not hard to see that the whole process can be carried on by
eliminating elementary cycles. Thus, one can easily express the length x of P as in
(d), where, for i = 1, . . . , s, xi denotes the number of times elementary cycles of length
ai have been deleted.

Theorem 2.8. Let G be a digraph with n vertices, and let P be a path from
vertex v1 to vertex v2. Then, there also exists a path P ′ from v1 to v2 with the same
length as P which consists of

(a) an initial path P1,
(b) an elementary cycle P2, with 1 ≤ |P2| ≤ n, which is repeated λ times,
(c) a final path P3,

satisfying |P1| + |P3| ≤ 2n2. (Hence, notice that |P ′| = |P| = |P1| + λ |P2| + |P3|.)
Proof. Without loss of generality, we suppose that P visits all vertices of G.

Otherwise, we consider the subgraph of G induced by the set of vertices visited along
P. The new path P ′ can be obtained by suitably “reorganizing”—in the light of our
result on Diophantine equations in Lemma 2.6—the way of P through its elementary
cycles.

The first step amounts to eliminate some of the elementary cycles in P to obtain
the path P0, as explained in Lemma 2.7. The total number of arcs eliminated in this
step can be expressed as

|P|− |P0| = a1x1 + a2x2 + · · · + asxs(2.4)

for some integers x1, x2, . . . , xs ≥ 0, as one may easily check from Lemma 2.7(d).
Now, notice that the ai’s in (2.4) are positive integers not exceeding n, being lengths
of elementary cycles in a digraph of n vertices. Hence, from Lemma 2.6, we know that
there exist integers x1, x2, . . . , xs ≥ 0 which are solutions for (2.4), and such that

a2x2 + · · · + asxs ≤ n2.(2.5)

All this leads us to construct the path P ′ by “padding” P0 with xi consecutive
repetitions of an elementary cycle of length ai for i = 1, . . . , s. Let P2 be an elementary
cycle of length a1, and let P1 (P3) be the part of P ′ which precedes (follows) the x1

consecutive repetitions of P2. Then, we have
• 1 ≤ |P2| = a1 ≤ n,
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• λ = x1,
• |P1|+ |P3| = x0 +a2x2 + · · ·+asxs ≤ 2n2, since x0 ≤ n2, from Lemma 2.7(c),

and by considering inequality (2.5).
Let us now turn to weighted digraphs. In particular, we are interested in digraphs

whose arcs have weights from the set {−1, 0,+1}. As usual, the weight of a path is
the sum of weights of the arcs in the path. The following theorem states a periodicity
property on cycle weights in strongly connected weighted digraphs.

Theorem 2.9. Let G = (V,E) be a strongly connected weighted digraph with n
vertices, and let {a1, . . . , as} be the set of weights of all the elementary cycles in G,
with α = gcd(a1, . . . , as). For each v ∈ V , let Xv be the set of weights of all the cycles
containing v. If there exists at least one ai > 0 (ai < 0), then the set Xv and the
set of positive (negative) integral multiples of α coincide on the elements greater than
2n2 (less than −2n2).

Proof. Since each cycle in G is the sum of elementary cycles, x ∈ Xv implies that

x = a1x1 + · · · + asxs,(2.6)

where, for i = 1, . . . , s, the value xi ≥ 0 is the number of times an elementary cycle of
weight ai is passed through to form our cycle of weight x. For what we have recalled
in subsection 2.3, this means that x must be an integral multiple of α.

Conversely, if x is an integral multiple of α, with |x| > n2, then, by Lemma 2.5, it
can be expressed as in (2.6) for some x1, . . . , xs ≥ 0. However, such a solution does not
necessarily describe a cycle in G. To see this, consider the following example: Suppose
we have a digraph with three elementary cycles of weights a1, a2, a3, in which the first
and the last cycle are connected only by the cycle of weight a2. Any solution with
x1, x2, x3 > 0 certainly defines (at least) one cycle in such a digraph, where the ith
elementary cycle is passed through xi times, i = 1, 2, 3. On the other hand, a solution
with x1, x3 > 0 and x2 = 0 does not define any cycle at all, since we cannot traverse
both the first and the third elementary cycle without entering (since, x2 = 0) the
second one.

To deal with such kind of connectivity problems, we consider a cycle C0 of weight
x0 which visits all vertices of G. From Lemma 2.7(c), C0 consists of at most n2 arcs,
and this clearly implies that |x0| ≤ n2. Now, notice that x0 can be expressed as in
(2.6) for some x1, . . . , xs ≥ 0. Hence, x0 = k0α for some k0 ∈ Z.

Assume x = kα with |x| > 2n2 for k ∈ Z, and set z = x−x0 = (k−k0)α. We have
that |z| = |x− x0| ≥ |x|− |x0| > n2. Since |ai| ≤ n for i = 1, . . . , s, from Lemma 2.5
we get z = a1z1 + · · · + aszs, for some z1, . . . , zs ≥ 0. This enables us to “pad” the
cycle C0 with an amount of zi elementary cycles of weight ai for i = 1, . . . , s, in order
to obtain a cycle of weight x in G.

3. Computation paths of 2nfa’s and simulation by 1dfa’s. In this section,
we focus on unary 2nfa’s. By using results in subsection 2.4, we show that any unary
language L accepted by a 2nfa with n states forms an ultimately periodic set of period
ℓ = O(e

√
n lnn). More precisely, we prove that, for any integer m > 5n2, the string 1m

belongs to L if and only if 1m+ℓ belongs to L. This immediately leads to a O(e
√
n lnn)

simulation of unary n-state 2nfa’s by 1dfa’s. The optimality of such a simulation is a
direct consequence of a result in [8].

To state our results, we need some tools to examine computations on unary inputs.
Specifically, we refer to three properties that Geffert proved in [11] for two-way nonde-
terministic Turing machines accepting unary languages in sublogarithmic space. We
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are now going to reformulate such properties within the realm of unary 2nfa’s. Their
validity in this new form comes straightforwardly by observing that finite automata
can be clearly seen as Turing machines working in sublogarithmic space. Moreover,
we improve the last of these three results. Such an improvement will be particularly
useful in the next section where we show that, by just squaring the number of states,
it is possible to consider 2nfa’s with a very particular structure.

From now on, we will always refer to a unary 2nfa A with n states.
The first lemma [11, Lemma 3] says that each computation path of A beginning

and ending at the same input square and visiting neither of the endmarkers (U-Turn)
can be replaced by an equivalent computation path not moving the input head “too
far,” precisely, no more than n2 positions to the right (or left).

Lemma 3.1 (U-Turn). Suppose there exists a computation path of A on input 1m

where
(a) the first state is q1 with the input head at a position i,
(b) the last state is q2 with the input head at the same position,
(c) the input head never moves to the left (right) of the ith position, nor does it

visit the right (left) endmarker.
Then, there also exists a computation path on input 1m satisfying (a), (b), (c)

and where the input head never moves farther than n2 positions to the right (left) of
the ith position.

The second lemma [11, Lemma 4] states that we can freely “shift” any computa-
tion path that never visits the endmarkers to any position of the input tape, provided
that we are sufficiently far from the endmarkers. To our purposes, we give this lemma
in a slightly different form. (Recall that the left and right endmarker occupy positions
0 and m + 1, respectively, on the input tape.)

Lemma 3.2 (position independence). Suppose there exists a computation path Π
of A on input 1m beginning in the state q1 with the input head at a position i, ending
in the state q2 with the input head at a position j, and such that

(a) 1 ≤ i < j ≤ m + 1,
(b) the left endmarker is never visited along Π,
(c) the jth position is reached at the last move only.
Then, there also exists a computation path beginning in the state q1 with the input

head at a position i+ h, with h ∈ Z, ending in the state q2 with the input head at the
position j+h which is reached at the last move only, and satisfying (b), provided that

n2 ≤ i + h < j + h ≤ m + 1.

A similar result can be stated for computation paths moving toward left, i.e., with
the initial (final) position i (j) satisfying 0 ≤ j < i ≤ m.

Proof. Without loss of generality, from Lemma 3.1, we can assume that Π never
visits more than n2 positions to the left of the ith position. Since the input is unary,
we can shift Π within the position bounds stated in the theorem. Notice that the
right endmarker can possibly be reached only at the end of the path.

The third lemma [11, Theorem 1] defines the structure of the computation paths
that traverse the entire input, from one endmarker to the other. We provide a new
proof of this lemma for unary 2nfa’s which is different from the one given in [11].
Our proof makes use of the results on the structure of paths in digraphs in subsec-
tion 2.4. As a consequence, we obtain a quadratic estimation of the parameters s1

and s2 involved in the lemma; this is to be compared with the O(n4) upper bound in
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[11].2 Though not essential in the unary 2nfa’s by 1dfa’s simulation, this improvement
will be crucial in the quadratic simulation of unary 2nfa’s by 2nfa’s having both head
reversals and nondeterminism at the endmarkers only (Theorem 4.1).

In what follows, by loop of length ℓ, we mean a computation path of the automaton
A beginning in a state p with the input head at a position i, and ending in the same
state with the input head at the position i + ℓ.

Lemma 3.3 (dominant loop). Suppose the input 1m is traversed from left to right
by a computation path Π of A beginning at the left endmarker in the state q1, ending
at the right endmarker in the state q2, and such that the endmarkers are visited only
in states q1 and q2. Then, 1m can also be traversed by a computation path beginning
in the state q1, ending in the state q2, and in which A

(a) having traversed the left endmarker and s1 positions,
(b) gets into a loop (called dominant loop) of length ℓ, which starts from a state p

and is repeated λ times,
(c) then traverses the remaining s2 input squares, and finally gets the right end-

marker,
for some s1, s2, ℓ satisfying

1 ≤ ℓ ≤ n,
s1 + s2 ≤ 3n2.

Notice that m = s1 + λℓ + s2. The same result holds for computation paths
traversing inputs from right to left.

Proof. If m ≤ 3n2, the result follows trivially. Hence, suppose m > 3n2. Define
the digraph G = (Q,E), where Q is the set of states of A, and (p, q) ∈ E if and only
if there exists a computation path of A which starts from p with the input head at a
position n2 ≤ i ≤ m, reaches q with the input head at the position i + 1, and never
visits either the endmarkers or the (i + 1)th input square in the intermediate steps.

Since we are sufficiently (namely, more than n2 positions) far from the left end-
marker, and since computations take place on unary inputs, Lemma 3.2 implies that
the digraph G does not depend on the input length. For the same reasons, it is also
easy to see that for any path in G of length d starting from the state q′ and ending in
the state q′′, there exists a computation path of A on input 1m beginning in q′ with
the input head at a position i, ending in q′′ with the input head at the position i+ d,
provided that n2 ≤ i < i + d ≤ m + 1.

Conversely, for any computation path of A on input 1m beginning in the state q′

with the input head at a position i, ending in q′′ with the input head at the position
j, and satisfying conditions (a), (b), and (c) in Lemma 3.2, one can easily find a path
in G of length j − i joining q′ to q′′.

Let us subdivide the computation path Π into
• Πin which is the part of Π ending when the (n2 +1)th input square is reached

for the first time,
• Πfin which is the remaining part of Π.

For the correspondence between paths in G and computations in A above de-
scribed, we can associate with Πfin a path P in G. As shown in Theorem 2.8, P can
be rearranged into a path P ′ of the same length as P made of

2At the time the conference version of this paper [20] was completed, the authors learned from
Viliam Geffert [13] that he too had obtained, by different arguments, a quadratic upper bound on
s1 and s2.
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• an initial path P1,
• an elementary cycle P2, with 1 ≤ |P2| ≤ n, which is repeated λ times,
• a final path P3,

satisfying |P1| + |P3| ≤ 2n2. Now, again for the correspondence paths-computations,
we can associate with P1, P2, and P3, three computation paths Π1, Π2, and Π3,
respectively; in particular, Π2 is a loop—the dominant loop—of length 1 ≤ ℓ ≤ n.

In conclusion, the input 1m can be traversed by a computation path of A which
starts with Πin, continues with Π1 which is followed by λ consecutive repetitions of
the loop Π2, and ends with Π3. Let s be the total amount of cells visited outside the
dominant loop (without counting the endmarkers), i.e., during Πin, Π1, and Π3. It is
easy to see that

s ≤ n2 + |P1| + |P3| ≤ 3n2.

From the previous lemma, we learn that loops play an important role in the
structure of computations of unary 2nfa’s. By using Theorem 2.9, we can show that
possible loop lengths follow a very regular pattern which is directly predictable from
the structure of unary 2nfa’s themselves.

To this purpose, let us consider the weighted digraph A consisting of the digraph
representing the transition diagram of our automaton A after removing transitions
on the endmarkers, and in which we set weights +1, −1, or 0 to arcs depending
on whether they represent transitions where the input head is moved right, left, or
kept stationary, respectively. It is straightforward that any cycle of weight ℓ in A
represents a computation loop of length ℓ in the automaton A. Hence, by taking into
account Theorem 2.9, we get the following lemma.

Lemma 3.4. Let p be any given state of A, and let α be the greatest common
divisor of weights of the elementary cycles in the strongly connected component of A
containing p. Let X+

p (X−
p ) be the set of integers x > 2n2 (x < −2n2) such that the

automaton A, starting from the state p with the input head at the ith input square,
reaches the (i+x)th input square in the same state p, without visiting the endmarkers.
If X+

p ̸= ∅ (X−
p ̸= ∅), then it is exactly the set of all integral multiples of α greater

than 2n2 (less than −2n2).
The following result is crucial in order to obtain our simulations.
Theorem 3.5. There exists a set of positive integers {ℓ1, . . . , ℓr} ⊆ {1, . . . , n}

satisfying ℓ1 + · · ·+ ℓr ≤ n, such that, for any m ≥ n, if the input 1m can be traversed
from left to right by a computation path of A beginning in the state q1, ending in the
state q2, and where the endmarkers are visited on the first and last move only, then
there exists an index i ∈ {1, . . . , r} such that, for any µ > 5n2−m

ℓi
, there is also a

computation path from q1 to q2 which traverses from left to right the input

1m+µℓi .

The same result holds for computation paths traversing inputs from right to left.
Proof. Again, consider the weighted digraph A associated with the automaton A.

Suppose A has r strongly connected components and, for i = 1, . . . , r, denote by ℓi
the greatest common divisor of weights of the elementary cycles in the ith strongly
connected component. Clearly, ℓi cannot exceed n, and since strongly connected
components partition the set of vertices of A, we get ℓ1 + · · · + ℓr ≤ n.

Given the left-to-right traversing of input 1m, let s1, s2, ℓ, λ, p, be as in Lemma 3.3,
so to have the “decomposition” m = s1 +λℓ+ s2, and p being the state the dominant
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loop starts from. Let us suppose that p is contained in the ith strongly connected
component of A. By Lemma 3.4, the set of integers x > 2n2, for which there exists a
path from p to itself visiting neither of the endmarkers and moving the input head x
positions right, is exactly the set of the multiples of ℓi greater than 2n2. This leads us
to conclude that, for integers η > 2n2

ℓi
, there exists a computation from the state q1

to the state q2 that completely traverses inputs 1s1+ηℓi+s2 , and visits the endmarkers
on the first and last move only. It is enough, in fact, to use the original traverse of
1m, and substitute the λ repetitions of the dominant loop with a single loop of length
ηℓi.

Now, by choosing µ > 5n2−m
ℓi

and suitably setting η = µ + λℓ
ℓi

, we get

η >
5n2 −m

ℓi
+

λℓ

ℓi
=

5n2 − (s1 + λℓ + s2) + λℓ

ℓi
=

5n2 − (s1 + s2)

ℓi
≥ 2n2

ℓi
,

where the last inequality is obtained by recalling that s1 + s2 ≤ 3n2, as stated in
Lemma 3.3. Thus, for such η’s, we obtain a complete traversing of inputs

1s1+ηℓi+s2 = 1
s1+

(
µ+λℓ

ℓi

)
ℓi+s2 = 1m+µℓi ,

provided that µ > 5n2−m
ℓi

.
The technique used in the proof of the following theorem can be regarded as

a refinement of the well-known n → n + n! pumping technique [18]. The result in
Theorem 3.5 enables us to suitably pump and compress unary strings in order to
show that unary languages accepted by n-state 2nfa’s form ultimately periodic sets
of period O(e

√
n lnn).

Theorem 3.6. Let L be a unary language accepted by a n-state 2nfa. Then,
there exists a constant ℓ = O(e

√
n lnn) such that, for any integer m > 5n2,

1m ∈ L if and only if 1m+ℓ ∈ L.

Proof. Given our 2nfa A, we let {ℓ1, . . . , ℓr} be the set defined in Theorem 3.5 and
let ℓ = lcm(ℓ1, . . . , ℓr). Since we have observed that ℓ1+ · · ·+ℓr ≤ n, as a consequence

of Lemma 2.1 we have that ℓ = O(e
√
n lnn).

Compression. Suppose 1m+ℓ ∈ L, and let C be an accepting computation path
of A on such an input. Along C, consider r0, r1, . . . , rp, the sequence of all states in
which the input head scans either of the endmarkers. For j = 1, . . . , p, the following
two possibilities arise:

(i) In both rj−1 and rj , the input head scans the same endmarker. By Lemma 3.1
(U-Turn), we can suppose that this part of the computation can be accomplished by
moving no more than n2 positions away from the endmarker, and hence it can take
place on the input 1m as well, m being greater than 5n2.

(i) In rj−1 the input head scans one of the two endmarkers, while in rj it scans
the other. By Theorem 3.5, for some ℓi ∈ {ℓ1, . . . , ℓr}, we can replace the computation
path from rj−1 to rj on input 1m+ℓ with a computation path from rj−1 to rj on input

1m+ℓ+µℓi , provided that µ > 5n2−(m+ℓ)
ℓi

. Choose µ = µi = − ℓ
ℓi

. Since m > 5n2, it is

easy to verify that µi >
5n2−(m+ℓ)

ℓi
. Thus, we get a computation path on the input

1m+ℓ+µiℓi = 1m which begins and ends in the states rj−1 and rj , respectively, and
visits the endmarkers on the first and last move only.
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From (i) and (ii), it is easy to conclude that A accepts the input 1m as well.
Pumping. The proof of the converse is similar: choose µ = µi = ℓ

ℓi
at point

(ii).
As an immediate consequence of Theorem 3.6 we are able to state our main result

of this section.
Corollary 3.7. Each unary n-state 2nfa can be simulated by a O(e

√
n lnn)-state

1dfa.
Proof. Given a unary n-state 2nfa accepting the language L, the state diagram

of an equivalent 1dfa consists of a path of no more than 5n2 states joined to a single
elementary cycle involving ℓ = O(e

√
n lnn) states. The path takes care of the nonpe-

riodic part of L (i.e., strings of length not exceeding 5n2), while the cycle accounts
for the periodic part (i.e., strings of length greater than 5n2). Final states are placed
onto the path by inspecting membership of all strings of length not exceeding 5n2.
Moreover, the property “ 1m ∈ L if and only if 1m+ℓ ∈ L ” stated in Theorem 3.6
allows us to set final states onto the cycle by just testing membership for strings
15n2+1, 15n2+2, . . . , 15n2+ℓ.

It is possible to show that this simulation cost cannot be improved. Actually, a
stronger result can be stated, which proves the optimality of all O(e

√
n lnn) bounds in

Figure 1.1.
Theorem 3.8 (see [8, Theorem 6.1]). For any integer n, there exists a unary

2dfa with n states such that any equivalent 1nfa requires Ω(e
√
n lnn) states.

The trivial simulations of cost n in Figure 1.1 are optimal. In fact, for fixed n > 0,
consider the single word language Ln = {1n−1}. Such a language is clearly accepted
by a (minimum) 1dfa with n states. On the other hand, any 2nfa for Ln cannot have
less than n states [3].

For the optimality of the quadratic simulation of unary 1nfa’s by 2dfa’s we refer
the reader to [8, Theorem 6.2]. Thus, to complete Figure 1.1, we are left to examine
unary one-way alternation versus determinism and nondeterminism. This is precisely
the subject matter of section 5. Before that, we briefly show how to use the results so
far proved to confine both reversals and nondeterminism to the endmarkers on unary
2nfa’s by just paying a quadratic increase of the number of states.

4. Bringing reversals and nondeterminism at the endmarkers.
Theorem 4.1. Each unary n-state 2nfa A can be simulated by a O(n2)-state

2nfa A′ which performs both input head reversals and nondeterministic choices only
when the input head scans the endmarkers.

Proof. Without loss of generality, and by adding one more state, we can assume
that A accepts with the input head parked on the left endmarker. We informally
describe how A′ simulates the computation of A on a given input 1m.

In a first scan, A′ deterministically checks whether m ≤ 5n2 and, if so, accepts if
and only if 1m ∈ L(A). We can assume that at the end of this phase, which clearly
requires O(n2) states, the input head is still positioned on the left endmarker.

Otherwise, if m > 5n2, the second part of the simulation starts from the initial
state of A. We briefly explain what happens when A′ simulates the behavior of A from
a given state q1 and with the input head scanning the left endmarker. (A symmetrical
simulation for computations of A from the right endmarker can be trivially stated.)
A′ nondeterministically chooses one of the following operations:

(a) simulation of a “U-Turn,”
(b) simulation of a left-to-right traversal of the input.
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Since m > 5n2, by Lemma 3.1 the simulation (a) can take place in one step,
regardless the length of the input. Hence, each U-Turn from the left endmarker can
be “embedded” in the transition function of A′. More precisely, it can be replaced by
one stationary move. This part of the simulation does not require new states.

Now, we describe how to perform simulation (b). (In the following, a mod b
denotes the remainder of the integer division of a by b.) Let {ℓ1, . . . , ℓr} be the
set introduced in Theorem 3.5 with respect to the automaton A. Given a ℓi, with
i ∈ {1, . . . , r}, two integers m′, m′′ satisfying

• 5n2 < m′ < m′′, and
• m′ mod ℓi = ϱ = m′′ mod ℓi,

and two states q1, q2 of A, it is not hard to prove that
there exists a computation path of A from q1 to q2, scanning the input
1m

′
from left to right, and touching the endmarkers on the first and

last moves only if and only if there exists an analogous computation
path on 1m

′′
.

In fact, write m′ = h′ℓi + ϱ, m′′ = h′′ℓi + ϱ for some 0 < h′ ≤ h′′ and 0 ≤ ϱ < ℓi.
This yields m′ = m′′ + µℓi, where µ = h′ − h′′ = m′−ϱ−m′′+ϱ

ℓi
> 5n2−m′′

ℓi
, by recalling

that m′ > 5n2. Hence, by Theorem 3.5, from the left-to-right scan of 1m
′′
, we can

obtain a similar computation path for 1m
′
. The proof of the converse is similar. As a

consequence of this observation, we get that, given the starting state q1 of A and the
input length m > 5n2, the set of states reachable by A after traversing from left to
right the input 1m depends only on q1 and on the set of pairs

{(ℓi , m mod ℓi) | i = 1, . . . , r}.

Thus, in simulating a left-to-right traversal of A on 1m starting from the state q1
with the input head on the left endmarker, A′ performs the following steps:

(i) nondeterministically selects an ℓi, with i ∈ {1, . . . , r},
(ii) scans the input tape, counting the input length m modulo ℓi,
(iii) when the input head reaches the right endmarker, nondeterministically se-

lects one of the states associated with the starting state q1 and the pair (ℓi , m mod ℓi).
A′ is easily seen to have both input head reversals and nondeterministic choices

at the endmarkers only. Furthermore, during such a simulation from q1, A′ must
remember the chosen ℓi, and the value m mod ℓi; this information can be clearly
maintained in ℓ1 + · · ·+ ℓs many states. Globally, ℓ1 + · · ·+ ℓs more states are needed
for each possible (starting) state, and since ℓ1 + · · ·+ ℓs ≤ n, as observed in Theorem
3.5, we conclude that this part of the simulation requires O(n2) states. This completes
the proof.

5. Some remarks on 1afa’s versus other models. We end the paper by
briefly discussing the cost of simulating unary 1afa’s with deterministic and nonde-
terministic automata, and the cost of the converse simulations. We begin with the
simulations between 1afa’s and 1dfa’s:

• In [7, section 5.1], it is shown that for any n-state 1afa accepting a lan-
guage L on an arbitrary alphabet there exists a 2n-state 1dfa accepting
LR = {xR | x ∈ L}, where xR denotes the reversal of the string x. Such
a result is easily seen to directly define the cost of simulating unary 1afa’s
with 1dfa’s, since x = xR for unary strings.

• Conversely, in [17, Theorem 1] it is shown that for any n-state 1dfa accepting
L there exists a ⌈log n⌉-state 1afa for LR.
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This leads to the following equivalence which is basically contained in Corollary 1
and Corollary 2 of [17].

Theorem 5.1. The class of unary languages accepted by n-state 1afa’s is exactly
the class of unary languages accepted by 2n-state 1dfa’s.

As an immediate consequence, one also gets the following corollary.
Corollary 5.2. Let L be a unary language for which the minimum 1dfa has n

states. Then, every 1afa accepting L requires at least ⌈log n⌉ states.
The simulation costs between unary 1afa’s and 1dfa’s above stated are optimal,

as pointed out in the following theorem.
Theorem 5.3. For any integer n, there exists a unary n-state 1afa (1dfa) such

that each equivalent 1dfa (1afa) requires not less than 2n ( ⌈log n⌉) states.
Proof.
1afa by 1dfa. We again refer to the single word language L2n = {12n−1} considered

at the end of section 3. Such a language can be accepted by a 1dfa with 2n states
and hence, according to Corollary 5.2, by a 1afa with n states. On the other hand,
any 2nfa for L2n requires not less than 2n states [3].

1dfa by 1afa. The minimum 1dfa for Ln = {1n−1} has n state. Thus, the results
follows from Corollary 5.2.

Yet, we have the following theorem.
Theorem 5.4. Each unary n-state 1afa can be simulated by a 2n-state 1nfa,

2dfa, or 2nfa. Such a simulation cost is tight in all the three cases.
Proof. It is enough to recall that simulating unary 1afa’s with 1dfa’s costs 2n

states, and that 1afa’s are exponentially more succinct than 2nfa’s (Theorem 5.3
[1afa by 1dfa]).

Thus, as already pointed out in [3], Theorem 5.4 says that 1afa’s and 2dfa’s are
not polynomially equivalent regarding their state complexity, as conjectured in [8].

Our results in section 3 allow us to show that simulating 2nfa’s (and hence 1nfa’s
and 2dfa’s) by 1afa’s takes a sublinear amount of states.

Theorem 5.5. Each unary 2nfa, 1nfa, and 2dfa with n states can be simulated
by a O(

√
n lnn)-state 1afa.

Proof. Clearly, it suffices to show the bound for 2nfa’s. By Corollary 3.7, a
unary n-state 2nfa can be simulated by a O(e

√
n lnn)-state 1dfa which in turn, by

Theorem 5.1, can be simulated by a 1afa with O(
√
n lnn) states.

The simulations by 1afa’s in Theorem 5.5 are optimal.
Theorem 5.6. For any integer n, there exists a unary 1nfa and a unary 2dfa

with n states such that each equivalent 1afa requires Ω(
√
n lnn) states.

Proof. By [8, Theorem 4.5], for any n there exists a unary n-state 1nfa A such that

each 1dfa recognizing L(A) requires Ω(e
√
n lnn) states. By Corollary 5.2, this implies

that each 1afa for L(A) must have Ω(
√
n lnn) states. Furthermore, the language L(A)

is accepted even by a unary n-state 2dfa [8, Theorem 5.2].
With these results, we complete proving the results summarized in Figure 1.1,

section 1.
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