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Abstract In this paper we present an option pricing model based on the assump-
tion that the underlying asset price is an exponential Mixed Tempered Stable Lévy
process. We also introduce a new R package called PricingMixedTS that allows the
user to calibrate this model using procedures based on loss or likelihood functions.
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1 Introduction

The main object of this paper is to present an option pricing model under the
assumption that log returns are generated from a Lévy Mixed Tempered Stable
(MixedTS hereafter) process. This process is built using the infinitely divisible prop-
erty of the MixedTS distribution recently introduced by Rroji and Mercuri (2015)
as a generalization of the Normal Variance Mean Mixture (NVMM hereafter) family
of distributions.
The relevance of Lévy processes has been widely investigated in financial modeling
especially for asset prices (Carr and Wu, 2004a; Eberlein and Madan, 2009; Carr
and Madan, 1999, see for instance) mainly due to the fact that these processes are
able to handle with the stylized facts. Moreover, they are preferred to stochastic
volatility models as shown in Li et al. (2008) and in Tankov (2003). The reason for
enlarging the family of Lévy processes by introducing the MixedTS arises from its
ability to overcome some limits of the processes built on the NVMM extensively used
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in financial literature. As shown in Rroji and Mercuri (2015), the MixedTS is more
flexible in capturing higher moments and tail behavior varies from semi-heavy (i.e.
the tail decays exponentially) to heavy (power law decay), while the tail behavior
for the NVMM depends only on the tail behavior of the mixing random variable.
The first problem that we face in this paper is the selection of an equivalent mar-
tingale measure since we want to avoid arbitrage opportunities in option pricing. In
particular, we consider two changes of measure that preserve the nature of the pro-
cess: the Mean Correcting Martingale measure Schoutens (2003) and the Martingale
Measure induced by the Esscher Transform Gerber et al. (1994).
The second issue that we analyze in this work is the extrapolation of the MixedTS
parameters from quoted option prices. In literature, the standard approach is based
on the choice of a specific loss function. Different kind of functions have been pro-
posed and in general they can be classified in those in absolute terms (i.e. summation
of the squared or absolute difference between theoretical and observed prices) or in
relative terms. Both classes have advantages and problems like for instance a loss
function in absolute terms gives higher weights to the errors referring to in the money
options while the relative function overestimates out of the money options with short
maturities (see Christoffersen and Jacobs, 2004, for a complete discussion). Alterna-
tive approaches try to see the calibration as a statistical procedure and consequently
they provide standard errors associated to the estimated parameters. Generalized
Method of Moments Arnold and Crack (1999), Bayesian option pricing Forbes et al.
(2007) and Maximum Likelihood Estimation Hurn et al. (2014) belong to this class of
methods. In this work we exploit the maximum likelihood estimation procedure and
provide a unified methodology where the pricing error (i.e. the difference between
quoted and theoretical price) follows a Generalized Normal distribution Johnson and
Kotz (1970). The considered loss functions can be retrieved as special cases of the
MLE approach considered. Moreover, the MLE provides the distribution of estimates
and consequently a selection of models is possible using likelihood ratio tests or hy-
pothesis testing for the parameters.
We introduce also a new R package called PricingMixedTS that allows the user
to compute option prices when the underlying asset price follows an exponential
MixedTS process. We provide routines for pricing based on the Mean Correct-
ing Martingale measure and on the Esscher Transform. The presented calibration
methodologies refer to different loss and likelihood functions.
The outline of the paper is as follows. In Section 2 we review the MixedTS distri-
bution and discuss the process based on it. Option pricing for MixedTS process is
developed in Section 3. In Section 4 we present calibration methodologies based on
loss functions and on Maximum Likelihood Estimation. In Section 5 we explain the
R package that implements the explained methodology and a numerical example is
given in Section 6. Section 8 concludes the paper.

2 Mixed Tempered Stable

In this Section we review the Mixed Tempered Stable distribution (MixedTS here-
after) proposed by Rroji and Mercuri (2015) and its main properties. In particular
we focus on the infinite divisibility property that is used for construction of the cor-
responding Lévy process.
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We say that a continuous random variable Y follows a Mixed Tempered Stable dis-
tribution if:

Y
d= µ0 + µV +

√
V X (1)

where X |V ∼ stdCTS
(
α, λ+

√
V , λ−

√
V
)
. V is an infinitely divisible distribution

defined on positive axis and its m.g.f always exists (see Rroji and Mercuri (2015)).
The first four moments for the MixedTS are computed analytically. In this paper we
focus on the case V is Gamma distributed, i.e. V ∼ Γ (a, σ2). It is also possible an
alternatively parametrization for V and for Y . Starting from the scale property of
Gamma random variable:

V = σ2Ṽ

where Ṽ ∼ Γ (a, 1). The MixedTS in (1) becomes:

Y
d= µ0 + µ̃Ṽ + σ

√
Ṽ X̃ (2)

with µ̃ = µσ2 and X̃ ∼ stdCTS
(
α, λ+σ

√
Ṽ , λ−σ

√
Ṽ
)

, in this way we have similar
parametrization of the Normal Variance Mean Mixtures.
Choosing µ = 0 we have the following special cases as shown in Rroji and Mercuri
(2015)1:

– The Variance Gamma distribution is obtained choosing α = 2.
– The Standardized Classical Tempered Stable is obtained for σ = 1√

a
and com-

puting the limit for a→ +∞.
– The Geometric Stable distribution for γ > 0 is obtained by λ+ = λ− = λ, a = 1,

σ = λ
α−2
α γ

α
2

√∣∣∣∣ α(α−1)
cos(α π2 )

∣∣∣∣ and computing the limit for λ→ 0+.

The MixedTS r.v. is infinitely divisible and the characteristic function of r.v. Y
in (1) is given by:

Φ (u) := E
[
eiuY

]
= eiuµ0+φV (iuµ+LstdCTS(u,α,λ+,λ−)) (3)

where the LstdCTS (u, α, λ+, λ−) is the characteristic exponent of a Standardized
Classical Tempered Stable:

LstdCTS (u, α, λ+, λ−) =
(λ+ − iu)α − λα+ + (λ− + iu)α − λα−

α (α− 1)
(
λα−2

+ + λα−2
−
) +

iu
(
λα−1

+ − λα−1
−
)

(α− 1)
(
λα−2

+ + λα−2
−
) .

(4)
The logarithm of m.g.f. for a Gamma r.v. with shape a and scale σ2 parameters

φV (x) is defined as:

φV (x) = −a ln
(
1− σ2x

)
. (5)

Substituting formula (5) in (3) the MixedTS characteristic function becomes:

1 We refer the interested reader to Rroji and Mercuri (2015) for a more complete analysis on
the shape of MixedTS distribution and on the behaviour of Skewness and Kurtosis for varying
α and different combination of λ+ and λ−
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Φ (u) = eiuµ0−a ln[1−σ2(iuµ+LstdCTS(u,α,λ+,λ−))]. (6)

It is worth noting that, since V has an infinitely divisible distribution, the shape
of the characteristic function in (3) identifies the distribution associated to a time-
changed Lévy process [see Carr and Wu (2004b)] The time-changed Lévy process
gives rise to an infinitely divisible distribution [see, theorems 7.10 and 30.1 in Sato
(1999)]. Using the infinitely divisible property we have that:

{Φ (X)}t = eiuµ0t+φVt (iuµ+LstdCTS(u,α,λ+,λ−)) = Φ (Xt) (7)

where Vt ∼ Γ
(
at, σ2) and Xt is a MixedTS

(
µ0t, µ, σ

2, at, α, λ+, λ−
)
. In this way we

are able to introduce a MixedTS Lévy process defined as follows:

Definition 1 Let
(
Ω,F , {Ft}t≥ , P

)
be a Filtered Probability Space, we define a

MixedTS Lévy process (Xt)t≥0 such that:

– X0 = 0.
– The increments are independent and stationary.
– Xt−s := Xt−Xs is MixedTS distributed with parameters

(
µ0 (t− s) , µ, σ2, a (t− s) , λ+, λ−

)
.

In Figure 1 and Figure 2 we show the sample paths of a MixedTS process for
varying values of α parameters and different combination of parameters λ+, λ−. In
particular we observe from Figure 2 that λ+ and λ− controls the asymmetry in
the distribution of the increments for each fixed lag. In particular, under µ = 0,
the distributions are symmetric and the corresponding sample paths move around
µ0 = 0. When λ+ > λ− the distribution of increments is negatively skewed and,
choosing µ0 = 0, the trend of sample paths seems to be negative while, if λ+ < λ−
the trend seems to be increasing. In the Lévy process where the distribution of
increments is a Normal Variance Mean Mixture, we have negative or positive skew
if and only if µ is negative or positive.

In this paper we consider this new defined process for option pricing.

3 Option Pricing Model

In this Section we show how to price a European option under the assumption that
the log returns of a risky asset are generated by a MixedTS Lévy process discussed in
Section 2. In this case the market is incomplete and we decide to choose an Equivalent
Martingale Measure using two approaches that preserve the nature of the process
under the pricing measure (i.e. the log returns are again a MixedTS Lévy process
under Q measure): the Mean Correcting Martingale and the Esscher Transform.

Let
(
Ω, {Ft}t≥0 ,P

)
be a Filtered Space, the price of a risky asset is:

St = S0e
Yt , t ≥ 0. (8)

where Yt is a MixedTS Lévy process with parameters (µ0, µ, σ, a, λ+, λ−).
The bank account dynamic is:

Bt = B0e
rt, t ≥ 0. (9)
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0 20 40 60 80

−
2

0
1

2

alpha = 0.5

time

sa
m

pl
e 

pa
th

s

0 20 40 60 80

−
2

0
1

2

alpha = 1.5

time

sa
m

pl
e 

pa
th

s

0 20 40 60 80

−
2

0
1

2

alpha = 1.75

time

sa
m

pl
e 

pa
th

s

0 20 40 60 80

−
2

0
1

2

alpha = 2

time

sa
m

pl
e 

pa
th

s

Fig. 1 Sample paths of MixedTS process with parameters µ0 = 0, µ = 0, σ = 0.2, λ+ = 1,
λ− = 1 and varying α
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Fig. 2 Sample paths of MixedTS process with parameters µ0 = 0, µ = 0, σ = 0.2, α = 1.5
and varying λ+ and λ−
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where the risk free rate r is assumed to be constant for simplicity.
In order to select an equivalent martingale measure, in the following, we consider
two different change of measures that preserve the nature of the process of the risky
asset under the new measure: The Mean Correcting Martingale measure and the
Esscher Transform based measure.

3.1 Mean Correcting Martingale measure

In this Section we use the Mean Correcting Martingale measure to determine an
equivalent measure for pricing. The idea is to change the drift term such that the
discounted price of the underlying asset is a martingale.
Let Yt to be a MixedTS process on a probability space (Ω,F , P ) where P is the
physical measure. For each m ∈ R we define a new process:

Y mt
d= Yt −mt (10)

and a new probability measure Qm defined on (Ω,F) that satisfies the following two
properties:

i) Qm ∼ P (i.e. Qm is equivalent to the physical measure P ).
ii) Qm (Y mt ≤ y) := P (Yt ≤ y) ∀y ∈ R.

Fixed t ≤ T , we choose m such that:

St = EQ
[
e−r(T−t)ST

∣∣ Ft] = Ste
−r(T−t)EQ

[
eYT−t

∣∣ Ft] . (11)

Using the relation in (10) and the properties of the MixedTS process, equation (11)
becomes:

1 = e−r(T−t)EQ
[
eY

m
T−t+m(T−t)]

then

e(r−m)(T−t) = EQ
[
eY

m
T−t
]
.

The property ii) of the measure Qm implies that:

e(r−m)(T−t) = EP
[
eYT−t

]
. (12)

Applying the infinite divisibility property of the MixedTS, we have that:

e(r−m)(T−t) = EP
[
eY1
](T−t)

. (13)

The condition in (13) is well defined if EP
[
eY1
]
< +∞ that means:

1− σ2 [µ+ LstdCTS (−i, α, λ+, λ−)] > 0.

Solving equation (13) with respect to m, we determine m∗ as follows:

m∗ = r − µ0 − φV (µ+ LstdCTS (−i, α, λ+, λ−)) . (14)

Log returns Xt, under the equivalent martingale measure, are generated from a
MixedTS process defined in Section 2 with parameters

(
µ0 +m∗, µ, σ

2, a, α, λ+, λ−
)
.
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3.2 Esscher Transform

An alternative approach for identifying a new martingale measure that preserves the
nature of the process for the log returns (i.e log returns follow again a MixedTS
after the change of measure) is the Esscher Transform introduced in option pricing
literature by Gerber et al. (1994).
Under the assumption that E

(
ecY1

)
< +∞ in an open interval containing c = 0, we

are able to define for each t a Radon Nikodym derivative as follows:

Λt = ecYt

E [ecYt ] . (15)

The parameter c is chosen in order to satisfy the martingale condition for the dis-
counted price process:

S0 = EQ
[
e
−
∫ t

0
rudu

St |F0

]
. (16)

Since r is constant, the condition in (16) simplifies as follows:

ert = EQ0
[
eYt
]
.

Using the Radon Nikodym derivative in (15), we obtain the Esscher equation:

ert = EQ0
[
eYt
]

=
EP0
[
e(1+c)Yt

]
EP0 [ecYt ]

= Φ (−i (1 + c))
Φ (−ic) . (17)

Substituting the characteristic function of the MixedTS in (6), condition (17) be-
comes:

ert = Φ (−i (1 + c))
Φ (−ic) = e(1+c)µ0t+φVt ((1+c)µ+LstdCTS(−i(1+c),α,λ+,λ−))

ecµ0t+φVt (cµ+LstdCTS(−ic,α,λ+,λ−)) (18)

and after straightforward calculations:

e(r−µ0) = eφV ((1+c)µ+LstdCTS(−i(1+c),α,λ+,λ−))

eφV (cµ+LstdCTS(−ic,α,λ+,λ−)) (19)

where V ∼ Γ
(
a, σ2).

It is worth to notice that equation (19) does not depend on t and the solution c is
only a function of the model parameters. Using the Radon Nikodym derivative in
(15), we are able to determine the moment generating function of the process at time
t as follows:

EQ0
[
eθYt

]
= EP0

[
e(θ+c∗)Yt

Ep0 [ec∗Yt ]

]
. (20)

Exploiting the characteristic function in (6), we have that:

EQ0
[
eθYt

]
= et[θµ0+φV ((θ+c∗)µ+LstdCTS(−i(θ+c∗),α,λ+,λ−))−φV (c∗µ+LstdCTS(−ic∗,α,λ+,λ−))].

(21)
First we analyze the term in (21):
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A := φV ((θ + c∗)µ+ LstdCTS (−i (θ + c∗) , α, λ+, λ−))−φV (c∗µ+ LstdCTS (−ic∗, α, λ+, λ−)) .

Since V ∼ Γ
(
a, σ2), we have:

A = −a ln
[

1− σ2 ((θ + c∗)µ+ LstdCTS (−i(θ + c∗), α, λ+, λ−))
1− σ2 (c∗µ+ LstdCTS (−ic∗, α, λ+, λ−))

]
. (22)

Adding and subtracting the term: σ2LstdCTS (−ic∗, α, λ+, λ−) in the numerator and
we have:

A = −a ln
[

1− σ2 (θµ+ LstdCTS (−i(θ + c∗), α, λ+, λ−)− LstdCTS (−ic∗, α, λ+, λ−))
1− σ2 (c∗µ+ LstdCTS (−ic∗, α, λ+, λ−))

]
.

(23)
The quantity in (23), needs the evaluation of the term:

B := LstdCTS (−i(θ + c∗), α, λ+, λ−)− LstdCTS (−ic∗, α, λ+, λ−) . (24)

Using the characteristic exponent of a Standardized Tempered Stable in (4) we have:

B =
(λ+ − c∗ − θ)α − λα+ + (λ− + c∗ + θ)α − λα−

α (α− 1)
(
λα−2

+ + λα−2
−

) −
(λ+ − c∗)α − λα+ + (λ− + c∗)α − λα−

α (α− 1)
(
λα−2

+ + λα−2
−

)
+

θ
(
λα−1

+ − λα−1
−

)
(α− 1)

(
λα−2

+ + λα−2
−

)
=

(λ+ − c∗ − θ)α − (λ+ − c∗)α + (λ− + c∗ + θ)α − (λ− + c∗)α

α (α− 1)
(
λα−2

+ + λα−2
−

) +
θ
(
λα−1

+ − λα−1
−

)
(α− 1)

(
λα−2

+ + λα−2
−

) .
Adding and subtracting the term: θ[(λ+−c∗)α−1−(λ−+c∗)α−1]

(α−1)[(λ+−c∗)α−2+(λ−+c∗)α−2]
[(λ+−c∗)α−2+(λ−+c∗)α−2]

[λα−2
+ +λα−2

− ] ,
we obtain:

B = LstdCTS (−iθ, α, λ+ − c∗, λ− + c∗)

[
(λ+ − c∗)α−2 + (λ− + c∗)α−2

]
[
λα−2

+ + λα−2
−
]

+ θ

[
λα−1

+ − (λ+ − c∗)α−1 + (λ− + c∗)α−1 − λα−1
−

]
(α− 1)

(
λα−2

+ + λα−2
−
) . (25)

Substituting term (25) in (23), we have:

A = −a ln

[
1 −

σ2
[
(λ+ − c∗)α−2 + (λ− + c∗)α−2]

[1 − σ2 (c∗µ+ LstdCTS (−ic∗, α, λ+, λ−))]
[
λα−2

+ + λα−2
−

]
∗

[
θ

(
µ+

[
λα−1

+ − (λ+ − c∗)α−1 + (λ− + c∗)α−1 − λα−1
−

]
(α− 1)

(
λα−2

+ + λα−2
−

) ) [
λα−2

+ + λα−2
−

][
(λ+ − c∗)α−2 + (λ− + c∗)α−2]

+ LstdCTS (−iθ, α, λ+ − c∗, λ− + c∗)]] . (26)

Defining:
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µ̂ =

(
µ+ [λα−1

+ −(λ+−c∗)α−1+(λ−+c∗)α−1−λα−1
− ]

(α−1)(λα−2
+ +λα−2

− )

)
[λα−2

+ +λα−2
− ]

[(λ+−c∗)α−2+(λ−+c∗)α−2]

σ̂2 = σ2[(λ+−c∗)α−2+(λ−+c∗)α−2]
[1−σ2(c∗µ+LstdCTS(−ic∗,α,λ+,λ−))][λα−2

+ +λα−2
− ]

λ̂+ = λ+ − c∗
λ̂− = λ− + c∗

(27)

with c∗ ∈ (λ−, λ+), under the Equivalent Martingale Measure induced by the Esscher
Transform, the log returns follow a MixedTS process with parameters

(
µ0, µ̂, σ̂

2, a, α, λ̂+, λ̂−

)
.

We conclude this section observing that Mean Correcting Martingale and Ess-
cher Transform return, under the pricing measure, a MixedTS process for log-price.
In both case the characteristic function is obtained in a closed form formula and the
option call prices can be evaluated using any pricing formula based on the character-
istic function. In this work we use the same approach developed in Carr and Madan
(1999) that allow us to apply the Fast Fourier Transform algorithm. In our case the
dumping parameter2 is fixed to 0.75 as suggested in Schoutens et al. (2004).

4 Calibration Procedure

The aim of this Section is to describe how to estimate model parameters using
the quoted option prices. The classical approach is based on standard calibration
methods. The parameters are obtained by minimizing a distance between theoretical
and empirical prices and different measures of fit have been developed such as:

– Root Mean Squared Error (RMSE)

RMSE =

√√√√ N∑
i=1

(
Cmkti − Ctheoi

)2

N
. (28)

– Root Mean Squared Percentage Error (RMSPE)

RMSPE =

√√√√ 1
N

N∑
i=1

(
Cmkti − Ctheoi

Cmkti

)2

. (29)

– Average Absolute Error (AAE)

AAE =
N∑
i=1

∣∣Cmkti − Ctheoi

∣∣
N

. (30)

– Average Relative Percentage Error (ARPE)

ARPE = 1
N

N∑
i=1

∣∣Cmkti − Ctheoi

∣∣
Cmkti

. (31)

2 In the PricingMixedTS the dumping parameters can be selected by the user, the default
value is 0.75
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A detailed discussion on the properties of the different objective functions can be
found in Christoffersen and Jacobs (2004) and in Schoutens (2003). It is worth to
notice that minimizing the above distances gives us only one value for each parame-
ter. Nevertheless, calibration is a statistical methodology and consequently we need
to determine also an appropriate confidence interval for the estimate. In literature
three different statistical estimation procedures have been considered: Generalized
Methods of Moments (see Arnold and Crack (1999) for a discussion), a Bayesian
option pricing (see Forbes et al. (2007)) and a Maximum Likelihood Estimation pro-
cedure (see Hurn et al. (2014) and references therein).
In this work, we consider the Maximum Likelihood Estimation procedure. We as-
sume market option prices to be composed by two elements: model option prices and
a white noise error. Following Hurn et al. (2014), the pricing error can be additive
or multiplicative, that means, in the first case the difference between observed and
theoretical option price is a zero mean gaussian random variable while, in the second
case, the difference between the logarithm of the theoretical and observed price is a
zero mean gaussian random variable. We report four types of pricing errors where
the first two are additive and remaining are multiplicative. Hereafter, we indicate
with θ the vector containing the model parameters, i.e. θ := (µ0, µ, σ, a, α, λ+, λ−).

– Additive Pricing Error (APE). The pricing error is a zero mean Gaussian
r.v. where the standard error is the same for each option available in the market:

Cmkti = Ctheoi + ε, ε ∼ N
(
0, σ2

ε

)
∀i = 1, . . . , N. (32)

– Additive Proportional Pricing Error (APPE). The observed price is ob-
tained as a sum of the theoretical price with a zero mean gaussian r.v. where the
standard error is proportional to the market price:

Cmkti = Ctheoi + εi, εi ∼ N
(

0, σ2
ε

(
Cmkti

)2
)
∀i = 1, . . . , N. (33)

– Multiplicative Pricing Error 1 (MPE1). The difference between log market
price and log theoretical price is a zero mean Gaussian r.v. with constant variance
σ2:

ln
(
Cmkti

)
= ln

(
Cobsi

)
+ ε, ε ∼ N

(
0, σ2

ε

)
∀i = 1, . . . , N. (34)

– Multiplicative Pricing Error 2 (MPE2) The multiplicative error is chosen
in order to ensure the condition E

(
Cmkti

)
= Ctheoi , i.e. we have:

Cmkti = Ctheoi eε, ε ∼ N
(
−1

2σ
2
ε , σ

2
ε

)
∀i = 1, . . . , N. (35)

It is worth to notice that the RMSE and APE approaches lead to the same estimates
for the model parameters. Indeed, the loglikelihood in the APE approach is equal
to:

LogLikAPE
(
θ, σ2

ε

)
= −N2 ln (2π)− N

2 ln
(
σ2
ε

)
− 1

2σ2
ε

N∑
i=1

(
Cmkti − Ctheoi

)2
. (36)

The maximization of (36) can be splitted in two problems. Indeed, the contribution
of the model parameters θ is determined by minimization of the RMSE. Once the
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optimal value for θ is obtained, we maximize the quantity in (36) with respect to σ2
ε

and get:

∂LogLikAPE
(
θ∗, σ2

ε

)
∂σ2

ε

= − N

2σ2
ε

+ 1
2 (σ2

ε )2

N∑
i=1

(
Cmkti − Ctheoi

)2 = 0

and finally:

σ2
ε =

∑N
i=1
(
Cmkti − Ctheoi

)2

N
≥ 0. (37)

The same arguments hold for the relation between RMSPE and APPE. In this
case the estimate of σ2

ε is:

σ2
ε = 1

N

N∑
i=1

(
Cmkti − Ctheoi

Cmkti

)2

≥ 0.

We show a generalized calibration procedure that tries to combine the previous meth-
ods (except for MPE1 and MPE2). The idea behind the proposed approach is that
the error term is a Generalized Normal random variable Johnson and Kotz (1970).
A continuous random variable X is a Generalized Normal r.v. with parameters
(η, γ, β) if its density function is given by:

fX (x) = β

2γΓ (1/β)e
−(|x−η|/γ)β (38)

where the position parameter η belongs to the real line, the scale parameter γ and
the shape parameter β assumes non negative values. This random variable has been
widely used in Bayesian analysis and robustness see Box and Tiao (1962); Subbotin
(1923); Tiao and Lund (1970) for instance. In the following, we use the notation X ∼
GND (η, γ, β) for indicating that that the distribution of a r.v. X is a Generalized
Normal with parameters (η, γ, β).
The shape parameter β manages the tails’ behavior. In particular, if β > 2 the tails
are thinner than those of a Normal distribution, while for β ∈ (0, 2) the tails are
heavier. The distribution has the following special cases:

– For β = 2, we obtain a normal random variable with mean γ and variance γ2

2 .
– For β = 1, the double exponential r.v. is retrieved.
– For β → ∞, the Generalized Normal converges to the Uniform distribution de-

fined on (η − γ, η + γ).

These properties make this distribution appealing for building a unified cali-
bration procedure based on the likelihood function of pricing error. In this paper,
we consider three nested different procedures: Additive Generalized Normal Error
(AGNE), Additive Proportional Generalized Normal Error (APGNE) and Additive
Mixed Generalized Normal Error (AMGNE).

– In the Additive Generalized Normal Error (AGNE) we assume market
prices to be defined as:

Cmkti = Ctheoi + εi, εi ∼ GND (0, γ, β) i = 1, . . . , N (39)
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where the error terms εi are i.i.d Generalized Normal r.v.’s, the loglikelihood
function of the error term is obtained as follows:

LogLikAGNE (θ, γ, β) = N ln (β)−N ln (2γΓ (1/β))−
N∑
i=1

(∣∣Cmkti − Ctheoi

∣∣
γ

)β
.

(40)
It is worth to observe that the value of shape parameter β allows the user to
choose between the RMSE and the AAE procedures analyzed previously. Indeed,
for β = 1 the model parameters are obtained by maximizing the loglikelihood in
(40) that is equivalent to the minimization of the AAE measure while, for β = 2,
we have the same result of minimizing the RMSE quantity.

– In the Additive Proportional Generalized Normal Error (APGNE), the
market price is given as:

Cmkti = Ctheoi + εi, εi ∼ GND
(
0, γCmkti , β

)
i = 1, . . . , N (41)

where the error terms εi are independent Generalized Normal r.v.’s. In this case,
it is possible to obtain the RMSPE (choosing β = 2) and the APPE (choosing
β = 2) as special cases. The loglikelihood is computed as follows:

LogLikAPGNE (θ, γ, β) = N ln (β) −N ln (2γΓ (1/β)) −
N∑
i=1

ln
(
Cmkti

)
−

N∑
i=1

(∣∣Cmkti − Ctheoi

∣∣
γCmkti

)β
. (42)

– In the Additive Mixed Generalized Normal Error (AMGNE), we assume
market price to be:

Cmkti = Ctheoi + εi, εi ∼ GND
(

0, γ
(
Cmkti

)ρ
, β
)
i = 1, . . . , N (43)

where ρ ∈ [0, 1].
AMGNE is the most general estimation procedure analyzed in this Section. In-
deed, the AMGNE encompasses the APGNE and the APGNE introduced above.
If ρ = 0, we have the AGNE approach where ρ = 1 corresponds to the APGNE
method. In this case the loglikelihood has the following form:

LogLikAMGNE (θ, γ, β) = N ln (β)−N ln (2γΓ (1/β))−
N∑
i=1

ln
[(
Cmkti

)ρ]

−
N∑
i=1

(∣∣Cmkti − Ctheoi

∣∣
γ
(
Cmkti

)ρ
)β

. (44)

It is worth to notice that the method coincides with the ARPE when β = 1 and
ρ = 1. The RMSPE is obtained if β = 1 and ρ = 1 while the AAE for β = 1 and
ρ = 0 and the RMSE for β = 2 and ρ = 0.

A general approach like the AMGNE is a tool for comparing and correctly
choosing among different estimation methodologies based on likelihood ratio tests or
through hypothesis testing for parameters β and ρ. In our approach no ambiguity in
calibration method choice remains.
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5 R package PricingMixedTS

In this Section, we describe the R package PricingMixedTS that contains several rou-
tines for option pricing under the assumption that log returns follow a MixedTS pro-
cess. This package is written using the S4 object oriented programming language and
is freely downloadable from https://r-forge.r-project.org/projects/pricingmixedts.
Once the package is installed, the user can call it using the comand library as done
below:

library("PricingMixedTS")

5.1 Classes

Three classes are used: param.MixedTS, OptionData and Calibrates.
An object of class param.MixedTS identifies the MixedTS parameters and other
information related to the MixedTS distribution. This object is constructed by the
user through function setMixedTS.param. Its slots are:

– @mu0: a numeric object for the constant term µ0.
– @mu: a numeric object for the parameter µ.
– @sigma: a numeric object. In this case negative values for σ are not allowed.
– @a: a numeric object. This slot is filled if the mixing density is Gamma distributed

and corresponds to its shape parameter.
– @alpha: a numeric object that takes value from 0 to 2. If α = 2, the Mixed

Tempered Stable becomes the Normal Variance Mean Mixture.
– @lambda p: a positive numeric object. It is the right tempering parameter of the

standardized classical Tempered Stable used for building the MixedTS r.v.
– @lambda m: a positive numeric object. It is the left tempering parameter of the

standardized Classical Tempered Stable used for building the MixedTS.
– @Mixing: a string object indicating the nature of the mixing density V . If Mixing

= "Gamma" (default value) the mixing r.v. is Gamma distributed. If Mixing =
"User", the user should specify the log of the moment generating function of the
random variable V .

– @paramMixing: a list object. It is an empty list if the slot Mixing = "Gamma"
otherwise it is used to pass the values of the Mixing density parameters defined
by the user.

– @MixingLogMGF: this slot contains a function that returns the logarithm of mgf
for the mixing density.

– @Parametrization: a string that indicates the parametrization of the MixedTS
r.v. used. In particular if Parametrization = "A" (default value) we use the
definition in (1) otherwise the parametrization in (2). In the last case the user
chooses Parametrization = "B"

OptionData. An object of this class contains all the information about options
available in the market. This object is constructed by function DataOpt. The slots
that compose an object of class OptionData are listed below:

– @UnderPrice: a numeric object that represents the current underlying asset price.
– @PriceOpt: a numeric object that is the current option price.
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– @ImpliedVol: a numeric object that is the corresponding Black and Scholes im-
plied volatility.

– @TimeToMat: a numeric object indicating the time to maturity of the option.
– @Strike: a numeric object that represents the strike price of the option
– @Type: a character object. If the Type = Call we consider an European call

option while with Type = Put we have an European put option is
– @rate: a numeric object that is the risk free rate.
– @qyield: a numeric object that contains the dividend yield of the underlying

asset. If the underlying asset is a commodity, the slot contains the convenience
yield.

– @dateobs: a data object indicating the time where we observe the option prices.

Calibrates An object of this class contains the parameters of an exponential
MixedTS process obtained from the option prices available in the market. This object
is built internally through the function calibrate and inherits slots and methods
from param.MixedTS. Moreover, an object of this class has the following additional
slots containing the results of the estimation procedure.

– @coef: a numeric object that contains the calibrated parameters of the model.
– @vcov: a matrix object that is the variance-covariance matrix of estimated pa-

rameters.
– @obj: a numeric object that represents the value of the distance measure in the

estimation procedure.

5.2 Methods

The method Qparam.MixedTS MixedTS converts the parameters of an exponential
MixedTS process under the real measure into the corresponding parameters under
the equivalent martingale measure obtained by the Esscher Transform or the Mean
Correcting Martingale measure. The inputs are: object, ret and type.
The argument object is an object of class param.MixedTS and contains information
about the process under the physical measure. The risk free rate is passed through
the input ret and, since the market is incomplete, the user is allowed to choose an
equivalent martingale measure using the Esscher Transform or the Mean Correcting
Martingale measure by setting QMeasure equal to FALSE or TRUE respectively.

The method OptionPrice computes option prices with the arguments:

– object: an object of class param.MixedTS that contains all information about
the log return process.

– S0: a numeric object of the current underlying asset price.
– Strike: a numeric object that represents the level of the strike price.
– TimeToMat: a numeric object that represents the time to expiry for options.
– ret: a numeric object that contains the constant risk free rate.
– basis: a numeric object indicating the number of days in one year. The default

value is 360.
– Qmeasure: a logical variable. If Qmeasure = FALSE the equivalent martingale

is selected according to the Esscher Transform otherwise the Mean Correcting
Martingale measure is used when Qmeasure = TRUE.

– type: a character object that indicates whether we are working with a call (type
= CALL) or with a put (type = CALL).
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The method OptionPrice is also used internally by the function GenerOptMrk that
allows the user to build a simulated option market since it is possible to adding an
error term through the additional input error.

The method calibrate estimates the MixedTS parameters using quoted option
prices. All the approaches illustrated in Section 4 are available. The arguments are:
model, Data, Qmeasure, basis and method. Qmeasure, basis are the same inputs as
for method OptionPrice. The remaining quantities are: where the arguments mean:

– model: an object of class param.MixedTS that contains the starting values for
the model parameters in the optimization routine.

– Data: an object of class OptionData that contains the quoted option prices.
– method: a character object that is used for specifying the estimation procedure

considered the choices are:
– method = "RMSE" for the Mean Squared Error.
– method = "RMSPE" for the Mean Squared Percentage Error.
– method = "AAE" for the Average Absolute Error.
– method = "ARPE" for the Average Relative Percentage Error.
– method = "APPE" for the Additive Proportional Pricing Error.
– method = "APE" for the Additive Pricing Error.
– method = "MPE1" for the Multiplicative Pricing Error 1.
– method = "MPE2" for the Multiplicative Pricing Error 2.
– method = "AGNE" for the Additive Generalized Normal Error.
– method = "APGNE" for the Additive Proportional Generalized Normal Error.
– method = "AMGNE" for the Additive Mixed Generalized Normal Error.

6 Numerical Examples

In this Section we show how to use the PricingMixedTS package in the estima-
tion of model parameters using option prices. To verify the estimation ability of the
different approaches analyzed in Section 4, we consider a simulated market where
option prices are computed as a summation of two components: model prices and a
zero mean gaussian noise. The model is estimated under the real measure and the
equivalent martingale measure is selected based on the Esscher Transform.
First, we define the model under the real measure using the constructor setMixedTS.param.

Modpar <- setMixedTS.param(mu0 = 0, mu = -0.01, sigma = 0.10,
a = 1.67, alpha = 1.7, lambda_p = 1.1, lambda_m = 1.05)

We define the contract features:

TimeToMat <- c(30, 45, 60)
Strike <- c(97.5, 98, 99, 100, 101, 102, 102.5)

In order to generate the option prices, we use the function GenerOptMrk that
internally calls the OptionPrice method:

set.seed(1)
DatasetOpt <- GenerOptMrk(object = Modpar,S0 = 100, Strike = Strike,

QMeasure = FALSE, TimeToMat = TimeToMat,
error = "rnorm(1, mean = 0, sd=0.02)")
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The function allows the user to insert an additive noise in the prices using the
argument error.

The simulated prices are reported in Figure 3. We observe that, even adding a
gaussian noise, the value of standard error is small enough to ensure the standard
behavior of prices, that means, decreasing convex function w.r.t strike and increasing
function w.r.t time to maturity.

98 99 100 101 102

0.
5

1.
0

1.
5

2.
0

2.
5

Simulated Option Prices

Strikes

V
al

ue
s

Days = 30
Days = 60
Days = 90

Fig. 3 Option price behavior for varying strikes and time to maturities.

In the estimation procedure, we consider only methods that are coherent with an
additive noise, i.e. RMSE, APE, AGNE and ANGNE. Command lines for estimation
are reported below:
# Mean Squared Error
res.RMSE <- calibrate(model = Modpar, QMeasure = FALSE, Data = DatasetOpt,

method = "RMSE")

res.RMSE

$par
mu0 mu sigma a alpha

-0.005677724 0.233320353 0.095384670 3.519289963 1.431389357
lambda_p lambda_m

1.264525986 0.195903798

$value
[1] 0.003554974

# Additive Pricing Error
res.APE <- calibrate(model = Modpar, QMeasure = FALSE, Data = DatasetOpt,

method = "APE")

In order to show the result, we use the summary method for estimates and their
standard error while the method logLik computes the level of the loglikelihood.
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summary(res.APE)

## Maximum likelihood estimation

Call:
calibrate(model = Modpar, Data = DatasetOpt, QMeasure = FALSE,

method = "APE")

Coefficients:
Estimate Std. Error

mu0 -0.005677724 NaN
mu 0.233320353 0.0005332325
sigma 0.095384670 NaN
a 3.519289963 0.0005068516
alpha 1.431389357 0.0006463310
lambda_p 1.264525986 0.0004962785
lambda_m 0.195903798 0.0005744631

-2 log L: -122.7439

logLik(res.APE)

’log Lik.’ 61.37193 (df=7)

In the following we report the command lines for the other methods:

# Additive Generalized Normal Error

res.AGNE <- calibrate(model = Modpar, QMeasure = FALSE, Data = DatasetOpt,
method = "AGNE")

summary(res.AGNE)

## Maximum likelihood estimation

Call:
calibrate(model = Modpar, Data = DatasetOpt, QMeasure = FALSE,

method = "AGNE")

Coefficients:
Estimate Std. Error

mu0 -0.008816703 0.0005179283
mu -0.182573728 0.0014803146
sigma 0.081512037 0.0002618718
a 1.878937853 0.0013934064
alpha 1.806059020 0.0017444467
lambda_p 2.464850469 0.0033470183
lambda_m 1.044349463 0.0021938962
beta_err 0.519769543 0.0459639251
gamma_err 0.002074095 0.0001997059
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-2 log L: -125.4714

logLik(res.AGNE)

’log Lik.’ 62.73572 (df=9)

Due to the the complex form of the loglikelihood function in the ANGNE ap-
proach, it is needed to choose an appropriate starting value in the optimization
routine. In the following we decide to initialize the procedure using the estimates
obtained with the APE method where the µ0 is multiplied by 0.9:

# Additive Mixed Generalized Normal
ErrorModpar1 <- setMixedTS.param(mu0 = coef(res.APE)["mu0"]*0.9,

mu = coef(res.APE)["mu"], sigma = coef(res.APE)["sigma"],
a = coef(res.APE)["a"], alpha = coef(res.APE)["alpha"],
lambda_p = coef(res.APE)["lambda_p"],
lambda_m = coef(res.APE)["lambda_m"])

res.AMGNE <- calibrate(model = Modpar1, QMeasure = FALSE, Data = DatasetOpt,
method = "AMGNE")

summary(res.AMGNE)

## Maximum likelihood estimation

Call:
calibrate(model = Modpar1, Data = DatasetOpt, QMeasure = FALSE,

method = "AMGNE")

Coefficients:
Estimate Std. Error

mu0 -0.0090420321 0.0004799506
mu 0.6026626693 0.0016753030
sigma 0.0967454519 0.0003723957
a 3.7870384267 0.0017005379
alpha 1.4600813943 0.0007555295
lambda_p 0.6770147877 0.0025098502
lambda_m 0.1443917554 0.0011591309
beta_err 0.5682894958 0.0710103696
gamma_err 0.0024956972 0.0005727287
rho_err 0.0002174919 0.3930618541

-2 log L: -130.0919

logLik(res.AMGNE)

’log Lik.’ 65.04593 (df=10)

As expected, the best performance in term of loglikelihood is achieved using the
AMGNE method. This result is not surprising since, as observed in Section 4, this
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approach has the others as special cases. Nevertheless, the possibility of computing
the loglikelihood allows us to select an approach using the likelihood ratio test. In
particular, the value of the ratio test between the AMGNE and the APE approaches
is 7.3480 (that corresponds to a p value 0.0616) that means, the restricted method
(APE) is more suitable.
We show how to determine the distribution of the option price with the APE method.
Once the parameters are estimated, we compute the option price using OptionPrice
method. We consider a European call option with time to maturity 30 days, strike
price 95 and underlying asset price 100.
To extrapolate the estimated parameters from the object res.APE we use the method
coef:

estMod <- setMixedTS.param(coef(res.APE)["mu0"], coef(res.APE)["mu"],
coef(res.APE)["sigma"], coef(res.APE)["a"], coef(res.APE)["alpha"],
coef(res.APE)["lambda_p"], coef(res.APE)["lambda_m"])

call095D30 <- OptionPrice(estMod, 100, 95, 30, r = 0, basis = 360,
QMeasure = FALSE)

We determine the grid of strikes and use the dnorm function to determine the
density of the option price. The standard deviation of the error term is stored in the
slot fullcoef:

x <- call095D30 * seq(0.985, 1.015, by = 0.0005)
dens <- dnorm(x, mean = call095D30, sd = res.APE@fullcoef["sd_eps"])
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Fig. 4 Distribution of the option price when the underlying price is 100, strike price 95 and
maturity 30 days.

Figure 4 shows the density of the option price with maturity 30 days and strike
95 based on the estimated parameters. The red line corresponds to the theoret-
ical price and the area between the green lines is the probability of the event∣∣∣Callmkt−calltheoσε

∣∣∣ ≤ 1.96 (σε is the standard deviation of the pricing error term).
In conclusion, if the MixedTS is a correct model and the estimation procedure is the
APE, we expect that the real option price to belong to the interval

[
Calltheo − 1.96σε, Calltheo + 1.96σε

]
.
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7 Sensitivity and real data analysis

This Section is composed by two parts. The first one is devoted to a sensitivity anal-
ysis with respect to the α parameters. In the second part we study the behaviour of
the MixedTS model on real option prices and compare the calibration performance
with Variance Gamma model. As observed in Section 3, the Variance Gamma model
is obtained as a special case of a MixedTS when α = 2.
In order to study the behaviour of option prices when α varies, we consider, under
real measure, three models that are identified by the following parameters µ0 = 0,
µ = 0, σ = 1, a = 1,alpha = (0.8, 1.25, 1.65) λp = 1.1 and lambdam = 0.9 on
monthly basis.
In table 1 we report the corresponding parameters obtained through Esscher trans-
form and the Mean Correcting Martingale approach for each model.

Table 1 Model Parameters under real and equivalent martingale measures

Model 1
µ0 µ σ a α λp λm

Real 0 0 0.150 2.500 0.800 1 1.500
MCM -0.067 0 0.150 2.500 0.800 1 1.500
Essch 0 -0.632 0.165 2.500 0.800 1.750 0.750

Model 2
µ0 µ σ a α λp λm

Real 0 0 0.150 2.500 1.250 1 1.500
MCM -0.051 0 0.150 2.500 1.250 1 1.500
Essch 0 -0.688 0.158 2.500 1.250 1.750 0.750

Model 2
µ0 µ σ a α λp λm

Real 0 0 0.150 2.500 1.650 1 1.500
MCM -0.045 0 0.150 2.500 1.650 1 1.500
Essch 0 -0.727 0.153 2.500 1.650 1.750 0.750

In Figures 5 we compare the returns real density with that obtained using Esscher
transform and Mean Correcting Martingale approach.

As expected, the Mean Correcting Martingale approach involves a traslation of
the original density while the Esserch Transforms involves a distorsion on tails. The
behaviour of call prices for the parameters in Table 1 are reported in Figure 6 where
the prices obtained by Mean Correcting Martingale approach seems to be higher
than those with Esscher transforms when α increases.

In order to study deeply the effect of the α parameter on prices, we report in
Figure 7 the following quantity

∂Calltheo (α)
∂α

= Calltheo (α+ ε)− Calltheo (α− ε)
2ε .

From Figure 7, it is possible to see that, for short maturities, under both measures,
the behaviour of prices seems to be similar for varying α even if, as shown in Figure
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Fig. 5 Comparison between real and equivalent martingale measure.

5, the Mean Correcting Martingale measure is just a translation of the real density
while the Esscher transform changes the tails of the distribution.

We conclude this Section with an analysis on real data. The dataset is composed
by the mid call prices with maturity 15 days on APPLE observed at 31 december 2015
and the moneyness ranging from 0.6 to 1.4. We estimate the MixedTS parameters
using the AMGNE approach introduced in Section 4 and we compare it with the
Variance Gamma model. Results are reported in Table 2

The AMGNE approach gives us the possibility of building a statistical test in
order to identify the appropriate model for the data. Indeed we are able to construct
a likelihood ratio test where the Null hypothesis H0 is the following:

H0 : α = 2. {Market prices follow a Variance Gamma model.}

against the Alternative hypothesis H1:

H1 : α ∈ (0, 2) {Market prices follow a MixedTS model.} .
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Fig. 6 Call prices behaviour for varying α with maturity 15 days

Table 2 Estimated parameters using real call options on APPLE with maturities 2 weeks.

Exponential Mixed Tempered Stable model Exponential Variance Gamma model
param EsschP MCM param EsschP MCM
µ0 0.0230 (0.0002) 0.0207 (NA) µ0 0.0143 (0.0003) 0.0120 (NA)
µ -0.5474 (0.0005) -0.9999 (NA) µ 0.1109 (0.0015) -0.5653 (NA)
σ 0.0300 (0.0001) 0.0363 (NA) σ 0.0875 (0.0004) 0.0374 (NA)
a 2.5521 (0.0067) 6.5945 (NA) a 1.2376 (0.0022) 4.8871 (NA)
α 1.9562 (0.0057) 1.8793 (NA) - - -
λp 2.9160 (0.0119) 4.6575 (NA) - - -
λm 1.3380 (NA) 0.0233 (NA) - - -
β 0.9850 (0.3220) 319 (NA) β 0.6354 (0.1502) 319 (NA)
γ 0.0287 (0.0144) 0.0766 (NA) γ 0.0175 (0.0121) 0.0864 (NA)
ρ 4.7e-07 (0.046) 0.3866 (NA) ρ 1.1e-06 (0.0560) 0.3458 (NA)

LogL 212 172 LogL 169 163
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Fig. 7 Sensitivity of call prices with respect to α and time to maturity.

In this case, the test statistic LR is given as:

LR = −2 (l0 − l1) ∼ χ2
3 (45)

where l0 and l1 are the log-likelihood of the Variance Gamma and the MixedTS
models respectively. Looking at the results in Table 2, the LR statistic is 86 for the
Esscher Transform and 18 for the Mean Correcting Martingale measure. I both cases
we can conclude that the Null hypothesis H0 can be rejected in our dataset.
In the Essher transform case, we observe that the value of ρ is close to zero and
consequently the pricing error seems to be additive. Moreover the value of β ≈ 1
suggests us that the error pricing can be a double exponential random variable while,
in the Mean Correcting Martingale case, the error seems to be an uniform random
variable.

8 Conclusion

In this paper we presented a general calibration model that encompasses well-known
methodologies. We discussed option pricing for Mixed Tempered Stable distributed
log returns and explain step by step how to use the new introduced R package that
allows the user to perform calibration methodology selection through likelihood ratio
tests.
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lévy jumps. Review of Financial Studies, 21(5):2345–2378, 2008.

E. Rroji and L. Mercuri. Mixed tempered stable distribution. Quantitative Finance,
15(9):1559–1569, 2015.
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