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1. Introduction 

This paper elaborates an empirical study of changes in the skill content of occupations in US 

manufacturing industries from 1999-2010. Our goal is to elaborate an assessment of the key 

drivers of changes in workforce composition by focusing on non-routine (NR) skills, a 

particular set of workers’ abilities that are used when carrying out analytical and interactive 

tasks. The relationship between job tasks and skills is a staple of a flourishing strand of 

research on the relationship between capital and labor. The seminal study by Autor, Levy and 

Murnane (2003) on the effects that computer technology exerted on the composition of 

employment in the 1990s found a substitution effect for routine-intensive occupations, such 

as clerks, and complementarity with managerial, professional and technical occupations. 

Given the argument that the shock wave of the 1990s may have subsided due to the 

stabilization of the computer’s life-cycle (see e.g., Vona and Consoli, 2015), we take stock of 

the empirical evidence and gauge the effect of technology on the demand for skills and on 

occupational composition in the 2000s. Our analysis also takes into account the remarkable 

growth of international trade due to the expansion of China and other emerging economies 

(Hanson, 2012). We note that, although a few exceptions (e.g., Lu and Ng, 2013) exist, there 

are no systematic accounts of how trade has reshaped the skill content of occupations and 

industries. Filling this gap is the second objective of the paper. 

Our analysis yields three main findings. First and foremost, import competition from low-

wage countries emerges as a stronger driver of demand for non-routine skills than technology 

in the 2000s. Second, both technology and imports from low-wage countries are associated 

with skill convergence across industries. This finding is consistent with the literature showing 

that trade-induced adjustments are stronger in industries with lower initial skill levels 

(Bugamelli et al., 2008; Pierce and Schott, 2012). Furthermore, when allowing for 

heterogeneity across occupational groups, we find that the convergence of NR skill intensity 
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across industries is not driven by convergence across occupations. Conversely, heterogeneity 

across occupational groups is persistent due to imports from high- and medium-wage 

countries. The last major finding is that upgrading non-routine skills has, at best, a modest 

effect on productivity and wages, except for in high-skill occupations. 

The paper is structured as follows. Section 2 reviews the literature. Section 3 outlines the 

empirical strategy, and Section 4 describes the dataset. The central part of the paper involves 

the analysis of the determinants of NR skills; Section 5 presents the baseline model and 

unpacks the heterogeneous effects on different occupational categories. In Section 6, we 

focus on the effects of NR skills on the wages of major occupational groups and productivity. 

The conclusions summarize and sketch future lines of research. 

2. Literature review 

Innovation studies have made significant contributions to the analysis of the relationships 

between knowledge, industry evolution and competitiveness. This paper focuses on one 

particular mechanism through which knowledge is applied to economic ends, namely, 

employment. Arguably, besides sporadic bursts of interest (e.g., Nelson and Phelps 1966; 

Freeman and Perez, 1988; Amendola and Vona, 2012; Consoli et al., 2013; Boschma et al., 

2014), the workings of labor markets and the relationship between human labor and 

technology have not been fully integrated into the intellectual apparatus of innovation studies. 

However, employment is the pathway that permits the translation of human know-how into 

productive activities, and understanding what the mechanisms that influence changes in the 

employment structure are is the key to identifying which forms of know-how are relevant at 

any time and the role that technology plays in modifying this know-how. 

We explore these issues by building on the task-based approach proposed by Autor, Levy and 

Murnane (2003) (ALM henceforth). In the perspective put forth by ALM, skills are 
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ensembles of abilities applied to job tasks. The key intuition is that productive activities can 

be broken down into functionally different task groups and that technological change affects 

the comparative advantage of productive factors, i.e., workers and machines, in performing a 

certain task (Levy and Murnarne, 2004). This approach opens up new possibilities for 

understanding the process by which individual abilities emerge, combine, or are selected as a 

result of innovation and structural change; it is an appealing conceptual framework to address 

issues that are central to innovation studies. First, it allows for a more flexible interpretation 

of the relationship between labor and capital in performing work tasks, which is especially 

relevant in those contexts in which technology plays a dual role, partly complementing and 

partly substituting human work. Clearly, this approach is grounded in an interdisciplinary 

view whose central tenet, traceable to Herbert Simon (see e.g., 1969), holds that machines 

perform better physical and cognitive ‘routine’ tasks that can be codified in the form of 

instructions, while humans retain a cognitive comparative advantage at ‘non-routine’ 

activities that involve problem-solving, pattern recognition (e.g., Langlois, 2003) and 

personal interaction, such as communicating with others (interpersonal skills) or interpreting 

information (analytical skills). However, another advantage of the task-based approach is that 

it accommodates empirical findings of non-neutral labor market outcomes due to the 

diffusion of new general purpose technologies (GPTs)1 and associated changes in the 

organization of production for which the traditional capital-skill complementarity hypothesis 

(i.e., Krusell et al. 2000) does not suffice.2  

                                                           
1 Note that the task-based also model suits other radical technological transitions, such as electrification in the 
19th century (Gray, 2013). 
2 Within the economics literature on the effect of ICT technologies on the labor markets, early studies generally 
explain the increase in the skill premium using a demand-supply framework augmented for directed technical 
change (see, e.g., Krueger et al., 1993, Katz and Murphy, 1992; Autor et al., 1998; Goldin and Katz, 1998; 
Acemoglu, 1998). This approach, however, is unable to explain polarization and has hence been replaced by the 
more general routinization hypothesis discussed in the main text (see Autor, Katz and Kerney, 2008). The 
debate is well summarized in Acemoglu and Autor (2011). 
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Building on the review above, we propose an analysis of the determinants and effects of 

changes in the demand of non-routine (NR henceforth) skills in US manufacturing industries 

from 1999-2010. This time window is especially interesting due to the co-occurrence of key 

global events, such as China’s admission to the WTO and the great recession after 2007.  

Previous studies on the determinants of change in the demand for skills draw attention to 

ICTs and trade. ALM (2003) first proposed that ICTs induced ‘polarization’ in employment 

and the demand for skills, that is, the decline of routine-intensive jobs and wages relative to 

occupations that are either at the top or at the bottom of the earning distribution (Autor et al., 

2008; Goos and Manning, 2007). As discussed before, computer capital substitutes for 

routine tasks, thus reducing the demand for routine-intensive occupations, while increasing 

the productivity of non-routine analytical and interactive skills and thus the demand for 

highly skilled professionals. Interestingly, these empirical regularities also have been 

observed in a large panel of economies, not just in the US.3 Recent evidence also suggests 

that the influence of ICTs has waned over the last decade. Weber and Kauffman (2011), for 

example, note that ICT-related investments in US manufacturing plateaued during the 2000s, 

and that the lion’s share of capital spending now goes into maintenance activities rather than 

new technology acquisition. Aizcorbe et al. (2006) also call attention to a break in the 

technological trajectory of ICTs sometime in the early 2000s that is ascribed to a combination 

of changes in economies of scale and a shift in the product mix.4 This shift, although not 

necessarily implying the reduced importance of technology, calls at least for a 

reconsideration of the one-to-one mapping between ICTs and NR skills. After all, it seems 

plausible that, after take-off and growth, the trajectory of ICTs may have reached a stage of 

                                                           
3 See Spitz-Oener (2006); Goos et al. (2009); Acemoglu and Autor (2011); Jaimovich and Siu (2012). 
4 See also Oliner and Sichel (2000), Wolff (2003) and Basu and Fernald (2007). To illustrate, the product cycle 
for semiconductors (i.e., the lag between successive releases) has shifted back to a 3-year period since 2000 
(Jorgenson et al., 2008) after being reduced to a 2-year period during the intense competition of the mid-1990s. 
Recent examples of ICT diversification also confirm this shift, e.g., Hubbard (2003) and Athey and Stern 
(2002). 
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maturity and, as codification has caught up with the skills that pushed the technological 

frontier in the 1990s (Vona and Consoli, 2015), the dynamics of both productivity and wages 

have adapted accordingly. The first goal of the paper is to take stock of existing evidence and 

assess whether technology continued to be a major driver of the demand for skills during the 

2000s; in particular, this paper seeks to determine whether technology has spurred any further 

divergence across occupations and industries. 

The debate on the changes in the skill content of the workforce has been recently enriched by 

the inclusion of trade as a key explanatory factor. Trade’s inclusion is not surprising 

considering the remarkable pace of expansion of China and of various emerging economies 

that have transformed the global import-export matrix (Hanson, 2012). With regard to the 

US, the general agreement is that higher exposure to foreign competition had a negative 

employment effect, especially after China’s entry into the WTO in 2001 (Pierce and Schott, 

2012; Autor et al., 2013). The literature draws attention to two mechanisms. On the one hand, 

the greater fragmentation of supply chains (Baldwin, 2011) has opened up the scope for 

offshoring routine tasks involving minimal complexity (Blinder, 2009). On the other hand, 

domestic producers have reacted to foreign competition by switching to higher quality 

products and innovations that require the intensive use of non-routine tasks (Verhoogen, 

2008). In general, much empirical evidence lends support to the conjecture that the impact of 

trade has been heterogeneous across industries and occupations.5 With the notable exception 

of Lu and Ng (2013), however, few have analyzed the impact of trade on the skill content of 

US industries during the large increase of trade with low-wage and emerging countries. 

Addressing this issue is the second objective of this paper. 

                                                           
5 Note that large trade shocks are not limited to the US; empirical evidence shows a direct effect of trade shocks 
on returns to skills in both developing (Verhoogen, 2008; Amiti and Davis, 2012) and developed countries 
(Guadalupe, 2007; Raitano and Vona, 2013). Bugamelli et al. (2008) find that the Euro and increased 
competition from China induced restructuring in the workforce composition, especially among low-tech sectors. 
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By tackling the two questions outlined above, this study adds to previous literature in two 

ways. First, it focuses both on the determinants of the demand for NR skills and the effects of 

NR skills on performance, as captured through changes in industry wages and productivity. 

Second, studies on the determinants of NR skills (Autor et al., 2003; Lu and Ng, 2013) 

arguably neglect the dynamic process through which the composition of the workforce 

gradually adapts to a new, ex ante undetermined, target level of NR skills. Our empirical 

strategy accounts for this adaptation process using standard system-GMM techniques. We 

believe that these techniques are the appropriate, as technological revolutions induce a 

dynamic response in the employment structure and the attendant know-how (Autor et al., 

2003; Vona and Consoli, 2015). 

3. Empirical strategy 

Let us now illustrate our empirical strategy. To fix ideas, we are primarily interested in 

explaining non-routine skill intensity at time t in industry i (NRIit) as a linear function of 

trade and technology variables. In the second part of the paper, we focus on an indicator of 

performance Y as a function of NR intensity, trade and technology proxies, as shown in the 

following formulae: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖, 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖, 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖, 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖) 

Assuming the linearity of f(.) is not just for the sake of simplicity. This paper is mainly an 

empirical exercise and relies on previous work to derive testable predictions; therefore, we do 

not present theoretical justifications in support of including interactions or nonlinear effects. 

In addition, relevant literature keeps the empirical specification to a minimum to avoid a 

misinterpretation of the effects of interest. Accordingly, we opt for a parsimonious 

specification. In the studies of Autor et al. (2003) and Lu and Ng (2013), the identification of 
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the effects of interest is warranted through the inclusion of unobservable individual effects 

and/or through the use of IV. An IV approach would be appealing for us because 

unobservable time-varying factors likely affect both the demand for NR skills and the 

evolution of technology. However, previous works have been unsuccessful in finding 

appropriate instruments for both trade and technology proxies. For example, Autor and Dorn 

(2013) and Autor, Dorn and Hanson (2013) use NR skill levels in the 1950s as instruments 

for NR skill levels to explain the changes in employment shares across occupational groups 

in later decades. This empirical strategy has the problem that instruments based on initial 

conditions are suitable for explaining the demand for NR skills in the 1960s but lose 

explanatory power in the following decades, thus becoming weak predictors for the crucial 

decade of the ICT revolution. 

Another important source of bias is true state dependence in the data generating process. In 

our case, the 0.97 point estimate of the autocorrelation coefficient for NR skills indicates that 

state dependence characterizes the adjustment in the industry demand for NR skills.6 Such a 

high degree of persistence is not surprising considering that both the demand for and the 

supply of skills are variables that change slowly over time. Demand changes slowly because 

of non-negligible hiring and firing costs due to skill specificity; supply changes slowly 

because there are significant lags in the adjustment through training and education. Note 

thatin past work, e.g., ALM (2003), state dependency may have been less severe because the 

time unit was a decade or a 5-year period. More recently, Lu and Ng (2013) used an industry-

by-year panel and correctly concluded that their findings do not change when dynamics are 

properly accounted for. However, their point estimates for the effect of the lagged dependent 

variable range between 0.05 and 0.15, well below that of our data.7 A similar argument 

                                                           
6 Similar results emerge when using standard tests for serial correlation and presence of unit roots. 
7 High persistence is also observed when using the measures of NR skills of Lu and Ng (2013). The latter study 
uses differenced GMM (Arellano and Bond, 1991) instead of the more general system GMM (Blundell and 
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applies to our measures of performance, i.e., industry wages and productivity, which also 

exhibit high persistence with estimated autocorrelation coefficients above 0.9. Therefore, our 

specifications in eq. 1-2 are as follows: 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 = 𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡−1 + 𝛽𝛽1𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖,𝑡𝑡−1 + 𝛽𝛽2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖,𝑡𝑡−3 + 𝜇𝜇𝑖𝑖 + 𝜇𝜇𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡                            (1) 

𝑌𝑌𝑖𝑖,𝑡𝑡−1 = 𝜌𝜌𝑌𝑌𝑖𝑖,𝑡𝑡−1 + 𝛼𝛼1𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡−1 + 𝛼𝛼2𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖,𝑡𝑡−1 + 𝛼𝛼3𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖,𝑡𝑡−3 + 𝜇𝜇𝑖𝑖 + 𝜇𝜇𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡,        (2) 

where 𝜇𝜇𝑖𝑖, 𝜇𝜇𝑡𝑡 and 𝜀𝜀𝑖𝑖,𝑡𝑡 are an industry effect, a time effect and a generic disturbance term, 

respectively. While it is well-known that OLS and fixed-effect estimators deliver biased 

estimates of the effects of interest under these circumstances (Nickell, 1981), the debate on 

what is the best fix is still open. The system-GMM estimator (Arellano and Bover, 1995; 

Blundell and Bond, 1998) has gained some consensus among applied economists. The basic 

rationale underpinning these estimators is the use of a lagged dependent variable with its lags 

or lagged differences. Within this class of estimators, the system GMM reduces the small-

sample bias of the difference GMM (Arellano and Bond, 1991) when the endogenous 

variables are persistent, using moment conditions both for the equation in level and in first-

differences (Bond, 2002). Such a bias exists because the pure random disturbance generated 

when differencing a persistent variable is, by definition, a weak instrument. 

The inclusion of the lagged dependent variables does not fully address the endogeneity of 

trade and technology variables, even if the lagged dependent variable is a good proxy for 

industry-time-varying factors that are likely to bias our effects of interest. For technology, we 

exploit the long data series available for our technology proxy and use past values as proxies 

for current ones. For trade variables, we could have followed the same route, but we would 

lost two years for our analysis because trade variables are only available until 2007. We 

therefore opted for including trade variables with a 3-year lag to avoid the problem of having 
                                                                                                                                                                                     
Bond 1998), which we argue may generate a downward bias of the autocorrelation coefficient. Using a 
Montecarlo experiment, Hauk and Wacziarg (2009) show that the differenced GMM tends to considerably 
underestimate the autocorrelation coefficient compared with a system GMM estimator. 
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‘too many instruments’ compared with the number of observations (Roodman 2009a). 

Likewise, because available data for technology are only available until 2009, we lag our 

technology proxy. This peculiar lag structure is the best option for preserving an acceptable 

time span in the analysis of the 2000s, and for ensuring the inclusion of the recent economic 

recession.8 

Further details of the empirical strategy are outlined in the results section.9 Let us now 

illustrate the dataset and the construction of the variables. 

4. Data and variables 

Our empirical analysis combines data from three different sources. We use US Bureau of 

Labor Services (BLS) data for employment and hourly wages across industries (four-digit 

occupations based on the Standard Occupational Classification System, henceforth SOC) and 

four-digit NAICS. The latter is matched with information on occupation-specific task content, 

the O-NET abilities survey of the US Department of Labor. Lastly, we use NBER data for 

variables on international trade data, technology, productivity and the remaining controls. 

Data construction and measurements are detailed below, while further details are provided in 

the online appendix. 

Construction of task variables 

The US Department of Labor’s O-NET abilities survey is the main source of information to 

compute our task variables. This database gathers information on worker attributes and job 

characteristics from questionnaires aimed at both job incumbents and occupational analysts 
                                                           
8 Interestingly, the financial crisis of 2007 has no significant effect on our variables of interest. The same holds 
when we include proxies for industry demand. Our results are also robust to changes in the lag structure, which 
is not surprising because our explanatory variables are also highly persistent. 
9 Our model is mostly focused on changes due to technological effects. In so doing, we do not consider other 
factors affecting demand and supply conditions, such as the minimum wage. This focus is plausible because no 
significant institutional changes occurred in the period analyzed, and we believe that fixed effects are enough to 
control for any effect related to any such changes. We would like to thank an anonymous referee for calling our 
attention to this point. 



11 
 

(see Tippins and Hilton, 2010). To keep up with changes in the US labor market, O-NET data 

are regularly updated and adapted in a way that includes two sources of variation for the task 

content: (i) occupations are added, reclassified or eliminated in accordance with periodical 

revisions in the SOC structure, and (ii) the scores of worker characteristics increase or 

decrease as a result of their changed importance. We kept track of all revisions from 2002-

2010 and created a unique dataset of 855 four-digit SOC occupations. O-NET information on 

job content has been matched with industry-occupation total employment from the BLS for 

the 1999-2010 period.10 Because the first usable wave of O-NET is from 2002, we lack 

information on employee abilities in the 1999-2001 period. To cope with this lack of 

information, we assign time invariant from the 2002 wave of O-NET to observations that 

belong to the 1999-2001 period. Using crosswalks across different datasets, we obtain a 

balanced industry-by-year panel dataset, which includes 86 manufacturing industries for the 

period 1999-2010.  

The key dimensions for our variables of interest are job-specific characteristics, such as 

communicating with others (NR interactive), interpreting the meaning of information (NR 

cognitive), performing administrative activities (routine cognitive), and performing physical 

activities (routine manual); please see further details in the online appendix. Accordingly, the 

scores assigned based on survey responses generate vectors of basic tasks that are specific to 

each SOC occupation. Although such basic tasks are common to most jobs, a particular 

combination of scores in the use of each task distinguishes one occupation from another. 

 Our task constructs are built from a detailed examination of O-NET work activities and work 

contexts, i.e., the scores for basic tasks. These items are subsequently grouped together in 

four main macro-categories: non-routine cognitive (NRC), non-routine interactive (NRI), 
                                                           
10 BLS data on employment for the 1999-2010 period are based on different industry classification schemes: the 
1987 Standard Industrial Classification (SIC1987) until 2001, the 2002 North American Industry Classification 
System (NAICS) until 2006, and the 2007 North American Industry Classification System (NAICS) currently in 
use. We developed concordance tables, the details of which appear in Section B1 of the appendix. 
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routine cognitive (RC) and routine manual (RM). Table B1 in the appendix lists the 40 O-

NET task items used in this study, ten for each macro-category. The macro-categories are 

computed by adding up the score of importance for a particular SOC occupation. The index 

of task intensity is as follows: 

𝑁𝑁𝑁𝑁 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑦𝑦𝑖𝑖𝑖𝑖 = � 𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 ∗
𝑗𝑗

�
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑁𝑁
𝑅𝑅𝑅𝑅 + 𝑅𝑅𝑅𝑅

�
𝑖𝑖𝑖𝑖𝑖𝑖

,  

where NRC, NRI, RM and RC are the task constructs outlined above for industry i and 

occupation j in year t. Emp Shareijt refers to the employment share in industry i and 

occupation j in year t, which is constructed using data for the four-digit NAICS and four-digit 

SOC from the BLS. To define skill categories, we build on the classification of Acemoglu 

and Autor (2011) by including additional items (see Table B1 in the appendix). Moreover, we 

partially depart from previous literature because our measure is not the employment share of 

occupations ranked according to initial levels of non-routine skill content (see Autor et al. 

2013); we instead use an industry-level measure of non-routine skills. We believe that this is 

a first step towards a fully dynamic account of the process analyzed.11 

Furthermore, to capture heterogeneity in the effect of our variables of interest across 

occupations, we follow Autor and Dorn (2013) and differentiate between three broad 

occupational groups. The first category, which includes occupations that are intensive in 

terms of non-routine tasks (NRI and NRC), is labeled as the high-skill (henceforth HS) group. 

The second category encompasses routine-task-intensive activities and contains medium-skill 

(henceforth MS) occupations. The last group features low-skill jobs and includes low-skill 

(LS henceforth) occupations. Similar to what was done for the task measure above, we create 

                                                           
11 We performed several checks based on different measures of task content at the industry level. The interested 
reader is referred to the appendix of the working paper version of the present study: 
https://www.sussex.ac.uk/webteam/gateway/file.php?name=2014-18-consolivonarentocchini.pdf&site=25  

https://www.sussex.ac.uk/webteam/gateway/file.php?name=2014-18-consolivonarentocchini.pdf&site=25
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three different task measures referring to the three broad occupational categories: high skill 

(NR intensity HS), medium skill (NR intensity MS) and low skill (NR intensity LS).12 

Labor productivity and hourly wage measures 

We analyze the effects of changes in non-routine tasks by focusing on labor productivity and 

hourly wages. The former is an aggregate (industry-level) measure of performance, while the 

latter varies across occupations and thus provides useful insights into the impact of our 

variable of interest, NR intensity, over different types of workers. Labor productivity (Prodit) 

is computed as the value added per worker at the four-digit NAICS; it is the total value added 

in $ million per 1,000 employees and is available on a yearly basis for the 1989-2009 period. 

Information on total value added and employment is extracted from the NBER-CES 

manufacturing industry database (Becker and Gray, 2013). The source of the other 

performance indicator, the average hourly wage for four-digit occupations, is the BLS. 

Following the same logic underlying the construction of the task measures, we seek to 

capture heterogeneity across the three occupational categories by considering group-specific 

hourly wages, namely, Wage HS, Wage MS and Wage LS. 13 

Measures of technology and trade 

We represent investments in ICTs using the information on the investment in capital 

equipment per worker available from the NBER-CES Manufacturing Industry database 

(Becker and Gray, 2013). This simple measure is appropriate for our purposes considering 

the vast literature on the pervasiveness of automated processes in production technology (e.g., 

David and Wright, 2003; Brynjolfsson and McAfee, 2011) and their capacity to capture 

embodied technical change (Cummins and Violante, 2002). 

                                                           
12 All task measures are aggregated in the occupational group by weighting for the employment shares of each 
occupation belonging to the group. 
13 The aggregate hourly wage at the occupational group level is weighed by employment shares. 
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We measure exposure to trade using an index of import penetration that is widely used in the 

literature (Bernard et al., 2006; Lu and Ng, 2013). Import penetration ratios are a reliable 

measure of the evolution in the exposure of manufacturing industries to foreign competition. 

Accordingly, we define two measures of import penetration. Imp Pen Hi-Medit is the ratio of 

the total value of US imports from high- and medium-wage countries to the total value of 

shipments and imports minus exports. To capture the effects coming from low-wage 

countries, we also define import penetration from low-wage countries (Imp Pen Low) 14 and 

from China (Imp Pen China). To construct our measures, we employ US import and export 

data for the manufacturing industries for the 1996-2007 period, as compiled by Peter Schott, 

and data on the value of shipments from the NBER-CES manufacturing industry database. 

Figure 1 shows the prolonged contraction in US manufacturing employment with two sharp 

accelerations coinciding with the recessionary phases of 1999-2003 and 2007-2010. Note that 

on both occasions, the contraction has been stronger for MS and LS occupations relative to 

HS occupations. 

[FIGURE ONE ABOUT HERE] 

Table 1 presents basic statistics with details on the reference period and the data source. 

Figure 2 offers preliminary insights into the relationship between the relative demand for 

skilled labor and our main explanatory variables, namely, capital equipment and import 

penetration, over time. We observe that import penetration from low-wage countries 

accelerates faster than import penetration from high- and middle-income countries, especially 

after 2001 [cf. quadrants (b) and (c)]. Incidentally, this pattern is very much driven by trade 

with China [quadrant (d)]. 

                                                           
14 Low-wage countries are those with a GDP per capita less than 5% of US per GDP per capita. 
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Figure 3 shows the smoothed change of NR skill intensity across all sectors ordered by the 

initial NR intensity in the analyzed period. The decreasing shape shows that skill growth was 

faster for industries with lower initial NR intensity, thus providing a first insight into cross-

industry convergence. 

[FIGURE 2 ABOUT HERE 

[FIGURE 3 ABOUT HERE] 

[Table 1 ABOUT HERE] 

Let us now turn to the analysis of the determinants and the effects of changes in the demand 

for non-routine skills. 

5. Determinants of non-routine skills 

This section presents the analysis of the demand of NR skills at the industry level. Table 2 

shows the baseline results. These results are extended in Table 3 by allowing heterogeneity 

across different occupational groups. To ease the interpretation, recall that our measure of NR 

skills is basically tantamount to a general measure of employment quality. 

Baseline specification 

Table 2 shows a series of specifications that are progressively enriched by various controls. 

The common covariates are the lagged dependent variable, lagged capital equipment, our 

chosen proxy for ICTs, Cap Equip, and two time-invariant dummies for low- and medium-

tech industries (Low Tech and Med Tech, respectively).15 Both lagged capital equipment and 

the lagged dependent variable are used: the former with the second lag and the latter with lags 

from 2 to 5. Four preliminary observations are in order. First, standard tests validate our 

                                                           
15 To control for the technological content of different industry aggregations we use three dummies for the low 
(Low Tech), medium (Med Tech) and high (High Tech) technology sectors in manufacturing (according to the 
Eurostat classification). For further details, see Table B3 in the online appendix. 

https://www.sussex.ac.uk/webteam/gateway/file.php?name=2014-18-consolivonarentocchini.pdf&site=25
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specification: the Hansen test does not reject the null hypothesis of instruments’ exogeneity, 

and the Arellano-Bond tests always fail to reject the alternative hypothesis of second-order 

autocorrelation.16 The validity of the standard specification tests applies to all the models 

presented in the remainder of the paper. Second, dynamic specifications reduce the bias of the 

estimated effects, especially for capital equipment. This is evident from a comparison 

between Table  2 and Table A1 in the appendix, where the main specifications (Model 1 and 

3) are estimated using OLS and FE without the lagged dependent variable. Third, the effects 

of the lagged dependent variable 𝜌𝜌� (well above 0.9) and of the two dummies Med Tech and 

Low Tech (negative relative to the reference category, High Tech) point to high persistence in 

the adaptation process for NR skill intensity. Model 1 uses only Cap Equip as an external 

explanatory variable. This specification is akin to the specification of the classic ALM (2003) 

paper, with the exception of the lagged dependent variable. The point estimate is positive but 

not significantly different from zero (p-value=0.348), which indicates that the aggregate 

effect of ICT adoption on non-routine skills weakened over the last decade. The specification 

of Model 2 includes trade with high- and medium-wage countries and is equivalent to the 

model used by Lu and Ng (2013) augmented with the lagged dependent variable. Our results 

corroborate their finding of a positive and significant effect of import penetration on the skill 

quality of the workforce over the 1999-2010 period. In Model 3, our favorite specification, 

the effect of trade is broken down by considering the import penetration from low-wage 

countries. Unlike Lu and Ng (2013), we find that the positive and significant effect of trade 

with high- and medium-wage countries is totally absorbed by Imp Pen Low. 17  

The inclusion of Imp Pen Low yields a twofold increase in the capital equipment coefficient, 

which is now statistically significant at a 95% level. Although the correlation between Imp 
                                                           
16The difference Sargan test (not shown here) generally confirms that system GMM is the appropriate 
specification compared with differenced GMM. 
17 Table A2 in the appendix shows that the main results of Model 3 are confirmed using the between estimator 
suggested by Hauk and Wacziarg (2009), which is more robust for measurement errors than the system GMM. 
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Pen Low and Cap Equip is rather modest at -0.17, industries with higher exposure to trade 

from low-wage countries likely adjust not only their labor force skills but also their use of 

complementary inputs, such as capital equipment. Model 3a and 3b address this issue by re-

estimating the Model 3 split for industries below and above the pre-sample median of the 

initial level of Imp Pen Low, respectively, for 1989-1995. The results are striking: while the 

point estimate of Imp Pen Low (resp. Cap Equip) is statistically significant (resp. 

insignificant) only in industries highly exposed to the competition of developing countries, 

the opposite holds for Cap Equip (resp. Imp Pen Low). Interestingly, the Cap Equip 

coefficient is much higher in industries with high exposure to Imp Pen Low, but it displays a 

high variability, which makes it statistically insignificant. This finding is broadly consistent 

with the finding of Autor, Dorn and Hanson (2013) that the effects of trade from low-wage 

countries and of technology do not overlap. We therefore conclude that differences in the 

effect of technology across industries may not be visible unless imports from low-wage 

countries are taken into account. 

The statistical significance of the estimated effects may not correspond to economic 

significance. However, in this case, the size of the two short-run effects of Cap Equip and 

Imp Pen Low reflects the increasing importance of the latter relative to the former. In 

particular, a one standard deviation increase in Cap Equip (resp. Imp Pen Low) explains 2.1% 

(resp. 3.6%) of a standard deviation in NR intensity.18 Note that the long-term effects of these 

two variables are considerably larger, i.e., more than 11 times larger, than the short-term 

effects.19 

[Table 2 ABOUT HERE] 
                                                           
18 A possible objection is that the effect of Imp Pen Low is reduced by the particular lag structure chosen (see 
Section 2). To check for this possibility, we replicate the analysis using a shorter lag structure and find that both 
the size and the statistical significance of the estimated coefficients are fully consistent with those of Model 3. 
The results are available upon request. 
19 The long-run effect is equal to the short-run effect multiplied by 1 (1 − 𝜌𝜌)⁄ , where 𝜌𝜌 is the estimated auto-
correlation coefficient. 
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The descriptive analysis in Figure 3 may suggest a mild tendency towards the industry 

catching up in the level of NR skills. However, the high values of the autocorrelation 

coefficient for NR intensity together with the negative and statistically significant coefficients 

of the Low Tech and Med Tech dummies in Table 2 imply considerable persistence in the 

demand for NR skills. We investigate this tendency by splitting the sample using the median 

of the initial level of NR skill intensity and excluding the Low Tech and Med Tech dummies. 

Models 3c and 3d illustrate that Imp Pen Low and Cap Equip have a large and statistically 

significant effect only in industries with a below-median initial skill level. In turn, the 

positive and near significant (p-value=0.138) effect of Imp Pen Hi-Med in skilled industries 

is offset by a negative and significant effect in unskilled industries. In sum, at the industry 

level, trade from low-wage countries and technology emerge as the strongest convergence 

force for NR skills, while trade with high-wage countries is a mild source of divergence. 

In sum, two major findings stand out so far. First, Imp Pen Low induces restructuring and 

skill adaptation, especially in LS industries that are arguably more exposed to competition 

from low-wage countries. The fact that the adjustment to foreign competition depends on the 

initial skill level and is a source of skill convergence across industries is in line with previous 

studies on European countries (Bugamelli et al., 2008) and the US (Pierce and Schott, 2012). 

Second, technology, represented by capital equipment, is not a source of skill divergence; it is 

instead a source of mild cross-industry convergence. This finding suggests that as ICTs have 

matured and their activities have been codified, the impact of technology may have faded 

away (Vona and Consoli, 2015).  

Heterogeneity in occupational skill content 

Models 1-3 in Table 3 replicate the analysis of Table 2 by allowing for heterogeneity across 

the three previously defined occupational categories. As expected from the employment 
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patterns depicted in Figure 1, the results reveal substantial heterogeneity across occupational 

groups. First, skill persistence, captured by the lagged NR occupation-specific coefficient is 

stronger for supervised occupations, viz. LS and MS, relative to HS occupations. In regards 

to our main explanatory variables, Imp Pen Hi-Med has a negative and significant effect on 

LS but a positive effect on the other occupations. Taking into account significance levels and 

considering the results for the above-median split sample of Table 2, we conclude that Imp 

Pen Hi-Med is a source of skill divergence mainly between MS and LS occupations. Second, 

in accordance with ALM (2003), Cap Equip continues to exert a polarizing effect because 

skill upgrading is stronger for HS and LS occupations compared with MS occupations. Third, 

Imp Pen Low is also a source of significant skill polarization. This result, in line with the 

Heckscher-Ohlin model, suggests that trade is a source of inequality in terms of the use of 

certain inputs or tasks, in this case non-routine tasks, especially between countries with very 

large differences in endowments. For LS occupations, the net effect depends on the direction 

of the adjustments that follow trade-induced job loss.20 On the whole, the share of LS 

occupations will be lower but the surviving workers will be more qualified. 

[Table 3 ABOUT HERE] 

Models 4-6 in Table 3 further articulate the effect of trade by breaking down Imp Pen Low 

into two import penetration ratios, thus isolating imports from China (Imp Pen China) from 

those of other low-income countries (Imp Pen Low No China). Imp Pen China has a positive 

effect on all groups, especially the HS group, for which the effect is also statistically 

significant. The coefficient for the HS category is in line with earlier remarks on the 

fragmentation of production chains (Baldwin, 2011) and the comparative advantage that 

                                                           
20 For the sake of space, we do not report results for employment that are consistent with the literature. In 
particular, Imp Pen Low has a negative, large and significant effect on the employment of LS workers. A recent 
study by Autor, Dorn, Hanson and Song (2013) finds that workers initially employed in industries with higher 
exposure to Chinese competition are more likely to change jobs and move out of manufacturing altogether; 
high-wage workers are able to relocate before large-scale restructuring occurs and thus avoid significant earning 
losses, while low-wage workers, who are generally less mobile, are more likely to be laid off. 
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countries such as China have gained in labor-intensive sub-activities within high-tech 

industries (Krugman, 2008; Hanson, 2012). In particular, the demand of NR skills is expected 

to increase, especially among HS occupations, as a result of the offshoring of routine-task-

intensive jobs to low-wage countries. The positive effect of Imp Pen Low on the NR skills 

among LS occupations is fully captured by the effect of other low-wage countries, except for 

China. This finding is consistent with recent evidence on the shift from LS to MS production 

in China (Amiti and Freund, 2010). The selection effect on the quality of the workforce in LS 

occupations should be stronger for low-wage countries that remain specialized in LS 

production. 

Note that the results are qualitatively confirmed by the use of the BE estimator (see Table A2 

in Appendix A). These findings also suggest a substantially heterogeneous effect of trade and 

technology across occupational groups, which is further corroborated by the graphical 

analysis on the differences between the estimated coefficients (see Figure A1 and A2 in the 

online appendix). 

6. The effects of NR skills  

This section presents the analysis of the effects of NR skills in terms of industry-level 

performance, which is divided into two parts. The first part focuses on productivity, and the 

second part focuses on wages. 

Productivity 

Table 4 shows the results for the analysis of productivity growth, which is measured as the 

value added per worker. To take into account the dynamic nature of the process, our 

estimations are based on system GMM.21 In particular, we use a catching-up equation (e.g., 

Griffith et al., 2004) in which the dynamic term is the lagged distance-to-frontier effect, 

                                                           
21 As in the case of the skills described above, standard statistical tests corroborate the validity of our choice. 
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which is computed as the difference between each industry’s productivity of and that of the 

most productive industry divided by the latter’s productivity (Distance to frontier).22 The 

inclusion of the distance-to-frontier term allows the modeling of productivity dynamics as 

dependent on the scope of the catching up of the specific industry at stake (Nicoletti and 

Scarpetta, 2003). All variables are in log to allow for a direct interpretation of the effects in 

terms of elasticity. 

Table 4 ABOUT HERE 

The first specification, Model 1, shows that the effect of skill upgrading is, as expected, 

positive and statistically significant. In particular, a 1% increase in the intensity of NR 

intensity yields a 0.18% increase in productivity. Note that this effect is akin to a short-term 

effect because it is obtained by controlling for the distance-to-frontier term. The distance-to-

frontier coefficient suggests cross-industry convergence with a large effect of 6.8% catching-

up on a yearly basis. Our catching-up specification for productivity dynamics captures faster 

productivity growth in industries with lower initial levels, as the positive sign of the dummies 

for middle- and low-tech industries confirms. However, this specification suffers from an 

omitted variable bias, as many other sources of productivity growth are not included. We 

address this shortcoming by including various proxies for skills and other drivers of 

productivity. 

The addition of the industry employment shares of HS and MS, using LS as ‘reference 

group’, to Model 2 reverses the result for NR intensity, which is now negative. In turn, higher 

shares of HS and MS workers are observed to have positive productivity effects with short-

term elasticity (0.15% and 0.1%, respectively). This finding suggests that the relative quantity 

                                                           
22 We use information from our productivity measure and define the productivity distance in sector i and year t 
as the value of the most productive industry in year t: Max(Prod)t. 
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of HS workers matters more than the relative quality of the workforce for industry 

productivity growth. 

To further elucidate the catching up, the sample is split into two groups according to initial 

productivity levels, above (Model 2a) and below (Model 2b) the median productivity of the 

pre-sample period, 1990-1998. Observe that catching up is concentrated in industries above 

the median productivity level. Because the distribution of value added per capita is right-

skewed, industries with average productivity levels catch up with those at the frontier. The 

next step includes other productivity drivers selected on the basis of previous studies. The 

specification in Model 3 includes Cap Equip and the usual proxies of international 

competition. Both sets of variables are expected to positively affect productivity growth. The 

former effect derives straightforwardly from any endogenous growth models, while the latter 

depends on firm selection in new trade models à la Melitz (2003). First, we observe that the 

effect of NR intensity is again negative and near significant (p-value=0.130), while the 

elasticities associated with Emp Sh HS and Emp Sh MS increase above 0.2. Second, as 

expected, the Cap Equip coefficient is positive and statistically significant with a modest 

short-term elasticity of 0.01. Third, the two measures of import penetration have no particular 

influence on productivity. If any, the influence of trade tends to be negative. 

Comparing these results with the existing literature, these technology-related results resonate 

with evidence on the positive impact of ICTs on industry productivity (Siegel and Griliches, 

1992; Jorgenson et al., 2008). For trade, the effect is not in line with new trade models à la 

Melitz (2003), and it is important to note that this last set of results is not always robust to the 

use of a robust BE estimator (see Appendix). Finally, the finding on the effect of NR skills is 

consistent with the study of Wolff (2003), showing that growth in cognitive skills has a 

positive, albeit modest, association with industry productivity growth. Reassuringly, this 
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main result on the effect of NR skills on productivity is robust to changes in specifications 

and to different productivity measures.23 

Industry wages 

Wage changes are frequently used in the study of the dynamics of skills and employment. 

The existing literature extensively analyzes the effect of routinization and trade on wage 

inequality, i.e., the wage difference between higher and lower occupations. The usual 

assumption is to rank occupations according to their initial skill levels, so that the effect of 

interest is not skill upgrading on wages but rather trade and technology on wages mediated by 

the initial skill level. In this section, we address a complementary research question: how 

much do wages react to upgrading an occupation’s NR skill content? Wages are interpreted 

here as a measure of economic performance at the occupational level.24 This shift in 

perspective is possible because our dataset allows us to create skill measures for occupational 

macro-groups that vary over time and across industries.25 All things being equal, we expect 

that workers with higher NR intensity values will be paid more. 

The evolution of the wages of occupation i in industry j is characterized by true state 

dependency, which leads us to adopt, for the same reasons discussed earlier in regard to NR 

intensity, a dynamic specification. However, the lagged dependent variable is not normally 

included in the standard Mincerian wage equation. Hence, in Table 5, we compare two main 

specifications for wages: the baseline model with industry fixed effects, but without 

dynamics (Models 1-3), and our favorite dynamic specification, estimated with system GMM 

                                                           
23 In particular, it is robust to a classic dynamic specification rather than to a catching-up specification, a BE 
estimator (Table A2 in Appendix A) and different measures of productivity growth (TFP and output per 
worker).  
24 This interpretation fits well with the institutional features of the US labor market, in particular decentralized 
bargaining and flexible wage setting. 
25 Recall from Section 2 that the skill intensity of each occupational macro-group varies across sectors, as the 
employment shares of each elementary SOC occupation vary by sector. Note that occupational macro-groups 
are an aggregate of elementary SOC occupations. 
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(Models 4-6). Here we instrument the lagged dependent variable, the occupational-specific 

level of NR intensity and its share of employment. Again, all variables are in log to interpret 

the effects in terms of elasticity. 

Models 1-3 in Table 5 show that the effect of NR intensity is positive and statistically 

significant across all occupational groups. However, the estimated elasticity is decreasing in 

the occupational ranking and is significantly lower for LS occupations. Additionally, Emp HS 

has a positive wage effect for clerks (p-value=0.10), even more so for lower occupations. 

Conversely, Emp MS is associated with a statistically significant wage penalty for all 

occupational groups. The effect of Cap Equip is not in line with our previous findings on skill 

demand: equipment magnifies the wage gap between HS and MS occupations relative to LS 

occupations. The effect of trade is statistically insignificant for HS and MS occupations, 

while it is negative for LS occupations, where the Imp Pen Hi-Med coefficient is also 

statistically significant. 

Table 5 ABOUT HERE 

Models 4-6 in Table 5 are our favorite dynamic specifications. The first noticeable difference 

with the static model is that the effect of NR intensity only remains significantly different 

from zero for HS occupations. The effect is also quite large, with an elasticity equal to 0.45 in 

the short-term and 2.1 in the long-term. The coefficient associated with the employment share 

of HS is now positive and significant only for HS and MS occupations, while that of LS 

occupations disappears. In general, the effects of non-routine skills on wages appear to 

increase with occupational quality. Similar to what was observed for the determinants of NR 

intensity, wage persistence appears to decrease with occupational quality. 

Compared with Models 1-3, the new specifications yield clearer results for the remaining 

explanatory variables. Cap Equip has a positive wage effect on all occupations. While the 
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short-run elasticity seems only slightly higher for LS occupations, the long-term effect is 

much higher: 0.13 compared with 0.04 for HS and MS occupations. Trade with high- and 

medium-wage countries is associated with a higher wage premium for HS occupations, which 

is consistent with our findings for NR intensity. The effect is modest but not small, with a 

long-term elasticity of 0.23. Finally, Imp Pen Low has a near significant (p-value=0.152) 

negative effect on only LS workers, with a long-term elasticity of 0.33. However, similar to 

what we noted in regard to productivity, the effects of trade on wages are not very robust to 

the use of the BE estimator, while the other variables remain qualitatively unaffected (Table 

A3 in online appendix). 

The modest and unclear wage effect of trade is accounted by two effects that tend to cancel 

out at the macro level. On the one hand, a contraction in employment entails a selection effect 

that favors the best workers’ survival and increases their average productivity and, in turn, 

their wages. On the other hand, lower bargaining power compresses the wages of continuing 

workers. Overall, these findings are in line with other industry-level studies showing that 

trade competition has had little impact on US manufacturing wages (Edwards and Lawrence, 

2010; Ebenstein et al., 2013). 

7. Concluding remarks and future research  

This paper has elaborated an empirical analysis of changes in the skill content of occupations 

in US manufacturing industries over the 1999-2010 period. Following the seminal work of 

Autor, Levy and Murnane (2003) we adopt a task-based approach to analyze the determinants 

and the effects of changes in the demand of non-routine skills. The ALM study and the 

subsequent literature conclude that the diffusion of computing technology in the 1990s 

augmented the productivity of occupations requiring high levels of interactive and analytical 

skills to the detriment of routine-task intensive occupations. Such a process, in turn, gave way 

to significant divergences within and between occupations and industries. The first goal of 
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the paper was to assess whether technology continued to be a source of divergence 

throughout the 2000s. We also acknowledge the prominence of other global forces, in 

particular the remarkable transformation of the global import-export matrix due to the 

expansion of international trade with China and other emerging economies. Accordingly, the 

second goal of the paper was to gauge the impact of trade on the skill content of US 

occupations and industries after the increase in trade with low-wage and emerging countries. 

Our analysis yields three main results. First, import competition from low-wage countries has 

induced skill adaptation in LS industries that are arguably more exposed to foreign 

competition. In general, compared with technology, trade emerges as a stronger driver of 

demand for non-routine skills during the 2000s. The second key finding is that both 

technology and imports from low-wage countries have induced skill convergence across 

industries not due to convergence across occupations. Indeed, both technology and trade with 

low-wage countries induce stronger skill upgrading for HS and LS occupations and, in turn, a 

polarization effect. The last result is in line with previous literature and confirms that higher 

non-routine skills have overall modest effects on both productivity and wages, except for in 

HS occupations. 

Looking ahead, the limitations and omissions of this study are a compass for future research 

on these issues. To keep things simple, we opted for an admittedly uncomplicated portrayal 

of technology, which leaves plenty of room for a richer characterization. One step in this 

direction is the exploration of a notion that has been mentioned but not fully developed here, 

namely, that technology evolves and that different stages of the life-cycle significantly 

influence the relevance of the skills that are necessary to use technology (Vona and Consoli, 

2015). Second, the data available to us cover a time span that is too short to disentangle the 

changes in employment shares between occupations from the changes in task content within 

occupations. Such an analysis would mark an important step towards understanding the 
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evolution of occupations beyond mere structural changes. Yet another promising departure 

from the present paper would be an analysis of the origin of new educational programs. In a 

truly dynamic process, the short-run imbalances triggered by trade and technology on the 

demand for skills are expected to stimulate the creation of educational packages aimed at 

facilitating the diffusion of new skills. In this spirit, our future research will focus on the 

evolution of formal education and training in response to changing demand for particular 

skills. 
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Table 1: Summary statistics for the pooled sample 

Variable Mean SD 25th 
percentile 

50th 
percentile 

75th 
percentile 

Min Max N. of Obs. Reference period Source 

Dependent variables           
NR intensity 0.932 0.111 0.844 0.934 1.009 0.708 1.309 1008 1999-2010 O-NET 
NR intensity HS 1.27 0.033 1.255 1.269 1.286 1.094 1.379 1008 1999-2010 O-NET 
NR intensity MS 1.121 0.059 1.069 1.122 1.173 0.928 1.286 1008 1999-2010 O-NET 
NR intensity LS 0.788 0.107 0.678 0.794 0.893 0.614 0.991 1001 1999-2010 O-NET 
Wage HS 30.936 4.152 28.155 30.562 33.342 16.911 49.93 1008 1999-2010 O-NET 
Wage MS 17.645 2.68 15.85 17.604 19.31 10.794 30.64 1008 1999-2010 O-NET 
Wage LS 13.856 2.706 12.092 13.84 15.262 8.179 25.289 1001 1999-2010 O-NET 
Value added per worker 133.686 127.871 76.203 101.298 139.392 40.919 1850.1 1032 1998-2009 NBER-CES 

Main variables           
Cap Equip 0.081 0.097 0.032 0.059 0.082 0.007 0.816 1032 1998-2009 NBER-CES 
Imp Pen Hi-Med 0.184 0.114 0.106 0.177 0.23 0.011 0.983 1007 1996-2007 Schott 
Imp Pen Low 0.063 0.086 0.01 0.024 0.098 0 0.645 1007 1996-2007 Schott 
Imp Pen China 0.046 0.057 0.007 0.02 0.071 0 0.601 1007 1996-2007 Schott 
Imp Pen Low No China 0.017 0.041 0.001 0.003 0.01 0 0.22 1007 1996-2007 Schott 

Controls           
Emp Sh HS 0.2 0.125 0.119 0.158 0.203 0.066 0.743 922 1998-2009 O-NET 
Emp Sh MS 0.155 0.056 0.113 0.145 0.194 0.034 0.329 922 1998-2009 O-NET 
Distance to frontier 91.389 7.775 90.742 93.567 94.738 0 97.507 1032 1998-2009 NBER-CES 
High Tech 0.14 0.347 0 0 0 0 1 1032 1999-2010 Eurostat 
Med Tech 0.195 0.396 0 0 0 0 1 1032 1999-2010 Eurostat 
Low Tech 0.545 0.498 0 1 1 0 1 1032 1999-2010 Eurostat 

Notes: All statistics are weighted by average employment share over the period 1999-2010. Non-routine skill intensity, wage and employment share variables have missing 
information for the period 1999-2001 pertaining to the following industries: Other Food (3119); Apparel Accessories and Other Apparel (3159); Sawmills and Wood 
Preservation (3211); Lime and Gypsum Product (3274); Iron and Steel Mills and Ferroalloy (3311); Cutlery and Handtool (3322); Motor Vehicle (3361); Other Furniture 
Related Product (3379). NR intensity LS and Wage LS have additional missing values: Railroad Rolling Stock (3365) in 2003, Other Leather and Allied Product (3169) and 
Leather and Hide Tanning and Finishing (3161) in the period 2008-2010. Information for employment share variables is missing for the year 1998. Import penetration 
variables have missing values in the period 1996-2007for the following industries: Apparel Knitting Mills (3151); Coating, Engraving, Heat Treating, and Allied Activities 
(3328). For year 2007 we additionally miss information for Manufacturing and Reproducing Magnetic and Optical Media (3346).
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Table 2: Effects of Import Competition and Technology on Non-Routine Skill Intensity 

Dependent Variable: NR Intensity        
Model [1] [2] [3] [3a] [3b] [3c] [3d] 
NR Intensity -1 0.9090*** 0.9061*** 0.9153*** 0.9495*** 0.8894*** 0.9059*** 0.8960*** 

 [0.023] [0.025] [0.023] [0.015] [0.048] [0.061] [0.038] 
Cap Equip -1 0.0108 0.0116 0.0242** 0.0058* 0.0369 0.0262*** 0.0045 

 [0.011] [0.012] [0.010] [0.003] [0.049] [0.010] [0.009] 
Imp Pen Hi-Med -3  0.0122* -0.0068 -0.0065 -0.0023 -0.0263*** 0.0327 

  [0.007] [0.008] [0.007] [0.014] [0.008] [0.022] 
Imp Pen Low -3   0.0445*** 0.0081 0.0442*** 0.0590*** 0.0499 

   [0.008] [0.049] [0.010] [0.010] [0.039] 
Med Tech -0.0032 -0.0031 -0.0052** -0.0032 -0.0065***   

 [0.002] [0.002] [0.002] [0.002] [0.002]   
Low Tech -0.0099*** -0.0093*** -0.0108*** -0.0050** -0.0126***   

 [0.003] [0.002] [0.002] [0.002] [0.003]   
Observations 922 899 899 447 452 436 463 
N. of groups 86 84 84 42 42 41 43 
AR2 -0.1049 -0.0886 -0.1391 -0.8143 0.181 -1.1537 1.5728 
AR2 crit. prob. 0.9164 0.9294 0.8893 0.4155 0.8564 0.2486 0.1158 
Hansen J 69.7197 66.6347 64.7033 31.3199 34.0926 31.8397 35.6693 
Hansen df 63 63 63 28 28 27 28 
Hansen crit. prob. 0.2619 0.3531 0.417 0.3031 0.1978 0.2381 0.1512 
Instruments 78 79 80 45 45 42 43 
Notes: System GMM with Windmeijer correction for standard errors. The dependent variable is Non-Routine Skill Intensity and is an index of industry-level Non-Routine 
task intensity computed as: (sum of industry Non-Routine cognitive and interactive task inputs)/(sum of routine and manual task inputs). Specifications [3a] and [3b] include 
the sample split between industries with respectively below and above- median value of import penetration from low wage countries in the pre-sample period 1989-1995. 
Specifications [3c] and [3d] include the sample split between industries with respectively below and above- median value of NR Intensity for the initial year 2002. Med 
Tech=Medium-Tech dummy; Low Tech=Low-Tech dummy. All regressions are weighted by average employment share over the period 1999-2010. *** Significant at the 
1% level; ** Significant at the 5% level; * Significant at the 10% level. Coefficients for the regression constant and year effects are not reported for sake of simplicity. 
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Table 3: Effects of Import Competition and Technology on Non-Routine Skill Intensity in three 
occupational groups (High-Skill, Medium-Skill and Low-Skill) 

Dependent Variable: NR 
intensity 

HS MS LS HS MS LS 

Model [1] [2] [3] [4] [5] [6] 
NR Intensity HS -1 0.8164***   0.8155***   

 [0.036]   [0.037]   
NR Intensity MS -1  0.9257***   0.9195***  

  [0.035]   [0.037]  
NR Intensity LS -1   0.9187***   0.9179*** 

   [0.012]   [0.012] 
Cap Equip -1 0.0098* 0.0035 0.0101*** 0.0093* 0.0035 0.0118*** 

 [0.005] [0.004] [0.004] [0.005] [0.004] [0.003] 
Imp Pen Hi-Med -3 0.0012 0.0059* -0.0090** 0.0032 0.0078** -0.0241*** 

 [0.006] [0.003] [0.005] [0.008] [0.004] [0.007] 
Imp Pen Low -3 0.0484*** 0.0029 0.0249**    

 [0.008] [0.006] [0.010]    
Imp Pen China -3    0.0542*** 0.0109 0.0027 

    [0.020] [0.014] [0.013] 
Imp Pen Low No China -3    0.0355 -0.0138 0.0822*** 

    [0.028] [0.015] [0.019] 
Med Tech -0.0007 -0.0001 -0.0003 -0.0007 -0.0003 -0.0006 

 [0.004] [0.001] [0.001] [0.004] [0.001] [0.001] 
Low Tech -0.0031 -0.0011** -0.0006 -0.0027 -0.0006 -0.0029* 

 [0.003] [0.000] [0.001] [0.003] [0.001] [0.002] 
Observations 899 899 891 899 899 891 
N. of groups 84 84 84 84 84 84 
AR2 0.2555 0.1217 1.2625 0.2531 0.1119 1.2311 
AR2 crit. prob. 0.7983 0.9031 0.2068 0.8002 0.9109 0.2183 
Hansen J 63.1799 67.2388 67.2271 63.2206 68.2538 65.5312 
Hansen df 58 58 58 58 58 57 
Hansen crit. prob. 0.2985 0.1902 0.1904 0.2972 0.168 0.205 
Instruments 75 75 75 76 76 75 
Notes: System GMM with Windmeijer correction for standard errors. The dependent variable is Non-Routine 
Skill Intensity and is an index of industry-level Non-Routine task intensity computed as: (sum of industry Non-
Routine cognitive and interactive task inputs)/(sum of routine and manual task inputs). The dependent variable 
has been computed for three different groups of professions: HS=High-Skill; MS=Middle-Skill; LS=Low-Skill. 
Med Tech=Medium-Tech dummy; Low Tech=Low-Tech dummy. All regressions are weighted by average 
employment share over the period 1999-2010. *** Significant at the 1% level; ** Significant at the 5% level; * 
Significant at the 10% level. Coefficients for the regression constant and year effects are not reported for sake of 
simplicity.  
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Table 4: Effects of Non-Routine Skill Intensity on Productivity  

Dependent Variable: Change in the log of value added per worker 
Model [1] [2] [2a] [2b] [3] 
Distance to frontier -1 0.0679* 0.0770** 0.1368* -0.3657 0.1657** 

 [0.035] [0.036] [0.068] [0.470] [0.078] 
NR Intensity -1 0.1861*** -0.0783 -0.2533 -0.5309* -0.2768 

 [0.062] [0.139] [0.310] [0.289] [0.181] 
Emp Sh HS -1  0.1460** 0.1638* 0.3195* 0.2164** 

  [0.068] [0.094] [0.172] [0.088] 
Emp Sh MS -1  0.0993* 0.0408 0.1230* 0.2470** 

  [0.055] [0.102] [0.072] [0.123] 
Cap Equip -1     0.0122** 

     [0.006] 
Imp Pen Hi-Med -2     -0.007 

     [0.066] 
Imp Pen Low -2     -0.1403 

     [0.109] 
Med Tech 0.0027 0.0054 0.0062 0.0104 0.0117 

 [0.007] [0.009] [0.008] [0.010] [0.017] 
Low Tech 0.0066 0.0133* 0.0290** 0.0029 0.0232* 

 [0.007] [0.007] [0.014] [0.010] [0.013] 
Observations 836 836 418 418 815 
N. of groups 86 86 43 43 84 
AR2 0.4831 0.4525 2.2637 -1.2226 0.504 
AR2 crit. prob. 0.629 0.6509 0.0236 0.2215 0.6142 
Hansen J 39.8713 41.1725 29.7869 30.706 47.9372 
Hansen df 36 36 27 27 45 
Hansen crit. prob. 0.3019 0.2545 0.3238 0.2834 0.3545 
Instruments 50 52 43 43 64 
Notes: System GMM with Windmeijer correction for standard errors. Med Tech=Medium-Tech dummy; Low 
Tech=Low-Tech dummy. All covariates, except dummies, have been log-transformed. Specifications [2a] and 
[2b] include the sample split between industries with respectively below and above- median value of log value 
added in the pre-sample period 1990-1998. All regressions are weighted by average employment share over the 
period 1999-2010. *** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level. 
Coefficients for the regression constant and year effects are not reported for sake of simplicity. 
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Table 5: Effects of Non-Routine Skill Intensity on Wage  

Dependent Variable: 
Log(Hourly Wage+1) 

      

Model [1] [2] [3] [4] [5] [6] 
Emp Sh HS -1 0.1455 0.2434 0.3964*** 0.1714*** 0.1221** 0.002 

 [0.187] [0.147] [0.105] [0.054] [0.061] [0.039] 
Emp Sh MS -1 -0.4497*** -0.2149* -0.3375** 0.0139 -0.0494 -0.0457 

 [0.101] [0.116] [0.137] [0.032] [0.047] [0.051] 
Cap Equip -1 0.0301 0.0619*** 0.0115 0.0092*** 0.0092** 0.0120*** 

 [0.021] [0.020] [0.011] [0.003] [0.005] [0.004] 
Imp Pen Hi-Med -3 -0.0375 -0.0625 -0.1685** 0.0518** 0.003 -0.0092 

 [0.077] [0.091] [0.081] [0.021] [0.024] [0.017] 
Imp Pen Low -3 -0.0428 0.1189 -0.0786 0.0224 0.0397 -0.0306 

 [0.065] [0.113] [0.087] [0.018] [0.029] [0.021] 
NR Intensity HS -1 1.4716***   0.4562**   

 [0.360]   [0.205]   
NR Intensity MS -1  1.2772***   0.0786  

  [0.300]   [0.382]  
NR Intensity LS -1   0.3094*   -0.081 

   [0.156]   [0.057] 
Wage HS -1    0.7830***   

    [0.071]   
Wage MS -1     0.8007***  

     [0.081]  
Wage LS -1      0.9091*** 

      [0.034] 
Med Tech    0.0111*** -0.0066 0.0008 

    [0.004] [0.006] [0.004] 
Low Tech    0.0205*** -0.0066 -0.0085 

    [0.007] [0.008] [0.008] 
Observations 899 899 891 899 899 891 
N. of groups 84 84 84 84 84 84 
R-sq 0.9412 0.9351 0.9148    
AR2    -0.6022 1.4027 -0.2476 
AR2 crit. prob.    0.547 0.1607 0.8044 
Hansen J    59.3226 54.8066 33.0889 
Hansen df    57 57 37 
Hansen crit. prob.    0.3909 0.5578 0.653 
Instruments    77 77 57 
Notes: Models from [1] to [3] are panel data regressions with fixed effects and robust standard errors adjusted 
for clustering at the industry level. Models [4]-[6] are System GMM with Windmeijer correction for standard 
errors. The dependent variable is log of hourly wage and has been computed for three different groups of 
professions: HS=High-Skill; MS=Middle-Skill; LS=Low-Skill. Med Tech=Medium-Tech dummy; Low 
Tech=Low-Tech dummy. All covariates, except dummies, have been log-transformed. All regressions are 
weighted by average employment share over the period 1999-2010. *** Significant at the 1% level; ** 
Significant at the 5% level; * Significant at the 10% level. Coefficients for the regression constant and year 
effects are not reported for sake of simplicity. 
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